WO2009096584A1 - Vehicle battery protective device and method - Google Patents

Vehicle battery protective device and method Download PDF

Info

Publication number
WO2009096584A1
WO2009096584A1 PCT/JP2009/051732 JP2009051732W WO2009096584A1 WO 2009096584 A1 WO2009096584 A1 WO 2009096584A1 JP 2009051732 W JP2009051732 W JP 2009051732W WO 2009096584 A1 WO2009096584 A1 WO 2009096584A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
battery
air
temperature
protection device
Prior art date
Application number
PCT/JP2009/051732
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Motohashi
Toshikazu Yoshihara
Masayuki Nakamura
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Publication of WO2009096584A1 publication Critical patent/WO2009096584A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention belongs to the technical field of a vehicle battery protection device and method that is installed in a vehicle and used to drive the vehicle.
  • Patent Document 1 Japanese Patent No. 32409773 (page 1-13, all figures)
  • the present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide a vehicle battery protection device and method that can suppress an increase in temperature during parking and can extend the life of the battery. It is to provide.
  • a vehicular battery protection device that protects a battery that is installed in a vehicle and is used for driving, and the temperature of the battery is increased during parking. It is characterized by discharging air to the outside of the vehicle.
  • the temperature rise during parking can be suppressed, and the battery life can be extended.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of the protection apparatus of the vehicle battery of Example 1.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of the protection apparatus of the vehicle battery of Example 1.
  • FIG. 1 is an explanatory diagram of the structure of the vehicle battery protection device of the first embodiment.
  • FIG. 2 is an explanatory diagram of the structure of the vehicle battery protection device according to the first embodiment.
  • the battery device 1 includes a battery 2, a cooling fan 3, a duct 4, a switching door 5, and a drafter 6.
  • the battery device 1 is disposed behind the rear seat 7 of the vehicle C and below the rear parcel 8.
  • the battery 2 is a lithium ion battery that performs charge and discharge by exchanging lithium ions between electrodes. Lithium-ion batteries have the advantageous feature that no so-called memory effect occurs.
  • the battery 2 used for driving the vehicle is an assembled battery in which a plurality of lithium ion batteries are combined in series.
  • JP-A-2000-116427 is cited as a detailed example of the battery pack for traveling.
  • the structure of the assembled battery is not limited to this detailed example, but a plurality of the minimum units in which plate-like lithium ion batteries are combined are used. The total number reaches several dozen.
  • the cooling fan 3 takes in air in the passenger compartment from an opening 81 provided in the rear parcel 8 and blows it to the duct 4.
  • the cooling fan 3 is driven by the high voltage of the battery 2 provided for driving.
  • the duct 4 divides the air blown from the cooling fan 3 into two paths, a cooling path 41 and a discharge path 42, joins downstream, and connects to the drafter 6.
  • the cooling path 41 is made to interpose the battery 2 in the middle. In other words, the air flow is sent from the upstream connection portion of the cooling path 41 to the inside of the battery 2, and the exhaust air is sent from a part of the battery 2 to the downstream connection portion of the cooling path 41.
  • the switching door 5 is provided in a diversion portion of the duct 4 to the cooling path 41 and the discharge path 42, and swings by driving to determine whether to send the air blown from the cooling fan 3 to the cooling path 41 or to the discharge path 42.
  • the drafter 6 is an air outlet provided on the lower floor of the vehicle.
  • FIG. 3 is an explanatory diagram showing a configuration example of a drafter.
  • the fins 61 are provided on the drafter 6 so as to be inclined in a direction not subject to air resistance by traveling, so that air does not flow back into the duct 4 due to traveling, and exhaust from the duct 4 is prevented. It is a structure which makes the opening part performed favorably.
  • FIG. 4 is a diagram schematically illustrating a block configuration of the vehicle battery protection device according to the first embodiment.
  • the battery device 1 includes a battery controller 9, temperature sensors 91 and 92 that detect the internal temperature of the battery 2, and an SOC sensor 93 that detects the charging rate of the battery 2.
  • the detection results of the temperature sensors 91 and 92 and the SOC sensor 93 are input to the battery controller 9.
  • the temperature sensors 91 and 92 may measure the temperature of the assembled battery surface inside the battery 2, or may measure the temperature of the case inner surface or the internal space. Further, measurement at a plurality of locations may be performed. In Example 1, what measures 2 places inside is shown as an example.
  • the detection result from the solar radiation sensor or the vehicle interior temperature sensor of the vehicle air conditioner system is input to the battery controller 9 directly or from the controller of the vehicle air conditioner system. This is the temperature information input 94.
  • the battery controller 9 controls charging / discharging from the detection result of the SOC sensor 93. Further, the cooling fan 3 and the switching door 5 are controlled based on the detection results of the temperature sensors 91 and 92.
  • FIG. 5 is a flowchart showing the flow of processing of the cooling fan and switching door control executed by the battery controller. Each step will be described below.
  • step S1 information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
  • step S2 it is determined whether or not the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If the vehicle interior air temperature is equal to or higher than the predetermined temperature, the process proceeds to step S3.
  • step S3 the remaining battery level is measured from the detection result of the SOC sensor 93.
  • step S4 it is determined whether the remaining battery capacity of the battery 2 is an amount capable of operating the cooling fan 3. If the amount is possible, the process proceeds to step S5, and if not, the process is terminated. The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
  • step S5 the switching door 5 is operated to switch the discharge path 42 so that the air flows, and then the cooling fan 3 is operated.
  • step S6 input from the temperature sensors 91 and 92 is performed as measurement of the battery temperature.
  • step S7 it is determined whether or not the battery is equal to or higher than a predetermined temperature. If it is equal to or higher than the predetermined temperature, the process proceeds to step S10, and if not, the process proceeds to step S8.
  • step S8 it is determined whether or not the air temperature in the passenger compartment is equal to or higher than a predetermined temperature. If it is equal to or higher than the predetermined temperature, the process is terminated, and if the temperature does not reach the predetermined temperature, the process proceeds to step S9.
  • step S9 the cooling fan 3 is stopped and the process is terminated.
  • step S10 information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
  • step S11 it is determined whether or not the vehicle interior air temperature is equal to or lower than the battery temperature. If the vehicle temperature is equal to or lower than the battery temperature, the process proceeds to step S12.
  • step S12 the switching door 5 is operated to switch so that a part of the air flows also to the cooling path 41, and the air volume is distributed.
  • step S13 it is determined whether or not the battery temperature is equal to or higher than a predetermined temperature set in advance. If it is equal to or higher than the predetermined temperature, the process is terminated.
  • step S14 the switching door 5 is actuated to finish distributing the air volume to the cooling path 41 and allow the air to flow through the discharge path 42.
  • step S1 the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected (step S1), and the vehicle interior becomes high temperature, for example, 50 ° C. or higher due to parking in the sun. If this occurs (step S2), the cooling operation described below is performed.
  • the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S3).
  • step S 4 the switching door 5 is operated and the air path by the duct 4 is discharged.
  • the cooling fan 3 is operated to exhaust the air 401 having a high temperature in the passenger compartment from the drafter 6 (step S5).
  • the vehicle interior is warmed by the solar radiation 402 due to parking under the sun, and does not become hot. Therefore, the battery 2 does not reach a high temperature due to the vehicle interior temperature, so the battery does not deteriorate and the battery life does not decrease.
  • the cooling fan 3 Since the operation of the cooling fan 3 is during the discharge of the battery 2, when the battery temperature rises due to this, the cooling fan 3 is stopped, or the cooling path 41 that cools the battery 2 is compared with the vehicle interior temperature.
  • the air volume is distributed (steps S11 to S12). Thereby, it controls so that it may not rise to the temperature which battery temperature deteriorates by the electric power supply to the cooling fan 3 at the time of parking.
  • the door of the air conditioner system is in an outside air intake (Fresh mode) state.
  • the vehicle battery protection device of the first embodiment has the following effects.
  • a vehicle battery protection device that is installed in a vehicle and protects a battery 2 used for driving, and for discharging hot air in a vehicle compartment that raises the temperature of the battery 2 during parking to the outside of the vehicle.
  • the vehicle interior air that becomes hot due to solar radiation during parking can be discharged, temperature rise during parking can be suppressed, and the battery life can be extended.
  • a vehicle battery protection device for protecting the battery 2 installed in the vehicle and used for driving, the temperature information input 94 for detecting the vehicle interior temperature, and the air in the vehicle interior
  • the cooling fan 3 that takes in and blows air to the battery 2, sends the air blown from the cooling fan 3 to the battery 2, bypasses the battery 2 by the cooling path 41 of the duct 4 that discharges the battery 2 from the vehicle, and the cooling path 41.
  • the vehicle is heated to high temperatures due to solar radiation at the time of parking because the vehicle interior air is discharged by switching the switching door 5 (step S5).
  • the inner air is discharged from the discharge passage 42 to bypass the battery 2, the temperature rise during parking can be suppressed and life of the battery.
  • step S12 when performing discharge control for discharging the vehicle interior air, the temperature at which the battery 2 generates heat and rises by supplying power can be suppressed to an acceptable level.
  • the second embodiment is an example in which high-temperature air in the passenger compartment is discharged by driving a front air conditioner.
  • the configuration will be described.
  • FIG. 6 is a schematic explanatory diagram of a vehicle air conditioning system operated by the vehicle battery protection device of the second embodiment.
  • the system of the front air conditioner 10 sends the high-pressure refrigerant compressed by the electric compressor 102 to the condenser 101 to radiate and cool it to liquefy the refrigerant, and then removes moisture and dust in the liquid tank 103 and sends the liquefied refrigerant to the solenoid valve 12.
  • the refrigerant flow rate of the refrigerant line 201 toward the air conditioning evaporator 106 is controlled.
  • the refrigerant is expanded to a low pressure by a valve (not shown), the refrigerant is evaporated by the air conditioning evaporator 106, the air sent from the air conditioning fan 104 to the passenger compartment is cooled, and the evaporated low pressure refrigerant is collected by the refrigerant line 202 to be electrically compressed. It is circulated by sending it to 102.
  • a request is output from the battery controller 9 to the air conditioner controller 105 to perform control.
  • the switching door 5 shall switch a channel
  • the front air conditioner 10 is driven by the high voltage of the driving battery 2 and is in an outside air intake state (Fresh mode) during parking. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 7 is a flowchart showing a flow of control processing of the front air conditioner executed in the battery controller and the air conditioner controller. Each step will be described below.
  • step S21 information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
  • step S22 it is determined whether the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If the vehicle interior air temperature is equal to or higher than the predetermined temperature, the process proceeds to step S23.
  • step S23 the remaining battery level is measured from the detection result of the SOC sensor 93.
