WO2009098992A1 - Light-diffusing layered resin film, process for producing the same, antiglare film, antiglare polarizer, and image display - Google Patents

Light-diffusing layered resin film, process for producing the same, antiglare film, antiglare polarizer, and image display Download PDF

Info

Publication number
WO2009098992A1
WO2009098992A1 PCT/JP2009/051448 JP2009051448W WO2009098992A1 WO 2009098992 A1 WO2009098992 A1 WO 2009098992A1 JP 2009051448 W JP2009051448 W JP 2009051448W WO 2009098992 A1 WO2009098992 A1 WO 2009098992A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
light
laminated
layer
Prior art date
Application number
PCT/JP2009/051448
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Muro
Yasuhiro Watanabe
Tomohiro Maekawa
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2009098992A1 publication Critical patent/WO2009098992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements

Definitions

  • the present invention relates to a light diffusing laminated resin film based on a transparent resin and a method for producing the same, and more particularly to a light diffusing laminated resin film having excellent surface smoothness and a method for producing the same.
  • the present invention also relates to an antiglare (antiglare) film using the light diffusing laminated resin film, and an antiglare polarizing plate and an image display device using the antiglare film.
  • a film having light diffusing properties is bonded to a transparent substrate to form a light diffusing plate, which can be applied to lighting covers, lighting signs, etc., or to impart light diffusing functions and lens functions to liquid crystal TVs, projection TVs, etc. It is used for various purposes such as application to other members.
  • the light diffusion property is imparted to the resin film by a method of dispersing transparent fine particles having a specific particle diameter and a refractive index different from that of the base material in the transparent resin as the base material (for example, JP-A-3-237133 (Patent Document 1)), a method of coating fine particles on the surface of a substrate made of a transparent resin (for example, JP-A-6-59108 (Patent Document 2)), unevenness on the surface of a resin film Has been carried out by a method of transferring the toner (for example, JP-A-2000-267088 (Patent Document 3)).
  • a method of dispersing transparent fine particles having a specific particle diameter and a refractive index different from that of the base material in the transparent resin as the base material for example, JP-A-3-237133 (Patent Document 1)
  • a method of coating fine particles on the surface of a substrate made of a transparent resin for example, JP-A-6-59108 (Patent Document 2)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light diffusing resin film having a smooth surface and less unevenness and a method for producing the same. Another object of the present invention is to provide an antiglare film using such a light diffusing resin film, and an antiglare polarizing plate and an image display device using the antiglare film.
  • the present invention relates to a resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle size of 1 to 20 ⁇ m is dispersed, and a transparent resin layer (B) laminated on both surfaces of the resin layer (A). And a thickness of the resin layer (A) is 5% or more and less than 50% of the thickness of the light diffusable laminated resin film, In a state where at least one surface of the laminated film obtained by coextrusion molding using the resin composition forming the resin layer (A) and the resin composition forming the transparent resin layer (B) is in contact with an elastic roll, A light diffusing laminated resin film formed by molding the laminated film is provided.
  • the resin layer (A) preferably contains 5 to 40 parts by weight of a light diffusing agent with respect to 100 parts by weight of the transparent resin.
  • the least one of the transparent resin layer (B), the arithmetic mean roughness R a of the resin layer (A) side of the opposite surface is preferably 0 ⁇ 0.5 [mu] m. Moreover, it is preferable that the transparent resin layer (B) side surface of the resin layer (A) and the resin layer (A) side surface of the transparent resin layer (B) are in contact.
  • the transparent resin layer (B) is composed of a methyl methacrylate resin, a resin composition containing a rubber polymer in a methyl methacrylate resin, a styrene resin, an aromatic polycarbonate resin, an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable that it consists of resin containing a monomer unit, or these 2 or more types of mixed resin.
  • the transparent resin includes a methyl methacrylate resin, a resin composition in which a rubber-like polymer is contained in a methyl methacrylate resin, a styrene resin, and a resin composition in which a rubber-like polymer is contained in a styrene resin. It is preferable that it is a thing, an aromatic polycarbonate resin, or these 2 or more types of mixed resin.
  • the present invention also provides a resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle diameter of 1 to 20 ⁇ m is dispersed, and a transparent resin layer (A) laminated on both surfaces of the resin layer (A) ( B) and a method for producing a light-diffusing laminated resin film having a thickness of 30 to 500 ⁇ m.
  • the method for producing a light diffusing laminated resin film of the present invention is a laminated film obtained by coextrusion molding using a resin composition forming a resin layer (A) and a resin composition forming a transparent resin layer (B).
  • a step of forming the laminated film so that the thickness of the resin layer (A) is 5% or more and less than 50% of the thickness of the light diffusing laminated resin film in a state where at least one surface thereof is in contact with the elastic roll. Is.
  • an antiglare film comprising the light diffusing laminated resin film of the present invention and a hard coat layer laminated on the surface of the light diffusing laminated resin film and having a fine uneven shape on the surface. Is done.
  • the internal haze of the light diffusing laminated resin film is 5% or more and 30% or less
  • the hard coat layer has a surface haze of 0.5% or more and 15% or less. Is 2% or less.
  • the relative scattered light intensity T (20) in the normal direction of the hard coat layer side when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film side is 0.0001% or more. It is 0.0006% or less, and the relative scattered light intensity T (30) in the normal direction of the hard coat layer side when light is incident from the light diffusing laminated resin film side at an incident angle of 30 ° is 0.00004% or more and 0 It is preferable that it is .0002% or less.
  • the reflectance R (30) at a reflection angle of 30 ° is 0.05% or more and 2% or less, and the reflectance R at a reflection angle of 40 °.
  • (40) is preferably 0.0001% or more and 0.005% or less, and the reflectance R (50) at a reflection angle of 50 ° is preferably 0.00001% or more and 0.0005% or less.
  • the antiglare film of the present invention may further have a low reflection film on the uneven surface of the hard coat layer.
  • an antiglare polarizing plate comprising any one of the above antiglare films and a polarizing film laminated on the antiglare film.
  • the polarizing film is disposed on the light diffusing laminated resin film side of the antiglare film.
  • the antiglare film or the antiglare polarizing plate of the present invention can be combined with an image display element such as a liquid crystal display element or a plasma display panel to form an image display device. That is, according to the present invention, the antiglare film according to any one of the above or the antiglare polarizing plate and an image display element are provided, and the antiglare film or the antiglare polarizing plate has a hard coat layer side. An image display device is provided that is disposed on the outside of the image display element on the viewing side.
  • a light diffusing laminated resin film having a smooth transparent resin layer (B) surface and less irregularities can be obtained. Therefore, when the surface is subjected to processing such as bonding of a film or coating of a resin composition or the like, entry of bubbles into the interface or warping of the film is eliminated or reduced, thereby improving workability. be able to. In addition, defects during processing can be reduced, and changes in optical characteristics before and after processing can be minimized.
  • the interface between the light diffusing laminated resin film and the hard coat layer and the light diffusing laminated resin film and the polarizing film Bubbles entering the interface and warping of the film can be eliminated or reduced.
  • the antiglare film and antiglare polarizing plate of the present invention can be suitably applied to an image display device such as a liquid crystal display device.
  • the incident direction of light and the transmitted scattered light intensity measurement direction are determined.
  • the light diffusing laminated resin film of the present invention comprises a transparent resin layer (B) laminated on both surfaces of a resin layer (A) made of a transparent resin in which a light diffusing agent is dispersed.
  • a transparent resin hereinafter referred to as transparent resin (a)
  • transparent resin (b) transparent resin
  • polyvinyl chloride resin acrylonitrile-butadiene-styrene resin, low density polyethylene resin, high density polyethylene resin, linear low density polyethylene resin, polystyrene resin, polypropylene resin, acrylonitrile Styrene resin, cellulose acetate resin, ethylene-vinyl acetate resin, acrylic-acrylonitrile-styrene resin, acrylic-chlorinated polyethylene resin, ethylene-vinyl alcohol resin, fluorine resin, methyl methacrylate resin, methyl methacrylate-styrene resin, polyacetal resin , Poly Mido resin, polyethylene terephthalate resin, aromatic polycarbonate resin, polysulfone resin, polyethersulfone resin, methylpentene resin, polyarylate resin, polybutylene terephthalate resin, resin containing alicyclic structure-containing ethylenically unsaturated monomer unit, General-purpose plastics or engineering plastics such as polyphenylene
  • transparent resin (a) and the transparent resin (b) may be the same or different.
  • “transparency” means that the total light transmittance of a resin having a thickness of 1 mm with smooth both surfaces is 85% or more.
  • a resin containing a methyl methacrylate resin, a styrene resin, an aromatic polycarbonate resin, and an alicyclic structure-containing ethylenically unsaturated monomer unit it is preferable to use.
  • the methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units.
  • the content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight.
  • the polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
  • the methyl methacrylate resin may be a copolymer of methyl methacrylate and a monomer copolymerizable therewith.
  • Monomers that can be copolymerized with methyl methacrylate include, for example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and 2-hydroxyethyl methacrylate.
  • Methacrylic acid esters other than methyl methacrylate acrylic acid such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate Esters; unsaturated acids such as methacrylic acid and acrylic acid; halogenated styrenes such as chlorostyrene and bromostyrene; alkyls such as vinyltoluene and ⁇ -methylstyrene Substituted styrenes such as Ren like; acrylonitrile, methacrylonitrile, maleic anhydride, phenyl maleimide and cyclohexyl maleimide. These monomers may be used alone or in combination of two or more.
  • the styrene resin is a polymer containing 50% by weight or more of a styrene monofunctional monomer unit, and may be a homopolymer of a styrene monofunctional monomer or a styrene monofunctional monomer. And a copolymer of a monofunctional monomer copolymerizable therewith.
  • the styrene monofunctional monomer is a compound having a styrene skeleton and one double bond capable of radical polymerization in the molecule.
  • styrene monofunctional monomer examples include styrene; halogenated styrenes such as chlorostyrene and bromostyrene; substituted styrenes such as alkyl styrenes such as vinyltoluene and ⁇ -methylstyrene.
  • a monofunctional monomer copolymerizable with a styrene monofunctional monomer is a compound copolymerizable with a styrene monofunctional monomer having one radical-polymerizable double bond in the molecule.
  • Examples of the monofunctional monomer copolymerizable with the styrenic monofunctional monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate.
  • methacrylates such as 2-hydroxyethyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate And acrylonitrile and the like, and methacrylic esters such as methyl methacrylate are preferably used. These monofunctional monomers are used alone or in combination of two or more.
  • the aromatic polycarbonate resin is usually a resin obtained by reacting a dihydric phenol and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method; a resin obtained by polymerizing a carbonate prepolymer by a solid phase transesterification method Or a resin obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ methane, 1,2-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2 -Bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3, 5-dibromo) phenyl ⁇ propane, 2,2-bis ⁇ (3-isopropyl-4-hydroxy) phenyl ⁇ propane, 2,2-bis ⁇ 4-hydroxy-3-phenyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl) butane,
  • Aromatic polycarbonate resin obtained by using at least one bisphenol selected from the group consisting of) -3,3,5-trimethylcyclohexane and ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-diisopropylbenzene
  • an aromatic polycarbonate resin using only bisphenol A as the dihydric phenol, and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and bisphenol A, 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane and ⁇ , ⁇
  • carbonate precursor carbonyl halides, carbonate esters, haloformates, and the like are used, and specific examples include phosgene, diphenyl carbonate, and dihaloformates of dihydric phenols.
  • a resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit that contains an alicyclic structure in the repeating unit of the polymer.
  • the resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit include a norbornene polymer and a vinyl alicyclic hydrocarbon polymer.
  • the alicyclic structure may be contained in either the main chain or the side chain of the polymer, or may be contained in both. From the viewpoint of light transmittance, those containing an alicyclic structure in the main chain are preferred.
  • the resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit include a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, and a vinyl alicyclic ring. And a hydrocarbon-based polymer, and hydrogenated products thereof.
  • a norbornene polymer hydrogenated product, a vinyl alicyclic hydrocarbon polymer and a hydride thereof are preferable, and a norbornene polymer hydrogenated product is more preferable.
  • a rubber composition is added to a resin composition obtained by adding a rubber polymer to the methyl methacrylate resin or a styrene resin. It is also preferable to use a resin composition that can be obtained.
  • the addition of the rubbery polymer makes it difficult to break during film formation, and the yield can be improved. Moreover, since it is hard to break at the time of coating and bonding, there is an advantage that handling becomes easy.
  • the rubber-like polymer can be contained in either one or both of the transparent resin (a) and the transparent resin (b). When it is contained in either one, it is preferable to contain it in the transparent resin (a) in consideration of maintaining the strength and good surface state of the light diffusing laminated resin film.
  • the amount of the rubber-like polymer added is 100 parts by weight of the methyl methacrylate resin or the styrene resin.
  • the amount is preferably 100 parts by weight or less, more preferably 3 to 50 parts by weight.
  • the addition amount of the rubbery polymer exceeds 100 parts by weight with respect to 100 parts by weight of the methyl methacrylate resin or styrene resin, the rigidity of the light diffusing laminated resin film tends to be lowered.
  • the rubber-like polymer examples include an acrylic multilayer structure polymer and a graft copolymer obtained by graft-polymerizing an ethylenically unsaturated monomer to a rubber component.
  • the acrylic multilayer structure polymer is a multilayer structure having a rubber elastic layer or an elastomer layer and a hard layer as the outermost layer.
  • the rubber elastic layer or the elastomer layer may be, for example, 20 to 60% by weight of the whole.
  • the acrylic multilayer structure polymer may have a structure further including a hard layer as the innermost layer.
  • the rubber elastic layer or the elastomer layer is a layer made of an acrylic polymer having a glass transition point (Tg) of less than 25 ° C.
  • Acrylic polymers that form a rubber elastic layer or an elastomer layer include lower alkyl acrylate, lower alkyl methacrylate, lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, hydroxy lower alkyl acrylate, hydroxy lower alkyl methacrylate, acrylic acid, methacrylic acid, etc.
  • the hard layer is a layer made of an acrylic polymer having a Tg of 25 ° C. or higher.
  • an acrylic polymer forming the hard layer a homopolymer of alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms, and the alkyl methacrylate as a main component, other alkyl methacrylate, alkyl acrylate, styrene, Examples thereof include a copolymer copolymerized with a copolymerizable monofunctional monomer such as substituted styrene, acrylonitrile, and methacrylonitrile.
  • the acrylic polymer forming the hard layer may be a crosslinked polymer obtained by adding a polyfunctional monomer to the monomer and polymerizing it.
  • examples of such an acrylic polymer include those described in JP-B-55-27576, JP-A-6-80739, and JP-A-49-23292.
  • a graft copolymer obtained by graft-polymerizing an ethylenically unsaturated monomer to a rubber component contains 5 to 80% by weight of monomer units derived from the rubber component (therefore, 95% of ethylenically unsaturated monomer units are contained). It is preferably contained in an amount of about 20% by weight.
  • rubber components include diene rubbers such as polybutadiene rubber, acrylonitrile / butadiene copolymer rubber, and styrene / butadiene copolymer rubber; acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and poly-2-ethylhexyl acrylate; and Ethylene / propylene / non-conjugated diene rubber can be used.
  • diene rubbers such as polybutadiene rubber, acrylonitrile / butadiene copolymer rubber, and styrene / butadiene copolymer rubber
  • acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and poly-2-ethylhexyl acrylate
  • Ethylene / propylene / non-conjugated diene rubber can be used.
  • two or more components may be used.
  • ethylenically unsaturated monomer examples include styrene, acrylonitrile, and alkyl (meth) acrylate, and among them, acrylic unsaturated monomers such as acrylonitrile and alkyl (meth) acrylate are preferably used.
  • acrylic unsaturated monomers such as acrylonitrile and alkyl (meth) acrylate are preferably used.
  • graft copolymers those described in JP-A-55-147514 and JP-B-47-9740 can be used.
  • the transparent resin (a) because of high transparency, a methyl methacrylate resin, a resin composition containing a methyl methacrylate resin and a rubbery polymer, a styrene resin, A resin composition in which a rubber-like polymer is contained in a styrene resin or an aromatic polycarbonate resin can be preferably used.
  • the transparent resin (b) includes a rubbery polymer in a methyl methacrylate resin or a methyl methacrylate resin because of the high transparency and difficulty in coloring diffused light.
  • a resin composition, a styrene resin, an aromatic polycarbonate resin, or a resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit can be preferably used.
  • the transparent resin (a) and the transparent resin (b) only one kind of resin among these preferable resins may be used, or two or more kinds may be used in combination.
  • the light diffusing agent dispersed in the resin layer (A)
  • inorganic or organic transparent particles having a refractive index different from that of the transparent resin (a) are used in order to impart a light diffusing function to the resin layer (A).
  • the light diffusing agent include calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, silica, glass, talc, mica, white carbon, magnesium oxide, zinc oxide, and other inorganic particles, and fatty acids in these inorganic particles.
  • crosslinked resin particles refer to resin particles having a gel fraction of 10% or more when dissolved in acetone
  • high molecular weight resin particles are weight average molecular weights ( Mw) refers to resin particles having 500,000 to 5,000,000.
  • High molecular weight styrene resin particles are high molecular weight resin particles obtained by polymerizing styrene monomers, or contain 50% by weight or more of styrene monomer units, and can be radically polymerized with styrene monomers. It means high molecular weight resin particles obtained by polymerizing a monomer having one double bond in the molecule.
  • Cross-linked styrene resin particles are cross-linked resin particles obtained by polymerizing a styrene monomer and a monomer having at least two radically polymerizable double bonds in the molecule, or styrene-based single particles.
  • Containing at least 50% by weight of a monomer unit, a styrene monomer, a monomer having one radical polymerizable double bond in the molecule, and at least two radical polymerizable double bonds in the molecule It means a crosslinked resin particle obtained by polymerizing a monomer having the same.
  • the styrene monomer is styrene or a derivative thereof.
  • Styrene derivatives include, but are not limited to, halogenated styrenes such as chlorostyrene and bromostyrene; and alkyl-substituted styrenes such as vinyltoluene and ⁇ -methylstyrene. Two or more styrenic monomers may be used in combination.
  • the monomer having one radically polymerizable double bond in the molecule that can constitute the crosslinked or high molecular weight styrene resin particles is not particularly limited as long as it is other than the styrene monomer component.
  • Methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate and 2-hydroxyethyl methacrylate; methyl acrylate, acrylic acid Acrylic esters such as ethyl, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate; and acrylonitrile.
  • alkyl methacrylates such as methyl methacrylate are particularly preferable.
  • the monomer having at least two radically polymerizable double bonds capable of constituting the crosslinked or high molecular weight styrenic resin particles in the molecule is other than a conjugated diene, and the styrenic monomer and / or There is no particular limitation as long as the polymer is copolymerizable with a monomer having one radical-polymerizable double bond in the molecule.
  • Examples of such monomers include alkyl diol di (meth) acrylates such as 1,4-butanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate; ethylene glycol di (meth) acrylate, Alkylene glycol di (meth) acrylates such as diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate and tetrapropylene glycol di (meth) acrylate; divinylbenzene and diallyl phthalate Aromatic polyfunctional compounds; (meth) acrylates of polyhydric alcohols such as trimethylolpropane tri (meth) acrylate and pentaerythritol tetra (meth) acrylate It is. Two or more of these monomers may be used in combination.
  • the high molecular weight acrylic resin particles are high molecular weight resin particles obtained by polymerizing an acrylic monomer, or contain 50% by weight or more of an acrylic monomer unit. It means high molecular weight resin particles obtained by polymerizing a monomer having one polymerizable double bond in the molecule.
  • Cross-linked acrylic resin particles are cross-linked resin particles obtained by polymerizing acrylic monomers and monomers having at least two double bonds capable of radical polymerization in the molecule, or acrylic single particles. Containing at least 50% by weight of a monomer unit, an acrylic monomer, a monomer having one radical polymerizable double bond in the molecule, and at least two radical polymerizable double bonds in the molecule It means a crosslinked resin particle obtained by polymerizing a monomer having the same.
  • acrylic monomer examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, methyl acrylate, Examples include ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methacrylic acid, and acrylic acid. Two or more of these monomers may be used in combination.
  • the monomer having one radical polymerizable double bond in the molecule that can constitute the crosslinked or high molecular weight acrylic resin particles is not particularly limited as long as it is other than the acrylic monomer component.
  • styrene and its derivatives can be mentioned.
  • the styrene derivative include halogenated styrene such as chlorostyrene and bromostyrene; alkyl-substituted styrene such as vinyltoluene and ⁇ -methylstyrene. Of these, styrene is particularly preferable. Two or more of these monomers may be used in combination.
  • the monomer having at least two radically polymerizable double bonds capable of constituting the crosslinked or high molecular weight acrylic resin particles in the molecule is other than a conjugated diene, and the acrylic monomer and / or
  • the polymer is not particularly limited as long as it is a polymer copolymerizable with a monomer having one radical-polymerizable double bond in the molecule, and the above-described monomers can be given as specific examples.
  • Both crosslinked or high molecular weight styrene resin particles and acrylic resin particles can be obtained by polymerizing the above components by a method such as a suspension polymerization method, a micro suspension polymerization method, an emulsion polymerization method, or a dispersion polymerization method. it can.
  • the crosslinked siloxane-based resin (crosslinked siloxane-based polymer) constituting the crosslinked siloxane resin particles is generally referred to as silicone rubber or silicone resin and is solid at room temperature.
  • Siloxane polymers are produced mainly by hydrolysis and condensation of chlorosilanes.
  • a (crosslinked) siloxane-based polymer can be obtained by hydrolyzing and condensing chlorosilanes represented by dimethyldichlorosilane, diphenyldichlorosilane, phenylmethyldichlorosilane, methyltrichlorosilane, and phenyltrichlorosilane.
  • the siloxane polymers are obtained by converting these (crosslinked) siloxane polymers into benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-chlorobenzoyl peroxide, dicumyl peroxide, di-toxide peroxide.
  • -Crosslinking with peroxides such as butyl, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, or introducing silanol groups at the end of polysiloxane compounds, condensation crosslinking with alkoxysilanes Can also be manufactured.
  • the crosslinked siloxane-based resin preferably used in the present invention include a crosslinked siloxane-based polymer in which 2 to 3 organic groups are bonded per silicon atom.
  • crosslinked siloxane-based resin in the form of particles, a method of mechanically pulverizing the above-mentioned crosslinked siloxane-based polymer, as described in JP-A-59-68333, a specific linear organosiloxane block is used.
  • a method for obtaining spherical particles by curing a curable polymer or a curable polymer composition contained therein in a sprayed state, and a specific alkyltrialkoxysilane or a compound thereof as described in JP-A-60-13813 A method of hydrolyzing and condensing the partially hydrolyzed condensate in an aqueous solution of ammonia or amines to form spherical particles can be used.
  • the refractive index of the light diffusing agent used in the present invention is preferably such that the absolute value R of the difference from the refractive index of the transparent resin (a) as the substrate is 0.01 to 0.13, A more preferred range is 01 to 0.05. This is because when R is within this range, the balance between light transmittance and light diffusibility is improved. Therefore, it is preferable to select a combination of the constituent materials of the transparent resin (a) and the light diffusing agent so that R is within this range.
  • the refractive index of the crosslinked or high molecular weight styrene resin particles varies depending on the constituent components of the styrene polymer constituting the crosslinked or high molecular weight styrene resin particles, but is usually about 1.53 to 1.61. Generally, the refractive index tends to increase as the content of the monomer having a phenyl group increases or as the amount of halogenated monomer increases.
  • the refractive index of the crosslinked or high molecular weight acrylic resin particles varies depending on the constituent components of the acrylic polymer constituting the crosslinked polymer resin particles, but is usually about 1.46 to 1.55.
  • the refractive index tends to increase as the content of the monomer having a phenyl group increases and as the amount of the halogenated monomer increases.
  • the refractive index of the crosslinked siloxane-based resin particles varies depending on the constituent components of the crosslinked siloxane-based polymer constituting the crosslinked siloxane-based resin particles, but is usually about 1.40 to 1.47. In general, the higher the phenyl group content in the crosslinked siloxane-based polymer and the more organic groups directly connected to silicon atoms, the higher the refractive index.
  • the particle size of the light diffusing agent used in the present invention is 1 to 20 ⁇ m in weight average, and preferably 2 to 15 ⁇ m. If the weight average particle diameter is less than 1 ⁇ m, the see-through tends to occur. Moreover, when a weight average particle diameter exceeds 20 micrometers, there exists a tendency for the surface smoothness of the transparent resin layer (B) in a light diffusable laminated resin film to become inadequate. That is, when a light diffusing agent having a weight average particle diameter of more than 20 ⁇ m is used for the resin layer (A), the transparent resin formed on the resin layer (A) is affected by the uneven surface shape of the resin layer (A).
  • the smoothness of the surface of the layer (B) (the surface opposite to the resin layer (A) side) is lowered, and the transparent resin layer (B) is appropriately bonded to the surface or subjected to processing such as coating. As a result, there is a case where sufficient characteristics cannot be imparted by the processing.
  • the amount of the light diffusing agent contained in the resin layer (A) is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the transparent resin (a) that is the base material of the resin layer (A).
  • the amount is more preferably 5 to 30 parts by weight, still more preferably 7 to 20 parts by weight.
  • the amount of the light diffusing agent is less than 5 parts by weight with respect to 100 parts by weight of the transparent resin (a)
  • the transparency tends to occur.
  • the amount of the light diffusing agent exceeds 40 parts by weight with respect to 100 parts by weight of the transparent resin (a)
  • the surface smoothness of the transparent resin layer (B) in the light diffusing laminated resin film is similar to the above. It tends to be insufficient, and the resin layer (A) tends to become brittle and difficult to process.
  • a general method can be adopted, for example, a method of adding the transparent resin (a) and the light diffusing agent to an extruder, and melt-kneading, etc. Can be used.
  • a UV absorber, an antioxidant, a flame retardant, and a colorant such as a dye and a pigment may be added to the resin layer (A).
  • the light diffusing laminated resin film of the present invention includes the resin layer (A) having the above-described configuration and a transparent resin layer (B) laminated on both surfaces of the resin layer (A).
  • a transparent resin layer (B) laminated on both surfaces of the resin layer (A) By adopting a three-layer structure in which the first transparent resin layer (B), the resin layer (A), and the second transparent resin layer (B) are arranged in this order, one surface of the resin layer (A) The unevenness is filled with the second transparent resin layer (B), whereby the surface of the first transparent resin layer (B) in which the unevenness is laminated on the other surface (the resin layer (A) side is Therefore, it is possible to obtain a film having a smooth surface of the transparent resin layer (B) as compared with the case where the transparent resin layer (B) is disposed only on one side.
  • the thickness of the light diffusing laminated resin film of the present invention is 30 to 500 ⁇ m, preferably 40 to 200 ⁇ m, more preferably 50 to 150 ⁇ m. If the thickness is less than 30 ⁇ m, the surface smoothness of the transparent resin layer (B) tends to be lost, and if it exceeds 500 ⁇ m, it becomes difficult to handle as a film.
  • the ratio of the thickness of the resin layer (A) in the thickness of the light diffusing laminated resin film is 5% or more and less than 50%, preferably 10% or more and less than 50%, more preferably 30. % Or more and less than 50%.
  • the transparent resin layer (B) is excellent in surface smoothness on the surface of the light diffusing laminated resin film (that is, the surface of the transparent resin layer (B)). It can have a thickness sufficient to impart properties.
  • the transparent resin layer (B) When the thickness of the resin layer (A) becomes thick enough to account for 50% or more of the thickness of the light diffusable laminated resin film, when the light diffusable laminated resin film is produced by coextrusion, the transparent resin layer (B) The surface of the surface follows the surface unevenness of the resin layer (A) to generate unevenness and cannot exhibit sufficient smoothness. In addition, if the thickness of the resin layer (A) is less than 5% of the light diffusing laminated resin film, sufficient light diffusibility cannot be exhibited while keeping the thickness of the entire light diffusing laminated resin film within a suitable range. There's a problem.
  • an arithmetic mean roughness R a in conformity to JIS B0601-2001 is 0 to 0.5 ⁇ m is preferable.
  • transparent resin layer (B) arithmetic mean roughness R a of the surface within this range, the workability of the surface becomes better, processability (in particular, light scattering characteristics) optical properties before and after the change in Can be further reduced.
  • the Ra value of the surfaces of the transparent resin layers (B) on both sides is 0 to 0.5 ⁇ m.
  • the maximum roughness (R z ) according to JIS B0601-2001 of the surface on the side opposite to the resin layer (A) side in at least one transparent resin layer (B) is 0 to 2.5 ⁇ m. it is preferred, the ratio R a of R z (R z / R a ) is more preferably in the range of 1-5. By setting the maximum roughness (R z ) in such a range, the unevenness of the unevenness is reduced, so that processing of the surface of the transparent resin layer (B) (for example, resin coating or film bonding) Etc.) can be more effectively suppressed.
  • a coextrusion molding method is used for the production of the light diffusing laminated resin film of the present invention. That is, the constituent components of the resin layer (A) (transparent resin (a), light diffusing agent and additives added as necessary) and the constituent components of the transparent resin layer (B) (transparent resin (b) and Additives added as necessary) are respectively put into different extruders, heated and melt-kneaded and extruded from a die for coextrusion molding, thereby corresponding to the resin layer (A).
  • a laminated film in which the resin film and the resin film corresponding to the transparent resin layer (B) are laminated and integrated is formed.
  • the laminated film after coextrusion molding is cooled by sandwiching it between cooling rolls of a roll unit (molding roll device), and the thickness of the resulting light-diffusing laminated resin film and the thickness of the resin layer (A) are light diffusion.
  • the light diffusing laminated resin film can be obtained by molding so that the proportion of the thickness of the diffusing laminated resin film is within the above range.
  • the extruder a single screw extruder, a twin screw extruder, or the like can be used.
  • the die a feed block die, a multi-manifold die, or the like can be used.
  • the light diffusing laminated resin film of the present invention produced by coextrusion molding is different from the laminated resin film laminated through, for example, an adhesive or a pressure-sensitive adhesive, and one of the resin layers (A).
  • the surface, the surface of the transparent resin layer (B), the other surface of the resin layer (A), and the surface of the transparent resin layer (B) are laminated in direct contact.
  • an elastic roll is used as at least one of the cooling rolls sandwiching the laminated film.
  • At least one side of transparent resin is formed by sandwiching a co-extruded laminated film between cooling rolls, at least one of which is an elastic roll, and forming by pressing at least one side of the laminated film in contact with the elastic roll.
  • a light diffusing laminated resin film excellent in surface smoothness of the layer (B) can be obtained. If both cooling rolls sandwiching the laminated film are elastic rolls, it is possible to obtain a light diffusing laminated resin film excellent in surface smoothness of the transparent resin layers (B) on both sides.
  • the present invention it is possible to obtain a light diffusing laminated resin film in which the arithmetic average roughness Ra and the maximum roughness Rz of the transparent resin layer (B) surface are controlled within the above ranges, For example, it is possible to suppress or prevent the generation of a relatively large recess having an order of several hundred ⁇ m in diameter. Such relatively large dents that can be formed on the surface of the transparent resin layer (B) may not be evaluated by the measurement of the arithmetic average roughness Ra and the maximum roughness Rz . For example, it is possible to confirm using a confocal microscope or visually.
  • FIG. 7 is a schematic cross-sectional view showing a specific example of a metal elastic roll that can be used in the present invention.
  • the metal elastic roll in FIG. 7A includes a metal (for example, stainless steel, etc.) thin film 701a that forms the outer periphery of the roll, and a shaft roll 702a disposed at the axial center of the metal thin film 701a.
  • a fluid space 703 is formed between the metal thin film 701a and the shaft roll 702a for circulating a fluid such as water or oil.
  • the 7B includes a metal (for example, stainless steel) thin film 701b that forms the outer periphery of the roll, and a shaft roll 702b that is formed in contact with the inner periphery of the metal thin film 701a.
  • the shaft roll 702b is made of an elastic material such as a rubber roll. Since the outer peripheral portion (metal thin film) of such a metal elastic roll is in contact with a space for circulating a fluid or a shaft roll made of a relatively soft material, it can be elastically deformed.
  • the configuration of the roll unit itself may be a conventionally known one.
  • the roll unit may consist of two cooling rolls arranged in a row, may consist of three cooling rolls arranged in a row, or may be an inverted L-shape. It may consist of three or more cooling rolls arranged.
  • the roll unit is composed of three or more cooling rolls, at least one of a pair of cooling rolls that cools and molds the coextruded laminated film first is an elastic roll.
  • the elastic roll preferably has a mirror-finished surface (surface that contacts the laminated film). Thereby, the surface smoothness of a transparent resin layer (B) can be improved more.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of the antiglare film of the present invention.
  • the antiglare film shown in FIG. 1 includes a light diffusing laminated resin film 101 and a hard coat layer 102 having a fine concavo-convex shape laminated on the surface of the light diffusing laminated resin film 101.
  • the light diffusing laminated resin film 101 has a three-layer structure including two transparent resin layers (B) 103 and a resin layer (A) 104 disposed between the two transparent resin layers (B) 103.
  • the light diffusing agent 105 is dispersed in the resin layer (A) 104.
  • the invasion of bubbles into the interface between the light diffusing laminated resin film and the hard coat layer and the warpage of the antiglare film can be eliminated or reduced.
  • the antiglare film of the present invention comprises a light diffusing laminated resin film and a hard coat layer having a fine irregular surface laminated on the surface of the light diffusing laminated resin film.
  • the light diffusing laminated resin film is provided with an internal scattering function, while the internal scattering function is eliminated or almost eliminated from the hard coat layer, and mainly the surface reflection characteristics are imparted. This makes it possible to control the internal scattering characteristics and the reflection characteristics independently, while preventing the deterioration of visibility due to whitishness while exhibiting excellent anti-glare performance, and for high-definition image display devices.
  • the antiglare film can exhibit high contrast without causing glare.
  • the internal haze of the light diffusing laminated resin film used for the antiglare film is preferably 5% or more, more preferably 10% or more. By setting the internal haze to 5% or more, glare can be eliminated, and by setting it to 10% or more, glare can be more effectively eliminated.
  • the internal haze of the light diffusing laminated resin film is 30% or less. If the internal haze of the light diffusing laminated resin film exceeds 30%, when applied to an image display device, the screen becomes dark as a result, and the visibility tends to be impaired. In order to ensure sufficient brightness, the internal haze is preferably 20% or less.
  • the internal haze of the hard coat layer having a fine uneven shape is It is essentially unnecessary, and in order to independently control the internal scattering characteristics and the reflection characteristics, it is preferable that the internal haze of the hard coat layer is substantially zero.
  • the “inner haze” of the light diffusing laminated resin film refers to bonding one surface of the light diffusing laminated resin film to a glass substrate using an optically transparent adhesive or glycerin, and then A light diffusing laminated resin film in which a triacetyl cellulose film having a haze of approximately 0 is bonded to one surface using an optically transparent adhesive or glycerin and sandwiched between the glass substrate and the triacetyl cellulose film , Defined as haze measured according to the method shown in JIS K 7136.
  • the internal haze of the light diffusing laminated resin film having a three-layer structure in which the light diffusing layer is sandwiched between two transparent resin layers is an optically transparent adhesive on one surface of the light diffusing laminated resin film.
  • a glass substrate and a triacetyl cellulose are bonded to a glass substrate using an adhesive, followed by bonding a triacetyl cellulose film having a haze of almost 0 to the other surface using an optically transparent adhesive.
  • the light diffusing laminated resin film sandwiched between the films can be measured using a haze meter in accordance with JIS K 7136 (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.). .
  • the internal haze of the light diffusing laminated resin film having a two-layer structure composed of the transparent resin layer and the light diffusing layer laminated thereon is optically transparent on the surface of the light diffusing laminated resin film on the transparent resin layer side.
  • the light diffusing laminated resin film thus obtained can be measured using a haze meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136.
  • the hard coat layer having a fine unevenness on the surface has a surface haze of 0.5% to 15% and an internal haze of 2% or less.
  • the internal scattering characteristics are mainly imparted to the light diffusing laminated resin film, so that the internal haze of the hard coat layer is Is 2% or less, preferably substantially 0%.
  • the haze of the hard coat layer substantially 0%, the haze of the hard coat layer substantially consists of only the surface haze.
  • the surface haze of the hard coat layer is preferably 15% or less from the viewpoint of suppressing whitening, and more preferably 5% or less for more effectively suppressing whitening. However, when it is less than 0.5%, the antiglare property tends not to be exhibited.
  • the surface haze and internal haze of the hard coat layer are measured as follows. That is, first, after forming a hard coat layer on a triacetyl cellulose film having a haze of approximately 0%, the laminated film and the glass substrate are bonded with a transparent adhesive so that the triacetyl cellulose film side becomes a bonding surface. The haze is measured according to JIS K 7136. The haze corresponds to the haze of the entire hard coat layer. Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the uneven surface of the hard coat layer using glycerin, and the haze is measured again in accordance with JIS K 7136.
  • the haze can be regarded as “internal haze” of the hard coat layer because the surface haze caused by the surface irregularities is almost canceled by the triacetyl cellulose film bonded onto the surface irregularities. Therefore, the “surface haze” of the hard coat layer is obtained from the following formula (1).
  • Surface haze Overall haze-Internal haze (1)
  • the method for producing the hard coat layer provided with the surface irregularities satisfying the optical characteristics described above is not particularly limited. For example, a resin solution in which a filler is dispersed is applied on a light diffusing laminated resin film, and the coating film thickness is applied. The method of forming random irregularities by exposing the filler to the coating film surface by adjusting the surface, and the embossing method of transferring the irregular surface shape to a transparent resin film using a mold having surface irregularities it can.
  • the ratio of the refractive index of the filler to the refractive index of the resin (hard coat resin) serving as the base material of the hard coat layer is about 1, or smaller than the wavelength of visible light (about 100 nm or less).
  • the surface irregularities may be formed by dispersing the porous silica secondary particles to be dispersed in the hard coat resin.
  • the hard coat resin often exhibits a refractive index of around 1.50.
  • polymethyl methacrylate beads (refractive index 1.49) or methyl methacrylate / styrene copolymer is used as a filler.
  • Combined resin beads (refractive index 1.50 to 1.59), polyethylene beads (refractive index 1.53), etc. may be appropriately selected and used.
  • an ultraviolet curable resin for dispersing the filler
  • a thermosetting resin for dispersing the filler
  • an electron beam curable resin for dispersing the filler
  • an ultraviolet curable resin is preferable from the viewpoint of productivity and hardness. used.
  • a commercially available product can be used as the ultraviolet curable resin.
  • one or more polyfunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate, and “Irgacure 907”, “Irgacure 184” (above, manufactured by Ciba Specialty Chemicals), “
  • a mixture with a photopolymerization initiator such as Lucillin TPO (manufactured by BASF) can be used as an ultraviolet curable resin.
  • Lucillin TPO manufactured by BASF
  • the resin composition is applied to the light diffusing laminated resin film and irradiated with ultraviolet rays, so that the hard coat resin is applied.
  • a hard coat layer in which filler is dispersed can be formed.
  • the shape of the mold may be transferred to a transparent resin film using a mold having a fine uneven shape.
  • the UV embossing method using an ultraviolet curable resin is preferable for the transfer to the mold-shaped film.
  • an ultraviolet curable resin layer is formed on the surface of a light diffusing laminated resin film, and the ultraviolet curable resin layer is cured by pressing the ultraviolet curable resin layer against the concave and convex surface of the mold. It is transferred to the curable resin layer.
  • an ultraviolet curable resin is coated on the light diffusing laminated resin film, and the coated ultraviolet curable resin is in close contact with the uneven surface of the mold, from the light diffusing laminated resin film side.
  • UV-curing resin is cured by irradiating UV light, and then the mold shape is UV-cured by peeling the light-diffusing laminated resin film on which the cured UV-curing resin layer is formed from the mold. Transfer to a functional resin.
  • the kind of ultraviolet curable resin is not particularly limited. Further, instead of the ultraviolet curable resin, a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet light may be used by appropriately selecting a photopolymerization initiator.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 2 ⁇ m or more and 20 ⁇ m or less. If the thickness of the hard coat layer is less than 2 ⁇ m, sufficient hardness cannot be obtained and tends to be easily scratched. If the thickness is greater than 20 ⁇ m, the film tends to break or the film curls due to curing shrinkage of the hard coat layer. As a result, productivity tends to decrease.
  • the antiglare film of the present invention which is a laminate of the light diffusing laminated resin film and the hard coat layer as described above is a hard coat layer when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film side.
  • the relative scattered light intensity T (20) observed in the side normal direction shows a value of 0.0001% or more and 0.0006% or less, and light is incident at an incident angle of 30 ° from the light diffusing laminated resin film side.
  • the relative scattered light intensity T (30) observed in the normal direction of the hard coat layer shows a value of 0.00004% or more and 0.0002% or less.
  • FIG. 2 shows a case where light is incident from the light diffusing laminated resin film side (the side opposite to the uneven surface of the hard coat layer) and the scattered light intensity is measured in the normal direction of the hard coat layer side (the uneven surface side).
  • FIG. 3 is a perspective view schematically showing a light incident direction and a transmitted scattered light intensity measurement direction.
  • the hard coat layer side with respect to light 203 incident at an angle ⁇ (incident angle) from normal line 202 of the antiglare film on the light diffusing laminated resin film side of antiglare film 201 The intensity of the transmitted scattered light 204 transmitted in the direction of the normal 202 is measured, and a value obtained by dividing the transmitted scattered light intensity by the light intensity of the light source is defined as a relative scattered light intensity T ( ⁇ ).
  • T (20) is a value obtained by dividing the intensity of the transmitted scattered light 204 observed in the direction of the normal 202 on the hard coat layer side by the light intensity of the light source.
  • the light 203 is incident such that the direction of the light 203 incident from the light diffusing laminated resin film side and the normal line 202 of the antiglare film are on the same plane (plane 209 in FIG. 2).
  • the relative scattered light intensity T (30) at 30 ° incidence is less than 0.00004%, the scattering effect is low, and glare occurs when applied to a high-definition image display device.
  • the antiglare film is applied to a liquid crystal display that is not self-luminous, the effect of increasing the brightness due to scattering caused by light leakage during black display is large, and therefore the relative scattered light intensities T (20) and T (30) are high. If it exceeds the preferable range, the contrast is remarkably lowered and the visibility is impaired.
  • FIG. 3 shows the relative scattered light intensity (logarithmic scale) measured by changing the incident angle ⁇ from the light diffusing laminated resin film side of the antiglare film of the present invention (antiglare film 201 in FIG. 2). It is an example of the graph plotted with respect to.
  • Such a graph representing the relationship between the incident angle and the relative scattered light intensity, or the relative scattered light intensity for each incident angle read therefrom may be referred to as a transmission scattering profile.
  • the relative scattered light intensity has a peak at an incident angle of 0 °, and the scattered light intensity tends to decrease as the angle from the normal direction of the incident light 203 increases.
  • the transmission / scattering profile usually appears symmetrically about the incident angle of 0 °.
  • the relative scattered light intensity T (0) at 0 ° incidence shows a peak at about 15%
  • the relative scattered light intensity T (20) at 20 ° incidence is about
  • the relative scattered light intensity T (30) at 0.0003% and 30 ° incidence is about 0.00006%.
  • a detector In measuring the relative scattered light intensity of the antiglare film, it is necessary to accurately measure the relative scattered light intensity of 0.001% or less. Therefore, it is effective to use a detector with a wide dynamic range.
  • a detector for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer. Visible light of 380 to 780 nm can be used as incident light, and a collimated light emitted from a light source such as a halogen lamp can be used as a measurement light source, or a parallel light source using a monochromatic light source such as a laser. Higher ones may be used. Moreover, in order to prevent the curvature of a film, it is preferable to use it for a measurement, after bonding to a glass substrate so that an uneven surface may become the surface using an optically transparent adhesive.
  • the relative scattered light intensities T (20) and T (30) defined in the present invention are measured as follows.
  • the antiglare film is bonded to a glass substrate so that the uneven surface is the surface, and parallel light from a He—Ne laser is irradiated from the direction inclined at a predetermined angle with respect to the film normal on the glass surface side.
  • the transmitted scattered light intensity in the film normal direction is measured on the uneven surface side of the antiglare film.
  • “3292 03 optical power sensor” and “3292 optical power meter” manufactured by Yokogawa Electric Corporation are used for both T (20) and T (30).
  • FIG. 4 is a diagram showing the relationship between the relative scattered light intensities T (20) and T (30) and the contrast.
  • T (20) exceeds 0.0006% or T (30) exceeds 0.0002%
  • the contrast is reduced by 10% or more, and the visibility is impaired. It turns out that there is a tendency.
  • the contrast was measured by the following procedure. First, the polarizing plate on the back side and the display surface side is peeled off from a commercially available liquid crystal television (“LC-42GX1W” manufactured by Sharp Corporation). A polarizing plate “Sumikaran SRDB31E” manufactured by Chemical Co., Ltd. was bonded via an adhesive so that each absorption axis coincided with the absorption axis of the original polarizing plate.
  • the anti-glare film which has the structure similar to the anti-glare film which concerns on this invention which shows various scattered light intensity
  • the liquid crystal television thus obtained was activated in a dark room, and using a luminance meter “BM5A” manufactured by Topcon Corporation, the luminance in the black display state and the white display state was measured, and the contrast was calculated.
  • the contrast is represented by the ratio of the luminance in the white display state to the luminance in the black display state.
  • the antiglare film of the present invention has a reflectance R (30) at a reflection angle of 30 ° of 0.05% or more and 2% or less when light is incident from the hard coat layer side at an incident angle of 30 °.
  • the reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less
  • the reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more and 0.0005% or less. It is preferable.
  • FIG. 5 is a perspective view schematically showing an incident direction and a reflection direction of light from the hard coat layer side with respect to the antiglare film when the reflectance is obtained.
  • the direction of the reflection angle of 30 ° that is, the regular reflection direction with respect to the light 505 incident at an angle of 30 ° from the normal line 502 of the antiglare film on the hard coat layer side of the antiglare film 501.
  • the reflectance (that is, regular reflectance) of the reflected light to 506 is R (30).
  • the direction of reflected light when measuring the reflectance is within the plane 509 including the direction of the incident light 505 and the normal line 502. To do.
  • the regular reflectance R (30) exceeds 2%, a sufficient antiglare function cannot be obtained, and the visibility tends to decrease. On the other hand, even if the regular reflectance R (30) is too small, since it tends to cause whitening, it is preferably 0.05% or more.
  • the regular reflectance R (30) is more preferably 1.5% or less, particularly 0.7% or less.
  • R (40) exceeds 0.005% or R (50) exceeds 0.0005% the antiglare film is whitened and the visibility tends to be lowered.
  • R (40) and R (50) are not so large.
  • R (40) is generally preferably 0.0001% or more
  • R (50) is generally 0, since sufficient antiglare properties are not exhibited even if the reflectance at these angles is too small. It is preferably 0.0001% or more.
  • R (50) is more preferably 0.0001% or less.
  • FIG. 6 shows the reflection of the light 507 reflected at the reflection angle ⁇ with respect to the light 505 incident at an angle of 30 ° from the normal 502 on the hard coat layer side of the antiglare film of the present invention (antiglare film 501 in FIG. 5).
  • a reflectance is a logarithmic scale.
  • Such a graph representing the relationship between the reflection angle and the reflectance, or the reflectance for each reflection angle read therefrom may be referred to as a reflection profile.
  • the regular reflectance R (30) is a reflectance peak with respect to the light 505 incident at 30 °, and the reflectance tends to decrease as the angle deviates from the regular reflection direction.
  • the regular reflectance R (30) is about 0.4%
  • R (40) is about 0.001%
  • R (50) is about 0.00003%. .
  • a detector In measuring the reflectance of the antiglare film, it is necessary to accurately measure a reflectance of 0.001% or less, as with the relative scattered light intensity. Therefore, it is effective to use a detector with a wide dynamic range.
  • a detector for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer.
  • incident light visible light of 380 to 780 nm can be used, and as a measurement light source, collimated light emitted from a light source such as a halogen lamp can be used, or in parallel with a monochromatic light source such as a laser.
  • a high degree may be used.
  • reflection from the back surface of the antiglare film may affect the measured value.
  • the smooth surface of the antiglare film is adhered to a black acrylic resin plate with an adhesive or It is preferable that only the reflectance on the outermost surface of the antiglare film can be measured by optical adhesion using a liquid such as water or glycerin.
  • the reflectances R (30), R (40) and R (50) defined in the present invention are measured as follows. Irradiation of parallel light from a He—Ne laser onto a concavo-convex surface of an antiglare film from a direction inclined by 30 ° with respect to the film normal, and the angle of reflectance in a plane including the film normal and the light incident direction Measure changes.
  • reflectance both “3292 03 Optical Power Sensor” and “3292 Optical Power Meter” manufactured by Yokogawa Electric Corporation are used.
  • the antiglare film of the present invention may have a low reflection film on the outermost surface thereof, that is, on the uneven surface side of the hard coat layer. Even in the absence of a low reflection film, a sufficient antiglare function is exhibited, but the antiglare property can be further improved by providing a low reflection film on the outermost surface.
  • the low reflection film can be formed by providing a layer made of a low refractive index material having a refractive index lower than that of the hard coat layer on the hard coat layer. Specific examples of such a low refractive index material include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), cryolite (3NaF ⁇ AlF 3 or Na 3 AlF 6).
  • inorganic low-reflective materials containing acrylic resin, epoxy resin, etc .; fluorine-based or silicone-based organic compounds, thermoplastic resins, thermosetting resins, UV-curable resins, etc.
  • An organic low reflection material can be mentioned.
  • the antiglare film of the present invention is excellent in the antiglare effect, effectively prevents whitening, and can effectively suppress the occurrence of glare and the decrease in contrast.
  • An image display device provided with such an antiglare film of the present invention has excellent visibility.
  • the polarizing plate generally has a form in which a protective film is bonded to at least one surface of a polarizing film made of a polyvinyl alcohol-based resin film in which iodine or a dichroic dye is adsorbed and oriented.
  • an antiglare polarizing plate can be obtained by laminating the polarizing film and the antiglare film of the present invention on the light diffusing laminated resin film side of the antiglare film.
  • the other surface of the polarizing film may be in a state where nothing is laminated, another protective film or an optical film may be laminated, and an adhesive layer for bonding to a liquid crystal cell. May be formed.
  • the antiglare film of the present invention is bonded on the light diffusing laminated resin film side on the protective film of the polarizing plate having a protective film bonded on at least one side of the polarizing film, and the antiglare polarizing plate It can also be.
  • a polarizing plate having a protective film bonded to at least one surface a light diffusing laminated resin film is used as the protective film, and a hard coat layer is formed on the light diffusing laminated resin film, thereby providing antiglare properties. It can also be a polarizing plate.
  • the antiglare polarizing plate since a light diffusing laminated resin film having excellent surface smoothness is used, bubbles at the interface between the light diffusing laminated resin film and the polarizing film or the protective film laminated on the polarizing film are used. Intrusion and warping of the film can be eliminated or reduced.
  • the image display device of the present invention is a combination of the antiglare film or the antiglare polarizing plate of the present invention and an image display element.
  • the image display element is typically a liquid crystal panel that includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displays an image by changing the alignment state of the liquid crystal by applying a voltage.
  • the antiglare film or the antiglare polarizing plate of the present invention can be applied to various known displays such as a display, a CRT display, and an organic EL display.
  • the antiglare film or the antiglare polarizing plate is arranged on the viewing side with respect to the image display element.
  • an anti-glare film or an anti-glare polarizing plate ie, a hard-coat layer side
  • the image display device provided with the antiglare film or the antiglare polarizing plate of the present invention can scatter incident light due to the unevenness of the surface of the antiglare film and blur the reflected image. Gives excellent visibility.
  • the antiglare film or the antiglare polarizing plate of the present invention does not cause glare as seen in conventional antiglare films even when applied to a high-definition image display device, and is sufficiently reflected. Inhibition performance, whitening prevention, glare suppression, and contrast reduction suppression performance.
  • the polymerization was completed by holding for 60 minutes.
  • the obtained latex was put into a 0.5% aluminum chloride aqueous solution to aggregate the polymer. This was washed 5 times with warm water and then dried to obtain an acrylic multilayer polymer.
  • a roll unit comprising metal polishing rolls (referred to as first, second, and third rolls in order) is used to sandwich the extruded laminated film between the first roll and the second roll, roll it, and By sandwiching between the roll and the third roll, a light diffusing laminated resin film consisting of three layers having a thickness of 100 ⁇ m (the thickness of the resin layer (A): 48 ⁇ m and the thickness of the transparent resin layer (B): 26 ⁇ m each).
  • Each of the first to third rolls is a metal elastic roll as shown in FIG. 7 (b), and the metal thin film is made of polished stainless steel. Water was used as the fluid to be circulated in the roll, and the set temperature was 80 ° C. for all.
  • Extruder I Screw diameter 65 mm, uniaxial, with vent (manufactured by Toshiba Machine Co., Ltd.).
  • Extruder II Screw diameter 45 mm, uniaxial, with vent (manufactured by Hitachi Zosen).
  • Feed block 2-type, 3-layer distribution (manufactured by Hitachi Zosen Corporation).
  • Die T-die, lip width 1400 mm, lip interval 1 mm (manufactured by Hitachi Zosen Corporation).
  • Example 2 [Production and evaluation of antiglare film]
  • a surface of a 200 mm diameter iron roll (STKM13A by JIS) was prepared by applying copper ballad plating.
  • the copper ballad plating was composed of a copper plating layer / a thin silver plating layer / a surface copper plating layer, and the thickness of the entire plating layer was about 200 ⁇ m.
  • the surface of the surface copper plating layer is mirror-polished, and on the polished surface, a blasting device (manufactured by Fuji Seisakusho) is used to make zirconia beads “TZ-B125” (trade name, manufactured by Tosoh Corporation).
  • the average particle size is 125 ⁇ m
  • beads are used 6 g / cm 2 (the amount used per 1 cm 2 of the surface area of the roll, hereinafter referred to as “blast amount”), blast pressure 0.05 MPa (gauge pressure, the same applies hereinafter), and beads are injected Blasting was performed at a distance of 600 mm from the nozzle to the metal surface (hereinafter referred to as “blasting distance”).
  • blasting distance zirconia beads “TZ-SX-17” (trade name, average particle size 20 ⁇ m) manufactured by Tosoh Corporation were applied to the blasted surface with a blasting amount of 3 g / cm. 2.
  • the surface was uneven by blasting at a blasting pressure of 0.05 MPa and a blasting distance of 450 mm.
  • Etching was performed on the obtained copper-plated iron roll having surface irregularities using a cupric chloride aqueous solution. The etching amount at that time was set to 3 ⁇ m. Thereafter, the etched surface was subjected to chrome plating to produce a metal mold. At this time, the chromium plating thickness was set to 4 ⁇ m.
  • the obtained mold had a surface Vickers hardness of 1,000.
  • Pentaerythritol triacrylate 60 parts by weight Polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) 40 parts by weight
  • a photopolymerization initiator “Lucillin TPO” manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) was added in an amount of 5 parts by weight to prepare a coating solution.
  • This coating solution was applied onto the light diffusing laminated resin film obtained in Example 1 so that the coating thickness after drying was 8.0 ⁇ m, and dried for 1 minute in a dryer set at 80 ° C. It was. The dried film was brought into close contact with the uneven surface of the metal mold produced above with a rubber roll so that the ultraviolet curable resin composition layer was on the mold side. In this state, the ultraviolet curable resin composition layer is cured by irradiating light from a high-pressure mercury lamp with an intensity of 20 mW / cm 2 from the light diffusing laminated resin film side so that the amount of light in terms of h-line is 300 mJ / cm 2. I let you.
  • the light diffusing laminated resin film is peeled from the mold together with the cured resin to obtain an antiglare film comprising a laminate of a hard coat layer (cured resin) having irregularities on the surface and the light diffusing laminated resin film. It was.
  • the resulting antiglare film does not cause glare or whitish, and when applied to an image display device, the relative scattered light intensity T (20) that causes a decrease in contrast is 0.00027%, and T (30) is Good scattering characteristics were sufficiently low at 0.00006%.
  • the internal haze of the light diffusing laminated resin film of Example 1 was 14.8%.
  • the measurement was carried out by bonding one surface of a light diffusing laminated resin film to a glass substrate using an optically transparent adhesive, and subsequently, forming a triacetyl cellulose film having a haze of almost 0 on the other surface.
  • a light diffusing laminated resin film bonded with an optically transparent adhesive and sandwiched between the glass substrate and a triacetyl cellulose film is manufactured by Murakami Color Research Laboratory Co., Ltd. in accordance with JIS K 7136. Haze meter “HM-150” type) was used.
  • the surface haze and internal haze of the hard coat layer were 1.7% and 0.0%, respectively.
  • the measurement was performed as follows. First, after forming a hard coat layer on a triacetyl cellulose film having a haze of almost 0%, the laminated film and the glass substrate are bonded with a transparent adhesive so that the triacetyl cellulose film side becomes a bonding surface. The whole haze was measured by using a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. in accordance with JIS K 7136.

Abstract

A light-diffusing layered resin film which comprises a resin layer (A) comprising a transparent resin containing a light diffuser dispersed therein having a weight-average particle diameter of 1-20 µm and a transparent resin layer (B) superposed on each side of the resin layer (A), and which has a thickness of 30-500 µm. The resin layer (A) has a thickness which is 5-50%, excluding 50%, of the thickness of the light-diffusing layered resin film. The light-diffusing layered resin film is produced by obtaining a layered film by the coextrusion of a resin composition for forming the resin layer (A) and a resin composition for forming the transparent resin layers (B) and forming the layered film while keeping at least one side of the layered film in contact with an elastic roll. Also provided are: a process for producing the light-diffusing layered resin film; and an antiglare film, antiglare polarizer, and image display each employing the light-diffusing resin film.

Description

光拡散性積層樹脂フィルムおよびその製造方法、ならびに防眩フィルム、防眩性偏光板および画像表示装置Light diffusing laminated resin film and manufacturing method thereof, antiglare film, antiglare polarizing plate and image display device
 本発明は、透明性樹脂を基材とする光拡散性積層樹脂フィルムおよびその製造方法に関し、より詳しくは、表面平滑特性に優れる光拡散性積層樹脂フィルムおよびその製造方法に関する。また、本発明は、当該光拡散性積層樹脂フィルムを用いた防眩(アンチグレア)フィルム、ならびに当該防眩フィルムを用いた防眩性偏光板および画像表示装置に関する。 The present invention relates to a light diffusing laminated resin film based on a transparent resin and a method for producing the same, and more particularly to a light diffusing laminated resin film having excellent surface smoothness and a method for producing the same. The present invention also relates to an antiglare (antiglare) film using the light diffusing laminated resin film, and an antiglare polarizing plate and an image display device using the antiglare film.
 光拡散特性を有するフィルムは、これを透明基板に貼合して光拡散板とし、照明カバーや照明看板などに応用したり、液晶TV、プロジェクションTV等に光拡散機能やレンズ機能を付与するための部材に適用するなど様々な用途で用いられている。 A film having light diffusing properties is bonded to a transparent substrate to form a light diffusing plate, which can be applied to lighting covers, lighting signs, etc., or to impart light diffusing functions and lens functions to liquid crystal TVs, projection TVs, etc. It is used for various purposes such as application to other members.
 従来、樹脂フィルムへの光拡散特性の付与は、基材となる透明性樹脂中に、特定の粒子径を有し、基材とは異なる屈折率を持つ透明な微粒子を分散させる方法(たとえば、特開平3-237133号公報(特許文献1))、透明性樹脂からなる基材表面に微粒子をコーティングする方法(たとえば、特開平6-59108号公報(特許文献2))、樹脂フィルム表面に凹凸を転写する方法(たとえば、特開2000-267088号公報(特許文献3))などにより行なわれてきた。 Conventionally, the light diffusion property is imparted to the resin film by a method of dispersing transparent fine particles having a specific particle diameter and a refractive index different from that of the base material in the transparent resin as the base material (for example, JP-A-3-237133 (Patent Document 1)), a method of coating fine particles on the surface of a substrate made of a transparent resin (for example, JP-A-6-59108 (Patent Document 2)), unevenness on the surface of a resin film Has been carried out by a method of transferring the toner (for example, JP-A-2000-267088 (Patent Document 3)).
 ここで、光拡散特性を有するフィルムを上記用途等に適用する場合においては、しばしば、当該光拡散性フィルムを、接着剤や粘着剤を用いて他のフィルムや樹脂基板に貼合させたり、硬化性樹脂を当該光拡散性フィルム表面に塗布し硬化させることにより、新たな別の機能を付与することが行なわれる。しかし、このような場合において、上記従来の光拡散性フィルムを用いると、光拡散性フィルム表面の凹凸の影響により、光拡散性フィルムと他のフィルムや硬化性樹脂層などとの間の界面が不安定になるという問題があった。たとえば、光拡散性フィルムと他のフィルムとを一体化しようとすると、光拡散性フィルムの表面凹凸のために界面に気泡が入りやすくなり、また、気泡が入らないように貼合しようとすると積層フィルムが大きく反るなど、非常に加工しにくいという問題があった。さらに、貼合加工時において、粘着成分が光拡散性フィルム表面の凹凸を埋めることにより光拡散性フィルム表面の凹凸が消失する場合があるが、この場合には、加工前後における光拡散特性が大きく変化してしまうこととなり、最終製品の設計にも影響するという問題があった。
特開平3-237133号公報 特開平6-59108号公報 特開2000-267088号公報
Here, in the case of applying a film having a light diffusing property to the above-mentioned uses, etc., often the light diffusing film is bonded to another film or a resin substrate using an adhesive or an adhesive, or cured. A new additional function is imparted by applying a curing resin to the surface of the light diffusing film and curing it. However, in such a case, when the conventional light diffusing film is used, an interface between the light diffusing film and another film, a curable resin layer, or the like is caused by the unevenness of the surface of the light diffusing film. There was a problem of becoming unstable. For example, when trying to integrate a light diffusive film with another film, air bubbles are likely to enter the interface due to the surface irregularities of the light diffusive film, and when it is pasted so that air bubbles do not enter, it is laminated. There was a problem that the film was very difficult to process, such as a large warp. Furthermore, in the bonding process, the unevenness on the surface of the light diffusing film may disappear due to the adhesive component filling the unevenness on the surface of the light diffusing film, but in this case, the light diffusion characteristics before and after processing are large. There was a problem that it would change and affect the design of the final product.
JP-A-3-237133 JP-A-6-59108 JP 2000-267088 A
 本発明は、上記課題を解決するためになされたものであり、その目的は、表面が平滑で凹凸が少ない光拡散性樹脂フィルムおよびその製造方法を提供することである。また、本発明の別の目的は、かかる光拡散性樹脂フィルムを用いた防眩フィルム、ならびに、当該防眩フィルムを用いた防眩性偏光板および画像表示装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light diffusing resin film having a smooth surface and less unevenness and a method for producing the same. Another object of the present invention is to provide an antiglare film using such a light diffusing resin film, and an antiglare polarizing plate and an image display device using the antiglare film.
 本発明は、重量平均粒子径が1~20μmである光拡散剤が分散された透明性樹脂からなる樹脂層(A)と、該樹脂層(A)の両面に積層された透明樹脂層(B)とを備える、厚みが30~500μmの光拡散性積層樹脂フィルムであって、該樹脂層(A)の厚みは、光拡散性積層樹脂フィルムの厚みの5%以上50%未満であり、該樹脂層(A)を形成する樹脂組成物と該透明樹脂層(B)を形成する樹脂組成物とを用いた共押出成形により得られる積層フィルムの少なくとも片面を弾性ロールに接触させた状態で、該積層フィルムを成形してなる光拡散性積層樹脂フィルムが提供される。樹脂層(A)は、透明性樹脂100重量部に対して、5~40重量部の光拡散剤を含有することが好ましい。 The present invention relates to a resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle size of 1 to 20 μm is dispersed, and a transparent resin layer (B) laminated on both surfaces of the resin layer (A). And a thickness of the resin layer (A) is 5% or more and less than 50% of the thickness of the light diffusable laminated resin film, In a state where at least one surface of the laminated film obtained by coextrusion molding using the resin composition forming the resin layer (A) and the resin composition forming the transparent resin layer (B) is in contact with an elastic roll, A light diffusing laminated resin film formed by molding the laminated film is provided. The resin layer (A) preferably contains 5 to 40 parts by weight of a light diffusing agent with respect to 100 parts by weight of the transparent resin.
 本発明において、少なくとも1つの透明樹脂層(B)における、樹脂層(A)側とは反対側の表面の算術平均粗さRaは、0~0.5μmであることが好ましい。また、樹脂層(A)の透明樹脂層(B)側表面と、透明樹脂層(B)の樹脂層(A)側表面とは接していることが好ましい。 In the present invention, the least one of the transparent resin layer (B), the arithmetic mean roughness R a of the resin layer (A) side of the opposite surface is preferably 0 ~ 0.5 [mu] m. Moreover, it is preferable that the transparent resin layer (B) side surface of the resin layer (A) and the resin layer (A) side surface of the transparent resin layer (B) are in contact.
 透明樹脂層(B)は、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、芳香族ポリカーボネート樹脂、脂環構造含有エチレン性不飽和単量体単位を含有する樹脂、またはこれらの2種以上の混合樹脂からなることが好ましい。また、上記透明性樹脂は、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、スチレン系樹脂にゴム状重合体を含有させた樹脂組成物、芳香族ポリカーボネート樹脂、またはこれらの2種以上の混合樹脂であることが好ましい。 The transparent resin layer (B) is composed of a methyl methacrylate resin, a resin composition containing a rubber polymer in a methyl methacrylate resin, a styrene resin, an aromatic polycarbonate resin, an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable that it consists of resin containing a monomer unit, or these 2 or more types of mixed resin. The transparent resin includes a methyl methacrylate resin, a resin composition in which a rubber-like polymer is contained in a methyl methacrylate resin, a styrene resin, and a resin composition in which a rubber-like polymer is contained in a styrene resin. It is preferable that it is a thing, an aromatic polycarbonate resin, or these 2 or more types of mixed resin.
 また本発明は、重量平均粒子径が1~20μmである光拡散剤が分散された透明性樹脂からなる樹脂層(A)と、該樹脂層(A)の両面に積層された透明樹脂層(B)とを備える、厚みが30~500μmである光拡散性積層樹脂フィルムの製造方法を提供する。本発明の光拡散性積層樹脂フィルムの製造方法は、樹脂層(A)を形成する樹脂組成物と透明樹脂層(B)を形成する樹脂組成物とを用いた共押出成形により得られる積層フィルムの少なくとも片面を弾性ロールに接触させた状態で、樹脂層(A)の厚みが光拡散性積層樹脂フィルムの厚みの5%以上50%未満となるように、該積層フィルムを成形する工程を有するものである。 The present invention also provides a resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle diameter of 1 to 20 μm is dispersed, and a transparent resin layer (A) laminated on both surfaces of the resin layer (A) ( B) and a method for producing a light-diffusing laminated resin film having a thickness of 30 to 500 μm. The method for producing a light diffusing laminated resin film of the present invention is a laminated film obtained by coextrusion molding using a resin composition forming a resin layer (A) and a resin composition forming a transparent resin layer (B). A step of forming the laminated film so that the thickness of the resin layer (A) is 5% or more and less than 50% of the thickness of the light diffusing laminated resin film in a state where at least one surface thereof is in contact with the elastic roll. Is.
 また本発明により、上記本発明の光拡散性積層樹脂フィルムと、該光拡散性積層樹脂フィルム表面上に積層された、表面に微細な凹凸形状を有するハードコート層とを備える防眩フィルムが提供される。本発明の防眩フィルムにおいて、光拡散性積層樹脂フィルムの内部ヘイズは5%以上30%以下であり、ハードコート層は、その表面ヘイズが0.5%以上15%以下であり、その内部ヘイズが2%以下である。 Further, according to the present invention, there is provided an antiglare film comprising the light diffusing laminated resin film of the present invention and a hard coat layer laminated on the surface of the light diffusing laminated resin film and having a fine uneven shape on the surface. Is done. In the antiglare film of the present invention, the internal haze of the light diffusing laminated resin film is 5% or more and 30% or less, and the hard coat layer has a surface haze of 0.5% or more and 15% or less. Is 2% or less.
 本発明の防眩フィルムにおいては、光拡散性積層樹脂フィルム側から入射角20゜で光を入射したときのハードコート層側法線方向における相対散乱光強度T(20)が0.0001%以上0.0006%以下であり、光拡散性積層樹脂フィルム側から入射角30°で光を入射したときのハードコート層側法線方向における相対散乱光強度T(30)が0.00004%以上0.0002%以下であることが好ましい。また、ハードコート層側から入射角30゜で光を入射したときに、反射角30゜の反射率R(30)が0.05%以上2%以下であり、反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であることが好ましい。 In the antiglare film of the present invention, the relative scattered light intensity T (20) in the normal direction of the hard coat layer side when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film side is 0.0001% or more. It is 0.0006% or less, and the relative scattered light intensity T (30) in the normal direction of the hard coat layer side when light is incident from the light diffusing laminated resin film side at an incident angle of 30 ° is 0.00004% or more and 0 It is preferable that it is .0002% or less. Further, when light is incident from the hard coat layer side at an incident angle of 30 °, the reflectance R (30) at a reflection angle of 30 ° is 0.05% or more and 2% or less, and the reflectance R at a reflection angle of 40 °. (40) is preferably 0.0001% or more and 0.005% or less, and the reflectance R (50) at a reflection angle of 50 ° is preferably 0.00001% or more and 0.0005% or less.
 本発明の防眩フィルムは、ハードコート層の凹凸表面上に、低反射膜をさらに有していてもよい。 The antiglare film of the present invention may further have a low reflection film on the uneven surface of the hard coat layer.
 さらに本発明により、上記いずれかに記載の防眩フィルムと該防眩フィルム上に積層された偏光フィルムとを備える防眩性偏光板が提供される。本発明の防眩性偏光板において、偏光フィルムは、防眩フィルムの光拡散性積層樹脂フィルム側に配置される。 Furthermore, according to the present invention, there is provided an antiglare polarizing plate comprising any one of the above antiglare films and a polarizing film laminated on the antiglare film. In the antiglare polarizing plate of the present invention, the polarizing film is disposed on the light diffusing laminated resin film side of the antiglare film.
 本発明の防眩フィルムまたは防眩性偏光板は、液晶表示素子やプラズマディスプレイパネルなどの画像表示素子と組み合わせて、画像表示装置とすることができる。すなわち、本発明によれば、上記いずれかに記載の防眩フィルムまたは上記防眩性偏光板と、画像表示素子とを備え、防眩フィルムまたは防眩性偏光板が、そのハードコート層側を外側にして画像表示素子の視認側に配置される画像表示装置が提供される。 The antiglare film or the antiglare polarizing plate of the present invention can be combined with an image display element such as a liquid crystal display element or a plasma display panel to form an image display device. That is, according to the present invention, the antiglare film according to any one of the above or the antiglare polarizing plate and an image display element are provided, and the antiglare film or the antiglare polarizing plate has a hard coat layer side. An image display device is provided that is disposed on the outside of the image display element on the viewing side.
 本発明によれば、透明樹脂層(B)の表面が平滑で凹凸が少ない光拡散性積層樹脂フィルムを得ることができる。したがって、その表面にフィルムなどの貼合や樹脂組成物などの塗工などの加工を施す際において、界面への気泡の侵入やフィルムの反りなどが解消または低減されるため、加工性を向上させることができる。また、加工時の不良を低減し得るとともに、加工前後における光学特性の変化を最小限にすることができる。 According to the present invention, a light diffusing laminated resin film having a smooth transparent resin layer (B) surface and less irregularities can be obtained. Therefore, when the surface is subjected to processing such as bonding of a film or coating of a resin composition or the like, entry of bubbles into the interface or warping of the film is eliminated or reduced, thereby improving workability. be able to. In addition, defects during processing can be reduced, and changes in optical characteristics before and after processing can be minimized.
 かかる光拡散性積層樹脂フィルムを用いた本発明の防眩フィルムおよび防眩性偏光板においては、光拡散性積層樹脂フィルムとハードコート層との界面および光拡散性積層樹脂フィルムと偏光フィルムとの界面への気泡の侵入や、フィルムの反りが解消または低減され得る。本発明の防眩フィルムおよび防眩性偏光板は、たとえば、液晶表示装置などの画像表示装置に好適に適用することができる。 In the antiglare film and the antiglare polarizing plate of the present invention using such a light diffusing laminated resin film, the interface between the light diffusing laminated resin film and the hard coat layer and the light diffusing laminated resin film and the polarizing film Bubbles entering the interface and warping of the film can be eliminated or reduced. The antiglare film and antiglare polarizing plate of the present invention can be suitably applied to an image display device such as a liquid crystal display device.
本発明の防眩フィルムの好ましい例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the preferable example of the anti-glare film of this invention. 防眩フィルムの光拡散性積層樹脂フィルム側から光を入射してハードコート層側法線方向で観測される散乱光強度を測定するときの、光の入射方向と透過散乱光強度測定方向とを模式的に示す斜視図である。When measuring the scattered light intensity observed in the normal direction of the hard coat layer side when light is incident from the light diffusing laminated resin film side of the antiglare film, the incident direction of light and the transmitted scattered light intensity measurement direction are determined. It is a perspective view showing typically. 本発明の防眩フィルムを用い、入射角φを変えて測定される相対散乱光強度(対数目盛)を入射角に対してプロットしたグラフの一例である。It is an example of the graph which plotted the relative scattered light intensity | strength (logarithmic scale) measured by changing the incident angle (phi) using the anti-glare film of this invention with respect to the incident angle. 相対散乱光強度T(20)およびT(30)と、コントラストとの関係を示す図である。It is a figure which shows the relationship between relative scattered light intensity | strength T (20) and T (30), and contrast. 反射率を求めるときのハードコート層側からの光の入射方向と反射方向とを模式的に示す斜視図である。It is a perspective view which shows typically the incident direction and reflection direction of the light from the hard-coat layer side when calculating | requiring a reflectance. 本発明の防眩フィルムの法線から30°の角度で入射した光に対する反射光の反射角と反射率(反射率は対数目盛)との関係をプロットしたグラフの一例である。It is an example of the graph which plotted the relationship between the reflection angle of the reflected light with respect to the light which injected at the angle of 30 degrees from the normal line of the anti-glare film of this invention, and a reflectance (a reflectance is a logarithmic scale). 本発明で用いることができる金属弾性ロールの具体例を示す概略断面図である。It is a schematic sectional drawing which shows the specific example of the metal elastic roll which can be used by this invention.
符号の説明Explanation of symbols
 101 光拡散性積層樹脂フィルム、102 ハードコート層、103 透明樹脂層(B)、104 樹脂層(A)、105 光拡散剤、201,501 防眩フィルム、202,502 防眩フィルムの法線、203 法線からφの角度で入射される光、204 法線方向に透過された透過散乱光、209,509 入射光方向と防眩フィルムの法線とを含む平面、505 30°の角度で入射される光、506 正反射方向、507 反射角θで反射した光、701a,701b 金属製薄膜、702a,702b 軸ロール、703 流体用空間。 101 light diffusing laminated resin film, 102 hard coat layer, 103 transparent resin layer (B), 104 resin layer (A), 105 light diffusing agent, 201,501 antiglare film, 202,502 normal line of antiglare film, 203 Light incident at an angle of φ from the normal, 204 Transmitted scattered light transmitted in the normal direction, 209, 509, a plane including the incident light direction and the normal of the antiglare film, 505, incident at an angle of 30 ° 506, specular reflection direction, 507, light reflected at reflection angle θ, 701a, 701b metal thin film, 702a, 702b axial roll, 703 fluid space.
 <光拡散性積層樹脂フィルム>
 本発明の光拡散性積層樹脂フィルムは、光拡散剤が分散された透明性樹脂からなる樹脂層(A)の両面に、透明樹脂層(B)が積層されてなる。樹脂層(A)を構成する透明性樹脂(以下、透明性樹脂(a)と称する)および透明樹脂層(B)を構成する透明性樹脂(以下、透明性樹脂(b)と称する)としては、溶融可能である限り特に制限されず、たとえば、ポリ塩化ビニル樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、直鎖低密度ポリエチレン樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、アクリロニトリル-スチレン樹脂、セルロースアセテート樹脂、エチレン-ビニルアセテート樹脂、アクリル-アクリロニトリル-スチレン樹脂、アクリル-塩素化ポリエチレン樹脂、エチレン-ビニルアルコール樹脂、フッ素樹脂、メタクリル酸メチル樹脂、メタクリル酸メチル-スチレン樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、芳香族ポリカーボネート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、メチルペンテン樹脂、ポリアリレート樹脂、ポリブチレンテレフタレート樹脂、脂環構造含有エチレン性不飽和単量体単位を含有する樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキサイド樹脂およびポリエーテルエーテルケトン樹脂等の汎用プラスチックまたはエンジニアリングプラスチック;ならびに、ポリ塩化ビニル系エラストマー、塩素化ポリエチレン、エチレン-アクリル酸エチル樹脂、熱可塑性ポリウレタンエラストマー、熱可塑性ポリエステルエラストマー、アイオノマー樹脂、スチレン・ブタジエンブロックポリマー、エチレン-プロピレンゴム、ポリブタジエン樹脂およびアクリル系ゴム等のゴム状重合体を挙げることができる。これらの2種以上の混合物が用いられてもよい。また、透明性樹脂(a)と透明性樹脂(b)とは同じであっても、異なっていてもよい。なお、本発明において「透明性」とは、両表面が平滑な厚さ1mmのシートとした樹脂の全光線透過率が85%以上であることを意味する。
<Light diffusing laminated resin film>
The light diffusing laminated resin film of the present invention comprises a transparent resin layer (B) laminated on both surfaces of a resin layer (A) made of a transparent resin in which a light diffusing agent is dispersed. As a transparent resin (hereinafter referred to as transparent resin (a)) constituting the resin layer (A) and a transparent resin (hereinafter referred to as transparent resin (b)) constituting the transparent resin layer (B) As long as it can be melted, it is not particularly limited. For example, polyvinyl chloride resin, acrylonitrile-butadiene-styrene resin, low density polyethylene resin, high density polyethylene resin, linear low density polyethylene resin, polystyrene resin, polypropylene resin, acrylonitrile Styrene resin, cellulose acetate resin, ethylene-vinyl acetate resin, acrylic-acrylonitrile-styrene resin, acrylic-chlorinated polyethylene resin, ethylene-vinyl alcohol resin, fluorine resin, methyl methacrylate resin, methyl methacrylate-styrene resin, polyacetal resin , Poly Mido resin, polyethylene terephthalate resin, aromatic polycarbonate resin, polysulfone resin, polyethersulfone resin, methylpentene resin, polyarylate resin, polybutylene terephthalate resin, resin containing alicyclic structure-containing ethylenically unsaturated monomer unit, General-purpose plastics or engineering plastics such as polyphenylene sulfide resin, polyphenylene oxide resin and polyether ether ketone resin; and polyvinyl chloride elastomer, chlorinated polyethylene, ethylene-ethyl acrylate resin, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, Ionomer resin, styrene-butadiene block polymer, ethylene-propylene rubber, polybutadiene resin and acrylic It can be mentioned rubber-like polymer such as rubber. A mixture of two or more of these may be used. Moreover, the transparent resin (a) and the transparent resin (b) may be the same or different. In the present invention, “transparency” means that the total light transmittance of a resin having a thickness of 1 mm with smooth both surfaces is 85% or more.
 これらの中でも、光学特性が良好であることから、メタクリル酸メチル系樹脂、スチレン系樹脂、芳香族ポリカーボネート樹脂、および脂環構造含有エチレン性不飽和単量体単位を含有する樹脂を好ましく用いることができる。 Among these, because of good optical properties, it is preferable to use a resin containing a methyl methacrylate resin, a styrene resin, an aromatic polycarbonate resin, and an alicyclic structure-containing ethylenically unsaturated monomer unit. it can.
 メタクリル酸メチル系樹脂とは、メタクリル酸メチル単位を50重量%以上含む重合体である。メタクリル酸メチル単位の含有量は、好ましくは70重量%以上であり、100重量%であってもよい。メタクリル酸メチル単位が100重量%の重合体は、メタクリル酸メチルを単独で重合させて得られるメタクリル酸メチル単独重合体である。 The methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units. The content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight. The polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
 メタクリル酸メチル系樹脂は、メタクリル酸メチルと、これに共重合し得る単量体との共重合体であってもよい。メタクリル酸メチルと共重合し得る単量体としては、たとえば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシルおよびメタクリル酸2-ヒドロキシエチルなどのメタクリル酸メチル以外のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシルおよびアクリル酸2-ヒドロキシエチルなどのアクリル酸エステル類;メタクリル酸およびアクリル酸などの不飽和酸類;クロロスチレンおよびブロモスチレンなどのハロゲン化スチレン類;ビニルトルエンおよびα-メチルスチレンなどのアルキルスチレン類などの置換スチレン類;アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミドおよびシクロヘキシルマレイミドなどを挙げることができる。かかる単量体は、それぞれ単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 The methyl methacrylate resin may be a copolymer of methyl methacrylate and a monomer copolymerizable therewith. Monomers that can be copolymerized with methyl methacrylate include, for example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and 2-hydroxyethyl methacrylate. Methacrylic acid esters other than methyl methacrylate; acrylic acid such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate Esters; unsaturated acids such as methacrylic acid and acrylic acid; halogenated styrenes such as chlorostyrene and bromostyrene; alkyls such as vinyltoluene and α-methylstyrene Substituted styrenes such as Ren like; acrylonitrile, methacrylonitrile, maleic anhydride, phenyl maleimide and cyclohexyl maleimide. These monomers may be used alone or in combination of two or more.
 スチレン系樹脂とは、スチレン系単官能単量体単位を50重量%以上含む重合体であって、スチレン系単官能単量体の単独重合体であってもよいし、スチレン系単官能単量体およびこれと共重合可能な単官能単量体の共重合体であってもよい。スチレン系単官能単量体とは、スチレン骨格を有し、ラジカル重合可能な二重結合を分子内に1個有する化合物である。スチレン系単官能単量体としては、たとえば、スチレン;クロロスチレンおよびブロモスチレンなどのハロゲン化スチレン類;ビニルトルエンおよびα-メチルスチレン等のアルキルスチレン類等の置換スチレンなどが挙げられる。 The styrene resin is a polymer containing 50% by weight or more of a styrene monofunctional monomer unit, and may be a homopolymer of a styrene monofunctional monomer or a styrene monofunctional monomer. And a copolymer of a monofunctional monomer copolymerizable therewith. The styrene monofunctional monomer is a compound having a styrene skeleton and one double bond capable of radical polymerization in the molecule. Examples of the styrene monofunctional monomer include styrene; halogenated styrenes such as chlorostyrene and bromostyrene; substituted styrenes such as alkyl styrenes such as vinyltoluene and α-methylstyrene.
 スチレン系単官能単量体と共重合可能な単官能単量体とは、ラジカル重合可能な二重結合を分子内に1個有するスチレン系単官能単量体と共重合可能な化合物である。スチレン系単官能単量体と共重合可能な単官能単量体としては、たとえばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシルおよびメタクリル酸2-ヒドロキシエチルなどのメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシルおよびアクリル酸2-ヒドロキシエチルなどのアクリル酸エステル類;ならびに、アクリロニトリルなどが挙げられ、メタクリル酸メチルなどのメタクリル酸エステル類が好ましく用いられる。これらの単官能単量体は、それぞれ単独で、または2種以上を組み合わせて用いられる。 A monofunctional monomer copolymerizable with a styrene monofunctional monomer is a compound copolymerizable with a styrene monofunctional monomer having one radical-polymerizable double bond in the molecule. Examples of the monofunctional monomer copolymerizable with the styrenic monofunctional monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate. And methacrylates such as 2-hydroxyethyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate And acrylonitrile and the like, and methacrylic esters such as methyl methacrylate are preferably used. These monofunctional monomers are used alone or in combination of two or more.
 芳香族ポリカーボネート樹脂は、通常、二価フェノールとカーボネート前駆体とを界面重縮合法あるいは溶融エステル交換法により反応させて得られる樹脂;カーボネートプレポリマーを固相エステル交換法により重合させて得られる樹脂;または環状カーボネート化合物を開環重合法により重合させて得られる樹脂である。 The aromatic polycarbonate resin is usually a resin obtained by reacting a dihydric phenol and a carbonate precursor by an interfacial polycondensation method or a melt transesterification method; a resin obtained by polymerizing a carbonate prepolymer by a solid phase transesterification method Or a resin obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
 上記二価フェノールの代表的な例は、ハイドロキノン、レゾルシノール、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジブロモ)フェニル}プロパン、2,2-ビス{(3-イソプロピル-4-ヒドロキシ)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス{(4-ヒドロキシ-3-メチル)フェニル}フルオレン、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテルおよび4,4’-ジヒドロキシジフェニルエステル等を含む。これらは単独で用いられてもよいし、2種以上を併用してもよい。 Representative examples of the dihydric phenol include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl) phenyl} methane, 1,2-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2 -Bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis {(4-hydroxy-3, 5-dibromo) phenyl} propane, 2,2-bis {(3-isopropyl-4-hydroxy) phenyl} propane, 2,2-bis { 4-hydroxy-3-phenyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxy) Phenyl) -3,3-dimethylbutane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3, 3,5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis {(4-hydro Cis-3-methyl) phenyl} fluorene, α, α'-bis (4-hydroxyphenyl) -o-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α, α ' -Bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylsulfoxide 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ester, and the like. These may be used independently and may use 2 or more types together.
 なかでも、ビスフェノールA、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンおよびα,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンからなる群より選ばれた少なくとも1種のビスフェノールを用いて得られる芳香族ポリカーボネート樹脂が好ましく、特に、二価フェノールとしてビスフェノールAのみを用いた芳香族ポリカーボネート樹脂、ならびに、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンとビスフェノールA、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパンおよびα,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンから選択される少なくとも1種の二価フェノールを用いた芳香族ポリカーボネート樹脂が好ましく使用される。 Among them, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl)- 3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) Aromatic polycarbonate resin obtained by using at least one bisphenol selected from the group consisting of) -3,3,5-trimethylcyclohexane and α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene In particular, an aromatic polycarbonate resin using only bisphenol A as the dihydric phenol, and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane and α, α'-bis An aromatic polycarbonate resin using at least one dihydric phenol selected from (4-hydroxyphenyl) -m-diisopropylbenzene is preferably used.
 カーボネート前駆体としては、カルボニルハライド、カーボネートエステルおよびハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネートおよび二価フェノールのジハロホルメート等が挙げられる。 As the carbonate precursor, carbonyl halides, carbonate esters, haloformates, and the like are used, and specific examples include phosgene, diphenyl carbonate, and dihaloformates of dihydric phenols.
 重合体の繰り返し単位中に脂環式構造を含有するのが、脂環構造含有エチレン性不飽和単量体単位を含有する樹脂の特徴である。脂環構造含有エチレン性不飽和単量体単位を含有する樹脂の具体例は、ノルボルネン系重合体やビニル脂環式炭化水素系重合体などを含む。脂環式構造は、重合体の主鎖または側鎖のいずれに含有されていてもよく、双方に含有されていてもよい。光透過性の観点からは、主鎖に脂環式構造を含有するものが好ましい。 It is a feature of a resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit that contains an alicyclic structure in the repeating unit of the polymer. Specific examples of the resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit include a norbornene polymer and a vinyl alicyclic hydrocarbon polymer. The alicyclic structure may be contained in either the main chain or the side chain of the polymer, or may be contained in both. From the viewpoint of light transmittance, those containing an alicyclic structure in the main chain are preferred.
 脂環構造含有エチレン性不飽和単量体単位を含有する樹脂のより具体的な例を挙げれば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体、およびこれらの水素添加物などが挙げられる。これらの中でも、光透過性の観点から、ノルボルネン系重合体水素添加物、ビニル脂環式炭化水素系重合体およびその水素化物などが好ましく、ノルボルネン系重合体水素添加物がより好ましい。 More specific examples of the resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit include a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, and a vinyl alicyclic ring. And a hydrocarbon-based polymer, and hydrogenated products thereof. Among these, from the viewpoint of light transmittance, a norbornene polymer hydrogenated product, a vinyl alicyclic hydrocarbon polymer and a hydride thereof are preferable, and a norbornene polymer hydrogenated product is more preferable.
 透明性樹脂(a)および透明性樹脂(b)として、上記メタクリル酸メチル系樹脂にゴム状重合体を添加して得られ得る樹脂組成物や上記スチレン系樹脂にゴム状重合体を添加して得られ得る樹脂組成物を用いることも好ましい。ゴム状重合体の添加により、フィルム成形時に割れにくくなり、収率を向上させることが可能となる。また、塗工や貼合時にも割れにくいため、取扱いが容易になる利点がある。ゴム状重合体は、透明性樹脂(a)、透明性樹脂(b)のいずれか一方、またはその両方に含有させることができる。いずれか一方に含有させる場合、光拡散性積層樹脂フィルムの強度と良好な表面状態を維持することを勘案すれば、透明性樹脂(a)に含有させることが好ましい。ゴム状重合体を透明性樹脂(a)および/または透明性樹脂(b)に含有させる場合において、ゴム状重合体の添加量は、メタクリル酸メチル系樹脂またはスチレン系樹脂100重量部に対して、100重量部以下であることが好ましく、より好ましくは3~50重量部である。ゴム状重合体の添加量がメタクリル酸メチル系樹脂またはスチレン系樹脂100重量部に対して100重量部を超えると、光拡散性積層樹脂フィルムの剛性が低下する傾向にある。 As a transparent resin (a) and a transparent resin (b), a rubber composition is added to a resin composition obtained by adding a rubber polymer to the methyl methacrylate resin or a styrene resin. It is also preferable to use a resin composition that can be obtained. The addition of the rubbery polymer makes it difficult to break during film formation, and the yield can be improved. Moreover, since it is hard to break at the time of coating and bonding, there is an advantage that handling becomes easy. The rubber-like polymer can be contained in either one or both of the transparent resin (a) and the transparent resin (b). When it is contained in either one, it is preferable to contain it in the transparent resin (a) in consideration of maintaining the strength and good surface state of the light diffusing laminated resin film. In the case where the rubber-like polymer is contained in the transparent resin (a) and / or the transparent resin (b), the amount of the rubber-like polymer added is 100 parts by weight of the methyl methacrylate resin or the styrene resin. The amount is preferably 100 parts by weight or less, more preferably 3 to 50 parts by weight. When the addition amount of the rubbery polymer exceeds 100 parts by weight with respect to 100 parts by weight of the methyl methacrylate resin or styrene resin, the rigidity of the light diffusing laminated resin film tends to be lowered.
 ゴム状重合体の例は、アクリル系多層構造重合体、およびゴム成分にエチレン性不飽和単量体をグラフト重合させたグラフト共重合体などを含む。アクリル系多層構造重合体は、ゴム弾性の層またはエラストマーの層を内在しており、最外層として硬質層を有する多層構造体である。ゴム弾性の層またはエラストマーの層は、たとえば、全体の20~60重量%とすることができる。アクリル系多層構造重合体は、最内層として硬質層をさらに含む構造であってもよい。 Examples of the rubber-like polymer include an acrylic multilayer structure polymer and a graft copolymer obtained by graft-polymerizing an ethylenically unsaturated monomer to a rubber component. The acrylic multilayer structure polymer is a multilayer structure having a rubber elastic layer or an elastomer layer and a hard layer as the outermost layer. The rubber elastic layer or the elastomer layer may be, for example, 20 to 60% by weight of the whole. The acrylic multilayer structure polymer may have a structure further including a hard layer as the innermost layer.
 ここで、ゴム弾性の層またはエラストマーの層は、ガラス転移点(Tg)が25℃未満のアクリル系重合体からなる層である。ゴム弾性の層またはエラストマーの層を形成するアクリル系重合体は、低級アルキルアクリレート、低級アルキルメタクリレート、低級アルコキシアクリレート、シアノエチルアクリレート、アクリルアミド、ヒドロキシ低級アルキルアクリレート、ヒドロキシ低級アルキルメタクリレート、アクリル酸、メタクリル酸等のモノエチレン性不飽和単量体の1種以上を、アリルメタクリレート、アリルアクリレート、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、フタル酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン、マレイン酸ジアリル、トリメチロールプロパントリアクリレート、アリルシンナメートなどの多官能単量体と一緒に重合することにより得られる架橋重合体である。 Here, the rubber elastic layer or the elastomer layer is a layer made of an acrylic polymer having a glass transition point (Tg) of less than 25 ° C. Acrylic polymers that form a rubber elastic layer or an elastomer layer include lower alkyl acrylate, lower alkyl methacrylate, lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, hydroxy lower alkyl acrylate, hydroxy lower alkyl methacrylate, acrylic acid, methacrylic acid, etc. At least one monoethylenically unsaturated monomer of allyl methacrylate, allyl acrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, maleic acid Cross-linking polymerization obtained by polymerization with polyfunctional monomers such as diallyl, trimethylolpropane triacrylate, and allylcinnamate It is.
 硬質層とは、Tgが25℃以上のアクリル系重合体からなる層である。硬質層を形成するアクリル系重合体としては、炭素数1~4個のアルキル基を有するアルキルメタクリレートの単独重合体、および、当該アルキルメタクリレートを主成分とし、他のアルキルメタクリレートやアルキルアクリレート、スチレン、置換スチレン、アクリロニトリル、メタクリロニトリル等の共重合可能な単官能単量体と共重合させた共重合体などが挙げられる。また、硬質層を形成するアクリル系重合体は、前記単量体に、さらに多官能単量体を加えて重合させた架橋重合体であってもよい。このようなアクリル系重合体としては、たとえば特公昭55-27576号公報、特開平6-80739号公報および特開昭49-23292号公報に記載のものを挙げることができる。 The hard layer is a layer made of an acrylic polymer having a Tg of 25 ° C. or higher. As the acrylic polymer forming the hard layer, a homopolymer of alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms, and the alkyl methacrylate as a main component, other alkyl methacrylate, alkyl acrylate, styrene, Examples thereof include a copolymer copolymerized with a copolymerizable monofunctional monomer such as substituted styrene, acrylonitrile, and methacrylonitrile. The acrylic polymer forming the hard layer may be a crosslinked polymer obtained by adding a polyfunctional monomer to the monomer and polymerizing it. Examples of such an acrylic polymer include those described in JP-B-55-27576, JP-A-6-80739, and JP-A-49-23292.
 ゴム成分にエチレン性不飽和単量体をグラフト重合させたグラフト共重合体は、ゴム成分由来の単量体単位を5~80重量%含有する(したがって、エチレン性不飽和単量体単位を95~20重量%含有する)ことが好ましい。ゴム成分として、たとえばポリブタジエンゴム、アクリロニトリル/ブタジエン共重合体ゴム、スチレン/ブタジエン共重合体ゴムなどのジエン系ゴム;ポリブチルアクリレート、ポリプロピルアクリレート、ポリ-2-エチルヘキシルアクリレートなどのアクリル系ゴム;およびエチレン/プロピレン/非共役ジエン系ゴム等を用いることができる。ゴム成分として、2種以上の成分を使用してもよい。エチレン性不飽和単量体としては、スチレン、アクリロニトリル、アルキル(メタ)アクリレートなどが挙げられ、なかでもアクリロニトリル、アルキル(メタ)アクリレートなどのアクリル系不飽和単量体が好ましく用いられる。かかるグラフト共重合体として、特開昭55-147514号公報や特公昭47-9740号公報に記載のものを用いることができる。 A graft copolymer obtained by graft-polymerizing an ethylenically unsaturated monomer to a rubber component contains 5 to 80% by weight of monomer units derived from the rubber component (therefore, 95% of ethylenically unsaturated monomer units are contained). It is preferably contained in an amount of about 20% by weight. Examples of rubber components include diene rubbers such as polybutadiene rubber, acrylonitrile / butadiene copolymer rubber, and styrene / butadiene copolymer rubber; acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and poly-2-ethylhexyl acrylate; and Ethylene / propylene / non-conjugated diene rubber can be used. As the rubber component, two or more components may be used. Examples of the ethylenically unsaturated monomer include styrene, acrylonitrile, and alkyl (meth) acrylate, and among them, acrylic unsaturated monomers such as acrylonitrile and alkyl (meth) acrylate are preferably used. As such graft copolymers, those described in JP-A-55-147514 and JP-B-47-9740 can be used.
 透明性樹脂(a)としては、上記のなかでも、透明性が高いという理由から、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、スチレン系樹脂にゴム状重合体を含有させた樹脂組成物、芳香族ポリカーボネート樹脂を好ましく用いることができる。また、透明性樹脂(b)としては、上記のなかでも、透明性が高く、拡散光が着色しにくいという理由から、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、芳香族ポリカーボネート樹脂、脂環構造含有エチレン性不飽和単量体単位を含有する樹脂を好ましく用いることができる。透明性樹脂(a)および透明性樹脂(b)には、これら好ましい樹脂の中から1種の樹脂のみを用いてもよいし、2種以上を併用してもよい。 As the transparent resin (a), among the above, because of high transparency, a methyl methacrylate resin, a resin composition containing a methyl methacrylate resin and a rubbery polymer, a styrene resin, A resin composition in which a rubber-like polymer is contained in a styrene resin or an aromatic polycarbonate resin can be preferably used. The transparent resin (b) includes a rubbery polymer in a methyl methacrylate resin or a methyl methacrylate resin because of the high transparency and difficulty in coloring diffused light. A resin composition, a styrene resin, an aromatic polycarbonate resin, or a resin containing an alicyclic structure-containing ethylenically unsaturated monomer unit can be preferably used. In the transparent resin (a) and the transparent resin (b), only one kind of resin among these preferable resins may be used, or two or more kinds may be used in combination.
 次に、樹脂層(A)に分散される光拡散剤について説明する。本発明において、光拡散剤には、樹脂層(A)に光拡散機能を付与するために、透明性樹脂(a)と屈折率の異なる無機系または有機系の透明粒子が用いられる。光拡散剤の具体例は、炭酸カルシウム、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、硝子、タルク、マイカ、ホワイトカーボン、酸化マグネシウム、酸化亜鉛等の無機粒子、およびこれら無機粒子に脂肪酸等で表面処理を施したもの;架橋または高分子量スチレン系樹脂粒子、架橋または高分子量アクリル系樹脂粒子、架橋シロキサン系樹脂粒子等の樹脂粒子などを含む。なお、ここで言う「架橋」樹脂粒子とは、アセトン中に溶解させた時のゲル分率が10%以上である樹脂粒子のことを指し、「高分子量」樹脂粒子とは、重量平均分子量(Mw)が50万~500万の樹脂粒子のことを指している。 Next, the light diffusing agent dispersed in the resin layer (A) will be described. In the present invention, for the light diffusing agent, inorganic or organic transparent particles having a refractive index different from that of the transparent resin (a) are used in order to impart a light diffusing function to the resin layer (A). Specific examples of the light diffusing agent include calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, silica, glass, talc, mica, white carbon, magnesium oxide, zinc oxide, and other inorganic particles, and fatty acids in these inorganic particles. Surface-treated ones; including resin particles such as crosslinked or high molecular weight styrene resin particles, crosslinked or high molecular weight acrylic resin particles, and crosslinked siloxane resin particles. As used herein, “crosslinked” resin particles refer to resin particles having a gel fraction of 10% or more when dissolved in acetone, and “high molecular weight” resin particles are weight average molecular weights ( Mw) refers to resin particles having 500,000 to 5,000,000.
 高分子量スチレン系樹脂粒子とは、スチレン系単量体を重合して得られる高分子量の樹脂粒子、またはスチレン系単量体単位を50重量%以上含み、スチレン系単量体と、ラジカル重合可能な二重結合を分子内に1個有する単量体とを重合して得られる高分子量の樹脂粒子を意味する。また、架橋スチレン系樹脂粒子とは、スチレン系単量体と、ラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とを重合して得られる架橋樹脂粒子、またはスチレン系単量体単位を50重量%以上含み、スチレン系単量体と、ラジカル重合可能な二重結合を分子内に1個有する単量体と、ラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とを重合して得られる架橋樹脂粒子を意味する。 High molecular weight styrene resin particles are high molecular weight resin particles obtained by polymerizing styrene monomers, or contain 50% by weight or more of styrene monomer units, and can be radically polymerized with styrene monomers. It means high molecular weight resin particles obtained by polymerizing a monomer having one double bond in the molecule. Cross-linked styrene resin particles are cross-linked resin particles obtained by polymerizing a styrene monomer and a monomer having at least two radically polymerizable double bonds in the molecule, or styrene-based single particles. Containing at least 50% by weight of a monomer unit, a styrene monomer, a monomer having one radical polymerizable double bond in the molecule, and at least two radical polymerizable double bonds in the molecule It means a crosslinked resin particle obtained by polymerizing a monomer having the same.
 上記スチレン系単量体とは、スチレンまたはその誘導体である。スチレン誘導体としては、クロロスチレン、ブロムスチレン等のハロゲン化スチレン;ビニルトルエン、α-メチルスチレン等のアルキル置換スチレンが挙げられるが、これらに限定されるものではない。スチレン系単量体は2種類以上併用してもよい。 The styrene monomer is styrene or a derivative thereof. Styrene derivatives include, but are not limited to, halogenated styrenes such as chlorostyrene and bromostyrene; and alkyl-substituted styrenes such as vinyltoluene and α-methylstyrene. Two or more styrenic monomers may be used in combination.
 上記架橋または高分子量スチレン系樹脂粒子を構成し得るラジカル重合可能な二重結合を分子内に1個有する単量体は、上記スチレン系単量体成分以外であれば特に制限はないが、たとえば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシルおよびメタクリル酸2-ヒドロキシエチル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシルおよびアクリル酸2-ヒドロキシエチル等のアクリル酸エステル類;ならびにアクリロニトリルなどを含む。これらの中でも、特にメタクリル酸メチル等のアルキルメタアクリレート類が好ましい。これら単量体は2種類以上併用してもよい。 The monomer having one radically polymerizable double bond in the molecule that can constitute the crosslinked or high molecular weight styrene resin particles is not particularly limited as long as it is other than the styrene monomer component. , Methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate and 2-hydroxyethyl methacrylate; methyl acrylate, acrylic acid Acrylic esters such as ethyl, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate; and acrylonitrile. Among these, alkyl methacrylates such as methyl methacrylate are particularly preferable. Two or more of these monomers may be used in combination.
 上記架橋または高分子量スチレン系樹脂粒子を構成し得るラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体としては、共役ジエン以外であって、上記スチレン系単量体および/または上記ラジカル重合可能な二重結合を分子内に1個有する単量体と共重合可能な重合体であれば特に制限はない。このような単量体としては、たとえば、1,4-ブタンジオールジ(メタ)アクリレートおよびネオペンチルグリコールジ(メタ)アクリレート等のアルキルジオールジ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレートおよびテトラプロピレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート類;ジビニルベンゼンおよびジアリルフタレート等の芳香族多官能化合物;トリメチロールプロパントリ(メタ)アクリレートおよびペンタエリスリトールテトラ(メタ)アクリレート等の多価アルコールの(メタ)アクリレート類が挙げられる。これらの単量体は2種類以上併用してもよい。 The monomer having at least two radically polymerizable double bonds capable of constituting the crosslinked or high molecular weight styrenic resin particles in the molecule is other than a conjugated diene, and the styrenic monomer and / or There is no particular limitation as long as the polymer is copolymerizable with a monomer having one radical-polymerizable double bond in the molecule. Examples of such monomers include alkyl diol di (meth) acrylates such as 1,4-butanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate; ethylene glycol di (meth) acrylate, Alkylene glycol di (meth) acrylates such as diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate and tetrapropylene glycol di (meth) acrylate; divinylbenzene and diallyl phthalate Aromatic polyfunctional compounds; (meth) acrylates of polyhydric alcohols such as trimethylolpropane tri (meth) acrylate and pentaerythritol tetra (meth) acrylate It is. Two or more of these monomers may be used in combination.
 また、高分子量アクリル系樹脂粒子とは、アクリル系単量体を重合して得られる高分子量の樹脂粒子、またはアクリル系単量体単位を50重量%以上含み、アクリル系単量体と、ラジカル重合可能な二重結合を分子内に1個有する単量体とを重合して得られる高分子量の樹脂粒子を意味する。また、架橋アクリル系樹脂粒子とは、アクリル系単量体と、ラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とを重合して得られる架橋樹脂粒子、またはアクリル系単量体単位を50重量%以上含み、アクリル系単量体と、ラジカル重合可能な二重結合を分子内に1個有する単量体と、ラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とを重合して得られる架橋樹脂粒子を意味する。 The high molecular weight acrylic resin particles are high molecular weight resin particles obtained by polymerizing an acrylic monomer, or contain 50% by weight or more of an acrylic monomer unit. It means high molecular weight resin particles obtained by polymerizing a monomer having one polymerizable double bond in the molecule. Cross-linked acrylic resin particles are cross-linked resin particles obtained by polymerizing acrylic monomers and monomers having at least two double bonds capable of radical polymerization in the molecule, or acrylic single particles. Containing at least 50% by weight of a monomer unit, an acrylic monomer, a monomer having one radical polymerizable double bond in the molecule, and at least two radical polymerizable double bonds in the molecule It means a crosslinked resin particle obtained by polymerizing a monomer having the same.
 上記アクリル系単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、メタクリル酸およびアクリル酸等を挙げることができる。これらの単量体は2種以上併用してもよい。 Examples of the acrylic monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, methyl acrylate, Examples include ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methacrylic acid, and acrylic acid. Two or more of these monomers may be used in combination.
 上記架橋または高分子量アクリル系樹脂粒子を構成し得るラジカル重合可能な二重結合を分子内に1個有する単量体としては、上記アクリル系単量体成分以外であれば特に制限はないが、たとえばスチレンおよびその誘導体を挙げることができる。スチレン誘導体としては、クロロスチレン、ブロムスチレン等のハロゲン化スチレン;ビニルトルエン、α-メチルスチレン等のアルキル置換スチレンなどが挙げられる。これらの中でも特にスチレンが好ましい。なお、これらの単量体は2種類以上併用してもよい。 The monomer having one radical polymerizable double bond in the molecule that can constitute the crosslinked or high molecular weight acrylic resin particles is not particularly limited as long as it is other than the acrylic monomer component. For example, styrene and its derivatives can be mentioned. Examples of the styrene derivative include halogenated styrene such as chlorostyrene and bromostyrene; alkyl-substituted styrene such as vinyltoluene and α-methylstyrene. Of these, styrene is particularly preferable. Two or more of these monomers may be used in combination.
 上記架橋または高分子量アクリル系樹脂粒子を構成し得るラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とは、共役ジエン以外であって、上記アクリル系単量体および/または上記ラジカル重合可能な二重結合を分子内に1個有する単量体と共重合可能な重合体であれば特に制限はなく、先述した単量体を具体例として挙げることができる。 The monomer having at least two radically polymerizable double bonds capable of constituting the crosslinked or high molecular weight acrylic resin particles in the molecule is other than a conjugated diene, and the acrylic monomer and / or The polymer is not particularly limited as long as it is a polymer copolymerizable with a monomer having one radical-polymerizable double bond in the molecule, and the above-described monomers can be given as specific examples.
 架橋または高分子量のスチレン系樹脂粒子およびアクリル系樹脂粒子はともに、上記構成成分を懸濁重合法、ミクロ懸濁重合法、乳化重合法、分散重合法等の方法により重合することにより得ることができる。 Both crosslinked or high molecular weight styrene resin particles and acrylic resin particles can be obtained by polymerizing the above components by a method such as a suspension polymerization method, a micro suspension polymerization method, an emulsion polymerization method, or a dispersion polymerization method. it can.
 架橋シロキサン樹脂粒子を構成する架橋シロキサン系樹脂(架橋シロキサン系重合体)とは、一般的にシリコーンゴムまたはシリコーンレジンと呼称されるものであり、常温で固体状のものである。シロキサン系の重合体は、主にクロロシランの加水分解と縮合によって製造される。たとえば、ジメチルジクロロシラン、ジフェニルジクロロシラン、フェニルメチルジクロロシラン、メチルトリクロロシラン、フェニルトリクロロシランに代表されるクロロシラン類を加水分解し縮合することにより、(架橋)シロキサン系重合体が得られる。さらに、シロキサン系重合体は、これらの(架橋)シロキサン系重合体を過酸化ベンゾイル、過酸化-2,4-ジクロルベンゾイル、過酸化-p-クロルベンゾイル、過酸化ジキュミル、過酸化ジ-t-ブチル、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン等の過酸化物により架橋させたり、ポリシロキサン化合物の末端にシラノール基を導入し、アルコキシシラン類と縮合架橋させたりすることによっても製造することができる。本発明において好ましく用いられる架橋シロキサン系樹脂としては、珪素原子1個あたりに有機基が2~3個結合した架橋シロキサン系重合体を挙げることができる。 The crosslinked siloxane-based resin (crosslinked siloxane-based polymer) constituting the crosslinked siloxane resin particles is generally referred to as silicone rubber or silicone resin and is solid at room temperature. Siloxane polymers are produced mainly by hydrolysis and condensation of chlorosilanes. For example, a (crosslinked) siloxane-based polymer can be obtained by hydrolyzing and condensing chlorosilanes represented by dimethyldichlorosilane, diphenyldichlorosilane, phenylmethyldichlorosilane, methyltrichlorosilane, and phenyltrichlorosilane. Further, the siloxane polymers are obtained by converting these (crosslinked) siloxane polymers into benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-chlorobenzoyl peroxide, dicumyl peroxide, di-toxide peroxide. -Crosslinking with peroxides such as butyl, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, or introducing silanol groups at the end of polysiloxane compounds, condensation crosslinking with alkoxysilanes Can also be manufactured. Examples of the crosslinked siloxane-based resin preferably used in the present invention include a crosslinked siloxane-based polymer in which 2 to 3 organic groups are bonded per silicon atom.
 架橋シロキサン系樹脂を粒子状とするには、上記架橋シロキサン系重合体を機械的に微粉砕する方法、特開昭59-68333号公報に記載されるように、特定の線状オルガノシロキサンブロックを含有する硬化性重合体もしくは硬化性重合体組成物を噴霧状態で硬化させて球状粒子を得る方法、および特開昭60-13813号公報に記載されるように、特定のアルキルトリアルコキシシランまたはその部分加水分解縮合物を、アンモニアまたはアミン類の水溶液中で、加水分解・縮合させて球状粒子とする方法等が利用できる。 In order to form the crosslinked siloxane-based resin in the form of particles, a method of mechanically pulverizing the above-mentioned crosslinked siloxane-based polymer, as described in JP-A-59-68333, a specific linear organosiloxane block is used. A method for obtaining spherical particles by curing a curable polymer or a curable polymer composition contained therein in a sprayed state, and a specific alkyltrialkoxysilane or a compound thereof as described in JP-A-60-13813 A method of hydrolyzing and condensing the partially hydrolyzed condensate in an aqueous solution of ammonia or amines to form spherical particles can be used.
 本発明において用いられる光拡散剤の屈折率は、基材となる透明性樹脂(a)との屈折率との差の絶対値Rが0.01~0.13であることが好ましく、0.01~0.05であることがより好ましい。Rがこの範囲内にあると、光透過性と光拡散性とのバランスが良くなるためである。したがって、Rがこの範囲内となるように、透明性樹脂(a)および光拡散剤の構成材料の組み合わせを選択することが好ましい。 The refractive index of the light diffusing agent used in the present invention is preferably such that the absolute value R of the difference from the refractive index of the transparent resin (a) as the substrate is 0.01 to 0.13, A more preferred range is 01 to 0.05. This is because when R is within this range, the balance between light transmittance and light diffusibility is improved. Therefore, it is preferable to select a combination of the constituent materials of the transparent resin (a) and the light diffusing agent so that R is within this range.
 架橋または高分子量スチレン系樹脂粒子の屈折率は、これを構成するスチレン系重合体の構成成分によって変化するが、通常1.53~1.61程度である。一般的に、フェニル基を有する単量体の含有量が多いほど、またハロゲン化された単量体が多く含まれるほど、屈折率が上がる傾向がある。架橋または高分子量アクリル系樹脂粒子の屈折率は、これを構成するアクリル系重合体の構成成分によって変化するが、通常1.46~1.55程度である。当該アクリル系樹脂粒子の場合においても、一般的にフェニル基を有する単量体の含有量が多いほど、またハロゲン化された単量体が多く含まれるほど、屈折率が上がる傾向がある。また、架橋シロキサン系樹脂粒子の屈折率は、これを構成する架橋シロキサン系重合体の構成成分によって変化するが、通常1.40~1.47程度である。一般的に、該架橋シロキサン系重合体中のフェニル基含有量が多いほど、また珪素原子に直結した有機基が多くなるほど、屈折率が上がる傾向がある。 The refractive index of the crosslinked or high molecular weight styrene resin particles varies depending on the constituent components of the styrene polymer constituting the crosslinked or high molecular weight styrene resin particles, but is usually about 1.53 to 1.61. Generally, the refractive index tends to increase as the content of the monomer having a phenyl group increases or as the amount of halogenated monomer increases. The refractive index of the crosslinked or high molecular weight acrylic resin particles varies depending on the constituent components of the acrylic polymer constituting the crosslinked polymer resin particles, but is usually about 1.46 to 1.55. In the case of the acrylic resin particles, generally, the refractive index tends to increase as the content of the monomer having a phenyl group increases and as the amount of the halogenated monomer increases. The refractive index of the crosslinked siloxane-based resin particles varies depending on the constituent components of the crosslinked siloxane-based polymer constituting the crosslinked siloxane-based resin particles, but is usually about 1.40 to 1.47. In general, the higher the phenyl group content in the crosslinked siloxane-based polymer and the more organic groups directly connected to silicon atoms, the higher the refractive index.
 本発明において用いられる光拡散剤の粒子径は、その重量平均が1~20μmであり、なかでも2~15μmであることが好ましい。重量平均粒子径が1μm未満であると、透けが発生しやすい。また、重量平均粒子径が20μmを超えると、光拡散性積層樹脂フィルムにおける透明樹脂層(B)の表面平滑性が不十分となる傾向がある。すなわち、重量平均粒子径が20μmを超える光拡散剤を樹脂層(A)に用いると、樹脂層(A)の表面凹凸形状に影響を受けて、樹脂層(A)上に形成された透明樹脂層(B)の表面(樹脂層(A)側とは反対側の表面)の平滑性が低下し、透明樹脂層(B)の当該表面への貼合や塗工等の加工を適切に行なうことができず、その結果、当該加工による十分な特性付与を行なえない場合がある。 The particle size of the light diffusing agent used in the present invention is 1 to 20 μm in weight average, and preferably 2 to 15 μm. If the weight average particle diameter is less than 1 μm, the see-through tends to occur. Moreover, when a weight average particle diameter exceeds 20 micrometers, there exists a tendency for the surface smoothness of the transparent resin layer (B) in a light diffusable laminated resin film to become inadequate. That is, when a light diffusing agent having a weight average particle diameter of more than 20 μm is used for the resin layer (A), the transparent resin formed on the resin layer (A) is affected by the uneven surface shape of the resin layer (A). The smoothness of the surface of the layer (B) (the surface opposite to the resin layer (A) side) is lowered, and the transparent resin layer (B) is appropriately bonded to the surface or subjected to processing such as coating. As a result, there is a case where sufficient characteristics cannot be imparted by the processing.
 樹脂層(A)に含有される光拡散剤の量は、樹脂層(A)の基材である透明性樹脂(a)100重量部に対して、5~40重量部であることが好ましく、より好ましくは5~30重量部、さらに好ましくは7~20重量部である。光拡散剤の量が透明性樹脂(a)100重量部に対して5重量部未満であると、透けが発生しやすくなる。また、光拡散剤の量が透明性樹脂(a)100重量部に対して40重量部を超えると、上記と同様に、光拡散性積層樹脂フィルムにおける透明樹脂層(B)の表面平滑性が不十分となる傾向があり、また樹脂層(A)が脆くなり加工しにくくなる傾向がある。 The amount of the light diffusing agent contained in the resin layer (A) is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the transparent resin (a) that is the base material of the resin layer (A). The amount is more preferably 5 to 30 parts by weight, still more preferably 7 to 20 parts by weight. When the amount of the light diffusing agent is less than 5 parts by weight with respect to 100 parts by weight of the transparent resin (a), the transparency tends to occur. When the amount of the light diffusing agent exceeds 40 parts by weight with respect to 100 parts by weight of the transparent resin (a), the surface smoothness of the transparent resin layer (B) in the light diffusing laminated resin film is similar to the above. It tends to be insufficient, and the resin layer (A) tends to become brittle and difficult to process.
 透明性樹脂(a)に光拡散剤を分散させる方法としては、一般的な方法を採用することができ、たとえば押出機に透明性樹脂(a)および光拡散剤を加え、溶融混練する方法等を用いることができる。樹脂層(A)には、光拡散剤の他に、紫外線吸収剤、酸化防止剤、難燃剤、ならびに染料および顔料などの着色剤などが添加されてもよい。また、透明樹脂層(B)についても、その透明性や表面平滑性を損なわない限り、樹脂層(A)と同様の添加剤を添加してもよい。 As a method of dispersing the light diffusing agent in the transparent resin (a), a general method can be adopted, for example, a method of adding the transparent resin (a) and the light diffusing agent to an extruder, and melt-kneading, etc. Can be used. In addition to the light diffusing agent, a UV absorber, an antioxidant, a flame retardant, and a colorant such as a dye and a pigment may be added to the resin layer (A). Moreover, you may add the same additive as a resin layer (A) also about a transparent resin layer (B), unless the transparency and surface smoothness are impaired.
 本発明の光拡散性積層樹脂フィルムは、上記のような構成の樹脂層(A)と、樹脂層(A)の両面に積層された透明樹脂層(B)とを備える。第1の透明樹脂層(B)、樹脂層(A)および第2の透明樹脂層(B)がこの順で配置された3層構造とすることにより、樹脂層(A)の一方の表面の凹凸が第2の透明樹脂層(B)によって埋められることとなり、これにより、当該凹凸が他方の表面に積層された第1の透明樹脂層(B)の表面(樹脂層(A)側とは反対側の表面)に影響を及ぼさなくなるため、片面にのみ透明樹脂層(B)を配置する場合よりも透明樹脂層(B)の表面が平滑なフィルムを得ることが可能となる。 The light diffusing laminated resin film of the present invention includes the resin layer (A) having the above-described configuration and a transparent resin layer (B) laminated on both surfaces of the resin layer (A). By adopting a three-layer structure in which the first transparent resin layer (B), the resin layer (A), and the second transparent resin layer (B) are arranged in this order, one surface of the resin layer (A) The unevenness is filled with the second transparent resin layer (B), whereby the surface of the first transparent resin layer (B) in which the unevenness is laminated on the other surface (the resin layer (A) side is Therefore, it is possible to obtain a film having a smooth surface of the transparent resin layer (B) as compared with the case where the transparent resin layer (B) is disposed only on one side.
 本発明の光拡散性積層樹脂フィルムは、その厚みが30~500μmであり、好ましくは、40~200μm、さらに好ましくは50~150μmである。厚みが30μm未満であると、透明樹脂層(B)の表面平滑性が失われやすく、500μmを超えると、フィルムとして取り扱うことが困難となる。 The thickness of the light diffusing laminated resin film of the present invention is 30 to 500 μm, preferably 40 to 200 μm, more preferably 50 to 150 μm. If the thickness is less than 30 μm, the surface smoothness of the transparent resin layer (B) tends to be lost, and if it exceeds 500 μm, it becomes difficult to handle as a film.
 また本発明において、光拡散性積層樹脂フィルムの厚みのうち、樹脂層(A)の厚みが占める割合は、5%以上50%未満とされ、好ましくは10%以上50%未満、より好ましくは30%以上50%未満とされる。樹脂層(A)の厚みをこのような範囲に制御することにより、透明樹脂層(B)が光拡散性積層樹脂フィルムの表面(すなわち、透明樹脂層(B)の表面)に優れた表面平滑性を付与するのに十分な厚みをもつことができる。樹脂層(A)の厚みが、光拡散性積層樹脂フィルムの厚みの50%以上を占める程度にまで厚くなると、共押出成形により光拡散性積層樹脂フィルムを作製した場合、透明樹脂層(B)の表面は、樹脂層(A)の表面凹凸に追随して凹凸を生じ、十分な平滑性を示すことができない。また、樹脂層(A)の厚みが光拡散性積層樹脂フィルムの5%未満であると、光拡散性積層樹脂フィルム全体の厚みを好適な範囲としつつ十分な光拡散性を示すことができないという問題がある。 In the present invention, the ratio of the thickness of the resin layer (A) in the thickness of the light diffusing laminated resin film is 5% or more and less than 50%, preferably 10% or more and less than 50%, more preferably 30. % Or more and less than 50%. By controlling the thickness of the resin layer (A) in such a range, the transparent resin layer (B) is excellent in surface smoothness on the surface of the light diffusing laminated resin film (that is, the surface of the transparent resin layer (B)). It can have a thickness sufficient to impart properties. When the thickness of the resin layer (A) becomes thick enough to account for 50% or more of the thickness of the light diffusable laminated resin film, when the light diffusable laminated resin film is produced by coextrusion, the transparent resin layer (B) The surface of the surface follows the surface unevenness of the resin layer (A) to generate unevenness and cannot exhibit sufficient smoothness. In addition, if the thickness of the resin layer (A) is less than 5% of the light diffusing laminated resin film, sufficient light diffusibility cannot be exhibited while keeping the thickness of the entire light diffusing laminated resin film within a suitable range. There's a problem.
 本発明の光拡散性積層樹脂フィルムにおいて、少なくとも1つの透明樹脂層(B)における、樹脂層(A)側とは反対側の表面の、JIS B0601-2001に準拠した算術平均粗さRaは、0~0.5μmであることが好ましい。透明樹脂層(B)表面の算術平均粗さRaをこの範囲内にすることにより、当該表面の加工性がより良好になるとともに、加工前後における光学特性(特には、光散乱特性)の変化をより低減することができる。また、両面の透明樹脂層(B)表面のRa値を0~0.5μmとすることがより好ましい。これにより、光拡散性積層フィルムの両方を有効に活用することができる。 In the light diffusing laminated resin film of the present invention, in at least one of the transparent resin layer (B), the surface opposite to the resin layer (A) side, an arithmetic mean roughness R a in conformity to JIS B0601-2001 is 0 to 0.5 μm is preferable. By transparent resin layer (B) arithmetic mean roughness R a of the surface within this range, the workability of the surface becomes better, processability (in particular, light scattering characteristics) optical properties before and after the change in Can be further reduced. Further, it is more preferable that the Ra value of the surfaces of the transparent resin layers (B) on both sides is 0 to 0.5 μm. Thereby, both of a light diffusable laminated film can be utilized effectively.
 また、少なくとも1つの透明樹脂層(B)における、樹脂層(A)側とは反対側の表面の、JIS B0601-2001に準拠した最大粗さ(Rz)は、0~2.5μmであることが好ましく、RzのRaに対する比(Rz/Ra)は、1~5の範囲であることがより好ましい。最大粗さ(Rz)をこのような範囲に設定することにより、凹凸の大きさのバラツキが小さくなるため、透明樹脂層(B)表面の加工(たとえば、樹脂の塗工やフィルムの貼合など)時における欠陥の発生をより効果的に抑制できる。 In addition, the maximum roughness (R z ) according to JIS B0601-2001 of the surface on the side opposite to the resin layer (A) side in at least one transparent resin layer (B) is 0 to 2.5 μm. it is preferred, the ratio R a of R z (R z / R a ) is more preferably in the range of 1-5. By setting the maximum roughness (R z ) in such a range, the unevenness of the unevenness is reduced, so that processing of the surface of the transparent resin layer (B) (for example, resin coating or film bonding) Etc.) can be more effectively suppressed.
 次に、本発明の光拡散性積層樹脂フィルムの製造方法について説明する。本発明の光拡散性積層樹脂フィルムの製造には共押出成形法が用いられる。すなわち、樹脂層(A)の構成成分(透明性樹脂(a)、光拡散剤および必要に応じて添加される添加剤)と透明樹脂層(B)の構成成分(透明性樹脂(b)および必要に応じて添加される添加剤)とを、それぞれ別の押出機に投入し、加熱して溶融混練しながら、共押出成形用のダイから押出すことにより、樹脂層(A)に相当する樹脂フィルムと透明樹脂層(B)に相当する樹脂フィルムとが積層一体化された積層フィルムが成形される。共押出成形後の当該積層フィルムをロールユニット(成形用ロール装置)の冷却ロール間に挟みこんで冷却するとともに、得られる光拡散性積層樹脂フィルムの厚みおよび樹脂層(A)の厚みが光拡散性積層樹脂フィルムの厚みに占める割合が上記範囲内となるように成形を行なうことにより、光拡散性積層樹脂フィルムが得られる。押出機としては、一軸押出機、二軸押出機などを用いることができ、ダイとしては、フィードブロックダイ、マルチマニホールドダイなどを用いることができる。このように、共押出成形により作製された本発明の光拡散性積層樹脂フィルムは、たとえば接着剤や粘着剤等を介して積層された積層樹脂フィルムとは異なり、樹脂層(A)の一方の表面と透明樹脂層(B)表面および樹脂層(A)の他方の表面と透明樹脂層(B)表面とは直接接触した状態で積層されている。 Next, a method for producing the light diffusing laminated resin film of the present invention will be described. A coextrusion molding method is used for the production of the light diffusing laminated resin film of the present invention. That is, the constituent components of the resin layer (A) (transparent resin (a), light diffusing agent and additives added as necessary) and the constituent components of the transparent resin layer (B) (transparent resin (b) and Additives added as necessary) are respectively put into different extruders, heated and melt-kneaded and extruded from a die for coextrusion molding, thereby corresponding to the resin layer (A). A laminated film in which the resin film and the resin film corresponding to the transparent resin layer (B) are laminated and integrated is formed. The laminated film after coextrusion molding is cooled by sandwiching it between cooling rolls of a roll unit (molding roll device), and the thickness of the resulting light-diffusing laminated resin film and the thickness of the resin layer (A) are light diffusion. The light diffusing laminated resin film can be obtained by molding so that the proportion of the thickness of the diffusing laminated resin film is within the above range. As the extruder, a single screw extruder, a twin screw extruder, or the like can be used. As the die, a feed block die, a multi-manifold die, or the like can be used. Thus, the light diffusing laminated resin film of the present invention produced by coextrusion molding is different from the laminated resin film laminated through, for example, an adhesive or a pressure-sensitive adhesive, and one of the resin layers (A). The surface, the surface of the transparent resin layer (B), the other surface of the resin layer (A), and the surface of the transparent resin layer (B) are laminated in direct contact.
 ここで本発明においては、上記積層フィルムを挟み込む冷却ロールの少なくとも1つとして、弾性ロールを用いる。少なくとも1方が弾性ロールである冷却ロール間に共押出された積層フィルムを挟み込み、積層フィルムの少なくとも片面を当該弾性ロールに接触させた状態で狭圧して成形を行なうことにより、少なくとも片面の透明樹脂層(B)の表面平滑性に優れた光拡散性積層樹脂フィルムを得ることができる。積層フィルムを挟み込む双方の冷却ロールを弾性ロールとすれば、両面の透明樹脂層(B)の表面平滑性に優れた光拡散性積層樹脂フィルムを得ることが可能である。本発明によれば、透明樹脂層(B)表面の算術平均粗さRaおよび最大粗さRzが上記範囲内に制御された光拡散性積層樹脂フィルムを得ることが可能であり、また、たとえば直径数百μmオーダーの比較的大きな凹みの発生を抑制または防止することができる。透明樹脂層(B)表面に形成され得る、このような比較的大きな凹みは、算術平均粗さRaおよび最大粗さRzの測定によっては評価できない場合があるが、当該凹みの有無は、たとえば共焦点顕微鏡を用いるか、または、目視により確認することが可能である。 Here, in the present invention, an elastic roll is used as at least one of the cooling rolls sandwiching the laminated film. At least one side of transparent resin is formed by sandwiching a co-extruded laminated film between cooling rolls, at least one of which is an elastic roll, and forming by pressing at least one side of the laminated film in contact with the elastic roll. A light diffusing laminated resin film excellent in surface smoothness of the layer (B) can be obtained. If both cooling rolls sandwiching the laminated film are elastic rolls, it is possible to obtain a light diffusing laminated resin film excellent in surface smoothness of the transparent resin layers (B) on both sides. According to the present invention, it is possible to obtain a light diffusing laminated resin film in which the arithmetic average roughness Ra and the maximum roughness Rz of the transparent resin layer (B) surface are controlled within the above ranges, For example, it is possible to suppress or prevent the generation of a relatively large recess having an order of several hundred μm in diameter. Such relatively large dents that can be formed on the surface of the transparent resin layer (B) may not be evaluated by the measurement of the arithmetic average roughness Ra and the maximum roughness Rz . For example, it is possible to confirm using a confocal microscope or visually.
 弾性ロールとしては、たとえば、特許第3194904号公報に記載の金属弾性ロールなどの従来公知のロールを用いることができる。図7は、本発明で用いることができる金属弾性ロールの具体例を示す概略断面図である。図7(a)の金属弾性ロールは、該ロールの外周を形成する、金属製(たとえばステンレス製等)薄膜701aと、金属製薄膜701a内の軸心部に配置された軸ロール702aとを備えており、金属製薄膜701aと軸ロール702aとの間には、水や油等の流体を流通させるための流体用空間703が形成されている。また、図7(b)の金属弾性ロールは、該ロールの外周を形成する、金属製(たとえばステンレス製等)薄膜701bと、金属製薄膜701aの内周に接して形成された軸ロール702bとを備える。この場合、軸ロール702bは、たとえばゴムロール等の弾性材料から構成される。このような金属弾性ロールの外周部(金属製薄膜)は、流体を流通させるための空間または比較的柔らかい材質からなる軸ロールに接しているため、弾性変形が可能となっている。 As the elastic roll, for example, a conventionally known roll such as a metal elastic roll described in Japanese Patent No. 3194904 can be used. FIG. 7 is a schematic cross-sectional view showing a specific example of a metal elastic roll that can be used in the present invention. The metal elastic roll in FIG. 7A includes a metal (for example, stainless steel, etc.) thin film 701a that forms the outer periphery of the roll, and a shaft roll 702a disposed at the axial center of the metal thin film 701a. In addition, a fluid space 703 is formed between the metal thin film 701a and the shaft roll 702a for circulating a fluid such as water or oil. The metal elastic roll of FIG. 7B includes a metal (for example, stainless steel) thin film 701b that forms the outer periphery of the roll, and a shaft roll 702b that is formed in contact with the inner periphery of the metal thin film 701a. Is provided. In this case, the shaft roll 702b is made of an elastic material such as a rubber roll. Since the outer peripheral portion (metal thin film) of such a metal elastic roll is in contact with a space for circulating a fluid or a shaft roll made of a relatively soft material, it can be elastically deformed.
 また、ロールユニットの構成自体も従来公知のものであってよい。たとえば、ロールユニットは、一列に配置された2本の冷却ロールからなっていてもよいし、一列に配置された3本の冷却ロールからなっていてもよいし、あるいは、逆L字型などに配置された3本またはそれ以上の冷却ロールからなっていてもよい。ロールユニットが3本以上の冷却ロールからなる場合においては、少なくとも、共押出された積層フィルムを最初に冷却、成形する1対の冷却ロールのうち少なくとも1つのロールを弾性ロールとする。弾性ロールは、その表面(積層フィルムと接触する面)が鏡面仕上げされたものであることが好ましい。これにより、透明樹脂層(B)の表面平滑性をより向上させることができる。 Also, the configuration of the roll unit itself may be a conventionally known one. For example, the roll unit may consist of two cooling rolls arranged in a row, may consist of three cooling rolls arranged in a row, or may be an inverted L-shape. It may consist of three or more cooling rolls arranged. When the roll unit is composed of three or more cooling rolls, at least one of a pair of cooling rolls that cools and molds the coextruded laminated film first is an elastic roll. The elastic roll preferably has a mirror-finished surface (surface that contacts the laminated film). Thereby, the surface smoothness of a transparent resin layer (B) can be improved more.
 <防眩フィルム>
 本発明の光拡散性積層樹脂フィルムの好適な用途の1つとして、防眩フィルムへの適用を挙げることができる。図1は、本発明の防眩フィルムの好ましい例を示す断面模式図である。図1に示される防眩フィルムは、光拡散性積層樹脂フィルム101と、光拡散性積層樹脂フィルム101表面上に積層された、表面に微細な凹凸形状を有するハードコート層102とを備える。光拡散性積層樹脂フィルム101は、2つの透明樹脂層(B)103と、これら2つの透明樹脂層(B)103の間に配置される樹脂層(A)104との3層構造からなる。樹脂層(A)104には、上記したように、光拡散剤105が分散されている。本発明の光拡散性積層樹脂フィルムを用いることにより、光拡散性積層樹脂フィルムとハードコート層との界面への気泡の侵入や、防眩フィルムの反りが解消または低減され得る。
<Anti-glare film>
One suitable application of the light diffusing laminated resin film of the present invention is application to an antiglare film. FIG. 1 is a schematic cross-sectional view showing a preferred example of the antiglare film of the present invention. The antiglare film shown in FIG. 1 includes a light diffusing laminated resin film 101 and a hard coat layer 102 having a fine concavo-convex shape laminated on the surface of the light diffusing laminated resin film 101. The light diffusing laminated resin film 101 has a three-layer structure including two transparent resin layers (B) 103 and a resin layer (A) 104 disposed between the two transparent resin layers (B) 103. As described above, the light diffusing agent 105 is dispersed in the resin layer (A) 104. By using the light diffusing laminated resin film of the present invention, the invasion of bubbles into the interface between the light diffusing laminated resin film and the hard coat layer and the warpage of the antiglare film can be eliminated or reduced.
 上記好ましい例によって示されるように、本発明の防眩フィルムは、光拡散性積層樹脂フィルムと、該光拡散性積層樹脂フィルム表面上に積層された、微細な凹凸表面を有するハードコート層とを備えている。かかる構成により、内部散乱機能を光拡散性積層樹脂フィルムに持たせる一方、ハードコート層から内部散乱機能を無くすかまたはほぼ無くし、主に表面反射特性のみを付与している。これにより、内部散乱特性と反射特性とを独立に制御することが可能となり、優れた防眩性能を示しながら、白ちゃけによる視認性の低下が防止され、また、高精細の画像表示装置の表面に配置したときに、ギラツキを発生させずに高いコントラストを発現する防眩フィルムとすることができる。 As shown by the above preferred examples, the antiglare film of the present invention comprises a light diffusing laminated resin film and a hard coat layer having a fine irregular surface laminated on the surface of the light diffusing laminated resin film. I have. With this configuration, the light diffusing laminated resin film is provided with an internal scattering function, while the internal scattering function is eliminated or almost eliminated from the hard coat layer, and mainly the surface reflection characteristics are imparted. This makes it possible to control the internal scattering characteristics and the reflection characteristics independently, while preventing the deterioration of visibility due to whitishness while exhibiting excellent anti-glare performance, and for high-definition image display devices. When arranged on the surface, the antiglare film can exhibit high contrast without causing glare.
 防眩フィルムに用いられる光拡散性積層樹脂フィルムの内部ヘイズは、5%以上とすることが好ましく、より好ましくは10%以上である。内部ヘイズを5%以上にすることにより、ギラツキを解消することができ、10%以上とすることにより、より効果的にギラツキを解消することができる。また、光拡散性積層樹脂フィルムの内部ヘイズは30%以下である。光拡散性積層樹脂フィルムの内部ヘイズが30%を上回ると、画像表示装置に適用したときに、結果として画面が暗くなり、視認性が損なわれる傾向にある。十分な明るさを確保するためには、内部ヘイズを20%以下とすることが好ましい。なお、後で詳細を説明するように、本発明の防眩フィルムでは、散乱によるギラツキ防止能を光拡散性積層樹脂フィルムに持たせているため、微細凹凸形状を有するハードコート層の内部ヘイズは、本質的には不必要であり、内部散乱特性と反射特性とを独立に制御するためには、ハードコート層の内部ヘイズは、実質的にゼロとすることが好ましい。 The internal haze of the light diffusing laminated resin film used for the antiglare film is preferably 5% or more, more preferably 10% or more. By setting the internal haze to 5% or more, glare can be eliminated, and by setting it to 10% or more, glare can be more effectively eliminated. The internal haze of the light diffusing laminated resin film is 30% or less. If the internal haze of the light diffusing laminated resin film exceeds 30%, when applied to an image display device, the screen becomes dark as a result, and the visibility tends to be impaired. In order to ensure sufficient brightness, the internal haze is preferably 20% or less. As will be described in detail later, in the antiglare film of the present invention, since the light diffusing laminated resin film has an antiglare property due to scattering, the internal haze of the hard coat layer having a fine uneven shape is It is essentially unnecessary, and in order to independently control the internal scattering characteristics and the reflection characteristics, it is preferable that the internal haze of the hard coat layer is substantially zero.
 ここで、光拡散性積層樹脂フィルムの「内部ヘイズ」とは、光拡散性積層樹脂フィルムの一方の面を光学的に透明な粘着剤またはグリセリンを用いてガラス基板に貼合し、続いてもう一方の面にヘイズがほぼ0であるトリアセチルセルロースフィルムを光学的に透明な粘着剤またはグリセリンを用いて貼合し、該ガラス基板とトリアセチルセルロースフィルムで挟持された光拡散性積層樹脂フィルムについて、JIS K 7136に示される方法に準拠して測定されたヘイズと定義される。このように、ガラス基板とトリアセチルセルロースフィルムとで挟持されることにより、光拡散性積層樹脂フィルムの反りが防止されるとともに、光拡散性積層樹脂フィルムの表面形状に起因するヘイズが考慮されなくなるため、光拡散性積層樹脂フィルムの内部ヘイズが測定されることとなる。 Here, the “inner haze” of the light diffusing laminated resin film refers to bonding one surface of the light diffusing laminated resin film to a glass substrate using an optically transparent adhesive or glycerin, and then A light diffusing laminated resin film in which a triacetyl cellulose film having a haze of approximately 0 is bonded to one surface using an optically transparent adhesive or glycerin and sandwiched between the glass substrate and the triacetyl cellulose film , Defined as haze measured according to the method shown in JIS K 7136. In this way, by being sandwiched between the glass substrate and the triacetyl cellulose film, warpage of the light diffusing laminated resin film is prevented, and haze due to the surface shape of the light diffusing laminated resin film is not considered. Therefore, the internal haze of the light diffusing laminated resin film is measured.
 具体的には、2つの透明樹脂層によって光拡散層が挟持された3層構造の光拡散性積層樹脂フィルムの内部ヘイズは、光拡散性積層樹脂フィルムの一方の面を光学的に透明な粘着剤を用いてガラス基板に貼合し、続いてもう一方の面にヘイズがほぼ0であるトリアセチルセルロースフィルムを光学的に透明な粘着剤を用いて貼合し、該ガラス基板とトリアセチルセルロースフィルムで挟持された光拡散性積層樹脂フィルムについて、JIS K 7136に準拠したヘイズメーター(たとえば(株)村上色彩技術研究所製のヘイズメーター「HM-150」型)を用いて測定することができる。透明樹脂層とその上に積層された光拡散層とからなる2層構造の光拡散性積層樹脂フィルムの内部ヘイズは、光拡散性積層樹脂フィルムの透明樹脂層側の面を光学的に透明な粘着剤を用いてガラス基板に貼合し、続いて光拡散層側の面にヘイズがほぼ0であるトリアセチルセルロースフィルムをグリセリンを用いて貼合し、該ガラス基板とトリアセチルセルロースフィルムで挟持された光拡散性積層樹脂フィルムについて、JIS K 7136に準拠したヘイズメーター(たとえば(株)村上色彩技術研究所製のヘイズメーター「HM-150」型)を用いて測定することができる。 Specifically, the internal haze of the light diffusing laminated resin film having a three-layer structure in which the light diffusing layer is sandwiched between two transparent resin layers is an optically transparent adhesive on one surface of the light diffusing laminated resin film. A glass substrate and a triacetyl cellulose are bonded to a glass substrate using an adhesive, followed by bonding a triacetyl cellulose film having a haze of almost 0 to the other surface using an optically transparent adhesive. The light diffusing laminated resin film sandwiched between the films can be measured using a haze meter in accordance with JIS K 7136 (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.). . The internal haze of the light diffusing laminated resin film having a two-layer structure composed of the transparent resin layer and the light diffusing layer laminated thereon is optically transparent on the surface of the light diffusing laminated resin film on the transparent resin layer side. Adhering to a glass substrate using an adhesive, followed by adhering a triacetyl cellulose film having a haze of almost 0 to the surface of the light diffusion layer using glycerin, and sandwiching the glass substrate and the triacetyl cellulose film The light diffusing laminated resin film thus obtained can be measured using a haze meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136.
 表面に微細凹凸形状を有するハードコート層は、その表面ヘイズが0.5%以上15%以下、内部ヘイズが2%以下であることが好ましい。上記したように、本発明においては、内部散乱特性と反射特性とを独立に制御するために、内部散乱特性が主に光拡散性積層樹脂フィルムに付与されることから、ハードコート層の内部ヘイズは2%以下であり、好ましくは実質的に0%である。ハードコート層の内部ヘイズが実質的に0%である場合、ハードコート層のヘイズは実質、表面ヘイズのみからなる。ハードコート層の表面ヘイズは、白ちゃけを抑制する観点から、15%以下であることが好ましく、より効果的に白ちゃけを抑えるためには5%以下であることがより好ましい。ただし、0.5%を下回る場合には十分な防眩性を示さない傾向にある。 It is preferable that the hard coat layer having a fine unevenness on the surface has a surface haze of 0.5% to 15% and an internal haze of 2% or less. As described above, in the present invention, in order to control the internal scattering characteristics and the reflection characteristics independently, the internal scattering characteristics are mainly imparted to the light diffusing laminated resin film, so that the internal haze of the hard coat layer is Is 2% or less, preferably substantially 0%. When the internal haze of the hard coat layer is substantially 0%, the haze of the hard coat layer substantially consists of only the surface haze. The surface haze of the hard coat layer is preferably 15% or less from the viewpoint of suppressing whitening, and more preferably 5% or less for more effectively suppressing whitening. However, when it is less than 0.5%, the antiglare property tends not to be exhibited.
 ここで、ハードコート層の表面ヘイズおよび内部ヘイズは、次のようにして測定される。すなわち、まず、ハードコート層をヘイズがほぼ0%であるトリアセチルセルロースフィルム上に形成した後、トリアセチルセルロースフィルム側が接合面となるように、該積層フィルムとガラス基板とを、透明粘着剤を用いて貼合し、JIS K 7136に準拠してヘイズを測定する。当該ヘイズは、ハードコート層全体のヘイズに相当する。次に、ハードコート層の凹凸表面に、ヘイズがほぼ0%であるトリアセチルセルロースフィルムをグリセリンを用いて貼合し、再度JIS K 7136に準拠してヘイズを測定する。当該ヘイズは、表面凹凸に起因する表面ヘイズが表面凹凸上に貼合されたトリアセチルセルロースフィルムによってほぼ打ち消されていることから、ハードコート層の「内部ヘイズ」とみなすことができる。したがって、ハードコート層の「表面ヘイズ」は、下記式(1)より求められる。
表面ヘイズ=全体のヘイズ-内部ヘイズ      (1)
 上記した光学特性を満たす表面凹凸が付与されたハードコート層の作製方法としては、特に制限されず、たとえば、フィラーを分散させた樹脂溶液を光拡散性積層樹脂フィルム上に塗布し、塗布膜厚を調整してフィラーを塗布膜表面に露出させることでランダムな凹凸を形成する方法や表面凹凸を有する金型を用いて、該表面凹凸形状を透明樹脂フィルムに転写するエンボス法などを挙げることができる。
Here, the surface haze and internal haze of the hard coat layer are measured as follows. That is, first, after forming a hard coat layer on a triacetyl cellulose film having a haze of approximately 0%, the laminated film and the glass substrate are bonded with a transparent adhesive so that the triacetyl cellulose film side becomes a bonding surface. The haze is measured according to JIS K 7136. The haze corresponds to the haze of the entire hard coat layer. Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the uneven surface of the hard coat layer using glycerin, and the haze is measured again in accordance with JIS K 7136. The haze can be regarded as “internal haze” of the hard coat layer because the surface haze caused by the surface irregularities is almost canceled by the triacetyl cellulose film bonded onto the surface irregularities. Therefore, the “surface haze” of the hard coat layer is obtained from the following formula (1).
Surface haze = Overall haze-Internal haze (1)
The method for producing the hard coat layer provided with the surface irregularities satisfying the optical characteristics described above is not particularly limited. For example, a resin solution in which a filler is dispersed is applied on a light diffusing laminated resin film, and the coating film thickness is applied. The method of forming random irregularities by exposing the filler to the coating film surface by adjusting the surface, and the embossing method of transferring the irregular surface shape to a transparent resin film using a mold having surface irregularities it can.
 フィラーを分散させた樹脂溶液を光拡散性積層樹脂フィルム上に塗布することによってハードコート層を形成する場合には、ハードコート層の内部ヘイズを2%以下、好ましくはほぼ0%とするために、フィラーの屈折率とハードコート層の基材となる樹脂(ハードコート樹脂)の屈折率の比をほぼ1とするか、可視光の波長よりも小さい(100nm以下程度)無定形シリカ一次粒子からなる多孔質シリカ二次粒子をハードコート樹脂中に分散させることによって表面凹凸を形成すればよい。前者の方法を用いる場合には、ハードコート樹脂が1.50前後の屈折率を示すことが多いので、フィラーとして、ポリメタクリル酸メチルビーズ(屈折率1.49)もしくはメタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50~1.59)、ポリエチレンビーズ(屈折率1.53)などを適宜選択して用いればよい。 When a hard coat layer is formed by applying a resin solution in which a filler is dispersed on a light diffusing laminated resin film, in order to make the internal haze of the hard coat layer 2% or less, preferably about 0% From the amorphous silica primary particles, the ratio of the refractive index of the filler to the refractive index of the resin (hard coat resin) serving as the base material of the hard coat layer is about 1, or smaller than the wavelength of visible light (about 100 nm or less). The surface irregularities may be formed by dispersing the porous silica secondary particles to be dispersed in the hard coat resin. When the former method is used, the hard coat resin often exhibits a refractive index of around 1.50. Therefore, polymethyl methacrylate beads (refractive index 1.49) or methyl methacrylate / styrene copolymer is used as a filler. Combined resin beads (refractive index 1.50 to 1.59), polyethylene beads (refractive index 1.53), etc. may be appropriately selected and used.
 フィラーを分散させる樹脂(ハードコート樹脂)としては、紫外線硬化性樹脂、熱硬化性樹脂、電子線硬化性樹脂などを用いることができるが、生産性、硬度などの観点から紫外線硬化性樹脂が好ましく使用される。紫外線硬化性樹脂としては、市販されているものを用いることができる。たとえば、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート等の多官能アクリレートの単独または2種以上と、「イルガキュアー 907」、「イルガキュアー 184」(以上、チバ・スペシャルティー・ケミカルズ社製)、「ルシリン TPO」(BASF社製)等の光重合開始剤との混合物を、紫外線硬化性樹脂とすることができる。たとえば紫外線硬化性樹脂を用いた場合においては、紫外線硬化性樹脂にフィラーを分散した後、該樹脂組成物を光拡散性積層樹脂フィルムに塗布し、紫外線を照射することにより、ハードコート樹脂中にフィラーが分散された、ハードコート層を形成することができる。 As the resin (hard coat resin) for dispersing the filler, an ultraviolet curable resin, a thermosetting resin, an electron beam curable resin, or the like can be used, but an ultraviolet curable resin is preferable from the viewpoint of productivity and hardness. used. A commercially available product can be used as the ultraviolet curable resin. For example, one or more polyfunctional acrylates such as trimethylolpropane triacrylate and pentaerythritol tetraacrylate, and “Irgacure 907”, “Irgacure 184” (above, manufactured by Ciba Specialty Chemicals), “ A mixture with a photopolymerization initiator such as Lucillin TPO (manufactured by BASF) can be used as an ultraviolet curable resin. For example, in the case of using an ultraviolet curable resin, after dispersing the filler in the ultraviolet curable resin, the resin composition is applied to the light diffusing laminated resin film and irradiated with ultraviolet rays, so that the hard coat resin is applied. A hard coat layer in which filler is dispersed can be formed.
 エンボス法により微細凹凸形状を有するハードコート層を形成する場合には、微細凹凸形状が形成された金型を用いて、金型の形状を透明樹脂フィルムに転写すればよい。金型形状のフィルムへの転写は、紫外線硬化性樹脂を用いるUVエンボス法が好ましい。 In the case of forming a hard coat layer having a fine uneven shape by an embossing method, the shape of the mold may be transferred to a transparent resin film using a mold having a fine uneven shape. The UV embossing method using an ultraviolet curable resin is preferable for the transfer to the mold-shaped film.
 UVエンボス法では、光拡散性積層樹脂フィルムの表面に紫外線硬化性樹脂層を形成し、その紫外線硬化性樹脂層を金型の凹凸面に押し付けながら硬化させることで、金型の凹凸面が紫外線硬化性樹脂層に転写される。具体的には、光拡散性積層樹脂フィルム上に紫外線硬化性樹脂を塗工し、塗工した紫外線硬化性樹脂を金型の凹凸面に密着させた状態で、光拡散性積層樹脂フィルム側から紫外線を照射して紫外線硬化性樹脂を硬化させ、次に、硬化後の紫外線硬化性樹脂層が形成された光拡散性積層樹脂フィルムを金型から剥離することにより、金型の形状を紫外線硬化性樹脂に転写する。紫外線硬化性樹脂の種類は特に制限されない。また、紫外線硬化性樹脂の代わりに、光重合開始剤を適宜選定することにより、紫外線より波長の長い可視光で硬化が可能な可視光硬化性樹脂を用いてもよい。 In the UV embossing method, an ultraviolet curable resin layer is formed on the surface of a light diffusing laminated resin film, and the ultraviolet curable resin layer is cured by pressing the ultraviolet curable resin layer against the concave and convex surface of the mold. It is transferred to the curable resin layer. Specifically, an ultraviolet curable resin is coated on the light diffusing laminated resin film, and the coated ultraviolet curable resin is in close contact with the uneven surface of the mold, from the light diffusing laminated resin film side. UV-curing resin is cured by irradiating UV light, and then the mold shape is UV-cured by peeling the light-diffusing laminated resin film on which the cured UV-curing resin layer is formed from the mold. Transfer to a functional resin. The kind of ultraviolet curable resin is not particularly limited. Further, instead of the ultraviolet curable resin, a visible light curable resin that can be cured with visible light having a wavelength longer than that of ultraviolet light may be used by appropriately selecting a photopolymerization initiator.
 ハードコート層の厚みは特に制限されないが、2μm以上20μm以下であることが好ましい。ハードコート層の厚みが2μm未満であると、十分な硬度が得られず、傷付きやすくなる傾向にあり、また、20μmより厚くなると、割れやすくなったり、ハードコート層の硬化収縮によりフィルムがカールして生産性が低下したりする傾向がある。 The thickness of the hard coat layer is not particularly limited, but is preferably 2 μm or more and 20 μm or less. If the thickness of the hard coat layer is less than 2 μm, sufficient hardness cannot be obtained and tends to be easily scratched. If the thickness is greater than 20 μm, the film tends to break or the film curls due to curing shrinkage of the hard coat layer. As a result, productivity tends to decrease.
 以上のような光拡散性積層樹脂フィルムとハードコート層との積層体である本発明の防眩フィルムは、光拡散性積層樹脂フィルム側から入射角20゜で光を入射したときにハードコート層側法線方向で観測される相対散乱光強度T(20)が0.0001%以上0.0006%以下の値を示し、光拡散性積層樹脂フィルム側から入射角30°で光を入射したときにハードコート層側法線方向で観測される相対散乱光強度T(30)が0.00004%以上0.0002%以下の値を示すことが好ましい。ここで、光拡散性積層樹脂フィルム側から入射角20゜で光を入射したとき、および入射角30°で光を入射したときの、ハードコート層側法線方向における相対散乱光強度T(20)およびT(30)について説明する。 The antiglare film of the present invention which is a laminate of the light diffusing laminated resin film and the hard coat layer as described above is a hard coat layer when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film side. When the relative scattered light intensity T (20) observed in the side normal direction shows a value of 0.0001% or more and 0.0006% or less, and light is incident at an incident angle of 30 ° from the light diffusing laminated resin film side. It is preferable that the relative scattered light intensity T (30) observed in the normal direction of the hard coat layer shows a value of 0.00004% or more and 0.0002% or less. Here, when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film side and when light is incident at an incident angle of 30 °, the relative scattered light intensity T (20 in the normal direction of the hard coat layer side) ) And T (30) will be described.
 図2は、光拡散性積層樹脂フィルム側(ハードコート層の凹凸面とは反対側)から光を入射し、ハードコート層側(凹凸面側)法線方向における散乱光強度を測定するときの、光の入射方向と透過散乱光強度測定方向とを模式的に示した斜視図である。図2を参照して、防眩フィルム201の光拡散性積層樹脂フィルム側で、防眩フィルムの法線202からある角度φ(入射角とする)で入射した光203に対し、ハードコート層側の法線202方向に透過する透過散乱光204の強度を測定し、その透過散乱光強度を光源の光強度で除した値を相対散乱光強度T(φ)とする。すなわち、防眩フィルム201の光拡散性積層樹脂フィルム側で、防眩フィルムの法線から20°の角度で光203を入射したときに、ハードコート層側法線202方向で観測される透過散乱光204の強度を光源の光強度で除した値がT(20)であり、防眩フィルム201の光拡散性積層樹脂フィルム側で、防眩フィルムの法線202から30°の角度で光203を入射したときに、ハードコート層側法線202方向で観測される透過散乱光204の強度を光源の光強度で除した値がT(30)である。なお、光203は、光拡散性積層樹脂フィルム側から入射される光203の方向と防眩フィルムの法線202とが同一平面(図2における平面209)上となるように入射される。 FIG. 2 shows a case where light is incident from the light diffusing laminated resin film side (the side opposite to the uneven surface of the hard coat layer) and the scattered light intensity is measured in the normal direction of the hard coat layer side (the uneven surface side). FIG. 3 is a perspective view schematically showing a light incident direction and a transmitted scattered light intensity measurement direction. Referring to FIG. 2, the hard coat layer side with respect to light 203 incident at an angle φ (incident angle) from normal line 202 of the antiglare film on the light diffusing laminated resin film side of antiglare film 201 The intensity of the transmitted scattered light 204 transmitted in the direction of the normal 202 is measured, and a value obtained by dividing the transmitted scattered light intensity by the light intensity of the light source is defined as a relative scattered light intensity T (φ). That is, when light 203 is incident at an angle of 20 ° from the normal line of the antiglare film on the light diffusing laminated resin film side of the antiglare film 201, transmission scattering observed in the direction of the hard coat layer side normal line 202 A value obtained by dividing the intensity of the light 204 by the light intensity of the light source is T (20). On the light diffusing laminated resin film side of the antiglare film 201, the light 203 is incident at an angle of 30 ° from the normal line 202 of the antiglare film. T (30) is a value obtained by dividing the intensity of the transmitted scattered light 204 observed in the direction of the normal 202 on the hard coat layer side by the light intensity of the light source. The light 203 is incident such that the direction of the light 203 incident from the light diffusing laminated resin film side and the normal line 202 of the antiglare film are on the same plane (plane 209 in FIG. 2).
 20°入射のときの相対散乱光強度T(20)が0.0006%を上回る場合には、この防眩フィルムを画像表示装置に適用したときに、散乱光によって黒表示時の輝度が上昇し、コントラストを低下させる。また、20°入射のときの相対散乱光強度T(20)が0.0001%を下回る場合には、散乱効果が低く、高精細な画像表示装置に適用したときにギラツキが発生する。同様に、30°入射のときの相対散乱光強度T(30)が0.0002%を上回る場合にも、この防眩フィルムを画像表示装置に適用したときに、散乱光によって黒表示時の輝度が上昇し、コントラストを低下させる。また、30°入射のときの相対散乱光強度T(30)が0.00004%を下回る場合にも、散乱効果が低く、高精細な画像表示装置に適用したときにギラツキが発生する。特に、防眩フィルムを自発光型ではない液晶ディスプレイに適用したときには、黒表示時の光漏れに起因する散乱による輝度上昇効果が大きいため、相対散乱光強度T(20)およびT(30)が上記好ましい範囲を上回ると、コントラストを顕著に低下させ、視認性を損なう結果となる。 When the relative scattered light intensity T (20) at 20 ° incidence exceeds 0.0006%, when this antiglare film is applied to an image display device, the luminance during black display increases due to the scattered light. , Reduce the contrast. Further, when the relative scattered light intensity T (20) at 20 ° incidence is less than 0.0001%, the scattering effect is low, and glare occurs when applied to a high-definition image display device. Similarly, even when the relative scattered light intensity T (30) at 30 ° incidence exceeds 0.0002%, when this antiglare film is applied to an image display device, the luminance at the time of black display due to the scattered light. Increases and decreases contrast. Also, when the relative scattered light intensity T (30) at 30 ° incidence is less than 0.00004%, the scattering effect is low, and glare occurs when applied to a high-definition image display device. In particular, when the antiglare film is applied to a liquid crystal display that is not self-luminous, the effect of increasing the brightness due to scattering caused by light leakage during black display is large, and therefore the relative scattered light intensities T (20) and T (30) are high. If it exceeds the preferable range, the contrast is remarkably lowered and the visibility is impaired.
 図3は、本発明の防眩フィルム(図2における防眩フィルム201)の光拡散性積層樹脂フィルム側からの入射角φを変えて測定される相対散乱光強度(対数目盛)を入射角φに対してプロットしたグラフの一例である。このような入射角と相対散乱光強度との関係を表すグラフ、またはそれから読み取られる入射角毎の相対散乱光強度を、透過散乱プロファイルと呼ぶことがある。このグラフに示されるように、相対散乱光強度は入射角0゜でピークを示し、入射される光203の法線方向からの角度が大きくなるほど、散乱光強度は低下する傾向にある。なお、入射角のプラス(+)とマイナス(-)は、法線方向(0°)を中心に、入射される光203の方向と法線202を含む平面209内での入射光の傾きによって定まるものである。したがって、透過散乱プロファイルは、入射角0°を中心に、左右対称に現れるのが通例である。図3に示す透過散乱プロファイルの例では、0°入射のときの相対散乱光強度T(0)が約15%でピークを示し、20°入射のときの相対散乱光強度T(20)が約0.0003%、30°入射のときの相対散乱光強度T(30)が約0.00006%となっている。 3 shows the relative scattered light intensity (logarithmic scale) measured by changing the incident angle φ from the light diffusing laminated resin film side of the antiglare film of the present invention (antiglare film 201 in FIG. 2). It is an example of the graph plotted with respect to. Such a graph representing the relationship between the incident angle and the relative scattered light intensity, or the relative scattered light intensity for each incident angle read therefrom may be referred to as a transmission scattering profile. As shown in this graph, the relative scattered light intensity has a peak at an incident angle of 0 °, and the scattered light intensity tends to decrease as the angle from the normal direction of the incident light 203 increases. Incidentally, plus (+) and minus (−) of the incident angle depends on the direction of the incident light 203 around the normal direction (0 °) and the inclination of the incident light in the plane 209 including the normal 202. It is determined. Therefore, the transmission / scattering profile usually appears symmetrically about the incident angle of 0 °. In the example of the transmission scattering profile shown in FIG. 3, the relative scattered light intensity T (0) at 0 ° incidence shows a peak at about 15%, and the relative scattered light intensity T (20) at 20 ° incidence is about The relative scattered light intensity T (30) at 0.0003% and 30 ° incidence is about 0.00006%.
 防眩フィルムの相対散乱光強度を測定するにあたっては、0.001%以下の相対散乱光強度を精度良く測定することが必要である。そこで、ダイナミックレンジの広い検出器の使用が有効である。このような検出器としては、たとえば、市販の光パワーメーターなどを用いることができ、この光パワーメーターの検出器前にアパーチャーを設け、防眩フィルムを見込む角度が2°になるようにした変角光度計を用いて測定を行なうことができる。入射光には380~780nmの可視光線を用いることができ、測定用光源としては、ハロゲンランプ等の光源から出た光をコリメートしたものを用いてもよいし、レーザーなどの単色光源で平行度の高いものを用いてもよい。また、フィルムの反りを防止するため、光学的に透明な粘着剤を用いて、凹凸面が表面となるようにガラス基板に貼合してから測定に供することが好ましい。 In measuring the relative scattered light intensity of the antiglare film, it is necessary to accurately measure the relative scattered light intensity of 0.001% or less. Therefore, it is effective to use a detector with a wide dynamic range. As such a detector, for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer. Visible light of 380 to 780 nm can be used as incident light, and a collimated light emitted from a light source such as a halogen lamp can be used as a measurement light source, or a parallel light source using a monochromatic light source such as a laser. Higher ones may be used. Moreover, in order to prevent the curvature of a film, it is preferable to use it for a measurement, after bonding to a glass substrate so that an uneven surface may become the surface using an optically transparent adhesive.
 上記に鑑み、本発明において規定する相対散乱光強度T(20)およびT(30)は、次のようにして測定される。防眩フィルムを、その凹凸面が表面となるようガラス基板に貼合し、そのガラス面側でフィルム法線に対して所定の角度傾斜した方向から、He-Neレーザーからの平行光を照射し、防眩フィルム凹凸面側でフィルム法線方向の透過散乱光強度を測定する。透過散乱光強度の測定には、T(20)およびT(30)のいずれについても横河電機(株)製の「3292 03 オプティカルパワーセンサー」および「3292 オプティカルパワーメーター」を用いる。 In view of the above, the relative scattered light intensities T (20) and T (30) defined in the present invention are measured as follows. The antiglare film is bonded to a glass substrate so that the uneven surface is the surface, and parallel light from a He—Ne laser is irradiated from the direction inclined at a predetermined angle with respect to the film normal on the glass surface side. The transmitted scattered light intensity in the film normal direction is measured on the uneven surface side of the antiglare film. For the measurement of transmitted scattered light intensity, “3292 03 optical power sensor” and “3292 optical power meter” manufactured by Yokogawa Electric Corporation are used for both T (20) and T (30).
 図4は、相対散乱光強度T(20)およびT(30)と、コントラストとの関係を示す図である。図4から明らかなように、相対散乱光強度T(20)が0.0006%を超えるかまたはT(30)が0.0002%を超えると、コントラストが10%以上低下し、視認性を損なう傾向にあることがわかる。なお、コントラストは次の手順で測定した。まず、市販の液晶テレビ(シャープ(株)製の「LC-42GX1W」)から背面側および表示面側の偏光板を剥離し、それらオリジナル偏光板の代わりに、背面側および表示面側とも、住友化学(株)製の偏光板「スミカラン SRDB31E」を、それぞれの吸収軸がオリジナルの偏光板の吸収軸と一致するように粘着剤を介して貼合し、さらに表示面側偏光板の上には、種々の散乱光強度を示す本発明に係る防眩フィルムと同様の構成を有する防眩フィルムを凹凸面が表面となるように粘着剤を介して貼合した。次に、こうして得られた液晶テレビを暗室内で起動し、(株)トプコン製の輝度計「BM5A」型を用いて、黒表示状態および白表示状態における輝度を測定し、コントラストを算出した。ここでコントラストは、黒表示状態の輝度に対する白表示状態の輝度の比で表される。 FIG. 4 is a diagram showing the relationship between the relative scattered light intensities T (20) and T (30) and the contrast. As is clear from FIG. 4, when the relative scattered light intensity T (20) exceeds 0.0006% or T (30) exceeds 0.0002%, the contrast is reduced by 10% or more, and the visibility is impaired. It turns out that there is a tendency. The contrast was measured by the following procedure. First, the polarizing plate on the back side and the display surface side is peeled off from a commercially available liquid crystal television (“LC-42GX1W” manufactured by Sharp Corporation). A polarizing plate “Sumikaran SRDB31E” manufactured by Chemical Co., Ltd. was bonded via an adhesive so that each absorption axis coincided with the absorption axis of the original polarizing plate. And the anti-glare film which has the structure similar to the anti-glare film which concerns on this invention which shows various scattered light intensity | strength was bonded through the adhesive so that an uneven surface might become the surface. Next, the liquid crystal television thus obtained was activated in a dark room, and using a luminance meter “BM5A” manufactured by Topcon Corporation, the luminance in the black display state and the white display state was measured, and the contrast was calculated. Here, the contrast is represented by the ratio of the luminance in the white display state to the luminance in the black display state.
 また、本発明の防眩フィルムは、ハードコート層側から入射角30゜で光を入射したときに、反射角30゜の反射率R(30)が0.05%以上2%以下であり、反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、そして反射角50゜の反射率R(50)が0.00001%以上0.0005%以下であることが好ましい。反射率R(30)、反射率R(40)および反射率R(50)を上記範囲内とすることにより、優れた防眩性能を示しつつ、白ちゃけがより効果的に抑制された防眩フィルムが提供される。 The antiglare film of the present invention has a reflectance R (30) at a reflection angle of 30 ° of 0.05% or more and 2% or less when light is incident from the hard coat layer side at an incident angle of 30 °. The reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less, and the reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more and 0.0005% or less. It is preferable. By making the reflectance R (30), the reflectance R (40) and the reflectance R (50) within the above ranges, the anti-glare is more effectively suppressed while showing excellent anti-glare performance. A film is provided.
 ここで、ハードコート層側から入射角30°で光を入射したときの角度毎の反射率について説明する。図5は、反射率を求めるときの防眩フィルムに対するハードコート層側からの光の入射方向と反射方向とを模式的に示した斜視図である。図5を参照して、防眩フィルム501のハードコート層側で、防眩フィルムの法線502から30°の角度で入射した光505に対し、反射角30°の方向、すなわち、正反射方向506への反射光の反射率(つまり正反射率)をR(30)とする。また、任意の反射角θで反射した光507のうち、θ=40°の反射光の反射率、θ=50°の反射光の反射率をそれぞれ、R(40)、R(50)とする。なお、反射率を測定するときの反射光の方向(正反射方向506および反射角θで反射した光507の反射方向)は、入射した光505の方向と法線502とを含む平面509内とする。 Here, the reflectance for each angle when light is incident at an incident angle of 30 ° from the hard coat layer side will be described. FIG. 5 is a perspective view schematically showing an incident direction and a reflection direction of light from the hard coat layer side with respect to the antiglare film when the reflectance is obtained. Referring to FIG. 5, the direction of the reflection angle of 30 °, that is, the regular reflection direction with respect to the light 505 incident at an angle of 30 ° from the normal line 502 of the antiglare film on the hard coat layer side of the antiglare film 501. The reflectance (that is, regular reflectance) of the reflected light to 506 is R (30). Of the light 507 reflected at an arbitrary reflection angle θ, the reflectance of reflected light at θ = 40 ° and the reflectance of reflected light at θ = 50 ° are R (40) and R (50), respectively. . Note that the direction of reflected light when measuring the reflectance (the specular reflection direction 506 and the reflection direction of the light 507 reflected at the reflection angle θ) is within the plane 509 including the direction of the incident light 505 and the normal line 502. To do.
 正反射率R(30)が2%を超えると、十分な防眩機能が得られず、視認性が低下する傾向にある。一方、正反射率R(30)があまり小さすぎても、白ちゃけが発生する傾向を示すことから、0.05%以上であるのが好ましい。正反射率R(30)は、1.5%以下、とりわけ0.7%以下であるのがより好ましい。また、R(40)が0.005%を上回るか、またはR(50)が0.0005%を上回ると、防眩フィルムに白ちゃけが発生してしまい、視認性が低下する傾向にある。すなわち、たとえば、表示装置の最前面に防眩フィルムを設置した状態で表示面に黒を表示した場合でも、周囲からの光を拾って表示面が全体的に白くなる白ちゃけが発生してしまう傾向にある。そのため、R(40)およびR(50)はあまり大きくならないようにするのが好ましい。一方、これらの角度における反射率があまり小さすぎても、十分な防眩性を示さなくなることから、R(40)は一般に0.0001%以上であるのが好ましく、R(50)は一般に0.00001%以上であるのが好ましい。R(50)は、より好ましくは0.0001%以下である。 When the regular reflectance R (30) exceeds 2%, a sufficient antiglare function cannot be obtained, and the visibility tends to decrease. On the other hand, even if the regular reflectance R (30) is too small, since it tends to cause whitening, it is preferably 0.05% or more. The regular reflectance R (30) is more preferably 1.5% or less, particularly 0.7% or less. On the other hand, if R (40) exceeds 0.005% or R (50) exceeds 0.0005%, the antiglare film is whitened and the visibility tends to be lowered. That is, for example, even when black is displayed on the display surface with an anti-glare film installed on the forefront of the display device, a whitish color occurs that picks up light from the surroundings and makes the display surface entirely white. There is a tendency. Therefore, it is preferable that R (40) and R (50) are not so large. On the other hand, R (40) is generally preferably 0.0001% or more, and R (50) is generally 0, since sufficient antiglare properties are not exhibited even if the reflectance at these angles is too small. It is preferably 0.0001% or more. R (50) is more preferably 0.0001% or less.
 図6は、本発明の防眩フィルム(図5における防眩フィルム501)のハードコート層側で法線502から30゜の角度で入射した光505に対する反射角θで反射した光507の、反射角θと反射率(反射率は対数目盛)との関係をプロットしたグラフの一例である。このような反射角と反射率の関係を表すグラフ、またはそれから読み取られる反射角毎の反射率を、反射プロファイルと呼ぶことがある。このグラフに示す如く、正反射率R(30)は30゜で入射した光505に対する反射率のピークであり、正反射方向から角度がずれるほど反射率は低下する傾向にある。図6に示す反射プロファイルの例では、正反射率R(30)が約0.4%、R(40)が約0.001%、そしてR(50)が約0.00003%となっている。 FIG. 6 shows the reflection of the light 507 reflected at the reflection angle θ with respect to the light 505 incident at an angle of 30 ° from the normal 502 on the hard coat layer side of the antiglare film of the present invention (antiglare film 501 in FIG. 5). It is an example of the graph which plotted the relationship between angle (theta) and a reflectance (a reflectance is a logarithmic scale). Such a graph representing the relationship between the reflection angle and the reflectance, or the reflectance for each reflection angle read therefrom may be referred to as a reflection profile. As shown in this graph, the regular reflectance R (30) is a reflectance peak with respect to the light 505 incident at 30 °, and the reflectance tends to decrease as the angle deviates from the regular reflection direction. In the example of the reflection profile shown in FIG. 6, the regular reflectance R (30) is about 0.4%, R (40) is about 0.001%, and R (50) is about 0.00003%. .
 防眩フィルムの反射率を測定するにあたっては、相対散乱光強度と同様に0.001%以下の反射率を精度良く測定することが必要である。そこで、ダイナミックレンジの広い検出器の使用が有効である。このような検出器としては、たとえば、市販の光パワーメーターなどを用いることができ、この光パワーメーターの検出器前にアパーチャーを設け、防眩フィルムを見込む角度が2°になるようにした変角光度計を用いて測定を行なうことができる。入射光としては、380~780nmの可視光線を用いることができ、測定用光源としては、ハロゲンランプ等の光源から出た光をコリメートしたものを用いてもよいし、レーザーなどの単色光源で平行度の高いものを用いてもよい。裏面が平滑で透明な防眩フィルムの場合は、防眩フィルム裏面からの反射が測定値に影響を及ぼすことがあるため、たとえば、黒色のアクリル樹脂板に防眩フィルムの平滑面を粘着剤または水やグリセリン等の液体を用いて光学密着させることにより、防眩フィルム最表面の反射率のみが測定できるようにするのが好ましい。 In measuring the reflectance of the antiglare film, it is necessary to accurately measure a reflectance of 0.001% or less, as with the relative scattered light intensity. Therefore, it is effective to use a detector with a wide dynamic range. As such a detector, for example, a commercially available optical power meter can be used, and an aperture is provided in front of the detector of this optical power meter so that the angle at which the antiglare film is viewed is 2 °. Measurements can be made using an angular photometer. As incident light, visible light of 380 to 780 nm can be used, and as a measurement light source, collimated light emitted from a light source such as a halogen lamp can be used, or in parallel with a monochromatic light source such as a laser. A high degree may be used. In the case of an antiglare film having a smooth and transparent back surface, reflection from the back surface of the antiglare film may affect the measured value. For example, the smooth surface of the antiglare film is adhered to a black acrylic resin plate with an adhesive or It is preferable that only the reflectance on the outermost surface of the antiglare film can be measured by optical adhesion using a liquid such as water or glycerin.
 上記に鑑み、本発明において規定する反射率R(30)、R(40)およびR(50)は、次のようにして測定される。防眩フィルムの凹凸面に、フィルム法線に対して30゜傾斜した方向から、He-Neレーザーからの平行光を照射し、フィルム法線と光入射方向とを含む平面内における反射率の角度変化の測定を行なう。反射率の測定には、いずれも横河電機(株)製の「3292 03 オプティカルパワーセンサー」および「3292 オプティカルパワーメーター」を用いる。 In view of the above, the reflectances R (30), R (40) and R (50) defined in the present invention are measured as follows. Irradiation of parallel light from a He—Ne laser onto a concavo-convex surface of an antiglare film from a direction inclined by 30 ° with respect to the film normal, and the angle of reflectance in a plane including the film normal and the light incident direction Measure changes. For the measurement of reflectance, both “3292 03 Optical Power Sensor” and “3292 Optical Power Meter” manufactured by Yokogawa Electric Corporation are used.
 本発明の防眩フィルムは、その最表面、すなわちハードコート層の凹凸面側に低反射膜を有していてもよい。低反射膜がない状態でも、十分な防眩機能を発揮するが、最表面に低反射膜を設けることにより、防眩性をさらに向上させることができる。低反射膜は、ハードコート層の上に、ハードコート層よりも屈折率の低い低屈折率材料からなる層を設けることにより形成できる。そのような低屈折率材料として、具体的には、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、氷晶石(3NaF・AlF3またはNa3AlF6)等の無機材料微粒子を、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料;フッ素系またはシリコーン系の有機化合物、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の有機系低反射材料を挙げることができる。 The antiglare film of the present invention may have a low reflection film on the outermost surface thereof, that is, on the uneven surface side of the hard coat layer. Even in the absence of a low reflection film, a sufficient antiglare function is exhibited, but the antiglare property can be further improved by providing a low reflection film on the outermost surface. The low reflection film can be formed by providing a layer made of a low refractive index material having a refractive index lower than that of the hard coat layer on the hard coat layer. Specific examples of such a low refractive index material include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), cryolite (3NaF · AlF 3 or Na 3 AlF 6). ) And other inorganic low-reflective materials containing acrylic resin, epoxy resin, etc .; fluorine-based or silicone-based organic compounds, thermoplastic resins, thermosetting resins, UV-curable resins, etc. An organic low reflection material can be mentioned.
 <防眩性偏光板>
 本発明の防眩フィルムは、防眩効果に優れ、白ちゃけも有効に防止され、ギラツキの発生およびコントラストの低下を効果的に抑制できる。このような本発明の防眩フィルムを備える画像表示装置は、視認性に優れたものとなる。画像表示装置が液晶ディスプレイである場合には、この防眩フィルムを偏光板に適用することができる。すなわち、偏光板は一般に、ヨウ素または二色性染料が吸着配向されたポリビニルアルコール系樹脂フィルムからなる偏光フィルムの少なくとも片面に保護フィルムが貼合された形態のものが多いが、その一方の保護フィルムを本発明の防眩フィルムとすることにより、防眩性偏光板とすることができる。より具体的には、偏光フィルムと、本発明の防眩フィルムとを、その防眩フィルムの光拡散性積層樹脂フィルム側で貼り合わせることにより、防眩性偏光板とすることができる。この場合、偏光フィルムの他方の面は、何も積層されていない状態でもよいし、別の保護フィルムまたは光学フィルムが積層されていてもよいし、また液晶セルに貼合するための粘着剤層が形成されていてもよい。また、偏光フィルムの少なくとも片面に保護フィルムが貼合された偏光板の当該保護フィルム上に、本発明の防眩フィルムをその光拡散性積層樹脂フィルム側で貼合して、防眩性偏光板とすることもできる。さらに、少なくとも片面に保護フィルムが貼合された偏光板において、当該保護フィルムとして光拡散性積層樹脂フィルムを用い、当該光拡散性積層樹脂フィルム上にハードコート層を形成することにより、防眩性偏光板とすることもできる。
<Anti-glare polarizing plate>
The antiglare film of the present invention is excellent in the antiglare effect, effectively prevents whitening, and can effectively suppress the occurrence of glare and the decrease in contrast. An image display device provided with such an antiglare film of the present invention has excellent visibility. When the image display device is a liquid crystal display, this antiglare film can be applied to the polarizing plate. That is, the polarizing plate generally has a form in which a protective film is bonded to at least one surface of a polarizing film made of a polyvinyl alcohol-based resin film in which iodine or a dichroic dye is adsorbed and oriented. By using the antiglare film of the present invention, an antiglare polarizing plate can be obtained. More specifically, an antiglare polarizing plate can be obtained by laminating the polarizing film and the antiglare film of the present invention on the light diffusing laminated resin film side of the antiglare film. In this case, the other surface of the polarizing film may be in a state where nothing is laminated, another protective film or an optical film may be laminated, and an adhesive layer for bonding to a liquid crystal cell. May be formed. Further, the antiglare film of the present invention is bonded on the light diffusing laminated resin film side on the protective film of the polarizing plate having a protective film bonded on at least one side of the polarizing film, and the antiglare polarizing plate It can also be. Furthermore, in a polarizing plate having a protective film bonded to at least one surface, a light diffusing laminated resin film is used as the protective film, and a hard coat layer is formed on the light diffusing laminated resin film, thereby providing antiglare properties. It can also be a polarizing plate.
 上記防眩性偏光板においては、表面平滑性に優れる光拡散性積層樹脂フィルムを用いているため、光拡散性積層樹脂フィルムと偏光フィルムまたは偏光フィルムに積層された保護フィルムとの界面への気泡の侵入や、フィルムの反りが解消または低減され得る。 In the antiglare polarizing plate, since a light diffusing laminated resin film having excellent surface smoothness is used, bubbles at the interface between the light diffusing laminated resin film and the polarizing film or the protective film laminated on the polarizing film are used. Intrusion and warping of the film can be eliminated or reduced.
 <画像表示装置>
 本発明の画像表示装置は、本発明の防眩フィルムまたは防眩性偏光板を画像表示素子と組み合わせたものである。ここで、画像表示素子は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行なう液晶パネルが代表的であるが、その他、プラズマディスプレイ、CRTディスプレイ、有機ELディスプレイなど、公知の各種ディスプレイに対しても、本発明の防眩フィルムまたは防眩性偏光板を適用することができる。本発明の画像表示装置においては、防眩フィルムまたは防眩性偏光板は、画像表示素子よりも視認側に配置される。この際、防眩フィルムまたは防眩性偏光板の凹凸面、すなわちハードコート層側が外側(視認側)となるように配置される。このような本発明の防眩フィルムまたは防眩性偏光板を備えた画像表示装置は、防眩フィルムの有する表面の凹凸により入射光を散乱して映り込み像をぼかすことができ、画像表示装置に優れた視認性を与える。
<Image display device>
The image display device of the present invention is a combination of the antiglare film or the antiglare polarizing plate of the present invention and an image display element. Here, the image display element is typically a liquid crystal panel that includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displays an image by changing the alignment state of the liquid crystal by applying a voltage. The antiglare film or the antiglare polarizing plate of the present invention can be applied to various known displays such as a display, a CRT display, and an organic EL display. In the image display device of the present invention, the antiglare film or the antiglare polarizing plate is arranged on the viewing side with respect to the image display element. Under the present circumstances, it arrange | positions so that the uneven surface of an anti-glare film or an anti-glare polarizing plate, ie, a hard-coat layer side, may become an outer side (viewing side). The image display device provided with the antiglare film or the antiglare polarizing plate of the present invention can scatter incident light due to the unevenness of the surface of the antiglare film and blur the reflected image. Gives excellent visibility.
 また、本発明の防眩フィルムまたは防眩性偏光板は、高精細の画像表示装置に適用した場合でも、従来の防眩フィルムに見られたようなギラツキが発生することもなく、十分な映り込み防止、白ちゃけの防止、ギラツキの抑制およびコントラストの低下抑制性能を示す。 In addition, the antiglare film or the antiglare polarizing plate of the present invention does not cause glare as seen in conventional antiglare films even when applied to a high-definition image display device, and is sufficiently reflected. Inhibition performance, whitening prevention, glare suppression, and contrast reduction suppression performance.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
 [光拡散性積層樹脂フィルムの製造]
 (製造例1:ゴム状重合体の製造)
 特公昭55-27576号公報の実施例に記載の方法に準拠して、三層構造からなるアクリル系多層重合体を製造した。内容積5Lのガラス製反応容器に、イオン交換水1700g、炭酸ナトリウム0.7g、過硫酸ナトリウム0.3gを仕込み、窒素気流下で撹拌後、ペレックスOT-P((株)花王製)4.46g、イオン交換水150g、メチルメタクリレート150gおよびアリルメタクリレート0.3gを仕込んだ。ついで、75℃に昇温し150分間撹拌を続けた。
[Production of light-diffusing laminated resin film]
(Production Example 1: Production of rubber-like polymer)
An acrylic multilayer polymer having a three-layer structure was produced according to the method described in the example of JP-B-55-27576. 3. A glass reaction vessel having an internal volume of 5 L was charged with 1700 g of ion-exchanged water, 0.7 g of sodium carbonate and 0.3 g of sodium persulfate, stirred under a nitrogen stream, and then Perex OT-P (manufactured by Kao Corporation). 46 g, ion-exchanged water 150 g, methyl methacrylate 150 g and allyl methacrylate 0.3 g were charged. Then, the temperature was raised to 75 ° C. and stirring was continued for 150 minutes.
 続いて、ブチルアクリレート689g、スチレン162gおよびアリルメタクリレート17gの混合物と過硫酸ナトリウム0.85g、ペレックスOT-P 7.4gとイオン交換水50gとの混合物を、別の入口から90分間にわたり添加し、さらに90分間重合を続けた。重合を完了後、さらに、メチルアクリレート326gおよびエチルアクリレート14gの混合物と過硫酸ナトリウム0.34gを溶解させたイオン交換水30gとを、別々の口から30分間にわたって添加した。添加終了後、さらに60分間保持し重合を完了した。得られたラテックスを0.5%塩化アルミニウム水溶液に投入して重合体を凝集させた。これを温水にて5回洗浄後、乾燥してアクリル系多層重合体を得た。 Subsequently, a mixture of 689 g of butyl acrylate, 162 g of styrene and 17 g of allyl methacrylate, 0.85 g of sodium persulfate, 7.4 g of Perex OT-P and 50 g of ion-exchanged water was added over 90 minutes from another inlet, The polymerization was continued for another 90 minutes. After the completion of the polymerization, a mixture of 326 g of methyl acrylate and 14 g of ethyl acrylate and 30 g of ion-exchanged water in which 0.34 g of sodium persulfate was dissolved were added from separate ports over 30 minutes. After completion of the addition, the polymerization was completed by holding for 60 minutes. The obtained latex was put into a 0.5% aluminum chloride aqueous solution to aggregate the polymer. This was washed 5 times with warm water and then dried to obtain an acrylic multilayer polymer.
 <実施例1>
 樹脂層(A)の構成材料として、透明性樹脂としての樹脂1[メタクリル酸メチル/アクリル酸メチル=96/4(重量比)の共重合体(屈折率1.49)70重量部に対して、上記製造例1のアクリル系多層重合体を30重量部含有させたアクリル系樹脂組成物]85重量部、ならびに光拡散剤としてのメタクリル酸メチル/スチレン/エチレングリコールジメタクリレート=85/10/5(重量比)の共重合体粒子(屈折率1.505、重量平均粒子径8μm)15重量部を、ヘンシェルミキサーで混合した後、押出機Iにて溶融混練し、フィードブロックに供給した。一方、透明樹脂層(B)の構成材料として、樹脂2[メタクリル酸メチル/アクリル酸メチル=96/4(重量比)の共重合体(屈折率1.49)]を押出機IIにて溶融混練し、フィードブロックに供給した。
<Example 1>
As a constituent material of the resin layer (A), based on 70 parts by weight of a transparent resin 1 resin [methyl methacrylate / methyl acrylate = 96/4 (weight ratio) copolymer (refractive index 1.49)] An acrylic resin composition containing 30 parts by weight of the acrylic multilayer polymer of Production Example 1] 85 parts by weight, and methyl methacrylate / styrene / ethylene glycol dimethacrylate as a light diffusing agent = 85/10/5 (Weight ratio) 15 parts by weight of copolymer particles (refractive index 1.505, weight average particle diameter 8 μm) were mixed by a Henschel mixer, melt-kneaded by an extruder I, and supplied to a feed block. On the other hand, as a constituent material of the transparent resin layer (B), resin 2 [methyl methacrylate / methyl acrylate = 96/4 (weight ratio) copolymer (refractive index 1.49)] was melted in an extruder II. Kneaded and fed to the feed block.
 ついで、樹脂層(A)が中間層となり、透明樹脂層(B)がその両面に積層されるように、押出樹脂温度260℃にて共押出成形を行ない、引き続き、一列状に配置された3本の金属ポリシングロールを備える(順に第1、第2、第3ロールと称する)ロールユニットを用い、押し出された積層フィルムを、第1ロール-第2ロール間に挟み込み、圧延し、さらに第2ロール-第3ロール間に挟み込むことにより、厚さ100μm(樹脂層(A)の厚さ:48μm、透明樹脂層(B)の厚さ:それぞれ26μm)の3層からなる光拡散性積層樹脂フィルムを作製した。第1~第3ロールは、いずれも図7(b)に示されるような金属弾性ロールであり、その金属製薄膜はポリシング加工が施されたステンレスからなる。ロール内に流通させる流体には水を用い、設定温度はいずれも80℃とした。 Subsequently, co-extrusion molding was performed at an extrusion resin temperature of 260 ° C. so that the resin layer (A) became an intermediate layer and the transparent resin layer (B) was laminated on both sides thereof, and then the resin layers (A) were arranged in a row. A roll unit comprising metal polishing rolls (referred to as first, second, and third rolls in order) is used to sandwich the extruded laminated film between the first roll and the second roll, roll it, and By sandwiching between the roll and the third roll, a light diffusing laminated resin film consisting of three layers having a thickness of 100 μm (the thickness of the resin layer (A): 48 μm and the thickness of the transparent resin layer (B): 26 μm each). Was made. Each of the first to third rolls is a metal elastic roll as shown in FIG. 7 (b), and the metal thin film is made of polished stainless steel. Water was used as the fluid to be circulated in the roll, and the set temperature was 80 ° C. for all.
 <比較例1~3>
 樹脂層(A)および透明樹脂層(B)の厚みをそれぞれ表1に示す厚みとなるよう押出機Iおよび押出機IIの吐出量を調整したこと以外は、実施例1と同様にして、3層からなる光拡散性積層樹脂フィルムを作製した。
<Comparative Examples 1 to 3>
3 in the same manner as in Example 1 except that the discharge amounts of the extruder I and the extruder II were adjusted so that the thicknesses of the resin layer (A) and the transparent resin layer (B) were as shown in Table 1, respectively. A light diffusing laminated resin film composed of layers was prepared.
 上記実施例および比較例で使用した押出装置の構成は、次のとおりである。
押出機I:スクリュー径65mm、一軸、ベント付き(東芝機械(株)製)。
押出機II:スクリュー径45mm、一軸、ベント付き(日立造船(株)製)。
フィードブロック:2種3層分配(日立造船(株)製)。
ダイ:Tダイ、リップ幅1400mm、リップ間隔1mm(日立造船(株)製)。
The configuration of the extrusion apparatus used in the above examples and comparative examples is as follows.
Extruder I: Screw diameter 65 mm, uniaxial, with vent (manufactured by Toshiba Machine Co., Ltd.).
Extruder II: Screw diameter 45 mm, uniaxial, with vent (manufactured by Hitachi Zosen).
Feed block: 2-type, 3-layer distribution (manufactured by Hitachi Zosen Corporation).
Die: T-die, lip width 1400 mm, lip interval 1 mm (manufactured by Hitachi Zosen Corporation).
 [光拡散性積層樹脂フィルムの表面状態の評価]
 (1)表面のざらつきの評価
 上記実施例および比較例で得られた光拡散性積層樹脂フィルムの2つの透明樹脂層(B)の表面状態を、目視により観察したところ、比較例1~3の光拡散性積層樹脂フィルムでは表面にざらつきが認められた。さらに、透明樹脂層(B)の表面状態を共焦点顕微鏡「PLμ2300」(センソファー社製)を用いて観察を行ない、ざらつきの程度を以下の基準により評価した。結果を表1に示す。
A:ざらつきが確認されなかった。
B:ざらつきがわずかに確認された。
C:ざらつきが多数確認された。
[Evaluation of surface condition of light diffusing laminated resin film]
(1) Evaluation of surface roughness The surface states of the two transparent resin layers (B) of the light diffusing laminated resin films obtained in the above examples and comparative examples were visually observed. Roughness was observed on the surface of the light diffusing laminated resin film. Furthermore, the surface state of the transparent resin layer (B) was observed using a confocal microscope “PLμ2300” (manufactured by Sensofa Co., Ltd.), and the degree of roughness was evaluated according to the following criteria. The results are shown in Table 1.
A: Roughness was not confirmed.
B: Slight roughness was confirmed.
C: A lot of roughness was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1の光拡散性積層樹脂フィルムのざらつき箇所を上記共焦点顕微鏡で観察したところ、深さ1~2μm、直径100~500μmの凹みが存在していた。 When the roughened portion of the light diffusing laminated resin film of Comparative Example 1 was observed with the confocal microscope, a dent having a depth of 1 to 2 μm and a diameter of 100 to 500 μm was present.
 (2)算術平均粗さRaの測定
 JIS B0601-2001に準拠して、表面粗さ形状測定機((株)ミツトヨ製サーフテストSJ-201)により、光拡散性積層樹脂フィルムが有する、成形時において第1ロールに接触していた側の透明樹脂層(B)表面と、第2ロールに接触していた側の透明樹脂層(B)表面の算術平均粗さ(Ra)を、カットオフ値0.8mm、基準長さ0.8mm、区間数5で測定した。結果を表2に示す。
(2) Measurement of arithmetic average roughness Ra According to JIS B0601-2001, by a surface roughness shape measuring machine (Surf Test SJ-201 manufactured by Mitutoyo Co., Ltd.) The arithmetic average roughness (R a ) of the surface of the transparent resin layer (B) on the side that was in contact with the first roll and the surface of the transparent resin layer (B) on the side that was in contact with the second roll was cut. The measurement was performed with an off value of 0.8 mm, a reference length of 0.8 mm, and a number of sections of 5. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例2>
 [防眩フィルムの製造と評価]
 (A)エンボス用金型の作製
 直径200mmの鉄ロール(JISによるSTKM13A)の表面に銅バラードめっきが施されたものを用意した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚さは約200μmであった。その表面銅めっき層の表面を鏡面研磨し、さらにその研磨面に、ブラスト装置((株)不二製作所製)を用いて、東ソー(株)製のジルコニアビーズ「TZ-B125」(商品名、平均粒径125μm)を、ビーズ使用量6g/cm2(ロールの表面積1cm2あたりの使用量、以下「ブラスト量」とする)、ブラスト圧力0.05MPa(ゲージ圧、以下同じ)、ビーズを噴射するノズルから金属表面までの距離600mm(以下「ブラスト距離」とする)でブラストした。その後、さらにそのブラストされた面に、先と同じブラスト装置を用いて、東ソー(株)製のジルコニアビーズ「TZ-SX-17」(商品名、平均粒径20μm)を、ブラスト量3g/cm2、ブラスト圧力0.05MPa、ブラスト距離450mmでブラストして表面に凹凸をつけた。得られた表面凹凸を有する銅めっき鉄ロールに対し、塩化第二銅水溶液を用いてエッチングを行なった。その際のエッチング量は3μmとなるように設定した。その後、エッチングされた表面のクロムめっき加工を行ない、金属金型を作製した。このとき、クロムめっき厚みが4μmとなるように設定した。得られた金型は、表面のビッカース硬度が1,000であった。
<Example 2>
[Production and evaluation of antiglare film]
(A) Production of Embossing Die A surface of a 200 mm diameter iron roll (STKM13A by JIS) was prepared by applying copper ballad plating. The copper ballad plating was composed of a copper plating layer / a thin silver plating layer / a surface copper plating layer, and the thickness of the entire plating layer was about 200 μm. The surface of the surface copper plating layer is mirror-polished, and on the polished surface, a blasting device (manufactured by Fuji Seisakusho) is used to make zirconia beads “TZ-B125” (trade name, manufactured by Tosoh Corporation). The average particle size is 125 μm), beads are used 6 g / cm 2 (the amount used per 1 cm 2 of the surface area of the roll, hereinafter referred to as “blast amount”), blast pressure 0.05 MPa (gauge pressure, the same applies hereinafter), and beads are injected Blasting was performed at a distance of 600 mm from the nozzle to the metal surface (hereinafter referred to as “blasting distance”). Thereafter, using the same blasting apparatus as before, zirconia beads “TZ-SX-17” (trade name, average particle size 20 μm) manufactured by Tosoh Corporation were applied to the blasted surface with a blasting amount of 3 g / cm. 2. The surface was uneven by blasting at a blasting pressure of 0.05 MPa and a blasting distance of 450 mm. Etching was performed on the obtained copper-plated iron roll having surface irregularities using a cupric chloride aqueous solution. The etching amount at that time was set to 3 μm. Thereafter, the etched surface was subjected to chrome plating to produce a metal mold. At this time, the chromium plating thickness was set to 4 μm. The obtained mold had a surface Vickers hardness of 1,000.
 (B)微細凹凸を有するハードコート層の形成
 以下の各成分が酢酸エチルに固形分濃度60重量%で溶解されている紫外線硬化性樹脂組成物を用意した。
(B) Formation of hard coat layer having fine irregularities An ultraviolet curable resin composition in which the following components were dissolved in ethyl acetate at a solid content concentration of 60% by weight was prepared.
 ペンタエリスリトールトリアクリレート            60重量部
 多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートとの反応生成物)             40重量部
 次に、この紫外線硬化性樹脂組成物の固形分100重量部に対して、光重合開始剤である「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)を5重量部添加して塗布液を調製した。
Pentaerythritol triacrylate 60 parts by weight Polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) 40 parts by weight Next, with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition, A photopolymerization initiator “Lucillin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) was added in an amount of 5 parts by weight to prepare a coating solution.
 この塗布液を、実施例1で得られた光拡散性積層樹脂フィルム上に、乾燥後の塗布厚みが8.0μmとなるように塗布し、80℃に設定した乾燥機中で1分間乾燥させた。乾燥後のフィルムを、上で作製した金属金型の凹凸面に、紫外線硬化性樹脂組成物層が金型側となるようにゴムロールで押し付けて密着させた。この状態で光拡散性積層樹脂フィルム側より、強度20mW/cm2の高圧水銀灯からの光をh線換算光量で300mJ/cm2となるように照射して、紫外線硬化性樹脂組成物層を硬化させた。この後、光拡散性積層樹脂フィルムを硬化樹脂ごと金型から剥離して、表面に凹凸を有するハードコート層(硬化樹脂)と光拡散性積層樹脂フィルムとの積層体からなる防眩フィルムを得た。得られた防眩フィルムは、ギラツキや白ちゃけが発生せず、画像表示装置に適用したときにコントラスト低下の原因となる相対散乱光強度T(20)は0.00027%、T(30)は0.00006%と、十分に低い良好な散乱特性を示した。 This coating solution was applied onto the light diffusing laminated resin film obtained in Example 1 so that the coating thickness after drying was 8.0 μm, and dried for 1 minute in a dryer set at 80 ° C. It was. The dried film was brought into close contact with the uneven surface of the metal mold produced above with a rubber roll so that the ultraviolet curable resin composition layer was on the mold side. In this state, the ultraviolet curable resin composition layer is cured by irradiating light from a high-pressure mercury lamp with an intensity of 20 mW / cm 2 from the light diffusing laminated resin film side so that the amount of light in terms of h-line is 300 mJ / cm 2. I let you. Thereafter, the light diffusing laminated resin film is peeled from the mold together with the cured resin to obtain an antiglare film comprising a laminate of a hard coat layer (cured resin) having irregularities on the surface and the light diffusing laminated resin film. It was. The resulting antiglare film does not cause glare or whitish, and when applied to an image display device, the relative scattered light intensity T (20) that causes a decrease in contrast is 0.00027%, and T (30) is Good scattering characteristics were sufficiently low at 0.00006%.
 なお、実施例1の光拡散性積層樹脂フィルムの内部ヘイズは、14.8%であった。その測定は、光拡散性積層樹脂フィルムの一方の面を光学的に透明な粘着剤を用いてガラス基板に貼合し、続いてもう一方の面にヘイズがほぼ0であるトリアセチルセルロースフィルムを光学的に透明な粘着剤を用いて貼合し、該ガラス基板とトリアセチルセルロースフィルムで挟持された光拡散性積層樹脂フィルムについて、JIS K 7136に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型)を用いて行なった。 The internal haze of the light diffusing laminated resin film of Example 1 was 14.8%. The measurement was carried out by bonding one surface of a light diffusing laminated resin film to a glass substrate using an optically transparent adhesive, and subsequently, forming a triacetyl cellulose film having a haze of almost 0 on the other surface. A light diffusing laminated resin film bonded with an optically transparent adhesive and sandwiched between the glass substrate and a triacetyl cellulose film is manufactured by Murakami Color Research Laboratory Co., Ltd. in accordance with JIS K 7136. Haze meter “HM-150” type) was used.
 また、上記ハードコート層の表面ヘイズおよび内部ヘイズは、それぞれ1.7%、0.0%であった。測定は次のようにして行なった。まず、ハードコート層をヘイズがほぼ0%であるトリアセチルセルロースフィルム上に形成した後、トリアセチルセルロースフィルム側が接合面となるように、該積層フィルムとガラス基板とを、透明粘着剤を用いて貼合し、JIS K 7136に準拠した(株)村上色彩技術研究所製のヘイズメーター「HM-150」型を用いて全体のヘイズを測定した。次に、ハードコート層の凹凸表面に、ヘイズがほぼ0であるトリアセチルセルロースフィルムをグリセリンを用いて貼合し、再度JIS K 7136に準拠して、内部ヘイズを測定した。表面ヘイズは、上記式(1)に基づいて算出した。 The surface haze and internal haze of the hard coat layer were 1.7% and 0.0%, respectively. The measurement was performed as follows. First, after forming a hard coat layer on a triacetyl cellulose film having a haze of almost 0%, the laminated film and the glass substrate are bonded with a transparent adhesive so that the triacetyl cellulose film side becomes a bonding surface. The whole haze was measured by using a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. in accordance with JIS K 7136. Next, a triacetyl cellulose film having a haze of almost 0 was bonded to the concavo-convex surface of the hard coat layer using glycerin, and the internal haze was measured again in accordance with JIS K7136. The surface haze was calculated based on the above formula (1).
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (13)

  1.  重量平均粒子径が1~20μmである光拡散剤が分散された透明性樹脂からなる樹脂層(A)と、前記樹脂層(A)の両面に積層された透明樹脂層(B)とを備える、厚みが30~500μmの光拡散性積層樹脂フィルムであって、
     前記樹脂層(A)の厚みは、光拡散性積層樹脂フィルムの厚みの5%以上50%未満であり、
     前記樹脂層(A)を形成する樹脂組成物と前記透明樹脂層(B)を形成する樹脂組成物とを用いた共押出成形により得られる積層フィルムの少なくとも片面を弾性ロールに接触させた状態で、前記積層フィルムを成形してなる光拡散性積層樹脂フィルム。
    A resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle diameter of 1 to 20 μm is dispersed, and a transparent resin layer (B) laminated on both surfaces of the resin layer (A). A light-diffusing laminated resin film having a thickness of 30 to 500 μm,
    The thickness of the resin layer (A) is 5% or more and less than 50% of the thickness of the light diffusing laminated resin film,
    In a state where at least one surface of a laminated film obtained by coextrusion molding using the resin composition forming the resin layer (A) and the resin composition forming the transparent resin layer (B) is in contact with an elastic roll. A light diffusing laminated resin film formed by molding the laminated film.
  2.  前記樹脂層(A)は、前記透明性樹脂100重量部に対して、5~40重量部の光拡散剤を含有する請求の範囲第1項に記載の光拡散性積層樹脂フィルム。 The light diffusing laminated resin film according to claim 1, wherein the resin layer (A) contains 5 to 40 parts by weight of a light diffusing agent with respect to 100 parts by weight of the transparent resin.
  3.  少なくとも1つの透明樹脂層(B)における、前記樹脂層(A)側とは反対側の表面の算術平均粗さRaは、0~0.5μmである請求の範囲第1項に記載の光拡散性積層樹脂フィルム。 In at least one of the transparent resin layer (B), the arithmetic mean roughness R a of the surface opposite from said resin layer (A) side, the light according to claim 1 which is 0 ~ 0.5 [mu] m Diffuse laminated resin film.
  4.  前記樹脂層(A)の前記透明樹脂層(B)側表面と、前記透明樹脂層(B)の前記樹脂層(A)側表面とは接している請求の範囲第1項に記載の光拡散性積層樹脂フィルム。 The light diffusion according to claim 1, wherein the transparent resin layer (B) side surface of the resin layer (A) is in contact with the resin layer (A) side surface of the transparent resin layer (B). Laminated resin film.
  5.  前記透明樹脂層(B)は、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、芳香族ポリカーボネート樹脂、脂環構造含有エチレン性不飽和単量体単位を含有する樹脂、またはこれらの2種以上の混合樹脂からなる請求の範囲第1項に記載の光拡散性積層樹脂フィルム。 The transparent resin layer (B) is composed of a methyl methacrylate resin, a resin composition containing a rubber polymer in a methyl methacrylate resin, a styrene resin, an aromatic polycarbonate resin, an alicyclic structure-containing ethylenic unsaturated resin. The light-diffusing laminated resin film according to claim 1, comprising a resin containing a monomer unit, or a mixed resin of two or more of these.
  6.  前記透明性樹脂は、メタクリル酸メチル系樹脂、メタクリル酸メチル系樹脂にゴム状重合体を含有させた樹脂組成物、スチレン系樹脂、スチレン系樹脂にゴム状重合体を含有させた樹脂組成物、芳香族ポリカーボネート樹脂、またはこれらの2種以上の混合樹脂である請求の範囲第1項に記載の光拡散性積層樹脂フィルム。 The transparent resin is a methyl methacrylate resin, a resin composition containing a methyl methacrylate resin containing a rubbery polymer, a styrene resin, a resin composition containing a rubber polymer in a styrene resin, The light-diffusing laminated resin film according to claim 1, which is an aromatic polycarbonate resin or a mixed resin of two or more of these.
  7.  重量平均粒子径が1~20μmである光拡散剤が分散された透明性樹脂からなる樹脂層(A)と、前記樹脂層(A)の両面に積層された透明樹脂層(B)とを備える、厚みが30~500μmである光拡散性積層樹脂フィルムの製造方法であって、
     前記樹脂層(A)を形成する樹脂組成物と前記透明樹脂層(B)を形成する樹脂組成物とを用いた共押出成形により得られる積層フィルムの少なくとも片面を弾性ロールに接触させた状態で、前記樹脂層(A)の厚みが光拡散性積層樹脂フィルムの厚みの5%以上50%未満となるように、前記積層フィルムを成形する工程を有する光拡散性積層樹脂フィルムの製造方法。
    A resin layer (A) made of a transparent resin in which a light diffusing agent having a weight average particle diameter of 1 to 20 μm is dispersed, and a transparent resin layer (B) laminated on both surfaces of the resin layer (A). A method for producing a light-diffusing laminated resin film having a thickness of 30 to 500 μm,
    In a state where at least one surface of a laminated film obtained by coextrusion molding using the resin composition forming the resin layer (A) and the resin composition forming the transparent resin layer (B) is in contact with an elastic roll. The manufacturing method of the light diffusable laminated resin film which has the process of shape | molding the said laminated film so that the thickness of the said resin layer (A) may be 5% or more and less than 50% of the thickness of a light diffusable laminated resin film.
  8.  請求の範囲第1項に記載の光拡散性積層樹脂フィルム(101)と、前記光拡散性積層樹脂フィルム(101)表面上に積層された、表面に微細な凹凸形状を有するハードコート層(102)とを備える防眩フィルムであって、
     前記光拡散性積層樹脂フィルム(101)の内部ヘイズは5%以上30%以下であり、
     前記ハードコート層(102)は、その表面ヘイズが0.5%以上15%以下であり、その内部ヘイズが2%以下である防眩フィルム。
    The light diffusing laminated resin film (101) according to claim 1 and a hard coat layer (102) laminated on the surface of the light diffusing laminated resin film (101) having a fine uneven shape on the surface. An antiglare film comprising:
    The internal haze of the light diffusing laminated resin film (101) is 5% or more and 30% or less,
    The hard coat layer (102) is an antiglare film having a surface haze of 0.5% to 15% and an internal haze of 2% or less.
  9.  前記光拡散性積層樹脂フィルム(101)側から入射角20゜で光を入射したときの前記ハードコート層(102)側法線方向における相対散乱光強度T(20)が0.0001%以上0.0006%以下であり、
     前記光拡散性積層樹脂フィルム(101)側から入射角30°で光を入射したときの前記ハードコート層(102)側法線方向における相対散乱光強度T(30)が0.00004%以上0.0002%以下である、請求の範囲第8項に記載の防眩フィルム。
    The relative scattered light intensity T (20) in the normal direction of the hard coat layer (102) when light is incident at an incident angle of 20 ° from the light diffusing laminated resin film (101) side is 0.0001% or more and 0 .0006% or less,
    Relative scattered light intensity T (30) in the normal direction of the hard coat layer (102) when light is incident at an incident angle of 30 ° from the light diffusing laminated resin film (101) side is 0.00004% or more and 0 The antiglare film according to claim 8, which is .0002% or less.
  10.  前記ハードコート層(102)側から入射角30゜で光を入射したときに、
     反射角30゜の反射率R(30)が0.05%以上2%以下であり、
     反射角40゜の反射率R(40)が0.0001%以上0.005%以下であり、
     反射角50゜の反射率R(50)が0.00001%以上0.0005%以下である、請求の範囲第8項に記載の防眩フィルム。
    When light is incident at an incident angle of 30 ° from the hard coat layer (102) side,
    The reflectance R (30) at a reflection angle of 30 ° is 0.05% or more and 2% or less,
    The reflectance R (40) at a reflection angle of 40 ° is 0.0001% or more and 0.005% or less,
    The antiglare film according to claim 8, wherein the reflectance R (50) at a reflection angle of 50 ° is 0.00001% or more and 0.0005% or less.
  11.  前記ハードコート層(102)の凹凸表面上に、低反射膜をさらに有する請求の範囲第8項に記載の防眩フィルム。 The antiglare film according to claim 8, further comprising a low-reflection film on the uneven surface of the hard coat layer (102).
  12.  請求の範囲第8項に記載の防眩フィルムと前記防眩フィルム上に積層された偏光フィルムとを備える防眩性偏光板であって、
     前記偏光フィルムは、前記防眩フィルムの前記光拡散性積層樹脂フィルム(101)側に配置される防眩性偏光板。
    An anti-glare polarizing plate comprising the anti-glare film according to claim 8 and a polarizing film laminated on the anti-glare film,
    The polarizing film is an antiglare polarizing plate disposed on the light diffusing laminated resin film (101) side of the antiglare film.
  13.  請求の範囲第8項に記載の防眩フィルムまたは請求の範囲第12項に記載の防眩性偏光板と、画像表示素子とを備え、
     前記防眩フィルムまたは防眩性偏光板は、そのハードコート層(102)側を外側にして画像表示素子の視認側に配置される画像表示装置。
    An antiglare film according to claim 8 or an antiglare polarizing plate according to claim 12, and an image display element,
    The anti-glare film or the anti-glare polarizing plate is an image display device arranged on the viewing side of the image display element with the hard coat layer (102) side outside.
PCT/JP2009/051448 2008-02-06 2009-01-29 Light-diffusing layered resin film, process for producing the same, antiglare film, antiglare polarizer, and image display WO2009098992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026380 2008-02-06
JP2008-026380 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009098992A1 true WO2009098992A1 (en) 2009-08-13

Family

ID=40952068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051448 WO2009098992A1 (en) 2008-02-06 2009-01-29 Light-diffusing layered resin film, process for producing the same, antiglare film, antiglare polarizer, and image display

Country Status (3)

Country Link
JP (1) JP2009211055A (en)
TW (1) TW200941043A (en)
WO (1) WO2009098992A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095998A (en) * 2009-10-29 2011-05-12 Toppan Tdk Label Co Ltd Image reader
JP5950532B2 (en) * 2011-10-13 2016-07-13 住友化学株式会社 Resin plate
WO2014167868A1 (en) * 2013-04-12 2014-10-16 株式会社クラレ Acrylic resin film
WO2023188692A1 (en) * 2022-03-31 2023-10-05 住友化学株式会社 Transparent resin film and display device
WO2023188689A1 (en) * 2022-03-31 2023-10-05 住友化学株式会社 Transparent resin film and display device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418346A (en) * 1990-05-11 1992-01-22 Kuraray Co Ltd Acrylic resin multilayered plate
JPH11235747A (en) * 1998-02-24 1999-08-31 Hitachi Zosen Corp Roll apparatus for molding sheet/film
JP2001009989A (en) * 1999-06-30 2001-01-16 Sumitomo Chem Co Ltd Light diffusing laminated resin plate for hot forming
JP2001091707A (en) * 1999-09-24 2001-04-06 Fuji Photo Film Co Ltd Antidazzle film, antidazzle and antireflection film and image display device
JP2001272508A (en) * 2000-03-28 2001-10-05 Toray Ind Inc Laminated light diffusing film
JP2002107706A (en) * 2000-10-02 2002-04-10 Sharp Corp Liquid crystal display device
JP2002162508A (en) * 2000-11-24 2002-06-07 Toray Ind Inc Light diffusing film
JP2003302506A (en) * 2002-02-08 2003-10-24 Dainippon Printing Co Ltd Antiglare film and image display device
JP2004050607A (en) * 2002-07-19 2004-02-19 Sumitomo Chem Co Ltd Light diffusible resin laminated sheet
JP2005202097A (en) * 2004-01-15 2005-07-28 Sumitomo Chemical Co Ltd Multilayered light diffusion board
JP2006106290A (en) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd Antiglare film
JP2007101912A (en) * 2005-10-05 2007-04-19 Nitto Denko Corp Antiglare film, polarizing film, optical film and image display device
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device
JP2008021527A (en) * 2006-07-12 2008-01-31 Daicel Chem Ind Ltd Plane light source device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103335A (en) * 2002-09-06 2004-04-02 Daicel Chem Ind Ltd Surface light source device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418346A (en) * 1990-05-11 1992-01-22 Kuraray Co Ltd Acrylic resin multilayered plate
JPH11235747A (en) * 1998-02-24 1999-08-31 Hitachi Zosen Corp Roll apparatus for molding sheet/film
JP2001009989A (en) * 1999-06-30 2001-01-16 Sumitomo Chem Co Ltd Light diffusing laminated resin plate for hot forming
JP2001091707A (en) * 1999-09-24 2001-04-06 Fuji Photo Film Co Ltd Antidazzle film, antidazzle and antireflection film and image display device
JP2001272508A (en) * 2000-03-28 2001-10-05 Toray Ind Inc Laminated light diffusing film
JP2002107706A (en) * 2000-10-02 2002-04-10 Sharp Corp Liquid crystal display device
JP2002162508A (en) * 2000-11-24 2002-06-07 Toray Ind Inc Light diffusing film
JP2003302506A (en) * 2002-02-08 2003-10-24 Dainippon Printing Co Ltd Antiglare film and image display device
JP2004050607A (en) * 2002-07-19 2004-02-19 Sumitomo Chem Co Ltd Light diffusible resin laminated sheet
JP2005202097A (en) * 2004-01-15 2005-07-28 Sumitomo Chemical Co Ltd Multilayered light diffusion board
JP2006106290A (en) * 2004-10-04 2006-04-20 Daicel Chem Ind Ltd Antiglare film
JP2007101912A (en) * 2005-10-05 2007-04-19 Nitto Denko Corp Antiglare film, polarizing film, optical film and image display device
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device
JP2008021527A (en) * 2006-07-12 2008-01-31 Daicel Chem Ind Ltd Plane light source device

Also Published As

Publication number Publication date
JP2009211055A (en) 2009-09-17
TW200941043A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
WO2009096261A1 (en) Light-diffusing laminated resin film and manufacturing method thereof, and antiglare film, antiglare polarization plate, and image display device
WO2009104480A1 (en) Light-diffusing laminated resin film, process for producing the same, antiglare film, antiglare polarizer, and image display
CN101836136B (en) Anti-glare film, anti-glare polarizing plate, and image display device
TWI474052B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
WO2009107536A1 (en) Anti-glare film, anti-glare polarizing plate, and image display device
TWI588020B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
TWI628247B (en) Anti-glare film, anti-glare film manufacturing method, polarizing film and image display device
JP5149916B2 (en) Optical matte film
JP2009169409A (en) Anti-glare film, anti-glare polarizing plate and image display apparatus
JP2009150998A (en) Antiglare film, antiglare polarizing plate and image display device
TWI437278B (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
JP2015132691A (en) Resin laminate plate and touch panel
KR20080064975A (en) Light diffusion plate for liquid crystal display
JP2001272508A (en) Laminated light diffusing film
JP2017015824A (en) Sheet-like transparent laminate, transparent screen having the same, and image projection device having the same
WO2009098992A1 (en) Light-diffusing layered resin film, process for producing the same, antiglare film, antiglare polarizer, and image display
WO2004090587A1 (en) Light diffusing plate
JP6648054B2 (en) Touch panel
WO2018225463A1 (en) Upper-side light diffuser sheet and backlight unit equipped with same
JP2009122645A (en) Anti-glare film, anti-glare polarizing plate, and image display device
WO2016088701A1 (en) See-through laminate, reflective screen provided with same, and image projection device provided with same
JP2006293193A (en) Support plate for film lenticular lens
JP2013195483A (en) Display protective plate
JP4049659B2 (en) Light reflector
JP2012137722A (en) Louver layer protection film and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707976

Country of ref document: EP

Kind code of ref document: A1