WO2009098930A1 - 撮像レンズ系及びこれを用いた撮像装置 - Google Patents
撮像レンズ系及びこれを用いた撮像装置 Download PDFInfo
- Publication number
- WO2009098930A1 WO2009098930A1 PCT/JP2009/050690 JP2009050690W WO2009098930A1 WO 2009098930 A1 WO2009098930 A1 WO 2009098930A1 JP 2009050690 W JP2009050690 W JP 2009050690W WO 2009098930 A1 WO2009098930 A1 WO 2009098930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens system
- liquid
- imaging
- imaging lens
- conductive liquid
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/02—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having one + component only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/003—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0075—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
- G02B26/005—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/09—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/115—Electrowetting
Definitions
- the present invention relates to an imaging lens system having an automatic focusing function and an imaging apparatus using the same.
- Non-Patent Document 1 As an electrowetting device utilizing the electrowetting phenomenon, a variable focus lens device using a liquid lens has been announced by Varioptic in France and Philips in The Netherlands (see, for example, Non-Patent Document 1).
- an imaging lens system having a configuration having an automatic focusing function using a liquid lens has been proposed (for example, see Patent Documents 1 and 2).
- a lens of four groups is configured, and a liquid lens is used as a lens of the first group on the object side.
- a lens configuration of three groups is used, and a liquid lens is also used for the lens of the first group.
- the imaging lens system is configured with a smaller number of lenses to achieve miniaturization.
- the purpose is
- the imaging lens system according to the present invention has a first lens group and a second lens group in order from the object side, and the first lens group is provided with an insulating liquid according to an applied voltage. It has a liquid lens system in which the radius of curvature of the interface with the conductive liquid changes. The center of curvature of the interface between the insulating liquid and the conductive liquid in the liquid lens system is on the side of the conductive liquid when the object distance is infinite.
- the liquid lens system preferably has a configuration in which a light transmitting substrate, an insulating liquid, a conductive liquid, and a light transmitting substrate are disposed in order from the object side.
- An imaging apparatus is configured to use the above-described imaging lens system. That is, it has an imaging lens system, a stop, and an imaging unit, and the imaging lens system has a first lens group and a second lens group in order from the object side, and an applied voltage is applied to the first lens group.
- the radius of curvature of the interface between the insulating liquid and the conductive liquid changes.
- the center of curvature of the interface between the insulating liquid and the conductive liquid in the liquid lens system is on the side of the conductive liquid when the object distance is infinite.
- the imaging lens system and the imaging apparatus using the same have the first lens group and the second lens group in order from the object side, and the first lens group responds to the applied voltage. It has a liquid lens system in which the radius of curvature of the interface between the insulating liquid and the conductive liquid changes. As described above, with the configuration of the lens system of two groups, the total number of lenses can be reduced as compared with the conventional imaging lens system using a liquid lens, and downsizing can be achieved.
- the chromatic aberration correction is suppressed by providing the conductive liquid on the side of the conductive liquid.
- the liquid lens system will be described later by arranging the light transmitting substrate, the insulating liquid, the conductive liquid, and the light transmitting substrate in this order from the object side.
- spherical aberration, astigmatism and distortion can be sufficiently suppressed practically. Therefore, an imaging lens system and an imaging device with good characteristics can be provided.
- the number of lenses can be reduced and the size can be reduced.
- FIG. 1 is a schematic configuration diagram of an imaging lens system according to a first embodiment of the present invention.
- FIGS. 7A to 7C are diagrams showing spherical aberration, astigmatism and distortion in the first to third states of the imaging lens system according to the first embodiment of the present invention.
- FIGS. It is a schematic block diagram of the imaging lens system which concerns on the 2nd Embodiment of this invention.
- FIGS. 7A to 7C are diagrams showing spherical aberration, astigmatism and distortion in the first to third states of the imaging lens system according to the second embodiment of the present invention.
- FIGS. 7A to 7C are diagrams showing spherical aberration, astigmatism and distortion in the first to third states of the imaging lens system according to the third embodiment of the present invention.
- FIGS. It is a schematic block diagram of the imaging lens system which concerns on the 4th Embodiment of this invention.
- FIGS. 7A to 7C are diagrams showing spherical aberration, astigmatism and distortion in the first to third states of the imaging lens system according to the fourth embodiment of the present invention.
- FIG. 1 shows a schematic configuration diagram of an imaging lens system according to an embodiment of the present invention and an imaging apparatus using the imaging lens system.
