WO2009093704A1 - Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same - Google Patents

Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same Download PDF

Info

Publication number
WO2009093704A1
WO2009093704A1 PCT/JP2009/051107 JP2009051107W WO2009093704A1 WO 2009093704 A1 WO2009093704 A1 WO 2009093704A1 JP 2009051107 W JP2009051107 W JP 2009051107W WO 2009093704 A1 WO2009093704 A1 WO 2009093704A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
liquid crystal
diamine compound
carbon atoms
Prior art date
Application number
PCT/JP2009/051107
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Minami
Kohei Goto
Takahiro Suga
Hiroshi Kita
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to JP2009550579A priority Critical patent/JP5663876B2/en
Priority to KR1020107015818A priority patent/KR101737122B1/en
Priority to KR1020177001198A priority patent/KR101738330B1/en
Priority to CN200980103189.4A priority patent/CN101925634B/en
Publication of WO2009093704A1 publication Critical patent/WO2009093704A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a diamine compound useful as a raw material for a polymer used in a liquid crystal alignment film, a polyamic acid and a polyimide obtained using the diamine compound, and a liquid crystal alignment treatment agent. Furthermore, the present invention relates to a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent.
  • a liquid crystal alignment treatment agent (also referred to as a liquid crystal alignment agent) mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied to a glass substrate and fired.
  • a so-called polyimide-based liquid crystal alignment film is mainly used.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
  • the liquid crystal alignment film used has a high voltage holding ratio and a direct current voltage has been applied due to demands for suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon.
  • the characteristic that the residual charge at the time is small and / or the residual charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
  • a liquid crystal aligning agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid was used as a short time until the afterimage generated by direct current voltage disappears.
  • a liquid crystal aligning agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material for example, see Patent Document 1.
  • a compound containing one carboxylic acid group in the molecule In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amine group in the molecule (for example, a patent Document 3) is known.
  • liquid crystal alignment film to be used has to be more reliable than conventional liquid crystal alignment films.
  • the electrical characteristics of the liquid crystal alignment film are not only good in initial characteristics but also, for example, at a high temperature for a long time. There is a need to maintain good properties even after exposure.
  • An object of the present invention is to provide a liquid crystal alignment film for use in the following liquid crystal display element, a liquid crystal alignment treatment agent for forming the liquid crystal alignment film, a polyamic acid and / or a polyimide (hereinafter referred to as heavy metal) contained in the liquid crystal alignment treatment agent.
  • Another object is to provide a diamine compound that can be used as a raw material for the polyamic acid and polyimide.
  • an object of the present invention is to provide a liquid crystal alignment film having a high voltage holding ratio and capable of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage are quickly relaxed even after being exposed to a high temperature for a long time.
  • An object of the present invention is to provide a treatment agent and to provide a highly reliable liquid crystal display element that has the liquid crystal alignment film and can withstand long-term use in a harsh use environment.
  • the present inventor conducted extensive research to achieve the above object, and found a novel diamine compound that achieves this.
  • the present invention is based on such knowledge and has the following gist.
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one selected from the group consisting of -OCO-
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic carbonization hydrogen radicals, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 at least one divalent organic group selected from the group consisting of 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5);
  • Q 2 is a hydrogen atom or
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO-, And at least one divalent organic group selected from the group consisting of —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5)
  • Q 2 is hydrogen An atom or an alkyl group having 1 to 3 carbon atoms
  • X 4 is a nitrogen-containing aromatic heterocyclic ring
  • n is an integer of 1 to 4).
  • n in the formula [1a] to formula [1f] is an integer of 1 or 2.
  • X 2 in the formulas [1a] to [1f] is at least one selected from the group consisting of a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, and a benzene ring
  • X 3 Is selected from the group consisting of a single bond, —O—, —CONH—, —NHCO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5).
  • X 4 is at least one selected from the group consisting of a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, and a pyrimidine ring, and n is an integer of 1 or 2.
  • X 2 in the formulas [1a] to [1f] is at least one selected from the group consisting of a single bond, a linear alkylene group having 1 to 3 carbon atoms, and a benzene ring, and X 3 is a single group.
  • X 4 is at least one selected from the group consisting of an imidazole ring, a pyridine ring, and a pyrimidine ring
  • n is 1 Or the diamine compound as described in said (1) or (2) which is an integer of 2.
  • Polyamic acid obtained by reacting the diamine component containing the diamine compound according to any one of (1) to (9) above and tetracarboxylic dianhydride, or dehydrating and ring-closing the polyamic acid. Polyimide obtained.
  • the diamine compound of the present invention can be obtained by a relatively simple method.
  • the voltage holding ratio is high, and the diamine compound is exposed to a high temperature for a long time. Even after this, a liquid crystal alignment film can be obtained in which the residual charge accumulated by the DC voltage is quickly relaxed. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
  • the present invention provides a diamine compound represented by the formula [1], a polymer obtained by using the diamine compound represented by the formula [1] as a raw material, a liquid crystal alignment treatment agent containing the polymer, and the liquid crystal alignment treatment agent. It is a liquid crystal display element which has a liquid crystal aligning film obtained by using and also this liquid crystal aligning film.
  • the diamine compound of the present invention is a diamine compound having a nitrogen-containing aromatic heterocycle in the side chain (hereinafter sometimes referred to as a specific diamine compound).
  • This nitrogen-containing aromatic heterocycle functions as an electron hopping site due to its conjugated structure, so in a liquid crystal alignment film produced from a liquid crystal alignment treatment agent containing a polymer obtained from a specific diamine compound, It is possible to promote the movement of charges.
  • the liquid crystal aligning agent of the present invention has a high voltage holding ratio when formed into a liquid crystal alignment film, and the residual charge accumulated by a DC voltage even after being exposed to a high temperature for a long time. A liquid crystal alignment film that is quickly relaxed can be obtained.
  • the specific diamine compound of the present invention is a diamine compound represented by the following formula [1].
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one 2 selected from the group consisting of -OCO-
  • Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2
  • Q 2 is a hydrogen atom or an
  • the bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, when n is an integer of 1, with respect to the side chain linking group (X 1 ), 2, 3 positions, 2, 4 positions, 2, 5 positions on the benzene ring, 2, 6 positions, 3 and 4 positions, and 3 and 5 positions. When n is an integer of 2, the following positions are listed. When the side chain linking group (X 1 ) is located at 2 positions on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are the positions 3 and 4, 3 , 5 position, 3, 6 position, and 4, 5 position.
  • the bonding positions of the two amino groups are positions 2 and 4 , 2, 5 positions, 4, 5 positions, and 4, 6 positions.
  • the two amino groups are bound at positions 2, 3 , 2, 5 position, 2, 6 position, 3, 5 position.
  • n is an integer of 3, the following positions are listed.
  • the bonding positions of the two amino groups are positions 4 and 5 , 4, 6 positions.
  • the bonding positions of the two amino groups are 3, 5 , 3, 6 and 5, 6 positions.
  • the bonding positions of the two amino groups are 2, 4 Position.
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one 2 selected from the group consisting of -OCO- Valent organic group. Among them, -O -, - NQ 1 - , - CONQ 1 -, - NQ 1 CO- is preferred.
  • Q 1 has the formula [1] The definition is the same. More specific structures of X 1 include the following formulas [1a] to [1f].
  • X 2 is a single bond or at least one selected from the group consisting of an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and an aromatic hydrocarbon group. It is a divalent organic group.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. An aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferred.
  • non-aromatic cyclic hydrocarbon group examples include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, Cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydro A naphthalene ring, a norbornene ring, de
  • aromatic hydrocarbon group examples include a benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, and phenalene ring.
  • Preferred X 2 in the formula [1] is a single bond, a linear or branched alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, or a cyclopentane ring.
  • Cyclohexane ring, cycloheptane ring, norbornene ring, adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring, and anthracene ring more preferably a single bond, linear or branched alkylene having 1 to 10 carbon atoms Group, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a fluorene ring, and an anthracene ring, and more preferably a single bond and a straight chain having 1 to 10 carbon atoms.
  • X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - (M is an integer of 1 to 5) is at least one divalent organic group selected from the group consisting of a single bond, —O—, —CONQ 2 —, —NQ 2 CO—, —COO—, —OCO—, —O (CH 2 ) m — (m is an integer of 1 to 5). Most preferably, it is a single bond, —OCO—, or —OCH 2 —.
  • Q 2 has the same meaning as defined in formula [1].
  • X 4 is a nitrogen-containing aromatic heterocyclic ring, and nitrogen containing at least one structure selected from the group consisting of the following formulas [[2a], formulas [2b] and formulas [2c] Containing aromatic heterocycle.
  • Y 1 is a linear or branched alkyl group having 1 to 5 carbon atoms.
  • X 4 in the formula [1] is a pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring.
  • X 3 is formulas contained in X 4 [2a], it is preferably bonded to a substituent not adjacent to Equation [2b] and the formula [2c].
  • n is an integer of 1 to 4, and preferably an integer of 1 to 3 from the viewpoint of reactivity with tetracarboxylic dianhydride. Most preferably, n is an integer of 1 or 2.
  • X 4 is a pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline Ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring, triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, tinoline ring, phenanthroline ring, indole
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 At least one selected from the group consisting of O— and —OCO—, wherein X 2 is a straight chain or branched alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a benzene ring, and a naphthalene ring.
  • X 3 is a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2)
  • m - ( m is 1 is at least one selected from the group consisting of 5 of an integer) from,
  • X 4 is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, Baie 'S imidazole ring, and at least one selected from the group consisting of benzimidazole ring, n is an integer of 1 or 2.
  • X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO-
  • -CH 2 is at least one selected from the group consisting of O-
  • X 2 is a single bond, at least one selected from the group consisting of linear or branched alkylene group, and benzene rings having 1 to 5 carbon atoms
  • X 3 is a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO-
  • m - consists of (m is an integer from 1 to 5)
  • At least one selected from the group X 4 is at least one selected from the group consisting of a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, and a
  • the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the formula [4], further reducing the nitro group and converting it to an amino group.
  • the method for reducing the dinitro compound is not particularly limited. Usually, palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in an alcohol-based solvent.
  • X 1 , X 2 , X 3 , X 4 and n in the formula [4] are as defined in the formula [1].
  • X 2 and X 4 are bonded via X 3 and then the dinitro moiety is bonded via X 1 , and the dinitro moiety is bonded to X 2 via the linking moiety X 1. It can be obtained by, for example, a method of bonding to X 4 via X 3 .
  • X 1 is —O— (ether bond), —NQ 1 — (amino bond), —CONQ 1 — (amide bond), —NQ 1 CO— (reverse amide bond), —CH 2 O— (methylene ether bond).
  • Q 1 of each linking group is as defined in the formula [1].
  • a corresponding dinitro group-containing halogen derivative is reacted with a hydroxyl group derivative containing X 2 , X 3 and X 4 in the presence of an alkali
  • a dinitro group-containing hydroxyl group derivative , X 2 , X 3 and X 4 may be reacted in the presence of an alkali.
  • an amino bond a method of reacting a corresponding dinitro group-containing halogen derivative with an amino group-substituted derivative containing X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
  • Examples of the amide bond include a method in which a corresponding dinitro group-containing acid chloride is reacted with an amino group-substituted product containing X 2 , X 3 and X 4 in the presence of an alkali.
  • a reverse amide bond a method in which a corresponding dinitro group-containing amino group-substituted product and an acid chloride product containing X 2 , X 3 and X 4 are reacted in the presence of an alkali can be mentioned.
  • dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol, 2,4- And dinitrophenylacetic acid. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
  • the polymer of the present invention is a polyamic acid obtained by reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing this polyamic acid. Any of these polyamic acids and polyimides are useful as a polymer for obtaining a liquid crystal alignment film.
  • the liquid crystal alignment film obtained using the polymer of the present invention has a higher voltage holding ratio as the content ratio of the specific diamine compound in the diamine component increases, and even after being exposed to a high temperature for a long time, The residual charge accumulated by the DC voltage is alleviated faster.
  • 1 mol% or more of the diamine component is a specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more.
  • the specific diamine compound is preferably 80 mol% or less of the diamine component, more preferably, from the viewpoint of uniform coatability when applying the liquid crystal aligning agent. It is 40 mol% or less.
  • a diamine other than the specific diamine compound (hereinafter also referred to as other diamine compound) can be used in combination, and the other diamine compound is not particularly limited. Specific examples are given below.
  • diamine examples include a diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a macrocyclic substituent composed of these in the side chain of the diamine.
  • R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 5 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.
  • R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —, wherein R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .
  • diaminosiloxanes represented by the following formula [DA27] can also be exemplified.
  • m is an integer of 1 to 10.
  • diamine compounds may be used alone or in combination of two or more depending on properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is formed.
  • the tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited. Specific examples are given below.
  • Tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
  • a known synthesis method can be used.
  • tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples are given below.
  • a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer recovered by precipitation is redissolved in an organic solvent and the operation of reprecipitation recovery is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability when forming the coating film, and the uniformity of the coating film.
  • the weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt
  • the said resin component is a resin component containing at least 1 type of polymer chosen from the polymer of this invention mentioned above.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the above resin components may be copolymers used in the present invention, and other polymers may be mixed with the polymer of the present invention.
  • the content of the polymer other than the polymer of the present invention in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • Examples of such other polymers include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with the tetracarboxylic dianhydride component.
  • the organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below.
  • the liquid crystal aligning agent of this invention may contain components other than the above.
  • examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
  • These poor solvents may be used alone or in combination.
  • it is preferable that it is 5 to 80 mass% of the whole solvent contained in a liquid-crystal aligning agent, More preferably, it is 20 to 60 mass%.
  • compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal alignment treatment agent. .
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal alignment treatment agent.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate can be performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, and the solvent can be evaporated to form a coating film. . If the thickness of the coating film formed after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. It is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • a tetrahydrofuran (180 g) solution of the compound (21) (19.34 g, 109 mmol) is cooled to 10 ° C. or lower under a nitrogen atmosphere, and the compound (31) (30.0 g, 109 mmol), triethylamine (33.0 g, 324 mmol) is cooled. ), And DMAP (2.65 g, 21.7 mmol) in DMSO (300 g) were added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C., stirred for 1 hour, and further heated to reflux for 19 hours.
  • the reaction solution was poured into distilled water (3.9 L), filtered, washed with water, and washed with methanol to obtain a crude product.
  • the obtained crude product was dissolved in chloroform, and the insoluble material was filtered off. Thereafter, the filtrate was concentrated and purified by silica gel column chromatography (the effluent solvent was 1,2-dichloroethane / ethyl acetate (100/40 v / v%)) to obtain compound (33) (yield: 35). .8 g, yield: 86%).
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku Co., Ltd.), add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS mixture), and apply ultrasonic waves. And completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Example 13 After adding NMP to the polyamic acid solution (A) (20.0 g) obtained in Example 12 and diluting to 6% by mass, acetic anhydride (2.63 g) and pyridine (2.03 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash
  • Example 15 ⁇ Example 15> BODA (3.25 g, 13.0 mmol), p-PDA (0.66 g, 6.07 mmol), PCH7DAB (3.30 g, 8.67 mmol), and diamine compound (10) (0.67 g, 2.60 mmol) Were mixed in NMP (14.7 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.33 mmol) and NMP (12.0 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution having a resin component content of 25% by mass was obtained (D). The number average molecular weight of this polyamic acid was 18,800, and the weight average molecular weight was 51,800.
  • Example 16> After adding NMP to the polyamic acid solution (D) (20.0 g) obtained in Example 15 and diluting to 6% by mass, acetic anhydride (2.61 g) and pyridine (2.07 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (220 ml), and the resulting precipitate was filtered off. This deposit was wash
  • Example 25 After adding NMP to the polyamic acid solution (M) (20.2 g) obtained in Example 24 and diluting to 6% by mass, acetic anhydride (2.68 g) and pyridine (2.07 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3 cm ⁇ 4 cm (length ⁇ width) ITO electrodes, and baked in a hot air circulation oven at 80 ° C. for 5 minutes and 210 ° C. for 1 hour.
  • a polyimide coating film having a thickness of 100 nm was prepared.
  • This substrate with a liquid crystal alignment film is subjected to a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
  • a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
  • Liquid crystal MLC-6608 manufactured by Merck Japan Ltd. was injected into this empty cell by a reduced pressure injection method to obtain an antiparallel aligned nematic liquid crystal cell.
  • Example 27 NMP (36.3 g) was added to the polyimide powder [B] (5.1 g) obtained in Example 13 and dissolved by stirring at 70 ° C. for 40 hours. NMP (18.1g) and BCS (25.6g) were added to this solution, and the liquid-crystal aligning agent [2] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [2], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 28 NMP (32.8 g) was added to the polyimide powder [C] (5.0 g) obtained in Example 14, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.4g) and BCS (29.2g) were added to this solution, and the liquid-crystal aligning agent [3] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [3], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 29 NMP (8.9 g) and BCS (23.6 g) were added to the polyamic acid solution [D] (10.5 g) having a resin component content of 25% by mass obtained in Example 15, and 2 at 25 ° C.
  • the liquid crystal aligning agent [4] was obtained by stirring for a time. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
  • a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 30 NMP (34.1 g) was added to the polyimide powder [E] (5.2 g) obtained in Example 16, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.1 g) and BCS (30.4 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [5]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [5], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 31 NMP (35.6 g) was added to the polyimide powder [F] (5.0 g) obtained in Example 17, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and the liquid-crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [6], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 32 NMP (30.1 g) was added to the polyimide powder [G] (5.0 g) obtained in Example 18, and dissolved by stirring at 70 ° C. for 40 hours. NMP (15.2g) and BCS (33.2g) were added to this solution, and the liquid-crystal aligning agent [7] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [7], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 33 NMP (42.2 g) was added to the polyimide powder [H] (5.5 g) obtained in Example 19, and dissolved by stirring at 70 ° C. for 40 hours. NMP (20.8g) and BCS (22.9g) were added to this solution, and the liquid-crystal aligning agent [8] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [8], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 34 NMP (30.3 g) was added to the polyimide powder [I] (5.0 g) obtained in Example 20, and dissolved by stirring at 70 ° C. for 40 hours. NMP (14.8g) and BCS (33.8g) were added to this solution, and the liquid-crystal aligning agent [9] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [9], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 35 NMP (33.0 g) was added to the polyimide powder [J] (5.1 g) obtained in Example 21, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.1 g) and BCS (29.8 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [10]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [10], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 36 NMP (15.6 g) and BCS (17.1 g) were added to the polyamic acid solution [K] (10.0 g) having a content of the resin component obtained in Example 22 of 26% by mass, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [11] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [11], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 37 NMP (34.5 g) was added to the polyimide powder [L] (5.2 g) obtained in Example 23, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (30.3g) were added to this solution, and the liquid-crystal aligning agent [12] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [12], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 38 NMP (9.5 g) and BCS (17.3 g) were added to the polyamic acid solution [M] (8.5 g) having a resin component content of 25% by mass obtained in Example 24, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [13] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [13], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • Example 39 NMP (35.5 g) was added to the polyimide powder [N] (5.0 g) obtained in Example 25 and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and the liquid-crystal aligning agent [14] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [14], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
  • the liquid crystal alignment treatment agent of the present invention has a high voltage holding ratio when formed into a liquid crystal alignment film, and even after being exposed to a high temperature for a long time, the liquid crystal alignment film has a quick relaxation of charges accumulated by a DC voltage. Is obtained. Furthermore, a highly reliable liquid crystal display element that can withstand long-term use in a harsh use environment can be provided. As a result, it is useful for TN elements, STN elements, TFT liquid crystal elements, and liquid crystal display elements of vertical alignment type and horizontal alignment type (IPS). It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-014965 filed on January 25, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Pyridine Compounds (AREA)

Abstract

Disclosed is a liquid crystal aligning agent which enables formation of a liquid crystal alignment film having high voltage holding ratio, in which film relaxation of residual charges accumulated by a DC voltage is fast even after long-time exposure to high temperatures. Also disclosed are a polyamide acid and/or a polyimide (hereinafter also referred to as a polymer) contained in the liquid crystal aligning agent, a diamine compound which can be used as a raw material for the polyamide acid and/or the polyimide, and a highly reliable liquid crystal display device having the liquid crystal alignment film, which device can endure long-time use in severe environments. Specifically disclosed is a diamine compound represented by Formula [1]. [1] (In Formula [1], X1 represents at least one divalent organic group selected from the group consisting of -O-, -NQ1-, -CONQ1-, -NQ1CO-, -CH2O- and -OCO-; Q1 represents a hydrogen atom or an alkyl group having 1-3 carbon atoms; X2 represents a single bond or at least one divalent organic group selected from the group consisting of aliphatic hydrocarbon groups having 1-20 carbon atoms, non-aromatic cyclic hydrocarbon groups and aromatic cyclic hydrocarbon groups; X3 represents a single bond or at least one divalent organic group selected from the group consisting of -O-, -NQ2-, -CONQ2-, -NQ2CO-, -COO-, -OCO- and -O(CH2)m- (wherein m represents an integer of 1-5); Q2 represents a hydrogen atom or an alkyl group having 1-3 carbon atoms; X4 represents a nitrogen-containing aromatic heterocyclic ring; and n represents an integer of 1-4.)