  • step S24 it is determined whether or not the remaining battery capacity of the battery 2 is an amount capable of operating the front air conditioner 10. If the amount is possible, the process proceeds to step S25, and if not, the process is terminated. The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
  • step S25 it is determined whether the operation of the electric compressor 102 is necessary based on the passenger compartment temperature. If necessary, the process proceeds to step S26, and if not necessary, the process proceeds to step S30.
  • step S26 the front air conditioner 10 is operated.
  • the electric compressor 102 is operated.
  • step S27 the air pressure in the vehicle interior is increased by operating the front air conditioner 10, and the air in the vehicle interior is exhausted from the drafter 6 through the discharge path 42.
  • step S28 it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
  • step S29 the operation of the front air conditioner 10 is stopped and the process is terminated.
  • step S30 the front air conditioner 10 is operated. In this operation, the electric compressor 102 is not operated.
  • Step S31 the air pressure in the vehicle interior is increased by operating the front air conditioner 10, and the air in the vehicle interior is exhausted from the drafter 6 through the discharge path 42.
  • step S32 it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature, and if it is equal to or higher than the predetermined temperature, the process is terminated.
  • step S33 the operation of the front air conditioner 10 is stopped and the process is terminated.
  • the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected while the vehicle is parked (step S21), and the vehicle interior becomes hot due to parking under hot weather, for example, 50 ° C or higher. If this happens (step S22), the cooling operation described below is performed.
  • the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S23). Then, when it is determined that the power supply for operating the front air conditioner 10, that is, the power supply capable of driving the front air conditioner 10 for a predetermined time can be performed (step S24), the front air conditioner 10 is operated.
  • the vehicle interior is warmed by solar radiation by parking under hot weather, and does not become hot. Therefore, the battery 2 does not reach a high temperature due to the vehicle interior temperature, so the battery 2 does not deteriorate and the battery life does not decrease. Furthermore, when the supplied electric power is sufficiently remaining and the passenger compartment temperature is very high, the electric compressor 102 is operated. Then, the refrigerant of the front air conditioner 10 circulates, and the air blown into the vehicle interior by the air conditioning fan 104 becomes cooled air after heat exchange (steps S26 and S27). Therefore, the high temperature due to solar radiation in the passenger compartment is cooled in addition to being discharged. Thereby, the battery 2 is not further deteriorated by heat, and the battery life is improved.
  • the switching door 5 is operated so that the exhaust from the vehicle interior is used for cooling the battery 2. Also good. Further, the cooling fan 3 is driven to apply forced exhaust at an appropriate timing. Alternatively, the vehicle interior temperature may be efficiently exhausted and cooled by alternately operating with the front air conditioner 10.
  • the vehicle battery protection device has the following effects in addition to the above (1) to (3).
  • the front air conditioner 10 including the air conditioning fan 104 that blows air into the vehicle interior in front of the vehicle is operated when the vehicle is parked and the vehicle interior temperature is equal to or higher than a predetermined temperature. Since the processing of steps S21 to S25 and S30 to S31 executed by the battery controller 9 and the air conditioner controller 105 is provided, outside air is taken into the vehicle interior and the vehicle interior pressure is increased to increase the vehicle interior pressure, thereby increasing the temperature of the vehicle interior Air can be exhausted, temperature rise during parking can be suppressed, and the battery life can be extended.
  • step S26 and S27 executed by the battery controller 9 and the air conditioner controller 105, the electric compressor 102 of the front air conditioner 10 is operated.
  • the passenger compartment can be further cooled, temperature rise during parking can be further suppressed, and the battery life can be extended. Since other functions and effects are the same as those of the first embodiment, description thereof is omitted.
  • the third embodiment is an example in which high-temperature air in the passenger compartment is discharged by driving a rear air conditioner.
  • FIG. 8 is a schematic explanatory diagram of a vehicle air conditioning system operated by the vehicle battery protection device of the third embodiment.
  • the vehicle in addition to the front air conditioner 10, the vehicle includes a rear air conditioner 11 that performs air conditioning of the rear portion of the vehicle. Then, it is assumed that the rear air conditioner 11 is controlled when the air conditioner controller 105 receives a request from the battery controller 9.
  • FIG. 8 An air conditioning evaporator 301 and an air conditioning fan 302 for the rear air conditioner 11 are provided in the vicinity of the rear seat of the vehicle. Then, as shown in FIG. 8, a refrigerant line 203 is provided so as to be branched by the electromagnetic valve 12, and the refrigerant is sent to the air conditioning evaporator 301. Further, a refrigerant line 204 from the air conditioning evaporator 301 is provided, and the refrigerant line 204 is joined to the refrigerant line 202 to recover the refrigerant. And it is the structure which cools the ventilation to the vehicle interior rear part with the air-conditioning evaporator 301 by the air-conditioning fan 302. FIG.
  • the switching door 5 switches the passage to the discharge path 42 during parking.
  • the rear air conditioner 11 is driven by the high voltage of the driving battery 2 and is in an outside air intake state (Fresh mode) during parking. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 9 is a flowchart showing a flow of control processing of the rear air conditioner executed in the battery controller and the air conditioner controller. Each step will be described below.
  • step S41 information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
  • step S42 it is determined whether or not the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If it is equal to or higher than the predetermined temperature, the process proceeds to step S43, and if it does not reach the predetermined temperature, the process is terminated.
  • step S43 the remaining battery level is measured from the detection result of the SOC sensor 93.
  • step S44 it is determined whether or not the remaining battery capacity of the battery 2 is an amount capable of operating the rear air conditioner 11. If the amount is possible, the process proceeds to step S45, and if not, the process is terminated. The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
  • step S45 it is determined whether the operation of the electric compressor 102 is necessary based on the vehicle interior temperature. If necessary, the process proceeds to step S46, and if not necessary, the process proceeds to step S50. *
  • step S46 the rear air conditioner 11 is operated. In this operation, the electric compressor 102 is operated.
  • step S47 the operation of the rear air conditioner 11 increases the air pressure in the passenger compartment, and exhausts the passenger compartment air from the drafter 6 through the discharge path 42.
  • step S48 it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
  • step S49 the operation of the rear air conditioner 11 is stopped and the process is terminated.
  • step S50 the rear air conditioner 11 is operated. In this operation, the electric compressor 102 is not operated.
  • step S51 the operation of the rear air conditioner 11 increases the air pressure in the passenger compartment, and exhausts the passenger compartment air from the drafter 6 through the discharge passage 42.
  • step S52 it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
  • step S53 the operation of the rear air conditioner 11 is stopped and the process is terminated.
  • the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected while the vehicle is parked (step S41), and the vehicle interior becomes high temperature, for example, 50 ° C. or more due to the parking under the sun. If this occurs (step S42), the cooling operation described below is performed.
  • the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S43).
  • the power supply for operating the rear air conditioner 11 that is, the power supply that can drive the rear air conditioner 11 for a predetermined time can be obtained (step S44)
  • the rear air conditioner 11 is operated.
  • the air discharge path in the passenger compartment is a path that passes through the duct 4 from the opening 81 provided in the rear parcel 8, passes through the discharge path 42 by switching the switching door 5, and is discharged out of the vehicle from the drafter 6 (step S ⁇ b> 51). ).
  • the electric compressor 102 is operated. Then, the refrigerant of the rear air conditioner 11 circulates, and the air blown into the vehicle interior by the air conditioning fan 302 becomes heat-cooled cooled air (steps S46 and S47). Therefore, the high temperature due to solar radiation in the passenger compartment is cooled in addition to being discharged. Thereby, the battery 2 is not further deteriorated by heat, and the battery life is improved. Further, in the vehicle provided with the rear air conditioner 11, the front air conditioner 10 is often provided as in the third embodiment. Therefore, for example, when air is blown into the vehicle interior by the air conditioning fan 302 of the rear air conditioner 11 without operating the electric compressor 102, The hot air in the room is exhausted more quickly, and the battery 2 is not deteriorated.
  • the vehicle interior is further effectively cooled.
  • the switching door 5 is operated so that the exhaust from the vehicle interior is used for cooling the battery 2. Also good.
  • the cooling fan 3 is driven to apply forced exhaust at an appropriate timing.
  • the vehicle interior temperature may be efficiently exhausted and cooled by alternately operating the rear air conditioner 11 and the front air conditioner 10.
  • the vehicle battery protection apparatus has the following effects in addition to the above (1) to (5).
  • the rear air conditioner 11 including the air conditioning fan 302 that blows air into the vehicle interior on the rear side of the vehicle is operated when parking and the vehicle interior temperature is equal to or higher than a predetermined temperature. Since the processing of steps S41 to S45, S50, and S51 executed by the battery controller 9 and the air conditioner controller 105 to be performed is provided, outside air is taken into the vehicle interior at a position closer to the battery 2 and the vehicle interior pressure is increased. Hot air in the passenger compartment can be exhausted by the pressure difference, temperature rise during parking can be suppressed, and the battery life can be extended.
  • the air sent to the vehicle interior is cooled in order to increase the vehicle interior pressure in order to operate the electric compressor 102 provided in the vehicle for air conditioning by the processing of steps S46 and S47.
  • the passenger compartment can be further cooled, temperature rise during parking can be further suppressed, and the battery life can be extended. Since other functions and effects are the same as those of the first and second embodiments, the description thereof is omitted.
  • vehicle battery protection device of the present invention has been described based on the first to third embodiments, the specific configuration is not limited to these embodiments and does not depart from the gist of the invention. As long as the design is changed or added, it is allowed.
  • the vehicle interior air is exhausted by the configuration of the first embodiment such as the discharge path and the drafter provided in the battery device, but the interior of the vehicle interior is appropriately ventilated with respect to the outside of the vehicle. Therefore, it is only necessary to increase the vehicle interior pressure. For example, even if a front air conditioner is provided, only a rear air conditioner may be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A vehicle battery protective device and method which can, when a vehicle is in a parked state, suppress a rise in the temperature of the battery of the vehicle to extend the life of the battery. The vehicle battery protective device is mounted on a vehicle, protects the battery (2) used to drive the vehicle, and has a discharge path (42) of a duct (4) bypassing the battery (2) and discharging air to the outside of the vehicle by a cooling path (41). When the temperature in the vehicle interior becomes a level higher than a predetermined temperature, a battery controller (9) performs discharge control (Step S5) for discharging vehicle interior air by switching of the position of a switching door (5).

Description

車両用バッテリの保護装置及び方法Vehicle battery protection device and method
 本発明は、車両に設置され車両の駆動に使用する車両用バッテリの保護装置及び方法の技術分野に属する。 The present invention belongs to the technical field of a vehicle battery protection device and method that is installed in a vehicle and used to drive the vehicle.
 従来では、空調された車室内空気をバッテリ冷却用送風機で吸い込み、バッテリに送風することでバッテリを冷却している(例えば、特許文献1参照。)。
特許3240973号公報(第1-13頁、全図)
Conventionally, air-conditioned vehicle interior air is sucked by a battery cooling blower and blown to the battery to cool the battery (see, for example, Patent Document 1).
Japanese Patent No. 32409773 (page 1-13, all figures)
 しかしながら、従来にあっては、走行中のバッテリの温度制御は可能であるが、駐車中には一切機能を果たさないものであった。駐車時における温度上昇は、電池寿命を短くしてしまうものであった。 However, in the past, it was possible to control the temperature of the battery while traveling, but it did not function at all during parking. The temperature rise during parking shortens the battery life.
 本発明は、上記問題点に着目してなされたもので、その目的とするところは、駐車中の温度上昇を抑制することができ、電池を長寿命化できる車両用バッテリの保護装置及び方法を提供することにある。 The present invention has been made paying attention to the above-mentioned problems, and an object of the present invention is to provide a vehicle battery protection device and method that can suppress an increase in temperature during parking and can extend the life of the battery. It is to provide.
 上記目的を達成するため、本発明では、車両に設置され、駆動に用いられるバッテリを保護する車両用バッテリの保護装置であって、駐車の際に前記バッテリの温度を上昇させる車室内の高温な空気を車外へ排出することを特徴とする。 In order to achieve the above object, according to the present invention, there is provided a vehicular battery protection device that protects a battery that is installed in a vehicle and is used for driving, and the temperature of the battery is increased during parking. It is characterized by discharging air to the outside of the vehicle.
 よって、本発明にあっては、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。 Therefore, in the present invention, the temperature rise during parking can be suppressed, and the battery life can be extended.
実施例1の車両用バッテリの保護装置の構造説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of the protection apparatus of the vehicle battery of Example 1. FIG. 実施例1の車両用バッテリの保護装置の構造説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of the protection apparatus of the vehicle battery of Example 1. FIG. ドラフタの構成例を示す説明図である。It is explanatory drawing which shows the structural example of a drafter. 実施例1の車両用バッテリの保護装置のブロック構成の概略を示す図である。It is a figure which shows the outline of the block configuration of the protection apparatus of the vehicle battery of Example 1. FIG. バッテリコントローラで実行される冷却ファン及び切替ドア制御の処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the process of the cooling fan and switching door control which are performed with a battery controller. 実施例2の車両用バッテリの保護装置で作動させる車両の空調システムの概略説明図である。It is a schematic explanatory drawing of the air-conditioning system of the vehicle operated with the vehicle battery protection apparatus of Example 2. バッテリコントローラ、エアコンコントローラにおいて実行するフロントエアコンの制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control process of the front air conditioner performed in a battery controller and an air-conditioner controller. 実施例3の車両用バッテリの保護装置で作動させる車両の空調システムの概略説明図である。It is a schematic explanatory drawing of the air conditioning system of the vehicle operated with the protection apparatus of the vehicle battery of Example 3. バッテリコントローラ、エアコンコントローラにおいて実行するリアエアコンの制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control process of the rear air conditioner performed in a battery controller and an air-conditioner controller.
符号の説明Explanation of symbols
  1 バッテリ装置
  2 バッテリ
  3 冷却ファン
  4 ダクト
 41 冷却路
 42 排出路
  5 切替ドア
  6 ドラフタ
 61 フィン
  7 リアシート
  8 リアパーセル
 81 開口部
  9 バッテリコントローラ
 91 温度センサ
 92 温度センサ
 93 SOCセンサ
 94 温度情報入力
 10 フロントエアコン
 11 リアエアコン
 12 電磁弁
101 コンデンサ
102 電動コンプレッサ
103 リキッドタンク
104 空調ファン
105 エアコンコントローラ
106 空調用エバポレータ
201 冷媒ライン
202 冷媒ライン
203 冷媒ライン
204 冷媒ライン
301 空調用エバポレータ
302 空調ファン
401 (高温の)空気
402 日射
  C 車両
DESCRIPTION OF SYMBOLS 1 Battery apparatus 2 Battery 3 Cooling fan 4 Duct 41 Cooling path 42 Discharge path 5 Switching door 6 Drawer 61 Fin 7 Rear seat 8 Rear parcel 81 Opening 9 Battery controller 91 Temperature sensor 92 Temperature sensor 93 SOC sensor 94 Temperature information input 10 Front air conditioner 11 Rear Air Conditioner 12 Solenoid Valve 101 Capacitor 102 Electric Compressor 103 Liquid Tank 104 Air Conditioning Fan 105 Air Conditioning Controller 106 Air Conditioning Evaporator 201 Refrigerant Line 202 Refrigerant Line 203 Refrigerant Line 204 Refrigerant Line 301 Air Conditioning Evaporator 302 Air Conditioning Fan 401 (High Temperature) Air 402 Solar radiation C vehicle
 以下、本発明の車両用バッテリの保護装置及び方法を実現する実施の形態を説明する。 Hereinafter, an embodiment for realizing the vehicle battery protection device and method of the present invention will be described.
 まず、構成を説明する。
 図1は実施例1の車両用バッテリの保護装置の構造説明図である。図2は実施例1の車両用バッテリの保護装置の構造説明図である。
 バッテリ装置1は、バッテリ2、冷却ファン3、ダクト4、切替ドア5、ドラフタ6を備えている。
 バッテリ装置1は、車両Cのリアシート7の後方で、リアパーセル8の下方に配置される。
 バッテリ2は、リチウムイオンを極間で交換して、充電放電を行うリチウムイオンバッテリである。リチウムイオンバッテリには、いわゆるメモリー効果が生じないという有利な特徴がある。
First, the configuration will be described.
FIG. 1 is an explanatory diagram of the structure of the vehicle battery protection device of the first embodiment. FIG. 2 is an explanatory diagram of the structure of the vehicle battery protection device according to the first embodiment.
The battery device 1 includes a battery 2, a cooling fan 3, a duct 4, a switching door 5, and a drafter 6.
The battery device 1 is disposed behind the rear seat 7 of the vehicle C and below the rear parcel 8.
The battery 2 is a lithium ion battery that performs charge and discharge by exchanging lithium ions between electrodes. Lithium-ion batteries have the advantageous feature that no so-called memory effect occurs.
 車両の走行用に用いるバッテリ2は、リチウムイオンバッテリの複数を直列に接続するように組み合わせた組電池にしたものである。
 この走行用の組電池にしたものの詳細例として、特開2000-116427を挙げておく。組電池の構造は、この詳細例に限らないものとするが、板状のリチウムイオンバッテリを組み合わせた最小単位のものをさらに複数組み合わせて用いる。その総数は数十個以上に達する。
The battery 2 used for driving the vehicle is an assembled battery in which a plurality of lithium ion batteries are combined in series.
JP-A-2000-116427 is cited as a detailed example of the battery pack for traveling. The structure of the assembled battery is not limited to this detailed example, but a plurality of the minimum units in which plate-like lithium ion batteries are combined are used. The total number reaches several dozen.
 冷却ファン3は、リアパーセル8に設けた開口部81から車室内の空気を取り込み、ダクト4へ送風する。なお、冷却ファン3は、駆動用に設けられているバッテリ2の高電圧により駆動されるものとする。
 ダクト4は、冷却ファン3からの送風を冷却路41と排出路42の2路に途中分流し、下流で合流させてドラフタ6へ接続する。
 そして、冷却路41は、バッテリ2を途中に介在させるようにする。つまり、冷却路41の上流側接続部分から、送風をバッテリ2の内部へ送るようにし、バッテリ2の一部から排風を冷却路41の下流側接続部分へ行う構造である。
The cooling fan 3 takes in air in the passenger compartment from an opening 81 provided in the rear parcel 8 and blows it to the duct 4. The cooling fan 3 is driven by the high voltage of the battery 2 provided for driving.
The duct 4 divides the air blown from the cooling fan 3 into two paths, a cooling path 41 and a discharge path 42, joins downstream, and connects to the drafter 6.
And the cooling path 41 is made to interpose the battery 2 in the middle. In other words, the air flow is sent from the upstream connection portion of the cooling path 41 to the inside of the battery 2, and the exhaust air is sent from a part of the battery 2 to the downstream connection portion of the cooling path 41.
 切替ドア5は、ダクト4の冷却路41と排出路42への分流部分に設けられ、駆動で揺動し、冷却ファン3からの送風を冷却路41へ送るか、排出路42へ送るかを切り替える。
 ドラフタ6は、車両の下床等に設けた空気の排出口である。
 図3はドラフタの構成例を示す説明図である。ドラフタ6には、フィン61を走行による空気の抵抗を受けない方向に傾斜させて設けるようにして、ダクト4の内部へ走行により空気が逆流するのを防止し、かつ、ダクト4からの排気が良好に行われる開口部にする構造である。
The switching door 5 is provided in a diversion portion of the duct 4 to the cooling path 41 and the discharge path 42, and swings by driving to determine whether to send the air blown from the cooling fan 3 to the cooling path 41 or to the discharge path 42. Switch.
The drafter 6 is an air outlet provided on the lower floor of the vehicle.
FIG. 3 is an explanatory diagram showing a configuration example of a drafter. The fins 61 are provided on the drafter 6 so as to be inclined in a direction not subject to air resistance by traveling, so that air does not flow back into the duct 4 due to traveling, and exhaust from the duct 4 is prevented. It is a structure which makes the opening part performed favorably.
 図4は実施例1の車両用バッテリの保護装置のブロック構成の概略を示す図である。
 バッテリ装置1は、バッテリコントローラ9、バッテリ2の内部温度を検出する温度センサ91、92、バッテリ2の充電率を検出するSOCセンサ93を備えている。
 そして、温度センサ91、92、SOCセンサ93の検出結果は、バッテリコントローラ9に入力される。
 なお、温度センサ91、92は、バッテリ2の内部の組電池表面の温度を計測するものであっても、ケース内部面や内部空間の温度を計測するものであってもよい。また、さらに複数個所の計測であってもよい。実施例1では、内部の2箇所を計測するものを例として示す。
FIG. 4 is a diagram schematically illustrating a block configuration of the vehicle battery protection device according to the first embodiment.
The battery device 1 includes a battery controller 9, temperature sensors 91 and 92 that detect the internal temperature of the battery 2, and an SOC sensor 93 that detects the charging rate of the battery 2.
The detection results of the temperature sensors 91 and 92 and the SOC sensor 93 are input to the battery controller 9.
The temperature sensors 91 and 92 may measure the temperature of the assembled battery surface inside the battery 2, or may measure the temperature of the case inner surface or the internal space. Further, measurement at a plurality of locations may be performed. In Example 1, what measures 2 places inside is shown as an example.
 さらにバッテリコントローラ9には、車両のエアコンシステムの日射センサ又は車室内温度センサからの検出結果を直接、または車両のエアコンシステムのコントローラから入力されるものとする。これを温度情報入力94とする。
 バッテリコントローラ9は、SOCセンサ93の検出結果から、充放電の制御を行う。また、温度センサ91、92の検出結果等から、冷却ファン3、切替ドア5の制御を行う。
Further, it is assumed that the detection result from the solar radiation sensor or the vehicle interior temperature sensor of the vehicle air conditioner system is input to the battery controller 9 directly or from the controller of the vehicle air conditioner system. This is the temperature information input 94.
The battery controller 9 controls charging / discharging from the detection result of the SOC sensor 93. Further, the cooling fan 3 and the switching door 5 are controlled based on the detection results of the temperature sensors 91 and 92.
 作用を説明する。
[冷却ファン及び切替ドア制御]
 図5に示すのは、バッテリコントローラで実行される冷却ファン及び切替ドア制御の処理の流れを示すフローチャート図で、以下各ステップを説明する。
The operation will be described.
[Cooling fan and switching door control]
FIG. 5 is a flowchart showing the flow of processing of the cooling fan and switching door control executed by the battery controller. Each step will be described below.
 ステップS1では、車室内空気温度の測定として、温度情報入力94からの情報入力を行う。 In step S1, information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
 ステップS2では、車室内空気温度が、予め設定した所定温度以上かどうかを判断し、所定温度以上ならばステップS3へ進み、所定温度に達しないならば処理を終了する。 In step S2, it is determined whether or not the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If the vehicle interior air temperature is equal to or higher than the predetermined temperature, the process proceeds to step S3.
 ステップS3では、SOCセンサ93の検出結果からバッテリ残量を測定する。 In step S3, the remaining battery level is measured from the detection result of the SOC sensor 93.
 ステップS4では、バッテリ2のバッテリ残量は、冷却ファン3を稼動可能な量かどうかを判断し、可能な量ならばステップS5へ進み、可能な量でないならば処理を終了する。
なお、稼動は予め設定する所定時間を駆動可能な量かどうかで判断するものとする。
In step S4, it is determined whether the remaining battery capacity of the battery 2 is an amount capable of operating the cooling fan 3. If the amount is possible, the process proceeds to step S5, and if not, the process is terminated.
The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
 ステップS5では、切替ドア5を作動させて、排出路42を送風が流れるように切り替え、その後に冷却ファン3を作動させる。 In step S5, the switching door 5 is operated to switch the discharge path 42 so that the air flows, and then the cooling fan 3 is operated.
 ステップS6では、バッテリ温度の測定として、温度センサ91、92からの入力を行う。 In step S6, input from the temperature sensors 91 and 92 is performed as measurement of the battery temperature.
 ステップS7では、バッテリが予め設定した所定温度以上かどうかを判断して、所定温度以上であるならばステップS10へ進み、所定温度に達しないならばステップS8へ進む。 In step S7, it is determined whether or not the battery is equal to or higher than a predetermined temperature. If it is equal to or higher than the predetermined temperature, the process proceeds to step S10, and if not, the process proceeds to step S8.
 ステップS8では、車室内の空気温度が所定温度以上かどうかを判断し、所定温度以上であるならば処理を終了し、所定温度に達しない温度であるならばステップS9へ進む。 In step S8, it is determined whether or not the air temperature in the passenger compartment is equal to or higher than a predetermined temperature. If it is equal to or higher than the predetermined temperature, the process is terminated, and if the temperature does not reach the predetermined temperature, the process proceeds to step S9.
 ステップS9では、冷却ファン3を停止し、処理を終了する。 In step S9, the cooling fan 3 is stopped and the process is terminated.
 ステップS10では、車室内空気温度の測定として、温度情報入力94からの情報入力を行う。 In step S10, information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
 ステップS11では、車室内空気温度がバッテリ温度以下かどうかを判断し、バッテリ温度以下ならばステップS12へ進み、バッテリ温度を超えるならば処理を終了する。 In step S11, it is determined whether or not the vehicle interior air temperature is equal to or lower than the battery temperature. If the vehicle temperature is equal to or lower than the battery temperature, the process proceeds to step S12.
 ステップS12では、切替ドア5を作動させて、冷却路41にも送風の一部が流れるように切り替え、風量を分配する。 In step S12, the switching door 5 is operated to switch so that a part of the air flows also to the cooling path 41, and the air volume is distributed.
 ステップS13では、バッテリ温度が予め設定した所定温度以上かどうかを判断し、所定温度以上であるならば処理を終了し、所定温度に達しないならばステップS14へ進む。 In step S13, it is determined whether or not the battery temperature is equal to or higher than a predetermined temperature set in advance. If it is equal to or higher than the predetermined temperature, the process is terminated.
 ステップS14では、切替ドア5を作動させて、風量を冷却路41へ分配することを終了し、排出路42を送風が流れるようにする。 In step S14, the switching door 5 is actuated to finish distributing the air volume to the cooling path 41 and allow the air to flow through the discharge path 42.
 [駐車時のバッテリ冷却作用]
 実施例1では、車両が駐車中に、エアコンシステムの日射センサまたは車室内温度センサにより検出された車室内温度を検知し(ステップS1)、車室内が炎天下駐車により高温、例えば50℃以上になった場合に(ステップS2)、以下に説明する冷却動作を行う。
冷却動作では、まず、バッテリコントローラ9によりSOCセンサ93の検出結果からSOC演算、つまりバッテリ残量検知を行う(ステップS3)。
 そして、冷却ファン3を稼動する電力供給、つまり冷却ファン3を所定時間駆動できる電力供給ができると判断した場合には(ステップS4)、切替ドア5を作動させ、ダクト4による風路が排出路42となるように切り替えた後、冷却ファン3を稼動させて車室内の高温になった空気401をドラフタ6から排気する(ステップS5)。
[Battery cooling during parking]
In the first embodiment, while the vehicle is parked, the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected (step S1), and the vehicle interior becomes high temperature, for example, 50 ° C. or higher due to parking in the sun. If this occurs (step S2), the cooling operation described below is performed.
In the cooling operation, first, the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S3).
When it is determined that the power supply for operating the cooling fan 3, that is, the power supply capable of driving the cooling fan 3 for a predetermined time can be obtained (step S 4), the switching door 5 is operated and the air path by the duct 4 is discharged. After switching to 42, the cooling fan 3 is operated to exhaust the air 401 having a high temperature in the passenger compartment from the drafter 6 (step S5).
 これにより、炎天下駐車により車室内が日射402により暖められ、高温にならないようになる。そのため、車室内温度により、バッテリ2が高温にならないため、バッテリが劣化せず、電池寿命が低下しない。
 冷却ファン3の稼動はバッテリ2の放電中となるので、これによりバッテリ温度が上昇した際には、冷却ファン3を停止させるか、車室内温度との比較によりバッテリ2を冷却する冷却路41に風量を分配する(ステップS11~S12)。
 これにより駐車時の冷却ファン3への電力供給によりバッテリ温度が劣化するような温度まで上昇しないように制御する。
 なお、冷却ファン3をこのように駆動する際には、エアコンシステムのドアは、外気取り入れ(Freshモード)状態になっていることが好ましい。
As a result, the vehicle interior is warmed by the solar radiation 402 due to parking under the sun, and does not become hot. Therefore, the battery 2 does not reach a high temperature due to the vehicle interior temperature, so the battery does not deteriorate and the battery life does not decrease.
Since the operation of the cooling fan 3 is during the discharge of the battery 2, when the battery temperature rises due to this, the cooling fan 3 is stopped, or the cooling path 41 that cools the battery 2 is compared with the vehicle interior temperature. The air volume is distributed (steps S11 to S12).
Thereby, it controls so that it may not rise to the temperature which battery temperature deteriorates by the electric power supply to the cooling fan 3 at the time of parking.
In addition, when driving the cooling fan 3 in this way, it is preferable that the door of the air conditioner system is in an outside air intake (Fresh mode) state.
 効果を説明する。
 実施例1の車両バッテリの保護装置にあっては、以下の効果を有する。
 (1)車両に設置され、駆動に用いられるバッテリ2を保護する車両用バッテリの保護装置であって、駐車の際にバッテリ2の温度を上昇させる車室内の高温な空気を車外へ排出するため、駐車時に日射により高温となる車室内空気を排出し、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。
Explain the effect.
The vehicle battery protection device of the first embodiment has the following effects.
(1) A vehicle battery protection device that is installed in a vehicle and protects a battery 2 used for driving, and for discharging hot air in a vehicle compartment that raises the temperature of the battery 2 during parking to the outside of the vehicle. The vehicle interior air that becomes hot due to solar radiation during parking can be discharged, temperature rise during parking can be suppressed, and the battery life can be extended.
 (2)上記(1)において、車両に設置され、駆動に用いられるバッテリ2を保護する車両用バッテリの保護装置であって、車室内温度を検出する温度情報入力94と、車室内の空気を取り入れてバッテリ2へ送風を行う冷却ファン3と、冷却ファン3からの送風をバッテリ2へ送るとともに、バッテリ2から車外へ排出させるダクト4の冷却路41と、冷却路41でバッテリ2を迂回し車外への排出を行うダクト4の排出路42と、冷却路41と排出路42の切替を行う切替ドア5と、冷却ファン3と切替ドア5を制御するバッテリコントローラ9を備え、バッテリコントローラ9は、車室内が所定温度より高温になると、切替ドア5の切替により車室内空気を排出させる排出制御(ステップS5)を行うため、駐車時に日射により高温となる車室内空気を排出路42からバッテリ2を迂回するように排出し、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。 (2) In the above (1), a vehicle battery protection device for protecting the battery 2 installed in the vehicle and used for driving, the temperature information input 94 for detecting the vehicle interior temperature, and the air in the vehicle interior The cooling fan 3 that takes in and blows air to the battery 2, sends the air blown from the cooling fan 3 to the battery 2, bypasses the battery 2 by the cooling path 41 of the duct 4 that discharges the battery 2 from the vehicle, and the cooling path 41. A discharge path 42 of the duct 4 that discharges outside the vehicle, a switching door 5 that switches between the cooling path 41 and the discharge path 42, a battery controller 9 that controls the cooling fan 3 and the switching door 5, When the interior of the vehicle becomes hotter than a predetermined temperature, the vehicle is heated to high temperatures due to solar radiation at the time of parking because the vehicle interior air is discharged by switching the switching door 5 (step S5). The inner air is discharged from the discharge passage 42 to bypass the battery 2, the temperature rise during parking can be suppressed and life of the battery.
 (3)上記(2)において、バッテリ2の温度を検出する温度センサ91、92を設け、バッテリコントローラ9は、排出制御中にバッテリ2の温度が所定温度より高くなると、切替ドア5の切替により排出路42へ送る風量の一部を冷却路41へ送るよう分配する分配制御(ステップS12)を行うため、車室内空気を排出させる排出制御を行っている際に、
バッテリ2が電力供給を行うことで発熱し上昇する温度を許容できる程度に抑えることができる。
(3) In the above (2), the temperature sensors 91 and 92 for detecting the temperature of the battery 2 are provided, and the battery controller 9 causes the switching door 5 to switch when the temperature of the battery 2 becomes higher than a predetermined temperature during the discharge control. In order to perform distribution control (step S12) for distributing part of the air volume sent to the discharge path 42 to the cooling path 41, when performing discharge control for discharging the vehicle interior air,
The temperature at which the battery 2 generates heat and rises by supplying power can be suppressed to an acceptable level.
 (8)駐車の際に日射により高温になった車室内の空気を車外へ排出するようにして、駆動に用いるように車両に設置されたバッテリ2の温度が高温にならないようにしたため、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。 (8) During parking, the air in the passenger compartment that has become hot due to solar radiation is discharged outside the vehicle, so that the temperature of the battery 2 installed in the vehicle is not high so that it can be used for driving. Temperature rise can be suppressed, and the battery life can be extended.
 実施例2は、フロントエアコンを駆動させることにより、車室内の高温空気を排出させる例である。
 構成を説明する。
 図6は実施例2の車両用バッテリの保護装置で作動させる車両の空調システムの概略説明図である。
 フロントエアコン10のシステムは、電動コンプレッサ102によって圧縮した高圧冷媒をコンデンサ101に送って放熱冷却させ冷媒を液化し、その後リキッドタンク103で水分やゴミを除去して液化した冷媒を電磁弁12へ送り、空調用エバポレータ106へ向かう冷媒ライン201の冷媒流量を制御する。そして、図示しない弁により冷媒を低圧に膨張させ、空調用エバポレータ106で冷媒を蒸発させて空調ファン104が車室内に送る空気を冷却し、蒸発した低圧冷媒を冷媒ライン202により回収して電動コンプレッサ102に送るようにして循環させるものである。
The second embodiment is an example in which high-temperature air in the passenger compartment is discharged by driving a front air conditioner.
The configuration will be described.
FIG. 6 is a schematic explanatory diagram of a vehicle air conditioning system operated by the vehicle battery protection device of the second embodiment.
The system of the front air conditioner 10 sends the high-pressure refrigerant compressed by the electric compressor 102 to the condenser 101 to radiate and cool it to liquefy the refrigerant, and then removes moisture and dust in the liquid tank 103 and sends the liquefied refrigerant to the solenoid valve 12. The refrigerant flow rate of the refrigerant line 201 toward the air conditioning evaporator 106 is controlled. Then, the refrigerant is expanded to a low pressure by a valve (not shown), the refrigerant is evaporated by the air conditioning evaporator 106, the air sent from the air conditioning fan 104 to the passenger compartment is cooled, and the evaporated low pressure refrigerant is collected by the refrigerant line 202 to be electrically compressed. It is circulated by sending it to 102.
 そして、実施例2では、バッテリコントローラ9からエアコンコントローラ105へ要求を出力し、制御を行う。
 また、実施例2では、駐車時は、切替ドア5は、排出路42へ通路を切り替えるものとする。また、フロントエアコン10は、駆動用のバッテリ2の高電圧により駆動するものとし、駐車時に外気取り入れ状態(Freshモード)にしておくものとする。
 その他構成は実施例1と同様であるので説明を省略する。
In the second embodiment, a request is output from the battery controller 9 to the air conditioner controller 105 to perform control.
Moreover, in Example 2, the switching door 5 shall switch a channel | path to the discharge path 42 at the time of parking. The front air conditioner 10 is driven by the high voltage of the driving battery 2 and is in an outside air intake state (Fresh mode) during parking.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 作用を説明する。
[フロントエアコンの制御処理]
 図7に示すのは、バッテリコントローラ、エアコンコントローラにおいて実行するフロントエアコンの制御処理の流れを示すフローチャートで、以下各ステップについて説明する。
The operation will be described.
[Control processing of front air conditioner]
FIG. 7 is a flowchart showing a flow of control processing of the front air conditioner executed in the battery controller and the air conditioner controller. Each step will be described below.
 ステップS21では、車室内空気温度の測定として、温度情報入力94からの情報入力を行う。 In step S21, information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
 ステップS22では、車室内空気温度が、予め設定した所定温度以上かどうかを判断し、所定温度以上ならばステップS23へ進み、所定温度に達しないならば処理を終了する。 In step S22, it is determined whether the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If the vehicle interior air temperature is equal to or higher than the predetermined temperature, the process proceeds to step S23.
 ステップS23では、SOCセンサ93の検出結果からバッテリ残量を測定する。 In step S23, the remaining battery level is measured from the detection result of the SOC sensor 93.
 ステップS24では、バッテリ2のバッテリ残量は、フロントエアコン10を稼動可能な量かどうかを判断し、可能な量ならばステップS25へ進み、可能な量でないならば処理を終了する。
 なお、稼動は予め設定する所定時間を駆動可能な量かどうかで判断するものとする。
In step S24, it is determined whether or not the remaining battery capacity of the battery 2 is an amount capable of operating the front air conditioner 10. If the amount is possible, the process proceeds to step S25, and if not, the process is terminated.
The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
 ステップS25では、電動コンプレッサ102の稼動が必要かどうかを車室内温度により判断し、必要ならばステップS26へ進み、必要でないならばステップS30へ進む。 In step S25, it is determined whether the operation of the electric compressor 102 is necessary based on the passenger compartment temperature. If necessary, the process proceeds to step S26, and if not necessary, the process proceeds to step S30.
 ステップS26では、フロントエアコン10を稼動させる。この稼動では、電動コンプレッサ102を作動させる。 In step S26, the front air conditioner 10 is operated. In this operation, the electric compressor 102 is operated.
 ステップS27では、フロントエアコン10の稼動により、車室内の空気圧を高め、排出路42を通してドラフタ6から車室内空気を排気する。 In step S27, the air pressure in the vehicle interior is increased by operating the front air conditioner 10, and the air in the vehicle interior is exhausted from the drafter 6 through the discharge path 42.
 ステップS28では、車室内が予め設定する所定温度以上かどうかを判断し、所定温度以上ならば処理を終了し、所定温度以下ならばステップS29へ進む。 In step S28, it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
 ステップS29では、フロントエアコン10の稼動を停止させ、処理を終了する。 In step S29, the operation of the front air conditioner 10 is stopped and the process is terminated.
 ステップS30では、フロントエアコン10を稼動させる。この稼動では、電動コンプレッサ102を作動させない。 In step S30, the front air conditioner 10 is operated. In this operation, the electric compressor 102 is not operated.
 ステップS31では、フロントエアコン10の稼動により、車室内の空気圧を高め、排出路42を通してドラフタ6から車室内空気を排気する。 In Step S31, the air pressure in the vehicle interior is increased by operating the front air conditioner 10, and the air in the vehicle interior is exhausted from the drafter 6 through the discharge path 42.
 ステップS32では、車室内が予め設定する所定温度以上かどうかを判断し、所定温度以上ならば処理を終了し、所定温度以下ならばステップS33へ進む。 In step S32, it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature, and if it is equal to or higher than the predetermined temperature, the process is terminated.
 ステップS33では、フロントエアコン10の稼動を停止させ、処理を終了する。 In step S33, the operation of the front air conditioner 10 is stopped and the process is terminated.
 [駐車時のバッテリ冷却作用]
 実施例2では、車両が駐車中に、エアコンシステムの日射センサまたは車室内温度センサにより検出された車室内温度を検知し(ステップS21)、車室内が炎天下駐車により高温、例えば50℃以上になった場合に(ステップS22)、以下に説明する冷却動作を行う。
 冷却動作では、まず、バッテリコントローラ9によりSOCセンサ93の検出結果からSOC演算、つまりバッテリ残量検知を行う(ステップS23)。
 そして、フロントエアコン10を稼動する電力供給、つまりフロントエアコン10を所定時間駆動できる電力供給ができると判断した場合には(ステップS24)、フロントエアコン10を稼動させる。フロントエアコン10を稼動させると、空調ファン104により外気を取り入れて、車室内へ送風する。すると、車室内の空気圧が上がることになり、空気圧の下がった車外へ空気の移動を生じさせる。車室内の空気の排出経路としては、リアパーセル8に設けた開口部81からダクト4を通り、切替ドア5の切り替えにより排出路42を通り、ドラフタ6から車外へ排出する経路となる(ステップS31)。
[Battery cooling during parking]
In the second embodiment, the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected while the vehicle is parked (step S21), and the vehicle interior becomes hot due to parking under hot weather, for example, 50 ° C or higher. If this happens (step S22), the cooling operation described below is performed.
In the cooling operation, first, the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S23).
Then, when it is determined that the power supply for operating the front air conditioner 10, that is, the power supply capable of driving the front air conditioner 10 for a predetermined time can be performed (step S24), the front air conditioner 10 is operated. When the front air conditioner 10 is operated, outside air is taken in by the air conditioning fan 104 and blown into the vehicle interior. Then, the air pressure in the passenger compartment increases, causing the air to move out of the vehicle where the air pressure has dropped. As a discharge path for the air in the passenger compartment, a path for passing through the duct 4 from the opening 81 provided in the rear parcel 8, passing through the discharge path 42 by switching the switching door 5, and discharging from the drafter 6 to the outside (step S <b> 31) ).
 これにより、炎天下駐車により車室内が日射により暖められ、高温にならないようになる。そのため、車室内温度により、バッテリ2が高温にならないため、バッテリ2が劣化せず、電池寿命が低下しない。
 さらに、供給電力が充分に残存していて、車室内温度が非常に高温の場合には、電動コンプレッサ102を作動させる。すると、フロントエアコン10の冷媒が循環し、空調ファン104により車室内に送風される空気は熱交換された冷却された空気となる(ステップS26、S27)。そのため、車室内の日射による高温は、排出されるのに加えて、冷却されることになる。これにより、さらにバッテリ2は熱で劣化しなくなり、電池寿命が向上する。
As a result, the vehicle interior is warmed by solar radiation by parking under hot weather, and does not become hot. Therefore, the battery 2 does not reach a high temperature due to the vehicle interior temperature, so the battery 2 does not deteriorate and the battery life does not decrease.
Furthermore, when the supplied electric power is sufficiently remaining and the passenger compartment temperature is very high, the electric compressor 102 is operated. Then, the refrigerant of the front air conditioner 10 circulates, and the air blown into the vehicle interior by the air conditioning fan 104 becomes cooled air after heat exchange (steps S26 and S27). Therefore, the high temperature due to solar radiation in the passenger compartment is cooled in addition to being discharged. Thereby, the battery 2 is not further deteriorated by heat, and the battery life is improved.
 また、フロントエアコン10の駆動によりバッテリ2の温度が上昇するならば、バッテリ温度と車室内温度によっては、切替ドア5を作動させて、車室内からの排気をバッテリ2の冷却に用いるようにしてもよい。
 さらに、冷却ファン3を駆動させて強制的な排気を適度なタイミングで加える。もしくは、フロントエアコン10との交互な稼動を行うようにして効率よく車室内温度の排気、冷却を行うようにしてもよい。
Further, if the temperature of the battery 2 rises due to the driving of the front air conditioner 10, depending on the battery temperature and the vehicle interior temperature, the switching door 5 is operated so that the exhaust from the vehicle interior is used for cooling the battery 2. Also good.
Further, the cooling fan 3 is driven to apply forced exhaust at an appropriate timing. Alternatively, the vehicle interior temperature may be efficiently exhausted and cooled by alternately operating with the front air conditioner 10.
 効果を説明する。実施例2の車両用バッテリの保護装置にあっては、上記(1)~(3)に加えて、以下の効果を有する。
 (4)上記(1)~(3)において、車両の前方側で車室内へ送風を行う空調ファン104を備えたフロントエアコン10を、駐車時で且つ車室内温度が所定温度以上の際に稼動させるバッテリコントローラ9、エアコンコントローラ105で実行するステップS21~S25、S30~S31の処理を備えたため、外気を取り入れて車室内へ送風し、車室内圧を高めることにより、気圧差により高温な車室内空気を排気し、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。
Explain the effect. The vehicle battery protection device according to the second embodiment has the following effects in addition to the above (1) to (3).
(4) In the above (1) to (3), the front air conditioner 10 including the air conditioning fan 104 that blows air into the vehicle interior in front of the vehicle is operated when the vehicle is parked and the vehicle interior temperature is equal to or higher than a predetermined temperature. Since the processing of steps S21 to S25 and S30 to S31 executed by the battery controller 9 and the air conditioner controller 105 is provided, outside air is taken into the vehicle interior and the vehicle interior pressure is increased to increase the vehicle interior pressure, thereby increasing the temperature of the vehicle interior Air can be exhausted, temperature rise during parking can be suppressed, and the battery life can be extended.
 (5)上記(4)において、バッテリコントローラ9、エアコンコントローラ105で実行するステップS26、S27の処理で、フロントエアコン10の電動コンプレッサ102を作動させるため、車室内圧を高めるために車室内へ送る空気を冷却した空気にすることにより、車室内をさらに冷却し、より駐車中の温度上昇を抑制することができ、電池を長寿命化できる。
 その他作用効果は実施例1と同様であるので説明を省略する。
(5) In the above (4), in step S26 and S27 executed by the battery controller 9 and the air conditioner controller 105, the electric compressor 102 of the front air conditioner 10 is operated. By making the air into cooled air, the passenger compartment can be further cooled, temperature rise during parking can be further suppressed, and the battery life can be extended.
Since other functions and effects are the same as those of the first embodiment, description thereof is omitted.
 実施例3は、リアエアコンを駆動させることにより、車室内の高温空気を排出させる例である。
 構成を説明する。
 図8は実施例3の車両用バッテリの保護装置で作動させる車両の空調システムの概略説明図である。
 実施例3では、フロントエアコン10に加えて、車両の後部の空調を行うリアエアコン11を車両が備えているものとする。そして、バッテリコントローラ9からの要求をエアコンコントローラ105が受けることにより、リアエアコン11が制御されるものとする。
The third embodiment is an example in which high-temperature air in the passenger compartment is discharged by driving a rear air conditioner.
The configuration will be described.
FIG. 8 is a schematic explanatory diagram of a vehicle air conditioning system operated by the vehicle battery protection device of the third embodiment.
In the third embodiment, in addition to the front air conditioner 10, the vehicle includes a rear air conditioner 11 that performs air conditioning of the rear portion of the vehicle. Then, it is assumed that the rear air conditioner 11 is controlled when the air conditioner controller 105 receives a request from the battery controller 9.
 リアエアコン11の概略構成について説明する。車両の後部座席の近傍には、リアエアコン11の空調用エバポレータ301、空調ファン302を設けるようにする。そして図8に示すように、電磁弁12で分岐するようにして冷媒ライン203を設けて、空調用エバポレータ301に冷媒を送るようにする。さらに、空調用エバポレータ301からの冷媒ライン204を設けて、この冷媒ライン204を冷媒ライン202に合流させて、冷媒を回収する。そして、空調ファン302により車室内後部への送風を、空調用エバポレータ301で冷却する構成である。 The schematic configuration of the rear air conditioner 11 will be described. An air conditioning evaporator 301 and an air conditioning fan 302 for the rear air conditioner 11 are provided in the vicinity of the rear seat of the vehicle. Then, as shown in FIG. 8, a refrigerant line 203 is provided so as to be branched by the electromagnetic valve 12, and the refrigerant is sent to the air conditioning evaporator 301. Further, a refrigerant line 204 from the air conditioning evaporator 301 is provided, and the refrigerant line 204 is joined to the refrigerant line 202 to recover the refrigerant. And it is the structure which cools the ventilation to the vehicle interior rear part with the air-conditioning evaporator 301 by the air-conditioning fan 302. FIG.
 また、実施例3では、駐車時は、切替ドア5は、排出路42へ通路を切り替えるものとする。また、リアエアコン11は、駆動用のバッテリ2の高電圧により駆動するものとし、駐車時に外気取り入れ状態(Freshモード)にしておくものとする。
 その他構成は実施例1と同様であるので説明を省略する。
In the third embodiment, the switching door 5 switches the passage to the discharge path 42 during parking. The rear air conditioner 11 is driven by the high voltage of the driving battery 2 and is in an outside air intake state (Fresh mode) during parking.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 作用を説明する。
[リアエアコンの制御処理]
 図9に示すのは、バッテリコントローラ、エアコンコントローラにおいて実行するリアエアコンの制御処理の流れを示すフローチャートで、以下各ステップについて説明する。
The operation will be described.
[Rear air conditioner control processing]
FIG. 9 is a flowchart showing a flow of control processing of the rear air conditioner executed in the battery controller and the air conditioner controller. Each step will be described below.
 ステップS41では、車室内空気温度の測定として、温度情報入力94からの情報入力を行う。 In step S41, information is input from the temperature information input 94 as measurement of the air temperature in the passenger compartment.
 ステップS42では、車室内空気温度が、予め設定した所定温度以上かどうかを判断し、所定温度以上ならばステップS43へ進み、所定温度に達しないならば処理を終了する。 In step S42, it is determined whether or not the vehicle interior air temperature is equal to or higher than a predetermined temperature set in advance. If it is equal to or higher than the predetermined temperature, the process proceeds to step S43, and if it does not reach the predetermined temperature, the process is terminated.
 ステップS43では、SOCセンサ93の検出結果からバッテリ残量を測定する。 In step S43, the remaining battery level is measured from the detection result of the SOC sensor 93.
 ステップS44では、バッテリ2のバッテリ残量は、リアエアコン11を稼動可能な量かどうかを判断し、可能な量ならばステップS45へ進み、可能な量でないならば処理を終了する。
 なお、稼動は予め設定する所定時間を駆動可能な量かどうかで判断するものとする。
In step S44, it is determined whether or not the remaining battery capacity of the battery 2 is an amount capable of operating the rear air conditioner 11. If the amount is possible, the process proceeds to step S45, and if not, the process is terminated.
The operation is determined based on whether or not the predetermined time set in advance is an amount that can be driven.
 ステップS45では、電動コンプレッサ102の稼動が必要かどうかを車室内温度により判断し、必要ならばステップS46へ進み、必要でないならばステップS50へ進む。  In step S45, it is determined whether the operation of the electric compressor 102 is necessary based on the vehicle interior temperature. If necessary, the process proceeds to step S46, and if not necessary, the process proceeds to step S50. *
 ステップS46では、リアエアコン11を稼動させる。この稼動では、電動コンプレッサ102を作動させる。 In step S46, the rear air conditioner 11 is operated. In this operation, the electric compressor 102 is operated.
 ステップS47では、リアエアコン11の稼動により、車室内の空気圧を高め、排出路42を通してドラフタ6から車室内空気を排気する。 In step S47, the operation of the rear air conditioner 11 increases the air pressure in the passenger compartment, and exhausts the passenger compartment air from the drafter 6 through the discharge path 42.
 ステップS48では、車室内が予め設定する所定温度以上かどうかを判断し、所定温度以上ならば処理を終了し、所定温度以下ならばステップS49へ進む。 In step S48, it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
 ステップS49では、リアエアコン11の稼動を停止させ、処理を終了する。 In step S49, the operation of the rear air conditioner 11 is stopped and the process is terminated.
 ステップS50では、リアエアコン11を稼動させる。この稼動では、電動コンプレッサ102を作動させない。 In step S50, the rear air conditioner 11 is operated. In this operation, the electric compressor 102 is not operated.
 ステップS51では、リアエアコン11の稼動により、車室内の空気圧を高め、排出路42を通してドラフタ6から車室内空気を排気する。 In step S51, the operation of the rear air conditioner 11 increases the air pressure in the passenger compartment, and exhausts the passenger compartment air from the drafter 6 through the discharge passage 42.
 ステップS52では、車室内が予め設定する所定温度以上かどうかを判断し、所定温度以上ならば処理を終了し、所定温度以下ならばステップS53へ進む。 In step S52, it is determined whether or not the interior of the passenger compartment is equal to or higher than a predetermined temperature. If the temperature is equal to or higher than the predetermined temperature, the process is terminated.
 ステップS53では、リアエアコン11の稼動を停止させ、処理を終了する。 In step S53, the operation of the rear air conditioner 11 is stopped and the process is terminated.
 [駐車時のバッテリ冷却作用]
 実施例3では、車両が駐車中に、エアコンシステムの日射センサまたは車室内温度センサにより検出された車室内温度を検知し(ステップS41)、車室内が炎天下駐車により高温、例えば50℃以上になった場合に(ステップS42)、以下に説明する冷却動作を行う。
 冷却動作では、まず、バッテリコントローラ9によりSOCセンサ93の検出結果からSOC演算、つまりバッテリ残量検知を行う(ステップS43)。
 そして、リアエアコン11を稼動する電力供給、つまりリアエアコン11を所定時間駆動できる電力供給ができると判断した場合には(ステップS44)、リアエアコン11を稼動させる。リアエアコン11を稼動させると、空調ファン302により外気を取り入れて、車室内後部へ送風する。すると、車室内の空気圧が上がることになり、空気圧の下がった車外へ空気の移動を生じさせる。車室内の空気の排出経路としては、リアパーセル8に設けた開口部81からダクト4を通り、切替ドア5の切り替えにより排出路42を通り、ドラフタ6から車外へ排出する経路となる(ステップS51)。
[Battery cooling during parking]
In the third embodiment, the vehicle interior temperature detected by the solar radiation sensor or the vehicle interior temperature sensor of the air conditioner system is detected while the vehicle is parked (step S41), and the vehicle interior becomes high temperature, for example, 50 ° C. or more due to the parking under the sun. If this occurs (step S42), the cooling operation described below is performed.
In the cooling operation, first, the battery controller 9 performs SOC calculation from the detection result of the SOC sensor 93, that is, battery remaining amount detection (step S43).
When it is determined that the power supply for operating the rear air conditioner 11, that is, the power supply that can drive the rear air conditioner 11 for a predetermined time can be obtained (step S44), the rear air conditioner 11 is operated. When the rear air conditioner 11 is operated, outside air is taken in by the air conditioning fan 302 and is blown to the rear of the passenger compartment. Then, the air pressure in the passenger compartment increases, causing the air to move out of the vehicle where the air pressure has dropped. The air discharge path in the passenger compartment is a path that passes through the duct 4 from the opening 81 provided in the rear parcel 8, passes through the discharge path 42 by switching the switching door 5, and is discharged out of the vehicle from the drafter 6 (step S <b> 51). ).
 これにより、炎天下駐車により車室内が日射により暖められ、高温にならないようになる。そのため、車室内温度により、バッテリ2が高温にならないため、バッテリ2が劣化せず、電池寿命が低下しない。また、バッテリ2はリアシート7の直ぐ後方に位置するため、リアエアコン11の空調ファン302により送風し、排気を行うことは、バッテリ2の上方に高温空気が長く留まらないようにできるので、バッテリの温度抑制がさらに向上する。 】 This will keep the vehicle interior warmed by the sun by parking under hot weather and will not become hot. Therefore, the battery 2 does not reach a high temperature due to the vehicle interior temperature, so the battery 2 does not deteriorate and the battery life does not decrease. In addition, since the battery 2 is located immediately behind the rear seat 7, the air is blown and exhausted by the air conditioning fan 302 of the rear air conditioner 11, so that the high temperature air does not stay for a long time above the battery 2. Temperature suppression is further improved.
 さらに、供給電力が充分に残存していて、車室内温度が非常に高温の場合には、電動コンプレッサ102を作動させる。すると、リアエアコン11の冷媒が循環し、空調ファン302により車室内に送風される空気は熱交換された冷却された空気となる(ステップS46、S47)。そのため、車室内の日射による高温は、排出されるのに加えて、冷却されることになる。これにより、さらにバッテリ2は熱で劣化しなくなり、電池寿命が向上する。
 さらに、リアエアコン11が設けられる車両では、本実施例3のように、フロントエアコン10も設けられることが多い。そのため、例えば、電動コンプレッサ102を作動させない状態で、リアエアコン11の空調ファン302により車室内への送風を行う際に、フロントエアコン10の空調ファン104によっても車室内への送風を行えば、車室内の高温空気は、より早く排気されることになり、さらにバッテリ2を劣化させないようにする。
Furthermore, when the supplied electric power is sufficiently remaining and the passenger compartment temperature is very high, the electric compressor 102 is operated. Then, the refrigerant of the rear air conditioner 11 circulates, and the air blown into the vehicle interior by the air conditioning fan 302 becomes heat-cooled cooled air (steps S46 and S47). Therefore, the high temperature due to solar radiation in the passenger compartment is cooled in addition to being discharged. Thereby, the battery 2 is not further deteriorated by heat, and the battery life is improved.
Further, in the vehicle provided with the rear air conditioner 11, the front air conditioner 10 is often provided as in the third embodiment. Therefore, for example, when air is blown into the vehicle interior by the air conditioning fan 302 of the rear air conditioner 11 without operating the electric compressor 102, The hot air in the room is exhausted more quickly, and the battery 2 is not deteriorated.
 また、電動コンプレッサ102を作動させる際に、フロントエアコン10の空調ファン104によっても車室内への送風を行えば、さらに車室内を効果高く冷却することになる。
 また、フロントエアコン10の駆動によりバッテリ2の温度が上昇するならば、バッテリ温度と車室内温度によっては、切替ドア5を作動させて、車室内からの排気をバッテリ2の冷却に用いるようにしてもよい。
 さらに、冷却ファン3を駆動させて強制的な排気を適度なタイミングで加える。もしくは、リアエアコン11、フロントエアコン10との交互な稼動を行うようにして効率よく車室内温度の排気、冷却を行うようにしてもよい。
Further, when the electric compressor 102 is operated, if the air-conditioning fan 104 of the front air conditioner 10 also blows air into the vehicle interior, the vehicle interior is further effectively cooled.
Further, if the temperature of the battery 2 rises due to the driving of the front air conditioner 10, depending on the battery temperature and the vehicle interior temperature, the switching door 5 is operated so that the exhaust from the vehicle interior is used for cooling the battery 2. Also good.
Further, the cooling fan 3 is driven to apply forced exhaust at an appropriate timing. Alternatively, the vehicle interior temperature may be efficiently exhausted and cooled by alternately operating the rear air conditioner 11 and the front air conditioner 10.
 効果を説明する。実施例3の車両用バッテリの保護装置にあっては、上記(1)~(5)に加えて以下の効果を有する。
 (6)上記(1)~(5)において、車両の後方側で車室内へ送風を行う空調ファン302を備えたリアエアコン11を、駐車時で且つ車室内温度が所定温度以上の際に稼動させるバッテリコントローラ9及びエアコンコントローラ105で実行するステップS41~S45、S50、S51の処理を備えたため、外気を取り入れて車室内へよりバッテリ2に近い位置で送風し、車室内圧を高めることにより、気圧差により高温な車室内空気を排気し、駐車中の温度上昇を抑制することができ、電池を長寿命化できる。
Explain the effect. The vehicle battery protection apparatus according to the third embodiment has the following effects in addition to the above (1) to (5).
(6) In the above (1) to (5), the rear air conditioner 11 including the air conditioning fan 302 that blows air into the vehicle interior on the rear side of the vehicle is operated when parking and the vehicle interior temperature is equal to or higher than a predetermined temperature. Since the processing of steps S41 to S45, S50, and S51 executed by the battery controller 9 and the air conditioner controller 105 to be performed is provided, outside air is taken into the vehicle interior at a position closer to the battery 2 and the vehicle interior pressure is increased. Hot air in the passenger compartment can be exhausted by the pressure difference, temperature rise during parking can be suppressed, and the battery life can be extended.
 (7)上記(6)において、ステップS46、S47の処理により、空調のために車両に設けられている電動コンプレッサ102を作動させるため、車室内圧を高めるために車室内へ送る空気を冷却した空気にすることにより、車室内をさらに冷却し、より駐車中の温度上昇を抑制することができ、電池を長寿命化できる。
 その他作用効果は実施例1、実施例2と同様であるので説明を省略する。
(7) In the above (6), the air sent to the vehicle interior is cooled in order to increase the vehicle interior pressure in order to operate the electric compressor 102 provided in the vehicle for air conditioning by the processing of steps S46 and S47. By using air, the passenger compartment can be further cooled, temperature rise during parking can be further suppressed, and the battery life can be extended.
Since other functions and effects are the same as those of the first and second embodiments, the description thereof is omitted.
 以上、本発明の車両用バッテリの保護装置を実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the vehicle battery protection device of the present invention has been described based on the first to third embodiments, the specific configuration is not limited to these embodiments and does not depart from the gist of the invention. As long as the design is changed or added, it is allowed.
 例えば実施例2では、バッテリ装置に設けた排出路やドラフタ等、実施例1の構成により車室内空気の排気を行ったが、車室内は車外に対して、適度に通気性が確保されているので、車室内圧を高めるのみであってもよい。
 また例えば、フロントエアコンを設けていても、リアエアコンのみを稼動するものであってもよい。
For example, in the second embodiment, the vehicle interior air is exhausted by the configuration of the first embodiment such as the discharge path and the drafter provided in the battery device, but the interior of the vehicle interior is appropriately ventilated with respect to the outside of the vehicle. Therefore, it is only necessary to increase the vehicle interior pressure.
For example, even if a front air conditioner is provided, only a rear air conditioner may be operated.
 本出願は、2008年2月2日出願の日本特許出願・特願2008-023393に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2008-023393 filed on Feb. 2, 2008, the contents of which are incorporated herein by reference.

Claims (8)

  1.  車両に設置され、駆動に用いられるバッテリを保護する車両用バッテリの保護装置であって、
     駐車の際に前記バッテリの温度を上昇させる車室内の高温な空気を車外へ排出する、
     ことを特徴とする車両用バッテリの保護装置。
    A vehicle battery protection device for protecting a battery installed in a vehicle and used for driving,
    Exhausting hot air in the passenger compartment that raises the temperature of the battery during parking,
    A battery protection device for a vehicle.
  2.  請求項1に記載の車両用バッテリの保護装置において、
     車室内温度を検出する車室内温度検出手段と、
     車室内の空気を取り入れて前記バッテリへ送風を行う送風手段と、
     前記送風手段からの送風を前記バッテリへ送るとともに、前記バッテリから車外へ排出させる冷却路と、
     前記冷却路で前記バッテリを迂回し車外への排出を行う排出路と、
     前記冷却路と前記排出路の切替を行う配風手段と、
     前記送風手段と前記配風手段を制御する制御手段と、
     を備え、
     前記制御手段は、
     車室内が所定温度より高温になると、前記配風手段の切替により車室内空気を排出させる排出制御を行う、
     ことを特徴とする車両用バッテリの保護装置。
    The vehicle battery protection device according to claim 1,
    A vehicle interior temperature detecting means for detecting the vehicle interior temperature;
    Air blowing means for taking in air from the passenger compartment and blowing air to the battery;
    While sending the air from the air blowing means to the battery, a cooling path for discharging the battery to the outside of the vehicle,
    A discharge path that bypasses the battery in the cooling path and discharges outside the vehicle;
    Air distribution means for switching between the cooling path and the discharge path;
    Control means for controlling the air blowing means and the air distribution means;
    With
    The control means includes
    When the vehicle interior becomes hotter than a predetermined temperature, exhaust control is performed to exhaust vehicle interior air by switching the air distribution means.
    A battery protection device for a vehicle.
  3.  請求項2に記載の車両用バッテリの保護装置において、
     前記バッテリの温度を検出するバッテリ温度検出手段を設け、
     前記制御手段は、
     前記排出制御中に前記バッテリの温度が所定温度より高くなると、前記配風手段の切替により前記排出路へ送る風量の一部を前記冷却路へ送るよう分配する分配制御を行う、
     ことを特徴とする車両用バッテリの保護装置。
    The vehicle battery protection device according to claim 2,
    A battery temperature detecting means for detecting the temperature of the battery;
    The control means includes
    When the temperature of the battery becomes higher than a predetermined temperature during the discharge control, distribution control is performed to distribute a part of the amount of air sent to the discharge path by switching the air distribution means to the cooling path.
    A battery protection device for a vehicle.
  4.  請求項1~請求項3のいずれか1項に記載のバッテリの保護装置において、
     車両の前方側で車室内へ送風を行う空調ファンを備えたフロントエアコンを、駐車時で且つ車室内温度が所定温度以上の際に稼動させるフロントエアコン制御手段を備えた、
     ことを特徴とする車両用バッテリの保護装置。
    The battery protection device according to any one of claims 1 to 3,
    Front air conditioner control means for operating a front air conditioner equipped with an air conditioning fan that blows air into the vehicle interior on the front side of the vehicle when parking and when the vehicle interior temperature is equal to or higher than a predetermined temperature,
    A battery protection device for a vehicle.
  5.  請求項4に記載のバッテリの保護装置において、
     前記フロントエアコン制御は、前記フロントエアコンの電動コンプレッサを作動させる、
     ことを特徴とする車両用バッテリの保護装置。
    The battery protection device according to claim 4,
    The front air conditioner control operates an electric compressor of the front air conditioner.
    A battery protection device for a vehicle.
  6.  請求項1~請求項5のいずれか1項に記載のバッテリの保護装置において、
     車両の後方側で車室内へ送風を行う空調ファンを備えたリアエアコンを、駐車時で且つ車室内温度が所定温度以上の際に稼動させるリアエアコン制御手段を備えた、
     ことを特徴とする車両用バッテリの保護装置。
    The battery protection device according to any one of claims 1 to 5,
    A rear air conditioner control means for operating a rear air conditioner provided with an air conditioning fan for blowing air into the passenger compartment on the rear side of the vehicle at the time of parking and when the passenger compartment temperature is equal to or higher than a predetermined temperature;
    A battery protection device for a vehicle.
  7.  請求項6に記載のバッテリの保護装置において、
     前記リアエアコン制御手段は、空調のために車両に設けられている電動コンプレッサを作動させる、
     ことを特徴とする車両用バッテリの保護装置。
    The battery protection device according to claim 6,
    The rear air conditioner control means operates an electric compressor provided in the vehicle for air conditioning.
    A battery protection device for a vehicle.
  8.  駐車の際に日射により高温になった車室内の空気を車外へ排出するようにして、駆動に用いるように車両に設置されたバッテリの温度が高温にならないようにした、ことを特徴とする車両用バッテリの保護方法。 A vehicle characterized in that the temperature of a battery installed in the vehicle is prevented from becoming high so as to be used for driving by discharging the air in the passenger compartment that has become hot due to solar radiation when parking. Battery protection method.
PCT/JP2009/051732 2008-02-02 2009-02-02 Vehicle battery protective device and method WO2009096584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008023393 2008-02-02
JP2008-023393 2008-02-02

Publications (1)

Publication Number Publication Date
WO2009096584A1 true WO2009096584A1 (en) 2009-08-06

Family

ID=40912926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051732 WO2009096584A1 (en) 2008-02-02 2009-02-02 Vehicle battery protective device and method

Country Status (1)

Country Link
WO (1) WO2009096584A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023875A1 (en) * 2009-08-31 2011-03-03 Peugeot Citroën Automobiles SA Motor vehicle comprising a circuit for cooling an electric power supply module
FR2956620A1 (en) * 2010-02-25 2011-08-26 Peugeot Citroen Automobiles Sa Vehicle i.e. motor vehicle, has air exhaust duct terminated with air extraction device emerged tangentially to exterior of vehicle on sidewall of vehicle in maximum depression area of vehicle
JP2013248966A (en) * 2012-05-31 2013-12-12 Denso Corp Vehicle system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130268A (en) * 1999-11-09 2001-05-15 Denso Corp Forced cooling device of battery for electric car
JP2004001674A (en) * 2001-10-29 2004-01-08 Denso Corp Battery temperature control device
JP2005186868A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Cooling device for battery mechanism
JP2006015862A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Battery cooling system for vehicle
JP2006168526A (en) * 2004-12-15 2006-06-29 Denso Corp Motor control device and ventilation control device for vehicle
JP2006240403A (en) * 2005-03-01 2006-09-14 Denso Corp Air-conditioning device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130268A (en) * 1999-11-09 2001-05-15 Denso Corp Forced cooling device of battery for electric car
JP2004001674A (en) * 2001-10-29 2004-01-08 Denso Corp Battery temperature control device
JP2005186868A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Cooling device for battery mechanism
JP2006015862A (en) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd Battery cooling system for vehicle
JP2006168526A (en) * 2004-12-15 2006-06-29 Denso Corp Motor control device and ventilation control device for vehicle
JP2006240403A (en) * 2005-03-01 2006-09-14 Denso Corp Air-conditioning device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023875A1 (en) * 2009-08-31 2011-03-03 Peugeot Citroën Automobiles SA Motor vehicle comprising a circuit for cooling an electric power supply module
FR2949391A1 (en) * 2009-08-31 2011-03-04 Peugeot Citroen Automobiles Sa MOTOR VEHICLE COMPRISING A COOLING CIRCUIT OF AN ELECTRIC POWER SUPPLY MODULE
CN102481833A (en) * 2009-08-31 2012-05-30 标致·雪铁龙汽车公司 Motor vehicle comprising a cooling circuit for cooling a power supply module
JP2013503073A (en) * 2009-08-31 2013-01-31 プジョー シトロエン オートモビル エス アー Automobile vehicle equipped with power supply module cooling circuit
FR2956620A1 (en) * 2010-02-25 2011-08-26 Peugeot Citroen Automobiles Sa Vehicle i.e. motor vehicle, has air exhaust duct terminated with air extraction device emerged tangentially to exterior of vehicle on sidewall of vehicle in maximum depression area of vehicle
JP2013248966A (en) * 2012-05-31 2013-12-12 Denso Corp Vehicle system

Similar Documents

Publication Publication Date Title
US11097596B2 (en) Vehicle equipped with electric motor
JP5652331B2 (en) Battery temperature control system and battery charging system
US9796241B2 (en) Vehicle temperature control apparatus and in-vehicle thermal system
JP6593375B2 (en) Vehicle thermal management device
US10160291B2 (en) Vehicle air conditioning apparatus
WO2019039153A1 (en) Vehicle air-conditioning device
CN105637699A (en) Battery temperature adjustment device
JP2009154698A (en) Battery temperature control device
US20150380785A1 (en) Temperature regulation device
JP2008055990A (en) Vehicular battery cooling system
WO2020235263A1 (en) In-vehicle device temperature adjusting device and vehicle air conditioning device provided with same
WO2009102014A1 (en) Battery cooling system
WO2020218268A1 (en) Vehicle control system
JP6319009B2 (en) Cooling system
CN113165476A (en) Air conditioner for vehicle
WO2009096584A1 (en) Vehicle battery protective device and method
CN113015638A (en) Air conditioner for vehicle
JP5772646B2 (en) Air conditioner for vehicles
JP2013107554A (en) Vehicle
JP6507568B2 (en) Automotive equipment cooling structure
JP2010280352A (en) Control device of vehicle
JP2009154697A (en) Battery temperature control device
JP6097975B2 (en) Vehicle cooling device
JP6895369B2 (en) Vehicles with multiple drive sources
JP5210803B2 (en) Exhaust heat recovery system for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705149

Country of ref document: EP

Kind code of ref document: A1