- the imaging lens system 50 in the imaging apparatus 100 is composed of a first lens group 1 and a second lens group 2, and a variable focus lens by a liquid lens system is used as the first lens group 1.
- the second lens group 2 can be configured of one lens.
- the light transmitting substrate 11 is disposed in the opening on the object side of the container 10, and the light transmitting substrate 14 is disposed in the opening on the opposite side. Is kept liquid tight.
- the shape of the container 10 may be a rotationally symmetric shape with respect to the optical axis C, such as a cylindrical shape or a shape in which the top of a conical portion is cut off, and in the illustrated example, the conical top is The case where it is set as the shape cut off in the perpendicular surface is shown. Then, in the container 10, the insulating liquid 12 and the conductive liquid 13 are accommodated in order from the object side.
- An insulating material can be used as the container 10, and a transparent resin such as glass or plastic can be used as the light transmitting substrates 11 and 14.
- a transparent resin such as glass or plastic
- the opening on the object side can function as the stop S.
- the insulating liquid 12 and the conductive liquid 13 are both materials having optical transparency, different refractive indexes, and the same density (specific gravity).
- the insulating liquid 12 for example, various oils such as silicone oil can be used, and as the conductive liquid 13, an aqueous solution having no solubility in oil, for example, brine can be used.
- the first electrode 15 is formed conically in this case from the inner wall of the container 10 to the opening on the object side.
- the terminal part leading to the is formed.
- a second electrode 16 is formed which has a terminal portion that comes in contact with the conductive liquid 13 inside and leads out to the outside.
- the end of the first electrode 15 extending to the inner wall of the container 10 is disposed to be separated from the image-side opening, and is formed to be separated from the second electrode 16.
- a dielectric film 17 and a water repellent film 18 are provided on the surface of the first electrode 15 in the container 10.
- the imaging unit 51 is disposed on the image side of the imaging lens system 50.
- a CCD Charge Coupled Device
- CMOS complementary metal oxide semiconductor
- a voltage application unit 54 for applying a voltage is provided to constitute the imaging device 100.
- variable-focus lens using such an electrowetting phenomenon has the advantage that no current flows except when it is essentially discharged, and power consumption is extremely small. Further, since there is no mechanically movable part, there is also an advantage that the life is long as compared with the conventional variable focus lens in which the lens is moved by a motor or the like. Furthermore, since the motor is not required, space saving can be achieved, and the autofocus mechanism can be provided with a simple configuration.
- the refractive index and Abbe number of the insulating liquid are n1 and ⁇ 1, and the refractive index and Abbe number of the conductive liquid are Assuming n2 and 22, in general, n1> n2 11 ⁇ 2 It becomes. Therefore, the interface of the two liquids has positive power and positive chromatic aberration if it is convex with respect to the insulating liquid whose refractive index is n1, and has negative power and negative chromatic aberration if it is concave.
- the correction of the chromatic aberration is likely to be insufficient as the entire optical system of the imaging device, so it may be desirable that the interface between the two liquids be concave with respect to the insulating liquid. Therefore, in the first lens group 1 configured of a liquid lens system, the light transmitting substrate 11, the insulating liquid 12, the conductive liquid 13, and the light transmitting substrate 14 are arranged in this order from the object side The curvature of the two-liquid interface is preferably concave with respect to the insulating liquid 12.
- the imaging lens system 50 when the center of curvature of the interface between the insulating liquid 12 and the conductive liquid 13 in the first lens group 1 has an object distance of To be present on the side of the With such a configuration, the curvature of the interface between the two liquids becomes concave with respect to the insulating liquid at least when the object distance is infinite, and the chromatic aberration correction insufficiency of the entire imaging lens system 50 can be suppressed. .
- the first lens group 1 has a positive power (refractive power)
- the second lens group 2 has a negative power (refractive power).
- the focal length of the imaging lens system 50 is f
- the F number is Fno
- the angle of view is 2 ⁇ ( ⁇ is a half angle of view) when used as the imaging lens system 50 of the imaging device 100 described in FIG.
- the light transmitting substrate 11 of the first lens group 1, the insulating liquid 12, the conductive liquid 13, the light transmitting substrate 14, and the respective entrance and exit surfaces of the second lens group 2 The first to seventh surfaces S1 to S7 are respectively from the side.
- parts corresponding to FIG. 1 are given the same reference numerals and redundant description will be omitted.
