WO2011073315A1 - Element structural d'absorption d'energie en materiau composite - Google Patents

Element structural d'absorption d'energie en materiau composite Download PDF

Info

Publication number
WO2011073315A1
WO2011073315A1 PCT/EP2010/069886 EP2010069886W WO2011073315A1 WO 2011073315 A1 WO2011073315 A1 WO 2011073315A1 EP 2010069886 W EP2010069886 W EP 2010069886W WO 2011073315 A1 WO2011073315 A1 WO 2011073315A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural element
section
profile
sections
cross
Prior art date
Application number
PCT/EP2010/069886
Other languages
English (en)
Inventor
Jean-Mathieu Guimard
Michel Bermudez
Didier Mesnage
Original Assignee
European Aeronautic Defence And Space Company Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence And Space Company Eads France filed Critical European Aeronautic Defence And Space Company Eads France
Publication of WO2011073315A1 publication Critical patent/WO2011073315A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/062Frames specially adapted to absorb crash loads

Definitions

  • the present invention relates to a structural element adapted to take up static compression forces, more particularly intended to enter into the constitution of an aircraft primary structure.
  • the element is designed to absorb the energy dissipated during a sudden compressive force when it is stressed at levels higher than static loads, especially during a crash resulting from an accident such as a landing or a ditching landing soliciting the primary structure of the aircraft along its vertical axis (vertical component crash).
  • the fuselage of an aircraft mainly comprises a structure consisting of a lining reinforced internally by reinforcement frames and rails.
  • the reinforcement frames are positioned along sections of the fuselage substantially perpendicular to a longitudinal axis thereof and the rails extend substantially along this longitudinal axis.
  • the reinforcing frames support sleepers, generally straight and extending horizontally, in an aircraft landmark, perpendicular to the longitudinal axis, on which are fixed floors.
  • the lower part of the fuselage is, in general, the first zone of the aircraft subjected to impacts and therefore plays an essential role in the absorption of the initial kinetic energy.
  • the structure may also comprise structural elements, for example so-called plastic hinges, between the floor and the lower frame.
  • the structural elements act as stiffeners. In case of over-stressing, for example during an accident, said structural elements are triggered and degraded, thereby generating energy absorption.
  • the lower part of the fuselage is designed to respond mainly to the demands encountered during the normal commercial operation of the aircraft.
  • the composite materials have virtually no plastic domain before failure. However, they have, by the nature of each of their constituents and their arrangement, significant properties of energy absorption (by damage in the broad sense, such as for example by delamination, friction, ...) .
  • a fuselage structure (fuselage frame, skins, slats ...), made of composite material, therefore behaves very differently from a fuselage structure of metallic material, with respect to the absorption of energy and at the end solicitation, before or after a break.
  • a particular element named "Z-strut” or “connecting rod” is fixed between the floor and a lower frame by rivet type fasteners. This initially metallic element also participates in the energy absorption in case of crash by its natural plastic deformation.
  • a known composite metal / composite solution of an absorbent connecting rod such as, for example, that described in the German patent application DE 10 2006 056 440.5, consists in fixing on the vertical connecting rods of composite material, placed between the floor and the lower frames, a metal device whose constitution allows to trigger the ruin of the rod under a predefined stress intensity higher than the intensity of nominal loads in service (this function is ensured by the use of calibrated metal fasteners to break at a given shear level ).
  • the devices are designed to machine the composite rods in a metal base along their length and to absorb the energy released during the crash.
  • the vertical rods act as elastic bars.
  • said metal devices are triggered and the rods collapse while degrading. This phenomenon being irreversible, it dissipates energy. It is made, for the rest, to substantially constant effort except during the initiation and end of course when the floor eventually hit the bottom of the fuselage.
  • the device used is metallic and attached to the connecting rod, so it is penalizing mass for the aircraft.
  • the present invention relates to a structural element capable of taking up static compression forces along a predominant Z axis.
  • Said structural element comprises two sections of fibrous composite material, extending along the Z axis, and being joined to each other at the end of each other so as to be substantially in continuity with one another. another, at a junction zone, by fibers, called transverse fibers, placed perpendicular to an interface between said two sections and perpendicular to the Z axis, so that an impact along the Z axis causes a delaminating said transverse fibers to absorb energy.
  • fibrous composite material is meant a material based on fibers embedded in a polymerizable resin.
  • the structural element is advantageously fixed at the ends of two structural parts of a primary structure of an aircraft fuselage, more particularly between a reinforcing frame and a floor cross.
  • the Z axis is oriented substantially in a direction of compressive forces to be absorbed during an impact.
  • the Z axis is for example substantially vertical under the floor, in an aircraft mark.
  • the structural element makes it possible, on the one hand, to provide a force transfer function between the two structural parts when the aircraft is in nominal operation and, on the other hand, to absorb the energy generated by the impact. , in case of crash.
  • the energy generated during the shock is advantageously dissipated by the progressive destruction of the structural element.
  • the transverse fibers are pricked perpendicularly through the two sections so as to form a seam.
  • the transverse fibers form nails through the two sections perpendicular to the interface.
  • the assembly by sewing, nailing or by other known techniques allows a strengthening of the structural element in its thickness to ensure control of the dissipation of energy caused during the destruction of said structural element in case of shock .
  • said structural element comprises:
  • said C-shaped cross section profile having dimensions, in width and height, adapted to interlock in one of the two recessed shapes of the H-shaped cross section profile.
  • the structural element is triggered by progressive tearing of the transverse fibers solidarisant the two profiles.
  • the two sections jointly present, in all or part of the junction zone, an evolutive transverse section.
  • said structural element comprises:
  • one of the two sections has an L shape.
  • This L-shaped allows the replacement of a horizontal floor crossbar, in the aircraft reference.
  • This L-shaped thus allows the structural element to integrate both a vertical stiffener, from its two sections, and a horizontal floor crossbar.
  • the two sections of the structural element form a one-piece assembly made in one piece.
  • the structural element is made from a resin transfer process, said RTM process.
  • the invention also relates to a primary structure of an aircraft fuselage comprising a coating, at least one reinforcing frame, at least one cross member and at least one structural element comprising two sections extending along the Z axis.
  • the structural member is attached at a first end to the reinforcing frame and at a second end to a cross member.
  • the invention also relates to a primary structure of an aircraft fuselage comprising a coating, at least one reinforcing frame, at least one cross member and at least one structural element, one of which has an L-shaped profile.
  • the structural element is then fixed at both ends to the same reinforcing frame and at its angle to a cross member.
  • FIGS. 1 to 8 represent:
  • FIG. 1 a perspective view schematically showing a section of a primary structure of an aircraft fuselage comprising ten structural elements under a floor made in accordance with one embodiment of the invention
  • FIG. 2a an example of an assembly between two profiles of a studded structural element
  • FIG. 2b an example of an assembly between two sections of a structural element by sewing
  • FIG. 4a a perspective view schematically showing a portion of a lower portion of a section of a primary structure of an aircraft fuselage comprising three structural elements according to a second exemplary embodiment
  • FIG. 4d an enlargement of FIG. 4c, seen from behind, at a junction zone
  • Figure 4e an enlargement of Figure 4d illustrating the tearing of the transverse fibers
  • FIG. 5a a perspective view of a third example of assembly of the two sections of a structural element according to one embodiment of the invention
  • Figure 5b an exploded view of the structural element of Figure 5a
  • FIG. 6 a perspective view schematically showing a portion of a lower portion of a section of a primary structure of an aircraft fuselage comprising five structural elements under a floor made in accordance with an improved embodiment of the invention
  • FIG. 7 is a perspective view of an example of a structural element according to the improved mode
  • Figure 8 a side view of another example of a structural element according to the improved mode.
  • a primary structure of an aircraft fuselage comprises, as illustrated in FIG. 1, a frame 1, substantially cylindrical, on which is secured a coating 1 1 reinforced by smooth 12 extending substantially along a longitudinal axis of the primary structure of the fuselage of the aircraft.
  • the frame 1 of the primary structure of the aircraft fuselage is formed mainly of reinforcing frames 13.
  • Said reinforcing frames are positioned along sections of the fuselage substantially perpendicular to the longitudinal axis of the fuselage and are regularly distributed over the entire length aircraft fuselage. Each of them has a shape that corresponds substantially to the local section of the fuselage, usually circular, at least locally, as in the example of Figure 1.
  • each reinforcing frame 13 is fixed a cross member 14.
  • the sleepers 14 are advantageously straight and horizontal, in an aircraft mark, so as to be able to support a floor (not shown), such as the floor of a cargo hold or door. a passenger cabin.
  • the frame 1 comprises, in a lower portion of the primary structure of the aircraft fuselage located between the cross members 14 and the reinforcing frames 13, at least one structural element 2 adapted to take compression forces.
  • the invention is described in detail for a structural member.
  • the implementation of the invention can be adapted to all the structural elements 2 of the frame of the aircraft.
  • FIG. 1 In the exemplary embodiment illustrated in FIG. 1, ten structural elements 2 are shown, two structural elements per reinforcing frame.
  • a structural element 2 has an elongate shape and is connected, on the one hand at a first end 23 to a cross member 14 and secondly at a second end 24, opposite said first end 23, to a reinforcing frame 13.
  • the structural element 2 has a longitudinal axis Z oriented substantially in the direction of the compressive forces to be absorbed during an impact, for example substantially vertical, under a floor.
  • the structural element 2 comprises two sections, called first 21 and second profile 22, of the same longitudinal axis Z, joined together, each substantially at one end, at a zone, called junction zone 25.
  • the two sections 21, 22 are substantially in continuity with one another.
  • the first profile 21 is connected at one end, said first end 21 1, opposite the end secured to the second section, said second end 212, to the cross member 14.
  • the second section 22 is connected at one end, said first end 221, opposite the end secured to the first section, said second end 222, to the reinforcing frame 13.
  • the second end 212 of the first section 21 is connected to the second end 222 of the second section 22.
  • the two sections 21, 22 are made of a fibrous composite material.
  • the first profile 21, respectively the second profile 22, is fixed on the cross member 14, respectively on the frame 13, by conventional means, such as for example rivets.
