WO2009093842A2 - 비스무트 단결정 나노와이어의 제조방법 - Google Patents
비스무트 단결정 나노와이어의 제조방법 Download PDFInfo
- Publication number
- WO2009093842A2 WO2009093842A2 PCT/KR2009/000310 KR2009000310W WO2009093842A2 WO 2009093842 A2 WO2009093842 A2 WO 2009093842A2 KR 2009000310 W KR2009000310 W KR 2009000310W WO 2009093842 A2 WO2009093842 A2 WO 2009093842A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bismuth
- single crystal
- nanowires
- substrate
- reactor
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/007—Growth of whiskers or needles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2958—Metal or metal compound in coating
Definitions
- the present invention relates to a method for producing bismuth single crystal nanowires by vaporizing bismuth (Bi) powder and then transferring the vaporized bismuth to a substrate to nucleate and grow bismuth.
- Bismuth (Bi) is a semimetal material, such as small effective electron mass, low thermal conductivity, long mean free path of 0.1mm at 4K, 100K to 100nm and low electron density of 3x10 17 cm -3 . Has unique properties. For this reason, the research on the electron transport properties due to the quantum limiting effect in the thermoelectric material and the one-dimensional structure has been actively conducted.
- the diameter when the diameter is 50 nm or less, it has a semi-metal to semiconductor transition and has a magneto-resistance characteristic although it is not a magnetic material. Therefore, a template or an electron beam (e-beam) having nanopores is formed.
- 1-dimensional bismuth nanowires are manufactured by using and basic researches on the electrical and magnetic properties of nanowire-type bismuth are in progress.
- the bismuth nanowires are manufactured by using a template in which nanopores are formed as in the prior art, or when the bismuth nanowires are manufactured by using an electrochemical method, polycrystalline bismuth nanowires are formed.
- the manufacturing method is complicated and mass production is difficult, such as the production of a template having fine and uniform nanopores and the removal of the template after the production of nanowires.
- An object of the present invention for solving the above problems is to provide a method for producing high purity, high quality bismuth (Bi) single crystal nanowires by using a vapor phase transfer method without using a template.
- Still another object of the present invention is to provide bismuth single crystal nanowires prepared using the production method of the present invention.
- the bismuth single crystal nanowire manufacturing method of the present invention is characterized in that bismuth (Bi) nanowires are prepared on a substrate by vaporizing bismuth (Bi) powder.
- the bismuth powder and the substrate are heat-treated at different temperatures to vaporize the bismuth powder and transfer the vaporized bismuth to the substrate using an inert gas, and the transferred bismuth is the substrate. Nucleation and growth in the phase produce bismuth single crystal nanowires.
- the manufacturing method of the present invention is a bismuth single crystal nanowires are produced through the material movement path in the gas phase without using a template (template) in which the nano-pores are formed, the process is simple and reproducible, do not contain impurities, high purity There is an advantage that can be produced nanowires.
- the bismuth powder and the temperature of the substrate are respectively adjusted, and the degree of flow of the inert gas and the pressure in the heat treatment tube used in the heat treatment are finally adjusted so that the nucleation driving force, growth driving force, nucleation rate, and growth rate of bismuth on the substrate are finally increased. Since the method of controlling the bismuth single crystal nanowires, the size and density on the substrate is controllable and reproducible, it is possible to manufacture a high quality bismuth single crystal nanowires without defects and good crystallinity.
- the most important key conditions for producing bismuth nanowires of high quality, high purity and desired shape are the temperature of bismuth powder and substrate, the degree of flow of the inert gas and the pressure conditions during the heat treatment.
- the bismuth powder is located at the front end of the reactor and maintained at 600 to 800 °C
- the substrate is located at the rear end of the reactor is preferably maintained at 100 to 200 °C
- the carrier for transferring the vaporized bismuth to the substrate (
- the inert gas serving as a carrier) preferably flows from 100 to 600 sccm from the front end of the reactor toward the rear end of the reactor, and the pressure of the reactor is preferably 1 to 30 torr.
- the heat treatment temperature conditions, the carrier gas flow rate and the pressure conditions during the heat treatment may be independently changed, but the three conditions must be changed depending on the conditions of the other conditions.
- Single crystal nanowires can be obtained.
- the temperature conditions of the front and rear ends of the reactor, the flow conditions of the inert gas, and the pressure conditions during the heat treatment, the degree of vaporization of bismuth powder, the amount of vaporized bismuth material transferred to the substrate per hour, nucleation and growth of bismuth material on the substrate It affects the speed, the surface energy of the bismuth solid phase (nanowire) formed on the substrate, the degree of aggregation of the bismuth solid phase (nanowire) formed on the substrate, and the morphology of the bismuth material formed on the substrate.