Description

ジアミン化合物、液晶配向処理剤、及びそれを用いた液晶表示素子Diamine compound, liquid crystal aligning agent, and liquid crystal display element using the same
 本発明は、液晶配向膜に使用する重合体の原料として有用であるジアミン化合物、それを用いて得られるポリアミド酸及びポリイミド、並びに液晶配向処理剤に関する。さらには、前記液晶配向処理剤から得られる液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a diamine compound useful as a raw material for a polymer used in a liquid crystal alignment film, a polyamic acid and a polyimide obtained using the diamine compound, and a liquid crystal alignment treatment agent. Furthermore, the present invention relates to a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent.
 現在、液晶表示素子の液晶配向膜としては、ポリアミド酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向処理剤(液晶配向剤とも云う)をガラス基板等に塗布し焼成した、いわゆるポリイミド系の液晶配向膜が主として用いられている。 Currently, as a liquid crystal alignment film of a liquid crystal display element, a liquid crystal alignment treatment agent (also referred to as a liquid crystal alignment agent) mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied to a glass substrate and fired. A so-called polyimide-based liquid crystal alignment film is mainly used.
 液晶配向膜は、液晶の配向状態を制御する目的で使用されるものである。しかしながら、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、使用される液晶配向膜においても電圧保持率が高いことや、直流電圧を印加した際の残留電荷が少ない、及び/又は直流電圧により蓄積した残留電荷の緩和が早いといった特性が次第に重要となっていた。 The liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal. However, as the liquid crystal display elements have become higher in definition, the liquid crystal alignment film used has a high voltage holding ratio and a direct current voltage has been applied due to demands for suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon. The characteristic that the residual charge at the time is small and / or the residual charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
 ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば特許文献1参照)や、ピリジン骨格などを有する特定ジアミンを原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば特許文献2参照)などが知られている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やそのイミド化重合体などに加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物および分子内に1個の3級アミン基を含有する化合物から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば特許文献3参照)が知られている。 In a polyimide-based liquid crystal alignment film, a liquid crystal aligning agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid was used as a short time until the afterimage generated by direct current voltage disappears. There are known ones (for example, see Patent Document 1) and those using a liquid crystal aligning agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material (for example, see Patent Document 2). In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amine group in the molecule (for example, a patent Document 3) is known.
 しかしながら、近年では大画面で高精細の液晶テレビが広く実用化されており、このような用途における液晶表示素子では、それまでの文字や静止画を主として表示するディスプレイ用途と比較して、残像に対する要求はより厳しくなり、かつ過酷な使用環境での長期使用に耐えうる特性が要求されている。従って、使用される液晶配向膜は従来よりも信頼性の高いものが必要となってきており、液晶配向膜の電気特性に関しても、初期特性が良好なだけでなく、例えば、高温下に長時間曝された後であっても、良好な特性を維持することが求められている。 However, in recent years, large-screen, high-definition liquid crystal televisions have been widely put into practical use, and liquid crystal display elements in such applications are more effective against afterimages than conventional displays that mainly display characters and still images. The requirements are becoming stricter, and characteristics that can withstand long-term use in harsh usage environments are required. Therefore, the liquid crystal alignment film to be used has to be more reliable than conventional liquid crystal alignment films. The electrical characteristics of the liquid crystal alignment film are not only good in initial characteristics but also, for example, at a high temperature for a long time. There is a need to maintain good properties even after exposure.
特開平9-316200号公報JP-A-9-316200 特開平10-104633号公報JP-A-10-104633 特開平8-76128号公報JP-A-8-76128
 本発明の目的は、下記の液晶表示素子に用いる液晶配向膜、該液晶配向膜を形成するための液晶配向処理剤、該液晶配向処理剤に含有されるポリアミド酸及び/又はポリイミド(以下、重合体ともいう)、該ポリアミド酸及びポリイミドの原料として使用可能なジアミン化合物を提供することにある。 An object of the present invention is to provide a liquid crystal alignment film for use in the following liquid crystal display element, a liquid crystal alignment treatment agent for forming the liquid crystal alignment film, a polyamic acid and / or a polyimide (hereinafter referred to as heavy metal) contained in the liquid crystal alignment treatment agent. Another object is to provide a diamine compound that can be used as a raw material for the polyamic acid and polyimide.
 さらに、本発明の目的は、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる液晶配向処理剤を提供すること、及び、該液晶配向膜を有し、過酷な使用環境での長期使用に耐えうる信頼性の高い液晶表示素子を提供することにある。 Furthermore, an object of the present invention is to provide a liquid crystal alignment film having a high voltage holding ratio and capable of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage are quickly relaxed even after being exposed to a high temperature for a long time. An object of the present invention is to provide a treatment agent and to provide a highly reliable liquid crystal display element that has the liquid crystal alignment film and can withstand long-term use in a harsh use environment.
 本発明者は、上記の目的を達成するべく鋭意研究を進めたところ、これを達成する新規なジアミン化合物を見出した。本発明はかかる知見に基づくもので、以下の要旨を有する。
(1)下記の式[1]で表されるジアミン化合物。
The present inventor conducted extensive research to achieve the above object, and found a novel diamine compound that achieves this. The present invention is based on such knowledge and has the following gist.
(1) A diamine compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000003
(式[1]中、X1は-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは窒素含有芳香族複素環であり、nは1から4の整数である)。
(2)式[1]のジアミン化合物が、下記の式[1a]から式[1f]で表される化合物からなる群より選ばれる少なくとも1種である上記(1)に記載のジアミン化合物。
Figure JPOXMLDOC01-appb-C000003
(Wherein [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one selected from the group consisting of -OCO- A divalent organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic carbonization hydrogen radicals, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 at least one divalent organic group selected from the group consisting of 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5); Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X 4 is a nitrogen-containing aromatic heterocyclic ring. , N is an integer from 1 to 4).
(2) The diamine compound according to the above (1), wherein the diamine compound of the formula [1] is at least one selected from the group consisting of compounds represented by the following formulas [1a] to [1f].
Figure JPOXMLDOC01-appb-C000004
(式中、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは窒素含有芳香族複素環であり、nは1から4の整数である)。
(3)式[1a]から式[1f]中のXが単結合、炭素数1から3の直鎖アルキレン基、又はベンゼン環である上記(2)に記載のジアミン化合物。
(4)式[1a]から式[1f]中のXが単結合、-OCO-、又は-OCH-である上記(2)又は上記(3)に記載のジアミン化合物。
(5)式[1a]から式[1f]中のXがイミダゾール環、ピリジン環、又はピリミジン環である上記(2)から上記(4)のいずれかに記載のジアミン化合物。
(6)式[1a]から式[1f]中のnが1又は2の整数である上記(2)から上記(5)のいずれかに記載のジアミン化合物。
(7)式[1a]から式[1f]中のXが炭素数1から10の直鎖又は分岐アルキレン基、シクロへキサン環、ベンゼン環、及びナフタレン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONH-、-NHCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、及びベンゾイミダゾール環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である上記(1)又は(2)に記載のジアミン化合物。
(8)式[1a]から式[1f]中のXが単結合、炭素数1から5の直鎖又は分岐アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONH-、-NHCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である上記(1)又は(2)に記載のジアミン化合物。
(9)式[1a]から式[1f]中のXが単結合、炭素数1から3の直鎖アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-OCO-、及び-OCH-からなる群より選ばれる少なくとも1種であり、Xがイミダゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である上記(1)又は(2)に記載のジアミン化合物。
(10)上記(1)から上記(9)のいずれかに記載のジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、又は該ポリアミド酸を脱水閉環させて得られるポリイミド。
(11)式[1]で表されるジアミン化合物がジアミン成分中の1から80モル%である上記(10)に記載のポリアミド酸又はポリイミド。
(12)上記(10)又は上記(11)に記載のポリアミド酸及びポリイミドの内の少なくともいずれか一方と、溶媒とを含有する液晶配向処理剤。
(13)液晶配向処理剤中に含まれる溶媒中の5から80質量%が貧溶媒である上記(12)に記載の液晶配向処理剤。
(14)上記(12)又は上記(13)に記載の液晶配向処理剤を用いて得られる液晶配向膜。
(15)上記(14)に記載の液晶配向膜を有する液晶表示素子。
Figure JPOXMLDOC01-appb-C000004
(Wherein Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO-, And at least one divalent organic group selected from the group consisting of —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and Q 2 is hydrogen An atom or an alkyl group having 1 to 3 carbon atoms, X 4 is a nitrogen-containing aromatic heterocyclic ring, and n is an integer of 1 to 4).
(3) The diamine compound according to the above (2), wherein X 2 in the formulas [1a] to [1f] is a single bond, a linear alkylene group having 1 to 3 carbon atoms, or a benzene ring.
(4) The diamine compound according to (2) or (3) above, wherein X 3 in the formulas [1a] to [1f] is a single bond, —OCO—, or —OCH 2 —.
(5) The diamine compound according to any one of (2) to (4) above, wherein X 4 in the formulas [1a] to [1f] is an imidazole ring, a pyridine ring, or a pyrimidine ring.
(6) The diamine compound according to any one of (2) to (5) above, wherein n in the formula [1a] to formula [1f] is an integer of 1 or 2.
(7) At least one selected from the group consisting of a linear or branched alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a benzene ring, and a naphthalene ring, wherein X 2 in the formulas [1a] to [1f] is And X 3 is a single bond, —O—, —CONH—, —NHCO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5) is at least one selected from the group consisting, X 4 is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, a benzimidazole ring, and a benzimidazole ring The diamine compound according to the above (1) or (2), which is at least one selected from the group consisting of n and n is an integer of 1 or 2.
(8) X 2 in the formulas [1a] to [1f] is at least one selected from the group consisting of a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, and a benzene ring, and X 3 Is selected from the group consisting of a single bond, —O—, —CONH—, —NHCO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5). The above (1) or at least one, wherein X 4 is at least one selected from the group consisting of a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, and a pyrimidine ring, and n is an integer of 1 or 2. The diamine compound according to (2).
(9) X 2 in the formulas [1a] to [1f] is at least one selected from the group consisting of a single bond, a linear alkylene group having 1 to 3 carbon atoms, and a benzene ring, and X 3 is a single group. At least one selected from the group consisting of a bond, —OCO—, and —OCH 2 —, X 4 is at least one selected from the group consisting of an imidazole ring, a pyridine ring, and a pyrimidine ring, and n is 1 Or the diamine compound as described in said (1) or (2) which is an integer of 2.
(10) Polyamic acid obtained by reacting the diamine component containing the diamine compound according to any one of (1) to (9) above and tetracarboxylic dianhydride, or dehydrating and ring-closing the polyamic acid. Polyimide obtained.
(11) The polyamic acid or polyimide according to the above (10), wherein the diamine compound represented by the formula [1] is 1 to 80 mol% in the diamine component.
(12) A liquid crystal aligning agent containing at least one of the polyamic acid and the polyimide according to (10) or (11) and a solvent.
(13) The liquid-crystal aligning agent as described in said (12) whose 5-80 mass% in the solvent contained in a liquid-crystal aligning agent is a poor solvent.
(14) A liquid crystal alignment film obtained using the liquid crystal aligning agent according to (12) or (13).
(15) A liquid crystal display device having the liquid crystal alignment film according to (14).
 本発明のジアミン化合物は、比較的簡便な方法で得ることができ、該ジアミン化合物を液晶配向膜を構成する重合体の原料として使用したときには、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が速い液晶配向膜を得ることができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 The diamine compound of the present invention can be obtained by a relatively simple method. When the diamine compound is used as a raw material for the polymer constituting the liquid crystal alignment film, the voltage holding ratio is high, and the diamine compound is exposed to a high temperature for a long time. Even after this, a liquid crystal alignment film can be obtained in which the residual charge accumulated by the DC voltage is quickly relaxed. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 以下に、本発明について詳細に説明する。
 本発明は、式[1]で表されるジアミン化合物、式[1]で表されるジアミン化合物を原料として得られる重合体、該重合体を含有する液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜、更には、該液晶配向膜を有する液晶表示素子である。
 本発明のジアミン化合物は、側鎖に窒素含有芳香族複素環を有するジアミン化合物(以下、特定ジアミン化合物と称することもある)である。この窒素含有芳香族複素環は、その共役構造により電子のホッピングサイトとして機能するので、特定ジアミン化合物より得られた重合体を含む液晶配向処理剤より製造される液晶配向膜において、液晶配向膜中の電荷の移動を促進させることができる。
 以上のことにより、本発明の液晶配向処理剤は、液晶配向膜にした際、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が速い液晶配向膜を得ることができる。
The present invention is described in detail below.
The present invention provides a diamine compound represented by the formula [1], a polymer obtained by using the diamine compound represented by the formula [1] as a raw material, a liquid crystal alignment treatment agent containing the polymer, and the liquid crystal alignment treatment agent. It is a liquid crystal display element which has a liquid crystal aligning film obtained by using and also this liquid crystal aligning film.
The diamine compound of the present invention is a diamine compound having a nitrogen-containing aromatic heterocycle in the side chain (hereinafter sometimes referred to as a specific diamine compound). This nitrogen-containing aromatic heterocycle functions as an electron hopping site due to its conjugated structure, so in a liquid crystal alignment film produced from a liquid crystal alignment treatment agent containing a polymer obtained from a specific diamine compound, It is possible to promote the movement of charges.
As described above, the liquid crystal aligning agent of the present invention has a high voltage holding ratio when formed into a liquid crystal alignment film, and the residual charge accumulated by a DC voltage even after being exposed to a high temperature for a long time. A liquid crystal alignment film that is quickly relaxed can be obtained.
<特定ジアミン化合物>
 本発明の特定ジアミン化合物は、下記の式[1]で表されるジアミン化合物である。
<Specific diamine compound>
The specific diamine compound of the present invention is a diamine compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000005
 式[1]中、X1は-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは窒素含有芳香族複素環であり、nは1から4の整数である。
Figure JPOXMLDOC01-appb-C000005
Wherein [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one 2 selected from the group consisting of -OCO- A valent organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 And at least one divalent organic group selected from the group consisting of CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 4 is a nitrogen-containing aromatic heterocyclic ring, n is an integer of 1 to 4.
 式[1]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、nが1の整数の場合、側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。nが2の整数の場合は、次の位置が挙げられる。側鎖の結合基(X)に対して、ベンゼン環上の2の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、3,4の位置、3,5の位置、3,6の位置、4,5の位置が挙げられる。また、側鎖の結合基(X)に対して、ベンゼン環上の3の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、2,4の位置、2,5の位置、4,5の位置、4,6の位置が挙げられる。更に、側鎖の結合基(X)に対して、ベンゼン環上の4の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、2,3の位置、2,5の位置、2,6の位置、3,5の位置が挙げられる。nが3の整数の場合は、次の位置が挙げられる。側鎖の結合基(X)に対して、ベンゼン環上の2,3の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、4,5の位置、4,6の位置が挙げられる。また、側鎖の結合基(X)に対して、ベンゼン環上の2,4の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、3,5の位置、3,6の位置、5,6の位置が挙げられる。更に、側鎖の結合基(X)に対して、ベンゼン環上の3,5の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、2,4の位置が挙げられる。nが4の整数の場合は、次の位置が挙げられる。側鎖の結合基(X)に対して、ベンゼン環上の2,3,4の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、5,6の位置が挙げられる。また、側鎖の結合基(X)に対して、ベンゼン環上の2,4,5の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、3,6の位置が挙げられる。更に、側鎖の結合基(X)に対して、ベンゼン環上の2,4,6の位置に側鎖の結合基(X)がある場合、二つのアミノ基の結合位置は、3,5の位置が挙げられる。これらの中でも、ポリアミック酸を合成する際の反応性の観点、及びジアミン化合物を合成する際の容易性も加味すると、nが1の整数の場合において、二つのアミノ基の結合位置が2,4の位置、2,5の位置、3,5の位置、又はnが2の整数の場合における側鎖の結合基(X)に対して、ベンゼン環上の3の位置に側鎖の結合基(X)がある場合において、二つのアミノ基の結合位置が4,6の位置が特に好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, when n is an integer of 1, with respect to the side chain linking group (X 1 ), 2, 3 positions, 2, 4 positions, 2, 5 positions on the benzene ring, 2, 6 positions, 3 and 4 positions, and 3 and 5 positions. When n is an integer of 2, the following positions are listed. When the side chain linking group (X 1 ) is located at 2 positions on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are the positions 3 and 4, 3 , 5 position, 3, 6 position, and 4, 5 position. In addition, when there is a side chain linking group (X 1 ) at position 3 on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are positions 2 and 4 , 2, 5 positions, 4, 5 positions, and 4, 6 positions. Furthermore, when there is a side chain linking group (X 1 ) at position 4 on the benzene ring with respect to the side chain linking group (X 1 ), the two amino groups are bound at positions 2, 3 , 2, 5 position, 2, 6 position, 3, 5 position. When n is an integer of 3, the following positions are listed. When the side chain linking group (X 1 ) is located at 2, 3 positions on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are positions 4 and 5 , 4, 6 positions. In addition, when the side chain linking group (X 1 ) is located at 2, 4 positions on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are 3, 5 , 3, 6 and 5, 6 positions. Furthermore, when there are side chain bonding groups (X 1 ) at positions 3 and 5 on the benzene ring with respect to the side chain bonding group (X 1 ), the bonding positions of the two amino groups are 2, 4 Position. When n is an integer of 4, the following positions are listed. When there are side chain bonding groups (X 1 ) at positions 2, 3, and 4 on the benzene ring with respect to the side chain bonding group (X 1 ), the bonding positions of the two amino groups are 5, 6 Position. In addition, when there are side chain bonding groups (X 1 ) at positions 2, 4, and 5 on the benzene ring with respect to the side chain bonding group (X 1 ), the bonding positions of the two amino groups are 3 , 6 positions. Further, when the side chain linking group (X 1 ) is located at positions 2, 4, 6 on the benzene ring with respect to the side chain linking group (X 1 ), the bonding positions of the two amino groups are 3 , 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease when synthesizing the diamine compound, when n is an integer of 1, the bonding positions of the two amino groups are 2,4. , 2, 5 position, 3, 5 position, or side chain linking group (X 1 ) when n is an integer of 2, side chain linking group at position 3 on the benzene ring In the case where (X 1 ) is present, the positions where the binding positions of the two amino groups are 4, 6 are particularly preferable.
 式[1]中、Xは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基である。中でも、-O-、-NQ-、-CONQ-、-NQCO-が好ましい。なお、Qは、式[1]
の定義と同意義である。
 Xのより具体的な構造は、下記の式[1a]から式[1f]が挙げられる。
Wherein [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one 2 selected from the group consisting of -OCO- Valent organic group. Among them, -O -, - NQ 1 - , - CONQ 1 -, - NQ 1 CO- is preferred. In addition, Q 1 has the formula [1]
The definition is the same.
More specific structures of X 1 include the following formulas [1a] to [1f].
Figure JPOXMLDOC01-appb-C000006
 中でも、式[1a]、式[1b]、式[1c]、及び式[1d]が好ましい。なお、Qは、式[1]の定義と同意義である。
Figure JPOXMLDOC01-appb-C000006
Among these, the formula [1a], the formula [1b], the formula [1c], and the formula [1d] are preferable. Q 1 has the same meaning as defined in formula [1].
 式[1]中、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基である。
 炭素数1から20の脂肪族炭化水素基は、直鎖状でも良いし、分岐していても良い。また、不飽和結合を有していても良い。好ましくは炭素数1から10の脂肪族炭化水素基である。
In the formula [1], X 2 is a single bond or at least one selected from the group consisting of an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and an aromatic hydrocarbon group. It is a divalent organic group.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. An aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferred.
 非芳香族環式炭化水素基の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環、アダマンタン環などが挙げられる。
 芳香族炭化水素基の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環、フェナレン環などが挙げられる。
Specific examples of the non-aromatic cyclic hydrocarbon group include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, Cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicycloheptane ring, decahydro A naphthalene ring, a norbornene ring, an adamantane ring, etc. are mentioned.
Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring, and phenalene ring.
 式[1]における、好ましいXとしては、単結合、炭素数1から10の直鎖又は分岐したアルキレン基、炭素数1から10の不飽和アルキレン基、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環、アントラセン環であり、より好ましくは、単結合、炭素数1から10の直鎖又は分岐アルキレン基、炭素数1から10の不飽和アルキレン基、シクロヘキサン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、フルオレン環、アントラセン環であり、さらに好ましくは、単結合、炭素数1から10の直鎖又は分岐アルキレン基、シクロへキサン環、ベンゼン環、ナフタレン環であり、特に好ましくは、単結合、炭素数1から5の直鎖又は分岐アルキレン基、ベンゼン環である。最も好ましくは、単結合、炭素数1から3の直鎖アルキレン基、又はベンゼン環である。 Preferred X 2 in the formula [1] is a single bond, a linear or branched alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, or a cyclopentane ring. , Cyclohexane ring, cycloheptane ring, norbornene ring, adamantane ring, benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring, and anthracene ring, more preferably a single bond, linear or branched alkylene having 1 to 10 carbon atoms Group, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a fluorene ring, and an anthracene ring, and more preferably a single bond and a straight chain having 1 to 10 carbon atoms. Chain or branched alkylene group, cyclohexane ring, benzene ring, naphtha A len ring, particularly preferably a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, and a benzene ring. Most preferably, they are a single bond, a linear alkylene group having 1 to 3 carbon atoms, or a benzene ring.
 式[1]中、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、好ましくは、単結合、-O-、-CONQ-、-NQCO-、-COO-、-OCO-、-O(CH-(mは1か
ら5の整数である)である。最も好ましくは、単結合、-OCO-、又は-OCH-である。なお、Qは、式[1]の定義と同意義である。
Wherein [1], X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - (M is an integer of 1 to 5) is at least one divalent organic group selected from the group consisting of a single bond, —O—, —CONQ 2 —, —NQ 2 CO—, —COO—, —OCO—, —O (CH 2 ) m — (m is an integer of 1 to 5). Most preferably, it is a single bond, —OCO—, or —OCH 2 —. Q 2 has the same meaning as defined in formula [1].
 式[1]中、Xは窒素含有芳香族複素環であり、下記の式[[2a]、式[2b]及び式[2c]からなる群から選ばれる少なくとも1個の構造を含有する窒素含有芳香族複素環である。 In the formula [1], X 4 is a nitrogen-containing aromatic heterocyclic ring, and nitrogen containing at least one structure selected from the group consisting of the following formulas [[2a], formulas [2b] and formulas [2c] Containing aromatic heterocycle.
Figure JPOXMLDOC01-appb-C000007
 式[2c]中、Yは炭素数1から5の直鎖又は分岐アルキル基である。
Figure JPOXMLDOC01-appb-C000007
In formula [2c], Y 1 is a linear or branched alkyl group having 1 to 5 carbon atoms.
 式[1]における、好ましいXとしては、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、チノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環、アクリジン環であり、より好ましいのは、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピラゾリン環、カルバゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環であり、さらに好ましいのは、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環であり、特に好ましいのは、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環である。最も好ましくは、イミダゾール環、ピリジン環、又はピリミジン環である。 Preferable X 4 in the formula [1] is a pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring. , Pyridazine ring, pyrazoline ring, triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, thionoline ring, phenanthroline ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring Acridine ring, more preferably pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyrazoline ring, carbazole ring, pyridazine ring, pyrazoline ring, triazine ring, pyrazolidine ring , Triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, more preferably pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benz An imidazole ring and a benzimidazole ring are preferable, and a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, and a pyrimidine ring are particularly preferable. Most preferably, it is an imidazole ring, a pyridine ring, or a pyrimidine ring.
 また、Xは、Xに含まれる式[2a]、式[2b]及び式[2c]と隣り合わない置換基と結合していることが好ましい。
 式[1]中、nは1から4の整数であり、好ましくはテトラカルボン酸二無水物との反応性の点から、1から3の整数である。最も好ましくは、nが1又は2の整数である。
Further, X 3 is formulas contained in X 4 [2a], it is preferably bonded to a substituent not adjacent to Equation [2b] and the formula [2c].
In the formula [1], n is an integer of 1 to 4, and preferably an integer of 1 to 3 from the viewpoint of reactivity with tetracarboxylic dianhydride. Most preferably, n is an integer of 1 or 2.
 式[1]における好ましいX、X、X、X及びnの組み合わせは、Xが-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種であり、Xが炭素数1から10の直鎖又は分岐アルキレン基、炭素数1から10の不飽和アルキレン基、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環、及びアントラセン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、チノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環、及びアクリジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である。 A preferred combination of X 1, X 2, X 3 , X 4 and n in the formula [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O And at least one selected from the group consisting of —OCO—, wherein X 2 is a linear or branched alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, cyclobutane X 3 is at least one selected from the group consisting of a ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, a tetrahydronaphthalene ring, a fluorene ring, and an anthracene ring. single bond, -O -, - NQ 2 - , - CONQ 2 -, - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - ( m is at least one selected from the group consisting of 1 to 5), and X 4 is a pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline Ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring, triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, tinoline ring, phenanthroline ring, indole ring, quinoxaline It is at least one selected from the group consisting of a ring, a benzothiazole ring, a phenothiazine ring, an oxadiazole ring, and an acridine ring, and n is an integer of 1 or 2.
 より好ましい式[1]におけるX、X、X、X及びnの組み合わせは、Xが-O-、-NQ-、-CONQ-、-NQCO-、及び-CHO-からなる群より選ばれる少なくとも1種であり、Xが炭素数1から10の直鎖又は分岐アルキレン基、炭素数1から10の不飽和アルキレン基、シクロヘキサン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、フルオレン環、及びアントラセン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピラゾリン環、カルバゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、及びベンゾイミダゾール環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である。 More preferably X 1 in the formula [1], X 2, X 3, X 4 and n combinations of, X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO-, and -CH At least one selected from the group consisting of 2 O—, wherein X 2 is a linear or branched alkylene group having 1 to 10 carbon atoms, an unsaturated alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a norbornene ring, an adamantane ring a benzene ring, a naphthalene ring, a fluorene ring, and at least one selected from the group consisting of an anthracene ring, X 3 is a single bond, -O -, - NQ 2 - , - CONQ 2 -, - NQ 2 CO- , -COO -, - OCO-, and -O (CH 2) m - ( m is from 1 5 is an integer) is at least one selected from the group consisting of, X 4 is a pyrrole ring, an imidazole ring At least one selected from the group consisting of pyrazole ring, pyridine ring, pyrimidine ring, pyrazoline ring, carbazole ring, pyridazine ring, pyrazoline ring, triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, and benzimidazole ring And n is an integer of 1 or 2.
 さらに好ましい式[1]におけるX、X、X、X及びnの組み合わせは、Xが-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種であり、Xが炭素数1から10の直鎖又は分岐アルキレン基、シクロへキサン環、ベンゼン環、及びナフタレン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、及びベンゾイミダゾール環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である。 Further preferred compounds of formula X 1 in [1], X 2, X 3, the combination of X 4 and n, X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 At least one selected from the group consisting of O— and —OCO—, wherein X 2 is a straight chain or branched alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a benzene ring, and a naphthalene ring. is at least one selected, X 3 is a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - ( m is 1 is at least one selected from the group consisting of 5 of an integer) from, X 4 is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, Baie 'S imidazole ring, and at least one selected from the group consisting of benzimidazole ring, n is an integer of 1 or 2.
 特に好ましい式[1]におけるX、X、X、X及びnの組み合わせは、Xが-O-、-NQ-、-CONQ-、-NQCO-、及び-CHO-からなる群より選ばれる少なくとも1種であり、Xが単結合、炭素数1から5の直鎖又は分岐アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である。 Particularly preferred X 1, X 2, X 3 , the combination of X 4 and n in the formula [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO-, and -CH 2 is at least one selected from the group consisting of O-, X 2 is a single bond, at least one selected from the group consisting of linear or branched alkylene group, and benzene rings having 1 to 5 carbon atoms, X 3 is a single bond, -O -, - CONQ 2 - , - NQ 2 CO -, - COO -, - OCO-, and -O (CH 2) m - consists of (m is an integer from 1 to 5) At least one selected from the group, X 4 is at least one selected from the group consisting of a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, and a pyrimidine ring, and n is an integer of 1 or 2.
 最も好ましい式[1]におけるX、X、X、X及びnの組み合わせは、Xが-O-、-NQ-、-CONQ-、及び-NQCO-からなる群より選ばれる少なくとも1種であり、Xが単結合、炭素数1から3の直鎖アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-OCO-、及び-OCH-からなる群より選ばれる少なくとも1種であり、Xがイミダゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である。 The most preferred X 1 in the formula [1], X 2, X 3, X 4 and n combinations of, X 1 is -O -, - NQ 1 -, - CONQ 1 -, and the group consisting of -NQ 1 CO- is at least one more selected, X 2 is a single bond, a straight-chain alkylene group having 1 to 3 carbon atoms, and at least one selected from the group consisting of benzene ring, X 3 is a single bond, -OCO- And at least one selected from the group consisting of —OCH 2 —, X 4 is at least one selected from the group consisting of an imidazole ring, a pyridine ring, and a pyrimidine ring, and n is an integer of 1 or 2. is there.
 特に好ましい式[1]におけるX、X、X、X及びnの組み合わせは、下記の表1から表3に示す通りである。なお、Q及びQは、式[1]の定義と同意義である。 Particularly preferred combinations of X 1 , X 2 , X 3 , X 4 and n in the formula [1] are as shown in Tables 1 to 3 below. Q 1 and Q 2 are the same as defined in formula [1].
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<特定ジアミン化合物の合成方法>
 本発明の式[1]で表される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては以下の方法が挙げられる。
<Method for synthesizing specific diamine compound>
Although the method of manufacturing the specific diamine compound represented by Formula [1] of this invention is not specifically limited, The following method is mentioned as a preferable method.
Figure JPOXMLDOC01-appb-C000011
 本発明の特定ジアミン化合物は、式[4]で示すジニトロ体を合成し、さらにニトロ基を還元してアミノ基に変換することで得られる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒中、水素ガス、ヒドラジン、塩化水素などによって行う方法がある。式[4]中のX、X、X、X及びnは、式[1]の定義と同意義である。
Figure JPOXMLDOC01-appb-C000011
The specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the formula [4], further reducing the nitro group and converting it to an amino group. The method for reducing the dinitro compound is not particularly limited. Usually, palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in an alcohol-based solvent. X 1 , X 2 , X 3 , X 4 and n in the formula [4] are as defined in the formula [1].
 式[4]のジニトロ体は、Xを介してX及びXを結合させ、その後、ジニトロ部をXを介して結合させる方法、ジニトロ部を連結部Xを介してXを結合させ、その後、Xを介してXと結合させる方法などで得ることができる。 In the dinitro compound of the formula [4], X 2 and X 4 are bonded via X 3 and then the dinitro moiety is bonded via X 1 , and the dinitro moiety is bonded to X 2 via the linking moiety X 1. It can be obtained by, for example, a method of bonding to X 4 via X 3 .
 Xは-O-(エーテル結合)、-NQ-(アミノ結合)、-CONQ-(アミド結合)、-NQCO-(逆アミド結合)、-CHO-(メチレンエーテル結合)、及び-OCO-(逆エステル結合)からなる群より選ばれる少なくとも1種の結合基であり、これらの結合基は通常の有機合成的手法で形成させることができる。各結合基のQは、式[1]の定義と同意義である。 X 1 is —O— (ether bond), —NQ 1 — (amino bond), —CONQ 1 — (amide bond), —NQ 1 CO— (reverse amide bond), —CH 2 O— (methylene ether bond). And at least one linking group selected from the group consisting of —OCO— (reverse ester bond), and these linking groups can be formed by ordinary organic synthetic techniques. Q 1 of each linking group is as defined in the formula [1].
 例えば、Xがエーテル、メチレンエーテル結合の場合、対応するジニトロ基含有ハロゲン誘導体と、X、X及びXを含む水酸基誘導体をアルカリ存在下で反応させる方法、またはジニトロ基含有水酸基誘導体と、X、X及びXを含むハロゲン置換誘導体とをアルカリ存在下で反応させる方法が挙げられる。
 アミノ結合の場合は、対応するジニトロ基含有ハロゲン誘導体と、X、X及びXを含むアミノ基置換誘導体とをアルカリ存在下で反応させたりする方法が挙げられる。
For example, when X 1 is an ether or methylene ether bond, a corresponding dinitro group-containing halogen derivative is reacted with a hydroxyl group derivative containing X 2 , X 3 and X 4 in the presence of an alkali, or a dinitro group-containing hydroxyl group derivative , X 2 , X 3 and X 4 may be reacted in the presence of an alkali.
In the case of an amino bond, a method of reacting a corresponding dinitro group-containing halogen derivative with an amino group-substituted derivative containing X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
 逆エステル結合の場合は、対応するジニトロ基含有水酸基誘導体と、X、X及びXを含む酸クロリド体とをアルカリ存在下で反応させたりする方法が挙げられる。 In the case of a reverse ester bond, a method of reacting a corresponding dinitro group-containing hydroxyl group derivative with an acid chloride containing X 2 , X 3 and X 4 in the presence of an alkali can be mentioned.
 アミド結合では、対応するジニトロ基含有酸クロリド体と、X、X及びXを含むアミノ基置換体とをアルカリ存在下で反応させる方法が挙げられる。
 逆アミド結合の場合は、対応するジニトロ基含有アミノ基置換体と、X、X及びXを含む酸クロリド体とをアルカリ存在下で反応させる方法が挙げられる。
Examples of the amide bond include a method in which a corresponding dinitro group-containing acid chloride is reacted with an amino group-substituted product containing X 2 , X 3 and X 4 in the presence of an alkali.
In the case of a reverse amide bond, a method in which a corresponding dinitro group-containing amino group-substituted product and an acid chloride product containing X 2 , X 3 and X 4 are reacted in the presence of an alkali can be mentioned.
 ジニトロ基含有ハロゲン誘導体およびジニトロ基含有誘導体の具体例としては、3,5-ジニトロクロロベンゼン、2,4-ジニトロクロロベンゼン、2,4-ジニトロフルオロベンゼン、3,5-ジニトロ安息香酸クロリド、3,5-ジニトロ安息香酸、2,4-ジニトロ安息香酸クロリド、2,4-ジニトロ安息香酸、3,5-ジニトロベンジルクロリド、2,4-ジニトロベンジルクロリド、3,5-ジニトロベンジルアルコール、2,4-ジニトロベンジルアルコール、2,4-ジニトロアニリン、3,5-ジニトロアニリン、2,6-ジニトロアニリン、2,4-ジニトロフェノール、2,5-ジニトロフェノール、2,6-ジニトロフェノール、2,4-ジニトロフェニル酢酸などが挙げられる。原料の入手性、反応の点を考慮して、一種又は複数種を選択して用いることができる。 Specific examples of dinitro group-containing halogen derivatives and dinitro group-containing derivatives include 3,5-dinitrochlorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrofluorobenzene, 3,5-dinitrobenzoic acid chloride, 3,5 -Dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 2,4-dinitrobenzoic acid, 3,5-dinitrobenzyl chloride, 2,4-dinitrobenzyl chloride, 3,5-dinitrobenzyl alcohol, 2,4- Dinitrobenzyl alcohol, 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-dinitrophenol, 2,4- And dinitrophenylacetic acid. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
<重合体>
 本発明の重合体は、特定ジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及びこのポリアミド酸を脱水閉環させて得られるポリイミドである。これらのポリアミド酸及びポリイミドのいずれもが、液晶配向膜を得るための重合体として有用である。
<Polymer>
The polymer of the present invention is a polyamic acid obtained by reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing this polyamic acid. Any of these polyamic acids and polyimides are useful as a polymer for obtaining a liquid crystal alignment film.
 本発明の重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早くなる。 The liquid crystal alignment film obtained using the polymer of the present invention has a higher voltage holding ratio as the content ratio of the specific diamine compound in the diamine component increases, and even after being exposed to a high temperature for a long time, The residual charge accumulated by the DC voltage is alleviated faster.
 上記した特性を高める目的では、ジアミン成分の1モル%以上が特定ジアミン化合物であることが好ましい。更には、ジアミン成分の5モル%以上が特定ジアミン化合物であることが好ましく、より好ましくは10モル%以上である。 For the purpose of enhancing the above properties, it is preferable that 1 mol% or more of the diamine component is a specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more.
 ジアミン成分の100モル%が特定ジアミン化合物であってもよいが、液晶配向処理剤を塗布する際の均一塗布性の観点から、特定ジアミン化合物はジアミン成分の80モル%以下が好ましく、より好ましくは40モル%以下である。 Although 100 mol% of the diamine component may be a specific diamine compound, the specific diamine compound is preferably 80 mol% or less of the diamine component, more preferably, from the viewpoint of uniform coatability when applying the liquid crystal aligning agent. It is 40 mol% or less.