- the refractive index of the d-line (wavelength 587.56 nm) in the above medium, and the Abbe number of the d-line and the like are similarly shown in Table 1 below.
- the second surface S2 is configured to double as the aperture S by the edge of the container 10 described in FIG.
- Equation 1 The aspheric surface coefficients of the first, second and fourth to seventh surfaces S1, S2 and S4 to S7 are shown in Table 2 below, where the aspheric surface equation is represented by the following equation 1.
- Z is the distance in the optical axis direction from the lens surface when the traveling direction of light is positive
- h is the height in the direction perpendicular to the optical axis
- R is the radius of curvature
- k is the conical constant
- a and B respectively indicate fourth and sixth order aspheric coefficients.
- spherical aberration, astigmatism and distortion when the object distance is 600 mm, 120 mm and 50 mm are respectively shown in FIGS. 3A to 3C.
- the spherical aberration at the C-line of wavelength 656.2700 nm as the alternate long and short dash line a the spherical aberration at the d-line of wavelength 587.5600 nm as the solid line b
- the spherical aberration in F line is shown, respectively. From the results of FIGS.
- the practical imaging lens system 50 in which the aberration is sufficiently suppressed can be configured by the two groups of lenses. Therefore, the imaging device 100 using the imaging lens system 50 can be miniaturized.
- the entrance and exit surfaces of the first lens group 1 and the second lens group 2 are respectively referred to as first to seventh surfaces S1 to S7 from the object side.
- first to seventh surfaces S1 to S7 parts corresponding to FIG. 1 are given the same reference numerals and redundant description will be omitted.
- the radius of curvature in the first to seventh surfaces S1 to S7, the surface separation on the optical axis, the refractive index of the d-line in the medium between the surfaces, and the Abbe number of the d-line are similarly shown in Table 4 below.
- the second surface S2 doubles as the aperture S by the edge of the container 10 shown in FIG.
- FIGS. 5A to 5C spherical aberration, astigmatism and distortion when the object distance is 600 mm, 120 mm and 50 mm are shown in FIGS. 5A to 5C, respectively. From the results of FIGS. 5A to 5C, it can be seen that also in this case, spherical aberration, astigmatism and distortion can be sufficiently suppressed practically for each object distance. In addition, it is understood that the difference in spherical aberration with respect to light of each wavelength is sufficiently small, and the chromatic aberration is sufficiently suppressed. Therefore, also in the second embodiment, the practical imaging lens system 50 in which the aberration is sufficiently suppressed can be configured by the two lens groups. Therefore, the imaging device 100 using the imaging lens system 50 can be miniaturized.
- the entrance and exit surfaces of the first lens group 1 and the second lens group 2 are respectively referred to as first to seventh surfaces S1 to S7 from the object side.
- first to seventh surfaces S1 to S7 parts corresponding to FIG.
- the radius of curvature in the first to seventh surfaces S1 to S7, the surface separation on the optical axis, the refractive index of the d-line in the medium between the surfaces, and the Abbe number of the d-line are similarly shown in Table 7 below.
- the second surface S2 doubles as the aperture S by the edge of the container 10 shown in FIG.
- the spherical aberration, the astigmatism and the distortion when the object distance is 600 mm, 120 mm and 50 mm are respectively shown in FIGS. 7A to 7C. From the results of FIGS. 7A to 7C, it can be seen that also in this case, spherical aberration, astigmatism and distortion can be sufficiently suppressed practically for each object distance. In addition, it is understood that the difference in spherical aberration with respect to light of each wavelength is sufficiently small, and the chromatic aberration can be suppressed. Therefore, also in the third embodiment, the practical imaging lens system 50 in which the aberration is sufficiently suppressed can be configured by the two lens groups. Therefore, the imaging device 100 using the imaging lens system 50 can be miniaturized.
- the entrance and exit surfaces of the first lens group 1 and the second lens group 2 are respectively referred to as first to seventh surfaces S1 to S7 from the object side.
- first to seventh surfaces S1 to S7 parts corresponding to FIG. 1 are given the same reference numerals and redundant description will be omitted.
- the radius of curvature in the first to seventh surfaces S1 to S7, the surface separation on the optical axis, the refractive index of the d-line in the medium between the surfaces, and the Abbe number of the d-line are similarly shown in Table 10 below.
- the second surface S2 doubles as the aperture S by the edge of the container 10 shown in FIG.
- FIGS. 9A to 9C spherical aberration, astigmatism and distortion when the object distance is 600 mm, 120 mm and 50 mm are shown in FIGS. 9A to 9C, respectively. From the results of FIGS. 9A to 9C, it can be seen that also in this case, spherical aberration, astigmatism, and distortion can be sufficiently suppressed practically for each object distance. In addition, it is understood that the difference in spherical aberration with respect to light of each wavelength is sufficiently small, and the chromatic aberration can be suppressed. Therefore, also in the fourth embodiment, the practical imaging lens system 50 in which the aberration is sufficiently suppressed can be configured by the two lens groups. Therefore, the imaging device 100 using the imaging lens system 50 can be miniaturized.
- the present invention it is possible to provide an imaging lens system having an automatic focusing function using a liquid lens and an imaging apparatus using the same with only two lens groups.
- the center of curvature of the interface between the insulating liquid and the conductive liquid in the liquid lens system used for the first lens group on the object side exists on the conductive liquid side.
- the curvature of the interface between the two liquids becomes concave with respect to the insulating liquid, and it is possible to suppress the insufficient chromatic aberration correction of the entire imaging lens system.
- the liquid lens system is configured such that the light transmitting substrate, the insulating liquid, the conductive liquid, and the light transmitting substrate are disposed in order from the object side. As described above, the aberration can be sufficiently suppressed in practical use.
- the stop by configuring the stop to be disposed on the object side of the interface position between the insulating liquid and the conductive liquid in the liquid lens system, it is possible to realize a configuration that sufficiently suppresses aberration as well.
- the stop as the liquid lens system container, the structure can be simplified and the size can be reduced.
- First lens group 2. Second lens group, 10. A container, 11. A light transmitting substrate, 12. Insulating liquid, 13. Conductive liquid, 14. A light transmitting substrate, 15. First electrode, 16. Second electrode, 17. 18. dielectric film Water repellent film, 50. 51. Imaging lens system An imaging unit, 52. Signal conversion unit, 53. Control unit, 54. Voltage application unit, 100. Imaging device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
特許文献1に提案されている撮像レンズ系においては、4群のレンズを構成して、その物体側の第1群のレンズに液体レンズを用いている。
また、特許文献2に提案されている撮像レンズ系においては、3群のレンズ構成としており、やはり第1群のレンズに液体レンズを用いている。
更に、本発明の撮像レンズ系において、液体レンズ系を、物体側から順に光透過性基体、絶縁性液体、導電性液体、光透過性基体が配置されて成る構成とすることによって、後述するように、球面収差、非点収差及び歪曲収差を実用上十分に抑制することができる。したがって、特性の良好な撮像レンズ系及び撮像装置を提供することができる。
本発明の実施の形態に係る撮像レンズ系及びこれを用いた撮像装置の概略構成図を図1に示す。この撮像装置100における撮像レンズ系50は、第1のレンズ群1及び第2のレンズ群2より構成され、第1のレンズ群1として液体レンズ系による可変焦点レンズが用いられる。第2のレンズ群2としては、例えば両面が非球面とされるレンズを用いる場合は、1枚のレンズで構成することが可能である。
一方、第1及び第2の電極15及び16の間に電圧印加部54によって電圧を印加すると、容器10の内壁面において、導電性液体13の「ぬれ性」が向上したかのようになり(この現象をエレクトロウエッティングという)、接触角が小さくなる。すなわち、絶縁性液体12及び導電性液体13の界面はその曲率半径が大となるように変化して、より平坦面に近い球面となる。
したがって、絶縁性液体12及び導電性液体13の間の屈折率差と界面曲率によりレンズ効果があり、且つ電圧を印加するとこのようにエレクトロウエッティングにより液体界面曲率が変化するため、その焦点距離が変化する。
n1>n2
ν1<ν2
となる。よって、2液体の界面は、屈折率がn1である絶縁性液体に対して凸であれば正のパワー及び正の色収差を有し、凹であれば負のパワー及び負の色収差を有する。
したがって、液体レンズ系より構成される第1のレンズ群1においては、物体側から光透過性基体11、絶縁性液体12、導電性液体13、光透過性基体14の順に配置する構成とする場合、2液体界面の曲率は絶縁性液体12に対して凹であることが好ましい。
先ず、第1の実施形態として適用可能な具体的なレンズ構造の数値例について説明する。この例においては、図1において説明した撮像装置100の撮像レンズ系50として用いる場合で、撮像レンズ系50の焦点距離をf、FナンバーをFno、画角を2ω(ωは半画角)とすると、
f=3.7mm
Fno=2.7
2ω=63°
である。
図3A~Cの結果から、この場合各物体距離に対して球面収差、非点収差、歪曲収差を実用上十分に抑制できることが分かる。各波長の光に対する球面収差の差も十分小さく、色収差も抑えられることが分かる。
したがって、第1の実施の形態においては、2群のレンズによって収差を十分抑えた実用的な撮像レンズ系50を構成できる。このため、この撮像レンズ系50を用いた撮像装置100の小型化を図ることができる。
次に、第2の実施形態として適用可能な具体的なレンズ構造の数値例について説明する。この場合も、図1に示す撮像装置100の撮像レンズ系50として用いる場合で、撮像レンズ系50の焦点距離をf、FナンバーをFno、画角を2ω(ωは半画角)とすると、
f=3.7mm
Fno=2.7
2ω=63°
である。
図5A~Cの結果から、この場合においても、各物体距離に対して球面収差、非点収差、歪曲収差を実用上十分に抑制できることが分かる。また各波長の光に対する球面収差の差も十分小さく、色収差も十分に抑えられることが分かる。
したがって、第2の実施の形態においても、2群のレンズにて収差を十分抑えた実用的な撮像レンズ系50を構成できる。このため、この撮像レンズ系50を用いた撮像装置100の小型化を図ることができる。
次に、第3の実施形態として適用可能な具体的なレンズ構造の数値例について説明する。この例においても、図1に示す撮像装置100の撮像レンズ系50として用いる場合で、撮像レンズ系50の焦点距離をf、FナンバーをFno、画角を2ω(ωは半画角)とすると、
f=3.7mm
Fno=2.7
2ω=63°
である。
図7A~Cの結果から、この場合においても、各物体距離に対して球面収差、非点収差、歪曲収差を実用上十分に抑制できることが分かる。また各波長の光に対する球面収差の差も十分小さく、色収差も抑えられることが分かる。
したがって、第3の実施の形態においても、2群のレンズにて収差を十分抑えた実用的な撮像レンズ系50を構成できる。このため、この撮像レンズ系50を用いた撮像装置100の小型化を図ることができる。
次に、第4の実施形態として適用可能な具体的なレンズ構造の数値例について説明する。この例においても、図1に示す撮像装置100の撮像レンズ系50として用いる場合で、撮像レンズ系50の焦点距離をf、FナンバーをFno、画角を2ω(ωは半画角)とすると、
f=3.7mm
Fno=2.7
2ω=63°
である。
図9A~Cの結果から、この場合においても、各物体距離に対して球面収差、非点収差、歪曲収差を実用上十分に抑制できることが分かる。また各波長の光に対する球面収差の差も十分小さく、色収差も抑えられることが分かる。
したがって、第4の実施の形態においても、2群のレンズにて収差を十分抑えた実用的な撮像レンズ系50を構成できる。このため、この撮像レンズ系50を用いた撮像装置100の小型化を図ることができる。
本発明においては、物体距離が無限大の場合において、物体側の第1のレンズ群に用いる液体レンズ系中の絶縁性液体と導電性液体との界面の曲率中心が導電性液体側に存在するように構成する。このような構成とすることで、少なくとも物体距離が無限大の場合に、2液体の界面の曲率が絶縁性液体に対して凹となり、撮像レンズ系全体の色収差補正不足を抑制することができる。
Claims (6)
- 物体側から順に第1のレンズ群及び第2のレンズ群を有し、
前記第1のレンズ群に、印加電圧に応じて絶縁性液体と導電性液体との界面の曲率半径が変化する液体レンズ系を有し、
前記液体レンズ系の前記絶縁性液体と前記導電性液体との界面の曲率中心が、物体距離を無限大としたときに、前記導電性液体側に存在する
撮像レンズ系。 - 請求項1記載の撮像レンズ系において、
前記液体レンズ系は、物体側から順に光透過性基体、前記絶縁性液体、前記導電性液体、光透過性基体が配置されて成る撮像レンズ系。 - 請求項1記載の撮像レンズ系において、
前記液体レンズ系の前記絶縁性液体と前記導電性液体との界面位置よりも物体側に、絞りが配置される撮像レンズ系。 - 請求項3記載の撮像レンズ系において、
前記絞りが、前記液体レンズ系の容器と兼用されて成る撮像レンズ系。 - 撮像レンズ系と、絞りと、撮像部とを有し、
前記撮像レンズ系は、
物体側から順に第1のレンズ群及び第2のレンズ群を有し、
前記第1のレンズ群に、印加電圧に応じて絶縁性液体と導電性液体との界面の曲率半径が変化する液体レンズ系を有し、
前記液体レンズ系の前記絶縁性液体と前記導電性液体との界面の曲率中心が、物体距離を無限大としたときに、前記導電性液体側に存在する
撮像装置。 - 請求項5記載の撮像装置において、
前記撮像レンズ系の前記液体レンズ系は、物体側から順に光透過性基体、前記絶縁性液体、前記導電性液体、光透過性基体が配置されて成る撮像装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09707403A EP2239611A4 (en) | 2008-02-04 | 2009-01-19 | IMAGE CAPTURE LENS SYSTEM AND IMAGE CAPTURE DEVICE USING THE SAME |
CN2009801016786A CN101910904A (zh) | 2008-02-04 | 2009-01-19 | 摄像透镜系统和使用该摄像透镜系统的摄像装置 |