- the heat treatment time is controlled in consideration of the size of the bismuth nanowire to be prepared and the temperature, the flow of inert gas, and the pressure conditions during the heat treatment, preferably heat treatment for 5 minutes to 1 hour.
- the substrate is a semiconductor or insulator substrate, preferably a single crystal semiconductor or insulator substrate, and more preferably a silicon single crystal substrate.
- the heat treatment is characterized in that bismuth nanowires having a rombohedral structure are manufactured, bismuth nanowires having a long axis (growth direction of nanowires) in a ⁇ 110> direction are manufactured, and a diameter of a short axis is Bismuth nanowires having a length of 50 nm to 150 nm and a major axis of several ⁇ m or more are manufactured.
- bismuth single crystal nanowires which are semimetal materials, can be manufactured by using a vapor phase transfer method without using a template having nanopores.
- the wire has the advantage that the high purity high quality bismuth nanowires of the perfect single crystal state does not contain defects, and has the advantage of mass production of uniform size bismuth nanowires that are not aggregated on the single crystal substrate.
- FIG. 1 is a schematic view showing a bismuth nanowire manufacturing method of the present invention
- FIG. 2 is a scanning electron microscope (SEM) low magnification (FIG. 2 (a)) and high magnification (FIG. 2 (b)) of the bismuth nanowires prepared in Example 1,
- Figure 3 is an X-ray diffraction pattern (X-ray diffraction pattern) of bismuth nanowires prepared in Example 1,
- FIG. 4 is a dark field image photograph of a transmission electron microscope (TEM) of bismuth nanowires prepared in Example 1, and the upper right portion of FIG. 4 is an electron diffraction pattern of the bismuth nanowires of FIG. Pattern (SAED; Selected Area Electron Diffraction Pattern),
- SAED Selected Area Electron Diffraction Pattern
- Example 5 is a high resolution transmission electron microscope (HRTEM) photograph of bismuth nanowires prepared in Example 1,
- FIG. 6 is an energy dispersive spectroscopy (EDS) analysis result of bismuth nanowires prepared in Example 1.
- EDS energy dispersive spectroscopy
- FIG. 1 is a schematic diagram showing a manufacturing method of the present invention.
- bismuth (Bi) powder contained in a refractory crucible alumina crucible
- a substrate is placed at a rear end of the reactor.
- the temperature of the front end of the reactor (bismuth powder) is maintained at 600 to 800 ° C. and the temperature of the rear end of the reactor (substrate) is 100 to 200 ° C. using each heating element (heating element of FIG. 1). Keep it.
- the bismuth powder is heated, bismuth gas is generated.
- the vaporized bismuth is transferred to the substrate by a flow of an inert gas (Ar in FIG.
- the rate of nucleation and growth rate of nucleated bismuth solid phase on the substrate are determined by the temperature of the substrate and the amount of bismuth gas transferred to the substrate per unit time.
- the inert gas is flowed at a flow rate of 100 to 600 sccm at a pressure of 1 to 30 torr to transfer the vaporized bismuth.
- Bismuth nanowires are prepared under the condition of the bismuth nanowires, and conditions for dynamically generating and maintaining the driving force (dynamic driving force) of the bismuth nanowires are constant.
- bismuth nanowires prepared on the substrate do not aggregate with each other, have a desirable aspect ratio, and are manufactured in the form of high purity / high quality single crystal nanowires.
- FIG. 1 illustrates a method of separately controlling a crucible (alumina crucible) containing bismuth powder and a substrate temperature by using an independent heating element at each of the front and rear ends of the reactor, the crucible containing bismuth powder is heat-treated.
- the temperature condition of the substrate may be controlled by placing the hottest portion of the quartz tube in the furnace and adjusting the physical distance between the crucible and the substrate.
- the substrate may be used as long as the semiconductor or insulator having high thermal and chemical stability at 100 to 200 ° C., which is the heat treatment temperature of the substrate, preferably a single crystal semiconductor or insulator substrate, and more preferably a silicon single crystal substrate. to be.
- Bismuth single crystal nanowires were synthesized using bismuth powder in a reactor.
- the reactor is divided into a front end and a rear end, and is independently provided with a heating element and a temperature control device.
- the tube in the reactor was made of quartz (Quzrtz) material with a diameter of 1 inch and a length of 60 cm.
- a high-purity alumina boat-type crucible containing 0.20 g of bismuth powder (Sigma-Aldrich, 264008) was placed in the center of the front end of the reactor, and a silicon substrate (0.5 cm ⁇ 0.5 cm) was placed in the center of the rear end of the reactor.
- a silicon substrate a silicon wafer having a (100) crystal plane with a natural oxide film formed on its surface was used.
- Argon gas is introduced into the front end of the reactor and exhausted to the rear end of the reactor, and a vacuum pump is provided at the rear end of the reactor. The vacuum pump was used to maintain the pressure in the quartz tube at 15 torr, and 300 sccm of Ar was flowed using a Mass Flow Controller (MFC).
- MFC Mass Flow Controller
- Bismuth single crystal nanowires were prepared by heat treatment for 20 minutes while maintaining the temperature of the front end of the reactor (alumina crucible containing bismuth powder) at 700 ° C and the temperature of the rear end of the reactor (silicon substrate) at 150 ° C. It was.
- FIG. 2 is a scanning electron microscope (SEM) low magnification (FIG. 2 (a)) and high magnification (FIG. 2 (b)) photograph of bismuth nanowires prepared in Example 1.
- SEM scanning electron microscope
- FIG. 2 (a) low magnification
- FIG. 2 (b) high magnification
- FIG. 2 (b) photograph of bismuth nanowires prepared in Example 1.
- FIG. 2 it can be seen that a solid nanowire having a diameter of about 100 nm and a length of several tens of micrometers or more is manufactured, and a plurality of manufactured nanowires have an even size and shape, and are individually separated on a silicon substrate without aggregation. It can be seen that it is prepared by separating.
- Example 3 is an X-ray diffraction pattern of the bismuth nanowires prepared in Example 1, and it can be seen that the X-ray diffraction picks of the prepared bismuth nanowires are consistent with the bulk of bismuth. It can be seen that the bismuth nanowires prepared have a Romboomboral structure.
- FIG. 4 is a dark field image photograph of a transmission electron microscope (TEM) of bismuth nanowires prepared in Example 1, and the upper right portion of FIG. 4 is an electron diffraction pattern of the bismuth nanowires of FIG. Selected Area Electron Diffraction Pattern (SAED).
- SAED Selected Area Electron Diffraction Pattern
- the bismuth nanowires produced through the dark field image of FIG. 4 have a smooth surface, and the thickness of the prepared bismuth nanowires is constant.
- the single nanowire is a single crystal and has a Romboomboral structure in accordance with the X-ray diffraction result of FIG. 3.
- the dark field image and the electron diffraction pattern of FIG. 4 it can be seen that the growth direction (the direction of the major axis) of the bismuth nanowire is in the [110] direction.
- FIG. 5 is a high resolution transmission electron microscope (HRTEM) photograph of bismuth nanowires prepared in Example 1.
- HRTEM transmission electron microscope
- Figure 6 is a result of analyzing the components of the bismuth nanowires prepared in Example 1 using EDS (Energy Dispersive Spectroscopy) attached to the TEM equipment. 6 shows that nanowires made of high-purity bismuth were manufactured except for materials measured additionally due to characteristics of measuring equipment such as a grid, and silicon, which is a material constituting the substrate, does not exist as impurities. .
- EDS Electronic Dispersive Spectroscopy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 비스무트(Bi) 분말을 이용한 비스무트 단결정 나노와이어의 제조방법을 제공하며, 상세하게는 반응로의 전단부에 위치시킨 비스무트 분말과 반응로의 후단부에 위치시킨 기판을 불활성 기체가 흐르는 분위기에서 열처리하여 상기 기판 상에 비스무트 단결정 나노와이어를 제조하는 방법을 제공한다. 본 발명의 제조방법은 주형체를 사용하지 않고 기상이송법을 이용하여 비스무트 나노와이어를 제조할 수 있어 그 공정이 간단하고 재현성이 있으며, 제조된 비스무트 나노와이어가 결함을 포함하지 않는 완벽한 단결정 상태의 고순도/고품질인 장점을 가지며, 기판 상에 응집되어 있지 않은 고형상의 비스무트 나노와이어를 대량생산할 수 있는 장점이 있다.
Description
본 발명은 비스무트(Bi) 분말을 기화시킨 후, 기화된 비스무트를 기판으로 이송시켜, 비스무트의 핵 생성 및 성장을 통해 비스무트 단결정 나노와이어를 제조하는 방법에 관한 것이다.
비스무트(Bi)는 반금속 물질로 작은 유효 전자 질량, 낮은 열 전도성, 4K에서 0.1mm, 300K에서 100nm 정도의 긴 평균 자유 경로(mean free path) 및 3x1017 cm-3 정도의 낮은 전자 밀도 등과 같은 독특한 성질을 갖는다. 이로 인해 열전 소재 및 1차원 구조에서 양자 제한 효과 때문에 나타나는 전자 운반 성질에 대한 연구가 활발히 이루어지고 있다.
특히 직경이 50 nm 이하인 경우 밴드 갭을 갖는 반도체 성질(semimetal to semiconductor transition)을 가지며, 자성 물질이 아니지만 자기 저항 특성을 보이기 때문에 나노 세공이 형성된 주형체(template) 또는 전자 빔(e-beam) 등을 이용하여 1 차원 비스무트 나노와이어를 제조하여, 나노와이어 형태의 비스무스의 전기, 자기적 성질에 대한 기본 연구가 진행되고 있다.
그러나, 종래와 같이 나노 세공이 형성된 주형체를 이용하여 비스무트 나노와이어를 제조하거나, 전기화학적 방법을 이용하여 비스무트 나노와이어를 제조하는 경우, 다결정체(polycrystalline)의 비스무트 나노와이어가 형성되는 문제점이 있으며, 미세하고 균일한 나노세공을 갖는 주형체의 제조 및 나노와이어 제조 후 주형체의 제거와 같이 제조 방법이 복잡하며 대량 생산이 어려운 문제점이 있다.
상술한 문제점들을 해결하기 위한 본 발명의 목적은 주형체(template) 사용하지 않고 기상이송법을 이용하여 고순도, 고품질의 비스무트(Bi) 단결정 나노와이어를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 공정이 간단하고 재현성이 있으며, 대량 생산이 가능한 고순도, 고품질의 비스무트 단결정 나노와이어를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명의 제조방법을 이용하여 제조된 비스무트 단결정 나노와이어를 제공하는 것이다.
본 발명의 비스무트 단결정 나노와이어 제조방법은 비스무트(Bi) 분말을 기화시켜 기판 상에 단결정체의 비스무트(Bi) 나노와이어가 제조되는 특징이 있다.
본 발명의 비스무트 단결정 나노와이어 제조방법은 상기 비스무트 분말과 상기 기판을 서로 다른 온도로 열처리하여, 상기 비스무트 분말을 기화시키고 불활성 기체를 이용하여 기화된 비스무트를 기판으로 이송시키고, 이송된 비스무트가 상기 기판 상에서 핵생성 및 성장하여 비스무트 단결정 나노와이어가 제조되는 것이다.
따라서, 본 발명의 제조방법은 나노 세공이 형성된 주형체(template)를 사용하지 않고 기상의 물질이동경로를 통해 비스무트 단결정 나노와이어를 제조하므로 그 공정이 간단하고 재현성이 있으며, 불순물을 포함하지 않는 고순도의 나노와이어를 제조할 수 있는 장점이 있다.
또한 비스무트 분말 및 기판의 온도를 각각 조절하고, 상기 불활성 기체의 흐름 정도와 상기 열처리 시 이용되는 열처리 관내 압력을 조절하여 최종적으로 기판상부에서 비스무트의 핵생성 구동력, 성장 구동력, 핵생성 속도 및 성장 속도를 조절하는 방법이므로, 비스무트 단결정 나노와이어의 크기 및 기판상의 밀도등이 제어 가능하고 재현가능하며, 결함이 없고 결정성이 좋은 고품질의 비스무트 단결정 나노와이어를 제조할 수 있게 된다.
고품질, 고순도, 바람직한 형상의 비스무트 나노와이어를 제조하기 위해서 가장 중요한 핵심 조건은 비스무트 분말 및 기판 각각의 온도, 상기 불활성 기체의 흐름 정도 및 상기 열처리 시의 압력 조건이다.
상기 비스무트 분말은 반응로 전단부에 위치하며 600 내지 800℃로 유지되고, 상기 기판은 반응로 후단부에 위치하며 100 내지 200℃로 유지되는 것이 바람직하며, 기화된 비스무트를 기판쪽으로 이송시키는 캐리어(carrier) 역할을 하는 불활성기체는 상기 반응로 전단부에서 상기 반응로 후단부 쪽으로 100 내지 600 sccm 흐르는 것이 바람직하며, 상기 반응로의 압력은 1 내지 30 torr인 것이 바람직하다.
상기 열처리 온도조건, 불활성 기체의 흐름 조건(carrier gas flow rate) 및 열처리 시의 압력 조건은 독립적으로 변화될 수 있으나, 상기 세가지 조건이 다른 조건의 상태에 따라 의존적으로 변화되어야 바람직한 품질 및 형상의 비스무트 단결정 나노와이어를 얻을 수 있다.
