WO2009095958A1 - Ms/ms型質量分析装置 - Google Patents

Ms/ms型質量分析装置 Download PDF

Info

Publication number
WO2009095958A1
WO2009095958A1 PCT/JP2008/001197 JP2008001197W WO2009095958A1 WO 2009095958 A1 WO2009095958 A1 WO 2009095958A1 JP 2008001197 W JP2008001197 W JP 2008001197W WO 2009095958 A1 WO2009095958 A1 WO 2009095958A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
voltage
collision cell
mass spectrometer
lens electrode
Prior art date
Application number
PCT/JP2008/001197
Other languages
English (en)
French (fr)
Inventor
Shinjiro Fujita
Daisuke Okumura
Hiroto Itoi
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2009551321A priority Critical patent/JP4978700B2/ja
Priority to US12/865,251 priority patent/US8384028B2/en
Publication of WO2009095958A1 publication Critical patent/WO2009095958A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction

Definitions

  • CID Collision-Induced Dissociation
  • the present invention relates to an MS / MS mass spectrometer.
  • FIG. 11 is a schematic configuration diagram of a general triple quadrupole mass spectrometer disclosed in Patent Document 1 and the like.
  • This mass spectrometer includes an ion source 2 that ionizes a sample to be analyzed, and a three-stage quadrupole 3 each consisting of four rod electrodes, inside an analysis chamber 1 that is evacuated by a vacuum pump (not shown). 5 and 6 and a detector 7 that detects ions and outputs a detection signal corresponding to the amount of ions.
  • a voltage obtained by synthesizing a DC voltage and a high-frequency voltage is applied to the first stage quadrupole 3 and has a specific mass among various ions generated by the ion source 2 due to the action of an electric field generated thereby. Only target ions are selected as precursor ions.
  • the second-stage quadrupole 5 is accommodated in the collision cell 4 having a high hermeticity.
  • CID gas such as argon (Ar) is introduced into the collision cell 4.
  • Precursor ions sent from the first-stage quadrupole 3 to the second-stage quadrupole 5 collide with the CID gas in the collision cell 4 and are cleaved by collision-induced dissociation to generate product ions. Since the mode of this cleavage is various, usually a plurality of types of product ions having different masses are generated from one type of precursor ion. These various product ions exit the collision cell 4 and are introduced into the third stage quadrupole 6.
  • the high-frequency voltage is applied to the second-stage quadrupole 5 or a voltage obtained by adding a DC bias voltage to the high-frequency voltage is applied to the second-stage quadrupole 5 while focusing ions. It functions as an ion guide that is transported to the subsequent stage.
  • a voltage obtained by synthesizing a DC voltage and a high-frequency voltage is applied to the third-stage quadrupole 6. Due to the action of the electric field generated thereby, only the product ions having a specific mass are sorted and reach the detector 7 in the third stage quadrupole 6.
  • the mass of ions that can pass through the third-stage quadrupole 6 can be scanned by appropriately changing the DC voltage and the high-frequency voltage applied to the third-stage quadrupole 6.
  • a data processing unit (not shown) creates a mass spectrum of product ions generated by the cleavage of the target ions.
  • the gas pressure in the collision cell 4 is generally about several mTorr, compared with the gas pressure outside the collision cell 4. It is in a high state.
  • the kinetic energy of the ions is attenuated by collision with the gas, and the flight speed of the ions is reduced.
  • the operation of measuring the signal intensity while sequentially changing the mass of the precursor ion is repeated. Therefore, when the flight speed of ions decreases in the collision cell 4 as described above, when the precursor ion (target ion) is switched from a certain mass ion to another mass ion, the next precursor ion is changed to the collision cell 4.
  • the precursor ions are introduced into the collision cell 4, the previous precursor ions and the product ions derived from the ions still remain in the collision cell 4 and may be mixed. This is a phenomenon called crosstalk in MS / MS analysis, and the presence of crosstalk may deteriorate the quantitativeness of the target component.
  • the conventional technique is used to remove ions remaining in the collision cell, the power supply circuit becomes considerably complicated, and a significant increase in cost is inevitable.
  • ions remaining in the collision cell are removed using the above-described conventional technology, ions to be removed adhere to the ion guide disposed in the collision cell and are contaminated. In order to clean this, troublesome operations such as taking out, disassembling, cleaning, and reassembling the ion guide from the collision cell are required, and there is a problem that it takes time and effort.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to switch the precursor ion to be measured while the hardware configuration and control program of the power supply circuit and control system circuit are simple.
  • An object of the present invention is to provide an MS / MS mass spectrometer capable of quickly removing unnecessary ions remaining in a collision cell, specifically, precursor ions before switching and ions derived therefrom.
  • Another object of the present invention is to avoid contamination of ion guides contained in the collision cell as much as possible when unnecessary residual ions in the collision cell are removed, and to reduce the labor of cleaning such members.
  • An object of the present invention is to provide an MS / MS mass spectrometer that can be used.
  • the present invention provides a first mass separation unit that selects ions having a specific mass as precursor ions among various ions, and transports ions while converging the ions by a high-frequency electric field therein.
  • a collision cell for colliding the precursor ion with a predetermined gas and cleaving the precursor ion by collision-induced dissociation, and a specific product ion among various product ions generated by the cleavage of the precursor ion In the MS / MS mass spectrometer in which the second mass separation unit for selecting ions having mass is arranged in series, a) lens electrodes respectively provided on the inlet side and the outlet side of the collision cell; b) voltage application means for applying a DC voltage to either or both of the entrance side lens electrode and the exit side lens electrode; c) Controlling the voltage applying means to apply a DC voltage that attracts or repels ions in the collision cell to one or both of the lens electrodes at a predetermined timing. Control means to It is characterized by having.
  • the control means uses the voltage application means during a pause period in which the extraction of ions is paused in order to change the selection target ions in the first mass separation unit.
  • a pulsed DC voltage having a polarity opposite to the polarity of the ions remaining in the collision cell is applied to the exit side lens electrode. Residual ions in the collision cell are accelerated toward the exit side lens electrode by the electric field formed by the applied voltage. The ions collide with the exit-side lens electrode and are neutralized by exchanging electrons. Thereby, unnecessary ions remaining in the collision cell are quickly removed.
  • a high-frequency voltage particularly a high-frequency voltage with a large amplitude, is not applied to the lens electrodes provided on the entrance side and the exit side of the collision cell, even though a DC bias voltage is applied. Therefore, when removing ions in the collision cell as described above, it is possible to avoid the complexity of the hardware configuration and control program of the power supply circuit and control system circuit for applying the pulsed DC voltage. . Thereby, an increase in cost can be suppressed.
  • the ions in the collision cell are brought into contact with the lens electrode by attracting or repelling, the ion guide in the collision cell is neutralized. To prevent contamination. At this time, neutralized molecules adhere to one or both of the entrance-side lens electrode and the exit-side lens electrode, but these members can be easily and compared to the ion guide contained in the collision cell. It can be cleaned in a short time. Therefore, it is possible to reduce the labor required for the cleaning work.
  • the voltage application unit is configured to apply a DC voltage having a polarity opposite to that of the ions in the collision cell to the exit side lens electrode.
  • the ions can be accelerated so as to promote the progress of the ions before the application of the pulsed DC voltage, so that the ions can be removed more efficiently.
  • the voltage applying means applies a DC voltage having a polarity opposite to that of ions in the collision cell to both the entrance lens electrode and the exit lens electrode. It can be configured.
  • ions remaining in the collision cell can be attracted and removed to both sides of the entrance side lens electrode and the exit side lens electrode. Therefore, it is possible to remove residual ions in the collision cell in a short time compared to the case where a pulsed DC voltage having a polarity opposite to that of ions is applied only to either the lens electrode on the entrance side or the exit side. it can.
  • the voltage applying means may apply a DC voltage having opposite polarities to the entrance side lens electrode and the exit side lens electrode.