 本発明においては、特定ジアミン化合物以外のジアミン(以下、その他のジアミン化合物ともいう)を併用することができ、その他のジアミン化合物は特に限定されない。その具体例を以下に挙げる。 In the present invention, a diamine other than the specific diamine compound (hereinafter also referred to as other diamine compound) can be used in combination, and the other diamine compound is not particularly limited. Specific examples are given below.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン。ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどが挙げられる。 p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-biphenyl, 3,3 ' Trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diamino Diphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis (4-aminophenyl) silane Bis (3-aminophenyl) Lan, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3 ' -Diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3 ' -Diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4, 4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminoben Zophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) B) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4 -Aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis ( Methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4 -Phenylenebis (methylene)] dianiline, 3,3 '-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenyle Bis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis ( 4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-amino Phenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-amino) Benzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1 , 4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4 -Aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylsulfone, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- ( 4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino Enyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-amino) Phenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1, 4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, , 7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, , 11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane. Bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and the like.
 また、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、並びにそれらからなる大環状置換体を有するジアミンを挙げることができ、具体的には、下記の式[DA1]から式[DA26]で表されるジアミン化合物を例示することができる。 Examples of the diamine include a diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a macrocyclic substituent composed of these in the side chain of the diamine. Examples include diamine compounds represented by the formula [DA26] from DA1].
Figure JPOXMLDOC01-appb-C000012
(式[DA1]から式[DA5]中、Rは、炭素数1以上22以下のアルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000012
(In Formula [DA1] to Formula [DA5], R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000013
(式[DA6]から式[DA9]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1以上22以下のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula [DA6] to formula [DA9], R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000014
(式[DA10]及び式[DA11]中、Rは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000014
(In Formula [DA10] and Formula [DA11], R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 5 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.)
Figure JPOXMLDOC01-appb-C000015
(式[DA12]から式[DA14]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000015
(In the formulas [DA12] to [DA14], R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —, wherein R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000016
(式[DA15]及び式[DA16]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000016
(In Formula [DA15] and Formula [DA16], R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group .)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 加えて、下記の式[DA27]で示されるようなジアミノシロキサンなども挙げることができる。
Figure JPOXMLDOC01-appb-C000019
In addition, diaminosiloxanes represented by the following formula [DA27] can also be exemplified.
Figure JPOXMLDOC01-appb-C000020
(式[DA27]中、mは、1から10の整数である。)
Figure JPOXMLDOC01-appb-C000020
(In the formula [DA27], m is an integer of 1 to 10.)
 その他のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 本発明のポリアミド酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
Other diamine compounds may be used alone or in combination of two or more depending on properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when the liquid crystal alignment film is formed.
The tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited. Specific examples are given below.
 ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸二無水物、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、オキシジフタルテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロへキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸二無水物、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。 Pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,5,6-anthracene tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic Acid dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride Bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3 , 3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2, 3,4,5-pyridinetetracarboxylic dianhydride, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3 , 4,9,10-perylenetetracarboxylic dianhydride, 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, oxydiphthaltetracarboxylic dianhydride, 1,2 , 3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarbonate Boronic acid dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic Acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cycloheptanetetracarboxylic dianhydride, 2,3,4, 5-tetrahydrofurantetracarboxylic dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 3,4-dicarboxy-1, 2,3,4-tetrahydro-1-naphthalene succinic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, bicyclo [4,3,0] Nonane-2, 4 , 7,9-tetracarboxylic dianhydride, bicyclo [4,4,0] decane-2,4,7,9-tetracarboxylic dianhydride, bicyclo [4,4,0] decane-2,4 , 8,10-tetracarboxylic dianhydride, tricyclo [6.3.0.0 <2,6>] undecane-3,5,9,11-tetracarboxylic dianhydride, 1,2,3 4-butanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydraphthalene-1,2-dicarboxylic dianhydride, bicyclo [ 2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexane- 1,2-dicarboxylic dianhydride, tetracyclo [6,2,1,1, , 2,7] dodeca-4,5,9,10-tetracarboxylic dianhydride, 3,5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic dianhydride, 1,2,4 , 5-cyclohexanetetracarboxylic dianhydride and the like.
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用することができる。
 テトラカルボン酸二無水物とジアミン成分との反応により、本発明のポリアミド酸を得るにあたっては、公知の合成手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
Tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
In obtaining the polyamic acid of the present invention by reaction of tetracarboxylic dianhydride and a diamine component, a known synthesis method can be used. In general, tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. The reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
The organic solvent used for the reaction between tetracarboxylic dianhydride and diamine is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether , Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n- Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3 -Methyl methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, Examples thereof include propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
In addition, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物またはジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。 When the tetracarboxylic dianhydride and the diamine component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. In addition, when the tetracarboxylic dianhydride or diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
 その際の重合温度は-20℃から150℃の任意の温度を選択することができるが、好ましくは-5℃から100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1から50質量%、より好ましくは5から30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8から1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミド酸の分子量は大きくなる。
 本発明のポリイミドは、前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃から400℃、好ましくは120℃から250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
In the polyamic acid polymerization reaction, the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリアミド酸の触媒イミド化は、ポリアミド酸の溶液に、塩基性触媒と酸無水物とを添加し、-20から250℃、好ましくは0から180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5から30モル倍、好ましくは2から20モル倍であり、酸無水物の量はアミド酸基の1から50モル倍、好ましくは3から30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリアミド酸又はポリイミドの反応溶液から、生成したポリアミド酸又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させれば良い。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2から10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When the produced polyamic acid or polyimide is recovered from the polyamic acid or polyimide reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer recovered by precipitation is redissolved in an organic solvent and the operation of reprecipitation recovery is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の液晶配向処理剤に含有されるポリアミド酸及びポリイミドの分子量は、そこから得られる塗膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000から1,000,000とするのが好ましく、より好ましくは、10,000から150,000である。 The molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability when forming the coating film, and the uniformity of the coating film. The weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体から選ばれる少なくとも一種の重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%から20質量%が好ましく、より好ましくは3質量%から15質量%、特に好ましくは3から10質量%である。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt | dissolved in the organic solvent. Here, the said resin component is a resin component containing at least 1 type of polymer chosen from the polymer of this invention mentioned above. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
 本発明において、前記の樹脂成分は、全てが本発明に用いる共重合体であってもよく、本発明の重合体にそれ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における本発明の重合体以外の他の重合体の含有量は0.5質量%から15質量%、好ましくは1質量%から10質量%である。 In the present invention, all of the above resin components may be copolymers used in the present invention, and other polymers may be mixed with the polymer of the present invention. At that time, the content of the polymer other than the polymer of the present invention in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
 かかる他の重合体は、例えば、テトラカルボン酸ニ無水物成分と反応させるジアミン成分として、特定ジアミン化合物以外のジアミン化合物を使用して得られるポリアミド酸又はポリイミドなどが挙げられる。
 本発明の液晶配向処理剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
Examples of such other polymers include polyamic acid or polyimide obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with the tetracarboxylic dianhydride component.
The organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4 -Hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination.
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。その例としては、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物などである。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては次のものが挙げられる。
The liquid crystal aligning agent of this invention may contain components other than the above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。 For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dip Pyrene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octa , Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol Low 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester Examples include solvents having surface tension.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向処理剤に含まれる溶媒全体の5から80質量%であることが好ましく、より好ましくは20から60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
These poor solvents may be used alone or in combination. When using the above solvent, it is preferable that it is 5 to 80 mass% of the whole solvent contained in a liquid-crystal aligning agent, More preferably, it is 20 to 60 mass%.
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100質量部に対して、好ましくは0.01から2質量部、より好ましくは0.01から1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal alignment treatment agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向処理剤に含有される樹脂成分の100質量部に対して0.1から30質量部であることが好ましく、より好ましくは1から20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal alignment treatment agent. The amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、若しくはアクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
<Liquid crystal alignment film / liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50から300℃、好ましくは80から250℃で行い、溶媒を蒸発させて、塗膜を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5から300nm、より好ましくは10から100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
Firing after applying the liquid crystal aligning agent on the substrate can be performed at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, and the solvent can be evaporated to form a coating film. . If the thickness of the coating film formed after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. It is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1から30μm、より好ましくは2から10μmである。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明の解釈はこれらの実施例に限定されるものではない。
[ジアミン化合物の合成]
<実施例1>
 ジアミン化合物(4)の合成
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the interpretation of the present invention is not limited to these examples.
[Synthesis of diamine compound]
<Example 1>
Synthesis of diamine compound (4)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物(2)(29.92g,277mmol)、及びトリエチルアミン(28.03g,277mmol)のテトラヒドロフラン(300g)溶液を10℃以下に冷却し、化合物(1)(60.76g,263mmol)のテトラヒドロフラン(150g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応の終了を確認後、蒸留水(2L)に反応液を空け、析出した固体をろ過、水洗後、エタノール(450g)で分散洗浄し、化合物(3)を得た(得量:72.91g,得率:92%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.79(1H,t),9.10-9.09(2H,m),9.00-8.96(1H,m),8.61(1H,broad),8.50-8.48(1H,m),7.79-7.76(1H,m),7.40-7.36(1H,m),4.57(2H,s).
 次いで、化合物(3)(72.00g,238mmol)、5%パラジウムカーボン(含水型,7.2g,10wt%)、及び1,4-ジオキサン(720g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をエタノール(360g)で分散洗浄し、ジアミン化合物(4)を得た(得量:43.62g,得率:76%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.64(1H,t),8.50(1H,d),8.44(1H,d),7.67(1H,d),7.34(1H,q),6.23(2H,d),5.94(1H,s),4.87(4H,s),4.39(2H,d).
A solution of compound (2) (29.92 g, 277 mmol) and triethylamine (28.03 g, 277 mmol) in tetrahydrofuran (300 g) was cooled to 10 ° C. or lower, and compound (1) (60.76 g, 263 mmol) in tetrahydrofuran (150 g) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (High Performance Liquid Chromatograph), the reaction solution is poured into distilled water (2 L), the precipitated solid is filtered, washed with water, then dispersed and washed with ethanol (450 g) to obtain Compound (3). Obtained (yield: 72.91 g, yield: 92%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.79 (1H, t), 9.10-9.09 (2H, m), 9.00-8.96 (1H, m), 8.61 (1H, broad), 8.50-8.48 (1H , M), 7.79-7.76 (1H, m), 7.40-7.36 (1H, m), 4.57 (2H, s).
Next, a mixture of compound (3) (72.00 g, 238 mmol), 5% palladium carbon (hydrous type, 7.2 g, 10 wt%), and 1,4-dioxane (720 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with ethanol (360 g) to obtain a diamine compound (4) (amount obtained: 43.62 g, yield: 76%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.64 (1H, t), 8.50 (1H, d), 8.44 (1H, d), 7.67 (1H, d), 7.34 (1H, q), 6.23 ( 2H, d), 5.94 (1H, s), 4.87 (4H, s), 4.39 (2H, d).
<実施例2>
 ジアミン化合物(7)の合成
<Example 2>
Synthesis of diamine compound (7)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物(5)(40.00g,328mmol)、及びトリエチルアミン(33.18g,328mmol)のテトラヒドロフラン(400g)溶液を10℃以下に冷却し、化合物(1)(72.00g、312mmol)のテトラヒドロフラン(176g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(3.5L)に反応液を空け、析出した固体をろ過、水洗後、メタノール(200g)で分散洗浄し、化合物(6)を得た(得量:81.4g,得率:82%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.83-8.34(5H,m),7.83-7.66(1H,m),7.39-7.33(1H,m),4.69-4.49(2H,m),2.91-2.85(3H,m).
A solution of compound (5) (40.00 g, 328 mmol) and triethylamine (33.18 g, 328 mmol) in tetrahydrofuran (400 g) was cooled to 10 ° C. or lower, and compound (1) (72.00 g, 312 mmol) in tetrahydrofuran (176 g). ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (3.5 L), the precipitated solid was filtered, washed with water, and then dispersed and washed with methanol (200 g) to obtain compound (6) (obtained). (Amount: 81.4 g, yield: 82%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.83-8.34 (5H, m), 7.83-7.66 (1H, m), 7.39-7.33 (1H, m), 4.69-4.49 (2H, m), 2.91 -2.85 (3H, m).
 次いで、化合物(6)(80.00g,253mmol)、水酸化パラジウムカーボン(含水型,8.0g,10wt%)、及び1,4-ジオキサン(1200g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をテトラヒドロフラン(150g)で均一に溶解させ、-20℃にてヘキサン(660g)中へ溶液を滴下し、固体を析出させた。その後、ろ過、冷ヘキサン洗浄にて、ジアミン化合物(7)を得た(得量:74.98g,得率:98%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.46-8.34(2H,m),7.63-7.54(1H,broad),7.36-7.33(1H,m),5.86-5.76(3H,m),4.86(4H,s),4.57-4.53(2H,broad),2.80(3H,broad).
Next, a mixture of compound (6) (80.00 g, 253 mmol), palladium hydroxide carbon (water-containing type, 8.0 g, 10 wt%), and 1,4-dioxane (1200 g) was added in the presence of hydrogen in the presence of 23 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was uniformly dissolved in tetrahydrofuran (150 g), and the solution was dropped into hexane (660 g) at −20 ° C. to precipitate a solid. Then, the diamine compound (7) was obtained by filtration and cold hexane washing (amount obtained: 74.98 g, yield: 98%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.46-8.34 (2H, m), 7.63-7.54 (1H, broad), 7.36-7.33 (1H, m), 5.86-5.76 (3H, m), 4.86 (4H, s), 4.57-4.53 (2H, broad), 2.80 (3H, broad).
<実施例3>
 ジアミン化合物(10)の合成
<Example 3>
Synthesis of diamine compound (10)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物(8)(16.69g,137mmol)、及びトリエチルアミン(13.82g,137mmol)のテトラヒドロフラン(200g)溶液を10℃以下に冷却し、化合物(1)(30.00g、130mmol)のテトラヒドロフラン(150g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(2.8L)に反応液を空け、析出した固体をろ過、水洗後、エタノール(200g)で分散洗浄し、化合物(9)を得た(得量:34.53g,得率:84%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.30(1H,t),9.01-9.00(2H,m),8.95-8.93(1H,m),8.47(1H,d),8.42(1H,dd),7.69(2H,d),7.32(1H,q),3.64-3.58(2H,m),2.92(2H,t).
A tetrahydrofuran (200 g) solution of compound (8) (16.69 g, 137 mmol) and triethylamine (13.82 g, 137 mmol) was cooled to 10 ° C. or lower, and tetrahydrofuran (150 g) of compound (1) (30.00 g, 130 mmol) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (2.8 L), the precipitated solid was filtered, washed with water, and then dispersed and washed with ethanol (200 g) to obtain compound (9) (obtained). (Amount: 34.53 g, yield: 84%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.30 (1H, t), 9.01-9.00 (2H, m), 8.95-8.93 (1H, m), 8.47 (1H, d), 8.42 (1H, dd ), 7.69 (2H, d), 7.32 (1H, q), 3.64-3.58 (2H, m), 2.92 (2H, t).
 次いで、化合物(9)(32.00g,101mmol)、5%パラジウムカーボン(含水型,3.2g,10wt%)、及び1,4-ジオキサン(320g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をテトラヒドロフラン(150g)で分散洗浄し、ジアミン化合物(10)を得た(得量:19.21g,得率:74%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.43-8.39(2H,m),8.09(1H,t),7.63(1H,d),7.30(1H,dd),6.16(2H,d),5.92(1H,d),4.84(4H,s),3.44-3.28(3H,m),2.82(3H,t).
Next, a mixture of compound (9) (32.00 g, 101 mmol), 5% palladium carbon (hydrous type, 3.2 g, 10 wt%), and 1,4-dioxane (320 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with tetrahydrofuran (150 g) to obtain a diamine compound (10) (yield: 19.21 g, yield: 74%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.43-8.39 (2H, m), 8.09 (1H, t), 7.63 (1H, d), 7.30 (1H, dd), 6.16 (2H, d), 5.92 (1H, d), 4.84 (4H, s), 3.44-3.28 (3H, m), 2.82 (3H, t).
<実施例4>
 ジアミン化合物(14)の合成
<Example 4>
Synthesis of diamine compound (14)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物(12)(35.00g,321mmol)、及びトリエチルアミン(97.39g,962mmol)のテトラヒドロフラン(240g)溶液に、化合物(11) (29.84g,160mmol)のテトラヒドロフラン(60g)溶液を滴下した。滴下終了後、反応をHPLCで追跡し、反応の終了を確認後、ジクロロメタン(1L)を加えた後、蒸留水(600mL)で3回洗浄を行った。無水硫酸マグネシウムで有機層を乾燥後、ろ過、溶媒留去し化合物(13)の粗物を得た。得られた粗物を酢酸エチル(500g)/ヘキサン(1L)で再結晶し、化合物(13)を得た(得量:38.74g,得率:88%)。
 1H-NMR(400MHz,CDCl3,δppm):8.79(1H,d),8.71(1H,d),8.66(1H,dd),8.46(1H,dd),7.88-7.85(1H,m),7.40(1H,q),7.30(1H,d),5.38(2H,s).
A solution of compound (11) (29.84 g, 160 mmol) in tetrahydrofuran (60 g) was added dropwise to a solution of compound (12) (35.00 g, 321 mmol) and triethylamine (97.39 g, 962 mmol) in tetrahydrofuran (240 g). After completion of the dropwise addition, the reaction was followed by HPLC. After confirming the completion of the reaction, dichloromethane (1 L) was added, followed by washing with distilled water (600 mL) three times. The organic layer was dried over anhydrous magnesium sulfate, filtered and evaporated to give a crude compound (13). The obtained crude product was recrystallized from ethyl acetate (500 g) / hexane (1 L) to obtain compound (13) (amount: 38.74 g, yield: 88%).
1H-NMR (400 MHz, CDCl3, δ ppm): 8.79 (1H, d), 8.71 (1H, d), 8.66 (1H, dd), 8.46 (1H, dd), 7.88-7.85 (1H, m), 7.40 ( 1H, q), 7.30 (1H, d), 5.38 (2H, s).
 次いで、化合物(13)(20.00g,72.7mmol)、酸化白金(IV)(含水型,2.0g,10wt%)、及び酢酸エチル/エタノール(200g,100/50(v/v%))の混合物を、水素存在下にて、40℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、化合物(14)の粗物を得た。得られた粗物をシリカゲルカラムクロマトグラフィー(流出溶媒は、ヘキサン/酢酸エチル(100/50v/v%))にて精製し、ジアミン化合物(14)を得た(得量:15.27g,得率:98%)。
 1H-NMR(400MHz,CDCl3,δppm):8.66(1H,d),8.57(1H,dd),7.77-7.73(1H,m),7.33-7.29(1H,m),6.67(1H,d),5.00(2H,s),3.37(4H,s).
Compound (13) (20.00 g, 72.7 mmol), platinum (IV) oxide (hydrated, 2.0 g, 10 wt%), and ethyl acetate / ethanol (200 g, 100/50 (v / v%)) ) Was stirred at 40 ° C. in the presence of hydrogen. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product of compound (14). The obtained crude product was purified by silica gel column chromatography (the effluent solvent was hexane / ethyl acetate (100/50 v / v%)) to obtain the diamine compound (14) (yield: 15.27 g, obtained). (Rate: 98%).
1H-NMR (400MHz, CDCl3, δppm): 8.66 (1H, d), 8.57 (1H, dd), 7.77-7.73 (1H, m), 7.33-7.29 (1H, m), 6.67 (1H, d), 5.00 (2H, s), 3.37 (4H, s).
<実施例5>
 ジアミン化合物(16)の合成
<Example 5>
Synthesis of diamine compound (16)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物(2)(29.98g,277mmol)、炭酸水素ナトリウム(29.12g,347mmol)、及び蒸留水(630g)の混合溶液に、23℃下、化合物(11)(43.00g,231mmol)のエタノール(830g)溶液を滴下して加えた。滴下終了後、HPLCにて反応の終了を確認した後、ジクロロメタン(2L)を加え水層を除去した。その後、有機層を飽和食塩水(500mL)で3回洗浄し、無水硫酸マグネシウムで有機層を乾燥した後、溶媒留去を行った。得られた粗物を酢酸エチル(500g)/ヘキサン(1L)で再結晶することで化合物(15)を得た(得量:55.28g、得率:87%)。
 1H-NMR(400MHz,CDCl3,δppm):9.18(1H,d),9.17(1H,broad),8.66-8.62(2H,m),8.29-8.25(1H,m),7.69-7.66(1H,m),7.37-7.33(1H,m),6.90(1H,d),4.68(2H,m).
Compound (11) (43.00 g, 231 mmol) was added to a mixed solution of compound (2) (29.98 g, 277 mmol), sodium hydrogen carbonate (29.12 g, 347 mmol), and distilled water (630 g) at 23 ° C. Ethanol (830 g) solution was added dropwise. After completion of the dropwise addition, after confirming the completion of the reaction by HPLC, dichloromethane (2 L) was added and the aqueous layer was removed. Thereafter, the organic layer was washed three times with saturated brine (500 mL), dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The obtained crude product was recrystallized from ethyl acetate (500 g) / hexane (1 L) to obtain compound (15) (yield: 55.28 g, yield: 87%).
1H-NMR (400MHz, CDCl3, δppm): 9.18 (1H, d), 9.17 (1H, broad), 8.66-8.62 (2H, m), 8.29-8.25 (1H, m), 7.69-7.66 (1H, m ), 7.37-7.33 (1H, m), 6.90 (1H, d), 4.68 (2H, m).
 次いで、化合物(15)(3.0g,10.9mmol)、酸化白金(IV)(含水型,0.3g,10wt%)、及び1,4-ジオキサン(30g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、ジアミン化合物(16)を得た(得量:2.30g,得率:98%)。
 1H-NMR(400MHz,CDCl3,δppm):8.63(1H,d),8.52(1H,dd),
  7.71-7.66(1H,m),7.28-7.24(1H,m),6.53(1H,d),6.18-6.11(2H,m),4.22(2H,s),3.70(1H,s),3.56-3.34(4H,broad).
Next, a mixture of compound (15) (3.0 g, 10.9 mmol), platinum (IV) oxide (hydrated type, 0.3 g, 10 wt%), and 1,4-dioxane (30 g) was added in the presence of hydrogen. And stirred at 23 ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a diamine compound (16) (amount obtained: 2.30 g, yield: 98%).
1H-NMR (400MHz, CDCl3, δppm): 8.63 (1H, d), 8.52 (1H, dd),
7.71-7.66 (1H, m), 7.28-7.24 (1H, m), 6.53 (1H, d), 6.18-6.11 (2H, m), 4.22 (2H, s), 3.70 (1H, s), 3.56- 3.34 (4H, broad).
<実施例6>
 ジアミン化合物(19)の合成
<Example 6>
Synthesis of diamine compound (19)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物(17)(50.00g,170mmol)、炭酸カリウム(47.01g,340mmol)、ヨウ化銅(I)(6.48g,34.0mmol)、N-メチルグリシン(6.06g,68.0mmol)、及びDMSO(ジメチルスルホキシド)(1L)の混合溶液に、40℃下、化合物(2)(36.78g,340mmol)を滴下して加えた。滴下終了後、HPLCにて反応の終了を確認した後、酢酸エチル(4L)/蒸留水(5L)を加えた後、不溶物をろ過で取り除いた。その後、分液により取り除いた水層を酢酸エチル(500g)で2回抽出し、有機層を合わせて、無水硫酸マグネシウムで乾燥を行った。エバポレーターにより溶媒を留去し粗物を得た後、酢酸エチル(700mL)/ヘキサン(2L)で再結晶を行い、化合物(18)を得た(得量:23.04g,得率:49%)。
 1H-NMR(400MHz,CDCl3,δppm):8.63(1H,broad),8.50-8.49(1H,broad),7.95(1H,t),7.80-7.76(3H,m),7.67(1H,t),7.39(1H,q),4.52(2H,d).
Compound (17) (50.00 g, 170 mmol), potassium carbonate (47.01 g, 340 mmol), copper (I) iodide (6.48 g, 34.0 mmol), N-methylglycine (6.06 g, 68.0 mmol) ) And DMSO (dimethyl sulfoxide) (1 L), Compound (2) (36.78 g, 340 mmol) was added dropwise at 40 ° C. After completion of the dropwise addition, after confirming the completion of the reaction by HPLC, ethyl acetate (4 L) / distilled water (5 L) was added, and then insoluble matters were removed by filtration. Thereafter, the aqueous layer removed by liquid separation was extracted twice with ethyl acetate (500 g), and the organic layers were combined and dried over anhydrous magnesium sulfate. After the solvent was distilled off by an evaporator to obtain a crude product, recrystallization was performed with ethyl acetate (700 mL) / hexane (2 L) to obtain a compound (18) (yield: 23.04 g, yield: 49%). ).
1H-NMR (400 MHz, CDCl3, δ ppm): 8.63 (1H, broad), 8.50-8.49 (1H, broad), 7.95 (1H, t), 7.80-7.76 (3H, m), 7.67 (1H, t), 7.39 (1H, q), 4.52 (2H, d).
 次いで、化合物(18)(1.0g,3.65mmol)、酸化白金(IV)(含水型,0.1g,10wt%)、及びメタノール(10g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、ジアミン化合物(19)を得た(得量:0.97g,得率:97%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.52(1H,d),8.41(1H,dd),7.69(1H,d),7.32(1H,q),5.60(1H,t),5.17(2H,s),4.37-4.14(4H,m).
Next, a mixture of compound (18) (1.0 g, 3.65 mmol), platinum (IV) oxide (water-containing type, 0.1 g, 10 wt%), and methanol (10 g) was mixed at 23 ° C. in the presence of hydrogen. And stirred. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a diamine compound (19) (amount obtained: 0.97 g, yield: 97%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.52 (1H, d), 8.41 (1H, dd), 7.69 (1H, d), 7.32 (1H, q), 5.60 (1H, t), 5.17 ( 2H, s), 4.37-4.14 (4H, m).
<実施例7>
 ジアミン化合物(23)の合成
<Example 7>
Synthesis of diamine compound (23)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 窒素雰囲気下、化合物(21)(51.43g,281mmol)のテトラヒドロフラン(300g)溶液を10℃以下に保ち、化合物(20)(50.00g,281mmol)、トリエチルアミン(170.5g,1.69mol)、及びDMAP(4-ジメチルアミノピリジン)(6.87g,56.2mmol)のテトラヒドロフラン(500g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、1時間撹拌後、さらに加熱還流を行った。HPLCにて反応の終了を確認後、反応液を蒸留水(6.4L)に空け、ろ過、水洗を行い、粗物を得た。得られた粗物をテトラヒドロフラン(243g)/ヘキサン(1458g)で再結晶し、化合物(22)を得た(得量:72.58g,得率:89%)。
 1H-NMR(400MHz,DMSO-d6,δppm):11.25(1H,s),9.18(1H,d),9.09(2H,dd),8.82(1H,dd),8.57(1H,t),8.38-8.35(1H,m),7.64(1H,q).
Under a nitrogen atmosphere, a solution of compound (21) (51.43 g, 281 mmol) in tetrahydrofuran (300 g) was kept at 10 ° C. or lower to obtain compound (20) (50.00 g, 281 mmol), triethylamine (170.5 g, 1.69 mol). A solution of DMAP (4-dimethylaminopyridine) (6.87 g, 56.2 mmol) in tetrahydrofuran (500 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C., and the mixture was stirred for 1 hour and further heated to reflux. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (6.4 L), filtered and washed with water to obtain a crude product. The obtained crude product was recrystallized from tetrahydrofuran (243 g) / hexane (1458 g) to obtain compound (22) (amount obtained: 72.58 g, yield: 89%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 11.25 (1H, s), 9.18 (1H, d), 9.09 (2H, dd), 8.82 (1H, dd), 8.57 (1H, t), 8.38- 8.35 (1H, m), 7.64 (1H, q).
 次いで、化合物(22)(20.00g,69.4mmol)、5%パラジウムカーボン(含水型,2.0g,10wt%)、及び1,4-ジオキサン(400g)の混合物を、水素存在下にて、90℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をエタノール(75g)にて分散洗浄し、ジアミン化合物(23)を得た(得量:10.14g,得率:64%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.87(1H,s),9.03-9.01(1H,m),8.72-8.70(1H,m),8.23-8.19(1H,m),7.54-7.50(1H,m),6.27-6.26(2H,m),5.63-5.61(1H,m),4.75-4.73(2H,m).
Next, a mixture of compound (22) (20.00 g, 69.4 mmol), 5% palladium carbon (hydrous type, 2.0 g, 10 wt%), and 1,4-dioxane (400 g) was added in the presence of hydrogen. , And stirred at 90 ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with ethanol (75 g) to obtain a diamine compound (23) (amount obtained: 10.14 g, yield: 64%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.87 (1H, s), 9.03-9.01 (1H, m), 8.72-8.70 (1H, m), 8.23-8.19 (1H, m), 7.54-7.50 (1H, m), 6.27-6.26 (2H, m), 5.63-5.61 (1H, m), 4.75-4.73 (2H, m).
<実施例8>
 ジアミン化合物(26)の合成
<Example 8>
Synthesis of diamine compound (26)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 窒素雰囲気下、化合物(21)(20.00g,112mmol)のテトラヒドロフラン(120g)溶液を10℃以下に冷却し、化合物(24)(20.57g,112mmol)、トリエチルアミン(68.18g,674mmol)、及びDMAP(2.74g,22.5mmol)のテトラヒドロフラン(200g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、1時間撹拌後、さらに加熱還流を17時間行った。HPLCにて反応の終了を確認後、反応液を蒸留水(2.6L)に空け、ろ過、水洗を行い粗物を得た。得られた粗物をエタノール(40g)で分散洗浄した後、ろ過、乾燥を行い、化合物(25)を得た(得量:16.45g,得率:51%)。
 1H-NMR(400MHz,DMSO-d6,δppm):11.4(1H,s),9.15-9.14(1H,m),8.86(1H,d),8.77(1H,d),8.64-8.60(1H,m),8.33(1H,d),8.06(1H,d),7.66(1H,q),2.92(2H,t).
Under a nitrogen atmosphere, a solution of compound (21) (20.00 g, 112 mmol) in tetrahydrofuran (120 g) was cooled to 10 ° C. or lower, and compound (24) (20.57 g, 112 mmol), triethylamine (68.18 g, 674 mmol), Then, a solution of DMAP (2.74 g, 22.5 mmol) in tetrahydrofuran (200 g) was added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C., and the mixture was stirred for 1 hour and further heated to reflux for 17 hours. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (2.6 L), filtered and washed with water to obtain a crude product. The obtained crude product was dispersed and washed with ethanol (40 g), and then filtered and dried to obtain compound (25) (yield: 16.45 g, yield: 51%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 11.4 (1H, s), 9.15-9.14 (1H, m), 8.86 (1H, d), 8.77 (1H, d), 8.64-8.60 (1H, m ), 8.33 (1H, d), 8.06 (1H, d), 7.66 (1H, q), 2.92 (2H, t).
 次いで、化合物(25)(15.00g,52.0mmol)、5%パラジウムカーボン(含水型,1.5g,10wt%)、及び1,4-ジオキサン(150g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、化合物(26)の粗物を得た。得られた粗物をシリカゲルカラムクロマトグラフィー(流出溶媒は、ヘキサン/酢酸エチル(100/50v/v%))により精製、さらにテトラヒドロフラン(400g)/ヘキサン(600g)からの再結晶により精製し、ジアミン化合物(26)を得た(得量:6.11g,得率:51%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.54(1H,s),9.10(1H,d),8.72(1H,dd),8.30-8.27(1H,m),7.90(1H,s),7.52(1H,q),6.75(1H,d),6.61(1H,d),5.99(1H,m),4.65-4.59(4H,m).
Next, a mixture of compound (25) (15.00 g, 52.0 mmol), 5% palladium carbon (hydrous type, 1.5 g, 10 wt%), and 1,4-dioxane (150 g) was added in the presence of hydrogen. And stirred at 60 ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product of compound (26). The resulting crude product was purified by silica gel column chromatography (the effluent solvent was hexane / ethyl acetate (100/50 v / v%)), and further purified by recrystallization from tetrahydrofuran (400 g) / hexane (600 g). Compound (26) was obtained (yield: 6.11 g, yield: 51%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.54 (1H, s), 9.10 (1H, d), 8.72 (1H, dd), 8.30-8.27 (1H, m), 7.90 (1H, s), 7.52 (1H, q), 6.75 (1H, d), 6.61 (1H, d), 5.99 (1H, m), 4.65 to 4.59 (4H, m).
<実施例9>
 ジアミン化合物(29)の合成
<Example 9>
Synthesis of diamine compound (29)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 窒素雰囲気下、化合物(27)(10.00g,49.0mmol)、及びトリエチルアミン(59.50g,588mmol)のテトラヒドロフラン(100g)溶液に、化合物(12)(21.39g,196mmol)を徐々に滴下した。反応終了後、蒸留水(1L)へ反応液を加え、ろ過、水洗浄を行い化合物(28)の粗物を得た。得られた粗物をアセトニトリル(200g)/酢酸エチル(300g)で再結晶し、化合物(28)を得た(得量:11.35g,得率:61%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.74-8.73(3H,m),8.61(2H,dd),7.93(2H,d),7.50(2H,q),7.44(1H,s),5.56(4H,s).
 次いで、化合物(28)(8.00g,20.1mmol)、酸化白金(IV)(含水型,0.8g,10wt%)、及び1,4-ジオキサン(80g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をテトラヒドロフラン(200g)/ヘキサン(600g)にて再結晶し、ジアミン化合物(29)を得た(得量:4.66g,得率:72%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.65(2H,d),8.52(2H,dd),7.88-7.85(2H,m),7.40(2H,q),6.68(1H,s),6.07(1H,s),4.96(4H,s),4.25(4H,s).
Under a nitrogen atmosphere, compound (12) (21.39 g, 196 mmol) is gradually added dropwise to a tetrahydrofuran (100 g) solution of compound (27) (10.00 g, 49.0 mmol) and triethylamine (59.50 g, 588 mmol). did. After completion of the reaction, the reaction solution was added to distilled water (1 L), filtered and washed with water to obtain a crude compound (28). The obtained crude product was recrystallized from acetonitrile (200 g) / ethyl acetate (300 g) to obtain compound (28) (amount: 11.35 g, yield: 61%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.74-8.73 (3H, m), 8.61 (2H, dd), 7.93 (2H, d), 7.50 (2H, q), 7.44 (1H, s), 5.56 (4H, s).
Next, a mixture of compound (28) (8.00 g, 20.1 mmol), platinum (IV) oxide (hydrated, 0.8 g, 10 wt%), and 1,4-dioxane (80 g) was added in the presence of hydrogen. And stirred at 60 ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was recrystallized from tetrahydrofuran (200 g) / hexane (600 g) to obtain a diamine compound (29) (yield: 4.66 g, yield: 72%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.65 (2H, d), 8.52 (2H, dd), 7.88-7.85 (2H, m), 7.40 (2H, q), 6.68 (1H, s), 6.07 (1H, s), 4.96 (4H, s), 4.25 (4H, s).
<実施例10>
 ジアミン化合物(34)の合成
<Example 10>
Synthesis of diamine compound (34)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 窒素雰囲気下、化合物(31)(81.60g,74.1mmol)、水酸化カルシウム(18.29g,24.7mmol)、及びDMSO(375g)の混合物を50℃に加熱した後、化合物(30)(50.00g,24.7mmol)のDMSO(125g)溶液を滴下した。滴下終了後、HPLCにて反応の終了を確認した後、5質量%塩酸氷水(4L)に反応液を注ぎ、固体をろ過、水洗し、化合物(32)の湿品を得た。その後、2-プロパノール(205g)/ヘキサン(335g)にて再結晶を行い、化合物(32)を得た(得量:49.0g,得率:72%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.73(1H,s),8.86(1H,d),8.42(1H,dd),7.11-7.05(3H,m),6.90-6.87(2H,m).
A mixture of compound (31) (81.60 g, 74.1 mmol), calcium hydroxide (18.29 g, 24.7 mmol), and DMSO (375 g) was heated to 50 ° C. under a nitrogen atmosphere, and then compound (30) A solution of (50.00 g, 24.7 mmol) in DMSO (125 g) was added dropwise. After completion of the dropwise addition, the completion of the reaction was confirmed by HPLC, and then the reaction solution was poured into 5% by mass hydrochloric acid ice water (4 L), and the solid was filtered and washed with water to obtain a wet product of compound (32). Thereafter, recrystallization was performed with 2-propanol (205 g) / hexane (335 g) to obtain Compound (32) (amount: 49.0 g, yield: 72%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.73 (1H, s), 8.86 (1H, d), 8.42 (1H, dd), 7.11-7.05 (3H, m), 6.90-6.87 (2H, m ).
 次いで、窒素雰囲気下、化合物(21)(19.34g,109mmol)のテトラヒドロフラン(180g)溶液を10℃以下に冷却し、化合物(31)(30.0g,109mmol)、トリエチルアミン(33.0g,324mmol)、及びDMAP(2.65g,21.7mmol)のDMSO(300g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、1時間撹拌後、さらに加熱還流を19時間行った。HPLCにて反応の終了を確認後、反応液を蒸留水(3.9L)に空け、ろ過、水洗、メタノール洗浄を行い粗物を得た。得られた粗物をクロロホルムに溶解させた後、不溶物をろ過した。その後、ろ液を濃縮し、シリカゲルカラムクロマトグラフィー(流出溶媒は、1,2-ジクロロエタン/酢酸エチル(100/40v/v%))により精製し、化合物(33)を得た(得量:35.8g,得率:86%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.29(1H,dd),8.92-8.91(2H,m),8.52-8.48(2H,m),7.69-7.66(1H,m),7.53-7.51(2H,m),7.44-7.40(2H,m),7.24(1H,d).
Next, a tetrahydrofuran (180 g) solution of the compound (21) (19.34 g, 109 mmol) is cooled to 10 ° C. or lower under a nitrogen atmosphere, and the compound (31) (30.0 g, 109 mmol), triethylamine (33.0 g, 324 mmol) is cooled. ), And DMAP (2.65 g, 21.7 mmol) in DMSO (300 g) were added dropwise while paying attention to heat generation. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C., stirred for 1 hour, and further heated to reflux for 19 hours. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (3.9 L), filtered, washed with water, and washed with methanol to obtain a crude product. The obtained crude product was dissolved in chloroform, and the insoluble material was filtered off. Thereafter, the filtrate was concentrated and purified by silica gel column chromatography (the effluent solvent was 1,2-dichloroethane / ethyl acetate (100/40 v / v%)) to obtain compound (33) (yield: 35). .8 g, yield: 86%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.29 (1H, dd), 8.92-8.91 (2H, m), 8.52-8.48 (2H, m), 7.69-7.66 (1H, m), 7.53-7.51 (2H, m), 7.44-7.40 (2H, m), 7.24 (1H, d).
 次いで、窒素雰囲気下、化合物(33)(30.00g,78.7mmol)、及び鉄粉(26.36g,472mmol)のトルエン(170g)溶液を70℃に加熱した後、塩化アンモニウム(12.63g,236mmol)の10質量%水溶液を滴下しながら加えた。反応終了後、セライトにて固体をろ過した。その後、ろ液から水層を取り除いた後、有機層をエバポレーターで濃縮し粗物を得た。次に、得られた粗物を酢酸エチル(1L)に溶解し、蒸留水(500mL)で3回洗浄した後、有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去した。得られた化合物(34)の粗物をメタノール(100g)/2-プロパノール(100g)にて再結晶し、ジアミン化合物(34)を得た(得量:15.4g,得率:61%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.20(1H,dd),8.85(1H,dd),8.43-8.40(1H,m), 7.62-7.59(1H,m),7.19-7.16(2H,m),6.88-6.84(2H,m),6.53(1H,d),6.02(1H,d),5.81(1H,dd),4.69(2H,s),4.57(2H,s).
Next, a toluene (170 g) solution of the compound (33) (30.00 g, 78.7 mmol) and iron powder (26.36 g, 472 mmol) was heated to 70 ° C. under a nitrogen atmosphere, and then ammonium chloride (12.63 g) was used. , 236 mmol) of 10% by mass aqueous solution was added dropwise. After completion of the reaction, the solid was filtered through celite. Thereafter, the aqueous layer was removed from the filtrate, and then the organic layer was concentrated with an evaporator to obtain a crude product. Next, the obtained crude product was dissolved in ethyl acetate (1 L) and washed three times with distilled water (500 mL). The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The resulting crude product of compound (34) was recrystallized from methanol (100 g) / 2-propanol (100 g) to obtain diamine compound (34) (yield: 15.4 g, yield: 61%). .
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.20 (1H, dd), 8.85 (1H, dd), 8.43-8.40 (1H, m), 7.62-7.59 (1H, m), 7.19-7.16 (2H , M), 6.88-6.84 (2H, m), 6.53 (1H, d), 6.02 (1H, d), 5.81 (1H, dd), 4.69 (2H, s), 4.57 (2H, s).
<実施例11>
 ジアミン化合物(37)の合成
<Example 11>
Synthesis of diamine compound (37)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 窒素雰囲気下、化合物(32)(17.00g,61.6mmol)、化合物(35)(6.57mL,67.7mmol)、及びトリフェニルホスフィン(20.99g,80.0mmol)のテトラヒドロフラン(340g)溶液を氷浴で冷却し、DEAD(アゾジカルボン酸ジエチル)(40質量%トルエン溶液,34.84mL,80.0mmol)溶液を徐々に滴下した。滴下終了後、反応温度を23℃まで徐々に上げて行き反応を行った。HPLCにて反応の終了を確認後、エバポレーターで溶媒を留去し粗物を得た。その後、2-プロパノール(450g)にて再結晶を2回行い、化合物(36)を得た(得量:17.77g,得率:79%)。
 1H-NMR(400MHz,CDCl3,δppm):8.84(1H,d),8.71(1H,broad),8.63(1H,dd),8.30(1H,dd),7.80(1H,d),7.36(1H,q),7.12-7.08(4H,m),7.01(1H,d),5.04(2H,s).
Compound (32) (17.00 g, 61.6 mmol), Compound (35) (6.57 mL, 67.7 mmol), and triphenylphosphine (20.99 g, 80.0 mmol) in tetrahydrofuran (340 g) under nitrogen atmosphere The solution was cooled in an ice bath, and a solution of DEAD (diethyl azodicarboxylate) (40 mass% toluene solution, 34.84 mL, 80.0 mmol) was gradually added dropwise. After completion of the dropwise addition, the reaction temperature was gradually raised to 23 ° C. to carry out the reaction. After confirming the completion of the reaction by HPLC, the solvent was distilled off with an evaporator to obtain a crude product. Thereafter, recrystallization was performed twice with 2-propanol (450 g) to obtain compound (36) (amount obtained: 17.77 g, yield: 79%).
1H-NMR (400 MHz, CDCl3, δ ppm): 8.84 (1H, d), 8.71 (1H, broad), 8.63 (1H, dd), 8.30 (1H, dd), 7.80 (1H, d), 7.36 (1H, q), 7.12-7.08 (4H, m), 7.01 (1H, d), 5.04 (2H, s).
 次いで、窒素雰囲気下、化合物(36)(15.00g,40.8mmol)、酸化白金(IV)(含水型,1.5g,10wt%)、及び1,4-ジオキサン(230g)の混合物を、水素存在下にて、23℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し、粗物を得た。得られた粗物を2-プロパノール(60g)にて再結晶することで、ジアミン化合物(37)を得た(得量:9.66g,得率77%)。
 1H-NMR(400MHz,CDCl3,δppm):8.66(1H,d),8.57(1H,dd),7.77(1H,m),7.34(1H,q),6.87(4H,s),6.69(1H,d),6.16(1H,d),6.07(1H,dd),5.02(2H,s),3.65-3.48(4H,broad).
Next, under a nitrogen atmosphere, a mixture of compound (36) (15.00 g, 40.8 mmol), platinum (IV) oxide (hydrated, 1.5 g, 10 wt%), and 1,4-dioxane (230 g) The mixture was stirred at 23 ° C. in the presence of hydrogen. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was recrystallized from 2-propanol (60 g) to obtain a diamine compound (37) (yield: 9.66 g, yield 77%).
1H-NMR (400 MHz, CDCl3, δ ppm): 8.66 (1H, d), 8.57 (1H, dd), 7.77 (1H, m), 7.34 (1H, q), 6.87 (4H, s), 6.69 (1H, d), 6.16 (1H, d), 6.07 (1H, dd), 5.02 (2H, s), 3.65-3.48 (4H, broad).
<合成例1>
 ジアミン化合物(40)の合成
<Synthesis Example 1>
Synthesis of diamine compound (40)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 化合物(38)(23.45g,190mmol)、及びトリエチルアミン(19.23g,277mmol)のテトラヒドロフラン(230g)溶液を10℃以下に冷却し、化合物(1)(41.68g,180mmol)のテトラヒドロフラン(110g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLC(高速液体クロマトグラフ)にて反応の終了を確認後、蒸留水(1.5L)に反応液を空け、析出した固体をろ過し、水洗した。その後、固体をエタノール(380g)で分散洗浄し、化合物(39)を得た(得量:50.82g,得率:89%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.76(1H,t),9.09-9.02(2H,m),8.99-8.93(1H,m),8.50(1H,broad),7.64-7.60(1H,m),7.36-7.32(1H,m),7.20-7.14(1H,m),4.57(2H,s),3.35(2H,s).
A solution of compound (38) (23.45 g, 190 mmol) and triethylamine (19.23 g, 277 mmol) in tetrahydrofuran (230 g) was cooled to 10 ° C. or lower, and compound (1) (41.68 g, 180 mmol) in tetrahydrofuran (110 g) was cooled. ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC (high performance liquid chromatograph), the reaction solution was poured into distilled water (1.5 L), and the precipitated solid was filtered and washed with water. Thereafter, the solid was dispersed and washed with ethanol (380 g) to obtain compound (39) (yield: 50.82 g, yield: 89%).
1H-NMR (400MHz, DMSO-d6, δppm): 9.76 (1H, t), 9.09-9.02 (2H, m), 8.99-8.93 (1H, m), 8.50 (1H, broad), 7.64-7.60 (1H , M), 7.36-7.32 (1H, m), 7.20-7.14 (1H, m), 4.57 (2H, s), 3.35 (2H, s).
 次いで、化合物(39)(48.00g,151mmol)、5%パラジウムカーボン(含水型,4.8g,10wt%)、及び1,4-ジオキサン(490g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をエタノール(300g)で分散洗浄し、ジアミン化合物(40)を得た(得量:27.20g,得率:70%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.64(1H,t),8.50(1H,d),8.44(1H,d),7.67(1H,d),7.34(1H,q),6.23(2H,d),5.94(1H,s),4.87(4H,s),4.39(2H,d).
Next, a mixture of compound (39) (48.00 g, 151 mmol), 5% palladium carbon (hydrous type, 4.8 g, 10 wt%) and 1,4-dioxane (490 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with ethanol (300 g) to obtain a diamine compound (40) (amount: 27.20 g, yield: 70%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.64 (1H, t), 8.50 (1H, d), 8.44 (1H, d), 7.67 (1H, d), 7.34 (1H, q), 6.23 ( 2H, d), 5.94 (1H, s), 4.87 (4H, s), 4.39 (2H, d).
<合成例2>
 ジアミン化合物(43)の合成
<Synthesis Example 2>
Synthesis of diamine compound (43)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 化合物(41)(15.22g,142mmol)、及びトリエチルアミン(15.09g,149mmol)のテトラヒドロフラン(150g)溶液を10℃以下に冷却し、化合物(1)(31.1g,135mmol)のテトラヒドロフラン(50g)溶液を発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。HPLCにて反応の終了を確認後、蒸留水(1L)に反応液を空け、析出した固体をろ過し、水洗した。その後、固体をエタノール(300g)で分散洗浄し、化合物(42)を得た(得量:36.92g,得率:90%)。
 1H-NMR(400MHz,DMSO-d6,δppm):9.75(1H,broad),9.10(2H,s),8.97-8.92(1H,m),7.40-7.22(5H,m),4.59-4.52(2H,m).
A solution of compound (41) (15.22 g, 142 mmol) and triethylamine (15.09 g, 149 mmol) in tetrahydrofuran (150 g) was cooled to 10 ° C. or lower, and compound (1) (31.1 g, 135 mmol) in tetrahydrofuran (50 g) ) The solution was added dropwise taking care of the exotherm. After completion of the dropwise addition, the reaction temperature was raised to 23 ° C. and further reaction was performed. After confirming the completion of the reaction by HPLC, the reaction solution was poured into distilled water (1 L), and the precipitated solid was filtered and washed with water. Thereafter, the solid was dispersed and washed with ethanol (300 g) to obtain compound (42) (yield: 36.92 g, yield: 90%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 9.75 (1H, broad), 9.10 (2H, s), 8.97-8.92 (1H, m), 7.40-7.22 (5H, m), 4.59-4.52 (2H , M).
 次いで、化合物(42)(36.00g,119mmol)、5%パラジウムカーボン(含水型,3.6g,10wt%)、及び1,4-ジオキサン(300g)の混合物を、水素存在下にて、60℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をメタノール(200g)で再結晶し、ジアミン化合物(43)を得た(得量:21.5g,得率:72%)。
 1H-NMR(400MHz,DMSO-d6,δppm):8.55(1H,broad),7.34-7.17(5H,m),6.28(2H,s),6.98-6.94(1H,m),4.85-4.74(4H,broad),4.42-4.35(2H,m).
Next, a mixture of compound (42) (36.00 g, 119 mmol), 5% palladium carbon (hydrous type, 3.6 g, 10 wt%), and 1,4-dioxane (300 g) was added in the presence of hydrogen in the presence of 60 Stir at ° C. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was recrystallized from methanol (200 g) to obtain a diamine compound (43) (yield: 21.5 g, yield: 72%).
1H-NMR (400 MHz, DMSO-d6, δ ppm): 8.55 (1H, broad), 7.34-7.17 (5H, m), 6.28 (2H, s), 6.98-6.94 (1H, m), 4.85-4.74 (4H , Broad), 4.42-4.35 (2H, m).
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
[ポリアミド酸及びポリイミドの合成]
 以下に使用したテトラカルボン酸二無水物などの化合物の略号を示した。
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
[Synthesis of polyamic acid and polyimide]
Abbreviations of compounds such as tetracarboxylic dianhydride used are shown below.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000035
(ジアミン)
 p-PDA:p-フェニレンジアミン
 AP18:1,3-ジアミノ(4-n-オクタデカノイル)ベンゼン
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
Figure JPOXMLDOC01-appb-C000035
(Diamine)
p-PDA: p-phenylenediamine AP18: 1,3-diamino (4-n-octadecanoyl) benzene PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) Phenoxy] benzene
Figure JPOXMLDOC01-appb-C000036
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
<ポリイミドの分子量測定>
 合成例におけるポリイミドの分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
Figure JPOXMLDOC01-appb-C000036
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve <Measurement of molecular weight of polyimide>
The molecular weight of the polyimide in the synthesis example was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex.
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight manufactured by Polymer Laboratory) About 12,000, 4,000, 1,000).
<イミド化率の測定>
 合成例におけるポリイミドのイミド化率は次のようにして測定した。
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidization ratio>
The imidation ratio of polyimide in the synthesis example was measured as follows.
Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.), add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS mixture), and apply ultrasonic waves. And completely dissolved. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<実施例12>
 BODA(3.33g,13.3mmol)、p-PDA(0.67g,6.21mmol)、PCH7DAB(3.38g,8.87mmol)、及びジアミン化合物(4)(0.64g,2.66mmol)をNMP(15.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.87g,4.44mmol)とNMP(13.1g)を加え、40℃で6時間反応させ、樹脂成分の含有量が24質量%のポリアミド酸溶液(A)を得た。このポリアミド酸の数平均分子量は17,900、重量平均分子量は51,800であった。
<Example 12>
BODA (3.33 g, 13.3 mmol), p-PDA (0.67 g, 6.21 mmol), PCH7DAB (3.38 g, 8.87 mmol), and diamine compound (4) (0.64 g, 2.66 mmol) Were mixed in NMP (15.0 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.87 g, 4.44 mmol) and NMP (13.1 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (A) having a resin component content of 24% by mass was obtained. The number average molecular weight of this polyamic acid was 17,900, and the weight average molecular weight was 51,800.
<実施例13>
 実施例12で得たポリアミド酸溶液(A)(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.63g)、及びピリジン(2.03g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は16,400、重量平均分子量は44,800であった。
<Example 13>
After adding NMP to the polyamic acid solution (A) (20.0 g) obtained in Example 12 and diluting to 6% by mass, acetic anhydride (2.63 g) and pyridine (2.03 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 40%, the number average molecular weight was 16,400, and the weight average molecular weight was 44,800.
<実施例14>
 BODA(2.33g,9.33mmol)、p-PDA(0.94g,8.71mmol)、AP18(0.47g,1.24mmol)、及びジアミン化合物(7)(0.64g,2.63mmol)をNMP(8.10g)中で混合し、80℃で5時間反応させた後、CBDA(0.61g,3.11mmol)とNMP(6.51g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.33g)、及びピリジン(1.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(120ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は17,500、重量平均分子量は46,400であった。
<Example 14>
BODA (2.33 g, 9.33 mmol), p-PDA (0.94 g, 8.71 mmol), AP18 (0.47 g, 1.24 mmol), and diamine compound (7) (0.64 g, 2.63 mmol) Was mixed in NMP (8.10 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.61 g, 3.11 mmol) and NMP (6.51 g) were added, and reacted at 40 ° C. for 6 hours. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.0 g) and diluting to 6% by mass, acetic anhydride (1.33 g) and pyridine (1.04 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was poured into methanol (120 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 41%, the number average molecular weight was 17,500, and the weight average molecular weight was 46,400.
<実施例15>
 BODA(3.25g,13.0mmol)、p-PDA(0.66g,6.07mmol)、PCH7DAB(3.30g,8.67mmol)、及びジアミン化合物(10)(0.67g,2.60mmol)をNMP(14.7g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.33mmol)とNMP(12.0g)を加え、40℃で6時間反応させ、樹脂成分の含有量が25質量%のポリアミド酸溶液を(D)得た。このポリアミド酸の数平均分子量は18,800、重量平均分子量は51,800であった
<Example 15>
BODA (3.25 g, 13.0 mmol), p-PDA (0.66 g, 6.07 mmol), PCH7DAB (3.30 g, 8.67 mmol), and diamine compound (10) (0.67 g, 2.60 mmol) Were mixed in NMP (14.7 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.33 mmol) and NMP (12.0 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution having a resin component content of 25% by mass was obtained (D). The number average molecular weight of this polyamic acid was 18,800, and the weight average molecular weight was 51,800.
<実施例16>
 実施例15で得たポリアミド酸溶液(D)(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.61g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(220ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は42%であり、数平均分子量は17,400、重量平均分子量は45,800であった。
<Example 16>
After adding NMP to the polyamic acid solution (D) (20.0 g) obtained in Example 15 and diluting to 6% by mass, acetic anhydride (2.61 g) and pyridine (2.07 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (220 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 42%, the number average molecular weight was 17,400, and the weight average molecular weight was 45,800.
<実施例17>
 BODA(2.22g,8.87mmol)、p-PDA(0.58g,5.32mmol)、PCH7DAB(1.35g,3.55mmol)、及びジアミン化合物(14)(0.64g,2.96mmol)をNMP(8.10g)中で混合し、80℃で5時間反応させた後、CBDA(0.58g,2.96mmol)とNMP(6.30g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.1g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.34g)、及びピリジン(1.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(140ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は18,100、重量平均分子量は47,300であった。
<Example 17>
BODA (2.22 g, 8.87 mmol), p-PDA (0.58 g, 5.32 mmol), PCH7DAB (1.35 g, 3.55 mmol), and diamine compound (14) (0.64 g, 2.96 mmol) Was mixed in NMP (8.10 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.58 g, 2.96 mmol) and NMP (6.30 g) were added, and reacted at 40 ° C. for 6 hours. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.1 g) and diluting to 6% by mass, acetic anhydride (1.34 g) and pyridine (1.04 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was poured into methanol (140 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide was 41%, the number average molecular weight was 18,100, and the weight average molecular weight was 47,300.
<実施例18>
 BODA(2.18g,8.72mmol)、p-PDA(0.69g,6.39mmol)、AP18(0.66g,1.74mmol)、及びジアミン化合物(16)(0.75g,3.49mmol)をNMP(10.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.57g,2.91mmol)とNMP(8.30g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.1g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.35g)、及びピリジン(1.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(140ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(G)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は17,500、重量平均分子量は46,000であった。
<Example 18>
BODA (2.18 g, 8.72 mmol), p-PDA (0.69 g, 6.39 mmol), AP18 (0.66 g, 1.74 mmol), and diamine compound (16) (0.75 g, 3.49 mmol) Was mixed in NMP (10.0 g), reacted at 80 ° C. for 5 hours, CBDA (0.57 g, 2.91 mmol) and NMP (8.30 g) were added, and reacted at 40 ° C. for 6 hours to obtain polyamide. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.1 g) and diluting to 6% by mass, acetic anhydride (1.35 g) and pyridine (1.07 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was poured into methanol (140 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (G). The imidation ratio of this polyimide was 40%, the number average molecular weight was 17,500, and the weight average molecular weight was 46,000.
<実施例19>
 BODA(2.30g,9.18mmol)、p-PDA(0.46g,4.28mmol)、PCH7DAB(2.33g,6.12mmol)、及びジアミン化合物(19)(0.39g,1.84mmol)をNMP(10.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.57g,2.91mmol)とNMP(8.00g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.31g)、及びピリジン(1.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(140ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,900、重量平均分子量は49,100であった。
<Example 19>
BODA (2.30 g, 9.18 mmol), p-PDA (0.46 g, 4.28 mmol), PCH7DAB (2.33 g, 6.12 mmol), and diamine compound (19) (0.39 g, 1.84 mmol) Was mixed in NMP (10.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.57 g, 2.91 mmol) and NMP (8.00 g) were added, and reacted at 40 ° C. for 6 hours. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.0 g) and diluting to 6% by mass, acetic anhydride (1.31 g) and pyridine (1.04 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was poured into methanol (140 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,900, and the weight average molecular weight was 49,100.
<実施例20>
 BODA(2.33g,9.33mmol)、p-PDA(0.47g,4.35mmol)、PCH7DAB(2.37g,6.22mmol)、及びジアミン化合物(23)(0.43g,1.87mmol)をNMP(10.50g)中で混合し、80℃で5時間反応させた後、CBDA(0.61g,3.11mmol)とNMP(8.10g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.2g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.37g)、及びピリジン(1.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(I)を得た。このポリイミドのイミド化率は42%であり、数平均分子量は19,900、重量平均分子量は52,100であった。
<Example 20>
BODA (2.33 g, 9.33 mmol), p-PDA (0.47 g, 4.35 mmol), PCH7DAB (2.37 g, 6.22 mmol), and diamine compound (23) (0.43 g, 1.87 mmol) Was mixed in NMP (10.50 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.61 g, 3.11 mmol) and NMP (8.10 g) were added, and reacted at 40 ° C. for 6 hours. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.2 g) and diluting to 6% by mass, acetic anhydride (1.37 g) and pyridine (1.04 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was put into methanol (150 ml), and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain polyimide powder (I). The imidation ratio of this polyimide was 42%, the number average molecular weight was 19,900, and the weight average molecular weight was 52,100.
<実施例21>
 BODA(2.26g,9.03mmol)、p-PDA(0.72g,6.62mmol)、AP18(0.45g,1.20mmol)、及びジアミン化合物(26)(0.96g,4.21mmol)をNMP(8.10g)中で混合し、80℃で5時間反応させた後、CBDA(0.59g,3.01mmol)とNMP(6.10g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(10.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(1.34g)、及びピリジン(1.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(J)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は17,900、重量平均分子量は45,800であった。
<Example 21>
BODA (2.26 g, 9.03 mmol), p-PDA (0.72 g, 6.62 mmol), AP18 (0.45 g, 1.20 mmol), and diamine compound (26) (0.96 g, 4.21 mmol) Was mixed in NMP (8.10 g), reacted at 80 ° C. for 5 hours, CBDA (0.59 g, 3.01 mmol) and NMP (6.10 g) were added, and reacted at 40 ° C. for 6 hours to obtain polyamide. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (10.0 g) and diluting to 6% by mass, acetic anhydride (1.34 g) and pyridine (1.04 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was put into methanol (150 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (J). The imidation ratio of this polyimide was 40%, the number average molecular weight was 17,900, and the weight average molecular weight was 45,800.
<実施例22>
 BODA(2.22g,8.87mmol)、p-PDA(1.02g,9.46mmol)、AP18(0.44g,1.18mmol)、及びジアミン化合物(29)(0.38g,1.18mmol)をNMP(7.00g)中で混合し、80℃で5時間反応させた後、CBDA(0.58g,2.96mmol)とNMP(6.50g)を加え、40℃で6時間反応させ、樹脂成分の含有量が26質量%のポリアミド酸溶液(K)を得た。このポリアミド酸の数平均分子量は17,500、重量平均分子量は45,100であった。
<Example 22>
BODA (2.22 g, 8.87 mmol), p-PDA (1.02 g, 9.46 mmol), AP18 (0.44 g, 1.18 mmol), and diamine compound (29) (0.38 g, 1.18 mmol) Were mixed in NMP (7.00 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.58 g, 2.96 mmol) and NMP (6.50 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (K) having a resin component content of 26% by mass was obtained. The number average molecular weight of this polyamic acid was 17,500, and the weight average molecular weight was 45,100.
<実施例23>
 BODA(3.25g,13.0mmol)、p-PDA(0.56g,5.20mmol)、PCH7DAB(3.30g,8.67mmol)、及びジアミン化合物(34)(1.11g,3.47mmol)をNMP(15.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.33mmol)とNMP(12.5g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(310ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は20,100、重量平均分子量は53,400であった。
<Example 23>
BODA (3.25 g, 13.0 mmol), p-PDA (0.56 g, 5.20 mmol), PCH7DAB (3.30 g, 8.67 mmol), and diamine compound (34) (1.11 g, 3.47 mmol) Was mixed in NMP (15.0 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.33 mmol) and NMP (12.5 g) were added and reacted at 40 ° C. for 6 hours to obtain polyamide. An acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.65 g) and pyridine (2.07 g) were added as an imidization catalyst, and 2 at 80 ° C. Reacted for hours. This reaction solution was poured into methanol (310 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide was 40%, the number average molecular weight was 20,100, and the weight average molecular weight was 53,400.
<実施例24>
 BODA(3.25g,13.0mmol)、p-PDA(0.66g,6.07mmol)、PCH7DAB(3.30g,8.67mmol)、及びジアミン化合物(37)(0.80g,2.60mmol)をNMP(14.8g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.33mmol)とNMP(12.0g)を加え、40℃で6時間反応させ、樹脂成分の含有量が25質量%のポリアミド酸溶液(M)を得た。このポリアミド酸の数平均分子量は19,400、重量平均分子量は52,800であった。
<Example 24>
BODA (3.25 g, 13.0 mmol), p-PDA (0.66 g, 6.07 mmol), PCH7DAB (3.30 g, 8.67 mmol), and diamine compound (37) (0.80 g, 2.60 mmol) Were mixed in NMP (14.8 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.33 mmol) and NMP (12.0 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (M) having a resin component content of 25% by mass was obtained. The number average molecular weight of this polyamic acid was 19,400, and the weight average molecular weight was 52,800.
<実施例25>
 実施例24で得たポリアミド酸溶液(M)(20.2g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.68g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(N)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は18,100、重量平均分子量は48,100であった。
<Example 25>
After adding NMP to the polyamic acid solution (M) (20.2 g) obtained in Example 24 and diluting to 6% by mass, acetic anhydride (2.68 g) and pyridine (2.07 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (N). The imidation ratio of this polyimide was 41%, the number average molecular weight was 18,100, and the weight average molecular weight was 48,100.
<合成例3>
 BODA(3.29g,13.2mmol)、p-PDA(0.67g,6.14mmol)、PCH7DAB(3.34g,8.77mmol)、及びジアミン化合物(40)(0.68g,2.63mmol)をNMP(15.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.86g,4.39mmol)とNMP(11.5g)を加え、40℃で6時間反応させ、樹脂成分の含有量が25質量%のポリアミド酸溶液(O)を得た。このポリアミド酸の数平均分子量は22,600、重量平均分子量は54,900であった。
<Synthesis Example 3>
BODA (3.29 g, 13.2 mmol), p-PDA (0.67 g, 6.14 mmol), PCH7DAB (3.34 g, 8.77 mmol), and diamine compound (40) (0.68 g, 2.63 mmol) Were mixed in NMP (15.0 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.86 g, 4.39 mmol) and NMP (11.5 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (O) having a resin component content of 25% by mass was obtained. The number average molecular weight of this polyamic acid was 22,600, and the weight average molecular weight was 54,900.
<合成例4>
 合成例3で得たポリアミド酸溶液(O)(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.08g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(P)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,900、重量平均分子量は49,200であった。
<Synthesis Example 4>
After adding NMP to the polyamic acid solution (O) (20.0 g) obtained in Synthesis Example 3 and diluting to 6% by mass, acetic anhydride (2.65 g) and pyridine (2.08 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (P). The imidation ratio of this polyimide was 40%, the number average molecular weight was 18,900, and the weight average molecular weight was 49,200.
<合成例5>
 BODA(3.22g,12.9mmol)、p-PDA(0.65g,6.00mmol)、PCH7DAB(3.26g,8.57mmol)、及びジアミン化合物(43)(0.62g,2.57mmol)をNMP(15.2g)中で混合し、80℃で5時間反応させた後、CBDA(0.84g,4.28mmol)とNMP(11.1g)を加え、40℃で6時間反応させ、樹脂成分の含有量が25質量%のポリアミド酸溶液(Q)を得た。このポリアミド酸の数平均分子量は22,100、重量平均分子量は53,200であった。
<Synthesis Example 5>
BODA (3.22 g, 12.9 mmol), p-PDA (0.65 g, 6.00 mmol), PCH7DAB (3.26 g, 8.57 mmol), and diamine compound (43) (0.62 g, 2.57 mmol) Were mixed in NMP (15.2 g), reacted at 80 ° C. for 5 hours, CBDA (0.84 g, 4.28 mmol) and NMP (11.1 g) were added, and reacted at 40 ° C. for 6 hours. A polyamic acid solution (Q) having a resin component content of 25% by mass was obtained. The number average molecular weight of this polyamic acid was 22,100, and the weight average molecular weight was 53,200.
<合成例6>
 合成例5で得たポリアミド酸溶液(Q)(20.1g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.68g)、及びピリジン(2.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は18,400、重量平均分子量は49,100であった。
<Synthesis Example 6>
After adding NMP to the polyamic acid solution (Q) (20.1 g) obtained in Synthesis Example 5 and diluting to 6% by mass, acetic anhydride (2.68 g) and pyridine (2.04 g) were used as imidization catalysts. In addition, the mixture was reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (R). The imidation ratio of this polyimide was 41%, the number average molecular weight was 18,400, and the weight average molecular weight was 49,100.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
[液晶配向処理剤の調製・評価]
<実施例26>
 実施例12で得られた樹脂成分の含有量が24質量%のポリアミド酸溶液[A](10.0g)にNMP(10.2g)、BCS(20.0g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[1]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
[Preparation and evaluation of liquid crystal aligning agent]
<Example 26>
NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [A] (10.0 g) having a content of the resin component obtained in Example 12 of 24% by mass, and 2 at 25 ° C. The liquid crystal aligning agent [1] was obtained by stirring for a period of time. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
[液晶セルの作製]
 上記で得た液晶配向処理剤[1]を3cm×4cm(縦×横)ITO電極付き基板のITO面にスピンコートし、80℃で5分間、210℃の熱風循環式オーブンで1時間焼成を行い、膜厚100nmのポリイミド塗膜を作製した。
 この液晶配向膜付き基板を、ロール径120mm、レーヨン布のラビング装置にて、回転数300rpm、ロール進行速度20mm/sec、押し込み量0.3mmの条件にてラビング処理をし、液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。もう1枚の基板を、液晶配向膜面を内側にし、ラビング方向が逆向きになるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、アンチパラレル配向のネマチック液晶セルを得た。
[Production of liquid crystal cell]
The liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3 cm × 4 cm (length × width) ITO electrodes, and baked in a hot air circulation oven at 80 ° C. for 5 minutes and 210 ° C. for 1 hour. A polyimide coating film having a thickness of 100 nm was prepared.
This substrate with a liquid crystal alignment film is subjected to a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm. Got.
Two substrates with this liquid crystal alignment film were prepared, and a 6 μm bead spacer was sprayed on the surface of one liquid crystal alignment film, and then a sealant was printed thereon. Another substrate was bonded so that the liquid crystal alignment film surface was inward and the rubbing direction was reversed, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (manufactured by Merck Japan Ltd.) was injected into this empty cell by a reduced pressure injection method to obtain an antiparallel aligned nematic liquid crystal cell.
[電圧保持率の評価]
 上記で得られた液晶セルに、80℃の温度下で4Vの電圧を60μs印加し、16.67ms後及び1667ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。結果は、後述する表7に示す。
[残留電荷の緩和の評価]
 電圧保持率測定後の液晶セルに、直流電圧10Vを30分印加し、1秒間短絡させた後、液晶セル内に発生している電位を1800秒間測定した。そして、50秒後及び1000秒後の残留電荷を測定した。なお、測定には東陽テクニカ社製6254型液晶物性評価装置を用いた。結果は、後述する表8に示す。
[高温放置後の評価]
 残留電荷測定後の液晶セルを、100℃に設定した高温槽に7日間放置した後、電圧保持率及び残留電荷の測定を行った。結果は、後述する表7及び表8に示す。
[Evaluation of voltage holding ratio]
A voltage of 4 V was applied to the liquid crystal cell obtained above at a temperature of 80 ° C. for 60 μs, the voltages after 16.67 ms and 1667 ms were measured, and the voltage holding ratio was calculated as the voltage holding ratio. . The results are shown in Table 7 described later.
[Evaluation of relaxation of residual charge]
A DC voltage of 10 V was applied to the liquid crystal cell after measuring the voltage holding ratio for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds. The residual charges after 50 seconds and 1000 seconds were measured. For measurement, a 6254 type liquid crystal property evaluation apparatus manufactured by Toyo Technica Co., Ltd. was used. The results are shown in Table 8 described later.
[Evaluation after leaving at high temperature]
After the residual charge measurement, the liquid crystal cell was left in a high-temperature bath set at 100 ° C. for 7 days, and then the voltage holding ratio and the residual charge were measured. The results are shown in Table 7 and Table 8 described later.
<実施例27>
 実施例13で得られたポリイミド粉末[B](5.1g)にNMP(36.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(18.1g)、BCS(25.6g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[2]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[2]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 27>
NMP (36.3 g) was added to the polyimide powder [B] (5.1 g) obtained in Example 13 and dissolved by stirring at 70 ° C. for 40 hours. NMP (18.1g) and BCS (25.6g) were added to this solution, and the liquid-crystal aligning agent [2] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [2], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例28>
 実施例14で得られたポリイミド粉末[C](5.0g)にNMP(32.8g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(16.4g)、BCS(29.2g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[3]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[3]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 28>
NMP (32.8 g) was added to the polyimide powder [C] (5.0 g) obtained in Example 14, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.4g) and BCS (29.2g) were added to this solution, and the liquid-crystal aligning agent [3] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [3], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例29>
 実施例15で得られた樹脂成分の含有量が25質量%のポリアミド酸溶液[D](10.5g)にNMP(8.9g)、BCS(23.6g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[4]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[4]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 29>
NMP (8.9 g) and BCS (23.6 g) were added to the polyamic acid solution [D] (10.5 g) having a resin component content of 25% by mass obtained in Example 15, and 2 at 25 ° C. The liquid crystal aligning agent [4] was obtained by stirring for a time. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [4], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例30>
 実施例16で得られたポリイミド粉末[E](5.2g)にNMP(34.1g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.1g)、BCS(30.4g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[5]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[5]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 30>
NMP (34.1 g) was added to the polyimide powder [E] (5.2 g) obtained in Example 16, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.1 g) and BCS (30.4 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [5]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [5], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例31>
 実施例17で得られたポリイミド粉末[F](5.0g)にNMP(35.6g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.8g)、BCS(25.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[6]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[6]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 31>
NMP (35.6 g) was added to the polyimide powder [F] (5.0 g) obtained in Example 17, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and the liquid-crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [6], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例32>
 実施例18で得られたポリイミド粉末[G](5.0g)にNMP(30.1g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(15.2g)、BCS(33.2g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[7]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[7]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 32>
NMP (30.1 g) was added to the polyimide powder [G] (5.0 g) obtained in Example 18, and dissolved by stirring at 70 ° C. for 40 hours. NMP (15.2g) and BCS (33.2g) were added to this solution, and the liquid-crystal aligning agent [7] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [7], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例33>
 実施例19で得られたポリイミド粉末[H](5.5g)にNMP(42.2g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(20.8g)、BCS(22.9g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[8]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[8]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 33>
NMP (42.2 g) was added to the polyimide powder [H] (5.5 g) obtained in Example 19, and dissolved by stirring at 70 ° C. for 40 hours. NMP (20.8g) and BCS (22.9g) were added to this solution, and the liquid-crystal aligning agent [8] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [8], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例34>
 実施例20で得られたポリイミド粉末[I](5.0g)にNMP(30.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(14.8g)、BCS(33.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[9]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[9]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 34>
NMP (30.3 g) was added to the polyimide powder [I] (5.0 g) obtained in Example 20, and dissolved by stirring at 70 ° C. for 40 hours. NMP (14.8g) and BCS (33.8g) were added to this solution, and the liquid-crystal aligning agent [9] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [9], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例35>
 実施例21で得られたポリイミド粉末[J](5.1g)にNMP(33.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.1g)、BCS(29.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[10]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[10]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 35>
NMP (33.0 g) was added to the polyimide powder [J] (5.1 g) obtained in Example 21, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.1 g) and BCS (29.8 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [10]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [10], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例36>
 実施例22で得られた樹脂成分の含有量が26質量%のポリアミド酸溶液[K](10.0g)にNMP(15.6g)、BCS(17.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[11]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[11]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 36>
NMP (15.6 g) and BCS (17.1 g) were added to the polyamic acid solution [K] (10.0 g) having a content of the resin component obtained in Example 22 of 26% by mass, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [11] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [11], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例37>
 実施例23で得られたポリイミド粉末[L](5.2g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(16.5g)、BCS(30.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[12]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[12]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 37>
NMP (34.5 g) was added to the polyimide powder [L] (5.2 g) obtained in Example 23, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (30.3g) were added to this solution, and the liquid-crystal aligning agent [12] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [12], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例38>
 実施例24で得られた樹脂成分の含有量が25質量%のポリアミド酸溶液[M](8.5g)にNMP(9.5g)、BCS(17.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[13]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[13]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 38>
NMP (9.5 g) and BCS (17.3 g) were added to the polyamic acid solution [M] (8.5 g) having a resin component content of 25% by mass obtained in Example 24, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [13] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [13], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<実施例39>
 実施例25で得られたポリイミド粉末[N](5.0g)にNMP(35.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.8g)、BCS(25.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[14]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[14]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Example 39>
NMP (35.5 g) was added to the polyimide powder [N] (5.0 g) obtained in Example 25 and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and the liquid-crystal aligning agent [14] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [14], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<比較例1>
 合成例3で得られた樹脂成分の含有量が25質量%のポリアミド酸溶液[O](10.4g)にNMP(17.5g)、BCS(15.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[15]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[15]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Comparative Example 1>
NMP (17.5 g) and BCS (15.3 g) are added to the polyamic acid solution [O] (10.4 g) having a resin component content of 25% by mass obtained in Synthesis Example 3, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [15] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [15], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<比較例2>
 合成例4で得られたポリイミド粉末[P](4.5g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.2g)、BCS(18.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[16]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[16]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Comparative example 2>
NMP (34.5 g) was added to the polyimide powder [P] (4.5 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.2g) and BCS (18.8g) were added to this solution, and the liquid-crystal aligning agent [16] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [16], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<比較例3>
 合成例5で得られた樹脂成分の含有量が25質量%のポリアミド酸溶液[Q](10.0g)にNMP(18.8g)、BCS(12.2g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[17]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[17]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Comparative Example 3>
NMP (18.8 g) and BCS (12.2 g) are added to the polyamic acid solution [Q] (10.0 g) having a resin component content of 25% by mass obtained in Synthesis Example 5, and 2 at 25 ° C. By stirring for a period of time, a liquid crystal aligning agent [17] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [17], a liquid crystal cell was prepared in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of residual charge relaxation, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
<比較例4>
 合成例6で得られたポリイミド粉末[R](4.7g)にNMP(38.6g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(19.4g)、BCS(15.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[18]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。得られた液晶配向処理剤[18]を用い、実施例26と同様に液晶セルを作製し、電圧保持率の評価、残留電荷の緩和の評価、高温放置後の評価を行った。結果は、後述する表7及び表8に示す。
<Comparative Example 4>
NMP (38.6 g) was added to the polyimide powder [R] (4.7 g) obtained in Synthesis Example 6, and dissolved by stirring at 70 ° C. for 40 hours. NMP (19.4g) and BCS (15.8g) were added to this solution, and the liquid-crystal aligning agent [18] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved. Using the obtained liquid crystal aligning agent [18], a liquid crystal cell was produced in the same manner as in Example 26, and evaluation of voltage holding ratio, evaluation of relaxation of residual charge, and evaluation after standing at high temperature were performed. The results are shown in Table 7 and Table 8 described later.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 本発明の液晶配向処理剤は、液晶配向膜にした際、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する電荷の緩和が速い液晶配向膜が得られる。更には過酷な使用環境での長期使用に耐えうる信頼性の高い液晶表示素子を提供することができる。その結果、TN素子、STN素子、TFT液晶素子、更には、垂直配向型や水平配向型(IPS)の液晶表示素子などに有用である。

 なお、2008年1月25日に出願された日本特許出願2008-014965号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment treatment agent of the present invention has a high voltage holding ratio when formed into a liquid crystal alignment film, and even after being exposed to a high temperature for a long time, the liquid crystal alignment film has a quick relaxation of charges accumulated by a DC voltage. Is obtained. Furthermore, a highly reliable liquid crystal display element that can withstand long-term use in a harsh use environment can be provided. As a result, it is useful for TN elements, STN elements, TFT liquid crystal elements, and liquid crystal display elements of vertical alignment type and horizontal alignment type (IPS).

It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-014965 filed on January 25, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (15)

  1.  下記の式[1]で表されるジアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、X1は-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは窒素含有芳香族複素環であり、nは1から4の整数である)。
    A diamine compound represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (Wherein [1], X 1 is -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - CH 2 O-, and at least one selected from the group consisting of -OCO- A divalent organic group, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a non-aromatic cyclic carbonization hydrogen radicals, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 at least one divalent organic group selected from the group consisting of 2 CO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5); Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X 4 is a nitrogen-containing aromatic heterocyclic ring. , N is an integer from 1 to 4).
  2.  式[1]のジアミン化合物が、下記の式[1a]から式[1f]で表される化合物からなる群より選ばれる少なくとも1種である請求項1に記載のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Qは水素原子又は炭素数1から3のアルキル基であり、Xは単結合、又は炭素数1から20の脂肪族炭化水素基、非芳香族環式炭化水素基、及び芳香族炭化水素基からなる群より選ばれる少なくとも1種の2価の有機基であり、Xは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種の2価の有機基であり、Qは水素原子又は炭素数1から3のアルキル基であり、Xは窒素含有芳香族複素環であり、nは1から4の整数である)。
    The diamine compound according to claim 1, wherein the diamine compound of the formula [1] is at least one selected from the group consisting of compounds represented by the following formulas [1a] to [1f].
    Figure JPOXMLDOC01-appb-C000002
    (Wherein Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group, and at least one divalent organic group selected from the group consisting of an aromatic hydrocarbon group, X 3 is a single bond or -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO-, And at least one divalent organic group selected from the group consisting of —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5), and Q 2 is hydrogen An atom or an alkyl group having 1 to 3 carbon atoms, X 4 is a nitrogen-containing aromatic heterocyclic ring, and n is an integer of 1 to 4).
  3.  式[1a]から式[1f]中のXが単結合、炭素数1から3の直鎖アルキレン基、又はベンゼン環である請求項2に記載のジアミン化合物。 The diamine compound according to claim 2, wherein X 2 in the formulas [1a] to [1f] is a single bond, a linear alkylene group having 1 to 3 carbon atoms, or a benzene ring.
  4.  式[1a]から式[1f]中のXが単結合、-OCO-、又は-OCH-である請求項2又は請求項3に記載のジアミン化合物。 The diamine compound according to claim 2 or 3, wherein X 3 in the formulas [1a] to [1f] is a single bond, —OCO—, or —OCH 2 —.
  5.  式[1a]から式[1f]中のXが、イミダゾール環、ピリジン環、又はピリミジン環である請求項2から請求項4のいずれかに記載のジアミン化合物。 The diamine compound according to any one of claims 2 to 4 , wherein X 4 in the formulas [1a] to [1f] is an imidazole ring, a pyridine ring, or a pyrimidine ring.
  6.  式[1a]から式[1f]中のnが1又は2の整数である請求項2から請求項5のいずれかに記載のジアミン化合物。 The diamine compound according to any one of claims 2 to 5, wherein n in the formulas [1a] to [1f] is an integer of 1 or 2.
  7.  式[1a]から式[1f]中のXが-O-、-NH-、-CONH-、-NHCO-、-CON(CH)-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種であり、Xが炭素数1から10の直鎖又は分岐アルキレン基、シクロへキサン環、ベンゼン環、及びナフタレン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONH-、-NHCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、及びベンゾイミダゾール環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である請求項1又は2に記載のジアミン化合物。 X 1 in formula [1a] to formula [1f] consists of —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, —CH 2 O—, and —OCO—. X 2 is at least one selected from the group consisting of a linear or branched alkylene group having 1 to 10 carbon atoms, a cyclohexane ring, a benzene ring, and a naphthalene ring, 3 is selected from the group consisting of a single bond, —O—, —CONH—, —NHCO—, —COO—, —OCO—, and —O (CH 2 ) m — (m is an integer of 1 to 5). is at least one, X 4 is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, a benzimidazole ring, and a benzimidazole ring At least one selected from Ranaru group, the diamine compound according to claim 1 or 2 n is an integer of 1 or 2.
  8.  式[1]中のXが-O-、-NH-、-CONH-、-NHCO-、-CON(CH)-、及び-CHO-からなる群より選ばれる少なくとも1種であり、Xが単結合、炭素数1から5の直鎖又は分岐アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-O-、-CONH-、-NHCO-、-COO-、-OCO-、及び-O(CH-(mは1から5の整数である)からなる群より選ばれる少なくとも1種であり、Xがピロール環、イミダゾール環、ピラゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である請求項1又は2に記載のジアミン化合物。 X 1 in the formula [1] is at least one selected from the group consisting of —O—, —NH—, —CONH—, —NHCO—, —CON (CH 3 ) —, and —CH 2 O—. , X 2 is at least one selected from the group consisting of a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, and a benzene ring, and X 3 is a single bond, —O—, —CONH—, — At least one selected from the group consisting of NHCO-, -COO-, -OCO-, and -O (CH 2 ) m- (m is an integer of 1 to 5), and X 4 is a pyrrole ring, imidazole The diamine compound according to claim 1 or 2, wherein at least one selected from the group consisting of a ring, a pyrazole ring, a pyridine ring, and a pyrimidine ring, and n is an integer of 1 or 2.
  9.  式[1]中のXが-O-、-NH-、-CONH-、-NHCO-、及び-CON(CH)-からなる群より選ばれる少なくとも1種であり、Xが単結合、炭素数1から3の直鎖アルキレン基、及びベンゼン環からなる群より選ばれる少なくとも1種であり、Xが単結合、-OCO-、及び-OCH-からなる群より選ばれる少なくとも1種であり、Xがイミダゾール環、ピリジン環、及びピリミジン環からなる群より選ばれる少なくとも1種であり、nが1又は2の整数である請求項1又は2に記載のジアミン化合物。 X 1 in the formula [1] is at least one selected from the group consisting of —O—, —NH—, —CONH—, —NHCO—, and —CON (CH 3 ) —, and X 2 is a single bond , straight-chain alkylene group having 1 to 3 carbon atoms, and at least one selected from the group consisting of benzene ring, X 3 is a single bond, -OCO-, and -OCH 2 - at least one selected from the group consisting of a species, X 4 is an imidazole ring, at least one selected from the group consisting of pyridine ring, and a pyrimidine ring, a diamine compound according to claim 1 or 2 n is an integer of 1 or 2.
  10.  請求項1から請求項9のいずれかに記載のジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸、又は該ポリアミド酸を脱水閉環させて得られるポリイミド。 A polyamic acid obtained by reacting the diamine component containing the diamine compound according to any one of claims 1 to 9 with tetracarboxylic dianhydride, or a polyimide obtained by dehydrating and ring-closing the polyamic acid.
  11.  式[1]で表されるジアミン化合物がジアミン成分中の1から80モル%である請求項10に記載のポリアミド酸又はポリイミド。 The polyamic acid or polyimide according to claim 10, wherein the diamine compound represented by the formula [1] is 1 to 80 mol% in the diamine component.
  12.  請求項10又は請求項11に記載のポリアミド酸及びポリイミドの内の少なくともいずれか一方と、溶媒とを含有する液晶配向処理剤。 A liquid crystal aligning agent containing at least one of the polyamic acid and the polyimide according to claim 10 and a solvent, and a solvent.
  13.  液晶配向処理剤中に含まれる溶媒中の5から80質量%が貧溶媒である請求項12に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 12, wherein 5 to 80% by mass of the solvent contained in the liquid crystal aligning agent is a poor solvent.
  14.  請求項12又は請求項13に記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to claim 12 or 13.
  15.  請求項14に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 14.
PCT/JP2009/051107 2008-01-25 2009-01-23 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same WO2009093704A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009550579A JP5663876B2 (en) 2008-01-25 2009-01-23 Liquid crystal aligning agent and liquid crystal display element using the same
KR1020107015818A KR101737122B1 (en) 2008-01-25 2009-01-23 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same
KR1020177001198A KR101738330B1 (en) 2008-01-25 2009-01-23 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same
CN200980103189.4A CN101925634B (en) 2008-01-25 2009-01-23 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008014965 2008-01-25
JP2008-014965 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093704A1 true WO2009093704A1 (en) 2009-07-30

Family

ID=40901207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051107 WO2009093704A1 (en) 2008-01-25 2009-01-23 Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same

Country Status (5)

Country Link
JP (1) JP5663876B2 (en)
KR (2) KR101738330B1 (en)
CN (1) CN101925634B (en)
TW (1) TWI490207B (en)
WO (1) WO2009093704A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042694A (en) * 2010-08-19 2012-03-01 Jnc Corp Diamine, liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN103571500A (en) * 2012-07-18 2014-02-12 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2014189128A1 (en) * 2013-05-23 2014-11-27 日産化学工業株式会社 Treatment agent for liquid crystal orientation, liquid crystal orientation film, and liquid crystal display device
JP5729299B2 (en) * 2009-07-21 2015-06-03 日産化学工業株式会社 Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
KR101829939B1 (en) * 2010-06-10 2018-02-19 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
TWI616429B (en) * 2010-02-26 2018-03-01 Nissan Chemical Ind Ltd Diamine compound, liquid crystal alignment agent and liquid crystal display element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346338A (en) * 2011-10-20 2012-02-08 深圳市华星光电技术有限公司 Liquid crystal panel and alignment film thereof
JP6206187B2 (en) * 2011-11-29 2017-10-04 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
JPWO2014092170A1 (en) * 2012-12-13 2017-01-12 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6361168B2 (en) * 2013-06-17 2018-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for producing liquid crystal display element, polymer and compound
TWI527844B (en) * 2014-06-06 2016-04-01 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
TWI534203B (en) 2014-07-24 2016-05-21 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
TWI687457B (en) * 2016-08-24 2020-03-11 奇美實業股份有限公司 Liquid crystal alignment agent and use thereof
JPWO2022107640A1 (en) * 2020-11-17 2022-05-27
CN114958393B (en) * 2022-06-16 2023-09-05 长沙道尔顿电子材料有限公司 Polyamic acid liquid crystal orientation agent with nitrogen-containing aromatic ring structure, liquid crystal orientation film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239725A (en) * 1990-02-16 1991-10-25 Japan Carlit Co Ltd:The New polyimide
JPH0812759A (en) * 1994-04-28 1996-01-16 Nissan Chem Ind Ltd New diaminobenzene derivative and polyimide made therefrom
JPH10104633A (en) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JPH11149099A (en) * 1997-09-11 1999-06-02 Sagami Chem Res Center Compound having pyridyl group, betaine compound, polymer and high molecular nonlinear optical material
WO2000006543A1 (en) * 1998-07-29 2000-02-10 Chisso Corporation Novel diamino compounds, polyamic acid, polyimide, liquid-crystal alignment film made from film of the polyimide, and liquid-crystal display element containing the alignment film
JP2005002346A (en) * 2003-12-25 2005-01-06 Tetsuya Nishio Diamino compound, vinyl compound, polymer compound, alignment film, organic semiconductor device using the alignment film, conductive polymer, electroluminescent element using the conductive polymer, liquid crystal alignment film, and optical element using the liquid crystal alignment film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW290558B (en) * 1994-04-28 1996-11-11 Nissan Chemical Ind Ltd
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
TWI291065B (en) * 2000-12-26 2007-12-11 Nissan Chemical Ind Ltd Diamines, polyimide precursors and polyimides produced by using the diamines, and liquid crystal aligning agents

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239725A (en) * 1990-02-16 1991-10-25 Japan Carlit Co Ltd:The New polyimide
JPH0812759A (en) * 1994-04-28 1996-01-16 Nissan Chem Ind Ltd New diaminobenzene derivative and polyimide made therefrom
JPH10104633A (en) * 1996-10-02 1998-04-24 Japan Synthetic Rubber Co Ltd Liquid crystal alignment agent
JPH11149099A (en) * 1997-09-11 1999-06-02 Sagami Chem Res Center Compound having pyridyl group, betaine compound, polymer and high molecular nonlinear optical material
WO2000006543A1 (en) * 1998-07-29 2000-02-10 Chisso Corporation Novel diamino compounds, polyamic acid, polyimide, liquid-crystal alignment film made from film of the polyimide, and liquid-crystal display element containing the alignment film
JP2005002346A (en) * 2003-12-25 2005-01-06 Tetsuya Nishio Diamino compound, vinyl compound, polymer compound, alignment film, organic semiconductor device using the alignment film, conductive polymer, electroluminescent element using the conductive polymer, liquid crystal alignment film, and optical element using the liquid crystal alignment film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729299B2 (en) * 2009-07-21 2015-06-03 日産化学工業株式会社 Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
TWI616429B (en) * 2010-02-26 2018-03-01 Nissan Chemical Ind Ltd Diamine compound, liquid crystal alignment agent and liquid crystal display element
KR101829939B1 (en) * 2010-06-10 2018-02-19 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP2012042694A (en) * 2010-08-19 2012-03-01 Jnc Corp Diamine, liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
WO2013108854A1 (en) * 2012-01-18 2013-07-25 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013108854A1 (en) * 2012-01-18 2015-05-11 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101947855B1 (en) 2012-01-18 2019-02-13 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN103571500A (en) * 2012-07-18 2014-02-12 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN103571500B (en) * 2012-07-18 2015-12-23 奇美实业股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2014189128A1 (en) * 2013-05-23 2014-11-27 日産化学工業株式会社 Treatment agent for liquid crystal orientation, liquid crystal orientation film, and liquid crystal display device
JPWO2014189128A1 (en) * 2013-05-23 2017-02-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN105408812B (en) * 2013-05-23 2018-12-28 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Also Published As

Publication number Publication date
KR101738330B1 (en) 2017-05-19
KR101737122B1 (en) 2017-05-17
CN101925634B (en) 2013-01-02
JP5663876B2 (en) 2015-02-04
CN101925634A (en) 2010-12-22
KR20100103606A (en) 2010-09-27
JPWO2009093704A1 (en) 2011-05-26
TWI490207B (en) 2015-07-01
TW200940506A (en) 2009-10-01
KR20170010899A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5240207B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5663876B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP5729299B2 (en) Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP5177150B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5382372B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6146577B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2009093711A1 (en) Liquid crystal aligning agent and liquid crystal display element
WO2013146890A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6569872B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP5614412B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2011105576A1 (en) Diamine compound, liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103189.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550579

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107015818

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704719

Country of ref document: EP

Kind code of ref document: A1