  • the two sections 21, 22 are joined together in the junction zone 25, in particular by stitching, as illustrated in FIG. 2b, or nailing, as illustrated in FIG. 2a, at least by fibers, called transverse fibers 26, placed perpendicular to a interface 27 between the two sections 21, 22.
  • the role of structural element 2 is twofold.
  • the structural element 2 provides a force transfer function between the cross member 14 and the reinforcing frame 13, when the fuselage structure is subjected to the normal forces corresponding to stresses encountered during the normal operation of the structure. the aircraft, plus safety factors.
  • the structural element 2 ensures, thanks to the elements that compose it, the destruction of the second section 22, in a progressive manner, when the structural element is subjected to a compression force mainly applied in the direction of its length. , ie in the illustrated example substantially vertically, corresponding to the efforts encountered in case of crash.
  • the progressive destruction of the second section 22 has the effect of absorbing a portion of the energy generated during the impact.
  • the destruction of the second section 22 is triggered at the junction zone and propagates by delamination of at least one of the profiles and or by the tearing of the transverse fibers 26 solidarisant the two sections.
  • the first section 21 has, at least over a certain length, from its second end 212 located on the side of the second profile 22, including the junction zone 25, a cross section in a plane normal to the longitudinal axis Z, said cross section, H-shaped and comprises a core 213 and two flanges 214 on either side of the core, forming two recessed shapes.
  • the first section 21 has, along its entire length, an H-shaped cross section.
  • the second profile 22 has, at least over a certain length from its second end 222 located on the side of the first profile 21, including the junction zone 25, a C-shaped cross section and comprises a core 223 and two flanges 224. on both sides of the soul, substantially transverse to the soul and arranged opposite one another.
  • the second section 22 has a C-shaped cross section along its entire length.
  • the second profile 22 has a dimension, in width and height, as it is nested, at the outer faces 225 in one of the two recessed shapes of the first section H.
  • the two profiles 21, 22 are assembled in the junction zone 25, at the webs and soles, soul 213 against soul 223 and soles 214 against flanges 224, for example by sewing or nailing.
  • the structural element 2 In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus the associated safety factors, the structural element 2 provides a function of transfer of effort between a cross member 14 and a reinforcing frame 13. Secondary forces in a transverse direction can also be passed. The presence of the structural element 2 thus makes it possible to ensure the passage of these combined forces.
  • the transverse fiber density is scalable in the junction zone to allow scalable energy absorption.
  • the first section 21 has, at least over a certain length, from its second end 212 located on the side of the second section 22, including the junction 25, a cross section, C-shaped and comprises a core 213 and two flanges 214 on either side of the core.
  • the first profile 21 has, over a certain length, from its first end 21 1 situated on the side of the cross member 14, a H-shaped cross-section and over a certain length from its second end 212 located on the side of the second section 22, including the junction zone 25, a cross section, C-shaped.
  • the first profile 21 has, over a certain length of the junction zone 25, a decreasing cross-section towards the second profile 22, by a reduction of a width of the core 213, as illustrated in FIG. 4b.
  • the second profile 22 has, at least over a certain length from the second end 222 located on the side of the first profile 21, including the junction zone 25, an H-shaped cross section and comprises a core 223 and two flanges 224. on both sides of the soul and having two hollow shapes.
  • the second profile 22 has, over a certain length, from its second end 222, an H-shaped cross-section and over a certain length from its first end 221, a section transverse, C-shaped.
  • the second profile 22 has, over a certain length of the junction zone, an increasing cross section towards the first profile 21 by an enlargement of the core 213, as shown in FIG. 4b.
  • the first profile 21 has a dimension, in width and height, as it is nested, at the outer faces 215 in one of the two hollow forms of the second profile 22 in H.
  • the two profiles 21, 22 are assembled in the junction zone 25, at the webs and soles, soul 213 against soul 223 and soles 214 against flanges 224, for example by sewing or nailing.
  • the structural element 2 In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus the associated safety factors, the structural element 2 provides a function of transfer of effort between a cross member 14 and a reinforcing frame 13.
  • the second profile 22 moves along its longitudinal axis Z.
  • the sliding of the first section 21 in the second profile 22 causes the spacing of the flanges 224 of the second profile 22 relative to the core 223 and tearing of the transverse fibers 26 solidarizing the two sections 21, 22, as illustrated in FIGS. 4c to 4e.
  • Energy absorption is performed, both by delamination, by progressive tearing of the transverse fibers 26 joining the two sections 21, 22 between the flanges 224 and the core 223 of the second section 22, and by friction.
  • the first section 21 has, at least over a certain length from its second end 212 located on the side of the second section 22, including the junction zone 25, a cross section , H-shaped and comprises a core 213 and two flanges 214 on either side of the soul.
  • the first section 21 has an H-shaped cross section along its entire length.
  • the second profile 22 has, at least over a certain length, from its second end 222 located on the side of the first profile 21, including the junction zone 25, an H-shaped cross section and comprises a core 223 and two soles. 224 on both sides of the soul.
  • the second section 22 has a H-shaped cross section along its entire length.
  • the second section 22 is in fact composed of:
  • the second profile 22 has, beyond the second end 212 of the first section 21 and over a certain length, a decreasing cross section by decreasing a width of the web and flanges.
  • the structural element 2 comprises, between the webs of the two pieces 226 forming the second profile 22, and in extension of the core 213 of the first section 21, a core 28 made of an absorbent material.
  • the core material 28 is a ROHACELL ® or thermoplastic or graphite-based foam or an absorbent material having hollow beads or elastomers.
  • the structural element 2 comprises, in extension of each sole 214 of the first profile 21, a cutting element 29.
  • Each cutting element is provided with a wedge-shaped cutting edge, parallel to the width of the lug. wing and oriented towards the second profile 22.
  • the cutting element 29 has a length at most equal to, preferably equal to, the width of the sole flange 227 224 of the second section 22.
  • each cutting element is preferably made of metal material, advantageously of titanium alloy, to ensure longevity of the cut and a galvanic coupling compatible so as not to generate corrosion in the metal-carbon combination .
  • the two sections 21, 22 are assembled on either side of the core 28 and the cutting elements 29, in the junction zone 25, at the webs and the flanges, for example by sewing or nailing.
  • the structural element 2 In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus associated safety factors, the structural element 2 provides a force transfer function between a cross member 14 and a reinforcing frame 13.
  • the second profile 22 moves along its longitudinal axis Z.
  • the sliding of the first section 21 in the second section 22 causes the spacing of the flanges 227 forming flanges 224 of the second section 22 relative to the core 224 by the cutting of the transverse fibers. 26 by the cutting elements 29 and the spacing of the two cores of the two parts forming the second profile 22.
  • the narrowing zone constitutes a buckling zone of the structural element 2, the triggering is favored by the presence of cutting elements 29.
  • the absorption of the energy is performed, both by delamination, by progressive tearing of the transverse fibers 26 joining the two sections 21, 22 between the flanges 224 and the core 223 of the second section 22 and between the two webs. two pieces 226 forming the second profile 22, and by crushing the absorbent core 28.
  • the first section 21 has a generally inverted-L shape, with a first branch in the longitudinal axis Z, previously described, and a second branch 216 substantially along a horizontal axis in an aircraft reference.
  • This structural element 2 is particularly suitable for a floor passage made in three parts: a central floor and two triangle areas, the second branch 216 for the replacement of a cross member located in a triangle area.
  • the structural element 2 is fastened at the ends to the same reinforcing frame 13 and at its angle to the cross-member 14.
  • This improved embodiment of the structural element 2 provides better resistance to bending of the floor structure and better resistance to internal pressure forces of the fuselage.
  • the structural element by integrating both a vertical stiffener and a horizontal crossbar, thus offers a saving of time during the installation of the different elements constituting the primary structure and the floor of an aircraft.
  • the structural element 2 may for example be formed by a conventional method such as the resin transfer process, said RTM process, in which different layers of drapery are made by draping on each other a dry preform, with characteristics and according to a shape adapted to that of the composite material part to achieve, then injected into the set of plies thus deposited a resin that can be thermoplastic or thermosetting, and it causes the hardening of the resin.
  • a conventional method such as the resin transfer process, said RTM process, in which different layers of drapery are made by draping on each other a dry preform, with characteristics and according to a shape adapted to that of the composite material part to achieve, then injected into the set of plies thus deposited a resin that can be thermoplastic or thermosetting, and it causes the hardening of the resin.
  • the preform consists of a set of intermediate preforms of simple shapes, for example of planar shapes.
  • Each preform consists of a superposition of folds or fiber fabrics, dry or pre-impregnated with resin.
  • the folds or fabrics are preferably formed from carbon fibers.
  • the number and nature of the plies are determined so as to provide the desired final mechanical properties for the structural element.
  • All or part of the assemblies between intermediate preforms can be reinforced for example by stitching or nailing technologies to allow better control of the energy dissipation during the destruction of the structural element.
  • the different intermediate preforms are assembled together on a form or in a mold whose shape and volume substantially correspond to the shape and dimensions of the final part to be produced, to produce the complex preform.
  • the complex preform is impregnated with a resin, for example a thermosetting resin, according to the RTM method.
  • a resin for example a thermosetting resin, according to the RTM method.
  • the resin is for example an epoxy resin.
  • the resin is injected so as to spread uniformly in the internal space delimited by the mold, by filling the void zones between the constituents of the various intermediate preforms.
  • the resin is cured so as to secure the various intermediate preforms and form a monobloc structural element.
  • the part is removed from the mold and subjected, if necessary, to finishing operations, for example drilling or machining according to its intended use.
  • the structural element according to the invention because of its embodiment of composite material, is thus less penalizing in terms of mass than the solutions of the prior art, made of metal material or a mixture of composite material and metallic material.
  • the energy generated during the impact is advantageously dissipated by the progressive destruction of at least one constituent section of the structural element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

