WO2016088701A1 - See-through laminate, reflective screen provided with same, and image projection device provided with same - Google Patents

See-through laminate, reflective screen provided with same, and image projection device provided with same Download PDF

Info

Publication number
WO2016088701A1
WO2016088701A1 PCT/JP2015/083539 JP2015083539W WO2016088701A1 WO 2016088701 A1 WO2016088701 A1 WO 2016088701A1 JP 2015083539 W JP2015083539 W JP 2015083539W WO 2016088701 A1 WO2016088701 A1 WO 2016088701A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
refractive index
resin
image
light
Prior art date
Application number
PCT/JP2015/083539
Other languages
French (fr)
Japanese (ja)
Inventor
彰 松尾
涼 西村
大直 田中
孝介 八牧
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2016562437A priority Critical patent/JP6707462B2/en
Publication of WO2016088701A1 publication Critical patent/WO2016088701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention provides a laminate capable of achieving both the visibility of projection light and the visibility of transmitted light by anisotropically scattering and reflecting the projection light emitted from the viewer side, a reflective screen including the laminate, and
  • the present invention relates to an image projection apparatus including the same.
  • a reflective screen including a periodic structure has been proposed (see Patent Document 2).
  • an anisotropic scattering film has been proposed which is made of a dielectric matrix containing at least metal nanorods and in which specific metal nanorods are oriented in a certain direction in the dielectric matrix (see Patent Document 3).
  • Patent Documents 1 to 3 have the following technical problems.
  • the reflection type screen described in Patent Document 1 the first optical film and the second optical film having a refractive index lower than the first optical film are alternately stacked to form three or more layers.
  • the reflection efficiency is reduced by the irregular reflection, and the transmittance is reduced.
  • the reflective screen described in Patent Document 2 includes a periodic structure, there is a technical problem that the transmittance decreases due to an increase in film thickness, the color reproducibility decreases due to interference fringes, and the manufacturing process becomes complicated.
  • the anisotropic scattering film described in Patent Document 3 has a technical problem that the total light transmittance is low and the transmission visibility is poor.
  • the present invention has been made in view of the above-mentioned technical problems, and the object thereof is excellent in visibility of projected light by anisotropically scattering and reflecting projected light emitted from the viewer side.
  • An object of the present invention is to provide a laminate having a wide corner and excellent visibility of transmitted light.
  • Another object of the present invention is to provide a see-through reflective screen provided with the laminate, and an image projection device provided with the laminate or the see-through reflective screen and a projection device.
  • the present invention does not require that the first optical film and the second optical film having a lower refractive index are alternately laminated.
  • the reflective screen here refers to a screen on which an image can be viewed by providing a projection device on the viewer side (that is, on the same side as the viewer with respect to the screen), as shown in FIG.
  • the present inventors have found that in order to solve the above technical problem, a result of intensive studies, the resin having a refractive index n 1, the light diffusing layer using the fine particles having a refractive index n 1 is different from the refractive index n 2 And the above-mentioned technical problem is solved by using a laminate in which a reflective layer is formed on a light diffusion layer using a material having a refractive index n 3 larger than the refractive index n 1. It was found that it can be suitably used for a screen. The present invention has been completed based on such findings.
  • a resin having a refractive index n 1, and a light diffusing layer comprising a particulate having a refractive index n 1 is different from the refractive index n 2,
  • a laminate comprising: is provided.
  • optical thickness of the reflecting layer represented by the product of the refractive index n 3 and the thickness d is 20 ⁇ 400 nm.
  • the difference between the refractive index n 1 and the refractive index n 2 is preferably 0.1 or more.
  • the primary particles of the fine particles have a median diameter of 0.1 to 50 nm and a maximum particle diameter of 10 to 500 nm.
  • the laminate preferably has a total light transmittance of 70% or more.
  • the laminate has a image clarity of 60% or more.
  • the refractive index n 3 is at least 1.8.
  • the reflective layer is at least one selected from the group consisting of titanium oxide, niobium oxide, cerium oxide, zirconium oxide, indium tin oxide, zinc oxide, tantalum oxide, zinc sulfide, and tin oxide. It is preferable to comprise.
  • the refractive index n 2 is smaller than the refractive index n 1 and the content of the fine particles is 0.001 to 14% by mass with respect to the resin.
  • the refractive index n 2 is larger than the refractive index n 1 and the content of the fine particles is 0.00015 to 3.0% by mass with respect to the resin.
  • the laminate is preferably for a reflective screen that can be seen through.
  • a reflective screen that includes the above laminate and can be seen through.
  • a vehicle member provided with the laminate or the see-through reflective screen.
  • a residential member provided with the laminate or the see-through reflective screen.
  • an image projecting device comprising the above laminate or the above-described reflective screen that can be seen through, and a projection device.
  • the laminate according to the present invention When the laminate according to the present invention is used as a reflective screen, the projected light emitted from the viewer side is anisotropically scattered and reflected without impairing the transmission visibility, so that the transparent screen can be clearly seen. It is possible to project a clear image and has an excellent viewing angle. That is, the laminate according to the present invention can achieve both the visibility of projection light and the visibility of transmitted light. Therefore, the laminated body by this invention can be used suitably as a transparent screen, and also can be used suitably for the member for vehicles, and the member for houses. The laminate according to the present invention can also be suitably used as a light guide plate used in an image display device, an image projection device, a scanner light source, and the like.
  • the laminate according to the present invention includes a light diffusion layer and a reflection layer.
  • the laminate according to the present invention is preferably transparent, and can be suitably used as a transparent screen laminate capable of being seen through.
  • the laminated body according to the present invention has excellent visibility of projection light by anisotropically reflecting reflected projection light emitted from the viewer side, wide viewing angle, high transparency, and visibility of transmitted light. It has excellent properties.
  • Such a laminate can be suitably used as a see-through reflective screen used for a head-up display, a wearable display, or the like.
  • the term “transparent” is sufficient as long as the transparency can be realized according to the application, and includes “translucent”.
  • FIG. 1 shows a schematic cross-sectional view in the thickness direction of an embodiment of a laminate according to the present invention.
  • the laminate 10 includes a light diffusion layer 11 in which fine particles 13 are dispersed in a resin 12 and a reflection layer 14 formed on the light diffusion layer 11.
  • the laminated body may have a two-layer configuration including the light diffusion layer 11 and the reflective layer 14, or may further include other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer. .
  • the laminate has a haze value of preferably 50% or less, more preferably 1% or more and 40% or less, more preferably 1.3% or more and 30% or less, and even more preferably 1.5% or more. 20% or less. Further, the laminate preferably has a total light transmittance of 70% or more, more preferably 75% or more, still more preferably 80% or more, and even more preferably 85% or more. When the haze value and the total light transmittance of the laminate are within the above ranges, the transparency is high and the transmission visibility can be further improved.
  • the haze value and total light transmittance of the reflection type screen laminate were measured using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) and JIS-K-7361 and It can be measured according to JIS-K-7136.
  • the laminate has an image clarity of preferably 60% or more, more preferably 65% or more, still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80%. That's it. If the image clarity of the laminate is within the above range, the image seen through the transparent screen becomes very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
  • the laminated body has a reflected light intensity of preferably 3 or more and 60 or less, more preferably 4 or more and 50 or less, and further preferably 4.5 or more and 40 or less. Moreover, the said laminated body becomes like this.
  • the reflected luminous intensity improvement rate is 1.5 times or more, More preferably, it is 2 times or more, More preferably, it is 3 times or more and 50 times or less.
  • the reflected light intensity and the reflected light intensity improvement rate of the laminate are within the above ranges, the brightness of the reflected light is high and the performance as a reflective screen is excellent.
  • the reflected luminous intensity and the reflected luminous intensity improvement rate of the laminate are values measured as follows.
  • the measurement was performed using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000L).
  • the incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees corresponding to the projector light incident angle in the rear projection, and the intensity of reflected light in the 0 degree direction was measured.
  • the reflected luminous intensity was measured and calculated as an improvement magnification when the reflected luminous intensity of a laminate not provided with a reflective layer was set to 1.
  • the thickness of the laminate is not particularly limited, but is preferably 10 ⁇ m to 20 mm, more preferably 20 ⁇ m to 15 mm, from the viewpoints of use, productivity, handleability, and transportability.
  • the thickness is preferably 30 ⁇ m to 10 mm.
  • the “laminate” includes molded articles having various thicknesses such as a so-called film, sheet, and coating film formed by coating on a substrate, and a plate (plate-shaped molded article).
  • the light diffusion layer comprises a resin having a refractive index n 1, and fine particles having a refractive index n 1 is different from the refractive index n 2.
  • the difference between the refractive index n 1 and the refractive index n 2 is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more and 1.5 or less. Since the refractive index of the resin forming the light diffusion layer is different from that of the fine particles, light can be scattered anisotropically in the light diffusion layer, and the viewing angle can be improved.
  • the thickness of the light diffusion layer is not particularly limited, but is preferably 0.1 ⁇ m to 20 mm, more preferably 0.2 ⁇ m to 15 mm, from the viewpoints of application, productivity, handleability, and transportability. More preferably, it is 1 ⁇ m to 10 mm, even more preferably 10 ⁇ m to 2 mm, and most preferably 50 ⁇ m to 1 mm.
  • the light diffusion layer may be a film or a coating film formed on a substrate made of glass or resin.
  • the light diffusion layer may have a single layer structure, or may have a multilayer structure in which two or more layers are laminated by coating or the like, or two or more layers are bonded together with an adhesive or the like.
  • the resin for forming the light diffusion layer it is preferable to use a highly transparent resin in order to obtain a highly transparent laminate.
  • Highly transparent resins include acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, and polycarbonate resins.
  • thermoplastic resin such as vinyl resins, polysulfone resins, and fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be used.
  • a thermoplastic resin is preferable from the viewpoint of the moldability of the laminate, but is not particularly limited.
  • acrylic resins, polyester resins, polyolefin resins, vinyl resins, polycarbonate resins, and polystyrene resins are preferably used.
  • Polymethyl methacrylate resin polyethylene terephthalate resin, polyethylene naphthalate resin More preferably, polypropylene resin, cycloolefin polymer resin, cellulose acetate propionate resin, polyvinyl butyral resin, polycarbonate resin, and polystyrene resin are used. These resins can be used alone or in combination of two or more.
  • the ionizing radiation curable resin include acrylic, urethane, acrylic urethane, epoxy, and silicone resins.
  • those having an acrylate-based functional group such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone
  • polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Preferred are those containing a
  • the ionizing radiation curable resin may be mixed with a thermoplastic resin and a solvent.
  • thermosetting resins include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, urea resins, and the like. Among these, epoxy resins and silicone resins are preferable.
  • the fine particles forming the light diffusion layer an inorganic material or an organic material that can be atomized to a nano size can be suitably used.
  • the refractive index n 2 is preferably 1.80 to 3.55, more preferably 1.9 to 3.3, and still more preferably 2.0 to 3 0.0, and metal-based particles obtained by atomizing metal oxides, metal salts, pure metals, and the like can be used.
  • Examples of the pure metal include silver, gold, platinum, and palladium.
  • zirconium oxide particles, titanium oxide particles, cerium oxide particles, barium titanate particles, and silver particles are preferably used from the viewpoints of projection light scattering, particle aggregability, and production cost.
  • These inorganic fine particles can be used alone or in combination of two or more.
  • the refractive index n 2 is preferably 1.35 to 1.80, more preferably 1.4 to 1.75, and still more preferably 1.45.
  • organic fine particles having a low refractive index include acrylic particles and polystyrene particles.
  • the primary particles of the fine particles have a median diameter (D 50 ) of 0.1 to 50 nm, preferably 0.5 to 40 nm, more preferably 1 to 35 nm, still more preferably 1.5 to 30 nm, and 10 to 500 nm.
  • the maximum particle diameter is preferably 15 to 300 nm, more preferably 20 to 200 nm, and still more preferably 20 to 130 nm.
  • the median diameter (D 50 ) and the maximum particle diameter of the primary particles of the inorganic fine particles are determined using a particle size distribution measuring device (trade name: DLS-8000, manufactured by Otsuka Electronics Co., Ltd.) by a dynamic light scattering method. It can be determined from the particle size distribution measured by using.
  • the inorganic fine particles commercially available ones may be used.
  • the zirconium oxide particles SZR-W, SZR-CW, SZR-M, SZR-K and the like (above, manufactured by Sakai Chemical Industry Co., Ltd.) Product name) can be preferably used.
  • the content of the fine particles in the light diffusion layer can be appropriately adjusted according to the refractive index n 2 of the fine particles, and is preferably 0.00015 to 14% by mass with respect to the resin.
  • the content of fine particles in the light diffusion layer is preferably 0.001 to 14% by mass with respect to the resin. Yes, preferably 0.01 to 12% by mass, and more preferably 0.1 to 10% by mass.
  • the content of the fine particles in the light diffusion layer is preferably 0.00015-3.
  • the content of the inorganic fine particles in the light diffusion layer is within the above range, the projection light emitted from the viewer side is scattered and reflected anisotropically, thereby improving the visibility of the projection light and the visibility of the transmitted light. Can be improved.
  • the reflection layer is a layer for anisotropically scattering and reflecting the projection light emitted from the light source. Further, since the reflective layer can be seen through, the visibility of transmitted light is excellent.
  • the reflective layer has a refractive index n 3 greater than the refractive index n 1 of the resin of the light diffusion layer.
  • Refractive index n 3 of the reflective layer is preferably 1.8 or more, more preferably 1.8 to 3.0, more preferably 1.8 or more 2.6 or less.
  • the thickness of the reflective layer is preferably 5 to 130 nm, more preferably 10 to 100 nm, and still more preferably 15 to 90 nm. When the thickness of the reflective layer is within the above range, a highly transparent and reflective screen capable of being seen through can be provided.
  • the reflective layer has an optical film thickness (nd) represented by the product of the refractive index n 3 and the film thickness d, preferably 20 to 400 nm, more preferably 50 to 300 nm, and still more preferably 70 to 250 nm. And even more preferably 100 to 200 nm. If the optical film thickness of the reflective layer is within the above numerical range, the image can be clearly seen, there is no color change of the reflected image, and the color reproducibility is excellent.
  • nd optical film thickness represented by the product of the refractive index n 3 and the film thickness d
  • the reflective layer is formed using at least one material selected from the group consisting of titanium oxide, niobium oxide, cerium oxide, zirconium oxide, indium tin oxide, zinc oxide, tantalum oxide, zinc sulfide, and tin oxide. Is preferred. By using such a material, to achieve the refractive index n 3 of the above projection light emitted from the light source can be efficiently reflected.
  • the method for forming the reflective layer is not particularly limited, and can be performed by a conventionally known method.
  • the reflective layer can be formed by vapor deposition, sputtering, or coating.
  • the reflective layer may be directly formed on the light diffusion layer, or may be bonded to the light diffusion layer with an adhesive or the like after being formed on a substrate layer made of resin or glass.
  • a base material layer is a layer for supporting a laminated body, and can improve the intensity
  • the base material layer is preferably made of a highly transparent resin or glass that does not impair the transmission visibility and desired optical properties of the laminate.
  • a resin for example, a highly transparent resin similar to the above light diffusion layer can be used.
  • Acrylic resins acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, Acetal resin, vinyl resin, polystyrene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, silicone resin, polyarylate resin, polyvinyl alcohol resin, polyvinyl chloride resin, polysulfone resin Resins, thermoplastic resins such as fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be suitably used.
  • seat which laminated
  • the thickness of the base material layer can be appropriately changed according to the material so that the strength is appropriate, and may be in the range of 10 to 1000 ⁇ m, for example.
  • the protective layer may be laminated on both the front side (viewer side) and the back side of the laminate or any one of them, and functions such as light resistance, scratch resistance, substrate adhesion and antifouling properties. It is a layer for giving.
  • the protective layer is preferably formed using a resin that does not impair the transmission visibility and desired optical properties of the laminate. Examples of the material for the protective layer include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, cellulose resins such as diacetyl cellulose and triacetyl cellulose, acrylic resins such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymers, and the like.
  • polystyrene resins such as (AS resin), polycarbonate resins, and the like.
  • polyolefin resins such as polyethylene, polypropylene, ethylene / propylene copolymers, olefin resins having cycloolefin or norbornene structures, vinyl chloride resins, amide resins such as nylon and aromatic polyamide, imide resins, Sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, vinyl alcohol resin, vinylidene chloride resin, vinyl butyral resin, arylate resin, polyoxymethylene resin, epoxy resin Or the blend of the said resin etc.
  • resin which forms a protective film examples include ionizing radiation curable resins such as acrylics, urethanes, acrylic urethanes, epoxies, and silicones, mixtures of thermoplastic resins and solvents in ionizing radiation curable resins, and thermosetting resins. .
  • the film forming component of the ionizing radiation curable resin composition is preferably one having an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di
  • acetophenones, benzophenones, Michler benzoyl benzoate, ⁇ -amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators.
  • a mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used.
  • the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays.
  • a normal curing method that is, by irradiation with electron beams or ultraviolet rays.
  • electron beam curing 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used.
  • ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
  • the protective layer is formed by applying the coating liquid of the ionizing radiation (ultraviolet ray) radiation curable resin composition by a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. It can form by apply
  • a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure can be provided on the surface of the protective layer according to the purpose.
  • An adhesion layer is a layer for sticking a laminated body to a support body.
  • the pressure-sensitive adhesive layer is preferably formed using a pressure-sensitive adhesive composition that does not impair the transmission visibility and desired optical properties of the laminate.
  • the pressure-sensitive adhesive composition include natural rubber, synthetic rubber, acrylic resin, polyvinyl ether resin, urethane resin, and silicone resin.
  • synthetic rubbers include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block.
  • a copolymer is mentioned.
  • Specific examples of the silicone resin system include dimethylpolysiloxane.
  • the acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate.
  • the (meth) acrylic acid alkyl ester is usually copolymerized in an acrylic adhesive at a ratio of 30
  • Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and ⁇ -carboxyethyl acrylate. Can be mentioned.
  • the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive.
  • monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having functional groups such as monomers containing amino groups such as meth) acrylate, dimethylaminoethyl (meth) acrylate and vinylpyridine; ⁇ ⁇ ⁇ ⁇ epoxy group-containing monomers such as allyl glycidyl ether and (meth)
  • fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
  • the acrylic resin pressure-sensitive adhesive in addition to the monomer having another functional group as described above, another monomer having an ethylenic double bond can be used.
  • monomers having an ethylenic double bond include diesters of ⁇ , ⁇ -unsaturated dibasic acids such as dibutyl maleate, dioctyl maleate and dibutyl fumarate; vinyl esters such as vinyl oxalate and vinyl propionate; vinyl ether And vinyl aromatic compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; (meth) acrylonitrile and the like.
  • a compound having two or more ethylenic double bonds may be used in combination.
  • examples of such compounds include divinylbenzene, diallyl malate, diallyl phthalate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylene bis (meth) acrylamide, and the like.
  • monomers having an alkoxyalkyl chain can be used.
  • (meth) acrylic acid alkoxyalkyl esters include 2-methoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, and 3-methoxypropyl (meth) acrylate.
  • the pressure-sensitive adhesive composition may be a homopolymer of (meth) acrylic acid alkyl ester monomer in addition to the above acrylic resin pressure-sensitive adhesive.
  • (meth) acrylic acid ester homopolymers include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, poly (meth) Examples include octyl acrylate.
  • Copolymers containing two or more acrylate units include methyl (meth) acrylate- (meth) ethyl acrylate copolymer, methyl (meth) acrylate-butyl (meth) acrylate copolymer, ( Examples thereof include methyl (meth) acrylate- (meth) acrylic acid 2-hydroxyethyl copolymer, methyl (meth) acrylate- (meth) acrylic acid 2-hydroxy3-phenyloxypropyl copolymer, and the like.
  • Copolymers of (meth) acrylic acid esters and other functional monomers include (meth) methyl acrylate-styrene copolymers, (meth) methyl acrylate-ethylene copolymers, (meth) acrylic. Examples include methyl acid- (meth) acrylate 2-hydroxyethyl-styrene copolymer.
  • adhesives such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
  • the antireflection layer is a layer for preventing reflection on the surface of the laminate and reflection from outside light.
  • the antireflection layer may be laminated on the surface side (viewer side) of the laminate, or may be laminated on both surfaces. In particular, when used as a reflective screen, it is preferably laminated on the viewer side.
  • the antireflection layer is preferably formed using a resin that does not impair the transmission visibility and desired optical properties of the laminate.
  • a resin curable by ultraviolet rays or an electron beam that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used. Among these, ionizing radiation curable resins are particularly preferable.
  • the method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
  • the manufacturing method of the laminated body by this invention includes the process of forming a light-diffusion layer, and the process of forming the reflective layer containing a lamination process.
  • the step of forming the light diffusion layer is a known method such as offset printing, gravure printing, screen printing, inkjet printing, spray printing, spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like.
  • a thin film of an appropriate thickness produced by the method, an injection molding method, an extrusion molding method comprising a kneading step and a film forming step, a calendar molding method, a blow molding method, a compression molding method, a cell casting method, a continuous casting method, etc.
  • the extrusion molding method can be suitably used because it can be molded by the method and has a wide range of film thickness that can be formed.
  • each process of a manufacturing method is explained in full detail.
  • the kneading step can be performed using an extruder such as a single-screw kneader or a twin-screw kneading extruder.
  • an extruder such as a single-screw kneader or a twin-screw kneading extruder.
  • the above resin and fine particles are kneaded while applying a shear stress of preferably 3 to 1800 KPa, more preferably 6 to 1400 KPa as an average value over the entire length of the screw.
  • a composition can be obtained. If the shear stress is within the above range, the fine particles can be sufficiently dispersed in the resin.
  • the shear stress is 3 KPa or more, the dispersion uniformity of the fine particles can be further improved, and if it is 1800 KPa or less, decomposition of the resin is prevented and bubbles are prevented from being mixed in the light diffusion layer. Can do.
  • the shear stress can be set in a desired range by adjusting the twin-screw kneading extruder.
  • a resin (masterbatch) to which fine particles have been added in advance and a mixture of resin to which fine particles have not been added are kneaded using a single-screw kneading extruder or a twin-screw kneading extruder, A resin composition may be obtained.
  • additives may be added to the resin composition as long as the transmission visibility and desired optical performance of the reflective screen laminate are not impaired.
  • the additive include an antioxidant, a lubricant, an ultraviolet absorber, a compatibilizer, a nucleating agent, and a stabilizer.
  • the resin and the fine particles are as described above.
  • the twin-screw kneading extruder used in the kneading process is one in which two screws are inserted into a cylinder, and is configured by combining screw elements.
  • a flight screw including at least a conveying element and a kneading element can be suitably used.
  • the kneading element preferably contains at least one selected from the group consisting of a kneading element, a mixing element, and a rotary element.
  • the film forming step is a step of forming a film of the resin composition obtained in the kneading step.
  • the film forming method is not particularly limited, and a film made of the resin composition can be formed by a conventionally known method.
  • the resin composition obtained in the kneading step is supplied to a melt extruder heated to a temperature equal to or higher than the melting point (Tm to Tm + 70 ° C.) to melt the resin composition.
  • a melt extruder a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder, or the like can be used depending on the purpose.
  • the melted resin composition is extruded into a sheet shape by a die such as a T die, and the extruded sheet material is rapidly cooled and solidified by a rotating cooling drum or the like, thereby forming a film.
  • the resin composition obtained in the kneading process is directly extruded into a sheet shape with a die in a molten state, and a film-shaped light diffusion layer is formed. It can also be molded.
  • the film-shaped light diffusion layer obtained by the film forming step may be further uniaxially or biaxially stretched by a conventionally known method.
  • the strength of the light diffusion layer can be improved by stretching the light diffusion layer.
  • the laminating step is a step of further laminating a reflective layer on the film-shaped light diffusion layer obtained in the film forming step.
  • the method for laminating the reflective layer is not particularly limited, and can be performed by a conventionally known method.
  • the reflective layer can be formed by vapor deposition, sputtering, or coating.
  • a reflective screen according to the present invention comprises the above laminate.
  • the reflective screen may be composed only of the above-described laminated body, or may further include a support such as a transparent partition. When used as a reflective screen, it is preferable that the viewer visually recognizes an image from the light diffusion layer side of the laminate.
  • the reflective screen may be a flat surface, a curved surface, or an uneven surface.
  • the position of the light source is on the viewer side with respect to the screen.
  • a reflective screen has excellent visibility of projection light by anisotropically reflecting the projection light emitted from the viewer side, and has a wide viewing angle and excellent visibility of transmitted light. It is.
  • the support is for supporting the laminate.
  • the support may be any material that does not impair the transmission visibility and desired optical characteristics of the reflective screen. Examples thereof include a transparent partition, a glass window, a head-up display for a passenger car, and a wearable display.
  • the vehicle member according to the present invention includes the above-described laminated body or a see-through reflective screen, and may further include an antireflection layer or the like.
  • Examples of the vehicle member include a windshield and a side glass.
  • the housing member according to the present invention includes the above-described laminated body or a reflective screen that can be seen through, and may further include an antireflection layer or the like.
  • Examples of the house member include a window glass of a house, a convenience store, a glass wall of a road surface store, and the like.
  • the housing member includes the above-described laminate or the see-through reflective screen, so that a clear image can be displayed on the housing member without providing a separate screen.
  • An image projection apparatus includes the above laminate or a reflective screen that can be seen through, and a projection apparatus.
  • the projection device is not particularly limited as long as it can project an image on a screen.
  • a commercially available front projector can be used.
  • FIG. 2 shows a schematic diagram of an embodiment of a reflective screen and an image projection apparatus according to the present invention.
  • the reflective screen 20 includes a support body (transparent partition) 21 and a laminated body 10 on the support body 21 so that a light diffusing layer and a reflective layer are arranged in this order from the viewer 22 side.
  • a support body transparent partition
  • a laminated body 10 on the support body 21 so that a light diffusing layer and a reflective layer are arranged in this order from the viewer 22 side.
  • the image projection apparatus includes a reflective screen 20 and a projection apparatus 23.
  • the projection device 23 is installed on the same side as the viewer 22 with respect to the transparent partition 21, and the projection light 24 emitted from the light source is anisotropically scattered and reflected by the reflective screen laminate 10, and the viewer reflects the reflected light. 25 can be visually recognized.
  • the incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100.
  • the incident angle of the light source was set to 15 degrees corresponding to the projector light incident angle in the rear projection, and the intensity of reflected light in the 0 degree direction was measured.
  • (4) Reflective Layer Film Thickness of the reflective layer was measured by using SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST manufactured by SLOAN or DIGIMICRO MFC-101 manufactured by Nikon.
  • thermoplastic resin pellets to which inorganic fine particles were added Polyethylene terephthalate (PET) pellets (trade name: IP121B, manufactured by Bell Polyester Products Co., Ltd.) were prepared as thermoplastic resins.
  • PET Polyethylene terephthalate
  • IP121B manufactured by Bell Polyester Products Co., Ltd.
  • ZrO 2 zirconium oxide
  • the PET pellets in which ZrO 2 particles were uniformly adhered to the surface of the PET pellets were obtained by mixing in the above.
  • the extrusion temperature was 270 ° C.
  • the screw rotation speed was 500 rpm
  • the shear stress was 300 KPa.
  • the used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
  • a light diffusion layer was prepared in the same manner as in Production 1 except that polyethylene naphthalate (PEN) pellets (manufactured by Teijin Ltd., trade name: Teonex TN-8065S) were used as the thermoplastic resin in (1) of Production Example 1. Produced.
  • PEN polyethylene naphthalate
  • a light diffusion layer was produced in the same manner as in Production 1 except that polycarbonate (PC) pellets (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: SD2201W) were used as the thermoplastic resin in Production Example 1 (1). .
  • PC polycarbonate
  • SD2201W trade name: SD2201W
  • Example 11 a light diffusion layer was produced in the same manner as in Production 1 except that polystyrene (PS) pellets (brand name HF77 manufactured by PS Japan Co., Ltd.) were used as the thermoplastic resin.
  • PS polystyrene
  • thermoplastic resin pellets to which inorganic fine particles were added Polyethylene terephthalate (PET) pellets (trade name: IP121B, manufactured by Bell Polyester Products Co., Ltd.) were prepared as thermoplastic resins.
  • PET Polyethylene terephthalate
  • ZrO 2 particles manufactured by Kanto Denka Kogyo Co., Ltd., primary particle median diameter 10 nm
  • a PET pellet having ZrO 2 particles uniformly adhered to the surface of the PET pellet was obtained.
  • ZrO 2 particles are obtained by putting the pellets into a hopper of a twin-screw kneading extruder (trade name: KZW-30MG, manufactured by Technobel Co., Ltd.) and pelletizing the strand obtained by melt-kneading at 270 ° C. A PET pellet kneaded with 0.003% by mass was obtained.
  • thermoplastic resin pellet to which inorganic fine particles were added A cycloolefin polymer (COP) pellet (manufactured by Nippon Zeon Co., Ltd., trade name: 1020R) was prepared as a thermoplastic resin. To this COP pellet, 0.15% by mass of ZrO 2 particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary particle median diameter 10 nm) is added as inorganic fine particles to the COP pellet and mixed in a rotary mixer. As a result, a COP pellet having ZrO 2 particles uniformly adhered to the pellet surface was obtained.
  • COP cycloolefin polymer
  • ZrO 2 particles are obtained by putting the pellets into a hopper of a twin-screw kneading extruder (trade name: KZW-30MG, manufactured by Technobel Co., Ltd.) and pelletizing the strand obtained by melt-kneading at 260 ° C.
  • COP pellets containing 0.15% by mass were obtained.
  • the COP pellets with the ZrO 2 particles added of (1) above are put into a hopper of a twin screw kneading extruder (trade name: KZW-30MG), and a 500 ⁇ m thick light diffusion film is formed. did.
  • the screw diameter of the twin-screw kneading extruder was 20 mm, and the effective screw length (L / D) was 30.
  • a hanger coat type T-die was installed in the twin-screw kneading extruder through an adapter.
  • the extrusion temperature was 260 ° C.
  • the screw rotation speed was 500 rpm
  • the shear stress was 300 KPa.
  • the used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
  • Example 1 A reflective layer was formed by laminating titanium dioxide (TiO 2 ) to a thickness of 15 nm on one side of the light diffusion layer produced in Production Example 1 to obtain a laminate for a reflective screen.
  • the obtained reflective screen laminate had a very light brown luster, a haze value of 10.8%, and a total light transmittance of 82%, which was sufficiently transparent.
  • As a result of visual evaluation of color reproducibility it was possible to clearly see the video.
  • the reflected image seen from the rear had no change in color, and the brightness was improved as compared with the case where vapor deposition was not performed, and the image was clearer.
  • the reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 4.1 times.
  • Example 2 A reflective screen laminate was prepared in the same manner as in Example 1 except that the thickness of TiO 2 was changed to 30 nm.
  • the obtained laminate had a light brown luster, a haze value of 11.3%, and a total light transmittance of 70%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 6.2 times. Further, the image clarity was 76%, and the image seen through the laminate was clear.
  • Example 3 A laminate was produced in the same manner as in Example 1 except that the thickness of TiO 2 was set to 150 nm.
  • the obtained laminate had a brown luster, a haze value of 11.0%, and a total light transmittance of 70%.
  • the color tone was slightly reddish compared to Examples 1 and 2, it was possible to visually recognize the image clearly.
  • the reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 6.4 times. Further, the image clarity was 72%, and the image seen through the laminate was clear.
  • Example 4 On one side of the light diffusion layer produced in Production Example 1, zinc sulfide (ZnS) was laminated to a thickness of 10 nm by vapor deposition to form a reflective layer, thereby obtaining a laminate.
  • the obtained laminate was almost colorless, had a haze value of 9.5%, and a total light transmittance of 90%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 3.0 times.
  • the image clarity was 81%, and the image seen through the laminate was clear.
  • Example 5 A laminate was produced in the same manner as in Example 4 except that the film thickness of ZnS was changed to 60 nm.
  • the obtained laminate had a light blue gloss, had a haze value of 10.0%, and a total light transmittance of 70%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 11.0 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
  • Example 6 A laminate was produced in the same manner as in Example 4 except that the film thickness of ZnS was 80 nm.
  • the obtained laminate had a light blue gloss, a haze value of 9.8%, and a total light transmittance of 72%, which was sufficiently transparent.
  • a very weak bluish color change was observed depending on the image.
  • the reflected light intensity improvement magnification was 7.5 times. Further, the image clarity was 73%, and the image seen through the laminate was clear.
  • Example 7 A laminate was prepared in the same manner as in Example 4 except that the film thickness of ZnS was 140 nm.
  • the obtained laminate had a red to yellow gloss, a haze value of 9.2%, and a total light transmittance of 88%.
  • the reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 6.9 times. Further, the image clarity was 71%, and the image seen through the laminate was clear.
  • Example 8 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 2 was used.
  • the obtained laminate had a light blue luster, had a haze value of 47.8%, and a total light transmittance of 72%, which was slightly cloudy, but had sufficient transparency.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 2.7 times. Further, the image clarity was 65%, and the image seen through the laminate was clear.
  • Example 9 A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 12 was used.
  • the obtained laminate (plate) had a light blue gloss, had a haze of 3.2%, and a total light transmittance of 71%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.8 times.
  • the image clarity was 83%, and the image seen through the laminate was clear.
  • Example 10 A screen laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 13 was used.
  • the obtained laminate (plate) had a light blue gloss, had a haze of 3.2%, and a total light transmittance of 71%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.2 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
  • Example 11 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 3 was used.
  • the obtained laminate had a light blue gloss, had a haze value of 10.8%, and a total light transmittance of 70%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.2 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
  • Example 12 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 4 was used.
  • the obtained laminate had a light blue luster, a haze value of 9.9%, and a total light transmittance of 73%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 6.0 times. Further, the image clarity was 78%, and the image seen through the laminate was clear.
  • Example 13 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 5 was used.
  • the obtained laminate had a light blue luster, a haze value of 1.8%, and a total light transmittance of 71%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 3.0 times.
  • the image clarity was 79%, and the image seen through the laminate was clear.
  • Example 14 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 6 was used.
  • the obtained laminate had a light blue gloss, had a haze value of 5.2%, and a total light transmittance of 72%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.5 times.
  • the image clarity was 75%, and the image seen through the laminate was clear.
  • Example 15 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 7 was used.
  • the obtained laminate had a light blue gloss, had a haze value of 37.0%, and a total light transmittance of 72%, although it was slightly cloudy, but had sufficient transparency.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 3.1 times. Further, the image clarity was 62%, and the image seen through the laminate was clear.
  • Example 16 A reflective layer was formed by laminating indium tin oxide (ITO) to a thickness of 80 nm on one side of the light diffusion layer produced in Production Example 8 to obtain a laminate.
  • the obtained laminate had a very light gray luster, had a haze value of 10.5%, and a total light transmittance of 80%, which was sufficiently transparent.
  • ITO indium tin oxide
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 3.9 times. Further, the image clarity was 82%, and the image seen through the laminate was clear.
  • Example 17 A laminate was produced in the same manner as in Example 2 except that the light diffusion layer produced in Production Example 9 was used.
  • the obtained laminate had a light brown luster, a haze value of 9.2%, and a total light transmittance of 71%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 3.5 times.
  • the image clarity was 79%, and the image seen through the laminate was clear.
  • Example 18 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 9 was used.
  • the obtained laminate had a light brown luster, a haze value of 9.5%, and a total light transmittance of 70%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 8.5 times. Further, the image clarity was 78%, and the image seen through the laminate was clear.
  • Example 19 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 10 was used.
  • the obtained laminate had a light brown luster, a haze value of 7.8%, and a total light transmittance of 75%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light improvement factor was 4.6 times.
  • the image clarity was 83%, and the image seen through the laminate was clear.
  • Example 20 A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 11 was used.
  • the obtained laminate had a light brown luster, a haze value of 7.8%, and a total light transmittance of 71%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.8 times.
  • the image clarity was 85%, and the image seen through the laminate was clear.
  • Example 21 A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 14 was used.
  • the obtained laminate (plate) had a light brown luster, a haze of 23.1%, and a total light transmittance of 67%, although it was slightly cloudy and had sufficient transparency.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 6.2 times. Further, the image clarity was 73%, and the image seen through the laminate was clear.
  • Example 22 A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 15 was used.
  • the obtained laminate (plate) had a light brown luster, a haze of 10.1%, and a total light transmittance of 65%, which was sufficiently transparent.
  • a clear image with almost no color change was visually recognized.
  • the reflected light intensity improvement magnification was 4.8 times.
  • the image clarity was 83%, and the image seen through the laminate was clear.
  • Table 2 shows various physical properties and performance evaluation results of the laminates used in the examples and comparative examples.