  • ions remaining in the collision cell are accelerated toward the lens electrode to which a DC voltage having a polarity opposite to that of the ions is applied, and a DC voltage having the same polarity as the ions. Is accelerated away from the applied lens electrode. Since both acceleration directions are the same direction, the collision cell can be obtained in a shorter time than when a pulsed DC voltage having a polarity opposite to that of ions is applied to only one of the lens electrodes on the entrance side or the exit side. Residual ions can be removed. Further, even if the voltage value (absolute value) of the pulsed DC voltage is relatively small, a DC electric field having a large potential gradient can be formed in the collision cell, so that the output capacity of the power supply circuit can be reduced. Is possible.
  • the ions generally travel from the entrance to the exit in the collision cell. Therefore, in the configuration of the other aspect, a DC voltage applied to the exit side lens electrode is applied to the inside of the collision cell.
  • the polarity is preferably opposite to that of the ion.
  • a DC voltage having the same polarity as the ions in the collision cell is applied to the entrance side lens electrode.
  • the voltage applying means applies a DC voltage having the same polarity as the ions in the collision cell to one or both of the entrance side lens electrode and the exit side lens electrode.
  • the control means may be configured to stop the application of the high-frequency voltage to the ion guide at the timing when the voltage application means applies a pulsed DC voltage to one or both of the lens electrodes. .
  • the ions in the collision cell are not converged near the ion optical axis and are likely to spread.
  • a pulse voltage having the same polarity as the ions is applied to one or both lens electrodes, the ions are moved away from the lens electrodes by a DC electric field formed thereby, and the potential is relatively low (the absolute value is small). ) Proceed toward the ion guide. And it neutralizes in contact with an ion guide.
  • the ions since the ions contact the ion guide instead of the lens electrode, the ion guide is contaminated, and it takes time to clean the ion guide.
  • the distance between the ion remaining in the collision cell and the ion guide is on average considerably shorter than the distance between the ion and the lens electrode, the ions can contact the ion guide in a short time. .
  • residual ions in the collision cell can be efficiently removed in a short time, and crosstalk can be more reliably prevented.
  • the “predetermined timing” for applying the DC voltage in a pulsed manner is to emit ions in order to change the selection target ions in the first mass separation unit. It is preferably set during a rest period during which it is resting. More preferably, it may be set immediately before the end of the suspension period.
  • This “immediately before the end” timing is a time closer to the end time than the start time of the suspension period, and can be determined experimentally.
  • the MS / MS mass spectrometer for example, when switching precursor ions, residual ions in the collision cell (immediately preceding precursor ions and product ions generated therefrom) are quickly removed from the collision cell. can do. Thereby, noise appearing in the MS / MS spectrum can be reduced, and the accuracy of quantitative analysis / qualitative analysis can be improved.
  • a pulsed DC voltage is applied to a lens electrode to which a high-amplitude high-frequency voltage is not applied, and ions are removed by the action of a DC electric field formed thereby. Therefore, the power supply circuit for applying the pulse voltage is not complicated, and a high ion removal effect can be achieved at a low cost.
  • the neutralized molecules adhere to one or both of the entrance side lens electrode and the exit side lens electrode of the collision cell, and the collision cell
  • the adhesion of ions to the ion guide itself disposed therein is avoided.
  • the lens electrode can be easily cleaned as compared with the ion guide included in the collision cell, even if the cleaning is required due to contamination, the cleaning time is not required and the working time can be shortened.
  • 1 is an overall configuration diagram of a general MS / MS mass spectrometer.
  • FIG. 1 is an overall configuration diagram of the MS / MS mass spectrometer of the first embodiment.
  • FIG. 2 is a schematic configuration diagram of the collision cell 4 and its control system circuit in FIG. The same components as those of the conventional configuration already described are denoted by the same reference numerals and description thereof is omitted.
  • the first-stage quadrupole (corresponding to the first mass separator in the present invention) 3 and the third-stage quadrupole (second in the present invention) are used as in the conventional case.
  • a collision cell 4 is arranged to cleave the precursor ions to generate various product ions, and the second stage quadrupole as an ion guide in the present invention is disposed inside the collision cell 4. 5 is disposed.
  • the cylindrical body 41 enclosing the outside of the second stage quadrupole 5 is formed of an insulating member.
  • the entrance side lens electrode 42 provided on the ion incident side end face of the cylindrical body 41 and the exit side lens electrode 44 provided on the ion exit side end face are both formed of a conductive member such as metal.
  • the entrance side lens electrode 42 and the exit side lens electrode 44 are substantially annular members in which openings 43 and 45 through which ions pass are formed at substantially the center thereof.
  • a voltage ⁇ (U1 + V1 ⁇ cos ⁇ t) obtained by synthesizing the DC voltage U1 and the high frequency voltage V1 ⁇ cos ⁇ t from the first power supply unit 11 or a predetermined DC bias voltage Vbias1 is added to the first stage quadrupole 3
  • the voltage ⁇ (U1 + V1 ⁇ cos ⁇ t) + Vbias1 is applied.
  • Only the high frequency voltage ⁇ V 2 ⁇ cos ⁇ t or a voltage ⁇ V 2 ⁇ cos ⁇ t + Vbias 2 obtained by adding a predetermined DC bias voltage Vbias 2 to the high frequency voltage ⁇ V 2 ⁇ cos ⁇ t is applied to the second stage quadrupole 5.
  • a voltage ⁇ (U3 + V3 ⁇ cos ⁇ t) obtained by synthesizing the DC voltage U3 and the high frequency voltage V3 ⁇ cos ⁇ t from the third power supply unit 13 or a predetermined DC bias voltage Vbias3 is added to the third stage quadrupole 6 Voltage ⁇ (U3 + V3 ⁇ cos ⁇ t) + Vbias3 is applied.
  • the first to third power supply units 11, 12, and 13 operate under the control of the control unit 10. This is the same as before.
  • a predetermined voltage is applied to each of the entrance side lens electrode 42 and the exit side lens electrode 44 from the DC power supply unit 20.
  • the DC power supply unit 20 has a function of a pulse voltage source 21 that generates a pulse voltage of a predetermined voltage (pulse height) for a short time in accordance with an instruction from the control unit 10.
  • the DC power supply unit 20 can have a function of applying a predetermined DC bias voltage during a period in which no pulse voltage is applied.
  • a negative pulse voltage having a polarity opposite to that of positive ions is applied.
  • it can be easily understood that a positive pulse voltage having a polarity opposite to that of negative ions may be applied.
  • the characteristic operation of the MS / MS mass spectrometer of the present embodiment will be described.
  • a plurality of target ions having different masses are sequentially selected in the first stage quadrupole 3 to be precursor ions, and the precursor ions are cleaved in the collision cell 4 to be generated thereby.
  • the product ions are separated by mass in the third stage quadrupole 6 and detected by the detector 7.
  • the target ion A is selected by the first-stage quadrupole 3 and sent to the collision cell 4, and product ions are generated by collision-induced dissociation in the collision cell 4.
  • Mass separation is performed at the multipole 6.
  • the target ions selected by the first stage quadrupole 3 in order to perform the MS / MS analysis of the next target ion B having a different mass.
  • A is changed to the target ion B.
  • This pause period is, for example, about 5 msec.
  • the control unit 10 controls the pulse voltage source 21 so as to apply a pulse voltage to the exit side lens electrode 44 during the rest period. Although no new ions are introduced into the collision cell 4 during the rest period, the target ions A introduced before that and various product ions A ′ generated by the cleavage thereof still remain in the collision cell 4. is doing. When a negative pulse voltage is applied to the exit side lens electrode 44, the remaining ions A and A ′ are attracted and accelerated by the DC electric field formed in the collision cell 4, and the exit side lens electrode 44 is accelerated. Collide with. Upon receiving electrons from the exit side lens electrode 44, the ions A and A ′ are neutralized and adhere to the surface of the exit side lens electrode 44.
  • the ions A and A ′ remaining in the collision cell 4 are moving from the entrance side lens electrode 42 toward the exit side lens electrode 44 as a whole, but a pulse voltage is applied as described above. As a result, the movement speed increases at a stretch. Thereby, almost all residual ions A and A ′ come into contact with the exit-side lens electrode 44 and are removed from the collision cell 4 in a short time.
  • the target ions B are subsequently introduced into the collision cell 4, the previous target ions A and the product ions A 'derived therefrom are hardly left, and crosstalk can be prevented. As a result, only the target ions B can be efficiently cleaved, and the product ions generated thereby can be subjected to mass spectrometry.
  • a DC voltage is applied to the exit side lens electrode 44, and the disturbance of the electric field due to the contamination of the exit side lens electrode 44 does not have a great influence on the convergence and transport of ions. Therefore, even if the exit side lens electrode 44 is dirty to some extent, the ion passage efficiency is not significantly impaired.
  • FIG. 3 is a schematic configuration diagram of the collision cell 4 and its power supply system in the MS / MS mass spectrometer of the second embodiment.
  • the periphery of the opening 47 of the exit-side lens electrode 46 to which a negative pulse voltage is applied has a skimmer shape protruding inward of the collision cell 4.
  • FIG. 4 is a schematic configuration diagram of the collision cell 4 and its power supply system in the MS / MS mass spectrometer of the third embodiment.
  • the same pulse voltage as that of the exit side lens electrode 44 is also applied to the entrance side lens electrode 42.
  • the residual ions in the collision cell 4 are attracted to either the entrance-side lens electrode 42 or the exit-side lens electrode 44, which is usually closer to the distance. Therefore, a sufficiently large DC electric field can be applied to ions existing at a position close to the entrance-side lens electrode 42 in the collision cell 4.
  • the moving distance of ions until reaching the lens electrodes 42 and 44 is short, residual ions can be removed from the collision cell 4 more quickly.
  • FIG. 5 is a schematic configuration diagram of the collision cell 4 and its power supply system in the MS / MS mass spectrometer of the fourth embodiment.
  • the DC power supply unit 20 generates a pulse voltage having a polarity opposite to the pulse voltage generated by the first pulse voltage source 21 in addition to the first pulse voltage source 21.
  • the second pulse voltage source 22 is provided. Similar to the first embodiment, a pulse voltage having a polarity opposite to that of the ions in the collision cell 4 is applied from the first pulse voltage source 21 to the exit side lens electrode 44 in this case.
  • a pulse voltage having a polarity opposite to that of the exit side lens electrode 44 in this case, a positive pulse voltage is applied from the second pulse voltage source 22 to the entrance side lens electrode 42 at the same timing.
  • the polarity of the pulse voltage applied to the entrance side lens electrode 42 is the same as that of the ions remaining in the collision cell 4, it is close to the entrance side lens electrode 42 in the collision cell 4 by the action of this DC electric field. Are accelerated away from the entrance-side lens electrode 42, that is, close to the exit-side lens electrode 44. Since both the entrance-side lens electrode 42 and the exit-side lens electrode 44 form a DC electric field that attracts ions present in the collision cell 4 in the direction of the exit-side lens electrode 44, the ions are exit-side lens electrode 44. It advances toward and comes into contact with the exit side lens electrode 44. Thereby, the ions are quickly removed from the collision cell 4.
  • the second-stage quadrupole 5 when a pulse voltage is applied to one or both of the entrance-side lens electrode 42 and the exit-side lens electrode 44, the second-stage quadrupole 5 includes Similar to the period, a predetermined high-frequency voltage may be continuously applied. Thereby, the ions in the collision cell 4 are converged near the ion optical axis (the central axis of the second-stage quadrupole 5), so that the contact of ions with the second-stage quadrupole 5 can be reduced. At the same time, ions can be efficiently guided to the lens electrodes 42 and 44 without being dissipated into the space inside the collision cell 4.
  • FIG. 6 is a schematic configuration diagram of the collision cell 4 and its power supply system in the MS / MS mass spectrometer of the fifth embodiment.
  • the MS / MS mass spectrometers of the first to fourth embodiments all remove ions by bringing ions into contact with one or both of the lens electrodes 42 and 44.
  • ions are removed by bringing ions into contact with the second stage quadrupole 5.
  • the DC power supply unit 20 includes a pulse voltage source 23 for generating a pulse voltage having the same polarity as the ions.
  • the action of the pulse voltage by the pulse voltage source 23 is the same as that of the second pulse voltage source 22 in the fourth embodiment. That is, when a pulse voltage having the same polarity as the ions is applied to the exit side lens electrode 44, the ions repel the direct current electric field formed thereby.
  • the second power supply unit 12 temporarily stops the generation of the high-frequency voltage by the high-frequency voltage source 122 almost simultaneously with the application of the pulse voltage.
  • the output of the high-frequency voltage source 122 is disconnected by the switch 126, but the method of stopping the high-frequency voltage is not limited to this.
  • the DC bias voltage lower than the pulse voltage is only applied to the second stage quadrupole 5 at this time.
  • the high-frequency electric field converges on the ions existing in the collision cell 4, and ions gathered in the vicinity of the ion optical axis until just before that spread around.
  • ions are rebounded by the direct current electric field formed by the pulse voltage applied to the lens electrode 44, and the space between the lens electrode 44 and the second stage quadrupole 5 moves from the former toward the latter.
  • a direct current potential gradient that decreases is formed.
  • the ions from which the converging action by the high-frequency electric field has been solved proceed toward the second stage quadrupole 5 and are neutralized by contacting the second stage quadrupole 5.
  • the distance to reach the second stage quadrupole 5 is on average considerably shorter than the distance to the lens electrodes 42 and 44. Therefore, when a pulse voltage is applied, ions reach the second stage quadrupole 5 in a short time and are efficiently removed.
  • the configuration of this embodiment is superior to the configurations of the first to fourth embodiments in terms of preventing crosstalk in MS / MS analysis.
  • the second stage quadrupole 5 is contaminated by the adhesion of ions, there is a disadvantage that the cleaning work is troublesome.
  • FIG. 8 is a schematic configuration diagram of the collision cell 4 and its power supply system in the MS / MS mass spectrometer of the sixth embodiment.
  • the basic configuration and operation of the sixth embodiment are the same as those of the fifth embodiment.
  • the difference from the fifth embodiment is that the same pulse voltage as that of the exit side lens electrode 44 and the same polarity as that of the exit side lens electrode 44 is applied to the entrance side lens electrode 42, and the entrance side lens electrode 48 and the exit side.
  • Both of the side lens electrodes 46 have a skimmer shape like the exit side lens electrode 46 in the second embodiment (see FIG. 3).
  • a pulse voltage having the same polarity as ions is applied to only one of the entrance side lens electrode 42 (or 48) and the exit side lens electrode 44 (or 46), as in the fifth embodiment, It is preferable to apply a pulse voltage to the exit side lens electrode 44 (or 46). This is because the ions in the collision cell 4 as a whole have a velocity component that travels from the entrance side lens electrode 42 toward the exit side lens electrode 44.
  • a component of a repulsive force (pushing back force) by a DC electric field is applied to ions having such a velocity component, the ions traveling toward the exit side lens electrode 44 bend their trajectories almost at right angles, and the second stage quadrupole. Proceed to 5 at the shortest distance.
  • the remaining ions in the collision cell 4 are removed by applying a pulse voltage to the lens electrodes 42 and 44 during the rest period when the target ions introduced into the collision cell 4 are switched. It is possible. At this time, it is desirable to appropriately control the application timing of the pulse voltage from the viewpoint of minimizing contamination of the lens electrodes 42 and 44 or the second-stage quadrupole 5 due to the attachment of neutralized ions. Next, this point will be described.
  • FIG. 8 is a diagram schematically showing a change in the intensity of residual ions in the collision cell 4 before and after the target ions (precursor ions) are switched in the first stage quadrupole 3.
  • the target ion A introduced into the collision cell 4 immediately before that and the product ions derived from the target ion A remain in the collision cell 4. It moves toward the exit side lens electrode 44 and is discharged little by little through the opening 45. Therefore, as shown in FIG. 8, the intensity of residual ions in the collision cell 4 decreases with time, but due to the influence of the decrease in the ion velocity due to contact with the CID gas, the next target ion B Even at the introduction start time t2, there are ions that have not been discharged yet. This is the above-described crosstalk. As is clear from FIG. 8, the shorter the pause period T, the greater the crosstalk.
  • the amount of ions removed in step 1 corresponds to the ion intensity S2 shown in FIG. It can be seen that the ion intensity S2 is lower than the ion intensity S1, and the amount of ions that are forcibly removed is much smaller. That is, by applying a pulse voltage to the lens electrodes 42 and 44 at the timing shown in FIG. 10, that is, immediately before the end of the pause period T, the lens electrodes 42 and 44 (or the second stage quadrupole 5). As a result, the frequency of cleaning can be reduced. This is true of any of the first to sixth embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 前段の第1質量分離部で選別される目的イオンの切替えのためにイオンの導入が休止される休止期間中に、コリジョンセル(4)の入口側レンズ電極(42)及び出口側レンズ電極(44)にコリジョンセル(4)内に残留しているイオンと逆極性のパルス電圧を印加する。これによって形成される直流電場によりイオンは誘引され、レンズ電極(42、44)に衝突し、中性化して除去される。高周波電圧が印加されるイオンガイド(5)を汚染することなく、クロストークの原因となる残留イオンをコリジョンセル(4)内から迅速に除去することができる。レンズ電極(42、44)には高周波電圧が印加されないので、パルス電圧を印加するための回路構成も簡単で済み、コスト増加を抑えることができる。

Description

MS/MS型質量分析装置
 本発明は、特定の質量(厳密にはm/z値)を有するイオンを衝突誘起解離(CID=Collision-Induced Dissociation)により開裂させ、これにより生成されるプロダクトイオン(フラグメントイオン)の質量分析を行うMS/MS型質量分析装置に関する。
 分子量が大きな物質の同定やその構造の解析を行うために、質量分析の1つの手法として、MS/MS分析(タンデム分析とも呼ばれる)という手法が知られている。典型的なMS/MS型質量分析装置として三連四重極(TQ)型質量分析装置がある。図11は特許文献1などに開示されている、一般的な三連四重極型質量分析装置の概略構成図である。
 この質量分析装置は、図示しない真空ポンプにより真空排気される分析室1の内部に、分析対象の試料をイオン化するイオン源2と、それぞれ4本のロッド電極から成る3段の四重極3、5、6と、イオンを検出してイオン量に応じた検出信号を出力する検出器7と、を備える。第1段四重極3には、直流電圧と高周波電圧とを合成した電圧が印加され、これにより発生する電場の作用により、イオン源2で生成された各種イオンの中で特定の質量を有する目的イオンのみがプリカーサイオンとして選別される。
 第2段四重極5は密閉性が高いコリジョンセル4内に収納されている。このコリジョンセル4内には例えばアルゴン(Ar)などのCIDガスが導入される。第1段四重極3から第2段四重極5に送られたプリカーサイオンは、コリジョンセル4内でCIDガスと衝突し、衝突誘起解離による開裂を生じてプロダクトイオンが生成される。この開裂の態様は様々であるため、通常、一種のプリカーサイオンから質量の異なる複数種のプロダクトイオンが生成される。これら各種のプロダクトイオンがコリジョンセル4を出て、第3段四重極6に導入される。通常、第2段四重極5には、高周波電圧のみが印加されるか、又は高周波電圧に直流バイアス電圧を加算した電圧が印加され、この第2段四重極5はイオンを収束させつつ後段に輸送するイオンガイドとして機能する。
 第3段四重極6には第1段四重極3と同様に、直流電圧と高周波電圧とを合成した電圧が印加される。これにより発生する電場の作用により、第3段四重極6では特定の質量を有するプロダクトイオンのみが選別されて検出器7に到達する。第3段四重極6に印加する直流電圧及び高周波電圧を適宜変化させることで、第3段四重極6を通過し得るイオンの質量を走査することができる。このときに検出器7で得られる検出信号に基づいて、図示しないデータ処理部は、目的イオンの開裂により生じたプロダクトイオンのマススペクトルを作成する。
 上記構成の質量分析装置では、コリジョンセル4内にCIDガスが供給されるため、一般的に、コリジョンセル4内のガス圧は数mTorr程度と、コリジョンセル4の外側のガス圧と比較して高い状態にある。こうした比較的高いガス圧雰囲気の高周波電場の中をイオンが進行する場合、ガスとの衝突によりイオンの運動エネルギーが減衰し、イオンの飛行速度は低下する。
 例えば液体クロマトグラフの検出器としてMS/MS型質量分析装置を用いる場合には、プリカーサイオンの質量を順に変化させながら信号強度を測定するという操作を繰り返す。そのため、上述のようにコリジョンセル4内でイオンの飛行速度が低下すると、プリカーサイオン(目的イオン)を或る質量のイオンから別の質量のイオンに切り替える際に、次のプリカーサイオンがコリジョンセル4に導入され始めるときに未だ前のプリカーサイオンやそのイオンに由来するプロダクトイオンがコリジョンセル4内に残留していて、それらが混在するおそれがある。これが、MS/MS分析においてクロストークと呼ばれる現象であり、クロストークがあると目的成分の定量性などが悪化することがある。
 特許文献2に記載の装置では、四重極の形態を有するリニアイオントラップにおいて、四重極で囲まれる空間に残留するイオンを除去するために、イオン捕捉用の高周波電圧に代えてパルス電圧を印加する。これにより形成される電場の作用でイオンは四重極に引き寄せられ、四重極に接触して中性分子となる。しかしながら、一般に、四重極に印加される高周波電圧は、その振幅がkVオーダーの高電圧であるため、この高周波電圧に代えてパルス電圧を印加しようとすると電源回路の構成がかなり複雑になる。実際に、特許文献2に記載の装置においても、電源回路にかなりの工夫を要している。
特開平7-201304号公報 国際公開第2005/124821号パンフレット
 上記従来技術を利用してコリジョンセル内に残留するイオンを除去しようとすると、電源回路がかなり複雑になり、大幅なコスト増加が避けられない。また、上記従来技術を利用してコリジョンセル内に残留するイオンを除去した場合、コリジョンセル内に配設されているイオンガイドに除去対象のイオンが付着して汚染される。これを洗浄するためには、コリジョンセルからのイオンガイドの取り出し、分解、洗浄、再組み立て、といった面倒な作業が必要になり、手間が掛かるという問題もある。
 本発明は上記課題を解決するために成されたものであり、その目的は、電源回路や制御系回路のハードウエア構成や制御プログラムなどが簡単でありながら、測定対象のプリカーサイオンを切り替える際に、コリジョンセル内に残る不要なイオン、具体的には切替え前のプリカーサイオンやそれに由来するイオン、を迅速に除去することができるMS/MS型質量分析装置を提供することにある。
 また本発明の他の目的は、コリジョンセル内の不要な残留イオンを除去した際に、コリジョンセルに内包されるイオンガイドの汚染をできるだけ回避し、そうした部材の洗浄作業の手間を軽減することができるMS/MS型質量分析装置を提供することにある。
 上記課題を解決するために成された本発明は、各種イオンの中で特定の質量を有するイオンをプリカーサイオンとして選別する第1質量分離部と、その内部に高周波電場によりイオンを収束させつつ輸送するイオンガイドが配設され、前記プリカーサイオンを所定ガスと衝突させて衝突誘起解離により該プリカーサイオンを開裂させるためのコリジョンセルと、前記プリカーサイオンの開裂により生成した各種プロダクトイオンの中で特定の質量を有するイオンを選別する第2質量分離部と、を直列的に配置したMS/MS型質量分析装置において、
 a)前記コリジョンセルの入口側と出口側とにそれぞれ設けられたレンズ電極と、
 b)入口側のレンズ電極と出口側のレンズ電極とのいずれか一方又は両方に直流電圧を印加する電圧印加手段と、
 c)前記いずれか一方又は両方のレンズ電極に、前記コリジョンセル内のイオンを誘引する又は該イオンを反発させるような直流電圧を、所定のタイミングでパルス状に印加するべく前記電圧印加手段を制御する制御手段と、
 を備えることを特徴としている。
 本発明に係るMS/MS型質量分析装置において、制御手段は、例えば、第1質量分離部において選別対象イオンを変更するためにイオンの出射を休止している休止期間中に、電圧印加手段により、コリジョンセル内に残留しているイオンの極性とは逆の極性のパルス状の直流電圧を出口側レンズ電極に印加する。この印加電圧によって形成される電場により、コリジョンセル内の残留イオンは出口側レンズ電極に向かって加速される。イオンは出口側レンズ電極に衝突し、電子を授受して中性化される。これにより、コリジョンセル内に残留していた不要なイオンは迅速に除去される。
 したがって、第1質量分析部において次の選別対象イオンがプリカーサイオンとして選別され、そのプリカーサイオンがコリジョンセルに送り込まれるときに、前のプリカーサイオンやそれに由来するプロダクトイオンがコリジョンセル内に残留していない。そのため、MS/MS分析におけるクロストークを回避することができる。
 一般的に、コリジョンセルの入口側や出口側に設けられるレンズ電極には直流バイアス電圧が印加されることはあっても高周波電圧、特に大きな振幅の高周波電圧が印加されることはない。したがって、上記のようにコリジョンセル内のイオンを除去するにあたって、パルス状の直流電圧を印加するための電源回路や制御系回路のハードウエア構成や制御プログラムが複雑になるのを回避することができる。これによって、コスト増加を抑えることができる。
 また本発明に係るMS/MS型質量分析装置において、コリジョンセル内のイオンを誘引する又は反発させることによりレンズ電極に接触させるようにすれば、コリジョンセル内のイオンガイドが中性化された分子により汚染されることを防止できる。このとき、入口側レンズ電極と出口側レンズ電極とのいずれか一方又は両方には中性化された分子が付着するが、これら部材はコリジョンセルに内包されたイオンガイドに比べれば、容易に且つ短時間で洗浄することができるものである。したがって、洗浄作業に掛かる手間を軽減することができる。
 コリジョンセル内に残留しているイオンは、コリジョンセル内に導入された際の運動エネルギーにより、全体的にみれば入口側レンズ電極から出口側レンズ電極の方向に向かって進行している。そこで、本発明に係るMS/MS型質量分析装置において、好ましくは、電圧印加手段は、出口側レンズ電極に、コリジョンセル内のイオンと逆極性の直流電圧を印加する構成とするとよい。これにより、パルス状の直流電圧印加以前のイオンの進行を促進するようにイオンを加速することができるので、イオンをより一層効率良く除去することができる。
 本発明に係るMS/MS型質量分析装置の一態様として、前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極との両方に、コリジョンセル内のイオンと逆極性の直流電圧を印加する構成とすることができる。
 この構成によれば、コリジョンセル内に残留しているイオンを、入口側レンズ電極と出口側レンズ電極との両側に誘引して除去することができる。したがって、入口側又は出口側のいずれか一方のレンズ電極のみに、イオンとは逆極性のパルス状の直流電圧を印加する場合に比べて、短時間でコリジョンセル内の残留イオンを除去することができる。
 また本発明に係るMS/MS型質量分析装置の別の態様として、前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極とに、互いに逆極性の直流電圧を印加する構成としてもよい。
 この構成によれば、コリジョンセル内に残留しているイオンは、そのイオンとは逆の極性の直流電圧が印加されているレンズ電極に向かって加速されるとともに、そのイオンと同極性の直流電圧が印加されているレンズ電極から遠ざかるように加速される。いずれの加速方向も同じ方向であるので、入口側又は出口側のいずれか一方のレンズ電極のみに、イオンとは逆極性のパルス状の直流電圧を印加する場合に比べて、短時間でコリジョンセル内の残留イオンを除去することができる。また、パルス状の直流電圧の電圧値(絶対値)が相対的に小さくても、大きな電位勾配の直流電場をコリジョンセル内に形成することができるので、電源回路の出力容量を小さくすることが可能である。
 なお、前述したようにコリジョンセル内でイオンは全体的に入口から出口に向かって進行しているから、上記別の態様の構成においては、出口側レンズ電極に印加する直流電圧を前記コリジョンセル内のイオンとは逆の極性とすることが好ましい。換言すれば、入口側レンズ電極にはコリジョンセル内のイオンと同極性の直流電圧が印加されることになる。これにより、パルス状の直流電圧印加以前のイオンの進行を促進するようにイオンを加速することができるので、イオンをより一層効率良く除去することができる。
 また本発明に係るMS/MS型質量分析装置において、前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極とのいずれか一方又は両方に、コリジョンセル内のイオンと同極性の直流電圧を印加するものであり、
 前記制御手段は、前記電圧印加手段により、前記いずれか一方又は両方のレンズ電極にパルス状の直流電圧を印加するタイミングで、前記イオンガイドへの高周波電圧の印加を停止する構成とすることもできる。
 イオンガイドへの高周波電圧の印加が停止されると、高周波電場によるイオンの拘束がなくなる。そのため、コリジョンセル内のイオンはイオン光軸付近に収束されず、拡がり易くなる。このときに、一方又は両方のレンズ電極にイオンと同極性のパルス電圧が印加されると、それにより形成される直流電場によりイオンはレンズ電極から遠ざかり、相対的に電位の低い(絶対値が小さい)イオンガイドに向かって進む。そして、イオンガイドに接触して中性化される。
 この構成では、レンズ電極でなくイオンガイドにイオンが接触するため、イオンガイドが汚染され、これを洗浄する手間は掛かる。その一方、コリジョンセル内に残留しているイオンとイオンガイドとの距離は、そのイオンとレンズ電極との距離に比べて平均的にはかなり短いため、イオンは短時間でイオンガイドに接触し得る。その結果、コリジョンセル内の残留イオンを短時間で効率良く除去することができ、クロストークをより確実に防止することができる。
 なお、本発明に係るMS/MS型質量分析装置において、パルス状に直流電圧を印加するための「所定のタイミング」は、第1質量分離部において選択対象イオンを変更するためにイオンの出射を休止している休止期間中に設定されるのが好ましい。さらに、より好ましくは、その休止期間の終了直前に設定されるようにするとよい。
 この「終了直前」のタイミングとは、休止期間の開始時点よりも終了時点に近い時点であり、実験的に決めることができる。
 たとえレンズ電極にパルス状の直流電圧を印加しなくても、コリジョンセル内に残留しているイオンの多くは休止期間中に出口開口を経てコリジョンセルから排出される。つまり、休止期間中に残留イオンの量は徐々に減少してゆく。したがって、休止期間の終了直前にパルス状の直流電圧をレンズ電極に印加することで、レンズ電極やイオンガイドに付着して中性化する分子の量を少なくすることができる。それによって、レンズ電極やイオンガイドの汚染が軽減され、洗浄の頻度を減らすことができる。
 本発明に係るMS/MS型質量分析装置によれば、例えばプリカーサイオンの切替えに際して、コリジョンセル内の残留イオン(直前のプリカーサイオンやそれから生成されたプロダクトイオン)を、コリジョンセル内から迅速に除去することができる。それによって、MS/MSスペクトルに現れるノイズを減らし、定量分析・定性分析の精度を向上させることができる。特に本発明に係るMS/MS型質量分析装置によれば、大振幅の高周波電圧を印加しないレンズ電極にパルス状の直流電圧を印加し、それにより形成する直流電場の作用でイオンを除去することができるので、パルス電圧を印加する電源回路が複雑にならずに済み、低廉なコストで高いイオン除去効果を達成することができる。
 また、コリジョンセル内の残留イオンをレンズ電極に誘引して除去する構成によれば、中性化した分子はコリジョンセルの入口側レンズ電極、出口側レンズ電極の一方又は両方に付着し、コリジョンセル内に配設されたイオンガイド自体へのイオンの付着は免れる。一般的に、分析中には、レンズ電極には直流バイアス電圧が印加されるだけであり、レンズ電極表面が汚染されても分析に与える影響は小さい。即ち、汚染に対する耐性が高いと言うことができる。また、レンズ電極は、コリジョンセルに内包されるイオンガイドに比べて洗浄も容易であるから、汚染によって洗浄の必要が生じた場合でも、洗浄の手間が掛からず作業時間も短くて済む。
本発明の一実施例(第1実施例)によるMS/MS型質量分析装置の全体構成図。 第1実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 第2実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 第3実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 第4実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 第5実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 第6実施例のMS/MS型質量分析装置におけるコリジョンセル及びその電源系の構成図。 従来のMS/MS型質量分析装置においてコリジョンセル内の残留イオン強度の時間変化を示す図。 本発明に係るMS/MS型質量分析装置におけるコリジョンセル内の残留イオン強度の時間変化の一例を示す図。 本発明に係るMS/MS型質量分析装置におけるコリジョンセル内の残留イオン強度の時間変化の他の例示す図。 一般的なMS/MS型質量分析装置の全体構成図。
符号の説明
1…分析室
2…イオン源
3…第1段四重極
4…コリジョンセル
41…筒状体
42、48…入口側レンズ電極
43、45、47…開口部
44、46…出口側レンズ電極
5…第2段四重極
6…第3段四重極
7…検出器
10…制御部
11…第1電源部
12…第2電源部
122…高周波電圧源
123…直流バイアス電圧源
124…加算部
125…切替部
126…スイッチ
13…第3電源部
20…直流電源部
21、22、23…パルス電圧源
  [第1実施例]
 以下、本発明に係るMS/MS型質量分析装置の一実施例(第1実施例)について、添付図面を参照して説明する。
 図1は第1実施例のMS/MS型質量分析装置の全体構成図である。図2は図1中のコリジョンセル4及びその制御系回路の概略構成図である。既に説明した従来の構成と同じ構成要素には、同一符号を付して説明を略す。
 本実施例のMS/MS型質量分析装置では、従来と同様に、第1段四重極(本発明における第1質量分離部に相当)3と第3段四重極(本発明における第2質量分離部に相当)6との間に、プリカーサイオンを開裂させて各種プロダクトイオンを生成するためにコリジョンセル4が配置され、その内部には本発明におけるイオンガイドとしての第2段四重極5が配設されている。
 コリジョンセル4にあって、第2段四重極5の外側を被包する筒状体41は絶縁性部材から形成される。その筒状体41のイオン入射側端面に設けられた入口側レンズ電極42及びイオン出射側端面に設けられた出口側レンズ電極44は、いずれも金属等の導電性部材から形成される。入口側レンズ電極42及び出口側レンズ電極44は、その略中央にイオンが通過する開口部43、45が形成された、略円環状の部材である。
 第1段四重極3には第1電源部11から、直流電圧U1と高周波電圧V1・cosωtとを合成した電圧±(U1+V1・cosωt)、或いはこれにさらに所定の直流バイアス電圧Vbias1を加算した電圧±(U1+V1・cosωt)+Vbias1が印加される。第2段四重極5には第2電源部12から、高周波電圧±V2・cosωtのみ、或いはこれに所定の直流バイアス電圧Vbias2を加算した電圧±V2・cosωt+Vbias2が印加される。第3段四重極6には第3電源部13から、直流電圧U3と高周波電圧V3・cosωtとを合成した電圧±(U3+V3・cosωt)、或いはこれにさらに所定の直流バイアス電圧Vbias3を加算した電圧±(U3+V3・cosωt)+Vbias3が印加される。これら第1電源部乃至第3電源部11、12、13は、制御部10の制御の下に動作する。これは従来と同様である。
 入口側レンズ電極42及び出口側レンズ電極44には、それぞれ直流電源部20から所定の電圧が印加される。直流電源部20は、制御部10からの指示に応じて短時間だけ所定電圧(パルス高)のパルス電圧を発生するパルス電圧源21の機能を有する。直流電源部20は、このパルス電圧源21のほかに、パルス電圧が印加されていない期間に、所定の直流バイアス電圧を印加する機能を有するようにすることもできる。この例では、正イオンを分析対象とすることを前提として、正イオンとは逆の極性である負極性のパルス電圧を印加するようになっている。負イオンを分析対象とする場合には、負イオンとは逆の極性である正極性のパルス電圧を印加すればよいことは、容易に理解できる。
 本実施例のMS/MS型質量分析装置における特徴的な動作を説明する。このMS/MS型質量分析装置では、第1段四重極3において質量の相違する複数の目的イオンを順に選別してプリカーサイオンとし、コリジョンセル4においてそのプリカーサイオンを開裂させ、それにより生成されたプロダクトイオンを第3段四重極6において質量分離して検出器7により検出する。
 或る時点では、第1段四重極3で目的イオンAが選別されてコリジョンセル4に送り込まれ、コリジョンセル4内で衝突誘起解離によりプロダクトイオンが生成され、このプロダクトイオンが第3段四重極6で質量分離される。所定時間、目的イオンAについてのMS/MS分析が実行された後、質量が相違する次の目的イオンBのMS/MS分析を行うために、第1段四重極3で選別される目的イオンAが目的イオンBに変更される。この変更に際して、前の目的イオンAがコリジョンセル4に導入される最後の時点から次に目的イオンBがコリジョンセル4に導入され始める時点までの間に、いずれのイオンも導入されない休止期間が設けられる。この休止期間は例えば5msec程度の時間である。
 制御部10は、この休止期間中に出口側レンズ電極44にパルス電圧を印加するようにパルス電圧源21を制御する。休止期間中にはコリジョンセル4への新たなイオンの導入はないが、それ以前に導入された目的イオンAやそれが開裂して生じた各種のプロダクトイオンA’が未だコリジョンセル4内に残留している。出口側レンズ電極44に負極性のパルス電圧が印加されると、コリジョンセル4内に形成される直流電場により、残留していたイオンA、A’が誘引され、加速されて出口側レンズ電極44に衝突する。出口側レンズ電極44から電子を受け取ってイオンA、A’は中性化し、出口側レンズ電極44の表面に付着する。
 コリジョンセル4内に残留しているイオンA、A’は、全体としては、入口側レンズ電極42から出口側レンズ電極44の方向に向かって移動しているが、上述したようにパルス電圧が印加されることにより、その移動速度が一気に上がる。それにより、短時間のうちにほぼ全ての残留イオンA、A’が出口側レンズ電極44に接触し、コリジョンセル4内から除去される。引き続いて目的イオンBがコリジョンセル4内に導入される際には、前の目的イオンAやこれに由来するプロダクトイオンA’は殆ど残っておらず、クロストークを防止することができる。その結果、目的イオンBのみを効率よく開裂させ、それによって生成されたプロダクトイオンを質量分析することができる。
 上述した残留イオンの除去操作により、中性化した分子が出口側レンズ電極44の表面に付着し堆積することになる。出口側レンズ電極44に印加されるのは直流的な電圧であり、この出口側レンズ電極44の汚れに起因する電場の乱れはイオンの収束や輸送にそれほど大きな影響を及ぼさない。そのため、出口側レンズ電極44が或る程度汚れても、イオンの通過効率を大きく損なうことはない。また、出口側レンズ電極44が汚れた場合でも、コリジョンセル4の内部に収容される第2段四重極5とは異なり、分析室1内から取り出して、分解、洗浄することが容易である。再組み立ての際にも、四重極のように高い組立精度が要求されることもなく、そうした洗浄作業に要する手間や時間は四重極の洗浄作業に比べて大幅に軽減される。
  [第2実施例]
 図3は、第2実施例のMS/MS型質量分析装置におけるコリジョンセル4及びその電源系の概略構成図である。この第2実施例のMS/MS型質量分析装置では、負極性のパルス電圧が印加される出口側レンズ電極46の開口部47の周囲を、コリジョンセル4内方に突出したスキマー形状としている。これにより、コリジョンセル4内に形成される、イオンを誘引するための直流電場が強まるので、イオンの加速を容易にすることができる。特に、第2段四重極5で囲まれる空間が狭い場合にも、その空間内に直流電場の作用を行き届かせることができる。これはコリジョンセル4内からイオンを迅速に除去するのに有効である。
  [第3実施例]
 図4は、第3実施例のMS/MS型質量分析装置におけるコリジョンセル4及びその電源系の概略構成図である。この第3実施例のMS/MS型質量分析装置では、入口側レンズ電極42にも出口側レンズ電極44と同じパルス電圧が印加される。この場合、コリジョンセル4内の残留イオンは、入口側レンズ電極42と出口側レンズ電極44とのいずれか、通常は、距離が近い側に、誘引される。したがって、コリジョンセル4内の入口側レンズ電極42に近い位置に存在していたイオンに対しても十分に大きな直流電場を作用させることができる。また、レンズ電極42、44に到達するまでのイオンの移動距離も短いので、より迅速にコリジョンセル4内から残留イオンを除去することができる。
  [第4実施例]
 図5は、第4実施例のMS/MS型質量分析装置におけるコリジョンセル4及びその電源系の概略構成図である。この第4実施例のMS/MS型質量分析装置では、直流電源部20は、第1パルス電圧源21のほかに、第1パルス電圧源21によるパルス電圧とは逆極性のパルス電圧を発生するための第2パルス電圧源22を備える。第1実施例と同様に、第1パルス電圧源21から出口側レンズ電極44に、コリジョンセル4内のイオンとは逆極性の、この場合には負極性のパルス電圧を印加する。一方、第2パルス電圧源22から入口側レンズ電極42に対し、出口側レンズ電極44とは逆極性のパルス電圧、この場合には正極性のパルス電圧を、同じタイミングで印加する。
 入口側レンズ電極42に印加されるパルス電圧の極性はコリジョンセル4内に残留しているイオンと同極性であるから、この直流電場の作用により、コリジョンセル4内で入口側レンズ電極42に近くに存在するイオンは入口側レンズ電極42から遠ざかる、つまり出口側レンズ電極44に近づくように加速される。入口側レンズ電極42と出口側レンズ電極44とのいずれもが、コリジョンセル4内に存在するイオンを出口側レンズ電極44の方向に誘引する直流電場を形成するので、イオンは出口側レンズ電極44に向かって進み出口側レンズ電極44に接触する。これにより、イオンはコリジョンセル4内から迅速に除去される。
 なお、上記第1乃至第4実施例において、入口側レンズ電極42、出口側レンズ電極44のいずれか一方又は両方にパルス電圧を印加する際に、第2段四重極5にはその前後の期間と同様に、所定の高周波電圧を印加し続けるようにするとよい。それによって、コリジョンセル4内のイオンはイオン光軸(第2段四重極5の中心軸)付近に収束されるため、第2段四重極5へのイオンの接触を軽減することができるとともに、イオンをコリジョンセル4内空間に散逸させずに効率良くレンズ電極42、44に導くことができる。
  [第5実施例]
 図6は、第5実施例のMS/MS型質量分析装置におけるコリジョンセル4及びその電源系の概略構成図である。上記第1乃至第4実施例のMS/MS型質量分析装置はいずれも、レンズ電極42、44の一方又は両方にイオンを接触させることでイオンを除去するものである。これに対し、この第5実施例のMS/MS型質量分析装置では、第2段四重極5にイオンを接触させることでイオンを除去する。コリジョンセル4内に残留するイオンを第2段四重極5に向かって進行させるために、直流電源部20は、イオンと同極性のパルス電圧を発生するためのパルス電圧源23を備える。このパルス電圧源23によるパルス電圧の作用は第4実施例における第2パルス電圧源22と同じである。即ち、イオンと同極性のパルス電圧が出口側レンズ電極44に印加されると、それにより形成される直流電場に対しイオンは反発する。
 さらに、第2電源部12では、上記パルス電圧の印加と略同時に、高周波電圧源122による高周波電圧の発生を一時的に停止する。この例では、スイッチ126で高周波電圧源122の出力を切断しているが、高周波電圧を停止する方法はこれに限らない。いずれにしても、このとき第2段四重極5にはパルス電圧よりも低い直流バイアス電圧が印加されているだけである。そのため、コリジョンセル4内に存在するイオンに対する高周波電場の収束作用がなくなり、その直前までイオン光軸付近に多く集まっていたイオンは周囲に拡がる。
 上述したようにレンズ電極44に印加されたパルス電圧によって形成される直流電場によりイオンは跳ね返され、またレンズ電極44と第2段四重極5との間の空間には、前者から後者に向かって低くなる直流電位勾配が形成されている。このため、高周波電場による収束作用が解かれたイオンは、第2段四重極5に向かって進み、第2段四重極5に接触して中性化される。コリジョンセル4内に残留しているイオンにとって、第2段四重極5に到達するまでの距離はレンズ電極42、44に到達するまでの距離に比べて平均的にかなり短い。したがって、パルス電圧が印加されると短時間の間にイオンは第2段四重極5に達し、効率良く除去される。MS/MS分析におけるクロストークを防止する点では、この実施例の構成は上記第1乃至第4実施例の構成よりも優れている。但し、イオンの付着により第2段四重極5が汚れるため、洗浄作業に手間が掛かるという不利な点がある。
  [第6実施例]
 図8は、第6実施例のMS/MS型質量分析装置におけるコリジョンセル4及びその電源系の概略構成図である。この第6実施例の基本的な構成や作用は上記第5実施例と同じである。第5実施例と異なる点は、入口側レンズ電極42にも出口側レンズ電極44と同一の、イオンと同極性のパルス電圧を印加するようにしていること、及び、入口側レンズ電極48、出口側レンズ電極46の両方を、上記第2実施例(図3参照)における出口側レンズ電極46と同様にスキマー形状としていること、である。このようなスキマー形状のレンズ電極48、46を用いることで、イオン光軸付近に、イオンを反発させる強い直流電場を形成し易くなる。これによって、イオン光軸付近に存在しているイオンは速やかに第2段四重極5に向かって移動し、第2段四重極5に接触して除去される。
 なお、入口側レンズ電極42(又は48)と出口側レンズ電極44(又は46)のいずれか一方にのみ、イオンと同極性のパルス電圧を印加する場合には、第5実施例のように、出口側レンズ電極44(又は46)にパルス電圧を印加するほうが好ましい。これは、コリジョンセル4内のイオンが全体として入口側レンズ電極42から出口側レンズ電極44の方向に進行する速度成分を有しているからである。このような速度成分を有するイオンに対し直流電場による反発力(押し返す力)の成分が加わると、出口側レンズ電極44に向かっていたイオンはその軌道をほぼ直角に曲げ、第2段四重極5に向かってほぼ最短距離で進行する。
 以上の説明のように、コリジョンセル4に導入される目的イオンが切り替えられる際の休止期間中に、レンズ電極42、44にパルス電圧を印加することで、コリジョンセル4内の残留イオンを除去することが可能である。この際、中性化したイオンの付着によるレンズ電極42、44又は第2段四重極5の汚れ、をできるだけ少なくするという観点から、パルス電圧の印加のタイミングを適切に制御することが望ましい。次に、この点について説明する。
 図8は、第1段四重極3で目的イオン(プリカーサイオン)が切り替えられる前後のコリジョンセル4内の残留イオンの強度変化を模式的に示す図である。コリジョンセル4への目的イオンAの導入が停止された時点(t1)から、コリジョンセル4への次の目的イオンBの導入が開始される時点(t2)までの期間Tが、いずれのイオンもコリジョンセル4に導入されない休止期間である。
 コリジョンセル4への目的イオンAの導入が停止されても、その直前にコリジョンセル4内に導入された目的イオンAやこの目的イオンAに由来するプロダクトイオンはコリジョンセル4内に残っており、出口側レンズ電極44に向かって移動し開口部45を経て少しずつ排出される。したがって、図8に示すように、コリジョンセル4内の残留イオンの強度は時間経過に伴って減少してゆくが、CIDガスとの接触によるイオンの速度低下の影響で、次の目的イオンBの導入開始時点t2でも未だ排出されずに残留しているイオンがある。これが上述したクロストークであり、図8から明らかなように、休止期間Tが短いほどクロストークは大きくなる。
 いま、目的イオンAの導入停止時点t1の直後、言い換えれば休止期間Tの初期に、残留イオン除去用のパルス電圧を印加した場合、図9に示すように、速やかに残留イオンは除去されてイオン強度は下がる。しかしながら、ここで除去されるイオンの量は図9中に示したイオン強度S1に相当する量であり、その殆どがレンズ電極42、44(第6及び第7実施例の場合には第2段四重極5)に接触するから、レンズ電極42、44の汚れの度合いは大きくなる。
 これに対し、目的イオンBの導入開始時点t2の直前、言い換えれば休止期間Tの終了直前にパルス電圧を印加した場合、図10に示すように、レンズ電極42、44に印加される電圧の作用で除去されるイオンの量は、図10中に示すイオン強度S2に相当する量になる。このイオン強度S2はイオン強度S1に比べて低く、強制的に除去されるイオン量が格段に少なくて済むことが分かる。即ち、図10に示したようなタイミングで、つまり休止期間Tの終了直前に、パルス電圧をレンズ電極42、44に印加することにより、レンズ電極42、44(又は第2段四重極5)の汚れを軽減することができ、洗浄作業の頻度を下げることができる。これは、第1乃至第6実施例のいずれにも言えることである。
 もちろん、パルス電圧をレンズ電極42、44に印加してから目的イオンBが導入されるまでの時間が短すぎると、イオンが完全に除去されない前に目的イオンBが導入されてしまいクロストークを生じる。したがって、イオンの除去に要する時間を実験的に測定したりシミュレーション計算で求めたりして、パルス電圧を印加する適宜のタイミングを予め見い出すようにすることが望ましい。
 なお、上記各実施例はいずれも本発明の一例であるから、本発明の趣旨の範囲で適宜に変形、追加、修正を行っても本願請求の範囲に包含されることは明らかである。

Claims (8)

  1.  各種イオンの中で特定の質量を有するイオンをプリカーサイオンとして選別する第1質量分離部と、その内部に高周波電場によりイオンを収束させつつ輸送するイオンガイドが配設され、前記プリカーサイオンを所定ガスと衝突させて衝突誘起解離により該プリカーサイオンを開裂させるためのコリジョンセルと、前記プリカーサイオンの開裂により生成した各種プロダクトイオンの中で特定の質量を有するイオンを選別する第2質量分離部と、を直列的に配置したMS/MS型質量分析装置において、
     a)前記コリジョンセルの入口側と出口側とにそれぞれ設けられたレンズ電極と、
     b)入口側のレンズ電極と出口側のレンズ電極とのいずれか一方又は両方に直流電圧を印加する電圧印加手段と、
     c)前記いずれか一方又は両方のレンズ電極に、前記コリジョンセル内のイオンを誘引する又は該イオンを反発させるような直流電圧を、所定のタイミングでパルス状に印加するべく前記電圧印加手段を制御する制御手段と、
     を備えることを特徴とするMS/MS型質量分析装置。
  2.  請求項1に記載のMS/MS型質量分析装置であって、
     前記電圧印加手段は、出口側レンズ電極に、コリジョンセル内のイオンと逆極性の直流電圧を印加することを特徴とするMS/MS型質量分析装置。
  3.  請求項1に記載のMS/MS型質量分析装置であって、
     前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極との両方に、コリジョンセル内のイオンと逆極性の直流電圧を印加することを特徴とするMS/MS型質量分析装置。
  4.  請求項1に記載のMS/MS型質量分析装置であって、
     前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極とに、互いに逆極性の直流電圧を印加することを特徴とするMS/MS型質量分析装置。
  5.  請求項4に記載のMS/MS型質量分析装置であって、
     出口側レンズ電極に印加する直流電圧を前記コリジョンセル内のイオンとは逆の極性とすることを特徴とするMS/MS型質量分析装置。
  6.  請求項1に記載のMS/MS型質量分析装置であって、
     前記電圧印加手段は、入口側レンズ電極と出口側レンズ電極とのいずれか一方又は両方に、コリジョンセル内のイオンと同極性の直流電圧を印加するものであり、
     前記制御手段は、前記電圧印加手段により、前記いずれか一方又は両方のレンズ電極にパルス状の直流電圧を印加するタイミングで、前記イオンガイドへの高周波電圧の印加を停止することを特徴とするMS/MS型質量分析装置。
  7.  請求項1~6のいずれかに記載のMS/MS型質量分析装置であって、
     前記所定のタイミングは、前記第1質量分離部において選択対象イオンを変更するためにイオンの出射を休止している休止期間中に設定されることを特徴とするMS/MS型質量分析装置。
  8.  請求項7に記載のMS/MS型質量分析装置であって、
     前記所定のタイミングは、前記休止期間の終了直前に設定されることを特徴とするMS/MS型質量分析装置。
PCT/JP2008/001197 2008-01-30 2008-05-13 Ms/ms型質量分析装置 WO2009095958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009551321A JP4978700B2 (ja) 2008-01-30 2008-05-13 Ms/ms型質量分析装置
US12/865,251 US8384028B2 (en) 2008-01-30 2008-05-13 MS/MS mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/000111 WO2009095952A1 (ja) 2008-01-30 2008-01-30 Ms/ms型質量分析装置
JPPCT/JP2008/000111 2008-01-30

Publications (1)

Publication Number Publication Date
WO2009095958A1 true WO2009095958A1 (ja) 2009-08-06

Family

ID=40912326

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/000111 WO2009095952A1 (ja) 2008-01-30 2008-01-30 Ms/ms型質量分析装置
PCT/JP2008/001197 WO2009095958A1 (ja) 2008-01-30 2008-05-13 Ms/ms型質量分析装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000111 WO2009095952A1 (ja) 2008-01-30 2008-01-30 Ms/ms型質量分析装置

Country Status (2)

Country Link
US (1) US8384028B2 (ja)
WO (2) WO2009095952A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061147A1 (en) * 2009-11-17 2011-05-26 Bruker Daltonik Gmbh Utilizing gas flows in mass spectrometers
JP2011216425A (ja) * 2010-04-02 2011-10-27 Shimadzu Corp Ms/ms型質量分析装置
WO2014076766A1 (ja) 2012-11-13 2014-05-22 株式会社島津製作所 タンデム四重極型質量分析装置
WO2014080493A1 (ja) 2012-11-22 2014-05-30 株式会社島津製作所 タンデム四重極型質量分析装置
US8969797B2 (en) 2012-10-28 2015-03-03 Shimadzu Corporation MS/MS type mass spectrometer
JP2020091988A (ja) * 2018-12-05 2020-06-11 株式会社島津製作所 質量分析装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748811B2 (en) * 2009-02-05 2014-06-10 Shimadzu Corporation MS/MS mass spectrometer
EP2395538B1 (en) * 2009-02-05 2019-01-02 Shimadzu Corporation Ms/ms mass spectrometer
CN103109347B (zh) * 2010-05-11 2016-12-21 Dh科技发展私人贸易有限公司 用于减少质谱仪的离子引导件中的污染物效应的离子透镜
JP6044385B2 (ja) * 2013-02-26 2016-12-14 株式会社島津製作所 タンデム型質量分析装置
EP2988317B1 (en) * 2013-05-08 2023-03-22 Shimadzu Corporation Mass spectrometer
GB201407201D0 (en) * 2014-04-24 2014-06-11 Micromass Ltd Mass spectrometer with interleaved acquisition
DE112015001908B4 (de) 2014-04-24 2022-01-20 Micromass Uk Limited Massenspektrometer mit verschachtelter Aufnahme
WO2015191569A1 (en) * 2014-06-13 2015-12-17 Perkinelmer Health Sciences, Inc. Rf ion guide with axial fields
WO2022131379A1 (ja) * 2020-12-17 2022-06-23 株式会社日立ハイテク 質量分析装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264546A (ja) * 1986-03-07 1987-11-17 フイニガン コ−ポレ−シヨン 質量分析器
JPH1055777A (ja) * 1996-08-09 1998-02-24 Hitachi Ltd 質量分析計及び電極加熱方法
JP2005183328A (ja) * 2003-12-24 2005-07-07 Hitachi High-Technologies Corp イオントラップ/飛行時間型質量分析計

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404849B2 (ja) * 1993-12-29 2003-05-12 株式会社島津製作所 Ms/ms型質量分析装置
US6507019B2 (en) * 1999-05-21 2003-01-14 Mds Inc. MS/MS scan methods for a quadrupole/time of flight tandem mass spectrometer
US6504148B1 (en) * 1999-05-27 2003-01-07 Mds Inc. Quadrupole mass spectrometer with ION traps to enhance sensitivity
US6683301B2 (en) * 2001-01-29 2004-01-27 Analytica Of Branford, Inc. Charged particle trapping in near-surface potential wells
AU2002350343A1 (en) * 2001-12-21 2003-07-15 Mds Inc., Doing Business As Mds Sciex Use of notched broadband waveforms in a linear ion trap
US6919562B1 (en) * 2002-05-31 2005-07-19 Analytica Of Branford, Inc. Fragmentation methods for mass spectrometry
US7196324B2 (en) * 2002-07-16 2007-03-27 Leco Corporation Tandem time of flight mass spectrometer and method of use
US7064319B2 (en) * 2003-03-31 2006-06-20 Hitachi High-Technologies Corporation Mass spectrometer
JP4690641B2 (ja) * 2003-07-28 2011-06-01 株式会社日立ハイテクノロジーズ 質量分析計
GB2415541B (en) * 2004-06-21 2009-09-23 Thermo Finnigan Llc RF power supply for a mass spectrometer
GB0511386D0 (en) * 2005-06-03 2005-07-13 Shimadzu Res Lab Europe Ltd Method for introducing ions into an ion trap and an ion storage apparatus
US7385185B2 (en) * 2005-12-20 2008-06-10 Agilent Technologies, Inc. Molecular activation for tandem mass spectroscopy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264546A (ja) * 1986-03-07 1987-11-17 フイニガン コ−ポレ−シヨン 質量分析器
JPH1055777A (ja) * 1996-08-09 1998-02-24 Hitachi Ltd 質量分析計及び電極加熱方法
JP2005183328A (ja) * 2003-12-24 2005-07-07 Hitachi High-Technologies Corp イオントラップ/飛行時間型質量分析計

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494228A (en) * 2009-11-17 2013-03-06 Bruker Daltonik Gmbh Utilizing gas flows in mass spectrometers
WO2011061147A1 (en) * 2009-11-17 2011-05-26 Bruker Daltonik Gmbh Utilizing gas flows in mass spectrometers
GB2494228B (en) * 2009-11-17 2016-03-30 Bruker Daltonik Gmbh Utilizing gas flows in mass spectrometers
JP2011216425A (ja) * 2010-04-02 2011-10-27 Shimadzu Corp Ms/ms型質量分析装置
US8969797B2 (en) 2012-10-28 2015-03-03 Shimadzu Corporation MS/MS type mass spectrometer
US9384953B2 (en) 2012-11-13 2016-07-05 Shimadzu Corporation Tandem quadrupole mass spectrometer
WO2014076766A1 (ja) 2012-11-13 2014-05-22 株式会社島津製作所 タンデム四重極型質量分析装置
EP2945183A1 (en) 2012-11-22 2015-11-18 Shimadzu Corporation Tandem quadrupole mass spectrometer
US9269551B2 (en) 2012-11-22 2016-02-23 Shimadzu Corporation Tandem quadrupole mass spectrometer
WO2014080493A1 (ja) 2012-11-22 2014-05-30 株式会社島津製作所 タンデム四重極型質量分析装置
US9761432B2 (en) 2012-11-22 2017-09-12 Shimadzu Corporation Tandem quadrupole mass spectrometer
JP2020091988A (ja) * 2018-12-05 2020-06-11 株式会社島津製作所 質量分析装置
JP7095579B2 (ja) 2018-12-05 2022-07-05 株式会社島津製作所 質量分析装置
US11393669B2 (en) 2018-12-05 2022-07-19 Shimadzu Corporation Mass spectrometer

Also Published As

Publication number Publication date
US20110006203A1 (en) 2011-01-13
WO2009095952A1 (ja) 2009-08-06
US8384028B2 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
WO2009095958A1 (ja) Ms/ms型質量分析装置
US7456388B2 (en) Ion guide for mass spectrometer
JP7286192B2 (ja) イオンの活性化及び貯蔵を強化するためのセグメント化リニアイオントラップおよび当該リニアイオントラップにおいてイオンを処理する方法
US7285774B2 (en) FAIMS apparatus and method for separating ions in the gas phase
JP6004098B2 (ja) 質量分析装置
JP4872088B2 (ja) 質量分析計用イオンガイド
JP3971958B2 (ja) 質量分析装置
US8164053B2 (en) Mass analyzer and mass analyzing method
JP4957805B2 (ja) Ms/ms型質量分析装置
GB2502155A (en) Controlling ions using descending order multipole electric fields
JP5454311B2 (ja) Ms/ms型質量分析装置
US11598749B2 (en) Mass spectrometric system with ion mobility analyzer at elevated pressure
JPWO2017022125A1 (ja) 質量分析装置
WO2013057822A1 (ja) 質量分析装置
JP4978700B2 (ja) Ms/ms型質量分析装置
US8969797B2 (en) MS/MS type mass spectrometer
WO2019229945A1 (ja) 質量分析装置
US20150179420A1 (en) Ionization System for Charged Particle Analyzers
JPWO2019016851A1 (ja) 質量分析装置
US20240105439A1 (en) Mass and Kinetic Energy Ordering of Ions Prior to Orthogonal Extraction Using Dipolar DC
JP4450717B2 (ja) 質量分析装置
JP2004362982A (ja) 飛行時間型質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551321

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12865251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751715

Country of ref document: EP

Kind code of ref document: A1