L'invention est relative à un élément structural (2) apte à reprendre des efforts de compression statique selon un axe Z. Il comporte deux profilés (21, 22) en matériau composite fibreux, s'étendant selon l'axe Z, lesdits deux profilés étant solidarisés entre eux, au niveau d'une zone de jonction (25), par des fibres, dites fibres transversales (26), placées perpendiculairement à une interface entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un délaminage desdites fibres transversales afin d'absorber l'énergie.

Description

Elément structural d'absorption d'énergie en matériau composite
La présente invention concerne un élément structural apte à reprendre des efforts de compression statique, plus particulièrement destiné à entrer dans la constitution d'une structure primaire d'aéronef.
De plus, l'élément est conçu pour absorber l'énergie dissipée lors d'un effort de compression brutal lorsqu'il est sollicité à des niveaux supérieurs à des charges statiques, en particulier lors d'un choc consécutif à un accident tel qu'un atterrissage ou un amerrissage brutal sollicitant la structure primaire de l'aéronef selon son axe vertical (crash à composante verticale).
Le fuselage d'un aéronef comprend principalement une structure constituée d'un revêtement renforcé intérieurement par des cadres de renfort et des lisses. Les cadres de renforts sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à un axe longitudinal de celui-ci et les lisses s'étendent essentiellement suivant cet axe longitudinal. Les cadres de renfort supportent des traverses, généralement droites et s'étendant horizontalement, dans un repère aéronef, perpendiculairement à l'axe longitudinal, sur lesquelles sont fixés des planchers.
Lors d'un crash à composante principale verticale, la partie inférieure du fuselage est, en général, la première zone de l'aéronef soumise à des impacts et participe donc de manière essentielle à l'absorption de l'énergie cinétique initiale.
La certification des aéronefs, en particulier des avions de transport civil, impose des critères de comportement du fuselage dans différentes situations de crash, afin d'améliorer les chances de survie des passagers en cas d'accident.
Pour les aéronefs dont la structure du fuselage est réalisée à partir d'éléments structuraux (cadres de renfort, revêtement, lisses, traverses) en matériau métallique, une quantité importante de l'énergie cinétique initiale est absorbée par la déformation plastique des éléments de la structure métallique elle-même. Une solution connue consiste à affaiblir une zone de cadre afin de forcer une localisation d'absorption par plastification dans cette zone. La structure assure ainsi de manière passive la fonction d'absorption d'énergie du fait des caractéristiques intrinsèques des alliages métalliques mis en œuvre et d'une conception adaptée.
La structure peut comporter également des éléments structuraux, par exemple des rotules dites plastiques, entre le plancher et le cadre inférieur.
Vis à vis des sollicitations nominales, les éléments structuraux agissent comme des raidisseurs. En cas de sur-sollicitation, par exemple lors d'un accident, lesdits éléments structuraux se déclenchent et se dégradent générant ainsi une absorption d'énergie.
La partie inférieure du fuselage est donc conçue afin de répondre principalement aux sollicitations rencontrées lors de l'exploitation commerciale normale de l'aéronef.
L'amélioration constante de la performance des aéronefs stimule aujourd'hui la réalisation de plus en plus fréquente d'éléments structuraux en matériaux composites pour la structure du fuselage de l'aéronef, en raison de l'allégement de masse que ces matériaux composites permettent d'obtenir pour de telles structures.
Cependant, au contraire des éléments structuraux en matériaux métalliques qui disposent d'un important domaine de déformation plastique avant rupture, les matériaux composites n'ont pratiquement pas de domaine plastique avant rupture. En revanche, ils disposent, de par la nature de chacun de leurs constituants et de leur agencement, de propriétés non négligeables d'absorption d'énergie (par endommagement au sens large, tel que par exemple par délaminages, frottements, ...).
Une structure de fuselage (cadre de fuselage, peaux, lisses...), réalisée en matériau composite, se comporte donc très différemment d'une structure de fuselage en matériau métallique, vis à vis de l'absorption d'énergie et en fin de sollicitation, avant ou après une rupture. Un élément particulier nommé « Z-strut » ou « bielle » est fixé entre le plancher et un cadre inférieur par des fixations de type rivet. Cet élément initialement métallique participe également à l'absorption d'énergie en cas de crash par sa déformation plastique naturelle. Une solution mixte métallique/composite connue de bielle absorbante, telle que par exemple celle décrite dans la demande de brevet allemand DE 10 2006 056 440.5, consiste à fixer sur les bielles verticales en matériau composite, placées entre le plancher et les cadres inférieurs, un dispositif métallique dont la constitution permet de déclencher la ruine de la bielle sous une intensité de sollicitation prédéfinie supérieure à l'intensité de sollicitations nominales en service (cette fonction est assurée par l'utilisation de fixations métalliques calibrées pour rompre à un niveau de cisaillement donné). Les dispositifs sont conçus de sorte à usiner les bielles en matériau composite dans un socle métallique sur leur longueur et à absorber l'énergie libérée lors du crash.
Vis à vis des sollicitations nominales, les bielles verticales agissent comme des barres élastiques. En cas de sur-sollicitation, par exemple lors d'un accident, lesdits dispositifs métalliques se déclenchent et les bielles s'effondrent tout en se dégradant. Ce phénomène étant irréversible, celui-ci dissipe de l'énergie. Il s'effectue, du reste, à effort sensiblement constant excepté lors de l'initiation et en fin de course lorsque le plancher finit par heurter la partie inférieure du fuselage.
Cependant, ce phénomène progressif de destruction du matériau de la poutre, qui permet en théorie l'effondrement progressif sur lui-même est difficilement maîtrisable et prédictible, même dans des conditions de laboratoire. De plus le pic de déclenchement peut s'avérer être trop élevé pour respecter le passage des efforts statiques classiques, conduisant ainsi à une impossiblité de déclencher l'absorption ou encore à rompre. De plus, la présence de fixations calibrées devant supporter les efforts classiques d'un aéronef en service impose une calibration fine ou encore des marges forfaitaires pour réduire le risque d'activation prématurée.
D'autre part, le dispositif utilisé est métallique et rapporté sur la bielle, il est donc pénalisant en masse pour l'aéronef.
La mise en œuvre d'éléments intégrés au niveau de structures primaires d'aéronefs qui permet de concilier l'utilisation d'éléments structuraux (cadres de renforts, revêtement, lisses,...) en matériau composite pour les structures primaires et les exigences de tenue à un crash, en particulier vertical, en absorbant l'énergie est donc indispensable pour améliorer les chances de survie des passagers dans les aéronefs.
La présente invention concerne un élément structural apte à reprendre des efforts de compression statique selon un axe Z prépondérant. Ledit élément structural comporte deux profilés en matériau composite fibreux, s'étendant selon l'axe Z, et étant solidarisés entre eux à l'extrémité l'un de l'autre de sorte à se trouver sensiblement dans la continuité l'un de l'autre, au niveau d'une zone de jonction, par des fibres, dites fibres transversales, placées perpendiculairement à une interface entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un délaminage desdites fibres transversales afin d'absorber l'énergie.
Par matériau composite fibreux, on entend un matériau à base de fibres noyées dans une résine polymérisable.
L'élément structural est avantageusement fixé au niveau des extrémités à deux pièces structurales d'une structure primaire d'un fuselage d'avion, plus particulièrement entre un cadre de renfort et une traverse de plancher.
L'axe Z est orienté sensiblement suivant une direction des forces de compression devant être absorbées lors d'un choc. L'axe Z est par exemple sensiblement vertical sous le plancher, dans un repère aéronef.
L'élément structural permet d'assurer d'une part une fonction de transfert d'efforts entre les deux pièces structurales lorsque l'avion est en fonctionnement nominal et d'autre part une fonction d'absorption de l'énergie générée par le choc, en cas de crash.
L'énergie générée lors du choc est avantageusement dissipée par la destruction progressive de l'élément structural.
Dans un exemple de réalisation d'assemblage des deux profilés, les fibres transversales sont piquées perpendiculairement à travers les deux profilés de sorte à constituer une couture.
Dans un autre exemple de réalisation d'assemblage des deux profilés, les fibres transversales forment des clous traversant les deux profilés perpendiculairement à l'interface. L'assemblage par couture, cloutage ou par d'autres techniques connues permet un renforcement de l'élément structural dans son épaisseur afin d'assurer une maîtrise de la dissipation de l'énergie provoquée lors de la destruction dudit élément structural en cas de choc.
Dans une forme de réalisation de l'élément structural, ledit élément structural comporte :
- un profilé présentant, au moins dans la zone de jonction, une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux,
- un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de C,
ledit profilé de section transversale en forme de C présentant des dimensions, en largeur et hauteur, adaptées pour s'imbriquer dans une des deux formes en creux du profilé de section transversale en forme de H.
Ainsi, lors d'un choc, l'élément structural se déclenche par arrachement progressif des fibres transversales solidarisant les deux profilés.
Dans une forme améliorée de l'élément structural, les deux profilés présentent conjointement, dans tout ou partie de la zone de jonction, une section transversale évolutive.
Ainsi, lors d'un choc, le glissement d'un profilé dans l'autre provoque son délaminage en plus de l'arrachement des fibres transversales, apportant ainsi une dissipation supplémentaire de l'énergie.
Dans une autre forme de réalisation de l'élément structural, ledit élément structural comporte :
- un profilé présentant, au moins dans la zone de jonction, une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux,
- deux pièces, présentant chacune, au moins dans la zone de jonction, une section transversale en forme de C, et s'imbriquant chacune dans une forme en creux du profilé de section transversale en forme de H, et deux ailes, l'ensemble pièces-ailes formant un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de H. Ainsi, lors d'un choc, le glissement d'un profilé dans l'autre provoque son délaminage en plus de l'arrachement des fibres transversales, apportant une dissipation supplémentaire de l'énergie.
Dans un mode amélioré de réalisation de l'élément structural, un des deux profilés présente une forme en L. Cette forme en L permet le remplacement d'une traverse horizontale de plancher, dans le repère aéronef. Cette forme en L permet ainsi à l'élément structural d'intégrer à la fois un raidisseur vertical, de part ses deux profilés, et une traverse horizontale de plancher.
De préférence, les deux profilés de l'élément structural forment un ensemble monobloc réalisé en une seule pièce. De préférence, l'élément structural est réalisé à partir d'un procédé de transfert de résine, dit procédé RTM.
L'invention est également relative à une structure primaire d'un fuselage d'aéronef comportant un revêtement, au moins un cadre de renfort, au moins une traverse et au moins un élément structural comportant deux profilés s'étendant selon l'axe Z. L'élément structural est fixé à une première extrémité au cadre de renfort et à une deuxième extrémité à une traverse.
L'invention est également relative à une structure primaire d'un fuselage d'aéronef comportant un revêtement, au moins un cadre de renfort, au moins une traverse et au moins un élément structural, dont un des deux profilés présente une forme en L. L'élément structural est alors fixé à ses deux extrémités au même cadre de renfort et en son angle à une traverse.
Une description détaillée de modes de réalisation préférés de l'invention est faite ci-après, à simple titre illustratif, en référence aux figures 1 à 8 qui représentent :
Figure 1 , une vue en perspective représentant schématiquement un tronçon d'une structure primaire d'un fuselage d'aéronef comportant dix éléments structuraux sous un plancher réalisés conformément à un mode de réalisation de l'invention,
Figure 2a, un exemple d'assemblage entre deux profilés d'un élément structural par cloutage, Figure 2b, un exemple d'assemblage entre deux profilés d'un élément structural par couture,
Figure 3, une vue en perspective d'un premier exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention,
Figure 4a, une vue en perspective représentant schématiquement une portion d'une partie inférieure d'un tronçon d'une structure primaire d'un fuselage d'aéronef comportant trois éléments structuraux selon un deuxième exemple de réalisation,
Figure 4b, une vue de face d'un deuxième exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention,
Figure 4c, une vue de face du comportement de l'élément structural de la figure 4a lors d'un crash,
Figure 4d, un agrandissement de la figure 4c, vue de dos, au niveau d'une zone de jonction,
Figure 4e, un agrandissement de la figure 4d illustrant l'arrachement des fibres transversales,
Figure 5a, une vue en perspective d'un troisième exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention,
Figure 5b, une vue éclatée de l'élément structural de la figure 5a,
Figure 6, une vue en perspective représentant schématiquement une portion d'une partie inférieure d'un tronçon d'une structure primaire d'un fuselage d'aéronef comportant cinq éléments structuraux sous un plancher réalisés conformément à un mode amélioré de réalisation de l'invention,
Figure 7, une vue en perspective d'un exemple d'élément structural suivant le mode amélioré,
Figure 8, une vue de coté d'un autre exemple d'élément structural suivant le mode amélioré.
Une structure primaire d'un fuselage d'aéronef comporte, comme illustré sur la figure 1 , une ossature 1 , sensiblement cylindrique, sur laquelle est fixé un revêtement 1 1 renforcé par des lisses 12 s'étendant sensiblement suivant un axe longitudinal de la structure primaire du fuselage de l'aéronef.
L'ossature 1 de la structure primaire du fuselage d'aéronef est formée principalement de cadres de renfort 13. Lesdits cadres de renfort sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à l'axe longitudinal du fuselage et sont régulièrement répartis sur toute la longueur du fuselage d'aéronef. Chacun d'entre eux présente une forme qui correspond sensiblement à la section locale du fuselage, le plus souvent circulaire, au moins localement, comme dans l'exemple de la figure 1 .
Sur chaque cadre de renfort 13 est fixée une traverse 14. Les traverses 14 sont avantageusement droites et horizontales, dans un repère aéronef, de sorte à pouvoir supporter un plancher (non représenté), tel que le plancher d'une soute de chargement ou d'une cabine de passagers.
En outre, l'ossature 1 comporte, dans une partie inférieure de la structure primaire du fuselage d'aéronef située entre les traverses 14 et les cadres de renfort 13, au moins un élément structural 2 apte à reprendre des efforts de compression.
L'invention est décrite en détail pour un élément structural. La mise en œuvre de l'invention peut être adaptée à tous les éléments structuraux 2 de l'ossature de l'aéronef.
Dans l'exemple de réalisation illustré sur la figure 1 , dix éléments structuraux 2 sont représentés, deux éléments structuraux par cadre de renfort.
Dans un mode de réalisation de l'élément structural, comme illustré sur les figures 1 à 5c, un élément structural 2 présente une forme allongée et est relié, d'une part en une première extrémité 23 à une traverse 14 et d'autre part en une deuxième extrémité 24, opposée à ladite première extrémité 23, à un cadre de renfort 13.
L'élément structural 2 a un axe longitudinal Z orienté sensiblement suivant la direction des forces de compression devant être absorbées lors d'un choc, par exemple sensiblement vertical, sous un plancher.
L'élément structural 2 comporte deux profilés, dénommé premier 21 et second 22 profilé, de même axe longitudinal Z, solidarisés entre eux, chacun sensiblement à une extrémité, au niveau d'une zone, dite zone de jonction 25. Les deux profilés 21 , 22 sont sensiblement dans la continuité l'un de l'autre. Le premier profilé 21 est relié, à une extrémité, dite première extrémité 21 1 , opposée à l'extrémité solidarisée au second profilé, dite deuxième extrémité 212, à la traverse 14. Le second profilé 22 est relié, à une extrémité, dite première extrémité 221 , opposée à l'extrémité solidarisée au premier profilé, dite deuxième extrémité 222, au cadre de renfort 13. La deuxième extrémité 212 du premier profilé 21 est reliée à la deuxième extrémité 222 du second profilé 22.
Les deux profilés 21 , 22 sont réalisés dans un matériau composite fibreux.
Le premier profilé 21 , respectivement le second profilé 22, est fixé sur la traverse 14, respectivement sur le cadre 13, par des moyens conventionnels, tels que par exemple des rivets.
Les deux profilés 21 , 22 sont solidarisés entre eux dans la zone de jonction 25, notamment par couture, comme illustré figure 2b, ou cloutage, comme illustré figure 2a, tout au moins par des fibres, dites fibres transversales 26, placées perpendiculairement à une interface 27 entre les deux profilés 21 , 22.
Le rôle de l'élément structural 2 est double. D'une part, l'élément structural 2 assure une fonction de transfert d'efforts entre la traverse 14 et le cadre de renfort 13, lorsque la structure du fuselage est soumise aux efforts normaux correspondant à des sollicitations rencontrées pendant l'exploitation normale de l'aéronef, majorées de facteurs de sécurité. D'autre part, l'élément structural 2 assure, grâce aux éléments qui le composent, la destruction du second profilé 22, de façon progressive, lorsque l'élément structural est soumis à un effort de compression majoritairement appliqué dans le sens de sa longueur, c'est à dire dans l'exemple illustré sensiblement verticalement, correspondant aux efforts rencontrés lors de cas de crash. La destruction progressive du second profilé 22 a pour effet d'absorber une partie de l'énergie générée lors de l'impact.
La destruction du second profilé 22 se déclenche au niveau de la zone de jonction et se propage par délaminage d'au moins un des profilés et ou par l'arrachement des fibres transversales 26 solidarisant les deux profilés.
Dans un premier exemple de réalisation de l'élément structural, illustré figure 3, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section droite dans un plan normal à l'axe longitudinal Z, dite section transversale, en forme de H et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme, formant deux formes en creux. Dans un exemple préféré, le premier profilé 21 présente sur toute sa longueur, une section transversale en forme de H.
Le second profilé 22 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 222 située du coté du premier profilé 21 , incluant la zone de jonction 25, une section transversale en forme de C et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme, sensiblement transversales par rapport à l'âme et disposées en regard l'une de l'autre. Dans un exemple préféré, le second profilé 22 présente sur toute sa longueur, une section transversale en forme de C.
Le second profilé 22 présente une dimension, en largeur et en hauteur, telle qu'il est imbriqué, au niveau des faces extérieures 225 dans une des deux formes en creux du premier profilé en H.
Les deux profilés 21 , 22 sont assemblés dans la zone de jonction 25, au niveau des âmes et des semelles, âme 213 contre âme 223 et semelles 214 contre semelles 224, par exemple par couture ou cloutage.
En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13. Des efforts secondaires dans un sens transverse peuvent également être passés. La présence de l'élément structural 2 permet ainsi d'assurer le passage de ces efforts combinés.
En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée. L'élément structural 2 se déclenche par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21 , 22.
Dans un exemple de réalisation, la densité de fibres transversales est évolutive dans la zone de jonction afin de permettre une absorption d'énergie évolutive.
Dans un deuxième exemple de réalisation de l'élément structural 2, illustré figure 4a à 4e, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de C et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme. Dans l'exemple illustré sur la figures 4a, le premier profilé 21 présente sur une certaine longueur, à partir de sa première extrémité 21 1 située du coté de la traverse 14, une section transversale en forme de H et sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de C.
Le premier profilé 21 présente, sur une certaine longueur de la zone de jonction 25, une section transversale décroissante vers le second profilé 22, par une diminution d'une largeur de l'âme 213, comme illustré sur la figure 4b.
Le second profilé 22 présente, au moins sur une certaine longueur à partir de la deuxième extrémité 222 située du coté du premier profilé 21 , incluant la zone de jonction 25, une section transversale en forme de H et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme et présentant deux formes en creux. Dans l'exemple illustré sur la figure 4a, le second profilé 22 présente sur une certaine longueur, à partir de sa deuxième extrémité 222, une section transversale en forme de H et sur une certaine longueur à partir de sa première extrémité 221 , une section transversale, en forme de C.
Le second profilé 22 présente, sur une certaine longueur de la zone de jonction, une section transversale croissante vers le premier profilé 21 par un élargissement de l'âme 213, comme illustré figure 4b.
Le premier profilé 21 présente une dimension, en largeur et en hauteur, telle qu'il est imbriqué, au niveau de faces extérieures 215 dans une des deux formes en creux du second profilé 22 en H.
Les deux profilés 21 , 22 sont assemblés dans la zone de jonction 25, au niveau des âmes et des semelles, âme 213 contre âme 223 et semelles 214 contre semelles 224, par exemple par couture ou cloutage.
En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13.
En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée.
Le second profilé 22 se déplace suivant son axe longitudinal Z. Le glissement du premier profilé 21 dans le second profilé 22 provoque l'écartement des semelles 224 du second profilé 22 par rapport à l'âme 223 et l'arrachement des fibres transversales 26 solidarisant les deux profilés 21 , 22, comme illustrés figure 4c à 4e. L'absorption de l'énergie est effectuée, à la fois par délaminage, par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21 , 22 entre les semelles 224 et l'âme 223 du second profilé 22, et par frottement.
Dans un troisième exemple de réalisation de l'élément structural 2, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de H et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme. Dans l'exemple illustré sur la figure 5a, le premier profilé 21 présente sur toute sa longueur une section transversale en forme de H.
Le second profilé 22 présente, au moins sur une certaine longueur, à partir de sa deuxième extrémité 222 située du coté du premier profilé 21 , incluant la zone de jonction 25, une section transversale en forme de H et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme. Dans l'exemple illustré sur la figure 5a, le second profilé 22 présente sur toute sa longueur, une section transversale en forme de H. Le second profilé 22 est en fait composé de :
- deux pièces 226 de section transversale en C, avec une âme et deux semelles, qui s'imbriquent chacune, au niveau de la zone de jonction, dans une forme en creux du premier profilé 21 en forme de H, et
- de deux ailes 227 formant les deux semelles 224 qui recouvrent, en largeur et au niveau de la jonction, les semelles 214 du premier profilé 21 .
Le second profilé 22 présente, au delà de la deuxième extrémité 212 du premier profilé 21 et sur une certaine longueur, une section transversale décroissante par diminution d'une largeur de l'âme et des semelles.
Dans la zone où le second profilé 22 présente une section décroissante, dite zone de rétrécissement, l'élément structural 2 comporte, entre les âmes des deux pièces 226 formant second profilé 22, et en prolongement de l'âme 213 du premier profilé 21 , un noyau 28 réalisé dans un matériau absorbant. Par exemple, le matériau du noyau 28 est une mousse de type ROHACELL® ou thermoplastique ou à base de graphite ou un matériau absorbant comportant des billes creuses ou des élastomères.
Dans la zone de rétrécissement, l'élément structural 2 comporte, en prolongement de chaque semelle 214 du premier profilé 21 , un élément coupant 29. Chaque élément coupant est pourvu d'une arête tranchante en forme de coin, parallèle à la largeur de l'aile et orientée vers le second profilé 22. L'élément coupant 29 a une longueur au plus égale, de préférence égale, à la largeur de l'aile 227 formant semelle 224 du second profilé 22.
L'arête tranchante de chaque élément coupant est de préférence réalisée en matériau métallique, avantageusement en alliage de titane, afin d'assurer une longévité de la coupe et un couplage galvanique compatible afin de ne pas générer de corrosion dans l'association métal-carbone.
Les deux profilés 21 , 22 sont assemblés de part et d'autre du noyau 28 et des éléments coupants 29, dans la zone de jonction 25, au niveau des âmes et des semelles, par exemple par couture ou cloutage.
En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13.
En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée.
Le second profilé 22 se déplace suivant son axe longitudinal Z. Le glissement du premier profilé 21 dans le second profilé 22 provoque l'écartement des ailes 227 formant semelles 224 du second profilé 22 par rapport à l'âme 224 par la découpe des fibres transversales 26 par les éléments coupants 29 ainsi que l'écartement des deux âmes des deux pièces formant le second profilé 22. La zone de rétrécissement constitue une zone de flambage de l'élément structural 2, dont le déclenchement est favorisé par la présence des éléments coupants 29. L'absorption de l'énergie est effectuée, à la fois par délaminage, par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21 , 22 entre les semelles 224 et l'âme 223 du second profilé 22 et entre les deux âmes des deux pièces 226 formant le second profilé 22, et par écrasement du noyau absorbant 28.
Dans un mode amélioré de l'élément structural 2, comme illustré sur les figures 6 à 8, le premier profilé 21 présente une forme générale en L inversé, avec une première branche dans l'axe longitudinal Z, précédemment décrite, et une seconde branche 216 sensiblement selon un axe horizontal dans un repère avion.
Cet élément structural 2 est particulièrement adapté à un plancher passage réalisé en trois parties : un plancher central et deux zones triangle, la seconde branche 216 permettant le remplacement d'une traverse située dans une zone triangle.
L'élément structural 2 est fixé, au niveau des extrémités au même cadre de renfort 13 et en son angle à la traverse 14.
Ce mode amélioré de réalisation de l'élément structural 2 offre une meilleure résistance à la flexion de la structure du plancher ainsi qu'une meilleure tenue aux efforts de pression interne du fuselage.
L'élément structural, en intégrant à la fois un raidisseur vertical et une traverse horizontale, offre ainsi un gain de temps lors de l'installation des différents éléments constitutifs de la structure primaire et le plancher d'un aéronef.
L'élément structural 2 peut par exemple être formé par un procédé conventionnel tel que le procédé par transfert de résine, dit procédé RTM, selon lequel on réalise par drapage de différents plis les uns sur les autres une préforme sèche, de caractéristiques et selon une forme adaptée à celle de la pièce en matériau composite à réaliser, puis on injecte dans l'ensemble des plis ainsi déposés une résine pouvant être thermoplastique ou thermodurcissable, et on provoque le durcissement de la résine.
Selon l'invention, la préforme est constituée d'un ensemble de préformes intermédiaires de formes simples, par exemple de type formes planes.
Chaque préforme est constituée d'une superposition de plis ou de tissus de fibres, sèches ou pré-imprégnées de résine.
Les plis ou tissus sont de préférence formés à partir de fibres de carbone. Le nombre et la nature des plis sont déterminés de manière à assurer les propriétés mécaniques finales souhaitées pour l'élément structural.
Tout ou partie des assemblages entre préformes intermédiaires peut être renforcée par exemple par des technologies de piquage ou de cloutage afin de permettre une meilleure maîtrise de la dissipation d'énergie lors de la destruction de l'élément structural.
Les différentes préformes intermédiaires sont assemblées entre elles sur une forme ou dans un moule dont la forme et le volume correspondent sensiblement à la forme et aux dimensions de la pièce finale à réaliser, pour réaliser la préforme complexe.
Dans une deuxième étape, la préforme complexe est imprégnée d'une résine, par exemple thermodurcissable, suivant le procédé RTM. La résine est par exemple une résine de type époxyde. La résine est injectée de sorte à se répandre uniformément dans l'espace interne délimité par le moule, en remplissant les zones de vide entre les constituants des différentes préformes intermédiaires. Enfin, la résine est durcie de manière à solidariser les différentes préformes intermédiaires et former un élément structural monobloc.
A l'issue de cette étape, la pièce est démoulée et soumise le cas échéant à des opérations de finition, par exemple des perçages ou des usinages en fonction de son utilisation prévue.
L'élément structural suivant l'invention, de part sa réalisation en matériau composite, se révèle ainsi moins pénalisant en terme de masse que les solutions de l'art antérieur, réalisées en matériau métallique ou par un mélange matériau composite-matériau métallique. L'énergie générée lors de l'impact est avantageusement dissipée par la destruction progressive d'au moins un profilé constitutif de l'élément structural.

Claims

REVENDICATIONS
Elément structural (2) apte à reprendre des efforts de compression statique selon un axe Z, caractérisé en ce qu'il comporte deux profilés (21 , 22) en matériau composite fibreux, s'étendant selon l'axe Z, lesdits deux profilés étant solidarisés entre eux à l'extrémité l'un de l'autre, au niveau d'une zone de jonction (25), par des fibres, dites fibres transversales (26), placées perpendiculairement à une interface (27) entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un arrachage desdites fibres transversales afin d'absorber l'énergie.
Elément structural (2) selon la revendication 1 dans lequel les fibres transversales (26) sont piquées perpendiculairement à travers les deux profilés (21 , 22) de sorte à constituer une couture.
Elément structural (2) selon la revendication 1 dans lequel les fibres transversales (26) forment des clous traversant les deux profilés (21 , 22) perpendiculairement à l'interface.
Elément structural (2) selon l'une des revendications 1 à 3 comportant :
- un profilé (21 ) présentant, au moins dans la zone de jonction (25), une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux,
- un profilé (22) présentant, au moins dans la zone de jonction (25), une section transversale en forme de C,
ledit profilé de section transversale en forme de C présentant des dimensions, en largeur et hauteur, adaptées pour s'imbriquer dans une des deux formes en creux du profilé (21 ) de section transversale en forme de H.
Elément structural (2) selon la revendication 4 dans lequel les deux profilés
(21 , 22) présentent conjointement, dans tout ou partie de la zone de jonction (25), une section transversale évolutive.
Elément structural (2) selon l'une des revendications 1 à 3 comportant :
- un profilé (21 ) présentant, au moins dans la zone de jonction (25), une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux, - deux pièces (226), présentant chacune, au moins dans la zone de jonction, une section transversale en forme de C, et s'imbriquant chacune dans une forme en creux du profilé de section transversale en forme de H, et deux ailes (227), l'ensemble pièces- ailes formant un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de H.
- Elément structural (2) selon l'une des revendications précédentes dans lequel un des deux profilés présente une forme en L.
- Elément structural (2) selon l'une des revendications précédentes dans lequel les deux profilés (21 , 22) forment un ensemble monobloc réalisé en une seule pièce.
- Structure primaire d'un fuselage d'aéronef comportant un revêtement (1 1 ), au moins un cadre de renfort (13), au moins une traverse (14) et au moins un élément structural (2) suivant l'une des revendications 1 à 4 fixé à une première extrémité (23) à une traverse (14) et à une deuxième extrémité (24) au cadre de renfort (13).
- Structure primaire d'un fuselage d'aéronef comportant un revêtement (1 1 ), au moins un cadre de renfort (13), au moins une traverse (14) et au moins un élément structural (2) suivant la revendication 5 ou 6 fixé à ses deux extrémités au même cadre de renfort et en son angle à une traverse.
PCT/EP2010/069886 2009-12-18 2010-12-16 Element structural d'absorption d'energie en materiau composite WO2011073315A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959200A FR2954430B1 (fr) 2009-12-18 2009-12-18 Element structural d'absorption d'energie en materiau composite
FR0959200 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011073315A1 true WO2011073315A1 (fr) 2011-06-23

Family

ID=42337536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069886 WO2011073315A1 (fr) 2009-12-18 2010-12-16 Element structural d'absorption d'energie en materiau composite

Country Status (2)

Country Link
FR (1) FR2954430B1 (fr)
WO (1) WO2011073315A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056662A (ja) * 2011-09-08 2013-03-28 Airbus Operations (Sas) 航空機胴体のフレーム要素
FR2984273A1 (fr) * 2011-12-16 2013-06-21 Aerolia Support de plancher d'aeronef
WO2013113672A1 (fr) * 2012-02-01 2013-08-08 Volkswagen Aktiengesellschaft Élément de déformation, en particulier pour pare-chocs pour véhicules à moteur
WO2013174520A1 (fr) * 2012-05-24 2013-11-28 Lufthansa Technik Ag Siège d'avion pourvu d'un ensemble siège
DE102013205275B3 (de) * 2013-03-26 2014-10-02 Airbus Operations Gmbh Flugzeugrumpfstruktur
EP2881319A1 (fr) * 2013-12-03 2015-06-10 Airbus Operations GmbH Agencement de connexion et structure
EP2881613A1 (fr) * 2013-12-04 2015-06-10 Voith Patent GmbH Dispositif absorption d'énergie, notamment sécurité contre les chocs pour un véhicule sur rails
GB2528760A (en) * 2014-05-30 2016-02-03 Airbus Operations Sas Sliding connection between the floor structure and the hull structure of an aircraft.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062018B4 (de) * 2010-11-26 2015-05-13 Airbus Operations Gmbh Stützstab zur Stützung einer Fussbodenstruktur eines Flugzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657061A (en) * 1966-12-13 1972-04-18 Carborundum Co Reinforced carbon and graphite bodies
US5968639A (en) * 1996-05-31 1999-10-19 The Boeing Company Z-pin reinforced, bonded composite structure
EP1316409A1 (fr) * 2001-12-01 2003-06-04 DaimlerChrysler AG Absorbeur de chocs en matériau composite
WO2004041528A2 (fr) * 2002-11-01 2004-05-21 Bell Helicopter Textron Inc. Procede et appareil de renforcement dans le sens z de stratifies composites
WO2007033640A1 (fr) * 2005-09-21 2007-03-29 Eads Deutschland Gmbh Structure de plancher pour aeronefs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657061A (en) * 1966-12-13 1972-04-18 Carborundum Co Reinforced carbon and graphite bodies
US5968639A (en) * 1996-05-31 1999-10-19 The Boeing Company Z-pin reinforced, bonded composite structure
EP1316409A1 (fr) * 2001-12-01 2003-06-04 DaimlerChrysler AG Absorbeur de chocs en matériau composite
WO2004041528A2 (fr) * 2002-11-01 2004-05-21 Bell Helicopter Textron Inc. Procede et appareil de renforcement dans le sens z de stratifies composites
WO2007033640A1 (fr) * 2005-09-21 2007-03-29 Eads Deutschland Gmbh Structure de plancher pour aeronefs

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056662A (ja) * 2011-09-08 2013-03-28 Airbus Operations (Sas) 航空機胴体のフレーム要素
FR2984273A1 (fr) * 2011-12-16 2013-06-21 Aerolia Support de plancher d'aeronef
US9340171B2 (en) 2012-02-01 2016-05-17 Volkswagen Aktiengesellschaft Deformation element, in particular for bumpers on motor vehicles
WO2013113672A1 (fr) * 2012-02-01 2013-08-08 Volkswagen Aktiengesellschaft Élément de déformation, en particulier pour pare-chocs pour véhicules à moteur
CN104169132B (zh) * 2012-02-01 2017-09-08 大众汽车有限公司 尤其用于汽车保险杠的变形元件
CN104169132A (zh) * 2012-02-01 2014-11-26 大众汽车有限公司 尤其用于汽车保险杠的变形元件
WO2013174520A1 (fr) * 2012-05-24 2013-11-28 Lufthansa Technik Ag Siège d'avion pourvu d'un ensemble siège
US9511865B2 (en) 2012-05-24 2016-12-06 Lufthansa Technik Ag Aircraft seat comprising a seat assembly
US9487285B2 (en) 2013-03-26 2016-11-08 Airbus Operations Gmbh Aircraft fuselage structure
DE102013205275B3 (de) * 2013-03-26 2014-10-02 Airbus Operations Gmbh Flugzeugrumpfstruktur
EP2881319A1 (fr) * 2013-12-03 2015-06-10 Airbus Operations GmbH Agencement de connexion et structure
US9493224B2 (en) 2013-12-03 2016-11-15 Airbus Operations Gmbh Connection arrangement and structure
EP2881613A1 (fr) * 2013-12-04 2015-06-10 Voith Patent GmbH Dispositif absorption d'énergie, notamment sécurité contre les chocs pour un véhicule sur rails
GB2528760A (en) * 2014-05-30 2016-02-03 Airbus Operations Sas Sliding connection between the floor structure and the hull structure of an aircraft.
GB2528760B (en) * 2014-05-30 2020-07-08 Airbus Operations Sas Sliding connection between the floor structure and the hull structure of an aircraft.

Also Published As

Publication number Publication date
FR2954430B1 (fr) 2013-11-29
FR2954430A1 (fr) 2011-06-24

Similar Documents

Publication Publication Date Title
WO2011073315A1 (fr) Element structural d'absorption d'energie en materiau composite
EP2257465B1 (fr) Element structural absorbeur d'energie en materiau composite et fuselage d'aeronef muni d'un tel absorbeur
EP1813527B1 (fr) Structure composite anti-crash à maintien latéral pour aéronef
EP2679484B1 (fr) Structure primaire de fuselage pour aéronef comprenant des entretoises à rupture précoce pour accroître l'absorption d'énergie en cas de crash
EP1349777B1 (fr) Poutre composite a initiateur de rupture integre et fuselage d'aeronef integrant de telles poutres
EP3024714B1 (fr) Montant latéral pour caisse de véhicule automobile perfectionné
FR2984274A1 (fr) Poutre securisee, en particulier cadre fort de fuselage, ainsi que fuselage d'aeronef equipe de tels cadres
EP3086984B1 (fr) Augmentation de la compressibilite d'une poutre de pare-choc
EP2596255A1 (fr) Aéronef comprenant une bielle comportant une partie en matériau composite
WO2016135092A1 (fr) Panneau composite muni d'une terminaison d'assemblage perfectionnée et structure comportant un tel panneau
EP3562714B1 (fr) Système d'absorption de choc pour véhicule automobile
FR3023250A1 (fr) Traverse transversale de renfort amelioree a rupture programmee
EP2563651B1 (fr) Structure de fuselage d'aéronef comportant un dispositif absorbeur d'énergie
WO2012084727A1 (fr) Pièce structurale à capacité de dissipation d'énergie
FR2903961A1 (fr) Element structurel de cellule de giravion,son procede de fabrication,cellule de giravion et giravion comportant de tels elements structurels
EP3245107B1 (fr) Élément absorbeur d'énergie pour pare-chocs automobile
EP3271233B1 (fr) Assemblage a liaison souple et liaison souple pour un tel assemblage
FR2998258A1 (fr) Aeronef muni d'une structure de support de poids modeste, a haut pouvoir d'absorption d'energie en cas d'ecrasement au sol
FR3023251A1 (fr) Traverse transversale de renfort amelioree pour le choc lateral et le choc frontal
EP3315377B1 (fr) Structure de caisse pour un véhicule sur rails et procédé de fabrication d'une telle structure de caisse
EP3615384B1 (fr) Dispositif absorbeur d'energie pour poutre pare-chocs de vehicule automobile
EP2508419A1 (fr) Procédé de ralentissement de propagation de fissures dans une structure sécurisée et cadre fort sécurisé, en particulier de fuselage
CA2575332C (fr) Structure composite amelioree pour aeronef
FR3029851A1 (fr) Traverse de porte allegee
FR3023249A1 (fr) Traverse transversale de renfort amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792924

Country of ref document: EP

Kind code of ref document: A1