Abstract

The purpose of this invention is to provide a see-through laminate in which projection light emitted from the viewer side is anisotropically scattered and reflected, thereby making it possible to ensure the visibility of the projection light as well as the visibility of transmitted light. This laminate is provided with a light diffusion layer containing a resin having a refractive index n1 and microparticles having a refractive index n2 different from refractive index n1, and a see-through reflection layer having a refractive index n3 greater than refractive index n1.

Description

透視可能な積層体、それを備えた反射型スクリーン、およびそれを備えた画像投影装置Transparent body, reflection type screen including the same, and image projection apparatus including the same
 本発明は、視認者側から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを両立できる積層体、それを備えた反射型スクリーン、およびそれを備えた画像投影装置に関する。 The present invention provides a laminate capable of achieving both the visibility of projection light and the visibility of transmitted light by anisotropically scattering and reflecting the projection light emitted from the viewer side, a reflective screen including the laminate, and The present invention relates to an image projection apparatus including the same.
 従来、プロジェクター用スクリーンとして、フレネルレンズシートとレンチキュラーレンズシートとを組み合わせたものが用いられてきた。近年、デパート等のショウウィンドウやイベントスペースの透明パーティション等にその透明性を維持したまま商品情報や広告等を投射表示する要望が高まってきている。また、将来的には、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる透視可能な反射型スクリーンの需要は、ますます高まると言われている。 Conventionally, a combination of a Fresnel lens sheet and a lenticular lens sheet has been used as a projector screen. In recent years, there has been an increasing demand to project and display product information, advertisements, and the like while maintaining transparency on a show window of a department store or a transparent partition of an event space. In the future, it is said that the demand for transparent reflective screens used for head-up displays, wearable displays and the like will increase.
 しかし、従来のプロジェクター用スクリーンは透明性が低いため、透明パーティション等に適用できないという技術的課題があった。そこで、高透明性を実現できる様々な反射型スクリーンが提案されている。例えば、支持体上に、高屈折率の第1の光学膜とこれより低い屈折率をもつ第2の光学膜とが交互に積層されて2n+1(nは1以上の整数である。)層からなり、特定の波長領域の光に対して高反射特性を有し、前記特定の波長領域以外の少なくとも可視波長領域に対して高透過特性を有する光学多層膜が形成された反射型スクリーンが提案されている(特許文献1参照)。また、第1の屈折率を有する基体と、該基体の主面の上に設けられ、第1の屈折率よりも高い第2の屈折率を有する材料からなる特定の周期Λの周期膜を有する周期構造体と、を備える反射スクリーンが提案されている(特許文献2参照)。さらに、少なくとも金属ナノロッドを含有する誘電体マトリックスからなり、特定の金属ナノロッドが前記誘電体マトリックス中で一定方向に配向している異方性散乱膜が提案されている(特許文献3参照)。 However, there is a technical problem that conventional projector screens cannot be applied to transparent partitions because of their low transparency. Therefore, various reflective screens that can realize high transparency have been proposed. For example, a first optical film having a high refractive index and a second optical film having a lower refractive index are alternately stacked on a support to form 2n + 1 (n is an integer of 1 or more) layer. Therefore, a reflective screen is proposed in which an optical multilayer film having high reflection characteristics for light in a specific wavelength region and having high transmission characteristics for at least a visible wavelength region other than the specific wavelength region is formed. (See Patent Document 1). A base having a first refractive index; and a periodic film having a specific period Λ provided on a main surface of the base and made of a material having a second refractive index higher than the first refractive index. A reflective screen including a periodic structure has been proposed (see Patent Document 2). Furthermore, an anisotropic scattering film has been proposed which is made of a dielectric matrix containing at least metal nanorods and in which specific metal nanorods are oriented in a certain direction in the dielectric matrix (see Patent Document 3).
特開2005-115243号公報JP 2005-115243 A 特開2009-237351号公報JP 2009-237351 A 特開2008-250460号公報JP 2008-250460 A
 しかしながら、本発明者らは、特許文献1~3には、以下の技術的課題が存在することを知見した。特許文献1に記載の反射型スクリーンは、第1の光学膜とこれより低い屈折率をもつ第2の光学膜とが交互に積層されて3層以上からなるため、各層間の界面での光の乱反射により反射効率が低下し、透過率が低下するという技術的課題がある。特許文献2に記載の反射スクリーンは、周期構造体を備えるため、膜厚増加による透過率の低下や干渉縞による色再現性の低下、さらには製造工程の煩雑化するという技術的課題がある。特許文献3に記載の異方性散乱膜は、全光線透過率が低く、透過視認性に劣るという技術的課題がある。 However, the present inventors have found that Patent Documents 1 to 3 have the following technical problems. In the reflection type screen described in Patent Document 1, the first optical film and the second optical film having a refractive index lower than the first optical film are alternately stacked to form three or more layers. There is a technical problem that the reflection efficiency is reduced by the irregular reflection, and the transmittance is reduced. Since the reflective screen described in Patent Document 2 includes a periodic structure, there is a technical problem that the transmittance decreases due to an increase in film thickness, the color reproducibility decreases due to interference fringes, and the manufacturing process becomes complicated. The anisotropic scattering film described in Patent Document 3 has a technical problem that the total light transmittance is low and the transmission visibility is poor.
 本発明は上記の技術的課題に鑑みてなされたものであり、その目的は、視認者側から出射される投影光を異方的に散乱反射することにより投影光の視認性に優れ、さらに視野角が広く、かつ透過光の視認性に優れる積層体を提供することにある。また、本発明の目的は、該積層体を備えた透視可能な反射型スクリーンや、該積層体または該透視可能な反射型スクリーンと投射装置とを備えた画像投影装置を提供することにある。本発明は特許文献1に記載のように、第1の光学膜とこれより低い屈折率をもつ第2の光学膜とが交互に積層されてなることを必要としない。なお、ここでいう反射型スクリーンとは、図2で示すように、視認者側に(つまりスクリーンに対して視認者と同じ側に)投射装置を設けて画像を視認できるスクリーンをいう。 The present invention has been made in view of the above-mentioned technical problems, and the object thereof is excellent in visibility of projected light by anisotropically scattering and reflecting projected light emitted from the viewer side. An object of the present invention is to provide a laminate having a wide corner and excellent visibility of transmitted light. Another object of the present invention is to provide a see-through reflective screen provided with the laminate, and an image projection device provided with the laminate or the see-through reflective screen and a projection device. As described in Patent Document 1, the present invention does not require that the first optical film and the second optical film having a lower refractive index are alternately laminated. Note that the reflective screen here refers to a screen on which an image can be viewed by providing a projection device on the viewer side (that is, on the same side as the viewer with respect to the screen), as shown in FIG.
 本発明者らは、上記の技術的課題を解決するため、鋭意検討した結果、屈折率nを有する樹脂と、屈折率nと異なる屈折率nを有する微粒子とを用いて光拡散層を形成し、光拡散層上に、屈折率nよりも大きい屈折率nを有する材料を用いて反射層を形成した積層体を用いることによって、上記の技術的課題を解決し、反射型スクリーンに好適に使用できることを知見した。本発明は、かかる知見に基づいて完成されたものである。 The present inventors have found that in order to solve the above technical problem, a result of intensive studies, the resin having a refractive index n 1, the light diffusing layer using the fine particles having a refractive index n 1 is different from the refractive index n 2 And the above-mentioned technical problem is solved by using a laminate in which a reflective layer is formed on a light diffusion layer using a material having a refractive index n 3 larger than the refractive index n 1. It was found that it can be suitably used for a screen. The present invention has been completed based on such findings.
 すなわち、本発明の一態様によれば、
 屈折率nを有する樹脂と、屈折率nと異なる屈折率nを有する微粒子とを含んでなる光拡散層と、
 屈折率nよりも大きい屈折率nを有する透視可能な反射層と、
を備えてなる、積層体が提供される。
That is, according to one aspect of the present invention,
A resin having a refractive index n 1, and a light diffusing layer comprising a particulate having a refractive index n 1 is different from the refractive index n 2,
A see-through reflective layer having a refractive index n 3 greater than the refractive index n 1 ;
A laminate comprising: is provided.
 本発明の態様においては、屈折率nと膜厚dの積で表される前記反射層の光学膜厚が20~400nmであることが好ましい。 In embodiments of the present invention, it is preferred optical thickness of the reflecting layer represented by the product of the refractive index n 3 and the thickness d is 20 ~ 400 nm.
 本発明の態様においては、屈折率nと屈折率nの差が0.1以上であることが好ましい。 In the aspect of the present invention, the difference between the refractive index n 1 and the refractive index n 2 is preferably 0.1 or more.
 本発明の態様においては、前記微粒子の一次粒子が、0.1~50nmのメジアン径を有し、かつ10~500nmの最大粒径を有することが好ましい。 In the embodiment of the present invention, it is preferable that the primary particles of the fine particles have a median diameter of 0.1 to 50 nm and a maximum particle diameter of 10 to 500 nm.
 本発明の態様においては、当該積層体は、全光線透過率が70%以上であることが好ましい。 In the embodiment of the present invention, the laminate preferably has a total light transmittance of 70% or more.
 本発明の態様においては、当該積層体は、写像性が60%以上であることが好ましい。 In the aspect of the present invention, it is preferable that the laminate has a image clarity of 60% or more.
 本発明の態様においては、屈折率nが1.8以上であることが好ましい。 In embodiments of the present invention, it is preferable that the refractive index n 3 is at least 1.8.
 本発明の態様においては、前記反射層が、酸化チタン、酸化ニオブ、酸化セリウム、酸化ジルコニウム、酸化インジウムスズ、酸化亜鉛、酸化タンタル、硫化亜鉛、および酸化スズからなる群より選択される少なくとも1種類を含んでなることが好ましい。 In an aspect of the present invention, the reflective layer is at least one selected from the group consisting of titanium oxide, niobium oxide, cerium oxide, zirconium oxide, indium tin oxide, zinc oxide, tantalum oxide, zinc sulfide, and tin oxide. It is preferable to comprise.
 本発明の態様においては、屈折率nが屈折率nよりも小さく、かつ前記微粒子の含有量が、前記樹脂に対して0.001~14質量%であることが好ましい。 In the embodiment of the present invention, it is preferable that the refractive index n 2 is smaller than the refractive index n 1 and the content of the fine particles is 0.001 to 14% by mass with respect to the resin.
 本発明の態様においては、屈折率nが屈折率nよりも大きく、かつ前記微粒子の含有量が、前記樹脂に対して0.00015~3.0質量%であることが好ましい。 In the embodiment of the present invention, it is preferable that the refractive index n 2 is larger than the refractive index n 1 and the content of the fine particles is 0.00015 to 3.0% by mass with respect to the resin.
 本発明の態様においては、前記積層体が、透視可能な反射型スクリーン用であることが好ましい。 In the aspect of the present invention, the laminate is preferably for a reflective screen that can be seen through.
 本発明の他の態様によれば、上記の積層体を備えた、透視可能な反射型スクリーンが提供される。 According to another aspect of the present invention, there is provided a reflective screen that includes the above laminate and can be seen through.
 本発明の他の態様によれば、上記の積層体または上記の透視可能な反射型スクリーンを備えた、車両用部材が提供される。 According to another aspect of the present invention, there is provided a vehicle member provided with the laminate or the see-through reflective screen.
 本発明の他の態様によれば、上記の積層体または上記の透視可能な反射型スクリーンを備えた、住宅用部材が提供される。 According to another aspect of the present invention, there is provided a residential member provided with the laminate or the see-through reflective screen.
 本発明の他の態様によれば、上記の積層体または上記の透視可能な反射型スクリーンと、投射装置とを備えた、画像投影装置が提供される。 According to another aspect of the present invention, there is provided an image projecting device comprising the above laminate or the above-described reflective screen that can be seen through, and a projection device.
 本発明による積層体は、反射型スクリーンとして用いた場合、透過視認性を損なわずに視認者側から出射される投影光を異方的に散乱反射させることで、透視可能な反射型スクリーンに鮮明な映像を投影することができ、さらに視野角に優れる。すなわち、本発明による積層体は、投影光の視認性と透過光の視認性とを両立できる。そのため、本発明による積層体は、透明スクリーンとして好適に用いることができ、さらに車両用部材や住宅用部材にも好適に用いることができる。また、本発明による積層体は、画像表示装置、画像投影装置、スキャナー用光源等で使用される導光板としても好適に用いることができる。 When the laminate according to the present invention is used as a reflective screen, the projected light emitted from the viewer side is anisotropically scattered and reflected without impairing the transmission visibility, so that the transparent screen can be clearly seen. It is possible to project a clear image and has an excellent viewing angle. That is, the laminate according to the present invention can achieve both the visibility of projection light and the visibility of transmitted light. Therefore, the laminated body by this invention can be used suitably as a transparent screen, and also can be used suitably for the member for vehicles, and the member for houses. The laminate according to the present invention can also be suitably used as a light guide plate used in an image display device, an image projection device, a scanner light source, and the like.
本発明による積層体の一実施形態の厚さ方向の断面模式図である。It is a cross-sectional schematic diagram of the thickness direction of one Embodiment of the laminated body by this invention. 本発明による透視可能な反射型スクリーンおよび画像投影装置の一実施形態を示した模式図である。It is the schematic diagram which showed one Embodiment of the reflection type screen and image projector which can be seen through by this invention.
<積層体>
 本発明による積層体は、光拡散層と、反射層とを備えてなる。本発明による積層体は好ましくは透視可能であり、透視可能な反射型スクリーン用積層体として好適に用いることができる。本発明による積層体は、視認者側から出射される投影光を異方的に散乱反射することにより投影光の視認性に優れ、視野角が広く、さらに、透明性が高く、透過光の視認性に優れるものである。このような積層体は、ヘッドアップディスプレイやウェアラブルディスプレイ等に用いられる透視可能な反射型スクリーンとして好適に用いることができる。なお、本発明において、「透明」とは、用途に応じた透過視認性を実現できる程度の透明性があれば良く、半透明であることも含まれる。
<Laminated body>
The laminate according to the present invention includes a light diffusion layer and a reflection layer. The laminate according to the present invention is preferably transparent, and can be suitably used as a transparent screen laminate capable of being seen through. The laminated body according to the present invention has excellent visibility of projection light by anisotropically reflecting reflected projection light emitted from the viewer side, wide viewing angle, high transparency, and visibility of transmitted light. It has excellent properties. Such a laminate can be suitably used as a see-through reflective screen used for a head-up display, a wearable display, or the like. In the present invention, the term “transparent” is sufficient as long as the transparency can be realized according to the application, and includes “translucent”.
 本発明による積層体の一実施形態の厚さ方向の断面模式図を図1に示す。積層体10は、樹脂12中に微粒子13が分散されてなる光拡散層11と、光拡散層11上に形成された反射層14とを含んでなる。当該積層体は、光拡散層11および反射層14からなる2層構成であってもよいし、保護層、基材層、粘着層、および反射防止層等の他の層をさらに備えてもよい。 FIG. 1 shows a schematic cross-sectional view in the thickness direction of an embodiment of a laminate according to the present invention. The laminate 10 includes a light diffusion layer 11 in which fine particles 13 are dispersed in a resin 12 and a reflection layer 14 formed on the light diffusion layer 11. The laminated body may have a two-layer configuration including the light diffusion layer 11 and the reflective layer 14, or may further include other layers such as a protective layer, a base material layer, an adhesive layer, and an antireflection layer. .
 当該積層体は、ヘイズ値が、好ましくは50%以下、より好ましくは1%以上40%以下であり、より好ましくは1.3%以上30%以下であり、さらにより好ましくは1.5%以上20%以下である。また、当該積層体は、全光線透過率が、好ましくは70%以上であり、より好ましくは75%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは85%以上である。積層体のヘイズ値および全光線透過率が上記範囲内であれば、透明性が高く、透過視認性をより向上させることができる。なお、本発明において、反射型スクリーン用積層体のヘイズ値および全光線透過率は、濁度計(日本電色工業(株)製、品番:NDH-5000)を用いてJIS-K-7361およびJIS-K-7136に準拠して測定することができる。 The laminate has a haze value of preferably 50% or less, more preferably 1% or more and 40% or less, more preferably 1.3% or more and 30% or less, and even more preferably 1.5% or more. 20% or less. Further, the laminate preferably has a total light transmittance of 70% or more, more preferably 75% or more, still more preferably 80% or more, and even more preferably 85% or more. When the haze value and the total light transmittance of the laminate are within the above ranges, the transparency is high and the transmission visibility can be further improved. In the present invention, the haze value and total light transmittance of the reflection type screen laminate were measured using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) and JIS-K-7361 and It can be measured according to JIS-K-7136.
 当該積層体は、写像性が、好ましくは60%以上であり、より好ましくは65%以上であり、さらに好ましくは70%以上であり、さらにより好ましくは75%以上であり、特に好ましくは80%以上である。当該積層体の写像性が上記範囲内であれば、透明スクリーンを透過して見える像が極めて鮮明となる。なお、本発明において、写像性とは、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値である。 The laminate has an image clarity of preferably 60% or more, more preferably 65% or more, still more preferably 70% or more, still more preferably 75% or more, and particularly preferably 80%. That's it. If the image clarity of the laminate is within the above range, the image seen through the transparent screen becomes very clear. In the present invention, the image clarity is a value of image definition (%) when measured with an optical comb width of 0.125 mm in accordance with JIS K7374.
 当該積層体は、反射光度が、好ましくは3以上60以下であり、より好ましくは4以上50以下であり、さらに好ましくは4.5以上40以下である。また、当該積層体は、反射光度向上率が、好ましくは1.5倍以上であり、より好ましくは2倍以上であり、さらにより好ましくは3倍以上50倍以下である。積層体の反射光度および反射光度向上率が上記範囲内であれば、反射光の輝度が高く、反射スクリーンとしての性能に優れる。なお、本発明において、積層体の反射光度および反射光度向上率は、以下のようにして測定した値である。
(反射光度)
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を45度にセットし、測定ステージに白色度95.77の標準白色板を載せたときの0度方向への反射光強度を100とした。サンプル測定時は、光源の入射角をリアプロジェクションでのプロジェクター光入射角に相当する15度にセットし、0度方向への反射光の強度を測定した。
(反射光度向上倍率)
 反射光度を測定し、反射層を備えていない積層体の反射光度を1としたときの向上倍率として算出した。
The laminated body has a reflected light intensity of preferably 3 or more and 60 or less, more preferably 4 or more and 50 or less, and further preferably 4.5 or more and 40 or less. Moreover, the said laminated body becomes like this. Preferably the reflected luminous intensity improvement rate is 1.5 times or more, More preferably, it is 2 times or more, More preferably, it is 3 times or more and 50 times or less. When the reflected light intensity and the reflected light intensity improvement rate of the laminate are within the above ranges, the brightness of the reflected light is high and the performance as a reflective screen is excellent. In the present invention, the reflected luminous intensity and the reflected luminous intensity improvement rate of the laminate are values measured as follows.
(Reflected light intensity)
The measurement was performed using a variable angle photometer (Nippon Denshoku Industries Co., Ltd., product number: GC5000L). The incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100. At the time of sample measurement, the incident angle of the light source was set to 15 degrees corresponding to the projector light incident angle in the rear projection, and the intensity of reflected light in the 0 degree direction was measured.
(Reflective luminous intensity improvement magnification)
The reflected luminous intensity was measured and calculated as an improvement magnification when the reflected luminous intensity of a laminate not provided with a reflective layer was set to 1.
 当該積層体の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは10μm~20mmであり、より好ましくは20μm~15mmであり、さらに好ましくは30μm~10mmである。なお、本発明において「積層体」とは、いわゆるフィルム、シート、基板上に塗布することで形成される塗膜体、プレート(板状成形物)等の様々な厚みの成形物を包含する。 The thickness of the laminate is not particularly limited, but is preferably 10 μm to 20 mm, more preferably 20 μm to 15 mm, from the viewpoints of use, productivity, handleability, and transportability. The thickness is preferably 30 μm to 10 mm. In the present invention, the “laminate” includes molded articles having various thicknesses such as a so-called film, sheet, and coating film formed by coating on a substrate, and a plate (plate-shaped molded article).
(光拡散層)
 光拡散層は、屈折率nを有する樹脂と、屈折率nと異なる屈折率nを有する微粒子とを含んでなる。屈折率nと屈折率nの差は、好ましくは0.1以上であり、より好ましくは0.15以上であり、さらに好ましくは0.2以上1.5以下である。光拡散層を形成する樹脂と微粒子の屈折率が異なることで、光拡散層内で光を異方的に散乱させて、視野角を向上させることができる。
(Light diffusion layer)
The light diffusion layer comprises a resin having a refractive index n 1, and fine particles having a refractive index n 1 is different from the refractive index n 2. The difference between the refractive index n 1 and the refractive index n 2 is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more and 1.5 or less. Since the refractive index of the resin forming the light diffusion layer is different from that of the fine particles, light can be scattered anisotropically in the light diffusion layer, and the viewing angle can be improved.
 光拡散層の厚さは、特に限定されるものではないが、用途、生産性、取扱い性、および搬送性の観点から、好ましくは0.1μm~20mmであり、より好ましくは0.2μm~15mmであり、さらに好ましくは1μm~10mmであり、さらにより好ましくは10μm~2mmであり、最も好ましくは50μm~1mmである。光拡散層はフィルムであってもよく、ガラスや樹脂等からなる基板に形成した塗膜であってもよい。光拡散層は単層構成であってもよく、塗布等で2種以上の層を積層させる、または2種以上の層を粘着剤等で貼り合わせた複層構成であってもよい。 The thickness of the light diffusion layer is not particularly limited, but is preferably 0.1 μm to 20 mm, more preferably 0.2 μm to 15 mm, from the viewpoints of application, productivity, handleability, and transportability. More preferably, it is 1 μm to 10 mm, even more preferably 10 μm to 2 mm, and most preferably 50 μm to 1 mm. The light diffusion layer may be a film or a coating film formed on a substrate made of glass or resin. The light diffusion layer may have a single layer structure, or may have a multilayer structure in which two or more layers are laminated by coating or the like, or two or more layers are bonded together with an adhesive or the like.
(樹脂)
 光拡散層を形成する樹脂としては、透明性の高い積層体を得るために、透明性の高い樹脂を用いることが好ましい。透明性の高い樹脂としては、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリアリレート系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリスルホン系樹脂、およびフッ素系樹脂等の熱可塑性樹脂、熱硬化性樹脂、ならびに電離放射線硬化性樹脂等を用いることができる。これらの中でも、熱可塑性樹脂を用いることが、積層体の成形性の観点から好ましいが、特に制限されるものではない。熱可塑性樹脂としては、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、およびポリスチレン系樹脂を用いることが好ましく、ポリメタクリル酸メチル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、シクロオレフィンポリマー樹脂、セルロースアセテートプロピオネート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、およびポリスチレン樹脂を用いることがより好ましい。これらの樹脂は、1種単独または2種以上を組み合わせて用いることができる。電離放射線硬化型樹脂としては、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系樹脂等が挙げられる。これらの中でも、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが好ましい。また、電離放射線硬化型樹脂は熱可塑性樹脂および溶剤と混合されたものであってもよい。熱硬化型樹脂としては、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、メラミン樹脂、ウレタン系樹脂、尿素樹脂等が挙げられる。これらの中でも、エポキシ系樹脂、シリコーン系樹脂が好ましい。
(resin)
As the resin for forming the light diffusion layer, it is preferable to use a highly transparent resin in order to obtain a highly transparent laminate. Highly transparent resins include acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, and polycarbonate resins. Resin, Cellulose resin, Acetal resin, Vinyl resin, Polystyrene resin, Polyamide resin, Polyimide resin, Melamine resin, Phenol resin, Silicone resin, Polyarylate resin, Polyvinyl alcohol resin, Polychlorinated Thermoplastic resins such as vinyl resins, polysulfone resins, and fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be used. Among these, the use of a thermoplastic resin is preferable from the viewpoint of the moldability of the laminate, but is not particularly limited. As the thermoplastic resin, acrylic resins, polyester resins, polyolefin resins, vinyl resins, polycarbonate resins, and polystyrene resins are preferably used. Polymethyl methacrylate resin, polyethylene terephthalate resin, polyethylene naphthalate resin More preferably, polypropylene resin, cycloolefin polymer resin, cellulose acetate propionate resin, polyvinyl butyral resin, polycarbonate resin, and polystyrene resin are used. These resins can be used alone or in combination of two or more. Examples of the ionizing radiation curable resin include acrylic, urethane, acrylic urethane, epoxy, and silicone resins. Among these, those having an acrylate-based functional group, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, many Monofunctional monomers such as (meth) allylate oligomers or prepolymers of polyfunctional compounds such as monohydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone And polyfunctional monomers such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate Preferred are those containing a relatively large amount of rate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. . Further, the ionizing radiation curable resin may be mixed with a thermoplastic resin and a solvent. Examples of thermosetting resins include phenolic resins, epoxy resins, silicone resins, melamine resins, urethane resins, urea resins, and the like. Among these, epoxy resins and silicone resins are preferable.
(微粒子)
 光拡散層を形成する微粒子としては、ナノサイズに微粒化できる無機物または有機物を好適に用いることができる。高屈折率を有する無機微粒子としては、例えば、屈折率nが好ましくは1.80~3.55であり、より好ましくは1.9~3.3であり、さらに好ましくは2.0~3.0であり、金属酸化物、金属塩、および純金属等を微粒化した金属系粒子を用いることができる。金属酸化物としては、例えば、酸化ジルコニウム(n=2.40)、酸化チタン(n=2.72)、酸化亜鉛(n=2.40)、および酸化セリウム(n=2.20)等を挙げることができる。金属塩としては、例えば、チタン酸バリウム(n=2.40)およびチタン酸ストロンチウム(n=2.37)等を挙げることができる。純金属としては、例えば、銀、金、白金、およびパラジウム等を挙げることができる。また、金属系粒子以外の無機物としては、例えば、ダイヤモンド(n=2.42)等を挙げることもできる。特に、投影光の散乱性、粒子の凝集性、および製造コストの観点から、酸化ジルコニウム粒子、酸化チタン粒子、酸化セリウム粒子、チタン酸バリウム粒子、および銀粒子を用いることが好ましい。これらの無機微粒子は、1種単独または2種以上を組み合わせて用いることができる。また、低屈折率を有する無機微粒子としては、例えば、屈折率nが好ましくは1.35~1.80であり、より好ましくは1.4~1.75であり、さらに好ましくは1.45~1.7であり、酸化ケイ素(n=1.45)、酸化アルミニウム(n=1.76)、硫酸バリウム(n=1.64)、酸化マグネシウム(n=1.73)、炭酸カルシウム(n=1.65)等を微粒子化した粒子が挙げられる。低屈折率を有する有機微粒子としては、例えば、アクリル系粒子、ポリスチレン系粒子が挙げられる。
(Fine particles)
As the fine particles forming the light diffusion layer, an inorganic material or an organic material that can be atomized to a nano size can be suitably used. As the inorganic fine particles having a high refractive index, for example, the refractive index n 2 is preferably 1.80 to 3.55, more preferably 1.9 to 3.3, and still more preferably 2.0 to 3 0.0, and metal-based particles obtained by atomizing metal oxides, metal salts, pure metals, and the like can be used. Examples of the metal oxide include zirconium oxide (n = 2.40), titanium oxide (n = 2.72), zinc oxide (n = 2.40), and cerium oxide (n = 2.20). Can be mentioned. Examples of the metal salt include barium titanate (n = 2.40) and strontium titanate (n = 2.37). Examples of the pure metal include silver, gold, platinum, and palladium. In addition, examples of inorganic substances other than metal-based particles include diamond (n = 2.42). In particular, zirconium oxide particles, titanium oxide particles, cerium oxide particles, barium titanate particles, and silver particles are preferably used from the viewpoints of projection light scattering, particle aggregability, and production cost. These inorganic fine particles can be used alone or in combination of two or more. As the inorganic fine particles having a low refractive index, for example, the refractive index n 2 is preferably 1.35 to 1.80, more preferably 1.4 to 1.75, and still more preferably 1.45. 1.7, silicon oxide (n = 1.45), aluminum oxide (n = 1.76), barium sulfate (n = 1.64), magnesium oxide (n = 1.73), calcium carbonate ( n = 1.65) or the like. Examples of the organic fine particles having a low refractive index include acrylic particles and polystyrene particles.
 微粒子の一次粒子は、0.1~50nm、好ましくは0.5~40nm、より好ましくは1~35nm、さらに好ましくは1.5~30nmのメジアン径(D50)を有し、かつ10~500nm、好ましくは15~300nm、より好ましくは20~200nm、さらに好ましくは20~130nmの最大粒径を有するものである。無機微粒子の一次粒子のメジアン径および最大粒径が上記範囲内であると、反射型スクリーン用積層体として使用した場合に、透過視認性を損なわずに投影光の十分な散乱効果が得られることで、反射型スクリーンに鮮明な映像を投影することができる。なお、本発明において、無機微粒子の一次粒子のメジアン径(D50)および最大粒径は、動的光散乱法により粒度分布測定装置(大塚電子(株)製、商品名:DLS-8000)を用いて測定した粒度分布から求めることができる。 The primary particles of the fine particles have a median diameter (D 50 ) of 0.1 to 50 nm, preferably 0.5 to 40 nm, more preferably 1 to 35 nm, still more preferably 1.5 to 30 nm, and 10 to 500 nm. The maximum particle diameter is preferably 15 to 300 nm, more preferably 20 to 200 nm, and still more preferably 20 to 130 nm. When the median diameter and the maximum particle diameter of the primary particles of the inorganic fine particles are within the above ranges, a sufficient scattering effect of the projection light can be obtained without impairing transmission visibility when used as a reflective screen laminate. Thus, a clear image can be projected on the reflective screen. In the present invention, the median diameter (D 50 ) and the maximum particle diameter of the primary particles of the inorganic fine particles are determined using a particle size distribution measuring device (trade name: DLS-8000, manufactured by Otsuka Electronics Co., Ltd.) by a dynamic light scattering method. It can be determined from the particle size distribution measured by using.
 無機微粒子は、市販のものを使用してもよく、例えば、酸化ジルコニウム粒子としては、SZR-W、SZR-CW、SZR-M、およびSZR-K等(以上、堺化学工業(株)製、商品名)を好適に使用することができる。 As the inorganic fine particles, commercially available ones may be used. For example, as the zirconium oxide particles, SZR-W, SZR-CW, SZR-M, SZR-K and the like (above, manufactured by Sakai Chemical Industry Co., Ltd.) Product name) can be preferably used.
 光拡散層中の微粒子の含有量は、微粒子の屈折率nに応じて適宜調節することができ、樹脂に対して、好ましくは0.00015~14質量%である。樹脂の屈折率nよりも小さい屈折率nを有する微粒子(低屈折粒子)を用いる場合、光拡散層中の微粒子の含有量は、樹脂に対して好ましくは0.001~14質量%であり、好ましくは0.01~12質量%であり、より好ましくは0.1~10質量%である。一方、樹脂の屈折率nよりも大きい屈折率nを有する微粒子(高屈折粒子)を用いる場合、光拡散層中の微粒子の含有量は、樹脂に対して好ましくは0.00015~3.0質量%であり、好ましくは0.0005~2.0質量%であり、より好ましくは0.001~1.0質量%である。光拡散層中の無機微粒子の含有量が上記範囲内であれば、視認者側から出射される投影光を異方的に散乱反射することにより投影光の視認性と透過光の視認性とを向上することができる。 The content of the fine particles in the light diffusion layer can be appropriately adjusted according to the refractive index n 2 of the fine particles, and is preferably 0.00015 to 14% by mass with respect to the resin. When using fine particles (low refractive particles) having a refractive index n 2 smaller than the refractive index n 1 of the resin, the content of fine particles in the light diffusion layer is preferably 0.001 to 14% by mass with respect to the resin. Yes, preferably 0.01 to 12% by mass, and more preferably 0.1 to 10% by mass. On the other hand, when using fine particles (high refractive particles) having a refractive index n 2 larger than the refractive index n 1 of the resin, the content of the fine particles in the light diffusion layer is preferably 0.00015-3. It is 0% by mass, preferably 0.0005 to 2.0% by mass, and more preferably 0.001 to 1.0% by mass. If the content of the inorganic fine particles in the light diffusion layer is within the above range, the projection light emitted from the viewer side is scattered and reflected anisotropically, thereby improving the visibility of the projection light and the visibility of the transmitted light. Can be improved.
(反射層)
 反射層は、光源から出射された投影光を異方的に散乱反射させるための層である。また、反射層は透視可能であるため、透過光の視認性にも優れる。反射層は、光拡散層の樹脂の屈折率nよりも大きい屈折率nを有する。反射層の屈折率nは、好ましくは1.8以上であり、より好ましくは1.8以上3.0以下であり、さらに好ましくは1.8以上2.6以下である。反射層を光拡散層の樹脂の屈折率nよりも大きい屈折率nを有する材料で形成することで、光源から出射された投影光を効率的に反射させることができる。また、反射層の厚さは、好ましくは5~130nmであり、より好ましくは、10~100nmであり、さらに好ましくは15~90nmである。反射層の厚さが上記の範囲であれば、積層体に高透明性を付与でき、透視可能な反射型スクリーンを提供することができる。
(Reflective layer)
The reflection layer is a layer for anisotropically scattering and reflecting the projection light emitted from the light source. Further, since the reflective layer can be seen through, the visibility of transmitted light is excellent. The reflective layer has a refractive index n 3 greater than the refractive index n 1 of the resin of the light diffusion layer. Refractive index n 3 of the reflective layer is preferably 1.8 or more, more preferably 1.8 to 3.0, more preferably 1.8 or more 2.6 or less. By forming the reflective layer with a material having a refractive index n 3 larger than the refractive index n 1 of the resin of the light diffusion layer, the projection light emitted from the light source can be efficiently reflected. The thickness of the reflective layer is preferably 5 to 130 nm, more preferably 10 to 100 nm, and still more preferably 15 to 90 nm. When the thickness of the reflective layer is within the above range, a highly transparent and reflective screen capable of being seen through can be provided.
 反射層は、屈折率nと膜厚dの積で表される光学膜厚(nd)が、好ましくは20~400nmであり、より好ましくは50~300nmであり、さらに好ましくは70~250nmであり、さらにより好ましくは100~200nmである。反射層の光学膜厚が上記数値範囲内であれば、鮮明に映像を視認することができ、反射映像の色変化が無く、色再現性に優れる。 The reflective layer has an optical film thickness (nd) represented by the product of the refractive index n 3 and the film thickness d, preferably 20 to 400 nm, more preferably 50 to 300 nm, and still more preferably 70 to 250 nm. And even more preferably 100 to 200 nm. If the optical film thickness of the reflective layer is within the above numerical range, the image can be clearly seen, there is no color change of the reflected image, and the color reproducibility is excellent.
 反射層は、酸化チタン、酸化ニオブ、酸化セリウム、酸化ジルコニウム、酸化インジウムスズ、酸化亜鉛、酸化タンタル、硫化亜鉛、および酸化スズからなる群より選択される少なくとも1種類の材料を用いて形成することが好ましい。このような材料を用いることで、上記の屈折率nを実現し、光源から出射された投影光を効率的に反射させることができる。 The reflective layer is formed using at least one material selected from the group consisting of titanium oxide, niobium oxide, cerium oxide, zirconium oxide, indium tin oxide, zinc oxide, tantalum oxide, zinc sulfide, and tin oxide. Is preferred. By using such a material, to achieve the refractive index n 3 of the above projection light emitted from the light source can be efficiently reflected.
 反射層の形成方法は、特に限定されず、従来公知の方法により行うことができる。例えば、反射層は、蒸着、スパッタリング、または塗布によって形成することができる。反射層は、直接光拡散層に形成してもよく、樹脂またはガラスからなる基材層に形成したのち、粘着剤等で光拡散層に貼り合わせてもよい。 The method for forming the reflective layer is not particularly limited, and can be performed by a conventionally known method. For example, the reflective layer can be formed by vapor deposition, sputtering, or coating. The reflective layer may be directly formed on the light diffusion layer, or may be bonded to the light diffusion layer with an adhesive or the like after being formed on a substrate layer made of resin or glass.
(基材層)
 基材層は、積層体を支持するための層であり、積層体の強度を向上させることができる。基材層は、積層体の透過視認性や所望の光学特性を損なわないような透明性の高い樹脂またはガラスからなることが好ましい。このような樹脂としては、例えば、上記の光拡散層と同様の透明性の高い樹脂を用いることができる。すなわち、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリアリレート系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリスルホン系樹脂、およびフッ素系樹脂等の熱可塑性樹脂、熱硬化性樹脂、ならびに電離放射線硬化性樹脂等を好適に用いることができる。また、上記した樹脂を2種以上積層した積層体またはシートを使用してもよい。なお、基材層の厚さは、その強度が適切になるように材料に応じて適宜変更することができ、例えば、10~1000μmの範囲としてもよい。
(Base material layer)
A base material layer is a layer for supporting a laminated body, and can improve the intensity | strength of a laminated body. The base material layer is preferably made of a highly transparent resin or glass that does not impair the transmission visibility and desired optical properties of the laminate. As such a resin, for example, a highly transparent resin similar to the above light diffusion layer can be used. Acrylic resins, acrylic urethane resins, polyester acrylate resins, polyurethane acrylate resins, epoxy acrylate resins, polyester resins, polyolefin resins, urethane resins, epoxy resins, polycarbonate resins, cellulose resins, Acetal resin, vinyl resin, polystyrene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, silicone resin, polyarylate resin, polyvinyl alcohol resin, polyvinyl chloride resin, polysulfone resin Resins, thermoplastic resins such as fluorine resins, thermosetting resins, ionizing radiation curable resins, and the like can be suitably used. Moreover, you may use the laminated body or sheet | seat which laminated | stacked 2 or more types of above-described resin. The thickness of the base material layer can be appropriately changed according to the material so that the strength is appropriate, and may be in the range of 10 to 1000 μm, for example.
(保護層)
 保護層は、積層体の表面側(視認者側)および裏面側の両面またはいずれか一方の面に積層してもよく、耐光性、耐傷性、基材密着性および防汚性等の機能を付与するための層である。保護層は、積層体の透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。保護層の材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ジアセチルセルロースやトリアセチルセルロース等のセルロース系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系樹脂、ポリカーボネート系樹脂などが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系樹脂、シクロオレフィン系ないしはノルボルネン構造を有するオレフィン系樹脂、塩化ビニル系樹脂、ナイロンや芳香族ポリアミド等のアミド系樹脂、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ビニルアルコール系樹脂、塩化ビニリデン系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、ポリオキシメチレン系樹脂、エポキシ系樹脂、あるいは前記樹脂のブレンド物などが保護フィルムを形成する樹脂の例として挙げられる。その他、アクリル系やウレタン系、アクリルウレタン系やエポキシ系、シリコーン系等の電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂などが挙げられる。
(Protective layer)
The protective layer may be laminated on both the front side (viewer side) and the back side of the laminate or any one of them, and functions such as light resistance, scratch resistance, substrate adhesion and antifouling properties. It is a layer for giving. The protective layer is preferably formed using a resin that does not impair the transmission visibility and desired optical properties of the laminate. Examples of the material for the protective layer include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, cellulose resins such as diacetyl cellulose and triacetyl cellulose, acrylic resins such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymers, and the like. Examples thereof include styrene resins such as (AS resin), polycarbonate resins, and the like. In addition, polyolefin resins such as polyethylene, polypropylene, ethylene / propylene copolymers, olefin resins having cycloolefin or norbornene structures, vinyl chloride resins, amide resins such as nylon and aromatic polyamide, imide resins, Sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyphenylene sulfide resin, vinyl alcohol resin, vinylidene chloride resin, vinyl butyral resin, arylate resin, polyoxymethylene resin, epoxy resin Or the blend of the said resin etc. are mentioned as an example of resin which forms a protective film. Other examples include ionizing radiation curable resins such as acrylics, urethanes, acrylic urethanes, epoxies, and silicones, mixtures of thermoplastic resins and solvents in ionizing radiation curable resins, and thermosetting resins. .
 電離放射線硬化型樹脂組成物の被膜形成成分は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジェン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アルリレート等のオリゴマー又はプレポリマー及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものが使用できる。 The film forming component of the ionizing radiation curable resin composition is preferably one having an acrylate functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, Spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers or prepolymers such as (meth) arylate of polyfunctional compounds such as polyhydric alcohols, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, Monofunctional and polyfunctional monomers such as methylstyrene and N-vinylpyrrolidone, such as polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate Of diethyl methacrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. A large amount can be used.
 上記電離放射線硬化型樹脂組成物を紫外線硬化型樹脂組成物とするには、この中に光重合開始剤としてアセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類や、光増感剤としてn-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等を混合して用いることができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。 In order to convert the ionizing radiation curable resin composition into an ultraviolet curable resin composition, acetophenones, benzophenones, Michler benzoyl benzoate, α-amyloxime ester, tetramethylchuram mono are used as photopolymerization initiators. A mixture of sulfide, thioxanthone, n-butylamine, triethylamine, poly-n-butylphosphine, or the like as a photosensitizer can be used. In particular, in the present invention, it is preferable to mix urethane acrylate as an oligomer and dipentaerythritol hexa (meth) acrylate as a monomer.
 電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の硬化方法は通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。例えば、電子線硬化の場合には、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速機から放出される50~1000KeV、好ましくは100~300KeVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。 As a method for curing the ionizing radiation curable resin composition, the ionizing radiation curable resin composition can be cured by a normal curing method, that is, by irradiation with electron beams or ultraviolet rays. For example, in the case of electron beam curing, 50 to 50 emitted from various electron beam accelerators such as Cockloft Walton type, bandegraph type, resonant transformation type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc. An electron beam having an energy of 1000 KeV, preferably 100 to 300 KeV is used. In the case of ultraviolet curing, ultraviolet rays emitted from rays such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. Available.
 保護層は、上記電離放射(紫外線)線硬化型樹脂組成物の塗工液をスピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の方法で、上記の反射型スクリーン用積層体の表面側(視認者側)および裏面側の両面またはいずれか一方の面に塗布し、上記のような手段で塗工液を硬化させることにより形成することができる。また、保護層の表面には、目的に応じて、凹凸構造、プリズム構造、マイクロレンズ構造等の微細構造を付与することもできる。 The protective layer is formed by applying the coating liquid of the ionizing radiation (ultraviolet ray) radiation curable resin composition by a method such as spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. It can form by apply | coating to the surface side (viewer side) of a laminated body for viewers, both surfaces of a back surface side, or any one surface, and hardening a coating liquid by the above means. In addition, a fine structure such as a concavo-convex structure, a prism structure, or a microlens structure can be provided on the surface of the protective layer according to the purpose.
(粘着層)
 粘着層は、支持体に積層体を貼付するための層である。粘着層は、積層体の透過視認性や所望の光学特性を損なわないような粘着剤組成物を用いて形成することが好ましい。粘着剤組成物としては、例えば、天然ゴム系、合成ゴム系、アクリル樹脂系、ポリビニルエーテル樹脂系、ウレタン樹脂系、シリコーン樹脂系等が挙げられる。合成ゴム系の具体例としては、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリイソブチレンゴム、イソブチレン-イソプレンゴム、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体が挙げられる。シリコーン樹脂系の具体例としては、ジメチルポリシロキサン等が挙げられる。これらの粘着剤は、1種単独または2種以上を組み合わせて用いることができる。これらの中でも、アクリル系粘着剤が好ましい。
(Adhesive layer)
An adhesion layer is a layer for sticking a laminated body to a support body. The pressure-sensitive adhesive layer is preferably formed using a pressure-sensitive adhesive composition that does not impair the transmission visibility and desired optical properties of the laminate. Examples of the pressure-sensitive adhesive composition include natural rubber, synthetic rubber, acrylic resin, polyvinyl ether resin, urethane resin, and silicone resin. Specific examples of synthetic rubbers include styrene-butadiene rubber, acrylonitrile-butadiene rubber, polyisobutylene rubber, isobutylene-isoprene rubber, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block. A copolymer is mentioned. Specific examples of the silicone resin system include dimethylpolysiloxane. These pressure-sensitive adhesives can be used singly or in combination of two or more. Among these, an acrylic adhesive is preferable.
 アクリル系樹脂粘着剤は、少なくとも(メタ)アクリル酸アルキルエステルモノマーを含んで重合させたものである。炭素原子数1~18程度のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーとカルボキシル基を有するモノマーとの共重合体であるのが一般的である。なお、(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸をいう。(メタ)アクリル酸アルキルエステルモノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸sec-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ウンデシルおよび(メタ)アクリル酸ラウリル等を挙げることができる。 また、上記(メタ)アクリル酸アルキルエステルは、通常は、アクリル系粘着剤中に30~99.5質量部の割合で共重合されている。 The acrylic resin pressure-sensitive adhesive is a polymer containing at least a (meth) acrylic acid alkyl ester monomer. Generally, it is a copolymer of a (meth) acrylic acid alkyl ester monomer having an alkyl group having about 1 to 18 carbon atoms and a monomer having a carboxyl group. In addition, (meth) acrylic acid means acrylic acid and / or methacrylic acid. Examples of (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, sec-propyl (meth) acrylate, (meth) acrylic acid n-butyl, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid Examples include n-octyl, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, undecyl (meth) acrylate, and lauryl (meth) acrylate. The (meth) acrylic acid alkyl ester is usually copolymerized in an acrylic adhesive at a ratio of 30 to 99.5 parts by mass.
 また、アクリル系樹脂粘着剤を形成するカルボキシル基を有するモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、マレイン酸モノブチルおよびβ-カルボキシエチルアクリレート等のカルボキシル基を含有するモノマーを挙げることができる。 Examples of the monomer having a carboxyl group that forms the acrylic resin pressure-sensitive adhesive include monomers containing a carboxyl group such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, monobutyl maleate and β-carboxyethyl acrylate. Can be mentioned.
 アクリル系樹脂粘着剤には、上記の他に、アクリル系樹脂粘着剤の特性を損なわない範囲内で他の官能基を有するモノマーが共重合されていても良い。他の官能基を有するモノマーの例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルおよびアリルアルコール等の水酸基を含有するモノマー;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミドおよびN-エチル(メタ)アクリルアミド等のアミド基を含有するモノマー;N-メチロール(メタ)アクリルアミドおよびジメチロール(メタ)アクリルアミド等のアミド基とメチロール基とを含有するモノマー;アミノメチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートおよびビニルピリジン等のアミノ基を含有するモノマーのような官能基を有するモノマー; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテルなどのエポキシ基含有モノマーなどが挙げられる。この他にもフッ素置換(メタ)アクリル酸アルキルエステル、(メタ)アクリロニトリルなどのほか、スチレンおよびメチルスチレンなどのビニル基含有芳香族化合物、酢酸ビニル、ハロゲン化ビニル化合物などを挙げることができる。 In addition to the above, the acrylic resin pressure-sensitive adhesive may be copolymerized with a monomer having another functional group within a range not impairing the characteristics of the acrylic resin pressure-sensitive adhesive. Examples of monomers having other functional groups include monomers containing hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and allyl alcohol; (meth) acrylamide, N-methyl Monomers containing amide groups such as (meth) acrylamide and N-ethyl (meth) acrylamide; Monomers containing amide groups and methylol groups such as N-methylol (meth) acrylamide and dimethylol (meth) acrylamide; Monomers having functional groups such as monomers containing amino groups such as meth) acrylate, dimethylaminoethyl (meth) acrylate and vinylpyridine; ピ リ ジ ン epoxy group-containing monomers such as allyl glycidyl ether and (meth) acrylic acid glycidyl ether Chromatography and the like. In addition, fluorine-substituted (meth) acrylic acid alkyl ester, (meth) acrylonitrile and the like, vinyl group-containing aromatic compounds such as styrene and methylstyrene, vinyl acetate, and vinyl halide compounds can be used.
 アクリル系樹脂粘着剤には、上記のような他の官能基を有するモノマーの他に、他のエチレン性二重結合を有するモノマーを使用することができる。エチレン性二重結合を有するモノマーの例としては、マレイン酸ジブチル、マレイン酸ジオクチルおよびフマル酸ジブチル等のα,β-不飽和二塩基酸のジエステル; 酢酸ビニル、プロピオン酸ビニル等のビニルエステル;ビニルエーテル;スチレン、α-メチルスチレンおよびビニルトルエン等のビニル芳香族化合物;(メタ)アクリロニトリル等を挙げることができる。また、上記のようなエチレン性二重結合を有するモノマーの他に、エチレン性二重結合を2個以上有する化合物を併用することもできる。このような化合物の例としては、ジビニルベンゼン、ジアリルマレート、ジアリルフタレート、エチレングリコールジ(メタ)アクリレ-ト、トリメチロールプロパントリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド等を挙げることができる。 For the acrylic resin pressure-sensitive adhesive, in addition to the monomer having another functional group as described above, another monomer having an ethylenic double bond can be used. Examples of monomers having an ethylenic double bond include diesters of α, β-unsaturated dibasic acids such as dibutyl maleate, dioctyl maleate and dibutyl fumarate; vinyl esters such as vinyl oxalate and vinyl propionate; vinyl ether And vinyl aromatic compounds such as styrene, α-methylstyrene and vinyltoluene; (meth) acrylonitrile and the like. In addition to the monomer having an ethylenic double bond as described above, a compound having two or more ethylenic double bonds may be used in combination. Examples of such compounds include divinylbenzene, diallyl malate, diallyl phthalate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylene bis (meth) acrylamide, and the like.
 さらに、上記のようなモノマーの他に、アルコキシアルキル鎖を有するモノマー等を使用することができる。(メタ)アクリル酸アルコキシアルキルエステルの例としては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸2-メトキシプロピル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸2-メトキシブチル、(メタ)アクリル酸4-メトキシブチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸4-エトキシブチルなどを挙げることができる。 Furthermore, in addition to the above monomers, monomers having an alkoxyalkyl chain can be used. Examples of (meth) acrylic acid alkoxyalkyl esters include 2-methoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, and 3-methoxypropyl (meth) acrylate. 2-methoxybutyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-ethoxypropyl (meth) acrylate, 4-ethoxybutyl (meth) acrylate And so on.
 粘着剤組成物としては、上記したアクリル系樹脂粘着剤の他、(メタ)アクリル酸アルキルエステルモノマーの単独重合体であっても良い。例えば、(メタ)アクリル酸エステル単独重合体としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸オクチル等が挙げられる。 アクリル酸エステル単位2種以上を含む共重合体としては、(メタ)アクリル酸メチル-(メタ)アクリル酸エチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシ3-フェニルオキシプロピル共重合体等が挙げられる。(メタ)アクリル酸エステルと他の官能性単量体との共重合体としては、(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-エチレン共重合体、(メタ)アクリル酸メチル-(メタ)アクリル酸2-ヒドロキシエチル-スチレン共重合体が挙げられる。 The pressure-sensitive adhesive composition may be a homopolymer of (meth) acrylic acid alkyl ester monomer in addition to the above acrylic resin pressure-sensitive adhesive. For example, (meth) acrylic acid ester homopolymers include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, poly (meth) Examples include octyl acrylate. Copolymers containing two or more acrylate units include methyl (meth) acrylate- (meth) ethyl acrylate copolymer, methyl (meth) acrylate-butyl (meth) acrylate copolymer, ( Examples thereof include methyl (meth) acrylate- (meth) acrylic acid 2-hydroxyethyl copolymer, methyl (meth) acrylate- (meth) acrylic acid 2-hydroxy3-phenyloxypropyl copolymer, and the like. Copolymers of (meth) acrylic acid esters and other functional monomers include (meth) methyl acrylate-styrene copolymers, (meth) methyl acrylate-ethylene copolymers, (meth) acrylic. Examples include methyl acid- (meth) acrylate 2-hydroxyethyl-styrene copolymer.
 粘着剤は市販のものを使用してもよく、例えば、SKダイン2094、SKダイン2147、SKダイン1811L、SKダイン1442、SKダイン1435、およびSKダイン1415(以上、綜研化学(株)製)、オリバインEG-655、およびオリバインBPS5896(以上、東洋インキ(株)製)等(以上、商品名)を好適に使用することができる。 Commercially available adhesives may be used, such as SK Dyne 2094, SK Dyne 2147, SK Dyne 1811L, SK Dyne 1442, SK Dyne 1435, and SK Dyne 1415 (above, manufactured by Soken Chemical Co., Ltd.), Olivain EG-655, Olivevine BPS5896 (above, manufactured by Toyo Ink Co., Ltd.), etc. (above, trade name) can be suitably used.
(反射防止層)
 反射防止層は、積層体表面での反射や、外光からの映りこみを防止するための層である。反射防止層は、積層体の表面側(視認者側)に積層されるものであってもよく、両面に積層されるものであってもよい。特に反射型スクリーンとして用いる際には視認者側に積層するのが好ましい。反射防止層は、積層体の透過視認性や所望の光学特性を損なわないような樹脂を用いて形成することが好ましい。このような樹脂としては、例えば、紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、および熱硬化型樹脂を用いることができるが、これらの中でも電離放射線硬化型樹脂が特に好ましい。
(Antireflection layer)
The antireflection layer is a layer for preventing reflection on the surface of the laminate and reflection from outside light. The antireflection layer may be laminated on the surface side (viewer side) of the laminate, or may be laminated on both surfaces. In particular, when used as a reflective screen, it is preferably laminated on the viewer side. The antireflection layer is preferably formed using a resin that does not impair the transmission visibility and desired optical properties of the laminate. As such a resin, for example, a resin curable by ultraviolet rays or an electron beam, that is, an ionizing radiation curable resin, a mixture of an ionizing radiation curable resin and a thermoplastic resin and a solvent, and a thermosetting resin are used. Among these, ionizing radiation curable resins are particularly preferable.
 反射防止層の形成方法としては、特に限定されないが、コーティングフィルムの貼合、フィルム基板に直接蒸着またはスパッタリング等でドライコートする方式、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコート等のウェットコート処理などの方式を用いることができる。 The method for forming the antireflection layer is not particularly limited, but is a method of pasting a coating film, a method of dry coating directly on a film substrate by vapor deposition or sputtering, gravure coating, micro gravure coating, bar coating, slide die coating. Methods such as wet coating such as coating, slot die coating, and dip coating can be used.
<積層体の製造方法>
 本発明による積層体の製造方法は、光拡散層を形成する工程と、積層工程を含む反射層を形成する工程と含むものである。光拡散層を形成する工程は、オフセット印刷、グラビア印刷、スクリーン印刷、インクジェット印刷、スプレー印刷、スピンコート、ダイコート、ディップコート、バーコート、フローコート、ロールコート、グラビアコート等の塗布法など公知の方法により製造された適当な厚みの薄膜や、射出成形法、混練工程と成膜工程からなる押出成形法、カレンダー成形法、ブロー成形法、圧縮成形法、セルキャスト法、連続キャスト法など公知の方法により成型加工でき、成膜可能な膜厚範囲の広さから、押出成形法を好適に用いることができる。以下、製造方法の各工程について詳述する。
<Method for producing laminate>
The manufacturing method of the laminated body by this invention includes the process of forming a light-diffusion layer, and the process of forming the reflective layer containing a lamination process. The step of forming the light diffusion layer is a known method such as offset printing, gravure printing, screen printing, inkjet printing, spray printing, spin coating, die coating, dip coating, bar coating, flow coating, roll coating, gravure coating, or the like. A thin film of an appropriate thickness produced by the method, an injection molding method, an extrusion molding method comprising a kneading step and a film forming step, a calendar molding method, a blow molding method, a compression molding method, a cell casting method, a continuous casting method, etc. The extrusion molding method can be suitably used because it can be molded by the method and has a wide range of film thickness that can be formed. Hereinafter, each process of a manufacturing method is explained in full detail.
(混練工程)
 混練工程は、一軸混練機または二軸混錬押出機等の押出機を用いて行うことができる。二軸混錬押出機を用いる場合は、スクリュー全長にわたる平均値として、好ましくは3~1800KPa、より好ましくは6~1400KPaのせん断応力をかけながら、上記の樹脂と微粒子とを混錬して、樹脂組成物を得ることができる。せん断応力が上記範囲内であれば、微粒子を樹脂中に十分に分散させることができる。特に、せん断応力が3KPa以上であれば、微粒子の分散均一性をより向上させることができ、1800KPa以下であれば、樹脂の分解を防ぎ、光拡散層内に気泡が混入するのを防止することができる。せん断応力は、二軸混錬押出機を調節することで、所望の範囲に設定することができる。本発明においては、微粒子を予め添加した樹脂(マスターバッチ)と、微粒子を添加していない樹脂とを混合したものを、一軸混錬押出機または二軸混錬押出機を用いて混練して、樹脂組成物を得てもよい。
(Kneading process)
The kneading step can be performed using an extruder such as a single-screw kneader or a twin-screw kneading extruder. When using a twin-screw kneading extruder, the above resin and fine particles are kneaded while applying a shear stress of preferably 3 to 1800 KPa, more preferably 6 to 1400 KPa as an average value over the entire length of the screw. A composition can be obtained. If the shear stress is within the above range, the fine particles can be sufficiently dispersed in the resin. In particular, if the shear stress is 3 KPa or more, the dispersion uniformity of the fine particles can be further improved, and if it is 1800 KPa or less, decomposition of the resin is prevented and bubbles are prevented from being mixed in the light diffusion layer. Can do. The shear stress can be set in a desired range by adjusting the twin-screw kneading extruder. In the present invention, a resin (masterbatch) to which fine particles have been added in advance and a mixture of resin to which fine particles have not been added are kneaded using a single-screw kneading extruder or a twin-screw kneading extruder, A resin composition may be obtained.
 樹脂組成物には、上記の樹脂と微粒子以外にも、反射型スクリーン用積層体の透過視認性や所望の光学性能を損なわない範囲で、従来公知の添加剤を加えてもよい。添加剤としては、例えば、酸化防止剤、滑剤、紫外線吸収剤、相溶化剤、核剤および安定剤等が挙げられる。なお、樹脂と微粒子は、上記で説明したとおりである。 In addition to the resin and fine particles described above, conventionally known additives may be added to the resin composition as long as the transmission visibility and desired optical performance of the reflective screen laminate are not impaired. Examples of the additive include an antioxidant, a lubricant, an ultraviolet absorber, a compatibilizer, a nucleating agent, and a stabilizer. The resin and the fine particles are as described above.
 混練工程に用いる二軸混錬押出機は、シリンダー内に2本のスクリューが挿入されたものであり、スクリューエレメントを組み合わせて構成される。スクリューは、少なくとも、搬送エレメントと、混練エレメントとを含むフライトスクリューを好適に用いることができる。混練エレメントは、ニーディングエレメント、ミキシングエレメント、およびロータリーエレメントからなる群から選択される少なくとも1種を含むことが好ましい。このような混練エレメントを含むフライトスクリューを用いることで、所望のせん断応力をかけながら、微粒子を樹脂中に十分に分散させることができる。 The twin-screw kneading extruder used in the kneading process is one in which two screws are inserted into a cylinder, and is configured by combining screw elements. As the screw, a flight screw including at least a conveying element and a kneading element can be suitably used. The kneading element preferably contains at least one selected from the group consisting of a kneading element, a mixing element, and a rotary element. By using a flight screw including such a kneading element, fine particles can be sufficiently dispersed in the resin while applying a desired shear stress.
(製膜工程)
 製膜工程は、混練工程で得られた樹脂組成物を製膜する工程である。製膜方法は、特に限定されず、従来公知の方法により、樹脂組成物からなるフィルムを製膜することができる。例えば、混練工程で得られた樹脂組成物を、融点以上の温度(Tm~Tm+70℃)に加熱された溶融押出機に供給して、樹脂組成物を溶融する。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。
(Film forming process)
The film forming step is a step of forming a film of the resin composition obtained in the kneading step. The film forming method is not particularly limited, and a film made of the resin composition can be formed by a conventionally known method. For example, the resin composition obtained in the kneading step is supplied to a melt extruder heated to a temperature equal to or higher than the melting point (Tm to Tm + 70 ° C.) to melt the resin composition. As the melt extruder, a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder, or the like can be used depending on the purpose.
 続いて、溶融した樹脂組成物を、例えばTダイ等のダイによりシート状に押出し、押出されたシート状物を回転している冷却ドラムなどで急冷固化することによりフィルムを成形することができる。なお、上記の混練工程と連続して製膜工程を行う場合には、混練工程で得られた樹脂組成物を溶融状態のまま直接、ダイによりシート状に押出して、フィルム形状の光拡散層を成形することもできる。 Subsequently, the melted resin composition is extruded into a sheet shape by a die such as a T die, and the extruded sheet material is rapidly cooled and solidified by a rotating cooling drum or the like, thereby forming a film. In addition, when performing the film forming process continuously with the above kneading process, the resin composition obtained in the kneading process is directly extruded into a sheet shape with a die in a molten state, and a film-shaped light diffusion layer is formed. It can also be molded.
 製膜工程により得られたフィルム形状の光拡散層は、従来公知の方法により、さらに一軸延伸または二軸延伸してもよい。上記光拡散層を延伸することで、光拡散層の強度を向上させることができる。 The film-shaped light diffusion layer obtained by the film forming step may be further uniaxially or biaxially stretched by a conventionally known method. The strength of the light diffusion layer can be improved by stretching the light diffusion layer.
(積層工程)
 積層工程は、製膜工程で得られたフィルム形状の光拡散層上に、反射層をさらに積層する工程である。反射層の積層方法は、特に限定されず、従来公知の方法により行うことができる。例えば、反射層は、蒸着、スパッタリング、または塗布によって形成することができる。
(Lamination process)
The laminating step is a step of further laminating a reflective layer on the film-shaped light diffusion layer obtained in the film forming step. The method for laminating the reflective layer is not particularly limited, and can be performed by a conventionally known method. For example, the reflective layer can be formed by vapor deposition, sputtering, or coating.
<反射型スクリーン>
 本発明による反射型スクリーンは、上記の積層体を備えてなる。反射型スクリーンは、上記の積層体のみからなるものでもよく、透明パーティション等の支持体をさらに備えるものでもよい。反射型スクリーンとして用いた場合、視認者は上記積層体の光拡散層側から画像を視認する態様が好ましい。また、反射型スクリーンは、平面であってもよく、曲面であってもよく、凹凸面を有していてもよい。
<Reflective screen>
A reflective screen according to the present invention comprises the above laminate. The reflective screen may be composed only of the above-described laminated body, or may further include a support such as a transparent partition. When used as a reflective screen, it is preferable that the viewer visually recognizes an image from the light diffusion layer side of the laminate. The reflective screen may be a flat surface, a curved surface, or an uneven surface.
 本発明による反射型スクリーンを備える映像表示装置においては、光源の位置がスクリーンに対して視認者側にある。このような反射型スクリーンは、視認者側から出射される投影光を異方的に散乱反射することにより投影光の視認性に優れ、さらに視野角が広く、かつ透過光の視認性に優れるものである。 In the video display device including the reflective screen according to the present invention, the position of the light source is on the viewer side with respect to the screen. Such a reflective screen has excellent visibility of projection light by anisotropically reflecting the projection light emitted from the viewer side, and has a wide viewing angle and excellent visibility of transmitted light. It is.
(支持体)
 支持体は、積層体を支持するためのものである。支持体は、反射型スクリーンの透過視認性や所望の光学特性を損なわないものであればよく、例えば、透明パーティション、ガラスウィンドウ、乗用車のヘッドアップディスプレイ、およびウェアラブルディスプレイ等が挙げられる。
(Support)
The support is for supporting the laminate. The support may be any material that does not impair the transmission visibility and desired optical characteristics of the reflective screen. Examples thereof include a transparent partition, a glass window, a head-up display for a passenger car, and a wearable display.
<車両用部材>
 本発明による車両用部材は、上記の積層体または透視可能な反射型スクリーンを備えてなり、反射防止層等をさらに備えるものであってもよい。車両用部材としては、フロントガラスやサイドガラス等が挙げられる。車両用部材は上記の積層体または透視可能な反射型スクリーンを備えることで、別途のスクリーンを設けなくても、車両用部材上に鮮明な画像を表示させることができる。
<Vehicle members>
The vehicle member according to the present invention includes the above-described laminated body or a see-through reflective screen, and may further include an antireflection layer or the like. Examples of the vehicle member include a windshield and a side glass. By providing the vehicle member with the laminate or the reflective screen that can be seen through, a clear image can be displayed on the vehicle member without providing a separate screen.
<住宅用部材>
 本発明による住宅用部材は、上記の積層体または透視可能な反射型スクリーンを備えてなり、反射防止層等をさらに備えるものであってもよい。住宅用部材としては、住宅の窓ガラス、コンビニや路面店のガラス壁等を挙げることができる。住宅用部材は上記の積層体または透視可能な反射型スクリーンを備えることで、別途のスクリーンを設けなくても、住宅用部材上に鮮明な画像を表示させることができる。
<Housing materials>
The housing member according to the present invention includes the above-described laminated body or a reflective screen that can be seen through, and may further include an antireflection layer or the like. Examples of the house member include a window glass of a house, a convenience store, a glass wall of a road surface store, and the like. The housing member includes the above-described laminate or the see-through reflective screen, so that a clear image can be displayed on the housing member without providing a separate screen.
<画像投影装置>
 本発明による画像投影装置は、上記の積層体または透視可能な反射型スクリーンと、投射装置とを備えてなる。投射装置とは、スクリーン上に映像を投射できるものであれば特に限定されず、例えば、市販のフロントプロジェクタを用いることができる。
<Image projection device>
An image projection apparatus according to the present invention includes the above laminate or a reflective screen that can be seen through, and a projection apparatus. The projection device is not particularly limited as long as it can project an image on a screen. For example, a commercially available front projector can be used.
 本発明による反射型スクリーンおよび画像投影装置の一実施形態の模式図を図2に示す。反射型スクリーン20は、支持体(透明パーティション)21と、視認者22側から光拡散層および反射層の順となるように支持体21上に積層体10とを備えてなる。また、積層体10は、透明パーティション21に貼付するために、反射層の光拡散層と反対側に粘着層を含んでもよい。また、画像投影装置は、反射型スクリーン20と、投射装置23とを備えてなる。投射装置23は透明パーティション21に対して視認者22と同じ側に設置され、光源から出射された投影光24は反射型スクリーン用積層体10により異方的に散乱反射され、視認者は反射光25を視認できる。 FIG. 2 shows a schematic diagram of an embodiment of a reflective screen and an image projection apparatus according to the present invention. The reflective screen 20 includes a support body (transparent partition) 21 and a laminated body 10 on the support body 21 so that a light diffusing layer and a reflective layer are arranged in this order from the viewer 22 side. Moreover, in order to affix the laminated body 10 to the transparent partition 21, you may include the adhesion layer on the opposite side to the light-diffusion layer of a reflection layer. In addition, the image projection apparatus includes a reflective screen 20 and a projection apparatus 23. The projection device 23 is installed on the same side as the viewer 22 with respect to the transparent partition 21, and the projection light 24 emitted from the light source is anisotropically scattered and reflected by the reflective screen laminate 10, and the viewer reflects the reflected light. 25 can be visually recognized.
 以下、実施例と比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not construed as being limited to the following examples.
 実施例および比較例において、各種物性および性能評価の測定方法は次のとおりである。
(1)ヘイズ
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7136に準拠して測定した。
(2)全光線透過率
 濁度計(日本電色工業(株)製、品番:NDH-5000)を用い、JIS K7361-1に準拠して測定した。
(3)反射光度
 変角光度計(日本電色工業(株)製、品番:GC5000L)を用いて測定した。光源の入射角を45度にセットし、測定ステージに白色度95.77の標準白色板を載せたときの0度方向への反射光強度を100とした。サンプル測定時は、光源の入射角をリアプロジェクションでのプロジェクター光入射角に相当する15度にセットし、0度方向への反射光の強度を測定した。
(4)反射層膜厚
 反射層の膜厚測定には、SLOAN社製SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST、もしくはニコン社製DIGIMICRO MFC-101を用いた。また、干渉波測定(日本分光(株)製 紫外・可視・近赤外分光光度計V-570)と屈折率のデータから膜厚を求める方法も併用した。
(5)反射光度向上倍率
 反射光度を測定し、反射層を備えていない光拡散層の反射光度を1としたときの向上倍率として算出した。
(6)写像性
 写像性測定器(スガ試験機(株)製、品番:ICM-1T)を用い、JIS K7374に準拠して、光学くし幅0.125mmで測定した時の像鮮明度(%)の値を写像性とした。像鮮明度の値が大きい程、透過写像性が高いことを示す。
(7)スクリーン性能
 スクリーン(積層体)の反射層を積層していない面の法線方向に対して角度15度で50cm離れた位置から、オンキョーデジタルソリューションズ(株)製のモバイルLEDミニプロジェクターPP-D1Sを用いて画像を投影した。次に、スクリーンの面上に焦点が合うようにプロジェクターの焦点つまみを調整した後、スクリーンの前方(スクリーンに対してプロジェクターと同じ側、いわゆるフロントプロジェクション)1mおよび後方(スクリーンに対してプロジェクターと反対側、いわゆるリアプロジェクション)1mの2ヶ所からスクリーンに映し出された画像を目視で下記の評価基準により評価した。スクリ-ンの前方からの観察は反射型スクリーンとしての性能が評価でき、後方からの観察により透過型スクリーンとしての性能が評価できる。
 [評価基準]
 ◎:極めて鮮明に映像を視認することができた。映像は、色の変化もなく、蒸着していない場合と比較して輝度が向上し、より鮮明であった。
 ○:鮮明に映像を視認することができたが、映像によってはごく弱い青みがかった色変化が見られた。
 △:映像は視認できたが、映像によっては青みがかった色変化が見られた。
 ×:映像の色調に赤みがかる色変化や虹色の色変化が見られた。
In Examples and Comparative Examples, various physical properties and measuring methods for performance evaluation are as follows.
(1) Haze The haze was measured according to JIS K7136 using a turbidimeter (Nippon Denshoku Industries Co., Ltd., product number: NDH-5000).
(2) Total light transmittance A turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., product number: NDH-5000) was used and measured according to JIS K7361-1.
(3) Reflected light intensity Measured using a variable angle photometer (manufactured by Nippon Denshoku Industries Co., Ltd., product number: GC5000L). The incident angle of the light source was set to 45 degrees, and the reflected light intensity in the 0 degree direction when a standard white plate with a whiteness of 95.77 was placed on the measurement stage was set to 100. At the time of sample measurement, the incident angle of the light source was set to 15 degrees corresponding to the projector light incident angle in the rear projection, and the intensity of reflected light in the 0 degree direction was measured.
(4) Reflective Layer Film Thickness of the reflective layer was measured by using SURFACE TEXTURE ANALYSIS SYSTEM Dektak 3030ST manufactured by SLOAN or DIGIMICRO MFC-101 manufactured by Nikon. In addition, a method of obtaining the film thickness from the interference wave measurement (UV-visible / near-infrared spectrophotometer V-570 manufactured by JASCO Corporation) and the refractive index data was used in combination.
(5) Reflected luminous intensity improvement magnification The reflected luminous intensity was measured and calculated as an improved magnification when the reflected luminous intensity of a light diffusion layer not provided with a reflective layer was 1.
(6) Image clarity Image clarity (%) measured using an image clarity measuring instrument (Suga Test Instruments Co., Ltd., product number: ICM-1T) with an optical comb width of 0.125 mm in accordance with JIS K7374. The value of) was defined as image clarity. The larger the image sharpness value, the higher the transmission image clarity.
(7) Screen performance Mobile LED mini-projector PP-manufactured by Onkyo Digital Solutions Co., Ltd. from a position 50 cm away from the normal direction of the surface of the screen (laminate) where the reflective layer is not laminated at an angle of 15 degrees. Images were projected using D1S. Next, after adjusting the focus knob of the projector so that it is in focus on the surface of the screen, the front of the screen (the same side as the projector, the so-called front projection) 1 m and the rear (the screen is opposite to the projector) On the side, so-called rear projection) Images projected on the screen from two locations of 1 m were visually evaluated according to the following evaluation criteria. Observation from the front of the screen can evaluate the performance as a reflective screen, and observation from the back can evaluate the performance as a transmission screen.
[Evaluation criteria]
A: The image could be seen very clearly. The image was clearer with no change in color and improved brightness as compared with the case where no vapor deposition was performed.
○: Although the image could be clearly seen, a very weak bluish color change was observed depending on the image.
Δ: Although the image was visible, a bluish color change was observed depending on the image.
X: A reddish color change or a rainbow color change was observed in the color tone of the image.
[製造例1]
(1)無機微粒子を添加した熱可塑性樹脂ペレットの作製
 熱可塑性樹脂としてポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステルプロダクツ製、商品名:IP121B)を用意した。該PETペレットに、無機微粒子としてPETペレットに対して0.15質量%の酸化ジルコニウム(ZrO)粒子(関東電化工業(株)製、一次粒子のメジアン径10nm)を加えて、回転型混合器にて混合することでPETペレット表面に均一にZrO粒子が付着したPETペレットを得た。
(2)光拡散層(フィルム)の作製(混練および製膜工程)
 上記(1)のZrO粒子添加PETペレットを2軸スクリュー式混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、100μmの厚さの光拡散フィルムを製膜した。なお、2軸スクリュー式混練押出機のスクリュー径は20mmであり、スクリュー有効長(L/D)は30であった。また、2軸スクリュー式混練押出機にはアダプタを介し、ハンガーコートタイプのTダイを設置した。押出温度は270℃とし、スクリュー回転数は500rpmとし、せん断応力は300KPaとした。使用したスクリューは全長670mmであり、スクリューのホッパー側から160mmの位置から185mmの位置までの間にミキシングエレメントを含み、かつ185mmから285mmの位置の間にニーディングエレメントを含み、その他の部分はフライト形状であった。
[Production Example 1]
(1) Production of thermoplastic resin pellets to which inorganic fine particles were added Polyethylene terephthalate (PET) pellets (trade name: IP121B, manufactured by Bell Polyester Products Co., Ltd.) were prepared as thermoplastic resins. To the PET pellet, 0.15% by mass of zirconium oxide (ZrO 2 ) particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary particle median diameter 10 nm) are added as inorganic fine particles to the PET pellet. The PET pellets in which ZrO 2 particles were uniformly adhered to the surface of the PET pellets were obtained by mixing in the above.
(2) Production of light diffusion layer (film) (kneading and film forming process)
The ZrO 2 particle-added PET pellets of (1) above were put into a hopper of a twin screw kneading extruder (trade name: KZW-30MG), and a light diffusion film having a thickness of 100 μm was formed. did. The screw diameter of the twin-screw kneading extruder was 20 mm, and the effective screw length (L / D) was 30. In addition, a hanger coat type T-die was installed in the twin-screw kneading extruder through an adapter. The extrusion temperature was 270 ° C., the screw rotation speed was 500 rpm, and the shear stress was 300 KPa. The used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
[製造例2]
 製造例1の(1)において、ZrOの添加量を2.0質量%とした以外は製造例1と同様にして光拡散層を作製した。
[Production Example 2]
A light diffusion layer was produced in the same manner as in Production Example 1 except that the amount of ZrO 2 added was 2.0 mass% in Production Example 1 (1).
[製造例3]
 製造例1の(1)において、無機微粒子としてチタン酸バリウム(BaTiO)粒子(関東電化工業(株)製、一次粒子のメジアン径25nm)を用いた以外は製造例1と同様にして光拡散層を作製した。
[Production Example 3]
Light diffusion in the same manner as in Production Example 1 except that barium titanate (BaTiO 3 ) particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary median diameter 25 nm) were used as inorganic fine particles in (1) of Production Example 1. A layer was made.
[製造例4]
 製造例1の(1)において、無機微粒子として二酸化チタン(TiO)粒子(関東電化工業(株)製、一次粒子のメジアン径10nm)を用いた以外は製造例1と同様にして光拡散層を作製した。
[Production Example 4]
The light diffusion layer in the same manner as in Production Example 1, except that titanium dioxide (TiO 2 ) particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary median diameter 10 nm) were used as inorganic fine particles in (1) of Production Example 1. Was made.
[製造例5]
 製造例1の(1)において、無機微粒子としてPETペレットに対して0.3質量%の二酸化ケイ素(SiO)粒子((株)トクヤマ製、一次粒子のメジアン径90nm)を用いた以外は製造例1と同様にして光拡散層を作製した。
[Production Example 5]
Manufactured in (1) of Production Example 1 except that 0.3% by mass of silicon dioxide (SiO 2 ) particles (manufactured by Tokuyama Corporation, median diameter of primary particles 90 nm) are used as inorganic fine particles with respect to PET pellets. A light diffusing layer was prepared in the same manner as in Example 1.
[製造例6]
 製造例5において、SiOの添加量を2.0質量%とした以外は製造例5と同様にして光拡散層を作製した。
[Production Example 6]
In Production Example 5, a light diffusion layer was produced in the same manner as in Production Example 5 except that the amount of SiO 2 added was 2.0% by mass.
[製造例7]
 製造例5において、SiOの添加量を10.0質量%とした以外は製造例5と同様にして光拡散層を作製した。
[Production Example 7]
In Production Example 5, a light diffusion layer was produced in the same manner as in Production Example 5 except that the addition amount of SiO 2 was 10.0% by mass.
[製造例8]
 製造例1の(1)において、熱可塑性樹脂としてポリエチレンナフタレート(PEN)ペレット(帝人(株)製、商品名:テオネックスTN-8065S)を用いた以外は製造1と同様にして光拡散層を作製した。
[Production Example 8]
A light diffusion layer was prepared in the same manner as in Production 1 except that polyethylene naphthalate (PEN) pellets (manufactured by Teijin Ltd., trade name: Teonex TN-8065S) were used as the thermoplastic resin in (1) of Production Example 1. Produced.
[製造例9]
 製造例1の(1)において、熱可塑性樹脂としてポリカーボネート(PC)ペレット(住化スタイロンポリカーボネート(株)製、商品名:SD2201W)を用いた以外は製造1と同様にして光拡散層を作製した。
[Production Example 9]
A light diffusion layer was produced in the same manner as in Production 1 except that polycarbonate (PC) pellets (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: SD2201W) were used as the thermoplastic resin in Production Example 1 (1). .
[製造例10]
 製造例1の(1)において、熱可塑性樹脂としてポリメタクリル酸メチル(PMMA)ペレット(三菱レーヨン(株)製、商品名:アクリペットVH)を用いた以外は製造1と同様にして光拡散層を作製した。
[Production Example 10]
A light diffusion layer in the same manner as in Production 1 except that polymethyl methacrylate (PMMA) pellets (manufactured by Mitsubishi Rayon Co., Ltd., product name: Acrypet VH) were used as the thermoplastic resin in Production Example 1 (1). Was made.
[製造例11]
 製造例1の(1)において、熱可塑性樹脂としてポリスチレン(PS)ペレット(PSジャパン(株)製、銘柄HF77)を用いた以外は製造1と同様にして光拡散層を作製した。
[Production Example 11]
In Example 1 (1), a light diffusion layer was produced in the same manner as in Production 1 except that polystyrene (PS) pellets (brand name HF77 manufactured by PS Japan Co., Ltd.) were used as the thermoplastic resin.
[製造例12]
(1)無機微粒子を添加した熱可塑性樹脂ペレットの作製
 熱可塑性樹脂としてポリエチレンテレフタレート(PET)ペレット((株)ベルポリエステルプロダクツ製、商品名:IP121B)を用意した。該PETペレットに、無機微粒子としてPETペレットに対して0.003質量%のZrO粒子(関東電化工業(株)製、一次粒子のメジアン径10nm)を加えて、回転型混合器にて混合することでPETペレット表面に均一にZrO粒子が付着したPETペレットを得た。このペレットを2軸スクリュー式混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、270℃で溶融混練して得られたストランドをペレタイズすることで、ZrO粒子0.003質量%が練り込まれたPETペレットを得た。
(2)光拡散層(プレート)の作製
 上記(1)のZrO含有ペレットを用い、射出成形機(日精樹脂工業(株)社製、商品名:FNX-III)にて厚さ3mmの光拡散層(プレート)を作製した。
[Production Example 12]
(1) Production of thermoplastic resin pellets to which inorganic fine particles were added Polyethylene terephthalate (PET) pellets (trade name: IP121B, manufactured by Bell Polyester Products Co., Ltd.) were prepared as thermoplastic resins. To the PET pellet, 0.003% by mass of ZrO 2 particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary particle median diameter 10 nm) is added as inorganic fine particles to the PET pellet and mixed in a rotary mixer. Thus, a PET pellet having ZrO 2 particles uniformly adhered to the surface of the PET pellet was obtained. ZrO 2 particles are obtained by putting the pellets into a hopper of a twin-screw kneading extruder (trade name: KZW-30MG, manufactured by Technobel Co., Ltd.) and pelletizing the strand obtained by melt-kneading at 270 ° C. A PET pellet kneaded with 0.003% by mass was obtained.
(2) Production of light diffusing layer (plate) Using ZrO 2 -containing pellets of (1) above, light with a thickness of 3 mm was produced with an injection molding machine (trade name: FNX-III, manufactured by Nissei Plastic Industry Co., Ltd.). A diffusion layer (plate) was prepared.
[製造例13]
 製造例12の(1)で得られたZrO粒子0.003質量%が練り込まれたPETペレットを、ZrOを含まないPETペレットで3倍に希釈し、これを用いて射出成型機にて厚さ10mmの光拡散層(プレート)を作製した。
[Production Example 13]
The PET pellet obtained by kneading 0.003% by mass of the ZrO 2 particles obtained in (1) of Production Example 12 was diluted three-fold with a PET pellet not containing ZrO 2 , and this was used for an injection molding machine. Thus, a light diffusion layer (plate) having a thickness of 10 mm was produced.
[製造例14]
 (1)無機微粒子を添加した熱可塑性樹脂ペレットの作製
 熱可塑性樹脂としてシクロオレフィンポリマー(COP)ペレット(日本ゼオン(株)製、商品名:1020R)を用意した。該COPペレットに、無機微粒子としてCOPペレットに対して0.15質量%のZrO粒子(関東電化工業(株)製、一次粒子のメジアン径10nm)を加えて、回転型混合器にて混合することでペレット表面に均一にZrO粒子が付着したCOPペレットを得た。このペレットを2軸スクリュー式混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、260℃で溶融混練して得られたストランドをペレタイズすることで、ZrO粒子0.15質量%が練り込まれたCOPペレットを得た。
(2)光拡散層(フィルム)の作製(混練および製膜工程)
 上記(1)のZrO粒子添加COPペレットを2軸スクリュー式混練押出機(テクノベル(株)製、商品名:KZW-30MG)のホッパーに投入し、500μmの厚さの光拡散フィルムを製膜した。なお、2軸スクリュー式混練押出機のスクリュー径は20mmであり、スクリュー有効長(L/D)は30であった。また、2軸スクリュー式混練押出機にはアダプタを介し、ハンガーコートタイプのTダイを設置した。押出温度は260℃とし、スクリュー回転数は500rpmとし、せん断応力は300KPaとした。使用したスクリューは全長670mmであり、スクリューのホッパー側から160mmの位置から185mmの位置までの間にミキシングエレメントを含み、かつ185mmから285mmの位置の間にニーディングエレメントを含み、その他の部分はフライト形状であった。
[Production Example 14]
(1) Production of thermoplastic resin pellet to which inorganic fine particles were added A cycloolefin polymer (COP) pellet (manufactured by Nippon Zeon Co., Ltd., trade name: 1020R) was prepared as a thermoplastic resin. To this COP pellet, 0.15% by mass of ZrO 2 particles (manufactured by Kanto Denka Kogyo Co., Ltd., primary particle median diameter 10 nm) is added as inorganic fine particles to the COP pellet and mixed in a rotary mixer. As a result, a COP pellet having ZrO 2 particles uniformly adhered to the pellet surface was obtained. ZrO 2 particles are obtained by putting the pellets into a hopper of a twin-screw kneading extruder (trade name: KZW-30MG, manufactured by Technobel Co., Ltd.) and pelletizing the strand obtained by melt-kneading at 260 ° C. COP pellets containing 0.15% by mass were obtained.
(2) Production of light diffusion layer (film) (kneading and film forming process)
The COP pellets with the ZrO 2 particles added of (1) above are put into a hopper of a twin screw kneading extruder (trade name: KZW-30MG), and a 500 μm thick light diffusion film is formed. did. The screw diameter of the twin-screw kneading extruder was 20 mm, and the effective screw length (L / D) was 30. In addition, a hanger coat type T-die was installed in the twin-screw kneading extruder through an adapter. The extrusion temperature was 260 ° C., the screw rotation speed was 500 rpm, and the shear stress was 300 KPa. The used screw has a total length of 670 mm, including a mixing element between 160 mm and 185 mm from the hopper side of the screw, and a kneading element between 185 mm and 285 mm, and the other parts are flight It was a shape.
[製造例15]
 製造例14の(1)で得られたZrO粒子0.15質量%が練り込まれたCOPペレットを、ZrOを含まないCOPペレットで5倍に希釈し、これを用いて射出成型機にて厚さ1mmの光拡散層(プレート)を作製した。 
[Production Example 15]
The COP pellet kneaded with 0.15% by mass of the ZrO 2 particles obtained in (1) of Production Example 14 was diluted 5 times with the COP pellet not containing ZrO 2 , and this was used for an injection molding machine. Thus, a light diffusion layer (plate) having a thickness of 1 mm was produced.
[実施例1]
 製造例1にて作製した光拡散層の片面に、スパッタにより二酸化チタン(TiO)を厚さ15nmになるよう積層して反射層を形成し、反射型スクリーン用積層体を得た。得られた反射型スクリーン用積層体はごく薄い茶色の光沢をもち、ヘイズ値は10.8%、全光線透過率は82%と十分な透明性を有していた。
 色再現性を目視で評価した結果、鮮明に映像を視認することができた。特に後方から見る反射像は色の変化もなく、蒸着していない場合と比較して輝度が向上し、より鮮明であった。変角光度計にて、未蒸着面から光が当たるように積層体をステージに載せて測定した正面反射光度を、反射層のないフィルムでの測定値で除して求めた反射光度向上倍率は4.1倍であった。また、写像性は、79%であり、積層体を透過して見える像が鮮明であった。
[Example 1]
A reflective layer was formed by laminating titanium dioxide (TiO 2 ) to a thickness of 15 nm on one side of the light diffusion layer produced in Production Example 1 to obtain a laminate for a reflective screen. The obtained reflective screen laminate had a very light brown luster, a haze value of 10.8%, and a total light transmittance of 82%, which was sufficiently transparent.
As a result of visual evaluation of color reproducibility, it was possible to clearly see the video. In particular, the reflected image seen from the rear had no change in color, and the brightness was improved as compared with the case where vapor deposition was not performed, and the image was clearer. The reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 4.1 times. The image clarity was 79%, and the image seen through the laminate was clear.
[実施例2]
 TiOの膜厚を30nmとした以外は実施例1と同様にして反射型スクリーン用積層体を作製した。得られた積層体は薄い茶色の光沢をもち、ヘイズ値は11.3%、全光線透過率は70%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は6.2倍であった。また、写像性は、76%であり、積層体を透過して見える像が鮮明であった。
[Example 2]
A reflective screen laminate was prepared in the same manner as in Example 1 except that the thickness of TiO 2 was changed to 30 nm. The obtained laminate had a light brown luster, a haze value of 11.3%, and a total light transmittance of 70%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 6.2 times. Further, the image clarity was 76%, and the image seen through the laminate was clear.
[実施例3]
 TiOの膜厚を150nmとした以外は実施例1と同様に積層体を作製した。得られた積層体は茶色の光沢をもち、ヘイズ値は11.0%、全光線透過率は70%であった。
 得られた積層体を実施例1と同様の方法で評価した結果、実施例1、および2に比べてやや色調が赤みを帯びたものの、鮮明に映像を視認することができた。変角光度計にて、未蒸着面から光が当たるように積層体をステージに載せて測定した正面反射光度を、反射層のないフィルムでの測定値で除して求めた反射光度向上倍率は6.4倍であった。また、写像性は、72%であり、積層体を透過して見える像が鮮明であった。
[Example 3]
A laminate was produced in the same manner as in Example 1 except that the thickness of TiO 2 was set to 150 nm. The obtained laminate had a brown luster, a haze value of 11.0%, and a total light transmittance of 70%.
As a result of evaluating the obtained laminate by the same method as in Example 1, although the color tone was slightly reddish compared to Examples 1 and 2, it was possible to visually recognize the image clearly. The reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 6.4 times. Further, the image clarity was 72%, and the image seen through the laminate was clear.
[実施例4]
 製造例1にて作製した光拡散層の片面に、蒸着より硫化亜鉛(ZnS)を厚さ10nmになるよう積層して反射層を形成し、積層体を得た。得られた積層体はほぼ無色で、ヘイズ値は9.5%、全光線透過率は90%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は3.0倍であった。また、写像性は、81%であり、積層体を透過して見える像が鮮明であった。
[Example 4]
On one side of the light diffusion layer produced in Production Example 1, zinc sulfide (ZnS) was laminated to a thickness of 10 nm by vapor deposition to form a reflective layer, thereby obtaining a laminate. The obtained laminate was almost colorless, had a haze value of 9.5%, and a total light transmittance of 90%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 3.0 times. The image clarity was 81%, and the image seen through the laminate was clear.
[実施例5]
 ZnSの膜厚を60nmとした以外は実施例4と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は10.0%、全光線透過率は70%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は11.0倍であった。また、写像性は、77%であり、積層体を透過して見える像が鮮明であった。
[Example 5]
A laminate was produced in the same manner as in Example 4 except that the film thickness of ZnS was changed to 60 nm. The obtained laminate had a light blue gloss, had a haze value of 10.0%, and a total light transmittance of 70%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 11.0 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
[実施例6]
 ZnSの膜厚を80nmとした以外は実施例4と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は9.8%、全光線透過率は72%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、映像によってはごく弱い青みがかった色変化が見られた。反射光度向上倍率は7.5倍であった。また、写像性は、73%であり、積層体を透過して見える像が鮮明であった。
[Example 6]
A laminate was produced in the same manner as in Example 4 except that the film thickness of ZnS was 80 nm. The obtained laminate had a light blue gloss, a haze value of 9.8%, and a total light transmittance of 72%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a very weak bluish color change was observed depending on the image. The reflected light intensity improvement magnification was 7.5 times. Further, the image clarity was 73%, and the image seen through the laminate was clear.
[実施例7]
 ZnSの膜厚を140nmとした以外は実施例4と同様に積層体を作製した。得られた積層体は赤から黄色の光沢をもち、ヘイズ値は9.2%、全光線透過率は88%であった。
 得られた積層体を実施例1と同様の方法で評価した結果、実施例4および5に比べてやや色調が虹色に変化したものの、鮮明に映像を視認することができた。変角光度計にて、未蒸着面から光が当たるように積層体をステージに載せて測定した正面反射光度を、反射層のないフィルムでの測定値で除して求めた反射光度向上倍率は6.9倍であった。また、写像性は、71%であり、積層体を透過して見える像が鮮明であった。
[Example 7]
A laminate was prepared in the same manner as in Example 4 except that the film thickness of ZnS was 140 nm. The obtained laminate had a red to yellow gloss, a haze value of 9.2%, and a total light transmittance of 88%.
As a result of evaluating the obtained laminate by the same method as in Example 1, although the color tone slightly changed to iridescent as compared with Examples 4 and 5, an image could be clearly seen. The reflected light intensity improvement magnification obtained by dividing the front reflection light intensity measured by placing the laminate on the stage so that light hits the undeposited surface with the variable angle photometer divided by the measured value with the film without the reflection layer is It was 6.9 times. Further, the image clarity was 71%, and the image seen through the laminate was clear.
[実施例8]
 製造例2にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は47.8%、全光線透過率は72%とやや白濁しているものの十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は2.7倍であった。また、写像性は、65%であり、積層体を透過して見える像が鮮明であった。
[Example 8]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 2 was used. The obtained laminate had a light blue luster, had a haze value of 47.8%, and a total light transmittance of 72%, which was slightly cloudy, but had sufficient transparency.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 2.7 times. Further, the image clarity was 65%, and the image seen through the laminate was clear.
[実施例9]
 製造例12にて作製した光拡散層(プレート)を用いた以外は実施例5と同様にして積層体(プレート)を作製した。得られた積層体(プレート)はうすい青色の光沢をもち、ヘイズは3.2%、全光線透過率は71%と十分な透明性を有していた。
 得られた積層体(プレート)を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.8倍であった。また、写像性は、83%であり、積層体を透過して見える像が鮮明であった。
[Example 9]
A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 12 was used. The obtained laminate (plate) had a light blue gloss, had a haze of 3.2%, and a total light transmittance of 71%, which was sufficiently transparent.
As a result of evaluating the obtained laminate (plate) by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.8 times. The image clarity was 83%, and the image seen through the laminate was clear.
[実施例10]
 製造例13にて作製した光拡散層(プレート)を用いた以外は実施例5と同様にしてスクリーン用積層体(プレート)を作製した。得られた積層体(プレート)はうすい青色の光沢をもち、ヘイズは3.2%、全光線透過率は71%と十分な透明性を有していた。
 得られた積層体(プレート)を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.2倍であった。また、写像性は、77%であり、積層体を透過して見える像が鮮明であった。
[Example 10]
A screen laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 13 was used. The obtained laminate (plate) had a light blue gloss, had a haze of 3.2%, and a total light transmittance of 71%, which was sufficiently transparent.
As a result of evaluating the obtained laminate (plate) by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.2 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
[実施例11]
 製造例3にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は10.8%、全光線透過率は70%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.2倍であった。また、写像性は、77%であり、積層体を透過して見える像が鮮明であった。
[Example 11]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 3 was used. The obtained laminate had a light blue gloss, had a haze value of 10.8%, and a total light transmittance of 70%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.2 times. Further, the image clarity was 77%, and the image seen through the laminate was clear.
[実施例12]
 製造例4にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は9.9%、全光線透過率は73%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は6.0倍であった。また、写像性は、78%であり、積層体を透過して見える像が鮮明であった。
[Example 12]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 4 was used. The obtained laminate had a light blue luster, a haze value of 9.9%, and a total light transmittance of 73%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 6.0 times. Further, the image clarity was 78%, and the image seen through the laminate was clear.
[実施例13]
 製造例5にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は1.8%、全光線透過率は71%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は3.0倍であった。また、写像性は、79%であり、積層体を透過して見える像が鮮明であった。
[Example 13]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 5 was used. The obtained laminate had a light blue luster, a haze value of 1.8%, and a total light transmittance of 71%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 3.0 times. The image clarity was 79%, and the image seen through the laminate was clear.
[実施例14]
 製造例6にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は5.2%、全光線透過率は72%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.5倍であった。また、写像性は、75%であり、積層体を透過して見える像が鮮明であった。
[Example 14]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 6 was used. The obtained laminate had a light blue gloss, had a haze value of 5.2%, and a total light transmittance of 72%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.5 times. Further, the image clarity was 75%, and the image seen through the laminate was clear.
[実施例15]
 製造例7にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い青色の光沢をもち、ヘイズ値は37.0%、全光線透過率は72%とやや白濁しているものの十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は3.1倍であった。また、写像性は、62%であり、積層体を透過して見える像が鮮明であった。
[Example 15]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 7 was used. The obtained laminate had a light blue gloss, had a haze value of 37.0%, and a total light transmittance of 72%, although it was slightly cloudy, but had sufficient transparency.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 3.1 times. Further, the image clarity was 62%, and the image seen through the laminate was clear.
[実施例16]
 製造例8にて作製した光拡散層の片面に、蒸着により酸化インジウムスズ(ITO)を厚さ80nmになるよう積層して反射層を形成し、積層体を得た。得られた積層体はごく薄い灰色の光沢をもち、ヘイズ値は10.5%、全光線透過率は80%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は3.9倍であった。また、写像性は、82%であり、積層体を透過して見える像が鮮明であった。
[Example 16]
A reflective layer was formed by laminating indium tin oxide (ITO) to a thickness of 80 nm on one side of the light diffusion layer produced in Production Example 8 to obtain a laminate. The obtained laminate had a very light gray luster, had a haze value of 10.5%, and a total light transmittance of 80%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 3.9 times. Further, the image clarity was 82%, and the image seen through the laminate was clear.
[実施例17]
 製造例9にて作製した光拡散層を用いた以外は実施例2と同様にして積層体を作製した。得られた積層体は薄い茶色の光沢をもち、ヘイズ値は9.2%、全光線透過率は71%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は3.5倍であった。また、写像性は、79%であり、積層体を透過して見える像が鮮明であった。
[Example 17]
A laminate was produced in the same manner as in Example 2 except that the light diffusion layer produced in Production Example 9 was used. The obtained laminate had a light brown luster, a haze value of 9.2%, and a total light transmittance of 71%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 3.5 times. The image clarity was 79%, and the image seen through the laminate was clear.
[実施例18]
 製造例9にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い茶色の光沢をもち、ヘイズ値は9.5%、全光線透過率は70%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は8.5倍であった。また、写像性は、78%であり、積層体を透過して見える像が鮮明であった。
[Example 18]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 9 was used. The obtained laminate had a light brown luster, a haze value of 9.5%, and a total light transmittance of 70%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 8.5 times. Further, the image clarity was 78%, and the image seen through the laminate was clear.
[実施例19]
 製造例10にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い茶色の光沢をもち、ヘイズ値は7.8%、全光線透過率は75%と十分な透明性を有していた。
 得られたフィルムを実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.6倍であった。また、写像性は、83%であり、積層体を透過して見える像が鮮明であった。
[Example 19]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 10 was used. The obtained laminate had a light brown luster, a haze value of 7.8%, and a total light transmittance of 75%, which was sufficiently transparent.
As a result of evaluating the obtained film by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light improvement factor was 4.6 times. The image clarity was 83%, and the image seen through the laminate was clear.
[実施例20]
 製造例11にて作製した光拡散層を用いた以外は実施例5と同様にして積層体を作製した。得られた積層体は薄い茶色の光沢をもち、ヘイズ値は7.8%、全光線透過率は71%と十分な透明性を有していた。
 得られた積層体を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.8倍であった。また、写像性は、85%であり、積層体を透過して見える像が鮮明であった。
[Example 20]
A laminate was produced in the same manner as in Example 5 except that the light diffusion layer produced in Production Example 11 was used. The obtained laminate had a light brown luster, a haze value of 7.8%, and a total light transmittance of 71%, which was sufficiently transparent.
As a result of evaluating the obtained laminate by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.8 times. Further, the image clarity was 85%, and the image seen through the laminate was clear.
[実施例21]
 製造例14にて作製した光拡散層(プレート)を用いた以外は実施例5と同様にして積層体(プレート)を作製した。得られた積層体(プレート)はうすい茶色の光沢をもち、ヘイズは23.1%、全光線透過率は67%とやや白濁しているものの十分な透明性を有していた。
 得られた積層体(プレート)を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は6.2倍であった。また、写像性は、73%であり、積層体を透過して見える像が鮮明であった。
[Example 21]
A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 14 was used. The obtained laminate (plate) had a light brown luster, a haze of 23.1%, and a total light transmittance of 67%, although it was slightly cloudy and had sufficient transparency.
As a result of evaluating the obtained laminate (plate) by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 6.2 times. Further, the image clarity was 73%, and the image seen through the laminate was clear.
[実施例22]
 製造例15にて作製した光拡散層(プレート)を用いた以外は実施例5と同様にして積層体(プレート)を作製した。得られた積層体(プレート)はうすい茶色の光沢をもち、ヘイズは10.1%、全光線透過率は65%と十分な透明性を有していた。
 得られた積層体(プレート)を実施例1と同様の方法で評価した結果、ほとんど色変化のない鮮明な映像を視認できた。反射光度向上倍率は4.8倍であった。また、写像性は、83%であり、積層体を透過して見える像が鮮明であった。
[Example 22]
A laminate (plate) was produced in the same manner as in Example 5 except that the light diffusion layer (plate) produced in Production Example 15 was used. The obtained laminate (plate) had a light brown luster, a haze of 10.1%, and a total light transmittance of 65%, which was sufficiently transparent.
As a result of evaluating the obtained laminate (plate) by the same method as in Example 1, a clear image with almost no color change was visually recognized. The reflected light intensity improvement magnification was 4.8 times. The image clarity was 83%, and the image seen through the laminate was clear.
[比較例1]
 製造例1にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は9.0%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例1および実施例2に比べて劣っていた。また、写像性は、87%であり、積層体を透過して見える像が鮮明であった。
[比較例2]
 製造例2にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は47.3%、全光線透過率は88%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例8に比べて劣っていた。また、写像性は、69%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 1]
When the light diffusing layer produced in Production Example 1 was used for a reflective screen as it was, the haze value was 9.0% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 1 and Example 2. Further, the image clarity was 87%, and the image seen through the laminate was clear.
[Comparative Example 2]
When the light diffusing layer produced in Production Example 2 was used as it was for a reflective screen, the haze value was 47.3% and the total light transmittance was 88%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 8. The image clarity was 69%, and the image seen through the laminate was clear.
[比較例3]
 製造例12にて作製した光拡散層(プレート)をそのまま反射型スクリーンに用いたところ、ヘイズは2.8%、全光線透過率は89%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例9に比べて劣っていた。また、写像性は、88%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 3]
When the light diffusing layer (plate) produced in Production Example 12 was directly used for a reflective screen, the haze was 2.8% and the total light transmittance was 89%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 9. Further, the image clarity was 88%, and the image seen through the laminate was clear.
[比較例4]
 製造例13にて作製した光拡散層(プレート)をそのまま反射型スクリーンに用いたところ、ヘイズは3.2%、全光線透過率は88%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例10に比べて劣っていた。また、写像性は、80%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 4]
When the light diffusing layer (plate) produced in Production Example 13 was used for a reflective screen as it was, the haze was 3.2% and the total light transmittance was 88%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 10. Further, the image clarity was 80%, and the image seen through the laminate was clear.
[比較例5]
 製造例3にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は10.0%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例11に比べて劣っていた。また、写像性は、80%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 5]
When the light diffusing layer produced in Production Example 3 was used as it was for a reflective screen, the haze value was 10.0% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 11. Further, the image clarity was 80%, and the image seen through the laminate was clear.
[比較例6]
 製造例4にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は9.35%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例12に比べて劣っていた。また、写像性は、80%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 6]
When the light diffusing layer produced in Production Example 4 was used for a reflective screen as it was, the haze value was 9.35% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 12. Further, the image clarity was 80%, and the image seen through the laminate was clear.
[比較例7]
 製造例5にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は1.8%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例13に比べて劣っていた。また、写像性は、82%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 7]
When the light diffusing layer produced in Production Example 5 was used as it was for a reflective screen, the haze value was 1.8% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 13. Further, the image clarity was 82%, and the image seen through the laminate was clear.
[比較例8]
 製造例6にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は4.9%、全光線透過率は88%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例14に比べて劣っていた。また、写像性は、78%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 8]
When the light diffusing layer produced in Production Example 6 was used as it was for a reflective screen, the haze value was 4.9% and the total light transmittance was 88%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 14. Further, the image clarity was 78%, and the image seen through the laminate was clear.
[比較例9]
 製造例7にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は36.0%、全光線透過率は89%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例15に比べて劣っていた。また、写像性は、65%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 9]
When the light diffusion layer produced in Production Example 7 was used as it was for a reflective screen, the haze value was 36.0% and the total light transmittance was 89%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 15. Further, the image clarity was 65%, and the image seen through the laminate was clear.
[比較例10]
 製造例8にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は8.9%、全光線透過率は88%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例16に比べて劣っていた。また、写像性は、86%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 10]
When the light diffusing layer produced in Production Example 8 was used as it was for a reflective screen, the haze value was 8.9% and the total light transmittance was 88%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 16. Further, the image clarity was 86%, and the image seen through the laminate was clear.
[比較例11]
 製造例9にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は8.8%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例17および実施例18に比べて劣っていた。また、写像性は、87%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 11]
When the light diffusing layer produced in Production Example 9 was used for a reflective screen as it was, the haze value was 8.8% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 17 and Example 18. Further, the image clarity was 87%, and the image seen through the laminate was clear.
[比較例12]
 製造例10にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は10.9%、全光線透過率は92%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例19に比べて劣っていた。また、写像性は、88%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 12]
When the light diffusing layer produced in Production Example 10 was directly used for a reflective screen, the haze value was 10.9% and the total light transmittance was 92%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 19. Further, the image clarity was 88%, and the image seen through the laminate was clear.
[比較例13]
 製造例11にて作製した光拡散層をそのまま反射型スクリーンに用いたところ、ヘイズ値は7.4%、全光線透過率は90%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例20に比べて劣っていた。また、写像性は、89%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 13]
When the light diffusing layer produced in Production Example 11 was used for a reflective screen as it was, the haze value was 7.4% and the total light transmittance was 90%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 20. The image clarity was 89%, and the image seen through the laminate was clear.
[比較例14]
 製造例14にて作製した光拡散層(プレート)をそのまま反射型スクリーンに用いたところ、ヘイズ値は22.6%、全光線透過率は83%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例21に比べて劣っていた。また、写像性は、77%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 14]
When the light diffusing layer (plate) produced in Production Example 14 was directly used for a reflective screen, the haze value was 22.6% and the total light transmittance was 83%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 21. Further, the image clarity was 77%, and the image seen through the laminate was clear.
[比較例15]
 製造例15にて作製した光拡散層(プレート)をそのまま反射型スクリーンに用いたところ、ヘイズ値は9.6%、全光線透過率は81%であった。実施例1と同様の方法で評価した結果、透過像は鮮明であったが、反射像の光度は実施例22に比べて劣っていた。また、写像性は、74%であり、積層体を透過して見える像が鮮明であった。
[Comparative Example 15]
When the light diffusing layer (plate) produced in Production Example 15 was directly used for a reflective screen, the haze value was 9.6% and the total light transmittance was 81%. As a result of evaluation by the same method as in Example 1, the transmitted image was clear, but the luminous intensity of the reflected image was inferior to that of Example 22. Further, the image clarity was 74%, and the image seen through the laminate was clear.
 実施例および比較例で用いた積層体の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The details of the laminates used in the examples and comparative examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例で用いた積層体の各種物性および性能評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows various physical properties and performance evaluation results of the laminates used in the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000002
 10 積層体
 11 光拡散層
 12 樹脂
 13 微粒子
 14 反射層
 20 反射型スクリーン
 21 支持体(透明パーティション)
 22 視認者
 23 投射装置
 24 投影光
 25 反射光
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Light-diffusion layer 12 Resin 13 Fine particle 14 Reflective layer 20 Reflective screen 21 Support body (transparent partition)
22 Viewer 23 Projector 24 Projection Light 25 Reflected Light

Claims (15)

  1.  屈折率nを有する樹脂と、屈折率nと異なる屈折率nを有する微粒子とを含んでなる光拡散層と、
     屈折率nよりも大きい屈折率nを有する透視可能な反射層と、
    を備えてなる、積層体。
    A resin having a refractive index n 1, and a light diffusing layer comprising a particulate having a refractive index n 1 is different from the refractive index n 2,
    A see-through reflective layer having a refractive index n 3 greater than the refractive index n 1 ;
    A laminate comprising:
  2.  屈折率nと膜厚dの積で表される前記反射層の光学膜厚が20~400nmである、請求項1に記載の積層体。 Optical film thickness of the reflective layer is expressed by the product of the refractive index n 3 and the thickness d is 20 ~ 400 nm, the laminated body according to claim 1.
  3.  屈折率nと屈折率nの差が0.1以上である、請求項1または2に記載の積層体。 The difference in refractive index n 1 and the refractive index n 2 is 0.1 or more, the laminated body according to claim 1 or 2.
  4.  前記微粒子の一次粒子が、0.1~50nmのメジアン径を有し、かつ10~500nmの最大粒径を有する、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the primary particles of the fine particles have a median diameter of 0.1 to 50 nm and a maximum particle diameter of 10 to 500 nm.
  5.  全光線透過率が70%以上である、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the total light transmittance is 70% or more.
  6.  写像性が60%以上である、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the image clarity is 60% or more.
  7.  屈折率nが1.8以上である、請求項1~6のいずれか一項に記載の積層体。 Is the refractive index n 3 is 1.8 or more, the laminated body according to any one of claims 1 to 6.
  8.  前記反射層が、酸化チタン、酸化ニオブ、酸化セリウム、酸化ジルコニウム、酸化インジウムスズ、酸化亜鉛、酸化タンタル、硫化亜鉛、および酸化スズからなる群より選択される少なくとも1種類を含んでなる、請求項1~7のいずれか一項に記載の積層体。 The reflective layer comprises at least one selected from the group consisting of titanium oxide, niobium oxide, cerium oxide, zirconium oxide, indium tin oxide, zinc oxide, tantalum oxide, zinc sulfide, and tin oxide. The laminate according to any one of 1 to 7.
  9.  屈折率nが屈折率nよりも小さく、かつ前記微粒子の含有量が、前記樹脂に対して0.001~14質量%である、請求項1~8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the refractive index n 2 is smaller than the refractive index n 1 and the content of the fine particles is 0.001 to 14% by mass with respect to the resin. body.
  10.  屈折率nが屈折率nよりも大きく、かつ前記微粒子の含有量が、前記樹脂に対して0.00015~3.0質量%である、請求項1~9のいずれか一項に記載の積層体。 The refractive index n 2 is larger than the refractive index n 1 and the content of the fine particles is 0.00015 to 3.0 mass% with respect to the resin. Laminated body.
  11.  透視可能な反射型スクリーン用である、請求項1~9のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 9, which is used for a reflective screen that can be seen through.
  12.  請求項1~11のいずれか一項に記載の積層体を備えた、透視可能な反射型スクリーン。 A see-through reflective screen comprising the laminate according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか一項に記載の積層体または請求項12に記載の透視可能な反射型スクリーンを備えた、車両用部材。 A vehicle member comprising the laminate according to any one of claims 1 to 11 or the see-through reflective screen according to claim 12.
  14.  請求項1~11のいずれか一項に記載の積層体または請求項12に記載の透視可能な反射型スクリーンを備えた、住宅用部材。 A residential member provided with the laminate according to any one of claims 1 to 11 or the see-through reflective screen according to claim 12.
  15.  請求項1~11のいずれか一項に記載の積層体または請求項12に記載の透視可能な反射型スクリーンと、投射装置とを備えた、画像投影装置。 An image projection apparatus comprising the laminate according to any one of claims 1 to 11 or the see-through reflective screen according to claim 12, and a projection apparatus.
PCT/JP2015/083539 2014-12-02 2015-11-30 See-through laminate, reflective screen provided with same, and image projection device provided with same WO2016088701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562437A JP6707462B2 (en) 2014-12-02 2015-11-30 Transparent laminate, reflective screen including the same, and image projection apparatus including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014244450 2014-12-02
JP2014-244450 2014-12-02
JP2015106704 2015-05-26
JP2015-106704 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016088701A1 true WO2016088701A1 (en) 2016-06-09

Family

ID=56091643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083539 WO2016088701A1 (en) 2014-12-02 2015-11-30 See-through laminate, reflective screen provided with same, and image projection device provided with same

Country Status (2)

Country Link
JP (1) JP6707462B2 (en)
WO (1) WO2016088701A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227901A (en) * 2016-06-21 2017-12-28 日華化学株式会社 Reflective screen, reflective screen sheet, and video image display system using the same
JP2018045137A (en) * 2016-09-15 2018-03-22 Jxtgエネルギー株式会社 Laminate that can project video and video projection system including the same
WO2019039163A1 (en) * 2017-08-25 2019-02-28 セントラル硝子株式会社 Transparent screen and display system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156690A (en) * 2003-11-21 2005-06-16 Dainippon Printing Co Ltd Projection screen and projection system having it
WO2006016556A1 (en) * 2004-08-10 2006-02-16 Kimoto Co., Ltd. Transmission screen
JP2008112040A (en) * 2006-10-31 2008-05-15 Teijin Dupont Films Japan Ltd Film for highly transparent reflection screen
JP2011164311A (en) * 2010-02-08 2011-08-25 Sony Corp Optical body, method for manufacturing the same, window member, fixture and sunlight blocking device
JP2013182141A (en) * 2012-03-02 2013-09-12 Mitsubishi Paper Mills Ltd See-through transmitting type screen
WO2014009663A1 (en) * 2012-07-13 2014-01-16 Saint-Gobain Glass France Transparent element with diffuse reflection, comprising a sol-gel layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156690A (en) * 2003-11-21 2005-06-16 Dainippon Printing Co Ltd Projection screen and projection system having it
WO2006016556A1 (en) * 2004-08-10 2006-02-16 Kimoto Co., Ltd. Transmission screen
JP2008112040A (en) * 2006-10-31 2008-05-15 Teijin Dupont Films Japan Ltd Film for highly transparent reflection screen
JP2011164311A (en) * 2010-02-08 2011-08-25 Sony Corp Optical body, method for manufacturing the same, window member, fixture and sunlight blocking device
JP2013182141A (en) * 2012-03-02 2013-09-12 Mitsubishi Paper Mills Ltd See-through transmitting type screen
WO2014009663A1 (en) * 2012-07-13 2014-01-16 Saint-Gobain Glass France Transparent element with diffuse reflection, comprising a sol-gel layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227901A (en) * 2016-06-21 2017-12-28 日華化学株式会社 Reflective screen, reflective screen sheet, and video image display system using the same
JP2018045137A (en) * 2016-09-15 2018-03-22 Jxtgエネルギー株式会社 Laminate that can project video and video projection system including the same
WO2019039163A1 (en) * 2017-08-25 2019-02-28 セントラル硝子株式会社 Transparent screen and display system

Also Published As

Publication number Publication date
JP6707462B2 (en) 2020-06-10
JPWO2016088701A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
US10222521B2 (en) Sheet-form transparent molding, transparent screen comprising same, and image projection device comprising same
JP6563383B2 (en) Film for transparent screen, method for producing the same, and transparent screen provided with the same
JP5752834B1 (en) Film for transparent screen, method for producing the same, and transparent screen provided with the same
WO2016093181A1 (en) Transparent sheet, transparent screen comprising same, and image projector including same
JP6069596B1 (en) Transparent laminate, transparent screen including the same, and image projection apparatus including the same
JP6199530B1 (en) Reflective transparent screen and image projection apparatus having the same
JP6133522B1 (en) Transparent screen and video projection system having the same
JP6147932B2 (en) Transparent film, transparent screen including the same, and image projection apparatus including the same
JP6266844B2 (en) Sheet-like transparent laminate, transparent screen including the same, and video projection system including the same
WO2016208514A1 (en) Sheet-like transparent molded body, transparent screen equipped with same, and image projection system equipped with same
JP2017015824A (en) Sheet-like transparent laminate, transparent screen having the same, and image projection device having the same
WO2016190137A1 (en) Transparent layered body, transparent screen provided with same, and image projection system provided with same
JP6707462B2 (en) Transparent laminate, reflective screen including the same, and image projection apparatus including the same
JP2017026759A (en) Screen and image projection device having the same
JP2018045137A (en) Laminate that can project video and video projection system including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866126

Country of ref document: EP

Kind code of ref document: A1