US12/811,442 US20100284091A1 (en) | 2008-02-04 | 2009-01-19 | Image picking-up lens system and image picking-up device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-024216 | 2008-02-04 | ||
JP2008024216A JP2009186595A (ja) | 2008-02-04 | 2008-02-04 | 撮像レンズ系及びこれを用いた撮像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098930A1 true WO2009098930A1 (ja) | 2009-08-13 |
Family
ID=40952008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050690 WO2009098930A1 (ja) | 2008-02-04 | 2009-01-19 | 撮像レンズ系及びこれを用いた撮像装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100284091A1 (ja) |
EP (1) | EP2239611A4 (ja) |
JP (1) | JP2009186595A (ja) |
KR (1) | KR20100116580A (ja) |
CN (1) | CN101910904A (ja) |
TW (1) | TW200944861A (ja) |
WO (1) | WO2009098930A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012005922A1 (en) * | 2010-06-29 | 2012-01-12 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
US8687280B2 (en) | 2010-09-29 | 2014-04-01 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens including meniscus wall with microchannels |
US9182521B2 (en) | 2010-05-14 | 2015-11-10 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens including variable voltage zones |
AU2015201131B2 (en) * | 2010-06-29 | 2016-05-19 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
US10520753B2 (en) | 2010-09-27 | 2019-12-31 | Johnson & Johnson Vision Care, Inc. | Lens with multi-segmented linear meniscus wall |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186595A (ja) * | 2008-02-04 | 2009-08-20 | Sony Corp | 撮像レンズ系及びこれを用いた撮像装置 |
CN102272653B (zh) * | 2008-12-30 | 2015-06-17 | 得利捷扫描集团有限公司 | 液体透镜图像捕捉装置 |
US8634145B2 (en) * | 2010-07-29 | 2014-01-21 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens with concave torus-segment meniscus wall |
US8767308B2 (en) * | 2010-08-23 | 2014-07-01 | Johnson & Johnson Vision Care, Inc | Negative add liquid meniscus lens |
US8693104B2 (en) * | 2010-08-24 | 2014-04-08 | Johnson & Johnson Vision Care, Inc. | Lens with compound linear-convex meniscus wall |
US8867141B2 (en) * | 2011-03-18 | 2014-10-21 | Johnson & Johnson Vision Care, Inc. | Lens with multi-concave meniscus wall |
TWI424216B (zh) | 2011-06-28 | 2014-01-21 | Largan Precision Co | 光學影像鏡組 |
KR101939272B1 (ko) | 2013-01-07 | 2019-04-10 | 삼성전자주식회사 | 미소 전기 유체 방식의 개구 조절 장치 |
CN118244394A (zh) * | 2016-08-09 | 2024-06-25 | 苹果公司 | 具有光学致动器的透镜系统 |
KR102702928B1 (ko) | 2017-01-06 | 2024-09-05 | 엘지이노텍 주식회사 | 액체 렌즈 및 이를 포함하는 카메라 모듈 및 광학기기 |
US11226541B2 (en) | 2017-01-13 | 2022-01-18 | Lg Innotek Co., Ltd. | Method for applying driving voltage for liquid lens, camera module, and optical instrument including the module |
US11194221B2 (en) * | 2017-01-24 | 2021-12-07 | Lg Innotek Co., Ltd. | Liquid lens, liquid lens module including the lens, camera module including the same, and method for controlling the lens |
KR20180088204A (ko) * | 2017-01-26 | 2018-08-03 | 엘지이노텍 주식회사 | 액체렌즈 및 이를 포함하는 카메라 모듈 및 광학기기 |
KR102376689B1 (ko) * | 2017-03-07 | 2022-03-21 | 엘지이노텍 주식회사 | 액체 렌즈를 포함하는 카메라 모듈 및 광학 기기 |
TWI634359B (zh) * | 2017-03-24 | 2018-09-01 | 大立光電股份有限公司 | 取像系統鏡片組、取像裝置及電子裝置 |
KR102322843B1 (ko) * | 2017-03-30 | 2021-11-08 | 엘지이노텍 주식회사 | 액체 렌즈를 포함하는 카메라 모듈 |
KR102607336B1 (ko) | 2018-05-23 | 2023-11-29 | 엘지이노텍 주식회사 | 액체 렌즈 모듈 |
CN112526707A (zh) * | 2019-09-18 | 2021-03-19 | 华为技术有限公司 | 镜头模组及电子设备 |
CN111812801A (zh) * | 2020-07-07 | 2020-10-23 | 深圳明利尔科技有限公司 | 一种液态透镜定焦系统、液态镜头及电子设备 |
CN115469387B (zh) * | 2021-06-11 | 2024-07-23 | 宁波舜宇光电信息有限公司 | 变焦透镜、镜头组件以及摄像模组 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038480A1 (en) * | 2002-10-25 | 2004-05-06 | Koninklijke Philips Electronics N.V. | Zoom lens |
JP2005084387A (ja) | 2003-09-09 | 2005-03-31 | Konica Minolta Opto Inc | 撮影レンズ及び撮像装置 |
JP2006072295A (ja) | 2004-09-01 | 2006-03-16 | Samsung Electro-Mechanics Co Ltd | カメラモジュールの自動焦点調節光学系 |
JP2006154517A (ja) * | 2004-11-30 | 2006-06-15 | Seiko Precision Inc | 撮像レンズおよびこれを備えた撮像モジュール |
JP2007156277A (ja) * | 2005-12-07 | 2007-06-21 | Kyocera Corp | 撮像レンズ、光学モジュール、および携帯端末 |
JP2007272232A (ja) * | 2006-03-30 | 2007-10-18 | Samsung Electro-Mechanics Co Ltd | カメラモジュールの自動焦点調節光学系 |
JP2008003576A (ja) * | 2007-05-11 | 2008-01-10 | Olympus Corp | 光学装置又は撮像装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060129323A (ko) * | 2004-01-30 | 2006-12-15 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 가변 렌즈계 |
WO2005088354A1 (en) * | 2004-03-09 | 2005-09-22 | Koninklijke Philips Electronics N.V. | Variable optical element comprising immiscible fluids |
JP2009186595A (ja) * | 2008-02-04 | 2009-08-20 | Sony Corp | 撮像レンズ系及びこれを用いた撮像装置 |
JP2009186596A (ja) * | 2008-02-04 | 2009-08-20 | Sony Corp | 撮像レンズ系及びこれを用いた撮像装置 |
-
2008
- 2008-02-04 JP JP2008024216A patent/JP2009186595A/ja active Pending
-
2009
- 2009-01-16 TW TW098101699A patent/TW200944861A/zh unknown
- 2009-01-19 WO PCT/JP2009/050690 patent/WO2009098930A1/ja active Application Filing
- 2009-01-19 US US12/811,442 patent/US20100284091A1/en not_active Abandoned
- 2009-01-19 EP EP09707403A patent/EP2239611A4/en not_active Withdrawn
- 2009-01-19 CN CN2009801016786A patent/CN101910904A/zh active Pending
- 2009-01-19 KR KR1020107014625A patent/KR20100116580A/ko not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038480A1 (en) * | 2002-10-25 | 2004-05-06 | Koninklijke Philips Electronics N.V. | Zoom lens |
JP2005084387A (ja) | 2003-09-09 | 2005-03-31 | Konica Minolta Opto Inc | 撮影レンズ及び撮像装置 |
JP2006072295A (ja) | 2004-09-01 | 2006-03-16 | Samsung Electro-Mechanics Co Ltd | カメラモジュールの自動焦点調節光学系 |
JP2006154517A (ja) * | 2004-11-30 | 2006-06-15 | Seiko Precision Inc | 撮像レンズおよびこれを備えた撮像モジュール |
JP2007156277A (ja) * | 2005-12-07 | 2007-06-21 | Kyocera Corp | 撮像レンズ、光学モジュール、および携帯端末 |
JP2007272232A (ja) * | 2006-03-30 | 2007-10-18 | Samsung Electro-Mechanics Co Ltd | カメラモジュールの自動焦点調節光学系 |
JP2008003576A (ja) * | 2007-05-11 | 2008-01-10 | Olympus Corp | 光学装置又は撮像装置 |
Non-Patent Citations (2)
Title |
---|
S. KUIPER ET AL.: "Variable-focus liquid lens for miniature cameras", APPLIED PHYSICS LETTERS, vol. 85, no. 7, 16 August 2004 (2004-08-16), pages 1128 - 1130 |
See also references of EP2239611A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182521B2 (en) | 2010-05-14 | 2015-11-10 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens including variable voltage zones |
WO2012005922A1 (en) * | 2010-06-29 | 2012-01-12 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
JP2013538361A (ja) * | 2010-06-29 | 2013-10-10 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | 円錐台メニスカス壁を備えるレンズ |
US8743467B2 (en) | 2010-06-29 | 2014-06-03 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
AU2011276724B2 (en) * | 2010-06-29 | 2015-01-29 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
AU2015201131B2 (en) * | 2010-06-29 | 2016-05-19 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
AU2015201132B2 (en) * | 2010-06-29 | 2016-05-19 | Johnson & Johnson Vision Care, Inc. | Lens with conical frustum meniscus wall |
US10520753B2 (en) | 2010-09-27 | 2019-12-31 | Johnson & Johnson Vision Care, Inc. | Lens with multi-segmented linear meniscus wall |
US8687280B2 (en) | 2010-09-29 | 2014-04-01 | Johnson & Johnson Vision Care, Inc. | Liquid meniscus lens including meniscus wall with microchannels |
Also Published As
Publication number | Publication date |
---|---|
EP2239611A1 (en) | 2010-10-13 |
JP2009186595A (ja) | 2009-08-20 |
EP2239611A4 (en) | 2011-04-27 |
TW200944861A (en) | 2009-11-01 |
CN101910904A (zh) | 2010-12-08 |
KR20100116580A (ko) | 2010-11-01 |
US20100284091A1 (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009098930A1 (ja) | 撮像レンズ系及びこれを用いた撮像装置 | |
WO2009098932A1 (ja) | 撮像レンズ系及びこれを用いた撮像装置 | |
US7443598B2 (en) | Variable focal length lens | |
CN100362386C (zh) | 具有聚焦功能的摄影光学系统 | |
KR101558139B1 (ko) | 촬영 렌즈 광학계 | |
WO2014118865A1 (ja) | インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム | |
US20090185281A1 (en) | Zoom optical system, and camera and device therewith | |
JP4393465B2 (ja) | インナーフォーカス方式ズームレンズシステム | |
WO2016047112A1 (ja) | レンズ系、及び撮像装置 | |
JP2008275831A (ja) | 撮像レンズ | |
JP4655462B2 (ja) | 撮影レンズ及び撮像装置 | |
JP2013047753A (ja) | レンズユニット及び撮像装置 | |
JP2014002182A (ja) | 赤外線用ズームレンズおよび撮像装置 | |
JP5362528B2 (ja) | 2焦点レンズ、ならびに、これを用いたカメラモジュール、および携帯情報機器 | |
TW202246830A (zh) | 光學系統及包括該光學系統之相機模組 | |
CN116034305A (zh) | 光学系统 | |
CN104991330B (zh) | 一种新型摄影镜头 | |
JP5067589B2 (ja) | 撮影レンズ及び撮像装置 | |
KR102500891B1 (ko) | 촬상 광학계 | |
JP2017097185A (ja) | アレイレンズシステム | |
JP2021196574A (ja) | ズームレンズ及び撮像装置 | |
JP2021196572A (ja) | ズームレンズ及び撮像装置 | |
JP2021196573A (ja) | ズームレンズ及び撮像装置 | |
JP6090654B2 (ja) | ズームレンズ、撮像装置および情報装置 | |
TW202238208A (zh) | 光學系統及具有該光學系統之攝影機模組 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980101678.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09707403 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009707403 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107014625 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12811442 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |