WO2009098873A1 - 殺菌水及びその生成方法並びにその生成装置 - Google Patents

殺菌水及びその生成方法並びにその生成装置 Download PDF

Info

Publication number
WO2009098873A1
WO2009098873A1 PCT/JP2009/000432 JP2009000432W WO2009098873A1 WO 2009098873 A1 WO2009098873 A1 WO 2009098873A1 JP 2009000432 W JP2009000432 W JP 2009000432W WO 2009098873 A1 WO2009098873 A1 WO 2009098873A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ppm
stock solution
instead
chlorine concentration
Prior art date
Application number
PCT/JP2009/000432
Other languages
English (en)
French (fr)
Inventor
Munenori Noguchi
Kazuyasu Fukura
Original Assignee
Noguchi Dental Medical Research Institute
Aoiengineering Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Dental Medical Research Institute, Aoiengineering Inc. filed Critical Noguchi Dental Medical Research Institute
Priority to JP2009551456A priority Critical patent/JPWO2009098873A1/ja
Publication of WO2009098873A1 publication Critical patent/WO2009098873A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Definitions

  • the present invention relates to sterilized water used mainly in an environment where safety, health or hygiene of the human body is required, a method for generating the same, and a device for generating the same.
  • alcohol-based disinfectants such as ethanol and isopropanol
  • iodo-based disinfectants such as iodine tincture and povidone iodine have been widely used from the past, including biological disinfection.
  • benzethonium chloride benzalkonium chloride, cetylpyridinium chloride (CPC) and the like are known as surfactant fungicides, and in particular, CPC is widely used as a component of toothpaste and troche.
  • CPC cetylpyridinium chloride
  • phthalal and peracetic acid which are aldehyde-based disinfectants, are mainly used for medical instruments such as endoscopes and dialysis machines.
  • sodium hypochlorite NaClO, sodium hypochlorite
  • HCVO hypochlorous acid
  • Patent Document 10 a sterilizing water for periodontal disease treatment using a high concentration of hypochlorous acid capable of killing bacteria as a bactericidal component, and is able to kill periodontal pathogens. This was confirmed by a clinical trial (Patent Document 10).
  • the above invention is characterized in that tap water is passed through a reverse osmosis membrane and electrolyzed by adding only sodium chloride to the passing water.
  • carbon dioxide present in the air dissolves in the solvent. Since it becomes weakly acidic, it also has the effect that it is not necessary to add acid such as hydrochloric acid or acetic acid. Even if the effective chlorine concentration is about several hundred ppm, it produces tasteless and odorless sterilized water. Can do.
  • the biofilm formed in the periodontal pocket is preliminarily destroyed with an ultrasonic scaler or laser, and then the periodontal pathogen is sterilized with the sterilizing water.
  • the efficiency of the destruction of the biofilm is reduced because the part to be sterilized is expanded.
  • nosocomial infections that have become a problem in recent years, simultaneous and extensive sterilization is required.
  • the present invention has been made in consideration of the above-mentioned circumstances, and has a function of destroying a biofilm, so that sterilized water that can surely kill pathogenic bacteria even if the sterilization target is wide and
  • An object of the present invention is to provide a generation method and a generation apparatus thereof.
  • the sterilized water according to the present invention has an effective chlorine concentration of 1 to 700 ppm, a pH of 6 to 8, and contains hypochlorous acid and sodium hydrogen carbonate, and the oral cavity of the human body. All the parts except for are applicable.
  • the method for producing sterilizing water according to the present invention includes a step of preparing an aqueous solution to which sodium chloride and carbon dioxide have been added to form a stock solution as described in claim 6, and the stock solution has an effective chlorine concentration of 1 And electrolysis so that hypochlorite and sodium hydrogen carbonate are generated so that the pH is 6 to 8, and all parts except the oral cavity of the human body are to be applied. To do.
  • the stock solution of sterilized water according to the present invention is a stock solution of sterilized water to which all parts except the oral cavity of the human body are applied as described in claim 18, wherein sodium chloride and carbon dioxide are added.
  • the effective chlorine concentration is 1 to 700 ppm
  • the pH is 6 to 8
  • hypochlorous acid and sodium hydrogen carbonate are generated.
  • the sterilizing water generating apparatus is an apparatus for generating sterilizing water for all parts except the oral cavity of a human body as described in claim 23, wherein sodium chloride and carbon dioxide are used.
  • An undiluted solution tank storing the added undiluted solution; and an electrolytic cell connected to the undiluted solution tank for electrolyzing the undiluted solution.
  • the electrolytic cell electrolyzes the undiluted solution so that an effective chlorine concentration is 1 to It is 700 ppm, has a pH of 6-8, and produces sterilized water containing hypochlorous acid and sodium hydrogen carbonate.
  • the biofilm is physically destroyed with an ultrasonic scaler or laser, and in the clinical setting of dental caries treatment, fine powder of sodium hydrogen carbonate and water are compressed air.
  • the biofilm formed on the tooth surface was physically removed by a tooth surface cleaning method for spraying on the tooth surface.
  • the biofilm can be formed at any place as long as there is a rigid scaffold to which bacteria can adhere.
  • Medical materials such as catheters and stents placed in blood vessels serve as scaffolds, and biofilms are formed on the inner surfaces of pipes and tubes at sites outside the body, and chronic infections continue to progress on the patient side. At the same time, it causes nosocomial infections in the environment surrounding the patient.
  • the applicant of the present invention uses an aqueous solution to which sodium chloride (NaCl) and carbon dioxide are added as a stock solution.
  • the stock solution has an effective chlorine concentration of 1 to 700 ppm and a pH of 6 to 6%. If sterilizing water is produced by electrolysis so that the amount of water becomes 8, not only hypochlorous acid (HClO) but also sodium hydrogen carbonate (NaHCO 3 ) can be newly generated and contained at a high concentration.
  • the sterilizing water according to the present invention all parts except the inside of the oral cavity are sterilized, and as a living body part, for example, a wound made on the skin becomes a sterilizing target.
  • the instrument is subject to sterilization.
  • Targets to be sterilized with the sterilized water according to the present invention are pathogens mainly causing infectious diseases, including Gram-positive bacteria and Gram-negative bacteria, fungi such as yeast and filamentous fungi, and acid-fast bacteria such as tuberculosis , Viruses such as HIV and HBV, and spores.
  • Gram-positive bacteria include staphylococci (Genus Staphylococcus), especially Staphylococcus aureus, especially methicillin-resistant Staphylococcus aureus (methicillin-resistant) that is resistant to methicillin and oxacillin as a pathogen caused by nosocomial infection.
  • Staphylococcus aureus MRSA
  • methicillin-sensitive phyStaphylococcus aureus MSSA
  • Gram-negative bacteria include Pseudomonas aeruginosa and Escherichia coli as pathogens caused by nosocomial infections.
  • forced dissolution of carbon dioxide means that the solubility of carbon dioxide is higher than the concentration at which it can be dissolved naturally (the solubility under the partial pressure of carbon dioxide present in the atmosphere).
  • the stock solution may be prepared by any of the following methods (a) to (d). In any of these methods, hydrochloric acid, acetic acid or other carbonic acid is used. Do not add any acid except. Therefore, the main solution composition condition is the amount of sodium chloride added.
  • the water that is a component of the stock solution in (a) and (c) can use well water, tap water, etc., and it is not necessary to use pure water.
  • the pH was between 6-8, it is less than pH 6, with there is a concern of the metal corrosion in an acidic environment, H 2 CO 3, HCO 3 - and CO 3 2- in the HCO at concentrations fraction 3 - This is because it is difficult to produce sodium hydrogen carbonate that can destroy the biofilm because the abundance ratio of H2O is low, and when it exceeds pH 8, the abundance ratio of HClO in the concentration fractions of Cl 2 , HClO and ClO ⁇ decreases. This is because it becomes difficult to produce hypochlorous acid having a high concentration sufficient to sterilize bacteria.
  • 300-400 species of bacteria in a biofilm proliferate in a parasitic manner while maintaining a certain balance to form a bacterial flora (so).
  • a bacterial flora a change in the bacterial flora called a fungal change phenomenon occurs. That is, when some pathogenic bacteria survive without being sterilized, a fungus replacement phenomenon occurs, and the remaining bacteria rapidly grow. In order to prevent this situation, all the bacteria that live in the biofilm must be killed.
  • the effective chlorine concentration is 201 ppm or more. Furthermore, even in the pH range where the abundance ratio of hypochlorous acid is low, that is, in the vicinity of pH 8, the concentration of hypochlorous acid that can sterilize or lyse pathogenic bacteria is set. 500 ppm is particularly desirable to ensure sufficient.
  • the reason why the concentration is set to 700 ppm or less is that a concentration exceeding 700 ppm is unnecessary to achieve the above-described purpose.
  • the sterilizing water generator 51 includes a stock solution tank 3 that stores a stock solution 52, a stroke pump 4 that is connected to the stock solution tank, and a stroke pump that is connected to the stroke pump.
  • the installation position of the dilution water tank 8 is relatively positioned with respect to the tip position of the discharge pipe 6 so as to be equal to or lower than the water level of the water 57.
  • the stock solution 52 is prepared by any of the methods described below, but no acid other than hydrochloric acid, acetic acid or other carbonic acid is added in any of the methods.
  • the dilution water 57 may be well water, tap water, pure water or any other water, but the pH is appropriately selected so that the pH of the produced sterilizing water is in the above-described range.
  • the generation apparatus 51 further includes a deaeration module 11 in which the water injection side is communicated with the secondary generation water 60 obtained by diluting the primary generation water with the dilution water 57 in the dilution water tank 8.
  • the deaeration module is adapted to remove dissolved oxygen in the secondary product water 60 by decompression by the vacuum pump 12, and sterilize the tertiary product water from which the dissolved oxygen has been removed from the secondary product water 60.
  • tubes used for the generating device 51 or the electromagnetic valve provided as necessary may be deteriorated by oxidation with high-concentration hypochlorous acid (HClO), so that it is desirable to form with fluorine.
  • HlO high-concentration hypochlorous acid
  • the effective chlorine concentration is 201 to 700 ppm, preferably 300 to 700 ppm, more preferably 400 to 700 ppm, and the pH is 6
  • the electrolysis operating conditions for example, voltage value and current value
  • dilution conditions dilution ratio and pH of diluted water
  • Sodium chloride is added, for example, 2 to 5% by mass.
  • the method for temporarily increasing the solubility of carbon dioxide can be further classified into either a method by blowing carbon dioxide or a method by adding dry ice.
  • temporary means that the partial pressure of carbon dioxide in contact with the solvent is equal to the partial pressure of carbon dioxide present in the atmosphere.
  • carbon dioxide is mixed at atmospheric pressure, Even when forced press-fitting is performed, the solubility of carbon dioxide decreases with time due to pressure equilibrium with the partial pressure of carbon dioxide contained in the air. In this case, it is necessary to perform electrolytic treatment promptly before the solubility of carbon dioxide decreases.
  • the water is passed through a reverse osmosis membrane, pure water or distilled water is used as a solvent, and the solvent is sealed in an airtight tank.
  • a method in which carbon dioxide is injected or carbon dioxide gas is blown into a solvent in an airtight tank or dry ice is added to the solvent can be employed.
  • the forced dissolution of carbon dioxide is made by selecting one of the methods shown below.
  • (a-1) Tap water is passed through a reverse osmosis membrane, sodium chloride is added to the passing water, and carbon dioxide is blown into the passing water at the same time or before and after the sodium chloride addition step. Force to dissolve.
  • (a-2) By passing tap water through a reverse osmosis membrane and adding sodium chloride to the passing water, and adding dry ice simultaneously with or before and after the sodium chloride adding step, carbon dioxide is passed through the passing water. Forcibly dissolve.
  • (b-1) While adding sodium chloride to pure water or distilled water, carbon dioxide is forcibly dissolved by blowing carbon dioxide at the same time as or before and after the sodium chloride addition step.
  • (b-2) Sodium chloride is added to pure water or distilled water, and carbon dioxide is forcibly dissolved by adding dry ice simultaneously with or before and after the sodium chloride addition step.
  • (c) By passing water through a reverse osmosis membrane and adding sodium chloride to the passing water, the partial pressure of carbon dioxide in the atmosphere is increased by making the partial pressure of carbon dioxide in contact with the passing water higher than the partial pressure in the atmosphere. Carbon dioxide is dissolved in the passing water with a solubility higher than that in (d) Solubility at atmospheric carbon dioxide partial pressure by adding sodium chloride to pure water or distilled water and making the partial pressure of carbon dioxide in contact with pure water or distilled water higher than the partial pressure in the atmosphere Carbon dioxide is dissolved in the passing water with higher solubility.
  • the water that passes through the reverse osmosis membrane may be of any property, but it is purified to some extent in the sense of reducing the burden on the reverse osmosis membrane and the water purifier using it, or reducing the amount of waste water as much as possible.
  • Water is desirable.
  • ground water, tap water, or commercially available mineral water (commercial water) can be used.
  • tap water is used as the water that passes through the reverse osmosis membrane.
  • the stock solution 52 is weighed in an amount corresponding to one batch of sterilized water and stored in the stock solution tank 3, and diluted water 57 corresponding to one batch of sterilized water is also added.
  • the dilution water tank 8 Stored in the dilution water tank 8.
  • the amount of the dilution water 57 corresponding to one batch of sterilizing water may be appropriately determined according to the dilution rate and the pH of the dilution water.
  • the stock solution 52 is sent to the electrolytic cell 5 by the stroke pump 4, and the electrolytic cell 5 is operated under predetermined operating conditions to electrolyze the stock solution 52.
  • the primary generated water generated in the electrolytic cell 5 is injected into the diluted water 57 previously stored in the diluted water tank 8 through the discharge pipe 6 connected to the electrolytic cell.
  • the installation position of the dilution water tank 8 is relatively positioned so that the tip position of the discharge pipe 6 is equal to or lower than the water level of the dilution water 57 stored in the dilution water tank 8.
  • the primary product water is injected into the dilution water 57 through the discharge pipe 6 without coming into contact with air (outside air).
  • the primary product water is injected into the diluting water 57 weighed in advance in a so-called batch system, the primary product water is diluted with the dilution water unlike conventional mixing in the pipe. 57 is mixed homogeneously.
  • the secondary product water 60 is passed through the degassing module 11 to generate tertiary product water from which dissolved gas, particularly dissolved oxygen is removed, and this is stored in the tertiary product water tank 14 as sterilizing water 63. To do.
  • sterilization sites include dishwashing, hand washing, food production lines, medical facilities, etc., but all sites except the oral cavity are subject to sterilization in vivo and all sites in vitro.
  • sterilization sites when applied to a medical device, it is possible to prevent hospital infection or sterilize pathogenic bacteria resulting from hospital infection.
  • the medical devices are critical devices inserted into sterile tissues and blood vessels, semi-critical devices that contact mucous membranes or unhealthy skin, and healthy skin. Is classified into three categories: non-critical items that do not contact the mucous membrane (device classification by Spalding).
  • the sterilizing water 63 according to this embodiment can be applied to any of these, but critical instruments that require sterilization, such as surgical instruments, circulators, urinary catheters, Semi-critical devices that are applied to implantable devices, needles, etc. or require high-level disinfection, eg respiratory therapy devices, anesthesia devices, flexible endoscopes
  • a laryngoscope, endotracheal intubation tube, thermometer, etc. By applying to a laryngoscope, endotracheal intubation tube, thermometer, etc., it becomes possible to prevent nosocomial infections or to sterilize pathogenic bacteria caused by nosocomial infections.
  • the sterilizing water 63 according to the present embodiment is hypochlorous acid having a pH of 6 to 8 and a sterilizing component also generated in the human body, it may enter the human body through blood vessels. It is useful to use in an environment, and can be used, for example, for sterilization of a wounded part of a human body.
  • an aqueous solution in which sodium chloride is added and carbon dioxide is forcibly dissolved is used as a stock solution. Since the electrolysis was performed so that the concentration was 201 to 700 ppm, desirably 300 to 700 ppm, more desirably 400 to 700 ppm, and the pH was 6 to 8, a high concentration sodium bicarbonate sufficient to destroy the biofilm, It becomes possible to generate both hypochlorous acid and a high concentration enough to kill pathogenic bacteria, and without using a removal means such as a laser or an ultrasonic scaler to destroy the biofilm in advance, Various pathogens can be completely sterilized within seconds to tens of seconds. Therefore, it is possible to efficiently sterilize a wide range of sites, which is a particularly effective means for preventing nosocomial infections and sterilizing pathogenic bacteria that cause the infection.
  • Fig. 2 is a graph showing the existing abundance ratio of available chlorine (extracted from "Water Purification Technology", published by Gihodo Publishing Co., Ltd.). As can be seen from the figure, conventionally, the abundance ratio of hypochlorous acid was drastically lowered at pH 7 or higher, and the abundance ratio was 20% at pH 8.
  • hypochlorous acid can kill bacteria with sufficient sterilizing power in a pH range of 7 to 8, which has not been attracting attention in the past, and the abundance ratio in this pH range.
  • This is a synergistic effect with the biofilm destruction action of sodium hydrogen carbonate, which has a high industrial effect that bacteria in the biofilm can be killed without removing the biofilm in advance.
  • the killing of the bacteria by the sterilizing water leads to a so-called lysis state in which the cell wall is broken and the internal protein is denatured, and there is no risk that resistant bacteria appear.
  • hypochlorous acid coexists with sodium hydrogen carbonate, so that the pH changes to acid and chlorine gas is generated or changes to alkali. It is possible to prevent a situation in which the existing ratio of hypochlorous acid (HClO) is lowered. That is, even if acid or alkali is added to the sterilizing water 63 according to the present embodiment, sodium hydrogen carbonate exerts a buffering action, so that the sterilizing water 63 according to the present embodiment maintains pH 6-8. The risk of chlorine gas generation and the problem of metal corrosion can be greatly improved.
  • the diluting water tank 8 is configured so that the tip position of the discharge pipe 6 is equal to or lower than the water level of the diluting water 57 stored in the diluting water tank 8. Since the installation position is relatively positioned, the primary generated water is injected into the dilution water 57 in a non-contact state with air (outside air), and thus the mixing ratio of the stock solution 52 and the operation of the electrolytic cell 5 Even if chlorine gas is generated due to the condition being different from the design value, the chlorine gas is changed into hypochlorous acid in diluted water 57 whose pH environment is close to neutral. At the same time, there is no concern of volatilization in the air as chlorine gas.
  • the primary product water generated in the electrolytic cell 5 is poured into the dilution water 57 measured in advance in a batch system, it is possible to perform homogeneous mixing unlike conventional mixing in piping. It becomes possible to adjust the pH of the secondary product water 60 and the effective chlorine concentration contained therein as designed values.
  • generation apparatus 51 of the sterilization water which concern on this embodiment, since dissolved gas was removed from the secondary production
  • the dissolved gas in the secondary product water 60 is removed using the degassing module 11, but there is a concern that a foaming phenomenon may occur because the concentration of the dissolved gas in the secondary product water 60 is low. If not, the step of removing the dissolved gas may be omitted. In such a case, the secondary generated water 60 is sterilized water.
  • FIG. 3 is a diagram showing a generating device 51a used when the dissolved gas removal step is omitted, and the degassing module 11, the vacuum pump 12, and the tertiary generated water tank 14 are omitted from the generating device 21.
  • the stock solution 52 and the dilution water 57 corresponding to one batch of the sterilizing water are weighed and stored in the stock solution tank 3 and the dilution water tank 8 in advance. If the stock solution 52 in an amount larger than one batch of sterilized water, for example, an amount corresponding to several batches, is stored in the stock solution tank 3 in advance, the amount of the stock solution 52 corresponding to one batch of sterilized water is determined. What is necessary is just to provide the water level measurement means for measuring each time. Such a water level measuring means can be appropriately constituted by, for example, an ultrasonic sensor or an electrode type sensor.
  • the stock solution is electrolyzed and then diluted to produce sterilized water (post-dilution).
  • the stock solution is diluted, and then the diluted water is used. It may be possible to obtain sterilized water by electrolysis (pre-dilution).
  • the dilution water tank 8 is omitted, and instead, a diluted stock solution tank for storing the diluted stock solution is separately provided between the stock solution tank 3 and the electrolytic cell 5. That's fine.
  • the diluted stock solution was electrolyzed in an electrolytic cell to obtain sterilized water.
  • an electrolytic cell an electrolytic cell of a sterilizing water generator sold by Sakai Engineering Co., Ltd. under the trade name “Perfect Perio” (registered trademark of Noguchi Dental Medical Laboratory Co., Ltd.) was used.
  • the sterilizing water according to the present invention has a part other than the oral cavity of the human body as a sterilizing part, but it is difficult to sterilize and is inactivated by organic matter because it inhabits the periodontal pocket. If a periodontal pathogen that is easily affected is a test target, its bactericidal properties can be verified more objectively. Therefore, the bactericidal properties against periodontal pathogens and carious pathogens are described below.
  • a clinical test for periodontal pathogens was conducted. In conducting the test, the sterilizing water is injected into the periodontal pocket, then the probe is inserted into the bottom of the periodontal pocket without touching the saliva, and plaque adhered to the root surface is collected.
  • Table 2 shows the test results using the sterilizing water according to the present invention. As can be seen from the table, it was found that when the sterilizing water according to the present invention was used, all patients became safe after treatment and caries pathogenic bacteria could be lysed. This is probably because the biofilm destruction action by sodium hydrogen carbonate and the bactericidal action by hypochlorous acid synergized, and caries pathogens could be killed.
  • Test solution A By adding 5% (w / v) of dry ice to distilled water at atmospheric pressure and at room temperature, carbon dioxide constituting the dry ice is dissolved in the distilled water (saturated carbonated water). 0.6% (w / v) was dissolved.
  • Test solution B Saturated carbonated water, which is an intermediate product of test solution A, was diluted 5-fold with distilled water, and then 0.6% (w / v) of sodium chloride was dissolved.
  • Test solution C Saturated carbonated water, which is an intermediate product of the test solution A, was diluted 10 times with distilled water, and then 0.6% (w / v) of sodium chloride was dissolved.
  • Test solution D By exposing distilled water to the atmosphere under atmospheric pressure and room temperature, carbon dioxide in the air was dissolved in the distilled water, and then 0.6% (w / v) of sodium chloride was dissolved. 2) Test method 4 L of the above stock solution was put into a non-membrane type electrolytic cell, and electrolysis was performed with a direct current of 2.8 A.

Abstract

 バイオフィルムを破壊する作用を併せ持たせることで、殺菌対象が広範であっても病原菌を確実に死滅させる。  本発明に係る殺菌水の生成装置51は、原液52を貯留する原液タンク3と、該原液タンクに連通接続されたストロークポンプ4と、該ストロークポンプに連通接続された電解槽5と、該電解槽に連通接続された吐出管6と、希釈水57が貯留された希釈水タンク8とを備えるとともに、吐出管6の先端が希釈水タンク8に貯留された希釈水57の水位以下となるように、吐出管6の先端位置に対する希釈水タンク8の設置位置を相対的に位置決めしてある。原液52は、(a-1)~(d)に示す方法のいずれかを選択して作製する。

Description

殺菌水及びその生成方法並びにその生成装置
 本発明は、主として人体の安全、健康又は衛生の確保が必要な環境で使用される殺菌水及びその生成方法並びにその生成装置に関する。
 感染症をはじめとした様々な疾患の治療や予防を行うにあたり、その原因となる病原菌を殺菌することはきわめて重要であり、従来、病原菌の種類、適用部位、殺菌の程度などに応じて、さまざまな殺菌剤が開発されてきた。
 例えば、エタノール、イソプロパノールといったアルコール系殺菌剤や、ヨードチンキ、ポビドンヨードといったヨード系殺菌剤は、生体消毒を含めて、旧来から広く使用されてきた。
 また、塩化ベンゼトニウム、塩化ベンザルコニウム、塩化セチルピリジニウム(CPC)などが界面活性剤系の殺菌剤として知られており、とりわけCPCは、歯磨きやトローチの成分として広く使用されている。
 一方、アルデヒド系殺菌剤であるフタラールや過酢酸は、内視鏡や透析機器などの医療器具に主として使用されている。
 このような多種多様な殺菌剤の中で、次亜塩素酸ナトリウム(NaClO、次亜塩素酸ソーダ)は、次亜塩素酸(HClO)がその有効成分であって、従来から果実や野菜の消毒、食品の製造ラインの殺菌消毒、浴室等の消毒、プール水の消毒、漂白剤、下水処理後の排水の消毒などに広く使用されているとともに、HBVやHIVといったウィルスのみならず、芽胞に対しても一定の有効性が確認されている。
 一方、有効塩素(遊離残留塩素)は、pHによってその形態を大きく変化させることはよく知られており、pH7を越えると、殺菌力の強い次亜塩素酸の存在比率が急激に低下し、殺菌力の弱い次亜塩素酸イオン(ClO)に形態を変化させてしまう一方、強酸性側では塩素ガスに変わる。そのため、殺菌水のpHは、次亜塩素酸の存在比率が高いpH3~7に設定されるとともに(特許文献1~9)、有効塩素濃度は数十ppmに制限される場合が多い。
 しかし、この程度の有効塩素濃度では、たとえ次亜塩素酸の存在比が高いといえども、細菌を死滅させる、すなわち細菌の表面に存在する細胞膜を透過して細菌体内に含まれるタンパク質を変成させることはできない。
 かかる状況下、本出願人は、細菌を死滅させることが可能な高濃度の次亜塩素酸を殺菌成分とした歯周病治療用の殺菌水を開発し、歯周病原菌を死滅し得ることを臨床試験で確認した(特許文献10)。
 上記発明は、水道水を逆浸透膜に通し、その通過水に塩化ナトリウムのみを添加して電気分解することを特徴としており、かかる発明によれば、空気中に存在する二酸化炭素が溶媒に溶け込んで弱酸性となるため、塩酸や酢酸といった酸をわざわざ添加する必要がないという作用効果も奏するものであり、有効塩素濃度が数百ppm程度であっても、無味無臭の殺菌水を生成することができる。
特開平3-258392 特開平4-131184 特開平4-94788 特開平6-312189 特開平8-323365 特開平9-262587 特開平10-76270 特開平10-24294 特開2005-342702 国際公開2007-72697
 しかしながら、上記殺菌水を用いる場合であっても、例えば物理的除去手段を用いることにより、バイオフィルムを予め破壊しておく必要があった。すなわち、病原菌は、それらのほとんどが浮遊菌としてではなく、自らが産生した菌体外多糖からなるバイオフィルムで保護されながら、また、該バイオフィルムで人体内の生体防御機構や抗生剤を遮断しつつ、緩やかに増殖を続ける。
 そのため、歯科分野においては、歯周ポケット内に形成されているバイオフィルムを超音波スケーラやレーザーで予め破壊した後、上記殺菌水で歯周病原菌を殺菌しているが、人体の口腔を除く部位を殺菌する場合においては、殺菌対象となる部位が拡がる分、バイオフィルムの破壊は効率が悪くなる。
 とりわけ昨今問題となっている院内感染に対しては、同時かつ広範な殺菌が必要とされるところ、院内感染に起因する病原菌を殺菌できる程度に広い範囲にわたってバイオフィルムを破壊することは、現実的にはきわめて困難である。
 本発明は、上述した事情を考慮してなされたもので、バイオフィルムを破壊する作用を併せ持たせることで、殺菌対象が広範であっても病原菌を確実に死滅させることが可能な殺菌水及びその生成方法並びにその生成装置を提供することを目的とする。
 本発明に係る殺菌水は請求項1に記載したように、有効塩素濃度が1~700ppm、pHが6~8であって、次亜塩素酸及び炭酸水素ナトリウムを含んでなり、人体の口腔を除く全ての部位を適用対象とするものである。
 また、本発明に係る殺菌水の生成方法は請求項6に記載したように、塩化ナトリウム及び二酸化炭素が添加された水溶液を作製して原液とする工程と、該原液を、有効塩素濃度が1~700ppm、pHが6~8となるように、かつ次亜塩素酸及び炭酸水素ナトリウムが生成されるように電気分解する工程とを含んでなり、人体の口腔を除く全ての部位を適用対象とするものである。
 また、本発明に係る殺菌水の原液は請求項18に記載したように、人体の口腔を除く全ての部位を適用対象とする殺菌水の原液であって、塩化ナトリウム及び二酸化炭素が添加されてなり、電気分解によって、有効塩素濃度が1~700ppm、pHが6~8となるように、かつ次亜塩素酸及び炭酸水素ナトリウムが生成されるようになっているものである。
 また、本発明に係る殺菌水の生成装置は請求項23に記載したように、人体の口腔を除く全ての部位を適用対象とする殺菌水を生成する装置であって、塩化ナトリウム及び二酸化炭素が添加された原液を貯留する原液タンクと、該原液タンクに連通接続され前記原液を電気分解する電解槽とを備え、該電解槽は、前記原液を電気分解することによって、有効塩素濃度が1~700ppm、pHが6~8であって、かつ次亜塩素酸及び炭酸水素ナトリウムを含む殺菌水を生成するようになっているものである。
 従来技術の説明で述べたように、本出願人は、歯周病用の殺菌水を開発するにあたり、当初、井戸水や水道水に自然に溶け込んでいる二酸化炭素を利用して高濃度の次亜塩素酸(HClO)を含む殺菌水の生成に成功するとともに、歯周病原菌を死滅し得ることを臨床試験で確認した。
 しかしながら、高濃度の次亜塩素酸を生成することができたとしても、バイオフィルムを破壊することができなければ、殺菌水を病原菌に接触させることができないため、バイオフィルムを破壊する手段が別途必要になる。
 ここで、歯周病治療の臨床現場においては、超音波スケーラーやレーザーでバイオフィルムを物理的に破壊し、う蝕治療の臨床現場においては、炭酸水素ナトリウムの微粉末と水とを圧縮空気で歯の表面に吹き付ける歯面清掃方法で歯の表面に形成されているバイオフィルムを物理的に除去していた。
 一方、人体の口腔以外の部位であっても、バイオフィルムは、細菌が付着できる硬質な足場があれば、あらゆる場所で形成され得るものであって、口腔以外の生体部位では、例えば尿路や血管内に留置されるカテーテルやステントといった医療材料が足場となり、生体外の部位では、配管やチューブの内面が足場となって、バイオフィルムが形成され、患者側では慢性的な感染症が持続進行するとともに、患者を取り巻く環境においては院内感染の原因となる。
 そのため、口腔以外の部位では、広い範囲にわたって形成され分布しているバイオフィルムをいかにして破壊するかが大きな課題となっていた。
 本出願人は、バイオフィルムの破壊についてさらに研究を進めた結果、塩化ナトリウム(NaCl)及び二酸化炭素が添加された水溶液を原液とし、かかる原液を、有効塩素濃度が1~700ppm、pHが6~8となるように電気分解して殺菌水を作製すれば、次亜塩素酸(HClO)のみならず、炭酸水素ナトリウム(NaHCO3)も高濃度であらたに生成させ含有させることができるという新たな知見を得るとともに、試験を行った結果、細胞壁が非常に厚いために死滅させることが困難と考えられていたう蝕病原菌であっても、かつバイオフィルムで守られている環境下であっても、上記殺菌水を接触させるだけで数秒~数十秒程度以内に死滅させることが可能であることを確認した。
 これは、高濃度の炭酸水素ナトリウムがバイオフィルムを破壊し、その破壊されたバイオフィルム内の細菌を高濃度次亜塩素酸で死滅させるという、炭酸水素ナトリウムと次亜塩素酸との協働作用によって病原菌を完全殺菌することができることを意味するものであるとともに、超音波スケーラやレーザーによってバイオフィルムを除去する必要がないため、広範な部位をかつ短時間に殺菌することが可能となり、院内感染に起因する病原菌の殺菌には特に有効な手段となる。
 本発明に係る殺菌水は、口腔内を除くすべての部位が殺菌対象であって、生体部位としては、例えば皮膚にできた外傷が殺菌対象となり、生体以外の部位としては、例えば医療機器や医療器具が殺菌対象となる。
 本発明に係る殺菌水で殺菌される対象は、主として感染症の原因となる病原体であって、グラム陽性菌やグラム陰性菌をはじめ、酵母や糸状菌などの真菌、結核菌などの抗酸菌、HIVやHBVなどのウィルス及び芽胞が含まれる。ここで、グラム陽性菌には、ブドウ球菌(Genus Staphylococcus)、特に黄色ブドウ球菌(Staphylococcus aureus)、とりわけ院内感染に起因する病原体として、メチシリンやオキサシリンに耐性を持つメチシリン耐性黄色ブドウ球菌(methicillin-resistant Staphylococcus  aureus, MRSA)とメチシリン感受性黄色ブドウ球菌(methicillin-sensitive Staphylococcus aureus, MSSA)が含まれる。また、グラム陰性菌には、やはり院内感染に起因する病原体として緑膿菌や大腸菌が含まれる。
 有効塩素濃度が1~700ppm、pHが6~8となるように電気分解するためには、塩化ナトリウムを例えば2~5質量%添加するとともに、二酸化炭素についても、大気中に存在する二酸化炭素(380ppm、日本の大気中二酸化炭素の年平均濃度、「理科年表(第2版環境編)」から抜粋)による分圧で自然に溶け込む程度の量では全く足りず、強制溶解によって二酸化炭素の溶解度を高める必要がある。
 すなわち、本明細書において二酸化炭素の強制溶解とは、二酸化炭素の溶解度を、自然に溶解し得る濃度(大気中に存在する二酸化炭素の分圧下における溶解度)よりも高くすることを意味するものとする。ここで、二酸化炭素を強制溶解させる具体的な方法としては、原液を、下記(a)~(d)のいずれかの方法で作製すればよいが、いずれの方法においても、塩酸、酢酸その他炭酸を除く酸は一切添加しない。したがって、原液組成条件は、塩化ナトリウムの添加量が主たるパラメータとなる。
 (a)水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加し、該塩化ナトリウムの添加工程と同時に又はその前後に炭酸ガスを吹き込み、又はドライアイスを添加する。
 (b)純水又は蒸留水に塩化ナトリウムを添加し、該塩化ナトリウムの添加工程と同時に又はその前後に炭酸ガスを吹き込み、又はドライアイスを添加する。
  (c)水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加するとともに、通過水に接する二酸化炭素分圧を大気中の分圧よりも高くする。
  (d)純水又は蒸留水に塩化ナトリウムを添加するとともに、純水又は蒸留水に接する二酸化炭素分圧を大気中の分圧よりも高くする。
 ここで、(a)及び(c)において原液の構成要素である水は、井戸水、水道水などを使用することが可能であり、あえて純水を使用する必要はない。但し、電解槽の電極損傷や電極反応の低下を未然に防止するためには、カルシウムイオン、マグネシウムイオンなどを含まない純水を使用した方がよいことは言うまでもない。
 pHを6~8としたのは、pHが6未満では、酸性環境下での金属腐食の懸念があるとともに、H2CO3、HCO3 -及びCO3 2-の濃度分率におけるHCO3 -の存在比率が低くなって、バイオフィルムを破壊できるだけの炭酸水素ナトリウムを生成させることが困難だからであり、pH8を上回ると、Cl2、HClO及びClO-の濃度分率におけるHClOの存在比率が低下して、細菌を殺菌することができるだけの高濃度の次亜塩素酸を生成させることが困難になるからである。
 ここで、バイオフィルム内の細菌を死滅させるには、その周囲に存在するさまざまな有機物や他の菌体を酸化しても、なお十分な殺菌力を保持していることが必要であり、炭酸水素ナトリウムによる除去作用があったとしても、数十ppm程度の次亜塩素酸では殺菌力が低すぎる場合が少なくない。
 また、バイオフィルム内には300~400種の細菌が一定の均衡を維持しながら寄生的に繁殖して細菌叢(そう)を形成しているケースが多くが、これがなんらかの原因で他の菌と置換されたり、少数の菌が異常に増えたりすると、菌交代現象とよばれる細菌叢の変化が生じる。すなわち、一部の病原菌が殺菌されずに生き残ると、菌交代現象が発生し、残った細菌が急激に増殖する。このような事態を防止するためには、バイオフィルム内に棲息する細菌を全て死滅させなければならない。
 そのため、有効塩素濃度は201ppm以上であることが望ましく、さらに、次亜塩素酸の存在比率が低いpH範囲、すなわちpH8近傍であっても、病原菌を殺菌あるいは溶菌できるだけの次亜塩素酸の濃度を十分に確保するため、500ppmが特に望ましい。
 一方、700ppm以下としたのは、700ppmを上回る濃度は、上述した目的を達成するには不必要な濃度だからである。
本実施形態に係る殺菌水の生成装置を示した概略図。 次亜塩素酸の存在比を示したグラフ。 変形例に係る殺菌水の生成装置を示した概略図。
符号の説明
51             殺菌水の生成装置
52             原液
3              原液タンク
5              電解槽
6              吐出管
57             希釈水
8              希釈水タンク
11             脱気モジュール
14             3次生成水タンク
 以下、本発明に係る殺菌水の生成方法及び装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
 本実施形態に係る殺菌水の生成装置を図1に示す。
 同図でわかるように、本実施形態に係る殺菌水の生成装置51は、原液52を貯留する原液タンク3と、該原液タンクに連通接続されたストロークポンプ4と、該ストロークポンプに連通接続された電解槽5と、該電解槽に連通接続された吐出管6と、希釈水57が貯留された希釈水タンク8とを備えるとともに、吐出管6の先端が希釈水タンク8に貯留された希釈水57の水位以下となるように、吐出管6の先端位置に対する希釈水タンク8の設置位置を相対的に位置決めしてある。
 原液52は、後述するいずれかの方法で作製するが、いずれの方法においても、塩酸、酢酸その他炭酸を除く酸は一切添加されていない。
 希釈水57は、井戸水、水道水、純水その他任意の水を使用することができるが、生成される殺菌水のpHが上述した範囲になるようにpHを適宜選択する。
 本実施形態に係る生成装置51はさらに、1次生成水が希釈水タンク8内において希釈水57で希釈されてなる2次生成水60に注水側が連通された脱気モジュール11を備えており、該脱気モジュールは、真空ポンプ12による減圧によって2次生成水60の溶存酸素を除去するようになっているとともに、2次生成水60から溶存酸素が除去された3次生成水を殺菌水63として貯留する3次生成水タンク14を備えている。
 なお、生成装置51に用いるチューブ類あるいは必要に応じて適宜設ける電磁弁は、高濃度の次亜塩素酸(HClO)による酸化で劣化のおそれがあるため、フッ素で形成するのが望ましい。
 本実施形態に係る殺菌水の生成装置51を用いて殺菌水63を生成するには、有効塩素濃度が201~700ppm、望ましくは300~700ppm、さらに望ましくは400~700ppmであり、かつpHが6~8となるように、原液52の組成条件(主として塩化ナトリウムの添加量)、電気分解時の動作条件(例えば電圧値や電流値)及び希釈条件(希釈倍率や希釈水のpH)を定めるとともに、配合された原液52を原液タンク3に貯留する。
 塩化ナトリウムは例えば2~5質量%添加する。
 二酸化炭素の溶解度を高めるためには、逆浸透膜に通された通過水、純水又は蒸留水を溶媒とし、該溶媒中に二酸化炭素を強制的に混入させることで二酸化炭素の溶解度を一時的に高める方法と、溶媒に接している二酸化炭素の分圧を上げる方法と、溶媒の温度を下げる方法とが考えられるが、電解時に生じる熱によって水温が上昇することを考えた場合、二酸化炭素を強制的に混入させる方法か、二酸化炭素の分圧を上げる方法のいずれかを選択するのが望ましい。
 二酸化炭素の溶解度を一時的に高める方法としては、炭酸ガスの吹込みによる方法か、ドライアイスの添加による方法のいずれかにさらに分類することができる。ここで、一時的とは、溶媒に接している二酸化炭素の分圧が大気中に存在する二酸化炭素の分圧と等しいため、換言すれば、二酸化炭素の混入を大気圧下で行うため、一時的に強制圧入したとしても、空気に含まれる二酸化炭素の分圧との圧力平衡により、時間が経過するにしたがって、二酸化炭素の溶解度が減少する場合を指す。この場合、二酸化炭素の溶解度が低下しないうちに、速やかに電解処理を行う必要がある。
 二酸化炭素の分圧を上げることで二酸化炭素の溶解度を高める方法としては、逆浸透膜を通過した通過水、純水又は蒸留水を溶媒として該溶媒を気密タンクに封入し、その気中空間に二酸化炭素を圧入するか、気密タンク内の溶媒に炭酸ガスを吹き込み若しくは溶媒にドライアイスを添加する方法を採用することができる。
 この場合、所定の二酸化炭素分圧で二酸化炭素を溶媒に溶かすとともに、その分圧を維持したまま、原液52を電解槽5に送り込んで電気分解を行う必要があるため、二酸化炭素の分圧が低下しないよう、原液タンク3、ストロークポンプ4及び電解槽5を全体として気密に構成すればよい。
 以上まとめると、二酸化炭素の強制溶解は、以下に示す方法のいずれかを選択して作製する。
 (a-1) 水道水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加するとともに、該塩化ナトリウムの添加工程と同時又はその前後に炭酸ガスを吹き込むことで、二酸化炭素を通過水に強制的に溶解させる。
 (a-2) 水道水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加するとともに、該塩化ナトリウムの添加工程と同時又はその前後にドライアイスを添加することで、二酸化炭素を通過水に強制的に溶解させる。
 (b-1) 純水又は蒸留水に塩化ナトリウムを添加するとともに、該塩化ナトリウムの添加工程と同時又はその前後に炭酸ガスを吹き込むことで、二酸化炭素を強制的に溶解させる。
 (b-2) 純水又は蒸留水に塩化ナトリウムを添加するとともに、該塩化ナトリウムの添加工程と同時又はその前後にドライアイスを添加することで、二酸化炭素を強制的に溶解させる。
 (c) 水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加するとともに、通過水に接する二酸化炭素分圧を大気中の分圧よりも高くすることによって、大気中の二酸化炭素分圧での溶解度よりも高い溶解度で二酸化炭素を通過水に溶解させる。
 (d) 純水又は蒸留水に塩化ナトリウムを添加するとともに、純水又は蒸留水に接する二酸化炭素分圧を大気中の分圧よりも高くすることによって、大気中の二酸化炭素分圧での溶解度よりも高い溶解度で二酸化炭素を通過水に溶解させる。
 逆浸透膜に通す水は、どのような性状のものでもよいが、逆浸透膜やそれを使った浄水器の負担を軽減し、あるいは捨て水の量をなるべく少なくするという意味では、ある程度浄化された水が望ましい。例えば、地下水、水道水又は市販されているミネラルウォータ(市販水)を使用することができる。以下、本実施形態では、逆浸透膜に通す水として水道水を用いるものとする。
 水道水を逆浸透膜に通すことで原液52を作製する場合には、逆浸透膜を備えた浄水器がいくつかのメーカーから市販されているので、それらから適宜選択し利用すればよい。また、二酸化炭素の分圧が高い環境下で通過水、純水又は蒸留水に二酸化炭素を溶解させる場合には、従来公知の二酸化炭素溶解装置を適宜利用することができる。
 原液52を作製したならば、次に、かかる原液52を殺菌水1バッチ分に相当する量だけ計量し原液タンク3に貯留するとともに、同じく殺菌水1バッチ分に相当する量の希釈水57を希釈水タンク8に貯留する。殺菌水1バッチ分に相当する希釈水57の量は、希釈倍率や希釈水のpHに応じて適宜定めればよい。
 次に、原液52をストロークポンプ4で電解槽5に送り、定められた動作条件で電解槽5を動作させ、原液52を電気分解する。
 次に、電解槽5内で生成された1次生成水を、該電解槽に連通接続された吐出管6を介して、予め希釈水タンク8に貯留された希釈水57内に注入する。
 ここで、希釈水タンク8は、吐出管6の先端位置が希釈水タンク8の中に貯留された希釈水57の水位以下となるように、その設置位置を相対的に位置決めしてある。
 そのため、1次生成水は、空気(外気)と接触することなく、吐出管6を介して希釈水57内に注入される。また、1次生成水は、予め計量された希釈水57に注入されるいわばバッチ方式で注入されることになるため、従来のような配管内混合とは異なり、1次生成水は、希釈水57に均質に混合される。
 次に、2次生成水60を脱気モジュール11に通すことにより、溶存ガス、特に溶存酸素が除去された3次生成水を生成し、これを殺菌水63として3次生成水タンク14に貯留する。
 本実施形態に係る殺菌水63を用いて殺菌するには、対象となる細菌の棲息箇所に上記殺菌水を接触させるだけでよい。このようにするだけで、殺菌水に含まれる炭酸水素ナトリウムがバイオフィルムを破壊する一方、次亜塩素酸は、周囲に存在する有機物や他の菌体の酸化によって殺菌力を徐々に失いつつも、対象となる細菌を短時間にかつ確実に死滅させる。
 具体的な殺菌部位としては、食器洗浄、手洗い、食品製造ライン、医療施設等が該当するが、生体内では口腔内を除くすべての部位が、生体外ではすべての部位が殺菌対象となる。特に、医療器具に適用した場合、院内感染を未然に防止しあるいは院内感染に起因した病原菌を滅菌することが可能となる。
 医療器具は、人体への接触の度合いによって、無菌組織や血管に挿入されるクリティカル器具(critical items)と、粘膜又は健常でない皮膚に接触するセミクリティカル器具(semi-critical items)と、健常な皮膚とは接触するが粘膜とは接触しないノンクリティカル器具(non-critical items)の3つのカテゴリーに分類されている(Spauldingによる器具分類)。
 本実施形態に係る殺菌水63は、これらのいずれにも適用することができるが、滅菌(sterilization)が必要とされるクリティカル器具(critical items)、例えば手術用器具、循環器、尿路カテーテル、移植埋込み器具、針等に適用し、あるいは高水準消毒(high-level disinfection)が必要とされるセミクリティカル器具(semi-critical items)、例えば呼吸器系療法の器具、麻酔器具、軟性内視鏡、喉頭鏡、気管内挿管チューブ、体温計などに適用することで、院内感染を未然に防止しあるいは院内感染に起因した病原菌を滅菌することが可能となる。
 また、本実施形態に係る殺菌水63は、pHが6~8であって、かつ殺菌成分が人体内でも生成されている次亜塩素酸であるため、血管を通じて人体内に入る可能性がある環境で使用するのが有用であり、例えば、人体の外傷部の殺菌に用いることができる。
 以上説明したように、本実施形態に係る殺菌水の生成方法及び生成装置51によれば、塩化ナトリウムを添加するとともに二酸化炭素が強制的に溶解された水溶液を原液とし、該原液を、有効塩素濃度が201~700ppm、望ましくは300~700ppm、さらに望ましくは400~700ppm、pHが6~8となるように電気分解するようにしたので、バイオフィルムを破壊できるだけの高濃度の炭酸水素ナトリウムと、病原菌を死滅させることができるだけの高濃度の次亜塩素酸とを両方生成することが可能となり、従来のように、レーザーや超音波スケーラーといった除去手段を用いてバイオフィルムを予め破壊せずとも、さまざまな病原菌を数秒~数十秒で完全殺菌することができる。そのため、広範な部位を効率よく殺菌することが可能となり、院内感染の予防やその原因となる病原菌の殺菌に特に有効な手段となる。
 図2は、従来知られていた有効塩素の存在比を示したグラフである(「浄水の技術」、技報堂出版株式会社発行から抜粋)。同図でわかるように、従来においては、次亜塩素酸の存在比はpH7以上で急激に低下し、pH8では存在比が20%になるものと考えられていた。
 しかしながら、本出願人が臨床試験を行ったところ(詳細については後述)、pH6~8の範囲でう蝕病原菌を死滅させることが可能であるという結果を得た。う蝕病原菌については上述したように、その細胞壁を透過させて内部のタンパク質を変成させる、いわゆる溶菌は、歯科分野では、次亜塩素酸であっても難しいと考えられており、ましてや次亜塩素酸イオン(ClO-)ではう蝕病原菌の細胞壁を破壊することなど到底不可能であると認識されている。
 本実施形態に係る殺菌水63によれば、従来全く注目されてこなかったpH7~8の範囲において次亜塩素酸が十分な殺菌力をもって細菌を死滅させることができるとともに、かかるpH領域において存在比率が高い炭酸水素ナトリウムのバイオフィルム破壊作用との相乗効果で、バイオフィルムを予め除去せずとも、該バイオフィルム内の細菌を死滅させることができるという産業上顕著な効果を奏するものである。加えて、上記殺菌水による細菌の死滅は、細胞壁を壊して内部のタンパク質を変成させる、いわゆる溶菌の状態に至らしめるものであって、耐性菌が出現するリスクもない。
 また、本実施形態に係る殺菌水63によれば、次亜塩素酸(HClO)が炭酸水素ナトリウムと併存しているため、pHが酸性に変化して塩素ガスが発生したりアルカリに変化して次亜塩素酸(HClO)の存在比率が低下したりといった事態を未然に防止することが可能となる。すなわち、本実施形態に係る殺菌水63に万一、酸やアルカリが添加されたとしても、炭酸水素ナトリウムが緩衝作用を発揮するため、本実施形態に係る殺菌水63は、pH6~8を維持することが可能となり、塩素ガス発生のリスクや金属腐食の問題を大幅に改善することが可能となる。
 また、本実施形態に係る殺菌水の生成装置51によれば、吐出管6の先端位置が希釈水タンク8の中に貯留された希釈水57の水位以下となるように、希釈水タンク8の設置位置を相対的に位置決めしたので、1次生成水は、空気(外気)と非接触の状態で希釈水57内に注入されることとなり、かくして、原液52の配合比率や電解槽5の動作条件が設計値と異なり、それが原因で万一、塩素ガスが発生したとしても、該塩素ガスは、pH環境が中性に近い希釈水57の中でその形態が次亜塩素酸に変化するとともに、塩素ガスとして気中に揮散する懸念もなくなる。
 また、電解槽5内で生成された1次生成水は、予め計量された希釈水57内にバッチ方式で注入されるため、従来のような配管内混合とは違って均質な混合が可能となり、2次生成水60のpH及びそれに含まれる有効塩素濃度を設計値通りに合わせることが可能となる。
 また、本実施形態に係る殺菌水の生成方法及び生成装置51によれば、2次生成水60から溶存ガスを除去して3次生成水63を生成し、これを殺菌水としたので、生体に対して使用する場合においては、例えば傷口での発泡現象を未然に防止し、細菌を体内(血管内)に送り込むという事態を未然に防止することが可能となる。
 本実施形態では、2次生成水60中の溶存ガスを脱気モジュール11を用いて除去するようにしたが、2次生成水60中の溶存ガスの濃度が低いために発泡現象が起きる懸念がないのであれば、溶存ガスを除去する工程を省略してもかまわない。かかる場合には、2次生成水60がすなわち殺菌水となる。
 図3は、溶存ガスの除去工程を省略する際に用いる生成装置51aを示した図であり、脱気モジュール11、真空ポンプ12及び3次生成水タンク14を生成装置21から省略してある。
 また、本実施形態では、殺菌水1バッチ分に対応する量の原液52と希釈水57とを計量し、それぞれを原液タンク3と希釈水タンク8に予め貯留するようにしたが、これに代えて、殺菌水1バッチ分よりも多い量、例えば数バッチ分に対応する量の原液52を原液タンク3に予め貯留しておくのであれば、殺菌水1バッチ分に対応する原液52の量をそのつど計量するための水位計測手段を備えるようにすればよい。かかる水位計測手段は、例えば超音波センサや電極式センサ等で適宜構成することができる。
 また、本実施形態では、原液を電気分解した後、これを希釈して殺菌水を生成するようにしたが(後希釈)、これに代えて、原液を希釈し、しかる後、該希釈水を電気分解して殺菌水を得るようにしてもかまわない(前希釈)。なお、かかる変形例の場合においては、希釈水タンク8を省略し、これに代えて、希釈された原液を貯留するための希釈原液タンクを原液タンク3と電解槽5との間に別途備えればよい。
(殺菌水の生成)
 まず、逆浸透膜を備えた浄水器に水道水を注水し、次いで、逆浸透膜を通過した水に3質量%の塩化ナトリウムを添加するとともに、ドライアイスを添加して原液とし、次いで、この原液を5倍に希釈した(前希釈)。
 次に、希釈した原液を電解槽で電気分解して殺菌水とした。電解槽は、葵エンジニヤリング株式会社が「パーフェクトペリオ」(野口歯科医学研究所株式会社の登録商標)の商品名で販売している殺菌水生成装置の電解槽を用いた。
 以上のプロセスで電気分解を行ったところ、pH6.3~8の範囲内で有効塩素濃度が600~700ppmの殺菌水を生成することができた。なお、殺菌水中における有効塩素の濃度を測定するにあたっては、200ppmを越える濃度測定が可能な計器や試験紙あるいは試薬がなかったため、二倍希釈を二度繰り返すことで有効塩素濃度を計測した。
 また、500ppmの殺菌水の作用効果を確認するためのコントロール(標準試薬)として、同様な手順で40ppmの殺菌水も併せて作製した。
(殺菌水を用いた臨床試験の概要)
 本発明に係る殺菌水は、人体の口腔以外の部位を殺菌部位とするものではあるが、滅菌が困難であったう蝕病原菌や、歯周ポケット内に棲息するがゆえに有機物による不活性化の影響を受けやすい歯周病原菌を試験対象とすれば、その殺菌性をより客観的に検証することができる。そのため、以下、歯周病原菌とう蝕病原菌に対する殺菌性について説明する。
 まず、歯周病原菌に対する臨床試験を行った。試験を行うにあたっては、上記殺菌水を歯周ポケット内に注入する治療を行い、次いで、唾液に触れないようにして探針を歯周ポケット底部に挿入し、歯根面に付着したプラークを採取し、これをスライドガラスに載せて生理食塩水で懸濁した後、カバーガラスで覆い、これを3600倍の高解像度位相差顕微鏡で観察した。次に、その顕微鏡による観察によって殺菌できたかどうかを調べた。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 同表でわかるように、本発明に係る殺菌水によれば、すべての患者に対して歯周病原菌を溶菌できていることがわかる。
(殺菌水を用いた臨床試験の概要 ~う蝕病原菌~)
 次に、う蝕病原菌に対する臨床試験を行った。試験を行うにあたっては、上記殺菌水を口腔内に含んで10秒間、含嗽し、その後、唾液を採取して該唾液中のストレプトコッカス・ミュータンス(Streptococcus mutans)、ストレプトコッカス・ソブリナス(Streptococcus sobrinus)及びラクトバチラス(Lactobacilli)の菌体数(唾液1ml中当たり)を調べた。試験は、株式会社モリタから販売されている「シーエーティー21ファスト」(短時間う蝕活動性試験)を用いた。
 20分培養後(37゜C)と24時間培養後(37゜C)の2ケースを行い、菌体数を調べたところ、有効塩素濃度が40ppmである場合においては、20分培養後では102~103(安全域~注意域)、24時間培養後では105~106(危険域)であった。これらの試験結果から、有効塩素濃度が40ppm程度では、う蝕病原菌を十分に殺菌することができないことがわかった。
 次に、本発明に係る殺菌水を用いた試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 同表でわかるように、本発明に係る殺菌水を用いた場合、治療後においてすべての患者で安全域となり、う蝕病原菌を溶菌できることがわかった。これは、炭酸水素ナトリウムによるバイオフィルムの破壊作用と次亜塩素酸による殺菌作用とが相乗し、う蝕病原菌を死滅させることができたものと思われる。
(殺菌水の生成に関する実験その2)
1)原液
 原液として、以下の4つの試験溶液を準備した。
 試験溶液A;
 大気圧下かつ室温下で蒸留水にドライアイス5%(w/v)を添加することで、該蒸留水にドライアイスを構成する二酸化炭素を溶解させ(飽和炭酸水)、しかる後、塩化ナトリウムを0.6%(w/v)を溶解させた。
 試験溶液B;
 試験溶液Aの中間生成物である飽和炭酸水を蒸留水で5倍に希釈し、しかる後、塩化ナトリウムを0.6%(w/v)を溶解させた。
 試験溶液C;
 試験溶液Aの中間生成物である飽和炭酸水を蒸留水で10倍に希釈し、しかる後、塩化ナトリウムを0.6%(w/v)を溶解させた。
 試験溶液D;
 大気圧下かつ室温下で蒸留水を大気に曝露することで、該蒸留水に空気中の二酸化炭素を溶解させ、次いで、塩化ナトリウムを0.6%(w/v)を溶解させた。
2)試験方法
 無隔膜タイプの電解槽に上記原液を4L投入し、2.8Aの直流電流で電気分解を行った。
3)結果
 試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 同表でわかるように、飽和炭酸水を使った試験溶液A~試験溶液Cでは、pH範囲は、次亜塩素酸及び炭酸水素ナトリウムが十分な濃度で存在し得る6~8となった。それに対し、空気中の二酸化炭素を自然溶解させた試験溶液Dでは、pHが9.2となった。したがって、空気中の二酸化炭素を自然溶解させる方法では、次亜塩素酸及び炭酸水素ナトリウムの両方を十分な濃度で生成することは困難であろうと思われる。

Claims (27)

  1. 有効塩素濃度が1~700ppm、pHが6~8であって、次亜塩素酸及び炭酸水素ナトリウムを含んでなり、人体の口腔を除く全ての部位を適用対象とすることを特徴とする殺菌水。
  2. 有効塩素濃度を、前記1~700ppmに代えて、201~700ppmとした請求項1記載の殺菌水。
  3. 有効塩素濃度を、前記201~700ppmに代えて、400~700ppmとした請求項2記載の殺菌水。
  4. 有効塩素濃度を、前記201~700ppmに代えて、500~700ppmとした請求項2記載の殺菌水。
  5. pHを、前記6~8に代えて、7~8とした請求項1乃至請求項4のいずれか一記載の殺菌水。
  6. 塩化ナトリウム及び二酸化炭素が添加された水溶液を作製して原液とする工程と、該原液を、有効塩素濃度が1~700ppm、pHが6~8となるように、かつ次亜塩素酸及び炭酸水素ナトリウムが生成されるように電気分解する工程とを含んでなり、人体の口腔を除く全ての部位を適用対象とすることを特徴とする殺菌水の生成方法。
  7. 前記原液を、水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加し、該塩化ナトリウムの添加工程と同時に又はその前後に炭酸ガスを吹き込み又はドライアイスを添加することによって作製する請求項6記載の殺菌水の生成方法。
  8. 前記原液を、純水又は蒸留水に塩化ナトリウムを添加し、該塩化ナトリウムの添加工程と同時に又はその前後に炭酸ガスを吹き込み又はドライアイスを添加することによって作製する請求項6記載の殺菌水の生成方法。
  9. 前記原液を、水を逆浸透膜に通し、その通過水に塩化ナトリウムを添加するとともに、前記通過水に接する二酸化炭素分圧を大気中の分圧よりも高くすることによって作製する請求項6記載の殺菌水の生成方法。
  10. 前記原液を、純水又は蒸留水に塩化ナトリウムを添加するとともに、前記純水又は前記蒸留水に接する二酸化炭素分圧を大気中の分圧よりも高くすることによって作製する請求項6記載の殺菌水の生成方法。
  11. 有効塩素濃度を、前記1~700ppmに代えて、201~700ppmとした請求項6乃至請求項10のいずれか一記載の殺菌水の生成方法。
  12. 有効塩素濃度を、前記201~700ppmに代えて、400~700ppmとする請求項11記載の殺菌水の生成方法。
  13. 有効塩素濃度を、前記201~700ppmに代えて、500~700ppmとする請求項11記載の殺菌水の生成方法。
  14. pHを、前記6~8に代えて、7~8とした請求項6乃至請求項10のいずれか一記載の殺菌水の生成方法。
  15. pHを、前記6~8に代えて、7~8とした請求項11記載の殺菌水の生成方法。
  16. pHを、前記6~8に代えて、7~8とした請求項12記載の殺菌水の生成方法。
  17. pHを、前記6~8に代えて、7~8とした請求項13記載の殺菌水の生成方法。
  18. 人体の口腔を除く全ての部位を適用対象とする殺菌水の原液であって、塩化ナトリウム及び二酸化炭素が添加されてなり、電気分解によって、有効塩素濃度が1~700ppm、pHが6~8となるように、かつ次亜塩素酸及び炭酸水素ナトリウムが生成されるようになっていることを特徴とする殺菌水の原液。
  19. 有効塩素濃度を、前記1~700ppmに代えて、201~700ppmとした請求項18記載の殺菌水の原液。
  20. 有効塩素濃度を、前記201~700ppmに代えて、400~700ppmとした請求項19記載の殺菌水の原液。
  21. 有効塩素濃度を、前記201~700ppmに代えて、500~700ppmとした請求項19記載の殺菌水の原液。
  22. pHを、前記6~8に代えて、7~8とした請求項18乃至請求項21のいずれか一記載の殺菌水の原液。
  23. 人体の口腔を除く全ての部位を適用対象とする殺菌水を生成する装置であって、塩化ナトリウム及び二酸化炭素が添加された原液を貯留する原液タンクと、該原液タンクに連通接続され前記原液を電気分解する電解槽とを備え、該電解槽は、前記原液を電気分解することによって、有効塩素濃度が1~700ppm、pHが6~8であって、かつ次亜塩素酸及び炭酸水素ナトリウムを含む殺菌水を生成するようになっていることを特徴とする殺菌水の生成装置。
  24. 有効塩素濃度を、前記1~700ppmに代えて、201~700ppmとした請求項23記載の殺菌水の生成装置。
  25. 有効塩素濃度を、前記201~700ppmに代えて、400~700ppmとする請求項24記載の殺菌水の生成装置。
  26. 有効塩素濃度を、前記201~700ppmに代えて、500~700ppmとする請求項24記載の殺菌水の生成装置。
  27. pHを、前記6~8に代えて、7~8とした請求項23乃至請求項26のいずれか一記載の殺菌水の生成装置。
PCT/JP2009/000432 2008-02-08 2009-02-04 殺菌水及びその生成方法並びにその生成装置 WO2009098873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551456A JPWO2009098873A1 (ja) 2008-02-08 2009-02-04 殺菌水及びその生成方法並びにその生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-029805 2008-02-08
JP2008029805 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009098873A1 true WO2009098873A1 (ja) 2009-08-13

Family

ID=40951953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000432 WO2009098873A1 (ja) 2008-02-08 2009-02-04 殺菌水及びその生成方法並びにその生成装置

Country Status (2)

Country Link
JP (1) JPWO2009098873A1 (ja)
WO (1) WO2009098873A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058764A1 (ja) * 2009-11-16 2011-05-19 パーフェクトペリオ株式会社 含嗽剤及びその生成方法並びにその生成装置
JP2011156443A (ja) * 2010-01-29 2011-08-18 Sanyo Electric Co Ltd 電解水供給システム
JP2014518844A (ja) * 2011-03-18 2014-08-07 プリコア,インコーポレイテッド 安定化次亜ハロゲン酸溶液
US9381214B2 (en) 2011-03-18 2016-07-05 Puricore, Inc. Methods for treating skin irritation
US11452778B2 (en) 2011-03-18 2022-09-27 Urgo Us, Inc. Stabilized hypohalous acid solutions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024294A (ja) * 1996-05-10 1998-01-27 Hoshizaki Electric Co Ltd 弱酸性の塩素系殺菌水の製造方法
JP2007002348A (ja) * 2005-06-22 2007-01-11 Hsp Hanbai Kk 抄紙ウエットエンド環境の制御システム
WO2007072697A1 (ja) * 2005-12-20 2007-06-28 Noguchi Dental Medical Research Institute 殺菌水及びその生成方法並びに生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024294A (ja) * 1996-05-10 1998-01-27 Hoshizaki Electric Co Ltd 弱酸性の塩素系殺菌水の製造方法
JP2007002348A (ja) * 2005-06-22 2007-01-11 Hsp Hanbai Kk 抄紙ウエットエンド環境の制御システム
WO2007072697A1 (ja) * 2005-12-20 2007-06-28 Noguchi Dental Medical Research Institute 殺菌水及びその生成方法並びに生成装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058764A1 (ja) * 2009-11-16 2011-05-19 パーフェクトペリオ株式会社 含嗽剤及びその生成方法並びにその生成装置
JP2011156443A (ja) * 2010-01-29 2011-08-18 Sanyo Electric Co Ltd 電解水供給システム
JP2014518844A (ja) * 2011-03-18 2014-08-07 プリコア,インコーポレイテッド 安定化次亜ハロゲン酸溶液
US8871278B2 (en) 2011-03-18 2014-10-28 Puricore, Inc. Stabilized hypohalous acid solutions
US9381214B2 (en) 2011-03-18 2016-07-05 Puricore, Inc. Methods for treating skin irritation
US9392787B2 (en) 2011-03-18 2016-07-19 Puricore, Inc. Stabilized hypohalous acid solutions
US9414584B2 (en) 2011-03-18 2016-08-16 Puricore, Inc. Stabilized hypohalous acid solutions
US9925217B2 (en) 2011-03-18 2018-03-27 Realm Therapeutics, Inc. Methods for treating inflammation associated with allergic reaction
US10034942B2 (en) 2011-03-18 2018-07-31 Realm Therapeutics, Inc. Stabilized hypohalous acid solutions
US10576152B2 (en) 2011-03-18 2020-03-03 Urgo Us, Inc. Stabilized hypohalous acid solutions
US10702549B2 (en) 2011-03-18 2020-07-07 Urgo Us, Inc. Methods for treating skin irritation
US11452778B2 (en) 2011-03-18 2022-09-27 Urgo Us, Inc. Stabilized hypohalous acid solutions

Also Published As

Publication number Publication date
JPWO2009098873A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4369530B2 (ja) 歯科用殺菌水及びその生成方法並びにその生成装置
CN103796515B (zh) 稳定的次卤酸溶液
JP6033082B2 (ja) 次亜塩素酸を含有する溶液及びその使用方法
JP6708715B2 (ja) 次亜塩素酸を含む抗微生物剤
US6207201B1 (en) Sodium hypochlorite based disinfectant and sterilizer for medical-surgical instruments
MX2010011189A (es) Metodo para la produccion de la composicion de acido hipocloroso y aplicaciones.
JPWO2007072697A1 (ja) 殺菌水及びその生成方法並びに生成装置
Herczegh et al. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm
WO2009098873A1 (ja) 殺菌水及びその生成方法並びにその生成装置
WO2010004699A1 (ja) 口臭抑制剤及びその生成方法
Tweij-Thu-Alfeqar Razzaq et al. Sterilization of Surgical Tools: Removing Bacterial Endospores with a Combination of Povidone-iodine, Chlorhexidine Gluconate, Ethanol, and Methanol
WO2019221590A1 (es) Formulación de ácido paracético para la eliminación de virus en residuos peligrosos biólogicos infecciosos en desechos hospitalarios
US20040022672A1 (en) Method for disinfecting and/or sterilizing a dental unit
Mehendale et al. HOCl vs OCl−: clarification on chlorine-based disinfectants used within clinical settings
WO2008038744A1 (fr) Composition bactéricide
CA2164308C (en) Sodium hypochlorite based disinfectant and sterilizer for medical-surgical instruments
Muralidaran et al. Evaluation of efficacy of 2% glutaraldehyde for disinfection of hand pieces used in dentistry
CN109248320A (zh) 一种稳定的高氧化酸性电位水医用超声耦合剂
JP2008280272A (ja) う蝕治療用殺菌水及びその生成方法並びに生成装置
Nair Effectiveness of Aqueous Ozone Against Endopathogenic Microorganism in a Root Canal Biofilm Model: An in-vitro Study
Rowan et al. Hypochlorous acid–a review Michael S. Block, DMD Private Practice Metairie, LA Clinical Professor
Stawarz-Janeczek et al. Disinfectants Used in Stomatology and
MXPA05008386A (es) Solucion electrolizada superoxidada con ph. neutro.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551456

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708512

Country of ref document: EP

Kind code of ref document: A1