상기의 반응로 전단부 및 후단부의 온도 조건, 불활성 기체의 흐름 조건 및 열처리시 압력조건은 비스무트 분말의 기화 정도, 시간당 기판으로 이송되는 기화된 비스무트 물질의 양, 기판 상의 비스무트 물질의 핵생성 및 성장 속도, 기판 상 생성된 비스무트 고체상(나노와이어)의 표면 에너지, 기판 상 생성된 비스무트 고체상(나노와이어)의 응집 정도, 기판 상 생성된 비스무트 물질의 형상(morphology)에 영향을 미치게 된다.
상기의 조건 범위를 벗어날 시에는 제조된 나노와이어의 응집, 형상의 변화, 결함과 같은 품질의 문제가 발생할 수 있고 나노와이어의 형태가 아닌 입자, 로드등의 금속체를 얻게 될 수 있다.
열처리 시간은 제조하고자 하는 비스무트 나노와이어의 크기와 상기의 온도, 불활성 기체의 흐름 및 열처리시 압력조건을 고려하여 조절되며, 바람직하게는 5분 내지 1시간동안 열처리 하는 것이 바람직하다.
상기 기판은 반도체 또는 부도체 기판이며, 바람직하게는 단결정체의 반도체 또는 부도체 기판이며, 더욱 바람직하게는 실리콘 단결정 기판이다.
상기 열처리에 의해 롬보헤드랄(rhombohedral) 구조의 비스무트 나노와이어가 제조되는 특징이 있으며, 장축(나노와이어의 성장방향)이 <110> 방향인 비스무트 나노와이어가 제조되는 특징이 있으며, 단축의 직경이 50nm 내지 150nm이며 장축의 길이가 수 ㎛ 이상인 비스무트 나노와이어가 제조되는 특징이 있다.
본 발명의 제조방법은 나노 세공을 갖는 주형체(template)를 사용하지 않고 기상이송법을 이용하여 반금속 물질인 비스무트 단결정 나노와이어를 제조할 수 있어 그 공정이 간단하고 재현성이 있으며, 제조된 나노와이어가 결함을 포함하지 않는 완벽한 단결정 상태의 고순도 고품질 비스무트 나노와이어인 장점을 가지며, 단결정 기판 상에 응집되어 있지 않은 균일한 크기의 비스무트 나노와이어를 대량생산할 수 있는 장점이 있다.
도 1은 본 발명의 비스무트 나노와이어 제조방법을 도시한 모식도이며,
도 2는 실시예 1을 통해 제조된 비스무트 나노와이어의 주사전자현미경(SEM; scanning electron Microscopy) 저배율(도 2(a)) 및 고배율(도 2(b)) 사진이며,
도 3은 실시예 1을 통해 제조된 비스무트 나노와이어의 X-선 회절 결과(X-ray diffraction pattern)이며,
도 4는 실시예 1을 통해 제조된 비스무트 나노와이어의 투과전자현미경(TEM; Transmission Electron Microscope)의 암시야상(Dark Field Image) 사진이며, 도 4의 오른쪽 상부는 도 4의 비스무트 나노와이어의 전자회절패턴(SAED; Selected Area Electron Diffraction Pattern)이며,
도 5는 실시예 1을 통해 제조된 비스무트 나노와이어의 고배율투과전자현미경(HRTEM; High Resolution Transmission Electron Microscope)사진이며,
도 6은 실시예 1을 통해 제조된 비스무트 나노와이어의 EDS(Energy Dispersive Spectroscopy) 분석 결과이다.
이하 첨부한 도면들을 참조하여 본 발명의 비스무트 단결정 나노와이어 제조방법을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
도 1은 본 발명의 제조방법을 도시한 모식도로, 도 1에 도시한 바와 같이 내화물 도가니(알루미나 도가니)에 담긴 비스무트(Bi) 분말을 반응로 전단부에 위치시키고, 기판을 반응로 후단부에 위치시킨 후, 각각의 발열체(도 1의 heating element)를 이용하여 반응로 전단부(비스무트 분말)의 온도를 600 내지 800℃로 유지하고 반응로 후단부(기판)의 온도를 100 내지 200℃로 유지한다. 비스무트 분말이 가열되면 비스무트 기체가 생성되게 되는데 기화된 비스무트는 반응로 전단부에서 반응로 후단부 쪽으로 흐르는 불활성 기체(도 1의 Ar)의 흐름에 의해 기판으로 이송되게 된다. 단위 시간당 기판으로 이송된 비스무트 기체는 기판의 온도 및 기판으로 이송된 비스무트 기체의 양에 의해 핵 생성 속도 및 기판 상 핵 형성된 비스무트 고체상의 성장속도가 결정되게 된다. 바람직하게 상기 기화된 비스무트의 이송을 위해 1 내지 30 torr 압력에서 100 내지 600 sccm의 유속으로 불활성 기체를 흘려준다.
이때, 기판의 온도가 너무 낮거나, 이송되는 비스무트 기체의 양이 너무 많을 경우, 바람직한 종횡비(aspect ratio)를 갖는 나노와이어의 제조가 어려우며, 나노와이어의 형태가 아닌 나노 입자 또는 나노 로드의 형상이 제조될 수 있다.
상기의 반응로 전단부(비스무트 분말) 및 후단부(기판)의 온도 조건, 불활성 기체의 흐름 조건 및 열처리시 압력(반응로의 열처리 관내의 압력, 도 1의 quartz tube 내의 압력)조건은 상기 기판 상에 비스무트 나노와이어가 제조되는 조건이며, 비스무트 나노와이어의 생성 및 성장 구동력(driving force)을 동적으로 일정하게 유지(dynamic equilibrium)하는 조건이다. 이에 의해 기판 상에 제조되는 비스무트 나노와이어는 서로 응집되지 않고, 바람직한 종횡비를 가지며, 고순도/ 고품질의 단결정 나노와이어 형태로 제조되게 된다.
비록 도 1에서는 반응로 전단부와 후단부 각각에 독립적인 발열체를 이용하여 비스무트 분말이 담긴 도가니(알루미나 도가니)와 기판의 온도를 개별적으로 조절하는 방법을 도시하였으나, 비스무트 분말이 담긴 도가니를 열처리 장치(furnace)내의 석영 관(quartz tube)에서 가장 고온인 부위에 위치시키고, 상기 도가니와 상기 기판의 물리적 거리를 조절하여 기판의 온도조건을 조절할 수도 있다.
이때, 상기 기판은 상기 기판의 열처리 온도인 100 내지 200℃에서 열적, 화학적 안정성이 높은 반도체 또는 부도체이면 모두 사용가능하며, 바람직하게는 단결정체의 반도체 또는 부도체 기판이며, 더욱 바람직하게는 실리콘 단결정 기판이다.
(실시예 1)
반응로에서 비스무트 분말을 이용하여 비스무트 단결정 나노와이어를 합성하였다.
상기 반응로는 전단부와 후단부로 구별이 되고 독립적으로 가열체(heating element) 및 온도 조절 장치를 구비하고 있다. 반응로내의 관은 직경 1인치, 길이 60cm 크기의 석영(Quzrtz) 재질로 된 것을 사용하였다.
반응로 전단부의 가운데에 비스무트 분말(Sigma-Aldrich,264008) 0.20 g을 담은 고순도 알루미나 재질의 보트형 도가니를 위치시키고, 반응로 후단부의 가운데에는 실리콘 기판(0.5cmx0.5 cm)을 위치시켰다. 실리콘 기판은 표면에 자연산화막이 형성되어 있는 (100)결정면을 갖는 실리콘 웨이퍼를 사용하였다. 아르곤 기체는 반응로 전단부로 투입되어 반응로 후단부로 배기되며 반응로 후단부에는 진공펌프가 구비되어 있다. 상기 진공펌프를 이용하여 석영 관내 압력을 15 torr로 유지하였으며, MFC(Mass Flow Controller)를 이용하여 300 sccm의 Ar이 흐르도록 하였다.
반응로 전단부(비스무트 분말이 담긴 알루미나 도가니)의 온도는 700℃로 유지하고, 반응로 후단부(실리콘 기판)의 온도는 150℃로 유지한 상태에서 20분 동안 열처리 하여 비스무트 단결정 나노와이어를 제조하였다.
도 2는 실시예 1을 통해 제조된 비스무트 나노와이어의 주사전자현미경(SEM; scanning electron Microscopy) 저배율(도 2(a)) 및 고배율(도 2(b))사진이다. 도 2에서 알 수 있듯이 직경이 약 100nm 이며 길이가 수십 ㎛이상인 고형상의 나노와이어가 제조됨을 알 수 있으며, 제조된 다수의 나노와이어가 고른 크기 및 형상을 가지며, 서로 뭉침 없이 실리콘 기판상에 개별적으로 분리되어 제조됨을 알 수 있다.
도 3은 실시예 1을 통해 제조된 비스무트 나노와이어의 X-선 회절 결과(X-ray diffraction pattern)이며, 제조된 비스무트 나노와이어의 X-선 회절 픽이 벌크의 비스무트와 일치함을 알 수 있으며, 제조된 비스무트 나노와이어가 롬보헤드랄(Rhombohedral) 구조를 가짐을 알 수 있다.
도 4는 실시예 1을 통해 제조된 비스무트 나노와이어의 투과전자현미경(TEM; Transmission Electron Microscope)의 암시야상(Dark Field Image) 사진이며, 도 4의 오른쪽 상부는 도 4의 비스무트 나노와이어의 전자회절패턴(SAED; Selected Area Electron Diffraction Pattern)이다. 도 4의 암시야상을 통해 제조된 비스무트 나노와이어가 매끈한 표면을 가지며, 제조된 비스무트 나노와이어의 굵기가 일정한 것을 알 수 있다. 도 4의 전자회절패턴 결과를 통해 단일한 나노와이어가 단결정체임을 알 수 있으며, 도 3의 X-선 회절 결과와 일치하게 롬보헤드랄(Rhombohedral) 구조를 가짐을 알 수 있다. 또한 도 4의 암시야상 및 전자회절패턴을 통해, 비스무트 나노와이어의 성장방향(장축의 방향)이 [110] 방향임을 알 수 있다.
도 5는 실시예 1을 통해 제조된 비스무트 나노와이어의 고배율투과전자현미경(HRTEM; High Resolution Transmission Electron Microscope)사진이다. 도 5에서 알 수 있듯이 도 3의 X-선 회절 결과 및 도 4의 전자회절패턴 결과와 일치하게 단결정체의 나노와이어가 제조되었으며, 나노와이어 형상의 비스무트 단결정체가 점결함 또는 선결함이 없는 고 결정성을 가짐을 알 수 있다. 또한 비스무트 나노와이어의 성장방향에 대응되는 (110) 면의 면간 간격(lattice spacing)이 벌크 비스무트와 동일한 0.23nm 임을 알 수 있다.
도 6은 TEM 장비에 부착된 EDS(Energy Dispersive Spectroscopy)를 이용하여 실시예 1을 통해 제조된 비스무트 나노와이어의 성분을 분석한 결과이다. 도 6을 통해 그리드(grid)와 같이 측정장비의 특성상 부차적으로 측정된 물질을 제외하면 고순도의 비스무트로 이루어진 나노와이어가 제조되었으며, 기판을 구성하는 물질인 실리콘이 불순물로 존재하지 않음을 알 수 있다.
이상과 같이 본 발명에서는 한정된 실시 예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Claims (9)
- 비스무트(Bi) 분말을 기화시키고 기화된 비스무트를 기판으로 이송시켜 상기 기판 상에 단결정체의 비스무트(Bi) 나노와이어가 제조되는 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항에 있어서,상기 비스무트 분말은 반응로 전단부에 위치하며 600 내지 800℃로 유지되고, 상기 기판은 반응로 후단부에 위치하며 100 내지 200℃로 유지되는 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 2항에 있어서,상기 반응로 전단부에서 상기 반응로 후단부 쪽으로 불활성 기체가 100 내지 600 sccm 흐르는 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 3항에 있어서,상기 반응로의 압력은 1 내지 30 torr인 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항에 있어서,상기 기판은 부도체 또는 반도체 기판인 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항에 있어서,상기 비스무트 나노와이어는 롬보헤드랄(rhombohedral) 구조인 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항에 있어서,상기 비스무트 나노와이어는 장축이 <110> 방향인 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항에 있어서,상기 비스무트 나노와이어는 단축의 직경이 50nm 내지 150nm인 것을 특징으로 하는 비스무트 단결정 나노와이어 제조방법.
- 제 1항 내지 제 8항에서 선택된 어느 한 항의 제조방법을 이용하여 제조된 비스무트 단결정 나노와이어.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/521,354 US20100316874A1 (en) | 2008-01-24 | 2009-01-21 | Fabrication method of bismuth single crystalline nanowire |
EP09704709A EP2241534A2 (en) | 2008-01-24 | 2009-01-21 | Method for manufacturing bismuth single crystal nonowires |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0007372 | 2008-01-24 | ||
KR1020080007372A KR100943977B1 (ko) | 2008-01-24 | 2008-01-24 | 비스무트 단결정 나노와이어의 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009093842A2 true WO2009093842A2 (ko) | 2009-07-30 |
WO2009093842A3 WO2009093842A3 (ko) | 2009-10-29 |
Family
ID=40901542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/000310 WO2009093842A2 (ko) | 2008-01-24 | 2009-01-21 | 비스무트 단결정 나노와이어의 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100316874A1 (ko) |
EP (1) | EP2241534A2 (ko) |
KR (1) | KR100943977B1 (ko) |
WO (1) | WO2009093842A2 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103056380B (zh) * | 2012-12-28 | 2015-01-21 | 南通大学 | 氨基化倍半硅氧烷自组装制备铋金属纳米线的方法 |
US10504999B2 (en) * | 2018-03-15 | 2019-12-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Forming semiconductor structures with semimetal features |
CN114559028B (zh) * | 2022-01-24 | 2024-01-23 | 中山大学 | 一种大尺寸铋纳米线及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2813811A (en) * | 1954-11-22 | 1957-11-19 | Gen Electric | High strength crystals |
US3188182A (en) * | 1961-06-29 | 1965-06-08 | Gen Electric | Use of the working material as part of the crystal making apparatus |
US6231744B1 (en) * | 1997-04-24 | 2001-05-15 | Massachusetts Institute Of Technology | Process for fabricating an array of nanowires |
US7713352B2 (en) * | 2001-06-29 | 2010-05-11 | University Of Louisville Research Foundation, Inc. | Synthesis of fibers of inorganic materials using low-melting metals |
US7344753B2 (en) * | 2003-09-19 | 2008-03-18 | The Board Of Trustees Of The University Of Illinois | Nanostructures including a metal |
US20070087470A1 (en) * | 2005-09-30 | 2007-04-19 | Sunkara Mahendra K | Vapor phase synthesis of metal and metal oxide nanowires |
US20100221894A1 (en) * | 2006-12-28 | 2010-09-02 | Industry-Academic Cooperation Foundation, Yonsei University | Method for manufacturing nanowires by using a stress-induced growth |
-
2008
- 2008-01-24 KR KR1020080007372A patent/KR100943977B1/ko not_active IP Right Cessation
-
2009
- 2009-01-21 WO PCT/KR2009/000310 patent/WO2009093842A2/ko active Application Filing
- 2009-01-21 EP EP09704709A patent/EP2241534A2/en not_active Withdrawn
- 2009-01-21 US US12/521,354 patent/US20100316874A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of EP2241534A4 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009093842A3 (ko) | 2009-10-29 |
EP2241534A4 (en) | 2010-10-20 |
US20100316874A1 (en) | 2010-12-16 |
KR100943977B1 (ko) | 2010-02-26 |
EP2241534A2 (en) | 2010-10-20 |
KR20090081488A (ko) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peng et al. | Temperature dependence of Si nanowire morphology | |
KR101071906B1 (ko) | 단결정 게르마늄코발트 나노와이어, 게르마늄코발트 나노와이어 구조체, 및 이들의 제조방법 | |
Zhang et al. | The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled | |
Zeng et al. | Large-scale growth of In2O3 nanowires and their optical properties | |
WO2010082733A2 (ko) | 열전 나노와이어 및 그의 제조방법 | |
Sun et al. | Synthesis of germanium nanowires on insulator catalyzed by indium or antimony | |
Bechelany et al. | Rayleigh instability induced SiC/SiO 2 necklace like nanostructures | |
WO2009093842A2 (ko) | 비스무트 단결정 나노와이어의 제조방법 | |
CN114715948A (zh) | 一种化学气相沉积制备单层二硫化铼的方法 | |
Geng et al. | Large-scale synthesis of ZnO nanowires using a low-temperature chemical route and their photoluminescence properties | |
JP4125638B2 (ja) | V族遷移金属ダイカルコゲナイド結晶からなるナノファイバー又はナノチューブ並びにその製造方法 | |
CN100557770C (zh) | 一种制备GaMnN稀磁半导体纳米线的方法 | |
WO2018012864A1 (ko) | 단결정 금속포일, 및 이의 제조방법 | |
KR100904204B1 (ko) | 강자성 단결정 금속 나노와이어 및 그 제조방법 | |
Cao et al. | Nucleation and growth of feather-like boron nanowire nanojunctions | |
Singh et al. | Synthesis of zinc oxide nanotetrapods and nanorods by thermal evaporation without catalysis | |
Zhou et al. | Large-scale fabrication and characterization of Cd-doped ZnO nanocantilever arrays | |
Liu et al. | Fabrication and Photoluminescence Properties of Graphite Fiber/ZnO Nanorod Core–Shell Structures | |
Hu et al. | The First Template‐Free Growth of Crystalline Silicon Microtubes | |
Dai et al. | Synthesis of novel hierarchical SiC–SiO 2 heterostructures via a catalyst free method | |
Li et al. | Structure-sensitive principle in silicon nanowire growth | |
KR20100136185A (ko) | 트윈-프리 단결정 은 나노와이어의 제조방법 및 트윈-프리 단결정 은 나노와이어 | |
US12049401B2 (en) | Fullerene structure, method of manufacturing the same, and apparatus for manufacturing the same | |
Kozhemyakin et al. | Fabrication of bismuth films by a melt spinning method and the influence of annealing on their microstructure | |
Ni et al. | Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 12521354 Country of ref document: US Ref document number: 2009704709 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09704709 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |