WO2009099041A1 - Solid polymer electrolyte membrane and manufacturing method thereof, membrane electrode assembly for fuel cell, and fuel cell - Google Patents

Solid polymer electrolyte membrane and manufacturing method thereof, membrane electrode assembly for fuel cell, and fuel cell Download PDF

Info

Publication number
WO2009099041A1
WO2009099041A1 PCT/JP2009/051740 JP2009051740W WO2009099041A1 WO 2009099041 A1 WO2009099041 A1 WO 2009099041A1 JP 2009051740 W JP2009051740 W JP 2009051740W WO 2009099041 A1 WO2009099041 A1 WO 2009099041A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
polymer electrolyte
fuel cell
solid polymer
film
Prior art date
Application number
PCT/JP2009/051740
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhito Takahashi
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2009099041A1 publication Critical patent/WO2009099041A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/04Polyxylylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid polymer electrolyte membrane excellent in oxidation resistance, a production method thereof, a membrane electrode assembly for a fuel cell using the solid polymer electrolyte membrane, and a fuel cell using the same.
  • a fuel cell using an electrolyte membrane for a polymer electrolyte fuel cell has a low operating temperature of 100 ° C. or lower, and its energy density is high. Therefore, it is expected to be widely put into practical use as a power source for electric vehicles and a simple auxiliary power source.
  • this polymer electrolyte fuel cell there are important elemental technologies related to an electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and an electrolyte membrane-electrode assembly. Among these, there are electrolyte membranes and electrolyte membrane-electrode assemblies.
  • the technology related to the joined body is one of the most important technologies involved in the characteristics as a fuel cell.
  • a fuel diffusion electrode and an air diffusion electrode are combined on both surfaces of an electrolyte membrane, and the electrolyte membrane and the electrode are substantially integrated.
  • the electrolyte membrane acts as an electrolyte for conducting protons, and also functions as a diaphragm to prevent direct mixing of hydrogen or methanol as a fuel with air or oxygen as an oxidant even under pressure.
  • Such an electrolyte membrane is required to have a high proton transfer rate as an electrolyte, a high ion exchange capacity, and a constant and high water retention in order to keep electric resistance low.
  • due to its role as a diaphragm it has high mechanical strength and excellent dimensional stability, chemical stability for long-term use, especially oxidation resistance against hydroxy radicals generated at the cathode. It is required to be excellent and not to have excessive permeability to hydrogen gas or methanol as a fuel or oxygen gas as an oxidant.
  • fluororesin-based perfluorosulfonic acid membranes such as “Nafion (registered trademark)” developed mainly by DuPont are generally used as electrolyte membranes.
  • the fluororesin-based electrolyte membrane must be started from the synthesis of the monomer, so that there are many manufacturing processes and there is a problem that the cost is high. This is a great obstacle to practical use.
  • a membrane obtained by graft polymerization of a hydrocarbon radical polymerizable monomer by a radiation graft polymerization method has a problem that it has poor oxidation resistance although high proton conductivity is obtained by achieving a high graft ratio. .
  • Patent Document 3 a highly durable solid polymer electrolyte membrane obtained by co-grafting ⁇ -methylstyrene is disclosed in Japanese Patent Application Laid-Open No. 2003-36864 (Patent Document 3). Since ⁇ -methylstyrene has a methyl group at the ⁇ -position of the benzene ring, radicals can be prevented from being generated at the ⁇ -position of the benzene ring, and a solid polymer electrolyte membrane having excellent durability can be obtained.
  • Patent Document 4 discloses a solid polymer electrolyte membrane obtained by a production method in which a polymerizable monomer having an alkoxysilyl group and another polymerizable monomer are co-grafted. In this publication, the oxidation resistance of this film is not described.
  • the present invention has been made in view of the above circumstances, and a solid polymer electrolyte membrane suitable for a fuel cell excellent in oxidation resistance, a method for producing the same, and a membrane electrode assembly for a fuel cell using the solid polymer electrolyte membrane And a fuel cell using the same.
  • the present inventors irradiate the resin with radiation, and co-graft polymerize a polymerizable monomer containing ⁇ -methylstyrene and a styryl group-containing alkoxysilane on the resin, It has been found that a solid polymer electrolyte membrane obtained by sulfonation has excellent oxidation resistance and is a useful solid polymer electrolyte membrane for fuel cells.
  • the sulfonation rate of the styryl group-containing alkoxysilane 50% or less, the oxidation resistance is greatly improved. Further, if sulfonating at 60 ° C. or less, the sulfonation rate of the styryl group-containing alkoxysilane As a result, it was found that ⁇ -methylstyrene can be sulfonated almost quantitatively with the content being kept at 30% or less.
  • the present invention provides the following solid polymer electrolyte membrane, a production method thereof, a membrane electrode assembly for fuel cells, and a fuel cell.
  • a fluorine-based resin or a hydrocarbon-based resin By irradiating a fluorine-based resin or a hydrocarbon-based resin, co-grafting a polymerizable monomer containing at least ⁇ -methylstyrene and a styryl group-containing alkoxysilane, and then sulfonating the resin.
  • a solid polymer electrolyte membrane obtained.
  • [2] The solid polymer electrolyte membrane according to [1], wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
  • [6] The method for producing a solid polymer electrolyte membrane according to [5], wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
  • [7] The method for producing a solid polymer electrolyte membrane according to [5] or [6], wherein the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is 30% or more.
  • [8] The method for producing a solid polymer electrolyte membrane according to any one of [5] to [7], wherein the resin is a fluororesin.
  • a membrane electrode assembly for a fuel cell characterized in that the solid polymer electrolyte membrane according to any one of [1] to [4] is provided between a fuel electrode and an air electrode.
  • a fuel cell comprising the fuel cell membrane electrode assembly according to [11].
  • the fuel cell according to [12] which is a direct methanol type using methanol as a fuel.
  • the solid polymer electrolyte membrane of the present invention has excellent oxidation resistance.
  • This electrolyte membrane is provided between a fuel electrode and an air electrode of a fuel cell to form a membrane electrode assembly for a fuel cell. By using it for a fuel cell, the fuel cell can have a very high performance.
  • the solid polymer electrolyte membrane of the present invention can be obtained by co-grafting a polymerizable monomer containing ⁇ -methylstyrene and a styryl group-containing alkoxysilane onto a resin irradiated with radiation and further sulfonating.
  • fluorine resin or hydrocarbon resin is used.
  • fluorine resin tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin are used.
  • hydrocarbon resins such as (PFA), tetrafluoroethylene-ethylene copolymer resin (ETFE), and vinylidene fluoride resin (PVDF) include polyethylene, polypropylene, polyetheretherketone (PEEK), and polyethersulfone (PES). Etc.), and one of these can be used alone or two or more of them can be used in combination.
  • PEEK polyetheretherketone
  • PES polyethersulfone
  • Etc. polyethersulfone
  • a fluorine-based resin is preferable because of its excellent durability.
  • the shape is not particularly limited, but may be a film shape or the like.
  • the resin is irradiated with radiation in advance to generate radicals that serve as the starting point of grafting, and then the pre-irradiation method in which the resin is brought into contact with the monomer to carry out the grafting reaction, and radiation is applied in the presence of the monomer and resin.
  • the pre-irradiation method in which the resin is brought into contact with the monomer to carry out the grafting reaction, and radiation is applied in the presence of the monomer and resin.
  • the film thickness of the resin film is not particularly limited, but is preferably 10 to 100 ⁇ m, particularly 10 to 50 ⁇ m.
  • Examples of the radiation used for graft polymerization of the radical polymerizable monomer on the resin in the present invention include ⁇ rays, X rays, electron beams, ion beams, ultraviolet rays, etc., but ⁇ rays, An electron beam is preferred.
  • the absorbed dose of radiation is preferably 1 kGy or more, particularly 1 to 200 kGy, particularly 1 to 100 kGy, and if it is less than 1 kGy, the amount of radical generation is small and grafting may be difficult, and if it exceeds 200 kGy, the graft rate is large.
  • the mechanical strength of the electrolyte membrane obtained by becoming too small may be reduced.
  • the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas, and the oxygen concentration in the atmospheric gas is preferably 100 ppm or less, more preferably 50 ppm or less, but it is not necessarily in the absence of oxygen. There is no need to do it.
  • an inert gas atmosphere such as helium, nitrogen, and argon gas
  • the oxygen concentration in the atmospheric gas is preferably 100 ppm or less, more preferably 50 ppm or less, but it is not necessarily in the absence of oxygen. There is no need to do it.
  • a polymerizable monomer (radical polymerizable monomer) containing ⁇ -methylstyrene and a styryl group-containing alkoxysilane is co-grafted to the resin irradiated with radiation.
  • styryl group-containing alkoxysilane to co-graft polymerization and ⁇ - methyl styrene styryl group in the molecule
  • examples include silane, styrylethyltriethoxysilane, vinylphenethyltrimethoxysilane, vinylphenethyltriethoxysilane, and the like.
  • styryltrimethoxysilane is desirable because it has good copolymerizability with ⁇ -methylstyrene.
  • the molar fraction of ⁇ -methylstyrene in the polymerizable monomer in the present invention is preferably 10 to 90%, more preferably 20 to 70%, and if it exceeds 90%, a sufficient graft ratio may not be obtained. If it is less than 10%, the oxidation resistance of the film may be deteriorated.
  • the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is preferably 10 to 90%, more preferably 30 to 80%, and if it exceeds 90%, the brittleness of the film may be deteriorated. If it is less than 10%, a sufficient graft rate may not be obtained. In particular, the oxidation resistance can be greatly improved by setting it to 30% or more.
  • the graft ratio of the polymerizable monomer in the solid polymer electrolyte membrane of the present invention is preferably 20 to 100%, particularly preferably 40 to 100%.
  • the other radical polymerizable monomer is preferably a monofunctional polymerizable monomer, for example, having an ion conductive group such as a sulfonic acid group, a sulfonic acid amide group, a carboxylic acid group, a phosphoric acid group, or a quaternary ammonium base.
  • Monomers sodium acrylate, sodium acrylamidomethylpropanesulfonate, sodium styrenesulfonate, etc.
  • a polyfunctional polymerizable monomer can be used by utilizing the difference in the reactivity of the functional group.
  • a crosslinkable monomer such as a monomer having a plurality of vinyl groups such as divinylbenzene can be mixed in an amount of 0.1 to 15 mol% with respect to the polymerizable monomer.
  • a crosslinkable monomer together, a crosslinked structure can be introduced into the graft chain.
  • the amount of the polymerizable monomer grafted to the resin irradiated with radiation is 1,000 to 100,000 parts by weight, particularly 5,000 to 30,000 parts by weight of the polymerizable monomer with respect to 100 parts by weight of the resin. It is preferable to use a part. If the amount of the polymerizable monomer is too small, the contact may be insufficient. If the amount is too large, the polymerizable monomer may not be used efficiently.
  • a polymerization initiator such as azobisisobutyronitrile may be appropriately used as long as the object of the present invention is not impaired.
  • a solvent can be used during the graft reaction.
  • the solvent those that uniformly dissolve the radical polymerizable monomer are preferable, for example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol.
  • Ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene and toluene, aliphatics or fats such as n-heptane, n-hexane and cyclohexane
  • aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene and toluene
  • aliphatics or fats such as n-heptane, n-hexane and cyclohexane
  • a cyclic hydrocarbon or a mixed solvent thereof can be used.
  • the oxygen concentration in the reaction atmosphere during graft polymerization it is preferable to adjust the oxygen concentration in the reaction atmosphere during graft polymerization to 0.05 to 5% by volume. It is considered that oxygen in the reaction atmosphere reacts with radicals in the system to become carbonyl radicals or peroxy radicals and acts to suppress further reactions.
  • the oxygen concentration is less than 0.05% by volume, the polymerizable monomer is polymerized in the solution and a gel insoluble in the solvent is generated. Therefore, the raw material is wasted and it takes time to remove the gel. If it exceeds 5% by volume, the graft ratio may decrease.
  • a desirable oxygen concentration is 0.1 to 3% by volume, and a more desirable oxygen concentration is 0.1 to 1% by volume.
  • inert gas such as nitrogen and argon gas, is used as gas other than oxygen.
  • the reaction conditions for the graft polymerization are preferably 0 to 100 ° C., particularly 40 to 80 ° C., and 1 to 40 hours, particularly 4 to 20 hours.
  • the sulfonation rate of a styryl group containing alkoxysilane is 50% or less, Preferably it is 30% or less, and when larger than 50%, there exists a possibility that the oxidation resistance of a film
  • the minimum is suitably 0%.
  • the reaction temperature of sulfonation is preferably 60 ° C. or lower, more preferably 30 ° C. or lower.
  • ⁇ -methylstyrene (the benzene ring is monosubstituted) is more easily sulfonated than the styryl group-containing alkoxysilane (the benzene ring is disubstituted), but the selection ratio largely depends on the reaction temperature of the sulfonation. If the temperature is higher than 60 ° C., the styryl group-containing alkoxysilane is also sulfonated almost simultaneously with ⁇ -methylstyrene, and the oxidation resistance may not be sufficiently improved.
  • ⁇ -methylstyrene is sulfonated, but styryl group-containing alkoxysilane is hardly sulfonated, so that the oxidation resistance is very good.
  • a well-known thing can be used for a sulfonating agent, For example, it can sulfonate by concentrated sulfuric acid, fuming sulfuric acid, sulfuric anhydride, mesitylene sulfonic acid, etc. Moreover, it can also sulfonate by making it hydrolyze in a pure water after reaction with chlorosulfonic acid (in this invention, the reaction temperature with chlorosulfonic acid is defined as sulfonation temperature in this case).
  • the sulfonating agent may be appropriately diluted with a solvent such as dichloroethane or dichlorobenzene.
  • the sulfonation reaction time may be adjusted as appropriate to obtain a desired ion exchange capacity. If the reaction time is short, the inside of the membrane may not be sufficiently sulfonated, and if it is long, the styryl group-containing alkoxysilane may also be gradually sulfonated. More specifically, after immersing in a solution obtained by diluting chlorosulfonic acid with dichloroethane to a concentration of 0.02 to 6 mol / L at 0 to 60 ° C. for 3 to 24 hours, it is immersed in pure water at 50 to 90 ° C. for 6 to 48 hours. Is preferred.
  • the solid polymer electrolyte membrane of the present invention is disposed adjacent to both electrodes between a first electrode on which a catalyst is supported and a second electrode (fuel electrode and air electrode), and is an electrolyte membrane for a fuel cell.
  • this electrolyte membrane / electrode assembly can be produced by the following method.
  • the electrode In the production of an electrolyte membrane / electrode assembly, electrodes serving as an anode (fuel electrode) and a cathode (air electrode) are joined to a solid polymer electrolyte membrane.
  • the electrode comprises a porous support, a catalyst layer, and a catalyst layer. Formed from.
  • the porous support carbon paper, carbon cloth or the like is preferably used.
  • the catalyst layer preferably contains a fine particle catalyst and a proton conductive polymer electrolyte.
  • a platinum group metal fine particle catalyst or a platinum-containing alloy fine particle catalyst is used as the fine particle catalyst.
  • platinum group metal fine particle catalyst platinum, ruthenium, palladium, rhodium, iridium, osmium and the like are used, and as the platinum-containing alloy fine particle catalyst, for example, platinum and ruthenium, palladium, rhodium, iridium, osmium, molybdenum, tin, Examples thereof include alloys with at least one metal selected from cobalt, nickel, iron, chromium and the like.
  • the platinum-containing alloy is preferably an alloy containing 5% by mass or more, particularly 10% by mass or more of platinum.
  • the platinum group metal fine particle catalyst and the platinum-containing alloy fine particle catalyst those having a particle diameter (average particle diameter) of 4 nm or less, preferably 1 to 4 nm, more preferably 2 to 3.5 nm are preferably used.
  • a catalyst having a particle diameter exceeding 4 nm there is a concern that the specific surface area becomes small and the catalyst activity is lowered.
  • the particle diameter is based on observation with a transmission electron microscope.
  • the fine particle catalyst one supported on carbon can be used, and a commercially available product can be used.
  • the catalyst amount of the fine particle catalyst is usually 0.05 to 10 mg / cm 2 , preferably 0.3 to 5 mg / cm 2 in each electrode catalyst layer. If the amount of the catalyst is too small, the catalyst effect may not be sufficiently obtained. If the amount is more than 10 mg / cm 2 , the catalyst layer may be too thick and the output may be lowered.
  • the proton conductive polymer electrolyte having a sulfonic acid group a perfluoro-based electrolyte typified by Nafion [Nafion (trade name, manufactured by DuPont)], and a carbonized carbon typified by a styrenesulfonic acid-butadiene copolymer.
  • Hydrogen-based electrolytes, inorganic / organic hybrid electrolytes typified by sulfonic acid group-containing alkoxysilanes and terminal silylated oligomers are preferably used.
  • carbon fine particles on which no catalyst is supported can be blended.
  • a solvent for the catalyst paste which forms a catalyst layer in order to improve applicability
  • the solvent include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, ethylene glycol and glycerol, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate and butyl acetate.
  • Ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene and toluene, aliphatic to alicyclic hydrocarbons such as n-heptane, n-hexane and cyclohexane, water, dimethyl sulfoxide, N, N-dimethyl
  • polar solvents such as formamide, N, N-dimethylacetamide, formamide, N-methylformamide, N-methylpyrrolidone, ethylene carbonate, and propylene carbonate. These can be used alone or in admixture of two or more.
  • polar solvents such as isopropyl alcohol, water and N, N-dimethylformamide are desirable.
  • Fluorine resin can also be added to increase the porosity in the catalyst layer and facilitate water movement.
  • Fluoropolymers include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), ethylene-tetra Fluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene trifluoride-ethylene copolymer (ECTFE), and the like are used alone or in combination of two or more. Can do.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the amount of the above-mentioned components can be selected within a wide range, but the proton conductive polymer electrolyte is 50 to 200 parts by mass and the solvent is 0 to 5,000 parts by mass, particularly 100 to 1, parts per 100 parts by mass of the catalyst particles. 000 parts by mass, and the fluororesin component is preferably used in an amount of 10 to 400 parts by mass, particularly 40 to 130 parts by mass.
  • the catalyst paste is applied onto the electrolyte membrane or the porous electrode substrate, and when a solvent is added to the paste, the solvent is removed and a catalyst layer is formed by a conventional method.
  • the catalyst layer is formed on at least one of the electrolyte membrane and the electrode substrate, and a membrane / electrode assembly can be obtained by sandwiching both surfaces of the electrolyte membrane with the electrode substrate and hot pressing.
  • the temperature at the time of hot pressing is appropriately selected depending on the electrolyte membrane to be used or the components in the catalyst paste, the kind of fluorine resin and the blending ratio, but the desirable temperature range is 50 to 200 ° C., more desirably 80 to 180 ° C. is there. If it is less than 50 ° C, bonding may be insufficient, and if it exceeds 200 ° C, the resin component in the electrolyte membrane or the catalyst layer may be deteriorated.
  • the pressure level is appropriately selected depending on the components in the electrolyte membrane and / or the catalyst paste, the type and blending ratio of the fluororesin, and the type of the porous electrode substrate, but the preferable pressure range is 1 to 100 kgf / cm 2. More desirably, it is 10 to 100 kgf / cm 2 . If it is less than 1 kgf / cm 2 , the bonding may be insufficient, and if it exceeds 100 kgf / cm 2 , the porosity of the catalyst layer and the electrode substrate may decrease, and the performance may deteriorate.
  • the electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and a catalyst layer / fuel diffusion on both sides of the solid polymer electrolyte membrane.
  • a fuel cell that is suitably used as an electrolyte membrane for a fuel cell, particularly a direct methanol fuel cell, and has excellent cell characteristics.
  • the structure of the fuel cell other than that described above can be a known one.
  • Example 1 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 11.03 parts of ⁇ -methylstyrene, 8.97 parts of styryltrimethoxysilane, 3 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen was immersed in a nitrogen atmosphere and heated at 60 ° C. for 20 hours to perform graft polymerization. As a result, the graft ratio was 67%.
  • EB electron beam
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 34 hours.
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 6 hours.
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 4 hours.
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 3 hours.
  • Example 2 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 14.25 parts of ⁇ -methylstyrene, 6.75 parts of styryltrimethoxysilane, 2 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen was immersed, heated at 60 ° C. for 60 hours, and subjected to graft polymerization. As a result, the graft ratio was 65%.
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 28 hours.
  • Example 3 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 6.56 parts of ⁇ -methylstyrene, 12.44 parts of styryltrimethoxysilane, 5 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen was heated at 60 ° C. for 18 hours and graft polymerization was conducted. As a result, the graft ratio was 95%.
  • EB electron beam
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 62 hours.
  • Example 4 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 16.48 parts of ⁇ -methylstyrene, 5.52 parts of styryltrimethoxysilane, 1 part of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen was heated at 60 ° C. for 60 hours and graft polymerization was performed. As a result, the graft ratio was 53%.
  • the graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 28 hours.
  • Example 5 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 3.45 parts of ⁇ -methylstyrene, 6.55 parts of styryltrimethoxysilane, 13 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen was heated at 60 ° C. for 18 hours and graft polymerization was performed. As a result, the graft ratio was 31%.
  • the graft polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / tetrachloroethane mixed solution, reacted at 80 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed. A film containing acid groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 12 hours.
  • Example 6 An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 ⁇ m, 6 ⁇ 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 15.73 parts of ⁇ -methylstyrene, 5.27 parts of styryltrimethoxysilane, 2 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen And was heated at 60 ° C. for 18 hours and subjected to graft polymerization. As a result, the graft ratio was 25%.
  • EB electron beam
  • the graft polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / tetrachloroethane mixed solution, reacted at 80 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed. A film containing acid groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass reduction time with respect to the initial stage of this film was 10 hours.
  • the sulfonation rate ⁇ [%] of styryltrimethoxysilane was determined by the following formula.
  • Example 7 In the graft polymerization, except that the concentration of the polymerizable monomer in the solution was lowered, the same procedure as in Example 3 was carried out, and a 25 ⁇ m ETFE film was co-grafted with 50 mol% ⁇ -methylstyrene and 50 mol% styryltrimethoxysilane. Sulfonated electrolyte membrane was prepared. The graft ratio of this membrane was 64%, and the proton conductivity was 0.05 S / cm.
  • a 5 cm 2 anode catalyst layer containing 4 mg / cm 2 of PtRu black (HiSPEC 6000 manufactured by Johnson Massey) is provided on one side of the membrane, and 6 mg / cm 2 of Pt black (HiSPEC 1000 manufactured by Johnson Massey) is provided on the opposite side.
  • a 5 cm 2 cathode catalyst layer containing the catalyst is transferred, sandwiched between carbon papers (TGP-H-060 manufactured by Toray Industries, Inc.) and used as an MEA (membrane electrode assembly), and this is applied to a fuel cell (FC05-01SP manufactured by Electrochem). Attached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)

Abstract

A solid polymer electrolyte membrane is manufactured by applying radiation to a fluororesin or hydrocarbon-based resin and co-graft polymerizing at least α-methylstyrene and alkoxysilane containing styryl groups with said resin, and then sulfonating. The solid polymer electrolyte membrane of the present invention has excellent oxidation resistance. Said electrolyte membrane is placed between the fuel electrode and the air electrode of a fuel cell to form a fuel cell membrane electrode assembly. A fuel cell with extremely high performance can be produced by using said assembly in the fuel cell.

Description

固体高分子電解質膜、その製造方法、燃料電池用膜電極接合体、及び燃料電池Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
 本発明は、耐酸化性に優れた固体高分子電解質膜、その製造方法、固体高分子電解質膜を用いた燃料電池用膜電極接合体、及びそれを用いた燃料電池に関する。 The present invention relates to a solid polymer electrolyte membrane excellent in oxidation resistance, a production method thereof, a membrane electrode assembly for a fuel cell using the solid polymer electrolyte membrane, and a fuel cell using the same.
 固体高分子型燃料電池用電解質膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この固体高分子型燃料電池においては、電解質膜、白金系の触媒、ガス拡散電極、及び電解質膜と電極の接合体等に関する重要な要素技術があり、この中でも、電解質膜及び電解質膜と電極の接合体に関する技術は、燃料電池としての特性に関与する最も重要な技術の一つである。 A fuel cell using an electrolyte membrane for a polymer electrolyte fuel cell has a low operating temperature of 100 ° C. or lower, and its energy density is high. Therefore, it is expected to be widely put into practical use as a power source for electric vehicles and a simple auxiliary power source. . In this polymer electrolyte fuel cell, there are important elemental technologies related to an electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and an electrolyte membrane-electrode assembly. Among these, there are electrolyte membranes and electrolyte membrane-electrode assemblies. The technology related to the joined body is one of the most important technologies involved in the characteristics as a fuel cell.
 固体高分子型燃料電池においては、電解質膜の両面に燃料拡散電極と空気拡散電極が複合されており、電解質膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと、酸化剤である空気又は酸素とを直接混合させないための隔膜としての役割も有する。 In a polymer electrolyte fuel cell, a fuel diffusion electrode and an air diffusion electrode are combined on both surfaces of an electrolyte membrane, and the electrolyte membrane and the electrode are substantially integrated. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also functions as a diaphragm to prevent direct mixing of hydrogen or methanol as a fuel with air or oxygen as an oxidant even under pressure. Have.
 このような電解質膜としては、電解質としてプロトンの移動速度が大きく、イオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定かつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性に優れていること、長期の使用に対する化学的な安定性、特にカソードで発生するヒドロキシラジカルに対する耐酸化性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有しないこと等が要求される。 Such an electrolyte membrane is required to have a high proton transfer rate as an electrolyte, a high ion exchange capacity, and a constant and high water retention in order to keep electric resistance low. On the other hand, due to its role as a diaphragm, it has high mechanical strength and excellent dimensional stability, chemical stability for long-term use, especially oxidation resistance against hydroxy radicals generated at the cathode. It is required to be excellent and not to have excessive permeability to hydrogen gas or methanol as a fuel or oxygen gas as an oxidant.
 現在、電解質膜としては、主にデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(登録商標)」等が一般に用いられているが、「ナフィオン(登録商標)」等の従来のフッ素樹脂系電解質膜は、モノマーの合成から出発しなくてはならないために製造工程が多く、コスト高になるという問題があり、このことが実用化する場合の大きな障害になっている。 Currently, fluororesin-based perfluorosulfonic acid membranes such as “Nafion (registered trademark)” developed mainly by DuPont are generally used as electrolyte membranes. However, the fluororesin-based electrolyte membrane must be started from the synthesis of the monomer, so that there are many manufacturing processes and there is a problem that the cost is high. This is a great obstacle to practical use.
 そこで、前記「ナフィオン(登録商標)」等に代わる低コストの電解質膜を開発する努力が行われている。放射線グラフト重合法では、フッ素樹脂系の膜に放射線を照射し、フッ素樹脂にラジカル活性点を生成させ、そこに炭化水素系のラジカル重合性モノマーをグラフトさせ、スルホン化することにより、固体高分子電解質膜を作製する方法が、特開2002-313364号公報(特許文献1)、特開2003-82129号公報(特許文献2)で提案されている。 Therefore, efforts are underway to develop low-cost electrolyte membranes that replace the “Nafion (registered trademark)” and the like. In the radiation graft polymerization method, a fluoropolymer film is irradiated with radiation, a radical active site is generated on the fluororesin, a hydrocarbon radical polymerizable monomer is grafted on the film, and the resulting polymer is sulfonated. A method for producing an electrolyte membrane is proposed in Japanese Patent Application Laid-Open No. 2002-313364 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-82129 (Patent Document 2).
 しかし、炭化水素系ラジカル重合性モノマーを放射線グラフト重合法によりグラフト重合した膜は、高グラフト率が達成されることにより、高プロトン伝導度は得られるものの、耐酸化性に乏しいという問題があった。 However, a membrane obtained by graft polymerization of a hydrocarbon radical polymerizable monomer by a radiation graft polymerization method has a problem that it has poor oxidation resistance although high proton conductivity is obtained by achieving a high graft ratio. .
 この耐酸化性を改善するために、α-メチルスチレンを共グラフト重合させた高耐久性固体高分子電解質膜が特開2003-36864号公報(特許文献3)で開示されている。α-メチルスチレンは、ベンゼン環のα位にメチル基が付いているため、ベンゼン環のα位にラジカルが生成することを防止でき、耐久性に優れた固体高分子電解質膜ができる。しかし、α-メチルスチレンは、ラジカル重合性が乏しく単独でのグラフト重合は進行しないため、α-メチルスチレンと共重合性があるモノマーとの共グラフトを行う必要があり、共グラフトするモノマーの耐酸化性が低いという問題があった。 In order to improve this oxidation resistance, a highly durable solid polymer electrolyte membrane obtained by co-grafting α-methylstyrene is disclosed in Japanese Patent Application Laid-Open No. 2003-36864 (Patent Document 3). Since α-methylstyrene has a methyl group at the α-position of the benzene ring, radicals can be prevented from being generated at the α-position of the benzene ring, and a solid polymer electrolyte membrane having excellent durability can be obtained. However, since α-methylstyrene has poor radical polymerizability and graft polymerization alone does not proceed, it is necessary to co-graft with α-methylstyrene and a copolymerizable monomer. There was a problem of low conversion.
 また、特開2006-313659号公報(特許文献4)に、アルコキシシリル基を有する重合性モノマーと他の重合性モノマーを共グラフトする製造方法により得られる固体高分子電解質膜が開示されているが、この公報では、この膜の耐酸化性についての記載はなされていない。 Japanese Patent Laid-Open No. 2006-313659 (Patent Document 4) discloses a solid polymer electrolyte membrane obtained by a production method in which a polymerizable monomer having an alkoxysilyl group and another polymerizable monomer are co-grafted. In this publication, the oxidation resistance of this film is not described.
特開2002-313364号公報JP 2002-313364 A 特開2003-82129号公報JP 2003-82129 A 特開2003-36864号公報JP 2003-36864 A 特開2006-313659号公報JP 2006-313659 A
 本発明は、上記事情に鑑みなされたもので、耐酸化性に優れた燃料電池用として好適な固体高分子電解質膜、その製造方法、固体高分子電解質膜を用いた燃料電池用膜電極接合体、及びそれを用いた燃料電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a solid polymer electrolyte membrane suitable for a fuel cell excellent in oxidation resistance, a method for producing the same, and a membrane electrode assembly for a fuel cell using the solid polymer electrolyte membrane And a fuel cell using the same.
 本発明者は、上記目的を達成するため鋭意検討を行った結果、樹脂に放射線を照射し、この樹脂にα-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させ、スルホン化して得られる固体高分子電解質膜が、優れた耐酸化性を有し、燃料電池用として有用な固体高分子電解質膜であることを見出した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors irradiate the resin with radiation, and co-graft polymerize a polymerizable monomer containing α-methylstyrene and a styryl group-containing alkoxysilane on the resin, It has been found that a solid polymer electrolyte membrane obtained by sulfonation has excellent oxidation resistance and is a useful solid polymer electrolyte membrane for fuel cells.
 また、スチリル基含有アルコキシシランのスルホン化率を50%以下にすることで、大幅に耐酸化性が向上すること、更に、60℃以下でスルホン化すれば、スチリル基含有アルコキシシランのスルホン化率を30%以下に抑えてα-メチルスチレンをほぼ定量的にスルホン化できることを見出し、本発明をなすに至った。 Further, by making the sulfonation rate of the styryl group-containing alkoxysilane 50% or less, the oxidation resistance is greatly improved. Further, if sulfonating at 60 ° C. or less, the sulfonation rate of the styryl group-containing alkoxysilane As a result, it was found that α-methylstyrene can be sulfonated almost quantitatively with the content being kept at 30% or less.
 従って、本発明は、下記の固体高分子電解質膜、その製造方法、燃料電池用膜電極接合体、及び燃料電池を提供する。
[1] フッ素系樹脂又は炭化水素系樹脂に放射線を照射し、この樹脂に少なくともα-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させた後、スルホン化することにより得られることを特徴とする固体高分子電解質膜。
[2] 共グラフト鎖中のスチリル基含有アルコキシシランのスルホン化率が50%以下であることを特徴とする[1]記載の固体高分子電解質膜。
[3] 重合性モノマーに占めるスチリル基含有アルコキシシランのモル分率が30%以上であることを特徴とする[1]又は[2]記載の固体高分子電解質膜。
[4] 樹脂がフッ素系樹脂であることを特徴とする[1]~[3]のいずれかに記載の固体高分子電解質膜。
[5] フッ素系樹脂又は炭化水素系樹脂に放射線を照射し、この樹脂に少なくともα-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させた後、スルホン化することを特徴とする固体高分子電解質膜の製造方法。
[6] 共グラフト鎖中のスチリル基含有アルコキシシランのスルホン化率が50%以下であることを特徴とする[5]記載の固体高分子電解質膜の製造方法。
[7] 重合性モノマーに占めるスチリル基含有アルコキシシランのモル分率が30%以上であることを特徴とする[5]又は[6]記載の固体高分子電解質膜の製造方法。
[8] 樹脂がフッ素系樹脂であることを特徴とする請求項[5]~[7]のいずれかに記載の固体高分子電解質膜の製造方法。
[9] スルホン化を60℃以下で行うことを特徴とする請求項[5]~[8]のいずれかに記載の固体高分子電解質膜の製造方法。
[10] スルホン化を30℃以下で行うことを特徴とする請求項[5]~[8]のいずれかに記載の固体高分子電解質膜の製造方法。
[11] [1]~[4]のいずれかに記載の固体高分子電解質膜が燃料極と空気極との間に設けられていることを特徴とする燃料電池用膜電極接合体。
[12] [11]記載の燃料電池用膜電極接合体を用いたことを特徴とする燃料電池。
[13] メタノールを燃料とするダイレクトメタノール型であることを特徴とする[12]記載の燃料電池。
Accordingly, the present invention provides the following solid polymer electrolyte membrane, a production method thereof, a membrane electrode assembly for fuel cells, and a fuel cell.
[1] By irradiating a fluorine-based resin or a hydrocarbon-based resin, co-grafting a polymerizable monomer containing at least α-methylstyrene and a styryl group-containing alkoxysilane, and then sulfonating the resin. A solid polymer electrolyte membrane obtained.
[2] The solid polymer electrolyte membrane according to [1], wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
[3] The solid polymer electrolyte membrane according to [1] or [2], wherein the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is 30% or more.
[4] The solid polymer electrolyte membrane according to any one of [1] to [3], wherein the resin is a fluororesin.
[5] Irradiating the fluorine-based resin or hydrocarbon-based resin, and co-grafting a polymerizable monomer containing at least α-methylstyrene and a styryl group-containing alkoxysilane to the resin, followed by sulfonation. A method for producing a solid polymer electrolyte membrane.
[6] The method for producing a solid polymer electrolyte membrane according to [5], wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
[7] The method for producing a solid polymer electrolyte membrane according to [5] or [6], wherein the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is 30% or more.
[8] The method for producing a solid polymer electrolyte membrane according to any one of [5] to [7], wherein the resin is a fluororesin.
[9] The method for producing a solid polymer electrolyte membrane according to any one of [5] to [8], wherein the sulfonation is performed at 60 ° C. or lower.
[10] The method for producing a solid polymer electrolyte membrane according to any one of [5] to [8], wherein the sulfonation is performed at 30 ° C. or lower.
[11] A membrane electrode assembly for a fuel cell, characterized in that the solid polymer electrolyte membrane according to any one of [1] to [4] is provided between a fuel electrode and an air electrode.
[12] A fuel cell comprising the fuel cell membrane electrode assembly according to [11].
[13] The fuel cell according to [12], which is a direct methanol type using methanol as a fuel.
 本発明の固体高分子電解質膜は、優れた耐酸化性を備えたもので、この電解質膜を燃料電池の燃料極と空気極との間に設けて燃料電池用膜電極接合体とし、これを燃料電池に用いることで、燃料電池を非常に高性能のものとすることができる。 The solid polymer electrolyte membrane of the present invention has excellent oxidation resistance. This electrolyte membrane is provided between a fuel electrode and an air electrode of a fuel cell to form a membrane electrode assembly for a fuel cell. By using it for a fuel cell, the fuel cell can have a very high performance.
実施例7の燃料電池の分極特性(I-V特性)の評価結果を示すグラフである。14 is a graph showing evaluation results of polarization characteristics (IV characteristics) of the fuel cell of Example 7.
 以下、本発明につき更に詳細に説明する。
 本発明の固体高分子電解質膜は、放射線を照射した樹脂に、α-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させ、更にスルホン化を行うことにより得られる。
Hereinafter, the present invention will be described in more detail.
The solid polymer electrolyte membrane of the present invention can be obtained by co-grafting a polymerizable monomer containing α-methylstyrene and a styryl group-containing alkoxysilane onto a resin irradiated with radiation and further sulfonating.
 樹脂としては、フッ素系樹脂又は炭化水素系樹脂が用いられ、フッ素系樹脂としては、四フッ化エチレン-六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、四フッ化エチレン-エチレン共重合樹脂(ETFE)、フッ化ビニリデン樹脂(PVDF)など、炭化水素系樹脂としては、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルホン(PES)などが例示され、これらの1種を単独で又は2種以上を併用することができる。特にフッ素系樹脂は耐久性に優れるため好ましい。その形状は、特に制限されないが、フィルム状等とすることができる。 As the resin, fluorine resin or hydrocarbon resin is used. As the fluorine resin, tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin are used. Examples of hydrocarbon resins such as (PFA), tetrafluoroethylene-ethylene copolymer resin (ETFE), and vinylidene fluoride resin (PVDF) include polyethylene, polypropylene, polyetheretherketone (PEEK), and polyethersulfone (PES). Etc.), and one of these can be used alone or two or more of them can be used in combination. In particular, a fluorine-based resin is preferable because of its excellent durability. The shape is not particularly limited, but may be a film shape or the like.
 グラフト重合においては、樹脂に予め放射線を照射してグラフトの起点となるラジカルを生成させた後、樹脂をモノマーと接触させてグラフト反応を行う前照射法と、モノマーと樹脂の共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。また、樹脂フィルムの膜厚は特に限定されないが、10~100μm、特に10~50μmであることが好ましい。 In graft polymerization, the resin is irradiated with radiation in advance to generate radicals that serve as the starting point of grafting, and then the pre-irradiation method in which the resin is brought into contact with the monomer to carry out the grafting reaction, and radiation is applied in the presence of the monomer and resin. Although there is a simultaneous irradiation method of irradiation, any method can be adopted in the present invention. The film thickness of the resin film is not particularly limited, but is preferably 10 to 100 μm, particularly 10 to 50 μm.
 本発明で樹脂にラジカル重合性モノマーをグラフト重合させるために照射する放射線としては、γ線、X線、電子線、イオンビーム、紫外線などが例示されるが、ラジカル生成の容易さからγ線、電子線が好ましい。 Examples of the radiation used for graft polymerization of the radical polymerizable monomer on the resin in the present invention include γ rays, X rays, electron beams, ion beams, ultraviolet rays, etc., but γ rays, An electron beam is preferred.
 放射線の吸収線量としては、1kGy以上、特に1~200kGy、とりわけ1~100kGyとすることが好ましく、1kGy未満ではラジカル生成量が少なく、グラフトし難くなる場合があり、200kGyを超えるとグラフト率が大きくなりすぎて得られる電解質膜の機械的強度が低下する場合がある。 The absorbed dose of radiation is preferably 1 kGy or more, particularly 1 to 200 kGy, particularly 1 to 100 kGy, and if it is less than 1 kGy, the amount of radical generation is small and grafting may be difficult, and if it exceeds 200 kGy, the graft rate is large. The mechanical strength of the electrolyte membrane obtained by becoming too small may be reduced.
 更に、放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、雰囲気ガス中の酸素濃度は100ppm以下、より好ましくは50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。 Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas, and the oxygen concentration in the atmospheric gas is preferably 100 ppm or less, more preferably 50 ppm or less, but it is not necessarily in the absence of oxygen. There is no need to do it.
 本発明の固体高分子電解質膜において、放射線を照射した樹脂に、α-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマー(ラジカル重合性モノマー)を共グラフト重合させる。α-メチルスチレンと共グラフト重合させるスチリル基含有アルコキシシランとしては、分子中にスチリル基(CH2=CH-C64-)を有するスチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、ビニルフェネチルトリメトキシシラン、ビニルフェネチルトリエトキシシラン等が挙げられる。特に、スチリルトリメトキシシランはα-メチルスチレンとの共重合性がよいため望ましい。 In the solid polymer electrolyte membrane of the present invention, a polymerizable monomer (radical polymerizable monomer) containing α-methylstyrene and a styryl group-containing alkoxysilane is co-grafted to the resin irradiated with radiation. The styryl group-containing alkoxysilane to co-graft polymerization and α- methyl styrene, styryl group in the molecule (CH 2 = CH-C 6 H 4 -) styryl trimethoxysilane having, styryl triethoxysilane, styryl ethyltrimethoxysilane Examples include silane, styrylethyltriethoxysilane, vinylphenethyltrimethoxysilane, vinylphenethyltriethoxysilane, and the like. In particular, styryltrimethoxysilane is desirable because it has good copolymerizability with α-methylstyrene.
 本発明における重合性モノマーに占めるα-メチルスチレンのモル分率は、好ましくは10~90%、より好ましくは20~70%であり、90%より大きいと、十分なグラフト率が得られなくなるおそれがあり、10%より小さいと、膜の耐酸化性が悪くなるおそれがある。 The molar fraction of α-methylstyrene in the polymerizable monomer in the present invention is preferably 10 to 90%, more preferably 20 to 70%, and if it exceeds 90%, a sufficient graft ratio may not be obtained. If it is less than 10%, the oxidation resistance of the film may be deteriorated.
 また、重合性モノマーに占めるスチリル基含有アルコキシシランのモル分率は、好ましくは10~90%、より好ましくは30~80%であり、90%より大きいと、膜の脆性が悪くなるおそれがあり、10%より小さいと、十分なグラフト率が得られなくなるおそれがある。特に30%以上にすることで大幅に耐酸化性を向上させることが可能である。 Further, the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is preferably 10 to 90%, more preferably 30 to 80%, and if it exceeds 90%, the brittleness of the film may be deteriorated. If it is less than 10%, a sufficient graft rate may not be obtained. In particular, the oxidation resistance can be greatly improved by setting it to 30% or more.
 本発明の固体高分子電解質膜における重合性モノマーのグラフト率は、20~100%、特に40~100%であることが好ましい。 The graft ratio of the polymerizable monomer in the solid polymer electrolyte membrane of the present invention is preferably 20 to 100%, particularly preferably 40 to 100%.
 なお、共グラフト重合には、本発明の効果を損なわない範囲で、更に他のラジカル重合性モノマーを共グラフトすることもできる。この場合、その他のラジカル重合性モノマーは、一官能重合性モノマーが好ましく、例えば、スルホン酸基、スルホン酸アミド基、カルボン酸基、リン酸基、四級アンモニウム塩基等のイオン伝導性基をもつモノマー(アクリル酸ナトリウム、アクリルアミドメチルプロパンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム等)を単独で、又は適宜組み合わせて使用できる。また、官能基の反応性の差を利用すれば多官能重合性モノマーを使用することも可能である。 In addition, in the co-graft polymerization, another radical polymerizable monomer can be further co-grafted as long as the effects of the present invention are not impaired. In this case, the other radical polymerizable monomer is preferably a monofunctional polymerizable monomer, for example, having an ion conductive group such as a sulfonic acid group, a sulfonic acid amide group, a carboxylic acid group, a phosphoric acid group, or a quaternary ammonium base. Monomers (sodium acrylate, sodium acrylamidomethylpropanesulfonate, sodium styrenesulfonate, etc.) can be used alone or in appropriate combination. In addition, a polyfunctional polymerizable monomer can be used by utilizing the difference in the reactivity of the functional group.
 更に、必要に応じて、ジビニルベンゼン等のビニル基を複数有するモノマー等の架橋性モノマーを、上記重合性モノマーに対して0.1~15モル%混合することができる。このように架橋性モノマーを併用することで、グラフト鎖中に架橋構造を導入することができる。 Furthermore, if necessary, a crosslinkable monomer such as a monomer having a plurality of vinyl groups such as divinylbenzene can be mixed in an amount of 0.1 to 15 mol% with respect to the polymerizable monomer. Thus, by using a crosslinkable monomer together, a crosslinked structure can be introduced into the graft chain.
 ここで、放射線を照射した樹脂にそれぞれグラフトする重合性モノマーの使用量は、樹脂100質量部に対して重合性モノマーを1,000~100,000質量部、特に5,000~30,000質量部使用することが好ましい。重合性モノマーが少なすぎると接触が不十分となる場合があり、多すぎると重合性モノマーが効率的に使用できなくなるおそれがある。 Here, the amount of the polymerizable monomer grafted to the resin irradiated with radiation is 1,000 to 100,000 parts by weight, particularly 5,000 to 30,000 parts by weight of the polymerizable monomer with respect to 100 parts by weight of the resin. It is preferable to use a part. If the amount of the polymerizable monomer is too small, the contact may be insufficient. If the amount is too large, the polymerizable monomer may not be used efficiently.
 これらモノマーをグラフト重合するに際しては、アゾビスイソブチロニトリル等の重合開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。 In the graft polymerization of these monomers, a polymerization initiator such as azobisisobutyronitrile may be appropriately used as long as the object of the present invention is not impaired.
 更に、本発明においては、グラフト反応時に溶媒を用いることができる。溶媒としては、ラジカル重合性モノマーを均一に溶解するものが好ましく、例えばアセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ベンゼン、トルエン等の芳香族炭化水素、n-ヘプタン、n-へキサン、シクロヘキサン等の脂肪族又は脂環族炭化水素、或いはこれらの混合溶媒を用いることができる。 Furthermore, in the present invention, a solvent can be used during the graft reaction. As the solvent, those that uniformly dissolve the radical polymerizable monomer are preferable, for example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol. , Ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene and toluene, aliphatics or fats such as n-heptane, n-hexane and cyclohexane A cyclic hydrocarbon or a mixed solvent thereof can be used.
 この場合、溶媒の使用量は、モノマー/溶媒(質量比)=0.01~20が望ましい。モノマー/溶媒(質量比)が20より大きいとグラフト鎖中のモノマーユニット数の調整が困難になる場合があり、0.01より小さいと、グラフト率が低くなりすぎる場合がある。特にモノマー/溶媒(質量比)は0.2~10であることが好ましい。 In this case, the amount of solvent used is preferably monomer / solvent (mass ratio) = 0.01-20. If the monomer / solvent (mass ratio) is greater than 20, it may be difficult to adjust the number of monomer units in the graft chain, and if it is less than 0.01, the graft ratio may be too low. In particular, the monomer / solvent (mass ratio) is preferably 0.2 to 10.
 本発明においては、グラフト重合を行う際の反応雰囲気中の酸素濃度を0.05~5体積%に調整することが好ましい。反応雰囲気中の酸素は、系内のラジカルと反応し、カルボニルラジカルやパーオキシラジカルとなり、それ以上の反応を抑制するように作用していると考えられる。酸素濃度が0.05体積%未満であると重合性モノマーが溶液中で重合し、溶媒に不溶のゲルが生成するため、原料が無駄になると共に、ゲルの除去にも時間がかかり、酸素濃度が5体積%を超えるとグラフト率が低下する場合がある。望ましい酸素濃度は0.1~3体積%であり、更に望ましい酸素濃度は0.1~1体積%である。なお、酸素以外のガスとしては、窒素、アルゴンガスなどの不活性ガスが使用される。 In the present invention, it is preferable to adjust the oxygen concentration in the reaction atmosphere during graft polymerization to 0.05 to 5% by volume. It is considered that oxygen in the reaction atmosphere reacts with radicals in the system to become carbonyl radicals or peroxy radicals and acts to suppress further reactions. When the oxygen concentration is less than 0.05% by volume, the polymerizable monomer is polymerized in the solution and a gel insoluble in the solvent is generated. Therefore, the raw material is wasted and it takes time to remove the gel. If it exceeds 5% by volume, the graft ratio may decrease. A desirable oxygen concentration is 0.1 to 3% by volume, and a more desirable oxygen concentration is 0.1 to 1% by volume. In addition, as gas other than oxygen, inert gas, such as nitrogen and argon gas, is used.
 上記グラフト重合の反応条件としては、0~100℃、特に40~80℃の温度で、1~40時間、特に4~20時間の反応時間とすることが好ましい。 The reaction conditions for the graft polymerization are preferably 0 to 100 ° C., particularly 40 to 80 ° C., and 1 to 40 hours, particularly 4 to 20 hours.
 上述したように共グラフト重合させた後に、スルホン化が施される。スルホン化は、グラフトした膜をスルホン化剤と液相又は気相で接触させることによって行われる。この際、スチリル基含有アルコキシシランのスルホン化率は50%以下、好ましくは30%以下であり、50%より大きいと、膜の耐酸化性が悪くなるおそれがある。スチリル基含有アルコキシシランがスルホン化されると、スチリル基のα炭素に結合する水素がヒドロキシラジカルにより引き抜かれ易くなるためと考えられる。なお、スチリル基含有アルコキシシランのスルホン化率はより小さいほうが耐酸化性の向上の観点においては有利であることから、その下限は好適には0%である。 Sulfonated after co-graft polymerization as described above. Sulfonation is carried out by contacting the grafted membrane with a sulfonating agent in liquid or gas phase. Under the present circumstances, the sulfonation rate of a styryl group containing alkoxysilane is 50% or less, Preferably it is 30% or less, and when larger than 50%, there exists a possibility that the oxidation resistance of a film | membrane may worsen. This is probably because when the styryl group-containing alkoxysilane is sulfonated, hydrogen bonded to the α-carbon of the styryl group is easily extracted by the hydroxy radical. In addition, since the one where the sulfonation rate of a styryl group containing alkoxysilane is smaller is advantageous in the viewpoint of an oxidation-resistant improvement, the minimum is suitably 0%.
 スルホン化の反応温度は好ましくは60℃以下、より好ましくは30℃以下である。スルホン化においてはα-メチルスチレン(ベンゼン環が1置換)が、スチリル基含有アルコキシシラン(ベンゼン環が2置換)よりスルホン化され易いが、その選択比はスルホン化の反応温度に大きく依存する。60℃より高いとα-メチルスチレンとほぼ同時にスチリル基含有アルコキシシランもスルホン化されてしまい耐酸化性が十分に向上しない場合がある。特に、30℃以下では、α-メチルスチレンはスルホン化されるが、スチリル基含有アルコキシシランはほとんどスルホン化されないので耐酸化性が極めて良好となる。 The reaction temperature of sulfonation is preferably 60 ° C. or lower, more preferably 30 ° C. or lower. In the sulfonation, α-methylstyrene (the benzene ring is monosubstituted) is more easily sulfonated than the styryl group-containing alkoxysilane (the benzene ring is disubstituted), but the selection ratio largely depends on the reaction temperature of the sulfonation. If the temperature is higher than 60 ° C., the styryl group-containing alkoxysilane is also sulfonated almost simultaneously with α-methylstyrene, and the oxidation resistance may not be sufficiently improved. In particular, at 30 ° C. or lower, α-methylstyrene is sulfonated, but styryl group-containing alkoxysilane is hardly sulfonated, so that the oxidation resistance is very good.
 スルホン化剤は公知のものを使うことができ、例えば、濃硫酸、発煙硫酸、無水硫酸、メシチレンスルホン酸などによってスルホン化することができる。また、クロロスルホン酸と反応後、純水中で加水分解させることによってスルホン化することもできる(本発明では、この場合はクロロスルホン酸との反応温度をスルホン化温度と定義する)。また、スルホン化剤はジクロロエタン、ジクロロベンゼン等の溶媒で適宜希釈して用いてもよい。 A well-known thing can be used for a sulfonating agent, For example, it can sulfonate by concentrated sulfuric acid, fuming sulfuric acid, sulfuric anhydride, mesitylene sulfonic acid, etc. Moreover, it can also sulfonate by making it hydrolyze in a pure water after reaction with chlorosulfonic acid (in this invention, the reaction temperature with chlorosulfonic acid is defined as sulfonation temperature in this case). The sulfonating agent may be appropriately diluted with a solvent such as dichloroethane or dichlorobenzene.
 スルホン化の反応時間は所望のイオン交換容量が得られる時間に適宜調整すればよい。反応時間が短いと膜内部が十分にスルホン化されないおそれがあり、長いとスチリル基含有アルコキシシランも徐々にスルホン化されてしまうおそれがある。より具体的には、クロロスルホン酸をジクロロエタンで濃度0.02~6mol/Lに希釈した溶液に、0~60℃で3~24hr浸漬後、50~90℃の純水に6~48hr浸漬するのが好ましい。 The sulfonation reaction time may be adjusted as appropriate to obtain a desired ion exchange capacity. If the reaction time is short, the inside of the membrane may not be sufficiently sulfonated, and if it is long, the styryl group-containing alkoxysilane may also be gradually sulfonated. More specifically, after immersing in a solution obtained by diluting chlorosulfonic acid with dichloroethane to a concentration of 0.02 to 6 mol / L at 0 to 60 ° C. for 3 to 24 hours, it is immersed in pure water at 50 to 90 ° C. for 6 to 48 hours. Is preferred.
 このスルホン化と同時にスチリル基含有アルコキシシランのアルコキシシリル基の加水分解・縮合が進行し、Si-O-Si結合によりグラフト鎖間に架橋が形成される。この架橋によりグラフト鎖は3次元網状構造となり、より耐酸化性に優れたものとなる。なお、スルホン化の前又は後に、別途アルコキシシリル基の加水分解・縮合工程を実施し、Si-O-Si結合によるグラフト鎖間架橋を形成してもよい。 Simultaneously with this sulfonation, hydrolysis and condensation of the alkoxysilyl group of the styryl group-containing alkoxysilane proceeds, and a cross-link is formed between the graft chains by the Si—O—Si bond. By this cross-linking, the graft chain has a three-dimensional network structure and is more excellent in oxidation resistance. In addition, before or after sulfonation, a separate hydrolysis / condensation step of alkoxysilyl groups may be carried out to form graft chain cross-linking by Si—O—Si bonds.
 本発明の固体高分子電解質膜は、触媒が担持された第一の電極と第二の電極(燃料極と空気極)との間に両極に隣接して配置されて、燃料電池用の電解質膜・電極接合体(膜電極接合体)として形成されるが、この電解質膜・電極接合体は、下記方法により製造することができる。 The solid polymer electrolyte membrane of the present invention is disposed adjacent to both electrodes between a first electrode on which a catalyst is supported and a second electrode (fuel electrode and air electrode), and is an electrolyte membrane for a fuel cell. Although formed as an electrode assembly (membrane electrode assembly), this electrolyte membrane / electrode assembly can be produced by the following method.
 電解質膜・電極接合体の製造においては、固体高分子電解質膜にアノード(燃料極)及びカソード(空気極)となる電極を接合するが、この場合、電極は、多孔質支持体と触媒層とから形成される。多孔質支持体としては、カーボンペーパー、カーボンクロス等が好適に用いられる。また、触媒層は、微粒子触媒及びプロトン伝導性高分子電解質を含むものが好ましい。 In the production of an electrolyte membrane / electrode assembly, electrodes serving as an anode (fuel electrode) and a cathode (air electrode) are joined to a solid polymer electrolyte membrane. In this case, the electrode comprises a porous support, a catalyst layer, and a catalyst layer. Formed from. As the porous support, carbon paper, carbon cloth or the like is preferably used. The catalyst layer preferably contains a fine particle catalyst and a proton conductive polymer electrolyte.
 この場合、微粒子触媒としては、白金族金属微粒子触媒、白金含有合金微粒子触媒が用いられる。白金族金属微粒子触媒としては、白金、ルテニウム、パラジウム、ロジウム、イリジウム、オスミウム等が用いられ、白金含有合金微粒子触媒としては、例えば、白金とルテニウム、パラジウム、ロジウム、イリジウム、オスミウム、モリブデン、錫、コバルト、ニッケル、鉄、クロム等から選ばれる少なくとも1種の金属との合金等が挙げられる。この場合、白金含有合金としては、白金を5質量%以上、特に10質量%以上含有するものが好ましい。 In this case, a platinum group metal fine particle catalyst or a platinum-containing alloy fine particle catalyst is used as the fine particle catalyst. As the platinum group metal fine particle catalyst, platinum, ruthenium, palladium, rhodium, iridium, osmium and the like are used, and as the platinum-containing alloy fine particle catalyst, for example, platinum and ruthenium, palladium, rhodium, iridium, osmium, molybdenum, tin, Examples thereof include alloys with at least one metal selected from cobalt, nickel, iron, chromium and the like. In this case, the platinum-containing alloy is preferably an alloy containing 5% by mass or more, particularly 10% by mass or more of platinum.
 上記白金族金属微粒子触媒、白金含有合金微粒子触媒としては、粒子径(平均粒子径)が4nm以下、好ましくは1~4nm、更に好ましくは2~3.5nmのものを使用することが好ましい。4nmを超える粒子径の触媒を用いると、比表面積が小さくなり、触媒活性が低下するという問題が生じるおそれがある。なお、上記粒子径は、透過型電子顕微鏡の観察に基づくものである。 As the platinum group metal fine particle catalyst and the platinum-containing alloy fine particle catalyst, those having a particle diameter (average particle diameter) of 4 nm or less, preferably 1 to 4 nm, more preferably 2 to 3.5 nm are preferably used. When a catalyst having a particle diameter exceeding 4 nm is used, there is a concern that the specific surface area becomes small and the catalyst activity is lowered. The particle diameter is based on observation with a transmission electron microscope.
 この場合、上記微粒子触媒としては、カーボンに担持されたものを使用することができ、市販品を使用することができる。 In this case, as the fine particle catalyst, one supported on carbon can be used, and a commercially available product can be used.
 上記微粒子触媒の触媒量は、各電極触媒層中、通常、それぞれ0.05~10mg/cm2、好ましくは0.3~5mg/cm2である。触媒量が少なすぎると、触媒効果が十分得られないおそれがあり、10mg/cm2より多いと、触媒層が厚くなりすぎて出力が下がるおそれがある。 The catalyst amount of the fine particle catalyst is usually 0.05 to 10 mg / cm 2 , preferably 0.3 to 5 mg / cm 2 in each electrode catalyst layer. If the amount of the catalyst is too small, the catalyst effect may not be sufficiently obtained. If the amount is more than 10 mg / cm 2 , the catalyst layer may be too thick and the output may be lowered.
 また、スルホン酸基を有するプロトン伝導性高分子電解質としては、ナフィオン[Nafion(商品名、デュポン社製)]に代表されるパーフルオロ系電解質、スチレンスルホン酸-ブタジエン共重合体に代表される炭化水素系電解質、スルホン酸基含有アルコキシシランと末端シリル化オリゴマーに代表される無機・有機ハイブリッド電解質等が好適に用いられる。更に、電子伝導性向上の目的で触媒が担持されていないカーボン微粒子等を配合することができる。 In addition, as the proton conductive polymer electrolyte having a sulfonic acid group, a perfluoro-based electrolyte typified by Nafion [Nafion (trade name, manufactured by DuPont)], and a carbonized carbon typified by a styrenesulfonic acid-butadiene copolymer. Hydrogen-based electrolytes, inorganic / organic hybrid electrolytes typified by sulfonic acid group-containing alkoxysilanes and terminal silylated oligomers are preferably used. Furthermore, for the purpose of improving electron conductivity, carbon fine particles on which no catalyst is supported can be blended.
 なお、触媒層を形成する触媒ペーストには、触媒ペーストを電極及び/又は電解質膜に塗布する際に塗布性を向上する目的で溶媒を使用することも可能である。溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、エチレングリコール、グリセロール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素、n-ヘプタン、n-ヘキサン、シクロヘキサン等の脂肪族乃至脂環式炭化水素、水、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、N-メチルホルムアミド、N-メチルピロリドン、エチレンカーボネート、プロピレンカーボネート等の極性溶媒が挙げられる。これらは単独で又は2種以上を混合して用いることができる。これらの中でもイソプロピルアルコール、水及びN,N-ジメチルホルムアミド等の極性溶媒が望ましい。 In addition, it is also possible to use a solvent for the catalyst paste which forms a catalyst layer in order to improve applicability | paintability, when applying a catalyst paste to an electrode and / or an electrolyte membrane. Examples of the solvent include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, ethylene glycol and glycerol, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate and butyl acetate. , Ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene and toluene, aliphatic to alicyclic hydrocarbons such as n-heptane, n-hexane and cyclohexane, water, dimethyl sulfoxide, N, N-dimethyl Examples include polar solvents such as formamide, N, N-dimethylacetamide, formamide, N-methylformamide, N-methylpyrrolidone, ethylene carbonate, and propylene carbonate. These can be used alone or in admixture of two or more. Among these, polar solvents such as isopropyl alcohol, water and N, N-dimethylformamide are desirable.
 また、触媒層中の多孔性を増し、水の移動を容易にするため、フッ素樹脂を加えることも可能である。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルコポリマー(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリフッ化ビニル(PVF)、三フッ化エチレン-エチレンコポリマー(ECTFE)等が挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。なお、これらフッ素樹脂としては、GPCによるポリスチレン換算数平均分子量100,000~600,000程度の市販品を用いることができる。 Fluorine resin can also be added to increase the porosity in the catalyst layer and facilitate water movement. Fluoropolymers include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), ethylene-tetra Fluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene trifluoride-ethylene copolymer (ECTFE), and the like are used alone or in combination of two or more. Can do. As these fluororesins, commercially available products having a polystyrene equivalent number average molecular weight of 100,000 to 600,000 by GPC can be used.
 上記成分の使用量は、広い範囲で選定し得るが、触媒粒子100質量部に対し、プロトン伝導性高分子電解質50~200質量部、溶媒は0~5,000質量部、特に100~1,000質量部、フッ素樹脂成分は10~400質量部、特に40~130質量部の使用量とすることが好ましい。 The amount of the above-mentioned components can be selected within a wide range, but the proton conductive polymer electrolyte is 50 to 200 parts by mass and the solvent is 0 to 5,000 parts by mass, particularly 100 to 1, parts per 100 parts by mass of the catalyst particles. 000 parts by mass, and the fluororesin component is preferably used in an amount of 10 to 400 parts by mass, particularly 40 to 130 parts by mass.
 上記触媒ペーストを上記電解質膜又は多孔質電極基材上に塗布し、ペースト中に溶媒を加えた場合は溶媒を除去し、常法によって触媒層を形成する。 The catalyst paste is applied onto the electrolyte membrane or the porous electrode substrate, and when a solvent is added to the paste, the solvent is removed and a catalyst layer is formed by a conventional method.
 触媒層は、電解質膜及び電極基材の少なくとも一方に形成されるが、電解質膜の両面を電極基材で挟み、ホットプレスすることで膜電極接合体を得ることができる。ホットプレス時の温度は、使用する電解質膜、又は触媒ペースト中の成分、フッ素樹脂の種類や配合比によって適宜選択されるが、望ましい温度範囲は50~200℃、より望ましくは80~180℃である。50℃未満であると接合が不十分であるおそれがあり、200℃を超えると電解質膜又は触媒層中の樹脂成分が劣化するおそれがある。加圧レベルに関しては、電解質膜及び/又は触媒ペースト中の成分、フッ素樹脂の種類や配合比、多孔質電極基材の種類によって適宜選択されるが、望ましい加圧範囲は1~100kgf/cm2、より望ましくは10~100kgf/cm2である。1kgf/cm2未満であると接合が不十分であるおそれがあり、100kgf/cm2を超えると触媒層や電極基材の空孔度が減少し、性能が劣化するおそれがある。 The catalyst layer is formed on at least one of the electrolyte membrane and the electrode substrate, and a membrane / electrode assembly can be obtained by sandwiching both surfaces of the electrolyte membrane with the electrode substrate and hot pressing. The temperature at the time of hot pressing is appropriately selected depending on the electrolyte membrane to be used or the components in the catalyst paste, the kind of fluorine resin and the blending ratio, but the desirable temperature range is 50 to 200 ° C., more desirably 80 to 180 ° C. is there. If it is less than 50 ° C, bonding may be insufficient, and if it exceeds 200 ° C, the resin component in the electrolyte membrane or the catalyst layer may be deteriorated. The pressure level is appropriately selected depending on the components in the electrolyte membrane and / or the catalyst paste, the type and blending ratio of the fluororesin, and the type of the porous electrode substrate, but the preferable pressure range is 1 to 100 kgf / cm 2. More desirably, it is 10 to 100 kgf / cm 2 . If it is less than 1 kgf / cm 2 , the bonding may be insufficient, and if it exceeds 100 kgf / cm 2 , the porosity of the catalyst layer and the electrode substrate may decrease, and the performance may deteriorate.
 このように、本発明の電解質膜は、燃料電池の燃料極と空気極との間に設けられる固体高分子電解質膜として使用できるものであり、固体高分子電解質膜の両面に触媒層・燃料拡散層及びセパレータを配置することで、燃料電池用、特にダイレクトメタノール型燃料電池用電解質膜として好適に使用されて、電池特性に優れた燃料電池を得ることが可能である。なお、上述した以外の燃料電池の構成は公知のものとすることができる。 Thus, the electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and a catalyst layer / fuel diffusion on both sides of the solid polymer electrolyte membrane. By disposing the layer and the separator, it is possible to obtain a fuel cell that is suitably used as an electrolyte membrane for a fuel cell, particularly a direct methanol fuel cell, and has excellent cell characteristics. In addition, the structure of the fuel cell other than that described above can be a known one.
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、以下の例において部数はいずれも質量部である。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, all parts are parts by mass.
  [実施例1]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン11.03部、スチリルトリメトキシシラン8.97部、ジメチルアセトアミド3部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、窒素雰囲気中、60℃で20時間加熱し、グラフト重合した結果、グラフト率は67%であった。
[Example 1]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 11.03 parts of α-methylstyrene, 8.97 parts of styryltrimethoxysilane, 3 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen Was immersed in a nitrogen atmosphere and heated at 60 ° C. for 20 hours to perform graft polymerization. As a result, the graft ratio was 67%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、60℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は34時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 34 hours.
  [比較例1]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を4kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したスチレン2.6部、スチリルトリメトキシシラン2.4部、ジメチルアセトアミド18部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、窒素雰囲気中、60℃で18時間加熱し、グラフト重合した結果、グラフト率は39%であった。
[Comparative Example 1]
An electron beam with an accelerating voltage of 100 kV is converted to 4 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Light Beam L manufactured by Iwasaki Electric) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. Immerse the film in a solution containing 2.6 parts of styrene, bubbling with nitrogen, 2.4 parts of styrene, 2.4 parts of styryltrimethoxysilane, 18 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile. As a result of heating in a nitrogen atmosphere at 60 ° C. for 18 hours and graft polymerization, the graft ratio was 39%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、60℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は6時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 6 hours.
  [比較例2]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を20kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン8.38部、アクリロニトリル1.62部、ジメチルアセトアミド11部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、窒素雰囲気中、60℃で18時間加熱し、グラフト重合した結果、グラフト率は41%であった。
[Comparative Example 2]
An electron beam with an acceleration voltage of 100 kV is 20 kGy at room temperature in a nitrogen atmosphere with an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. The film is immersed in a solution prepared by previously charging 8.38 parts of α-methylstyrene, 1.62 parts of acrylonitrile, 11 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile from which oxygen has been removed by bubbling with nitrogen in advance. As a result of heating in a nitrogen atmosphere at 60 ° C. for 18 hours and graft polymerization, the graft ratio was 41%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、60℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は4時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 4 hours.
  [比較例3]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を5kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したスチレン12部、トルエン12部が仕込んである溶液中にフィルムを浸漬させ、窒素雰囲気中、60℃で18時間加熱し、グラフト重合した結果、グラフト率は42%であった。
[Comparative Example 3]
An electron beam with an accelerating voltage of 100 kV is applied to an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts) with an electron beam (EB) irradiation device (light beam L manufactured by Iwasaki Electric) at room temperature in a nitrogen atmosphere to 5 kGy. Irradiated as follows. The film was immersed in a solution containing 12 parts of styrene and 12 parts of toluene from which oxygen had previously been removed by bubbling with nitrogen, and heated at 60 ° C. for 18 hours in a nitrogen atmosphere. As a result of graft polymerization, the graft ratio was 42%. Met.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、60℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は3時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 60 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 3 hours.
 上記実施例1及び比較例1~3の電解質膜について、グラフト率及びプロトン伝導度を下記の方法で測定した。結果を表1に示す。 The graft ratio and proton conductivity of the electrolyte membranes of Example 1 and Comparative Examples 1 to 3 were measured by the following methods. The results are shown in Table 1.
 [グラフト率の測定]
 グラフト前の膜質量とグラフト後の膜質量を測定し、下記式により求めた。
 グラフト率=(グラフト後膜質量-グラフト前膜質量)/グラフト前膜質量
[Measurement of graft ratio]
The membrane mass before grafting and the membrane mass after grafting were measured and determined by the following formula.
Graft ratio = (post-graft membrane mass-pre-graft membrane mass) / pre-graft membrane mass
 [プロトン伝導度の測定]
 電解質膜を幅1cmの短冊状にサンプルを切り出し、室温で純水に浸漬し膨潤させた後、膨潤状態で白金電極を押し当て、インピーダンスアナライザー(ソーラトロン製1260)を用いて交流4端子法で膜の長手方向の抵抗を求めた。この膜抵抗と、電極間距離、膨潤時の膜厚、膨潤時のサンプル幅からプロトン伝導度を下記式により求めた。
 プロトン伝導度=電極間距離/(膜抵抗×膜厚×サンプル幅)
[Measurement of proton conductivity]
The electrolyte membrane is cut into a strip of 1 cm width, immersed in pure water at room temperature to swell, and then the platinum electrode is pressed in the swollen state, and the membrane is formed by an AC four-terminal method using an impedance analyzer (Solartron 1260). The longitudinal resistance was determined. From the membrane resistance, the distance between the electrodes, the film thickness at the time of swelling, and the sample width at the time of swelling, the proton conductivity was obtained by the following formula.
Proton conductivity = distance between electrodes / (membrane resistance × film thickness × sample width)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  [実施例2]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン14.25部、スチリルトリメトキシシラン6.75部、ジメチルアセトアミド2部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、60℃で60時間加熱し、グラフト重合した結果、グラフト率は65%であった。
[Example 2]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 14.25 parts of α-methylstyrene, 6.75 parts of styryltrimethoxysilane, 2 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen Was immersed, heated at 60 ° C. for 60 hours, and subjected to graft polymerization. As a result, the graft ratio was 65%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、25℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は28時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 28 hours.
  [実施例3]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン6.56部、スチリルトリメトキシシラン12.44部、ジメチルアセトアミド5部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、60℃で18時間加熱し、グラフト重合した結果、グラフト率は95%であった。
[Example 3]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 6.56 parts of α-methylstyrene, 12.44 parts of styryltrimethoxysilane, 5 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen Was heated at 60 ° C. for 18 hours and graft polymerization was conducted. As a result, the graft ratio was 95%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、25℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は62時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 62 hours.
  [実施例4]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン16.48部、スチリルトリメトキシシラン5.52部、ジメチルアセトアミド1部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、60℃で60時間加熱し、グラフト重合した結果、グラフト率は53%であった。
[Example 4]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 16.48 parts of α-methylstyrene, 5.52 parts of styryltrimethoxysilane, 1 part of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen Was heated at 60 ° C. for 60 hours and graft polymerization was performed. As a result, the graft ratio was 53%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/ジクロロエタン混合液に浸漬し、25℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は28時間であった。 The graft-polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / dichloroethane mixed solution, reacted at 25 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed to obtain sulfonic acid. A film containing groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 28 hours.
  [実施例5]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン3.45部、スチリルトリメトキシシラン6.55部、ジメチルアセトアミド13部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、60℃で18時間加熱し、グラフト重合した結果、グラフト率は31%であった。
[Example 5]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. A film in a solution charged with 3.45 parts of α-methylstyrene, 6.55 parts of styryltrimethoxysilane, 13 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen Was heated at 60 ° C. for 18 hours and graft polymerization was performed. As a result, the graft ratio was 31%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/テトラクロロエタン混合液に浸漬し、80℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は12時間であった。 The graft polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / tetrachloroethane mixed solution, reacted at 80 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed. A film containing acid groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass loss time with respect to the initial stage of this film was 12 hours.
  [実施例6]
 ETFEフィルム(厚さ25μm、6×5cm角、0.13部)に、電子線(EB)照射装置(岩崎電気製ライトビームL)により窒素雰囲気中室温で加速電圧100kVの電子線を100kGyになるように照射した。予め窒素によるバブリングにより酸素を除去したα-メチルスチレン15.73部、スチリルトリメトキシシラン5.27部、ジメチルアセトアミド2部、アゾビスイソブチロニトリル0.001部が仕込んである溶液中にフィルムを浸漬させ、60℃で18時間加熱し、グラフト重合した結果、グラフト率は25%であった。
[Example 6]
An electron beam with an accelerating voltage of 100 kV is converted to 100 kGy at room temperature in a nitrogen atmosphere by an electron beam (EB) irradiation device (Iwasaki Electric light beam L) on an ETFE film (thickness 25 μm, 6 × 5 cm square, 0.13 parts). Irradiated as follows. Film in a solution charged with 15.73 parts of α-methylstyrene, 5.27 parts of styryltrimethoxysilane, 2 parts of dimethylacetamide, and 0.001 part of azobisisobutyronitrile previously deoxygenated by bubbling with nitrogen And was heated at 60 ° C. for 18 hours and subjected to graft polymerization. As a result, the graft ratio was 25%.
 上記グラフト重合したフィルムを0.2mol/Lクロロスルホン酸/テトラクロロエタン混合液に浸漬し、80℃で6時間反応後、純水中に80℃で一晩浸漬し、加水分解することで、スルホン酸基を含有する膜を得た。この膜を80℃の3%過酸化水素水溶液に浸漬させた。この膜の初期に対する10%質量減少時間は10時間であった。 The graft polymerized film is immersed in a 0.2 mol / L chlorosulfonic acid / tetrachloroethane mixed solution, reacted at 80 ° C. for 6 hours, then immersed in pure water at 80 ° C. overnight, and hydrolyzed. A film containing acid groups was obtained. This film was immersed in a 3% aqueous hydrogen peroxide solution at 80 ° C. The 10% mass reduction time with respect to the initial stage of this film was 10 hours.
 上記実施例2~6の電解質膜について、グラフト率及びプロトン伝導度を上記の方法で、スルホン化率を下記の方法で測定した。結果を表2に示す。 For the electrolyte membranes of Examples 2 to 6, the graft ratio and proton conductivity were measured by the above methods, and the sulfonation ratio was measured by the following method. The results are shown in Table 2.
 [スルホン化率の測定]
 電解質膜を0.01NのNaOH水溶液に浸漬後、NaOH水溶液を0.01Nの塩酸で滴定し、電解質膜中の総スルホン酸基濃度を求めた。一方、グラフト率と共重合モル分率から電解質膜中のα-メチルスチレン及びスチリルトリメトキシシランの濃度を計算した。α-メチルスチレンはスチリルトリメトキシシランより先にスルホン化されるので、スチリルトリメトキシシランのスルホン化率α[%]を下記式により求めた。
 α=100[C{(100-x)(gM1s+100M1)+x(gM2c+100M2)}-(100-x)g]/[xg{1-C(M2s-M2c)}]
  C:電解質膜中の総スルホン酸基濃度[mol/g]
  g:グラフト率[%]
  x:スチリルトリメトキシシランのモル分率[%]
  M1:α-メチルスチレンの分子量[g/mol]
  M1s:スルホン化後のα-メチルスチレンの分子量[g/mol]
  M2:スチリルトリメトキシシランの分子量[g/mol]
  M2s:スルホン化+縮合後のスチリルトリメトキシシランの分子量[g/mol]
  M2c:縮合後のスチリルトリメトキシシランの分子量[g/mol]
[Measurement of sulfonation rate]
After immersing the electrolyte membrane in 0.01N NaOH aqueous solution, the NaOH aqueous solution was titrated with 0.01N hydrochloric acid to determine the total sulfonic acid group concentration in the electrolyte membrane. On the other hand, the concentrations of α-methylstyrene and styryltrimethoxysilane in the electrolyte membrane were calculated from the graft ratio and copolymerization mole fraction. Since α-methylstyrene is sulfonated prior to styryltrimethoxysilane, the sulfonation rate α [%] of styryltrimethoxysilane was determined by the following formula.
α = 100 [C {(100-x) (gM 1s + 100M 1 ) + x (gM 2c + 100M 2 )}-(100-x) g] / [xg {1-C (M 2s -M 2c ) }]
C: Total sulfonic acid group concentration in the electrolyte membrane [mol / g]
g: Graft ratio [%]
x: mole fraction of styryltrimethoxysilane [%]
M 1 : Molecular weight of α-methylstyrene [g / mol]
M 1s: molecular weight of α- methyl styrene after sulfonation [g / mol]
M 2 : Molecular weight of styryltrimethoxysilane [g / mol]
M 2s : Molecular weight [g / mol] of styryltrimethoxysilane after sulfonation + condensation
M 2c : molecular weight [g / mol] of styryltrimethoxysilane after condensation
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  [実施例7]
 グラフト重合において、溶液中の重合性モノマーの濃度を低くした以外は、実施例3と同様の操作により25μmETFEフィルムにα-メチルスチレン50モル%、スチリルトリメトキシシラン50モル%の配合で共グラフト、スルホン化し電解質膜を作製した。この膜のグラフト率は64%、プロトン伝導度は0.05S/cmであった。次に、この膜の片面に4mg/cm2のPtRuブラック(ジョンソンマッセー製HiSPEC6000)を含む5cm2のアノード触媒層を、反対側の面に、6mg/cm2のPtブラック(ジョンソンマッセー製HiSPEC1000)を含む5cm2のカソード触媒層を転写し、これをカーボンペーパ(東レ製TGP-H-060)に挟みMEA(膜電極接合体)とし、これを燃料電池セル(エレクトロケム製FC05-01SP)に取り付けた。
[Example 7]
In the graft polymerization, except that the concentration of the polymerizable monomer in the solution was lowered, the same procedure as in Example 3 was carried out, and a 25 μm ETFE film was co-grafted with 50 mol% α-methylstyrene and 50 mol% styryltrimethoxysilane. Sulfonated electrolyte membrane was prepared. The graft ratio of this membrane was 64%, and the proton conductivity was 0.05 S / cm. Next, a 5 cm 2 anode catalyst layer containing 4 mg / cm 2 of PtRu black (HiSPEC 6000 manufactured by Johnson Massey) is provided on one side of the membrane, and 6 mg / cm 2 of Pt black (HiSPEC 1000 manufactured by Johnson Massey) is provided on the opposite side. A 5 cm 2 cathode catalyst layer containing the catalyst is transferred, sandwiched between carbon papers (TGP-H-060 manufactured by Toray Industries, Inc.) and used as an MEA (membrane electrode assembly), and this is applied to a fuel cell (FC05-01SP manufactured by Electrochem). Attached.
 この燃料電池セルのアノード側に1mol/Lのメタノール水を0.5mL/分の速度で、カソード側に乾燥空気を0.44SLM(Standard Liter per Minute)の速度で供給し、セル温度60℃で発電を行い、電子負荷(スクリブナー製890CL)を接続し、分極特性を測定した。結果を図1に示す。電流密度200mA/cm2での電圧は0.392V、最大出力密度は104mW/cm2であった。 1 mol / L methanol water was supplied to the anode side of the fuel cell at a rate of 0.5 mL / min, and dry air was supplied to the cathode side at a rate of 0.44 SLM (Standard Liter per Minute). Power generation was performed, an electronic load (890CL manufactured by Scribner) was connected, and polarization characteristics were measured. The results are shown in FIG. The voltage at a current density of 200 mA / cm 2 was 0.392 V, and the maximum output density was 104 mW / cm 2 .

Claims (13)

  1.  フッ素系樹脂又は炭化水素系樹脂に放射線を照射し、この樹脂に少なくともα-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させた後、スルホン化することにより得られることを特徴とする固体高分子電解質膜。 It is obtained by irradiating a fluororesin or hydrocarbon resin with radiation, co-grafting a polymerizable monomer containing at least α-methylstyrene and a styryl group-containing alkoxysilane, and then sulfonating the resin. A solid polymer electrolyte membrane.
  2.  共グラフト鎖中のスチリル基含有アルコキシシランのスルホン化率が50%以下であることを特徴とする請求項1記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 1, wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
  3.  重合性モノマーに占めるスチリル基含有アルコキシシランのモル分率が30%以上であることを特徴とする請求項1又は2記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 1 or 2, wherein a molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is 30% or more.
  4.  樹脂がフッ素系樹脂であることを特徴とする請求項1~3のいずれか1項記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to any one of claims 1 to 3, wherein the resin is a fluororesin.
  5.  フッ素系樹脂又は炭化水素系樹脂に放射線を照射し、この樹脂に少なくともα-メチルスチレンとスチリル基含有アルコキシシランとを含む重合性モノマーを共グラフト重合させた後、スルホン化することを特徴とする固体高分子電解質膜の製造方法。 It is characterized by irradiating a fluorine-based resin or a hydrocarbon-based resin with radiation, co-grafting a polymerizable monomer containing at least α-methylstyrene and a styryl group-containing alkoxysilane, and then sulfonating. A method for producing a solid polymer electrolyte membrane.
  6.  共グラフト鎖中のスチリル基含有アルコキシシランのスルホン化率が50%以下であることを特徴とする請求項5記載の固体高分子電解質膜の製造方法。 6. The method for producing a solid polymer electrolyte membrane according to claim 5, wherein the sulfonation rate of the styryl group-containing alkoxysilane in the co-graft chain is 50% or less.
  7.  重合性モノマーに占めるスチリル基含有アルコキシシランのモル分率が30%以上であることを特徴とする請求項5又は6記載の固体高分子電解質膜の製造方法。 The method for producing a solid polymer electrolyte membrane according to claim 5 or 6, wherein the molar fraction of the styryl group-containing alkoxysilane in the polymerizable monomer is 30% or more.
  8.  樹脂がフッ素系樹脂であることを特徴とする請求項5~7のいずれか1項記載の固体高分子電解質膜の製造方法。 The method for producing a solid polymer electrolyte membrane according to any one of claims 5 to 7, wherein the resin is a fluororesin.
  9.  スルホン化を60℃以下で行うことを特徴とする請求項5~8のいずれか1項記載の固体高分子電解質膜の製造方法。 The method for producing a solid polymer electrolyte membrane according to any one of claims 5 to 8, wherein the sulfonation is carried out at 60 ° C or lower.
  10.  スルホン化を30℃以下で行うことを特徴とする請求項5~8のいずれか1項記載の固体高分子電解質膜の製造方法。 The method for producing a solid polymer electrolyte membrane according to any one of claims 5 to 8, wherein sulfonation is carried out at 30 ° C or lower.
  11.  請求項1~4のいずれか1項記載の固体高分子電解質膜が燃料極と空気極との間に設けられていることを特徴とする燃料電池用膜電極接合体。 A membrane electrode assembly for a fuel cell, wherein the solid polymer electrolyte membrane according to any one of claims 1 to 4 is provided between a fuel electrode and an air electrode.
  12.  請求項11記載の燃料電池用膜電極接合体を用いたことを特徴とする燃料電池。 A fuel cell comprising the fuel cell membrane electrode assembly according to claim 11.
  13.  メタノールを燃料とするダイレクトメタノール型であることを特徴とする請求項12記載の燃料電池。 The fuel cell according to claim 12, wherein the fuel cell is a direct methanol type using methanol as a fuel.
PCT/JP2009/051740 2008-02-05 2009-02-03 Solid polymer electrolyte membrane and manufacturing method thereof, membrane electrode assembly for fuel cell, and fuel cell WO2009099041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008024833A JP5326288B2 (en) 2008-02-05 2008-02-05 Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP2008-024833 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009099041A1 true WO2009099041A1 (en) 2009-08-13

Family

ID=40952116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051740 WO2009099041A1 (en) 2008-02-05 2009-02-03 Solid polymer electrolyte membrane and manufacturing method thereof, membrane electrode assembly for fuel cell, and fuel cell

Country Status (2)

Country Link
JP (1) JP5326288B2 (en)
WO (1) WO2009099041A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305283B2 (en) * 2008-02-29 2013-10-02 独立行政法人日本原子力研究開発機構 Production method of polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
EP2465830A4 (en) 2009-08-13 2014-03-12 Asahi Glass Co Ltd High-transmittance light-colored glass, and process for production of the glass
JP6530630B2 (en) * 2015-03-31 2019-06-12 株式会社Ihi Polymer alloy electrolyte membrane and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313659A (en) * 2005-05-06 2006-11-16 Shin Etsu Chem Co Ltd Solid polyelectrolyte film and its manufacturing method, and fuel cell
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2007329069A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane and fuel cell
JP2007329066A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Manufacturing method of solid polymer electrolyte membrane, solid polymer electrolyte membrane, as well as fuel cell
JP2007329067A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Electrolyte membrane/electrode assembly, and solid polymer fuel cell using it
JP2008097868A (en) * 2006-10-06 2008-04-24 Japan Atomic Energy Agency Fuel-cell polymer electrolyte membrane imparted with silane cross-linked structure and fuel-cell membrane/electrode assembly including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036864A (en) * 2001-07-24 2003-02-07 Aisin Seiki Co Ltd Solid polymer electrolyte film and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313659A (en) * 2005-05-06 2006-11-16 Shin Etsu Chem Co Ltd Solid polyelectrolyte film and its manufacturing method, and fuel cell
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2007329069A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane and fuel cell
JP2007329066A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Manufacturing method of solid polymer electrolyte membrane, solid polymer electrolyte membrane, as well as fuel cell
JP2007329067A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Electrolyte membrane/electrode assembly, and solid polymer fuel cell using it
JP2008097868A (en) * 2006-10-06 2008-04-24 Japan Atomic Energy Agency Fuel-cell polymer electrolyte membrane imparted with silane cross-linked structure and fuel-cell membrane/electrode assembly including the same

Also Published As

Publication number Publication date
JP5326288B2 (en) 2013-10-30
JP2009187726A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP4986219B2 (en) Electrolyte membrane
US9083026B2 (en) Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP2005149727A (en) Membrane-electrode junction, manufacturing method of the same, and direct type fuel cell using the same
JP4062755B2 (en) Method for producing solid polymer electrolyte membrane
JP5435094B2 (en) Electrolyte membrane / electrode assembly for direct methanol fuel cells
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
KR100900515B1 (en) Graft polymeric membranes, polymer electrolyte membranes formed thereform, and high temperature polymer electrolyte fuel cell comprising the same
JP2004296278A (en) Small fuel cell and electrolyte film
JP5321458B2 (en) Solid polymer electrolyte membrane and production method thereof, membrane / electrode assembly for fuel cell, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
JP5131419B2 (en) Electrolyte membrane / electrode assembly for direct methanol fuel cells
JP2007329067A (en) Electrolyte membrane/electrode assembly, and solid polymer fuel cell using it
JP5126483B2 (en) Method for producing solid polymer electrolyte membrane, solid polymer electrolyte membrane, fuel cell membrane / electrode assembly, and fuel cell
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP2008181860A (en) Method of forming electrolyte membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707148

Country of ref document: EP

Kind code of ref document: A1