WO2009098340A1 - Pala multi-punta de aerogenerador - Google Patents

Pala multi-punta de aerogenerador Download PDF

Info

Publication number
WO2009098340A1
WO2009098340A1 PCT/ES2009/000069 ES2009000069W WO2009098340A1 WO 2009098340 A1 WO2009098340 A1 WO 2009098340A1 ES 2009000069 W ES2009000069 W ES 2009000069W WO 2009098340 A1 WO2009098340 A1 WO 2009098340A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
wind turbine
turbine blade
region
blade
Prior art date
Application number
PCT/ES2009/000069
Other languages
English (en)
French (fr)
Inventor
Ignacio Romero Sanz
Mario Jimenez De Lago
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Publication of WO2009098340A1 publication Critical patent/WO2009098340A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/307Blade tip, e.g. winglets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05B2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a wind turbine blade optimized aerodynamically and in particular to a wind turbine blade optimized in the tip region.
  • a problem refers to the contribution of the tip region to the aerodynamic behavior of the wind turbine blades.
  • Another object of the present invention is to provide a wind turbine blade with a configuration of the tip region that allows the reduction of the noise of the tip.
  • a wind turbine blade comprising a main region of aerodynamic profile with a leading edge, a trailing edge and pressure and suction sides between the leading edge and the trailing edge and a tip region comprising several points arranged as longitudinal extensions of the main region each forming a different dihedral angle with the main region.
  • said tips are also arranged at different angles of passage. This achieves a multi-blade blade having each of its tips positioned in an optimized position to improve the aerodynamic performance of the blade and to reduce the noise of the tip.
  • the length of each tip is less than or equal to the length of the contiguous tip closest to the leading edge. This achieves a multi-tip blade having an optimized length at each tip to improve the aerodynamic performance of the blade and to reduce the noise of the tip.
  • the blade has means for changing the dihedral angle and / or the angle of passage of said tips. This results in a multi-blade blade with means to improve the aerodynamic performance of the blade and to reduce the noise of the tip taking into account the operating conditions of the blade.
  • the tip region is manufactured as a separate part and is attached, as a tip device, to the main region. It is thus possible to facilitate the manufacture of a multi-tip blade that improves the aerodynamic performance of the blade and reduces the noise of the tip.
  • Figure 1 is a schematic plan view of a known wind turbine blade.
  • Figure 2 is a schematic plan view of a wind turbine blade according to the present invention.
  • Figure 3 is an enlarged view of the tip region of the wind turbine blade illustrated in Figure 2.
  • Figure 4 is an enlarged front view of the tip region of a wind turbine blade according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view along the line L-L of the tip region of the wind turbine blade illustrated in Figure 4.
  • Figure 6 shows the distribution of the envelope circulation along the radius of the blade in a standard blade, in a blade with a spoiler and in a blade according to the present invention.
  • Figure 7 shows an embodiment of a wind turbine blade according to
  • the present invention in which the tip region is configured as a tip device attached to the blade.
  • a typical wind turbine blade of aerodynamic profile with an leading edge 13 and an exit edge 15 can be considered divided into three regions: the root region 31 that includes the portion of the blade that is close to the rotor bushing, the tip region 35 which includes the portion of the blade most distant from the rotor bushing and the intermediate region 33 between the root region 31 and the tip region 35.
  • the length of the root region 31 is approximately 30% -50% of the length of the blade.
  • the length of the intermediate region 33 is approximately 60% -40% of the length of the blade.
  • the length of the region of the tip 35 is approximately 10% of the length of the blade.
  • the main problem of the wind turbine blade shown in Figure 1 is that the vortex produced in the tip region 35 by the incident flow F causes a decrease in performance and a high contribution to aerodynamic noise.
  • Losses due to vorticity in the tip region can be studied by means of the enveloping circulation.
  • the enveloping circulation of the blade must fall to zero at the tip (as in the root).
  • the variation of the circulation towards the tip (or towards the root) induces a vorticity dispersed in the wake from the trailing edge.
  • the amount of dispersed vorticity is equal to the rate of change of the envelope circulation along the radius.
  • This sheet of vorticity of the wake contributes, together with the envelope circulation conducted through the rotor disk (averaged azimuthal), to the axial and tangential induced speeds upstream of the rotor.
  • the incident axial flow factor, azimutically averaged could be established at its optimum value ( ⁇ 1/3) along the disc by the appropriate constant of the envelope circulation along the face blade to extract the maximum attainable energy of the wind.
  • the necessary presence of the vorticity lamina causes the axial factor of the incident flow, azimutically averaged, to drop to zero when approaching the root or tip. The amount of energy not transmitted to the rotor is wasted in the kinetic energy of the vorticity sheet.
  • a wind turbine blade according to the present invention has a main region 7 of length s1, of a typical aerodynamic profile with a leading edge 13, an exit edge 15 and a supporting surface with a suction side 17 and a pressure side 19 , and a tip region 9 of length s2 comprising several tips 11, 11 ', 11 ".
  • the traditional tip vortex is divided into smaller vortices (one for each tip 11, 11 ', 11") so that the total contribution to the axial and tangential induced speeds upstream of the rotor are less than in the case of a single point. Consequently, the total contribution to the loss of performance and aerodynamic noise is less than the original (this is particularly important for wind turbine blades since the noise of the tip is an important design factor).
  • these tips 11, 11 ', 11 are configured as longitudinal extensions of the main region 7 starting from its termination, of rope C1, at different dihedral angles
  • the tips 11, 11 ', 11 can also be positioned at different angles of passage B, B', B" as shown in Figure 5, said angles of passage being the angles between the imaginary straight line , or rope line, which extends from the leading edge to the trailing edge and the rope line of the last section of the main region 7.
  • each tip 11, 11 ', 11 has an aerodynamic shape with decreasing strings towards its termination.
  • Figure 6 shows for comparative purposes the distribution of the envelope circulation in a standard blade 41, in a blade with a spoiler that increases the length of the blade 43 (the known technique to improve the aerodynamic behavior of the tip region delaying the descent of the enveloping circulation until the new termination of the tip) and in the blade according to this present invention 45.
  • the multi-tip configuration of a blade according to the present invention makes it possible to defer the decrease of the total enveloping circulation in The tip consequently improving the aerodynamic behavior of the blade.
  • the wind turbine blade according to this invention is provided with means for individually regulating the dihedral angles A, A ', A “and / or the pass angles B, B', B" of the tips 11, 11 ' , 11 "in accordance with the operational conditions in order to obtain maximum use of the concept for any particular wind speed.
  • Said means can be controllable actuators arranged internally in the blade, including for example an electric, hydraulic or pneumatic piston, connected to the tips 11, 11 ', 11 "through a joint that allows its rotation.
  • the length s2 of the tip region 9 extends between 1% -10% of the length of the blade. In another preferred embodiment, the length of each tip 11, 11 ', 11 "is less than or equal to the length of the contiguous tip closest to the leading edge 13 of the blade. Preferably the number of tips is two or three.
  • the tip region 9 with tips 11, 11 ', 11 is made as a separate part and is attached, as a tip device, to the main region 7 of the wind turbine blade by any means appropriate 25 (See Figure 7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Pala multi-punta de aerogenerador que comprende una región principal (7) de perfil aerodinámico con un borde de ataque (13), un borde de salida (15) y lados de succión y presión (17, 19) entre el borde de ataque (15) y el borde de salida (15) y una región de punta (9) que comprende varias puntas (11, 11 ', 11 ") dispuestas como extensiones longitudinales de Ia región principal (7) formando cada una de ellas un ángulo diédrico (A, A', A") diferente con Ia región principal (7).

Description

PALA MULTI-PUNTA DE AEROGENERADOR
CAMPO DE LA INVENCIÓN
La invención se refiere a una pala de aerogenerador optimizada aerodinámicamente y en particular a una pala de aerogenerador optimizada en Ia región de punta.
ANTECEDENTES
Hay varios problemas asociados a Ia región de punta de las palas de aerogeneradores utilizados actualmente en Ia industria eólica.
Un problema se refiere a Ia contribución de Ia región de punta al comportamiento aerodinámico de las palas de aerogenerador. Hay muchas propuestas conocidas en este campo como Ia configuración de Ia punta de Ia pala en forma de alerón para mejorar el rendimiento de Ia pala.
Otro problema se refiere al hecho de que Ia punta de Ia pala es una importante fuente de ruido. Se conocen al respecto muchas propuestas proporcionando formas de puntas de pala para minimizar el ruido: puntas elípticas, puntas con forma ojival o puntas con forma de ala de tiburón.
Ninguna de las propuestas conocidas produce resultados completamente satisfactorios, por Io que existe una continua necesidad de proporcionar palas de aerogenerador con un perfil aerodinámico optimizado en Ia región de punta.
SUMARIO DE LA INVENCION
Un objeto de Ia presente invención es proporcionar una pala de aerogenerador con una configuración de Ia región de punta que mejora el rendimiento de Ia pala de aerogenerador. Otro objeto de Ia presente invención es proporcionar una pala de aerogenerador con una configuración de Ia región de punta que permite recuperar parte de las pérdidas de energía asociadas a Ia vorticidad de Ia región de punta.
Otro objeto de Ia presente invención es proporcionar una pala de aerogenerador con una configuración de Ia región de punta que permite Ia reducción del ruido de Ia punta.
Estos y otros objetos de Ia presente invención se consiguen proporcionando una pala de aerogenerador comprendiendo una región principal de perfil aerodinámico con un borde de ataque, un borde de salida y lados de presión y de succión entre el borde de ataque y el borde de salida y una región de punta comprendiendo varias puntas dispuestas como extensiones longitudinales de Ia región principal formando cada una de ellas un ángulo diédrico diferente con Ia región principal.
En una realización de Ia invención dichas puntas también están dispuestas a diferentes ángulos de paso. Se consigue con ello una pala multi- punta teniendo cada una de sus puntas colocada en una posición optimizada para mejorar el rendimiento aerodinámico de Ia pala y para reducir el ruido de Ia punta.
En otra realización, Ia longitud de cada punta es menor o igual que Ia longitud de Ia punta contigua más próxima al borde de ataque. Se consigue con ello una pala multi-punta teniendo una longitud optimizada en cada punta para mejorar el rendimiento aerodinámico de Ia pala y para reducir el ruido de Ia punta.
En otra realización, Ia pala tiene medios para cambiar el ángulo diédrico y/o el ángulo de paso de dichas puntas. Se consigue con ello una pala multi- punta con medios para mejorar el rendimiento aerodinámico de Ia pala y para reducir el ruido de Ia punta teniendo en cuenta las condiciones operativas de Ia pala.
En otra realización, Ia región de punta está fabricada como una parte separada y se une, a modo de dispositivo de punta, a Ia región principal. Se consigue con ello facilitar Ia fabricación de una pala multi-punta que mejora el rendimiento aerodinámico de Ia pala y reduce el ruido de Ia punta. Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue en relación con las figuras que se acompañan.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista esquemática en planta de una pala de aerogenerador conocida.
La Figura 2 es una vista esquemática en planta de una pala de aerogenerador según la presente invención.
La Figura 3 es una vista ampliada de Ia región de punta de la pala de aerogenerador ilustrada en Ia Figura 2.
La Figura 4 es una vista frontal ampliada de Ia región de punta de una pala de aerogenerador según una realización de Ia presente invención. La Figura 5 es una vista en sección transversal por Ia línea L-L de Ia región de punta de Ia pala de aerogenerador ilustrada en Ia Figura 4.
La Figura 6 muestra Ia distribución de Ia circulación envolvente a Io largo del radio de Ia pala en una pala estándar, en una pala con un alerón y en una pala según Ia presente invención. La Figura 7 muestra una realización de una pala de aerogenerador según
Ia presente invención en la que Ia región de punta está configurada como un dispositivo de punta unido a Ia pala.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
Como se muestra en Ia Figura 1 una típica pala de aerogenerador de perfil aerodinámico con un borde de ataque 13 y un borde de salida 15 puede considerarse dividida en tres regiones: Ia región de raíz 31 que incluye la porción de la pala que está próxima al buje del rotor, Ia región de punta 35 que incluye Ia porción de Ia pala más distante del buje del rotor y la región intermedia 33 entre Ia región de raíz 31 y la región de punta 35. La longitud de Ia región de raíz 31 es de aproximadamente el 30%-50% de Ia longitud de Ia pala. La longitud de Ia región intermedia 33 es de aproximadamente el 60%-40% de Ia longitud de Ia pala. La longitud de Ia región de Ia punta 35 es de aproximadamente el 10% de Ia longitud de Ia pala. A los efectos de Ia presente invención, el principal problema de Ia pala de aerogenerador mostrada en Ia Figura 1 es que el vórtice producido en Ia región de punta 35 por el flujo incidente F causa un decrecimiento del rendimiento y una alta contribución al ruido aerodinámico.
El comportamiento del flujo en las palas de aerogeneradores puede ser analizado asumiendo una razonable pauta estacionaria-2D para Ia mayor parte del área de Ia pala. La Teoría del Momento del Elemento de Pala (BEM) produce buenos resultados en este contexto para finalidades de diseño. Sin embargo hay otros fenómenos importantes (típicamente efectos rotacionales 3D y pérdidas por vorticidad) que impiden que Ia región de raíz y Ia región de punta tengan dicho flujo estacionario-2D. Es necesario por ello tenerlos en cuenta para diseñar una pala completamente optimizada que maximice Ia Producción Anual de Energía (AEP) minimizando los esfuerzos de las solicitaciones de las cargas.
Las perdidas por vorticidad en Ia región de punta pueden ser estudiadas por medio de Ia circulación envolvente. La circulación envolvente de Ia pala debe caer a cero en Ia punta (como ocurre en Ia raíz). La variación de Ia circulación hacia Ia punta (o hacia Ia raíz) induce una vorticidad dispersada en Ia estela desde el borde de salida. La cantidad de vorticidad dispersada es igual a Ia tasa de cambio de Ia circulación envolvente a Io largo del radio. Esta lámina de vorticidad de Ia estela (mayor al final de Ia pala) contribuye, junto con Ia circulación envolvente conducida a través del disco del rotor (promediada azimutalmente), a las velocidades inducidas axiales y tangenciales aguas arriba del rotor. Sin Ia lámina de vorticidad helicoidal, el factor del flujo axial incidente, promediado azimutalmente, podría establecerse en su valor óptimo (~1/3) a Io largo del disco por Ia constante apropiada de Ia circulación envolvente a Io largo de Ia pala de cara a extraer Ia máxima energía alcanzable del viento. Sin embargo Ia necesaria presencia de Ia lámina de vorticidad (teorema de Ia circulación de Kelvin) causa que el factor axial del flujo incidente, promediado azimutalmente, caiga a cero cuando se acerca a Ia raíz o a Ia punta. La cantidad de energía no transmitida al rotor se desperdicia en Ia energía cinética de Ia lámina de vorticidad. De cara a optimizar el rendimiento de Ia pala, esta invención proporciona una configuración de Ia punta dirigida a alterar el comportamiento del flujo con el objetivo de disminuir las pérdidas de Ia punta reduciendo Ia vorticidad dispersada en Ia estela y cambiando Ia manera en Ia que se dispersa Ia vorticidad. Una pala de aerogenerador según Ia presente invención tiene una región principal 7 de longitud s1 , de un perfil aerodinámico típico con un borde de ataque 13, un borde de salida 15 y una superficie sustentadora con un lado de succión 17 y un lado de presión 19, y una región de punta 9 de longitud s2 que comprende varias puntas 11 , 11', 11". Al dividir Ia tradicional región de punta única 35 en varias puntas 11, 11',
11" el tradicional vórtice de punta se divide en vórtices más pequeños (uno para cada punta 11 , 11 ', 11 ") de manera tal que Ia contribución total a las velocidades inducidas axiales y tangenciales aguas arriba del rotor sean menores que en el caso de una única punta. Consecuentemente Ia contribución total a Ia pérdida de rendimiento y al ruido aerodinámico es menor que Ia original (esto es particularmente importante para las palas de aerogenerador ya que el ruido de Ia punta es un factor importante del diseño).
Como puede verse en las Figuras 3 y 4, estas puntas 11, 11', 11" están configuradas como extensiones longitudinales de Ia región principal 7 empezando desde su terminación, de cuerda C1 , a diferentes ángulos diédricos
A, A', A" respecto a Ia región principal 7.
En una realización preferente, las puntas 11 , 11', 11 " también pueden estar posicionadas a diferentes ángulos de paso B, B', B" como se muestra en Ia Figura 5, siendo dichos ángulos de paso los ángulos entre Ia imaginaria línea recta, ó línea de cuerda, que se extiende desde el borde de ataque hasta el borde de salida y Ia línea de cuerda de Ia última sección de Ia región principal 7. Preferiblemente cada punta 11 , 11', 11" tiene una forma aerodinámica con cuerdas decrecientes hacia su terminación.
El hecho de que las puntas 11 , 11', 11" operen a diferentes ángulos diédricos y de que también puedan operar a diferentes ángulos de paso B, B', B" es importante para evitar que el vórtice de una punta se pueda fusionar con el generado por cualquier otra. Como afirma el teorema del desplazamiento de
Munk, Ia contribución total de las láminas de vorticidad de una superficie sustentadora no coplanaria a Ia velocidad inducida total aguas arriba no es Ia suma algebraica de Ia contribución de cada una de ellas, depende de cómo están geométricamente configuradas relativamente.
La Figura 6 muestra a efectos comparativos Ia distribución de Ia circulación envolvente en una pala estándar 41 , en una pala con un alerón que aumenta Ia longitud de Ia pala 43 (Ia técnica conocida para mejorar el comportamiento aerodinámico de Ia región de punta demorando el descenso de Ia circulación envolvente hasta Ia nueva terminación de Ia punta) y en Ia pala según esta presente invención 45. Como se muestra en esta Figura Ia configuración multi-punta de una pala según Ia presente invención permite diferir el descenso de Ia circulación envolvente total en Ia punta mejorando consecuentemente el comportamiento aerodinámico de Ia pala. En una realización preferente, Ia pala de aerogenerador según esta invención está provista con medios para regular individualmente los ángulos diédricos A, A', A" y/o los ángulos de paso B, B', B" de las puntas 11 , 11', 11" de acuerdo con las condiciones operacionales de cara a obtener el máximo aprovechamiento del concepto para cualquier velocidad particular del viento. Dichos medios pueden se actuadores controlables dispuestos interiormente en Ia pala, incluyendo por ejemplo un pistón eléctrico, hidráulico o neumático, conectado a las puntas 11 , 11', 11" a través de una junta que permite su rotación.
En una realización preferente, Ia longitud s2 de Ia región de punta 9 se extiende entre el 1%-10% de Ia longitud de Ia pala. En otra realización preferente, Ia longitud de cada punta 11 , 11', 11" es menor o igual que Ia longitud de Ia punta contigua más cercana al borde de ataque 13 de Ia pala. Preferiblemente el número de puntas es de dos o tres.
En otra realización preferente, Ia región de punta 9 con puntas 11 , 11', 11" esta hecha como una parte separada y se une, a modo de un dispositivo de punta, a Ia región principal 7 de Ia pala de aerogenerador mediante cualquier medio apropiado 25 (Ver Figura 7).
Aunque Ia presente invención se ha descrito enteramente en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones dentro del alcance de, no considerando éste como limitado por las anteriores realizaciones, las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1.- Una pala de aerogenerador comprendiendo una región principal (7) de perfil aerodinámico con un borde de ataque (13), un borde de salida (15) y lados de succión y presión (17, 19) entre el borde de ataque (15) y el borde de salida (15) y una región de punta (9), caracterizada porque Ia región de punta (9) comprende varias puntas (11 , 11', 11") dispuestas como extensiones longitudinales de Ia región principal (7) formando cada una de ellas un ángulo diédrico (A, A', A") diferente con Ia región principal (7).
2.- Una pala de aerogenerador según Ia reivindicación 1 , caracterizada porque dichas puntas (11 , 11', 11 ") están posicionadas a diferentes ángulos de paso (B1 B', B").
3.- Una pala de aerogenerador según cualquiera de las reivindicaciones
1-2, caracterizada porque cada punta (11 , 11', 11 ") tiene una forma aerodinámica con cuerdas decrecientes hacia su terminación.
4.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-3, caracterizada porque Ia longitud de cada punta (11 , 11', 11 ") es menor o igual que Ia longitud de Ia punta contigua más próxima al borde de ataque (13).
5.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-4, caracterizada porque dichas puntas (11 , 11', 11") tienen medios para cambiar individualmente su ángulo diédrico (A, A', A") y/o su ángulo de paso (B, B', B").
6,- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-5, caracterizada porque Ia región de punta (9) está fabricada como una parte separada y se une, a modo de dispositivo de punta, a Ia región principal (7).
7.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-6, caracterizada porque Ia longitud s2 Ia región de punta (9) esta comprendida entre el 1% y el 10% de Ia longitud total de Ia pala.
PCT/ES2009/000069 2008-02-08 2009-02-06 Pala multi-punta de aerogenerador WO2009098340A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800346A ES2338963B1 (es) 2008-02-08 2008-02-08 Pala multi-punta de aerogenerador.
ESP200800346 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009098340A1 true WO2009098340A1 (es) 2009-08-13

Family

ID=40951804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000069 WO2009098340A1 (es) 2008-02-08 2009-02-06 Pala multi-punta de aerogenerador

Country Status (2)

Country Link
ES (1) ES2338963B1 (es)
WO (1) WO2009098340A1 (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468903A (en) * 2009-03-26 2010-09-29 Ronald Denzil Pearson Aerofoil tip vortex reducing structure
CN102606417A (zh) * 2012-03-19 2012-07-25 西安交通大学 一种具有锯齿状叶尖的风力发电机叶片结构
US20130156583A1 (en) * 2011-12-20 2013-06-20 General Electric Company Airfoils including tip profile for noise reduction and method for fabricating same
CN103291561A (zh) * 2013-05-06 2013-09-11 南京航空航天大学 尖部具有分裂小翼的风力机叶片
US20140127030A1 (en) * 2012-10-22 2014-05-08 New World Energy Enterprises Ltd A turbine blade system
WO2014154199A1 (de) * 2013-03-28 2014-10-02 Rolf Rohden Rotorblatt einer windenergieanlage mit winglet
JP2014231759A (ja) * 2013-05-28 2014-12-11 テラル株式会社 ロータ
WO2015016704A1 (en) * 2013-07-30 2015-02-05 Stichting Energieonderzoek Centrum Nederland Rotor blade for a wind turbine, and wind turbine field
US20170022967A1 (en) * 2015-07-21 2017-01-26 Winnova Energy LLC System and method for improving efficiency of turbine airfoils

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2573513A (en) 2018-05-02 2019-11-13 Anakata Wind Power Resources Ltd Aerofoil tip structure, particularly for a HAWT rotor blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823480A (en) * 1993-04-05 1998-10-20 La Roche; Ulrich Wing with a wing grid as the end section
US6345790B1 (en) * 1999-06-12 2002-02-12 Daimlerchrysler Aerospace Airbus Gmbh Subsonic aircraft with backswept wings and movable wing tip winglets
US20020060272A1 (en) * 2000-11-10 2002-05-23 Ulrich La Roche Wing comprising a distal wing grid
WO2006133715A1 (en) * 2005-06-17 2006-12-21 Lm Glasfiber A/S A blade with hinged blade tip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5823480A (en) * 1993-04-05 1998-10-20 La Roche; Ulrich Wing with a wing grid as the end section
US6345790B1 (en) * 1999-06-12 2002-02-12 Daimlerchrysler Aerospace Airbus Gmbh Subsonic aircraft with backswept wings and movable wing tip winglets
US20020060272A1 (en) * 2000-11-10 2002-05-23 Ulrich La Roche Wing comprising a distal wing grid
WO2006133715A1 (en) * 2005-06-17 2006-12-21 Lm Glasfiber A/S A blade with hinged blade tip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2468903A (en) * 2009-03-26 2010-09-29 Ronald Denzil Pearson Aerofoil tip vortex reducing structure
US9102397B2 (en) * 2011-12-20 2015-08-11 General Electric Company Airfoils including tip profile for noise reduction and method for fabricating same
US20130156583A1 (en) * 2011-12-20 2013-06-20 General Electric Company Airfoils including tip profile for noise reduction and method for fabricating same
CN102606417A (zh) * 2012-03-19 2012-07-25 西安交通大学 一种具有锯齿状叶尖的风力发电机叶片结构
US20140127030A1 (en) * 2012-10-22 2014-05-08 New World Energy Enterprises Ltd A turbine blade system
WO2014154199A1 (de) * 2013-03-28 2014-10-02 Rolf Rohden Rotorblatt einer windenergieanlage mit winglet
CN103291561A (zh) * 2013-05-06 2013-09-11 南京航空航天大学 尖部具有分裂小翼的风力机叶片
CN104603457A (zh) * 2013-05-28 2015-05-06 泰拉尔株式会社 转子
JP2014231759A (ja) * 2013-05-28 2014-12-11 テラル株式会社 ロータ
EP3006731A4 (en) * 2013-05-28 2017-02-22 Teral Inc. Rotor
US9938957B2 (en) 2013-05-28 2018-04-10 Teral Inc. Rotor
WO2015016704A1 (en) * 2013-07-30 2015-02-05 Stichting Energieonderzoek Centrum Nederland Rotor blade for a wind turbine, and wind turbine field
US10227963B2 (en) 2013-07-30 2019-03-12 Stichting Energieonderzoek Centrum Nederland Rotor blade for a wind turbine, and wind turbine field
US20170022967A1 (en) * 2015-07-21 2017-01-26 Winnova Energy LLC System and method for improving efficiency of turbine airfoils
US10094358B2 (en) * 2015-07-21 2018-10-09 Winnova Energy LLC Wind turbine blade with double airfoil profile

Also Published As

Publication number Publication date
ES2338963B1 (es) 2011-05-20
ES2338963A1 (es) 2010-05-13

Similar Documents

Publication Publication Date Title
ES2338963B1 (es) Pala multi-punta de aerogenerador.
ES2867759T3 (es) Pala de rotor con un borde de salida dentado
ES2641559T3 (es) Pala de turbina eólica que tiene un dispositivo de guía de flujo con altura optimizada
JP5300874B2 (ja) 非軸対称プラットフォームならびに外輪上の陥没および突起を備えるブレード
ES2620376T3 (es) Álabe de una turbomáquina con generador de vórtices
RU2503588C2 (ru) Лопасть для лопастной машины
US9175666B2 (en) Slat with tip vortex modification appendage for wind turbine
ES2339883T3 (es) Pala de rotor de turbina eolica y turbina eolica con regulacion de paso.
ES2955331T3 (es) Pala de rotor de un aerogenerador y aerogenerador
ES2772129T3 (es) Ventilador axial
JP5866802B2 (ja) ノズル翼
EP2647837A2 (en) Flatback slat for wind turbine
BRPI0720184A2 (pt) Turbina eólica, turbina eólica compreendendo um rotor com pás da turbina eólica cada uma possuindo uma extremidade de raiz conectada a um cubo da turbina eólica e uma extremidade de ponta, e pá de turbina eólica possuindo uma extremidade de raiz com meios para acoplamento da referida extremidade de raiz a um cubo de uma turbina eólica e uma extremidade de ponta possuindo a pequena aleta
US10690112B2 (en) Fluid turbine rotor blade with winglet design
WO2007086908A3 (en) Rotor blade for a high speed rotary-wing aircraft
ES2679368T3 (es) Pala de turbina eólica que tiene una placa de sustentación o desviador de flujo conformado
JP6067130B2 (ja) 風力発電装置
NL2011236C2 (en) Rotor blade for a wind turbine, and wind turbine field.
PT1583904E (pt) Pá de rotor para uma central eólica
ES2745760T3 (es) Deflector de flujo para pala
ES2330500A1 (es) Pala de aerogenerador con elementos hipersustentadores.
ES2925267T3 (es) Ventilador axial industrial con aspas de bajo ruido y alta eficiencia
TWI638101B (zh) 鳥翅型高壓軸流風機葉片及其對旋軸流風機
CN202659570U (zh) 轴流风轮
ES2894917T3 (es) Pala de rotor conformada para mejorar la difusión de la estela

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707975

Country of ref document: EP

Kind code of ref document: A1