WO2009093458A1 - 微粒子測定装置および微粒子測定方法 - Google Patents

微粒子測定装置および微粒子測定方法 Download PDF

Info

Publication number
WO2009093458A1
WO2009093458A1 PCT/JP2009/000239 JP2009000239W WO2009093458A1 WO 2009093458 A1 WO2009093458 A1 WO 2009093458A1 JP 2009000239 W JP2009000239 W JP 2009000239W WO 2009093458 A1 WO2009093458 A1 WO 2009093458A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measurement
fine particle
cell
sample liquid
Prior art date
Application number
PCT/JP2009/000239
Other languages
English (en)
French (fr)
Inventor
Ryo Hamada
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2009550475A priority Critical patent/JPWO2009093458A1/ja
Publication of WO2009093458A1 publication Critical patent/WO2009093458A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating of parameters, e.g. efficiency

Definitions

  • the present invention relates to a fine particle measuring apparatus and a fine particle measuring method for measuring the number of fine particles in a sample solution using dielectrophoresis.
  • microbiological examination can be performed on the spot to prevent or prevent food poisoning or infectious diseases.
  • biosensors In addition, in so-called biosensors, the number of fine particles in a sample when quantitatively measuring a biochemical substance in a sample using an artificial fine particle such as polystyrene labeled with a substance that specifically binds to an object such as an antibody. Alternatively, it is necessary to quantitatively measure the binding state. Thus, nowadays, there is a high demand for quickly, simply and quantitatively measuring fine particles contained in a liquid.
  • microparticles referred to in this application are polystyrene, particles coated with them, metal particles such as carbon nanotubes and gold colloid, bacteria, fungi, actinomycetes, rickettsia, mycoplasma, viruses, so-called microorganisms, protozoa It is a living organism or a fine particle derived from living organisms in a broad sense, including small animals and protozoa, larvae of organisms, animal and plant cells, sperm, blood cells, nucleic acids, proteins and the like.
  • the fine particles referred to in the present application mean all particles having a size capable of dielectrophoresis. In this application, in particular, measurement of microorganisms is assumed.
  • Dielectric migration phenomenon is used as one method of electrically manipulating dielectric fine particles suspended in a liquid. Although the principle of the dielectrophoresis phenomenon will be described later, by applying an unequal electric field to the dielectric fine particles suspended in the liquid, the fine particles can be selected / separated and the dielectric characteristics can be investigated.
  • Patent Document 1 relates to an apparatus that sorts and collects specific fine particles from a liquid in which a plurality of types of fine particles are mixed, and uses a difference in dielectrophoretic force caused by a difference in the size and dielectric characteristics of the fine particles.
  • a technique for inducing dielectrophoretic force only on specific fine particles and recovering from the flow is disclosed.
  • Patent Document 2 discloses a technique for identifying the type of microorganism contained in a liquid by utilizing the fact that the frequency spectrum of dielectrophoretic force acting on different microorganisms differs from the difference in physical properties.
  • the present inventor together with the other inventors, conducted dielectrophoresis and impedance measurement as a microbial count measuring apparatus and method for rapidly, simply and sensitively measuring the concentration of microorganisms contained in a liquid using dielectrophoresis.
  • a combined DEPIM (Dielectrophoretic-Impedance-Measurement-Method) method was proposed (see, for example, Patent Document 3).
  • the DEPIM method is a method of quantitatively measuring the number of microorganisms in a sample solution by collecting microorganisms suspended in a liquid on a microelectrode by dielectrophoretic force and simultaneously measuring the impedance change of the microelectrode.
  • the measurement principle will be outlined below.
  • a microorganism generally has a structure in which a cytoplasm and a cell wall having a high dielectric constant and conductivity are ion-rich and surrounded by a cell membrane having a relatively low dielectric constant and conductivity, and can be regarded as dielectric particles.
  • a dielectrophoretic force that is a force acting in a certain direction on dielectric particles polarized in an electric field is used to collect microorganisms that are dielectric particles between gaps of microelectrodes.
  • Equation 1 the dielectrophoretic force F DEP acting on the dielectric particles is given by the following ( Equation 1) (for example, see Non-Patent Document 1).
  • Equation 1 the dielectrophoretic force F DEP acting on the dielectric particles is given by the following ( Equation 1) (for example, see Non-Patent Document 1).
  • Equation 1 the dielectrophoretic force F DEP acting on the dielectric particles is given by the following ( Equation 1) (for example, see Non-Patent Document 1).
  • a radius of microorganism when approximated by a sphere
  • ⁇ 0 dielectric constant of vacuum
  • ⁇ m relative permittivity of sample liquid
  • E electric field strength
  • represents a gradient by an operator .
  • ⁇ E 2 is the gradient of the electric field E 2 , and means how much E 2 has an inclination at that position, that is, how suddenly the electric field E changes spatially.
  • K is called Clausius-Mosotti number and is expressed by (Expression 2).
  • Re [K]> 0 indicates positive dielectrophoresis, and microorganisms are in the same direction as the electric field gradient, that is, toward the electric field concentration part. Electrophoresed.
  • Re [K] ⁇ 0 represents negative dielectrophoresis and migrates away from the electrolytic concentration part, that is, toward the weak electric field part.
  • ⁇ b * and ⁇ m * represent the complex permittivity of the microorganism and the solution, respectively, and generally the complex permittivity ⁇ r * is expressed by (Equation 3).
  • ⁇ r represents the relative dielectric constant of the microorganism or sample solution
  • represents the conductivity of the microorganism or sample solution
  • represents the angular frequency of the applied electric field
  • the DEPIM method it is necessary to appropriately select these parameters, sufficiently increase the dielectrophoretic force acting on the microorganism, and reliably collect the microorganism in the electrode gap.
  • the DEPIM method is characterized in that the number of microorganisms in a sample solution is quantitatively measured by performing electrical measurement simultaneously with the collection of microorganisms on the electrode by dielectrophoresis.
  • microorganisms have the structure described above, they can be considered as fine particles having an inherent impedance electrically. Therefore, when the number of microorganisms collected between the gaps of the microelectrodes by dielectrophoresis increases, the impedance between the electrodes changes according to the number of collections.
  • the slope of the inter-electrode impedance time change becomes a value corresponding to the number of microorganisms collected between the electrode gaps per unit time, and the magnitude of the slope corresponds to the microorganism concentration in the sample solution. Therefore, it is possible to measure the microorganism concentration in the sample solution, in other words, the number of microorganisms, by measuring the slope of the interelectrode impedance time change.
  • the DEPIM method realizes microorganism measurement in a short time by quantifying the number of microorganisms from the slope of the change in impedance time immediately after the start of dielectrophoresis.
  • the measurement principle of the DEPIM method has been outlined above. For details, refer to Non-Patent Document 2.
  • the environment in which the measuring device is used varies, and the particle measuring device is no exception.
  • the environmental temperature room temperature is a factor that varies greatly depending on the presence or absence of air conditioning and the like, and there is a possibility that it will vary in the range of about 0 to 40 ° C.
  • the viscosity of a liquid changes with temperature, and the dielectrophoretic force and viscosity acting on the fine particles change by changing the viscosity of the liquid in which the fine particles are suspended (hereinafter referred to as a sample liquid). Since the balance of force changes, there is a problem that the measurement result varies depending on the environmental temperature, and the accuracy of the fine particle measurement result decreases. In addition, it is generally known that the relative permittivity and conductivity of a substance change depending on temperature, and the dielectrophoretic force changes due to this temperature change, and similarly there is a problem that the accuracy of the particle measurement result is lowered.
  • Patent Documents 1 to 3 do not disclose or suggest means for solving these problems.
  • the object of the present invention has been made in view of the above circumstances, and the measurement result does not vary depending on the environmental temperature at which the particle measuring device is installed or the temperature of the sample solution, and the measurement can be performed with sufficient and sufficient accuracy.
  • An object is to provide a fine particle measuring apparatus and a fine particle measuring method.
  • the present inventors have found that when the fine particles are subjected to dielectrophoresis, a quantitative change of the fine particles trapped on the electrode occurs with a change in temperature of the solution. That is, as the solution temperature changes as the solution temperature changes, the dielectrophoretic force and the viscous force generated in the fine particles relatively change, and as a result, the amount of fine particles trapped on the electrode changes. Alternatively, as the solution temperature changes, the complex permittivity of the solution and fine particles changes, so that the dielectrophoretic force acting on the fine particles changes, and the amount of fine particles trapped on the electrode changes. As the amount of particulate trapped changes, so does the measured response. It became clear that the concentration of fine particles contained in the solution can be accurately estimated by quantifying the relationship between the solution temperature and the trap amount. The present invention has been achieved based on such findings.
  • the particle measuring apparatus includes a cell for introducing a sample solution containing particles, at least a pair of electrodes provided at positions immersed in the sample solution inside the cell, and an alternating electric field between the electrodes.
  • An electrophoretic power supply for applying a voltage for generating, a measuring unit for measuring an electromagnetic change caused by fine particles moved by the dielectrophoretic force induced by the AC electric field, a temperature detecting means for detecting temperature, and the measurement
  • a control calculation unit that performs a correction process on the result measured by the temperature detection unit based on the result detected by the temperature detection unit and measures the fine particles in the sample liquid.
  • the temperature detection means is provided at a position immersed in the sample liquid inside the cell, and the control calculation unit is configured to perform the measurement by the measurement unit. Correction processing is performed based on the temperature of the sample liquid detected by the temperature detection means, and the fine particles in the sample liquid are measured.
  • the temperature detecting means is provided at a position where the temperature detecting means is immersed in the sample liquid on the substrate on which the electrode is formed, and the control calculation unit is measured by the measuring unit. The result is corrected based on the temperature of the sample solution measured by the temperature detecting means, and the fine particles in the sample solution are measured.
  • the electrode for performing the dielectrophoresis and the temperature detecting means for performing the temperature measurement can coexist on the electrode chip, the number of connectors for performing the wiring can be reduced to one. With the structure, it is possible to realize a particle measuring apparatus capable of presenting accurate results even under different temperature conditions.
  • the temperature detecting means is provided at a position in contact with the outer wall surface of the cell, and the temperature calculating means Correction processing is performed based on the measured temperature of the cell, and fine particles in the sample liquid are measured.
  • the temperature detection means since the temperature detection means does not directly contact the sample solution, corrosion and deterioration can be prevented, and even if the measurement target is a microorganism and the cell is disposable in consideration of contamination, temperature detection is possible. Since the contamination of the means can be prevented and the temperature detecting means can be used repeatedly, it is possible to realize a particle measuring apparatus capable of presenting accurate results even under different temperature conditions while suppressing the cost of one measurement. .
  • the fine particle measurement apparatus further includes a terminal on a part of the wall surface of the cell, the terminal is electrically connected to the electrode inside the cell, and the electrophoresis power supply unit and the outside of the cell It is electrically connected to a measurement unit, and the terminal is in contact with the sample solution inside the cell, and is in contact with the temperature detection means outside the cell.
  • the terminal for electrically connecting the electrode and the terminal for detecting the temperature of the sample liquid are shared, the cell structure of the particle measuring apparatus capable of presenting an accurate result even under different temperature conditions Can be simplified.
  • the terminal has low electrical resistance and high thermal conductivity.
  • the temperature of the sample liquid inside the cell can be detected more accurately using the temperature detection means provided outside the cell, thus realizing a particle measuring device that can present more accurate results even under different temperature conditions. can do.
  • the temperature detection means estimates the temperature of the sample liquid from the result measured by the measurement unit when a temperature measurement voltage is applied between the electrodes. It is to detect.
  • the electrode for performing dielectrophoresis can be realized with a configuration that also serves as a temperature detecting means, the configuration of the device is simplified, and a particle measuring device capable of presenting accurate results even under different temperature conditions is realized. Can do.
  • control calculation unit determines the amplitude or frequency of the AC voltage applied between the electrodes based on the temperature measured by the temperature detecting means.
  • control calculation unit corrects the result measured by the measurement unit based on the temperature detection result by the temperature detection unit when the measurement unit performs the measurement. Processing is performed to measure fine particles in the sample solution.
  • the fine particle measurement apparatus further includes at least one temperature detection electrode as a temperature detection means at a position immersed in the sample solution inside the cell, and the temperature detection electrode is connected to the measurement unit.
  • the measurement unit measures the impedance of the temperature detection electrode
  • the control calculation unit measures the temperature of the sample solution from the impedance of the temperature detection electrode.
  • a fine particle measuring apparatus capable of realizing real-time temperature measurement can be realized.
  • the fine particle measurement method measures an electromagnetic change caused by the fine particles moved by a dielectrophoretic force induced by an alternating electric field generated between a pair of electrodes immersed in a sample solution containing fine particles. And a correction method based on the temperature detected in the temperature detection step with respect to the measurement result of the electromagnetic change. And a correction processing step for performing processing.
  • the temperature detection step detects the temperature of the sample solution
  • the correction processing step detects the electromagnetic change measurement result in the temperature detection step. Correction processing based on the temperature of the sample liquid is performed.
  • the temperature detection step detects the temperature of the sample solution on an electrode substrate that performs dielectrophoresis.
  • the electrode for performing the dielectrophoresis and the temperature detecting means for performing the temperature measurement can coexist on the electrode chip, the number of connectors for performing the wiring can be reduced to one. With the structure, it is possible to realize a particle measuring method capable of presenting accurate results even under different temperature conditions.
  • the temperature detection step detects a temperature of the cell in which the sample liquid is stored, and the correction processing step is performed on the measurement result of the electromagnetic change. Correction processing based on the temperature of the cell detected in the temperature detection step is performed.
  • the temperature detection means can detect the temperature of the sample liquid without directly contacting the sample liquid, so that corrosion and deterioration can be prevented, the measurement target is a microorganism, and the cell is made disposable in consideration of contamination. Even so, the temperature detection means can be prevented from being contaminated, and the temperature detection means can be used repeatedly, so that particle measurement that can present accurate results even under different temperature conditions while suppressing the cost of one measurement. A method can be realized.
  • the temperature detection step detects a temperature of a terminal provided on a part of the wall surface of the cell in which the sample liquid is stored
  • the correction processing step includes the electromagnetic A correction process based on the temperature of the terminal detected in the temperature detection step is performed on the measurement result of the change.
  • the temperature detection step estimates the sample liquid temperature from the step of applying a voltage for temperature measurement between the electrodes and the result of measuring the impedance between the electrodes.
  • the electrode for performing dielectrophoresis can be realized with a configuration also serving as a temperature detection means, a particle measuring method capable of presenting an accurate result even under different temperature conditions can be realized with a simple apparatus.
  • the amplitude or frequency of the voltage for dielectrophoresis applied between the electrodes is determined based on the temperature measured in the temperature detection step.
  • the fine particle measurement method includes a step of measuring the electromagnetic change at the time when the temperature detection step is performed, and the correction processing step includes the measurement result of the electromagnetic change.
  • correction processing based on the temperature detected at the time of the measurement is performed.
  • the fine particle measuring apparatus and the fine particle measuring method according to the present invention even when the balance of the dielectrophoretic force acting on the fine particles and all other forces changes due to temperature fluctuations, the influence can be canceled by the correction. It is possible to present correct measurement results even at various environmental temperatures.
  • FIG. 1 is a schematic configuration diagram for explaining a particle measuring apparatus according to an embodiment of the present invention. Schematic for demonstrating the electrode tip of the particulate measuring device concerning the embodiment of the present invention. The figure which shows the electric force line 15 produced by the voltage applied between measurement electrode 11a, 11b in embodiment of this invention. Flow chart for explaining the fine particle measurement method according to the present embodiment.
  • FIG. 1 Another schematic view of the temperature detecting means according to the second embodiment of the present invention
  • Schematic of the electrode chip concerning the 3rd Embodiment of this invention 1st schematic of the cell and temperature detection means concerning the 4th Embodiment of this invention
  • Schematic of a cell and temperature detection means according to a fifth embodiment of the present invention Schematic configuration for explaining a particle measuring apparatus according to a sixth embodiment of the present invention A graph in which the impedance change between the electrodes 11a and 11b on the electrode chip 3 with respect to the temperature of the sample solution 2 is normalized and plotted with the value when the temperature of the sample solution 2 is 25 ° C.
  • FIG. 7 Flowchart for explaining a fine particle measurement method according to a seventh embodiment of the present invention.
  • the graph showing the environmental temperature and capacitance inclination concerning Example 1 of this invention The graph showing the environmental temperature and correction coefficient concerning Example 1 of this invention Graph showing capacitance gradient before correction for each environmental temperature according to Example 2 of the present invention
  • amendment for every environmental temperature concerning Example 2 of this invention 1 is a configuration diagram for explaining an optical measuring unit according to a first embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a particle measuring apparatus according to the present embodiment
  • FIG. 2 is a schematic diagram illustrating an electrode chip of the particle measuring apparatus according to the present embodiment.
  • 1 is a cell for holding a sample solution 2 containing fine particles to be measured
  • 3 is an electrode chip including an electrode pair for collecting fine particles by dielectrophoresis
  • 4 is an electrophoretic power supply unit
  • 5 is an impedance between electrodes.
  • a measurement unit for measurement 6 is a control calculation unit for performing calculations such as control of the whole particle measuring apparatus and impedance calculation
  • 7 is a stirring unit for stirring the solution
  • 8 is a temperature detection unit for detecting the temperature.
  • 10 is a substrate, and 11a and 11b are electrodes formed on the substrate 10 to form a pair of electrodes.
  • a pattern of electrodes 11a and 11b is formed on the substrate 10 by a conductive material such as metal.
  • the electrodes 11a and 11b are desirably thin films that are sufficiently thin with respect to their widths.
  • the thickness is about 1000 mm with respect to a width of 100 ⁇ m.
  • FIG. 3 shows the electric lines of force 15 generated by the voltage applied between the measuring electrodes 11a and 11b.
  • the configuration near the gap 13 corresponds to the electric field concentration portion. Therefore, the fine particles are most strongly migrated to the gap 13 portion.
  • the substrate 10 is separated from the cell 1, but the substrate 10 may be integrated as a part of the wall surface of the cell 1.
  • planar pattern of the electrodes 11a and 11b is patterned in such a shape that fine particles are collected by dielectrophoresis between the gaps 13 and an impedance change due to the collected fine particles can be efficiently measured.
  • a so-called comb-tooth shape in which opposed portions of the electrodes 11a and 11b are nested is one of the most preferable shapes.
  • the distance between the gaps 13 is desirably narrowed to about 1 to 100 ⁇ m, for example.
  • the facing portion can be made substantially longer, and the electrode pattern can be integrated in a minute region, so that the electrode chip 3 can be downsized. There is a merit that can be done.
  • the above is an example when designing the electrode.
  • the distance between the gaps 13, the length of the opposing portion, the thickness of the electrode and the pattern are adjusted according to the voltage applied between the electrodes 11a and 11b and the size of the fine particles. It is desirable to select the optimal combination.
  • the electrode chip 3 is obtained by forming a platinum thin film on a borosilicate glass substrate 10 by sputtering or vapor deposition and then forming a pattern of electrodes 11a and 11b by general photolithography.
  • glass is used for the substrate 10, but any insulating material can be used.
  • a plastic material such as PET or polycarbonate, or a substrate material such as ceramic is used. It does not prevent.
  • any thin film material can be used as long as it is a conductive material, and a conductive paste containing metal particles such as gold, silver and silver, carbon and the like can also be selected.
  • the patterning of the electrodes 11a and 11b can be selected other than photolithography as long as a desired pattern can be formed with a selected material, and is most appropriate in consideration of productivity and cost such as laser processing, screen printing, and ink jet printing. Various processing methods can be selected.
  • the electrode chip 3 is immersed in the cell 1 holding the sample solution 2 containing fine particles, and is electrically connected to the electrophoresis power supply unit 4 and the measurement unit 5.
  • the cell 1 can be provided with stirring means 7 such as a magnetic stirrer.
  • the concentration of fine particles in the sample liquid 2 can be made uniform, and many fine particles can be introduced between the gaps 13 of the electrodes 11a and 11b. Fine particles can be collected between the gaps 13 more efficiently, and the measurement time can be shortened and the measurement sensitivity can be improved.
  • the stirring means 7 can be realized as a closed channel having a circulation channel including the micro chamber. is there.
  • a peristaltic pump or the like By circulating the sample liquid on the electrode chip 3 in the micro chamber by a peristaltic pump or the like, it is possible to obtain the same effect as the stirring by the magnetic stirrer.
  • the electrophoresis power supply unit 4 applies an AC voltage for performing dielectrophoresis between the electrodes 11a and 11b.
  • the fine particles are dielectrophoresed by the unequal electric field induced between the electrodes 11a and 11b, and collected in the gap 13 between the electrodes 11a and 11b including the electrode edge which is the electric field concentration portion.
  • the AC voltage is a voltage that changes the direction of the flow at a substantially constant cycle in addition to a sine wave, and the average values of the currents in both directions are substantially equal.
  • the measurement unit 5 performs measurements necessary for calculating the impedance between the electrodes 11a and 11b.
  • the measurement unit 5 includes a circuit for measuring a current value flowing between the electrodes 11a and 11b and a phase difference between the voltage and current applied by the migration power supply unit 4.
  • the measuring unit 5 measures changes in the current and the phase difference between the electrodes 11a and 11b caused by the movement of the fine particles by dielectrophoresis and concentration in the gap 13 in the vicinity of the electric field concentration portion.
  • the current value and phase difference measured by the measurement unit 5 are passed to the control calculation unit 6.
  • the control calculation unit 6 includes a microprocessor (not shown), a memory for storing a preset program and data table, a timer, and the like, and controls the electrophoresis power supply unit 4 according to the program and data table.
  • the electrophoretic power supply unit 4 applies an alternating voltage having a specific frequency and voltage between the electrodes 11a and 11b according to the control of the control calculation unit 6.
  • control calculation unit 6 transmits / receives a signal to / from the measurement unit 5 and receives the current value and phase difference data measured by the measurement unit 5.
  • the control calculation unit 6 calculates the impedance between the electrodes 11a and 11b from the voltage, current, phase difference, and frequency data, and sequentially stores the result in the memory.
  • the control calculation unit 6 performs these series of measurement operations at regular time intervals according to a preset program. When a predetermined time elapses, the control calculation unit 6 controls the electrophoretic power supply unit 4 to connect the electrodes 11a and 11b. The voltage application is stopped and the measurement operation is terminated.
  • control calculation unit 6 calculates the slope of the impedance time change from the impedance measurement result stored in the memory.
  • calibration curve data is stored for each given voltage, frequency, particle type, and the like.
  • the control calculation unit 6 calculates the concentration of fine particles contained in the sample solution by comparing the calculated slope of the impedance time change with the calibration curve, and stores the result in the memory or displays the result on the display means 9 such as an LCD. And so on.
  • the measurement result is represented by the fine particle concentration.
  • the result may be converted into the number of fine particles and displayed.
  • the user can directly know the measured number of fine particles as the number of fine particles per 1 ml of the sample, but the display means 9 displays the result by other display methods depending on the purpose, for example, whether it is large or small. May be performed.
  • the temperature detection means 8 measures the environmental temperature, which is the original data for compensating for the difference in measurement results due to temperature. Any element can be used as the element for measuring the temperature as long as the temperature can be measured with a necessary accuracy within a necessary temperature range (about 0 to 50 ° C.).
  • an NTC thermistor is used.
  • An NTC thermistor is a kind of resistance element whose resistance value decreases with increasing temperature.
  • the control arithmetic unit 6 has a circuit for measuring the resistance value of the thermistor, and a table for converting the resistance value and temperature in the memory. That is, the control calculation unit 6 measures the environmental temperature via the temperature detection unit 8.
  • the fine particles in the liquid have a force acting other than the dielectrophoretic force.
  • a force acting other than the dielectrophoretic force For example, gravity, viscous force, drag, Brownian motion.
  • the number of fine particles trapped on the electrode is determined by the balance between the dielectrophoretic force and other forces.
  • the viscosity force decreases with increasing temperature due to the temperature dependence of liquid viscosity, and the Brownian motion increases with increasing temperature. Therefore, the number of particles trapped on the electrode varies depending on the temperature change, and the result of particle detection changes.
  • an accurate result can be presented even if the environmental temperature changes by correcting the fine particle measurement result based on the result of the temperature detection means 8 detecting the temperature.
  • a table (hereinafter referred to as a correction table) in which a correction coefficient for temperature is recorded in advance is stored in the memory of the calculation unit 6. Based on the temperature measured by the control calculation unit 6 via the temperature detection means 8, the control calculation unit 6 refers to the correction table to determine the correction coefficient, and the fine particle concentration calculated by the time slope of the impedance change or the calibration curve. Is multiplied by the correction factor and presented as the final measurement result.
  • the correction table can be created by establishing a motion equation including all the forces acting on the fine particles, solving this, and obtaining the number of fine particles trapped on the electrode as a function of temperature. Since the equations of motion are difficult to solve analytically, various simulations can be used. For the numerical analysis of the motion related to dielectrophoresis, see, for example, Phys. D: Appl. Phys. 31 (1998) 3160-3167.
  • the correction coefficient is the reciprocal of the number of particles trapped at each temperature normalized by the number of particles trapped at temperature Tt.
  • the temperature Tt is the temperature when the calibration curve data stored in the memory of the control calculation unit 6 is acquired.
  • Table 1 shows an example of creating a correction table.
  • is a function of temperature T and represents a correction coefficient.
  • the reference temperature is Tt
  • the lowest temperature in the assumed temperature range is Tmin
  • the highest temperature is Tmax.
  • the temperature step for obtaining the correction coefficient is 1 ° C., but this may be a finer or coarser step.
  • the temperature step may be determined according to the required measurement accuracy.
  • the correction coefficient ⁇ may be expressed as a function of the temperature T, and the control calculation unit 6 may perform correction calculation based on this expression.
  • the relationship between the temperature T and the correction coefficient ⁇ is experimentally obtained, a function obtained by fitting a plot of the temperature T and the correction coefficient ⁇ linearly or polynomially can be used as the mathematical formula.
  • FIG. 4 is a flowchart for explaining the fine particle measurement method according to the present embodiment.
  • a sample solution containing fine particles to be measured is introduced into the cell 1 (step S11).
  • control calculation unit 6 measures the environmental temperature via the temperature detection means 8 (step S12). This environmental temperature measurement result is temporarily stored in the memory in the control calculation unit 6 and is referred to later when correction is performed.
  • the control calculation unit 6 compares the measured temperature with a temperature range stored in advance in the memory (hereinafter referred to as a measured temperature range), and whether the measured temperature is outside the measured temperature range, that is, an error, Is determined (step S13).
  • the measurement temperature range may be set to a temperature range in which a normal measurement apparatus is considered to be used. For example, it is set to 0 ° C. to 50 ° C. in consideration of indoor use.
  • step S13: Yes the process proceeds to step S14, an error is displayed indicating that it is outside the measured temperature range, and the process proceeds to step S23 to end the measurement operation.
  • the control calculation unit 6 refers to the correction table, selects a voltage amplitude value and a frequency to be applied to the electrodes, and moves between the electrodes 11a and 11b.
  • the voltage application is started (step S15).
  • the voltage amplitude value and frequency in this case may be selected so that a sufficient dielectrophoretic force acts to trap the fine particles in the gap 13, and is set to 10 Vpp and 100 kHz in the present embodiment.
  • the measuring unit 5 When a predetermined voltage is applied between the electrodes 11a and 11b, the measuring unit 5 immediately measures the impedance between the electrodes 11a and 11b as data in the initial state immediately after the voltage application, and the measurement result is obtained from the control calculation unit 6. And stored as an initial impedance value in the memory (step S16).
  • control calculation unit 6 waits until a predetermined time elapses by a clock means (not shown) (step S17). At this time, the electrophoretic power supply unit 4 keeps voltage application.
  • control calculation unit 6 determines whether the predetermined number of measurements has expired (step S18), and if not, returns to step S16. Returning to step S16, the control calculation unit 6 instructs the measurement unit 5 to measure the impedance between the electrodes 11a and 11b, and stores the result in the memory 6a as a result after a predetermined time has elapsed.
  • step S18 Yes
  • the control calculation unit 6 instructs the electrophoresis power supply unit 4 to stop voltage application (step S19).
  • control calculation unit 6 calculates the slope of the impedance change from the time-dependent data of the impedance between the electrodes 11a and 11b stored in the memory (step S20).
  • the control calculation unit 6 refers to the correction table and multiplies the impedance inclination obtained in step S20 by the correction coefficient corresponding to the temperature measured in step S12. For example, if the temperature measurement result is Tt + 1 (° C.), the correction coefficient is ⁇ (Tt + 1).
  • the fine particle concentration is calculated from a calibration curve stored in advance in the memory (step S21). For this calibration curve, a calibration sample with a clear particle concentration is measured in advance using the measurement system of the particle measuring apparatus described in this embodiment, and the variation is regressed from the correlation between the number of particles and the impedance change at that time. A function representing a curve obtained by analysis is used. When measuring the calibration sample, the temperature is measured under the condition of the temperature Tt that is normalized when obtaining the correction coefficient.
  • the control calculation unit 6 displays the result calculated in step S21 on the display means 9 (step S22), and ends a series of measurement operations.
  • the correction factor ⁇ is multiplied by the impedance gradient to perform the correction.
  • the same correction effect can be obtained by performing the correction after obtaining the fine particle concentration from the calibration curve.
  • the temperature measurement was performed in step S13, the temperature measurement can be performed at any timing up to step S21 referring to the correction table.
  • the measurement unit 5 measures the concentration of the fine particles by measuring the impedance change when the fine particles are trapped on the electrode by dielectrophoresis. Any measuring apparatus and measuring method for measuring the movement to the position by any means are applicable.
  • FIG. 23 is a configuration diagram when the measurement unit 5 is realized by optical measurement.
  • reference numeral 200 denotes a fine particle to be measured, which moves to a predetermined position by an unequal electric field formed by the electrodes 11a and 11b.
  • Reference numeral 201 denotes a light source
  • 202 denotes a light receiving unit that receives light emitted from the light source 201.
  • the optical axes of the light source 201 and the light receiving unit 202 are installed so as to cross the place where the fine particles 200 move by dielectrophoresis.
  • the cell 1 includes a substrate 10, a cover 203, and a spacer 204, and a space formed by these is filled with the sample liquid 2.
  • the cover 203 and the spacer 204 are made of a transparent material such as glass or PET resin so that the light irradiated by the light source 201 can be transmitted and the fine particles subjected to dielectrophoresis can be observed.
  • FIG. 24A shows a state in which the fine particles 200 are trapped between the electrodes 11a and 11b by positive dielectrophoresis
  • FIG. 24B shows a case in which the fine particles 200 are arranged in the gap 13 between the electrodes 11a and 11b by negative dielectrophoresis.
  • the state is shown.
  • the electrodes are arranged in a bead-like shape (hereinafter referred to as a pearl chain) at the electrode edge portion which is an electric field concentration portion.
  • a pearl chain bead-like shape
  • negative dielectrophoresis it is arranged in a pearl chain at the center of the gap 13 which is a weak electric field part.
  • the fine particles 200 trapped in the gap 13 are imaged by an optical system composed of the light source 201 and the light receiving unit 202, and the control calculation unit 6 performs image analysis, and the number of fine particles 200 arranged in the gap 13, Calculate the projected area and the like. This calculation is performed after a predetermined time from the application of the electric field between the electrodes 11a and 11b or every time a predetermined time has elapsed since the application of the electric field. Thus, the number of fine particles in the sample liquid 2, the fine particle concentration, and the degree of bonding between the fine particles are measured.
  • the number of fine particles arranged in the gap 13 by dielectrophoresis or the number of pearl chains formed is naturally determined by the balance between the dielectrophoretic force and the viscous force and other forces, and these forces change with temperature. Correction is required.
  • the method of obtaining the correction coefficient when measuring the concentration of the fine particles by dielectrophoresis and impedance measurement has been shown.
  • a table or function of the correction coefficient is created experimentally according to each measurement means. Therefore, the present invention can be applied to all particle measuring apparatuses and particle measuring methods using dielectrophoresis.
  • Embodiment 2 a particle measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the description of the same configuration as that of Embodiment 1 is omitted.
  • FIG. 5 is a configuration diagram of the particle measuring apparatus of the present embodiment.
  • the change of the force acting on the fine particles in the sample solution 2 depending on the temperature depends directly on the temperature of the sample solution 2. Therefore, the correction can be performed with higher accuracy by performing the correction based on the measurement result of the temperature of the sample liquid 2 than the environmental temperature. Therefore, in the present embodiment, the temperature detecting means 8 is arranged in the sample solution 2 of the cell 1 and can measure the temperature of the sample solution 2.
  • FIG. 6 is a schematic diagram in which a chip-type thermistor 60 is arranged in the cell 1 as the temperature detecting means 8 on the surface of the cell 1 on the sample solution 2 side.
  • the temperature detection means 8 can measure the temperature of the sample liquid 2 as long as it is disposed anywhere in the sample liquid 2. However, if the thermistor 60 is shaken due to the flow of the sample solution 2 or the like, noise may be added to the temperature measurement.
  • the thermistor 60 is fixed to the wall surface of the cell 1.
  • 61 is an electrical connection electrode of the thermistor 60
  • 62 is an electrical wiring provided on the wall surface of the cell 1, and is composed of a copper foil pattern or the like used for general electronic circuit wiring.
  • the part 6 and the thermistor 60 are electrically connected.
  • 63 is a conductor that electrically connects the connection electrode 61 of the thermistor 60 and the wiring 62, and it is desirable to use solder because electrical conduction and fixing of the thermistor 60 can be performed simultaneously.
  • the thermistor 60 may be embedded in the wall surface of the cell 1 on the sample solution 2 side as shown in FIG.
  • the wiring 62 is also embedded in the cell 1 and has a space in the cell 1 that can be electrically connected and mechanically fixed when the thermistor 60 is inserted.
  • the temperature of the sample liquid 2 in the cell 1 can be directly measured, a change in the force acting on the fine particles depending on the solution temperature can be accurately corrected, and the high-precision fine particles A measuring device can be realized.
  • FIG. 8 is a schematic diagram of the electrode tip 3 showing the present embodiment.
  • the temperature detecting means 8 is arranged at a position where the sample liquid 2 is immersed in the sample liquid 2 when the electrode chip 3 is impregnated.
  • a thermistor is used for the temperature detecting means 8 and the fixing and electrical connection are performed in the same manner as in FIG.
  • the temperature detection means 8 and the electrodes 11a and 11b are connected to the pads 80a, 80b, 81a and 81b via the wiring 62.
  • the pads 80a and 80b are responsible for electrical connection of the electrodes 11a and 11b, and the pads 81a and 81b are responsible for electrical connection of the temperature detecting means 8.
  • the pads 80a, 80b, 81a, 81b are designed to match the pitch of the connector terminal into which the electrode chip 3 is inserted, the pads 80a, 80b are respectively supplied to the migration power supply unit 4 and the measuring unit 5, and the pads 81a, 81b are controlled and operated. It is electrically connected to the part 6.
  • the electrode for performing the dielectrophoresis and the temperature detecting means for measuring the temperature can coexist on the electrode chip 3, thereby making it possible to have one connector for wiring.
  • a particle measuring apparatus can be realized with a simple structure.
  • FIG. 9 is a schematic view of a fine particle measuring apparatus representing the present embodiment.
  • the temperature detection means 8 is in contact with the wall surface outside the cell 1 and on the side not in contact with the sample solution 2 so that the temperature of the cell 1 can be measured.
  • the cell 1 uses plastic and the temperature detection means 8 uses a thermistor.
  • the cell 1 is preserve
  • the material of the cell 1 may be made to have a high thermal conductivity.
  • a metal material such as silver or copper.
  • the temperature detecting means since the temperature detecting means does not directly contact the sample solution, corrosion and deterioration can be prevented. Moreover, even if the measurement object is a microorganism and the cell is made disposable in consideration of contamination, the temperature detection means can be prevented from being contaminated, and the temperature detection means can be used repeatedly, so that it can be used for one measurement. The cost can be reduced.
  • FIG. 11 is a schematic diagram of a particle measuring apparatus representing the present embodiment.
  • a connection terminal 110 is embedded in the wall surface of the cell 1.
  • the connection terminal 110 has an exposed surface on both the side of the cell 1 that contacts the sample solution 2 (hereinafter referred to as the inner side) and the side that does not contact the sample solution 2 of the cell 1 (hereinafter referred to as the outer side).
  • the connection terminal 110 is preferably made of a material having a low resistivity and a high thermal conductivity, and copper is used in this embodiment.
  • connection terminal 110 is electrically connected to the electrodes 10 a and 10 b formed on the electrode substrate 3 for inducing dielectrophoresis inside the cell 1.
  • the connection terminal 110 is electrically connected to the electrophoresis power supply unit 4 and the measurement unit 5 via the contact terminal 111 outside the cell 1. That is, the connection terminal 110 electrically performs a relay function for connecting the electrodes 10 a and 10 b formed on the electrode substrate 3 to the migration power supply unit 4 and the measurement unit 5.
  • connection terminal 110 fulfills a relay function that transmits the temperature of the sample solution 2 to the temperature detection means 8 thermally.
  • the structure of the cell can be simplified.
  • FIG. 12 is a configuration diagram of the particle measuring apparatus of the present embodiment.
  • 1 is a cell for holding a sample solution 2 containing fine particles to be measured
  • 3 is an electrode chip including an electrode pair for collecting fine particles by dielectrophoresis
  • 4 is an electrophoretic power supply unit
  • 5 is an impedance between electrodes.
  • the electrode chip 3 that collects fine particles by dielectrophoresis is configured to also serve as a temperature detection means.
  • a method for detecting the temperature with the electrode tip 3 will be described.
  • FIG. 13 is a graph in which the impedance change between the electrodes 11a and 11b on the electrode chip 3 with respect to the temperature of the sample solution 2 is normalized and plotted with the value when the temperature of the sample solution 2 is 25 ° C. At this time, the sample liquid 2 does not contain fine particles.
  • 1 plot shows conductance GA which is the reciprocal of the resistance component of electrode impedance
  • 2 plot shows changes in capacitance CA which is the capacitance component of electrode impedance. Conductance increases monotonically with increasing temperature, and capacitance decreases monotonically with increasing temperature.
  • the temperature of the sample liquid 2 can be estimated from the impedance measurement of the sample liquid 2.
  • the temperature of the sample liquid 2 can be measured from the impedance measurement between the electrodes 11a and 11b. Measurement is possible.
  • an appropriate approximate expression can be obtained from the relationship between the temperature of the sample solution 2 and GA or CA, and calculation can be performed using the approximate expression. It can be seen from the plot in FIG.
  • the voltage applied between the electrodes 11a and 11b when the temperature is measured from the impedance measurement between the electrodes 11a and 11b is the voltage when performing the dielectrophoresis (hereinafter referred to as the dielectrophoresis voltage).
  • the dielectrophoresis voltage the voltage when performing the dielectrophoresis
  • a voltage that does not cause dielectrophoresis is desirable. This is because when the dielectrophoresis occurs in the fine particles by applying the temperature measurement voltage, the impedance between the electrodes 11a and 11b changes, so that accurate temperature estimation cannot be performed. Therefore, in this embodiment, the temperature measurement voltage is desirably one fifth of the dielectrophoresis voltage, the dielectrophoresis voltage is 10 Vp-p, and the temperature measurement voltage is 2 Vp-p.
  • the capacitance is used as the impedance measurement value used for temperature estimation, and the measurement result is corrected.
  • the electrode for performing dielectrophoresis can be realized with a configuration that also serves as a temperature detecting means, the configuration of the particle measuring device is simplified, and a low-cost particle measuring device can be realized. .
  • FIG. 14 is a flowchart for explaining the fine particle measurement method according to the present embodiment.
  • the flow of a series of measurements will be described with reference to the flowchart, but the description of the same parts as those in Embodiment 1 will be omitted.
  • step S24 the control calculation unit 6 refers to a table or function in the memory, and determines a voltage amplitude value and a frequency corresponding to the temperature measurement result in step S12. At this time, the voltage amplitude value or frequency determined by the control calculation unit 6 is such that the dielectrophoretic force acting on the fine particles to be measured in the sample liquid 2 is sufficiently large and constant within the assumed environmental temperature range. Create a table or function.
  • step S20 the impedance gradient is calculated. Since the dielectrophoretic force acting on the measurement target microparticles is constant, the impedance gradient does not depend on the temperature, but only on the concentration of the measurement target microparticles contained in the sample liquid 2. . Therefore, it is not necessary to perform correction based on temperature, and in step S22, the control calculation unit 6 instructs the display means 9 to output a result such as the concentration of fine particles in the sample liquid 2 from the calibration curve stored in the memory, and performs measurement. To complete.
  • the obtained impedance gradient is also small. Therefore, when correction is performed based on the small impedance gradient, sufficient S / N may not be obtained.
  • the present embodiment by selecting a voltage value that applies a sufficient and constant dielectrophoretic force according to the temperature of the sample liquid 2, it is possible to always measure with a high S / N. Fine particle measurement can be realized.
  • the sample liquid during the dielectrophoresis is performed. It is conceivable that the temperature of 2 changes. For example, assuming that the sample solution 2 is refrigerated and stored at about 10 ° C., the sample solution 2 is transferred to an environment at room temperature of 25 ° C., and measurement is started immediately, the temperature of the sample solution 2 is from 10 ° C. Rise until an equilibrium of about 25 ° C is reached.
  • control calculation unit 6 when the control calculation unit 6 measures impedance, temperature information is acquired from the temperature detection means 8 almost simultaneously, and more accurate based on the temperature information of the sample liquid 2 measured in real time. Make corrections.
  • FIG. 15 is a flowchart showing the present embodiment.
  • the flowchart of the first embodiment except that temperature measurement is performed as step S30 between step S16 and step S17, and that correction corresponding to step S21 in FIG. This is similar to FIG.
  • the control calculation unit 6 immediately after the impedance measurement is performed in step S16, the temperature is measured in step S30, and the control calculation unit 6 stores the impedance measurement result and the temperature measurement result in the memory as a result of the same time timing.
  • data is stored in a format in which time, capacitance C, and temperature T are associated with each other.
  • the temperature measurement is performed immediately after the impedance measurement.
  • the impedance measurement may be performed immediately after the temperature measurement by exchanging Step S16 and Step S30. It is important to measure the temperature when the impedance is measured.
  • te is the measurement time.
  • capacitance is measured, but impedance or conductance may be used, and the measurement interval is every second, but can be set to any measurement interval.
  • the control calculation unit 6 calculates the time gradient of the impedance in step S20. At this time, the impedance slope is corrected using the stored impedance and temperature data. Hereinafter, the correction method will be described.
  • FIG. 16 plots changes in capacitance C when the horizontal axis is time t, the vertical axis is capacitance C as a representative impedance, and impedance measurement is performed while capturing fine particles by dielectrophoresis.
  • the subscript n is an arbitrary integer.
  • the capacitance C n ⁇ 1 changes from C n to C n
  • the temperature changes from T n ⁇ 1 to T n .
  • a slope ⁇ C n of the time change of the capacitance C at an arbitrary time is expressed by (Equation 4).
  • the control calculation unit 6 corrects the inclination based on the temperature change at this time.
  • As the correction coefficient, ⁇ as shown in Table 1 is used.
  • the slope of the correction is represented by the number 5.
  • the temperature T n can be corrected more accurately by using the average value T ′ n of two points as in (Equation 6).
  • CT n is a value that takes zero at time zero (the time immediately after the start of measurement) and indicates the amount of capacitance fluctuation from the measurement start time.
  • FIG. 17 shows a plot of data obtained by obtaining CT n for all measurement data.
  • the straight line 1 is obtained from the obtained plot by the method of least squares, the slope is calculated, the final impedance slope is converted into the number of fine particles, and the result is output in step S22 to complete the measurement operation (step S23).
  • the correction based on the real-time temperature change can be performed by measuring the temperature at the time of impedance measurement, even when the temperature of the sample liquid changes during the measurement, Can present the measurement results.
  • the means for measuring the temperature change of the sample liquid 2 being measured is provided with an electrode for temperature measurement on the electrode chip 3, and real-time temperature measurement is realized while the electrode chip 3 has a simple configuration. To do.
  • FIG. 18 is a schematic view showing the electrode tip 3 in the particle measuring apparatus of the present embodiment.
  • reference numeral 11c denotes a third electrode disposed at a position adjacent to 11a at the position immersed in the sample liquid 2.
  • a pad 80c connected to the measurement unit 5 is provided at one end of 11c opposite to the sample solution 2.
  • the measurement unit 5 measures the impedance between the third electrode 11 c and the electrode 11 a according to an instruction from the control calculation unit 6, and the control calculation unit 6 calculates the capacitance from the impedance measurement value of the measurement unit 5.
  • the control calculation unit 6 is connected between the third electrode 11c and the electrode 11. From the impedance measurement result, the temperature of the sample liquid 2 can be measured.
  • the voltage for measuring the impedance between 11c and 11a is set to a voltage amplitude and frequency so that the measurement target fine particles in the sample liquid 2 are not subjected to dielectrophoresis or electrophoresis. Thereby, it is possible to avoid a temperature measurement error due to an impedance change caused by collecting the fine particles between the electrodes. Further, by sharing the electrode 11a for performing dielectrophoresis and impedance measurement as an electrode for temperature measurement, it is not necessary to separately receive a temperature detection means such as a thermistor, and the configuration of the electrode chip 3 and the measurement unit 5 can be simplified. In addition, highly accurate correction can be realized by measuring the sample liquid temperature during measurement in real time.
  • the impedance between the third electrode 11c and the electrode 11a is measured.
  • either of the electrodes 11a and 11b can be used as a counter electrode. good.
  • the electrode 11a or 11b is configured to be shared as a temperature measurement electrode, a temperature measurement electrode pair is separately provided to prevent the configuration from being shared with the electrode for performing dielectrophoresis and impedance measurement. It is not a thing.
  • the measuring apparatus of FIG. 1 was used.
  • the applied voltage amplitude was 5 Vp-p
  • the frequency was 100 KHz
  • the slope of capacitance was taken as the measurement response.
  • the cell 1 including the electrode tip 3 and the sample solution 2 was left in the constant temperature layer so that the temperature in the constant temperature layer and the temperature of the sample solution 2 were equal.
  • the temperature was in three stages of 5 ° C, 25 ° C, and 40 ° C.
  • FIG. 19 shows the measurement responses obtained at the respective temperatures normalized by the measurement response values at 25 ° C. and plotted. Based on 25 ° C., the response decreased at 5 ° C., and the response increased at 40 ° C. As one of the factors, a change in viscosity due to the temperature of the sample liquid 2 can be considered. As the temperature of the sample solution 2 decreases, the viscosity increases, and the viscosity force acting on the particles increases at low temperatures. As a result, the number of particles trapped on the electrode by the dielectrophoretic force per unit time decreases, resulting in a response as shown in FIG. It has changed.
  • FIG. 20 is a plot of the reciprocal of the normalized capacitance slope shown in FIG. This corresponds to the correction coefficient ⁇ .
  • Curve 1 is a three-point plot fitted by polynomial approximation. It is possible to calculate the correction coefficient ⁇ from the polynomial function of the curve 1.
  • sample solution The method for adjusting the sample solution is the same as that in Example 1.
  • the Escherichia coli concentration of the sample solution was adjusted to a suspension concentration of 6.82 ⁇ 10 6 to 6.82 ⁇ 10 7 cfu / ml.
  • ⁇ CTmax is the maximum value of the capacitance gradient at each concentration
  • ⁇ CTav is the average value of the capacitance gradient at each concentration.
  • ⁇ CTmin is the minimum value of the capacitance slope at each concentration.
  • FIG. 21 plots the E. coli concentration on the horizontal axis and the capacitance slope ⁇ CT on the vertical axis. It can be seen that there is a discrepancy in the ⁇ CT value at the same E. coli concentration depending on the temperature of the sample solution.
  • Table 4 shows the capacitance gradient after correction, which is calculated by multiplying the above measurement result by the correction coefficient ⁇ obtained in Example 1.
  • FIG. 22 is a graph plotting the relationship between the corrected ⁇ CT and the E. coli concentration. The graph of FIG. 22 shows that almost the same capacitance slope can be calculated at the same E. coli concentration regardless of the sample solution temperature.
  • the present invention is useful as a fine particle measuring device or the like that can accurately measure the number of fine particles contained in a solution even at different environmental temperatures or sample liquids at different temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 微粒子測定装置が設置された環境温度あるいは、試料液の温度によって測定結果に変動が無く、必要十分な精度で測定することが可能な微粒子測定装置および微粒子測定方法を提供する。微粒子含有の試料液2を導入するセル1と、セル1内部の試料液2に浸漬される位置に少なくとも一対の電極と、電極間に、交流電界を発生するための電圧を印加する泳動電源部4と、交流電界によって誘起された誘電泳動力によって移動した微粒子による変化を測定する測定部5と、環境温度を検出する温度検出手段8と、測定部5が測定した結果に対し、温度検出手段8が測定した結果に基づいて補正処理を行い、試料液2中の微粒子を測定する制御演算部6と、を備える。

Description

微粒子測定装置および微粒子測定方法
 本発明は、誘電泳動を用いて試料液中の微粒子数を測定するための微粒子測定装置および微粒子測定方法に関する。
 昨今、食中毒や感染症などの原因となり、人体に何らかの害を及ぼす可能性がある微生物を、迅速、簡便、高感度に定量測定するニーズは特に高い。食品の製造工程や微生物検査施設を備えない診療所などにおいて、その場で微生物検査を実施することで、食中毒や感染症などの防止、予防が可能になるためである。
 また、いわゆるバイオセンサにおいて、抗体など、測定対象に特異的に結合する物質を標識したポリスチレンなどの人工微粒子を用いて、検体中の生化学的物質を定量測定する際に、検体中の微粒子数あるいはその結合状態を定量測定する必要がある。このように、昨今、液体中に含まれる微粒子を迅速、簡便、定量的に測定する要求は高い。
 ここで、本願における微粒子の定義について説明する。本願で言う微粒子とは、ポリスチレンやそれらに何らかのコーティングを施した粒子、カーボンナノチューブ、金コロイドなどの金属粒子、細菌、真菌、放線菌、リケッチア、マイコプラズマ、ウイルス、として分類されているいわゆる微生物、原生動物や原虫のうちの小型のもの、生物体の幼生、動植物細胞、精子、血球、核酸、蛋白質等も含む広い意味での生体または生体由来の微粒子である。この他にも、本願で言う微粒子とは、誘電泳動可能な大きさのあらゆる粒子を意味する。本願では特に、微生物の測定を想定している。
 液体中に懸濁された誘電体微粒子を電気的に操作する方法の一つとして、誘電泳動現象が用いられる。誘電泳動現象の原理は後述するが、液体中に懸濁された誘電体微粒子に不平等電界を印加することによって、微粒子の選別・分離や、誘電特性調査を行うことができる。
 例えば、特許文献1は、複数種類の微粒子が混合された液体中から、特定の微粒子を選別・回収する装置に関するもので、微粒子の大きさや誘電特性の差異に起因する誘電泳動力の差を利用して、特定の微粒子のみに誘電泳動力を誘起してフローから回収する技術が開示されている。
 また、特許文献2は、異なる微生物に働く誘電泳動力の周波数スペクトルが、その物性の差異から異なることを利用して、液体中に含まれる微生物の種類を同定する技術が開示されている。
 更に、本発明者は他の発明者らと共に、誘電泳動を利用して液体中に含まれる微生物濃度を迅速、簡便、高感度に測定する微生物数測定装置および方法として、誘電泳動とインピーダンス計測を組み合わせたDEPIM(Dielectrophoretic Impedance Measurement Method)法を提案した(例えば、特許文献3を参照)。
 DEPIM法は、液体中に懸濁された微生物を誘電泳動力によってマイクロ電極に捕集し、同時にマイクロ電極のインピーダンス変化を測定することによって試料液中の微生物数を定量測定する方法である。以下、その測定原理について概説する。
 微生物は一般に、イオンリッチで誘電率および導電率の高い細胞質および細胞壁が、比較的誘電率および導電率の低い細胞膜に囲まれた構造を有し、誘電体粒子とみなすことができる。DEPIM法では、電界中で分極した誘電体粒子に一定方向に働く力である誘電泳動力を利用し、誘電体粒子である微生物をマイクロ電極のギャップ間に捕集する。
 誘電体粒子に働く誘電泳動力FDEPは、以下の(数1)で与えられることが公知である(例えば、非特許文献1を参照)。以下、誘電体粒子が、微生物である場合を例として説明する。
Figure JPOXMLDOC01-appb-M000001
 ここで、a:球形近似したときの微生物の半径、ε:真空の誘電率、ε:試料液の比誘電率、E:電界強度であり、▽は演算子で勾配(gradient)を表す。この場合、▽Eは、電界Eの勾配なので、その位置でどれだけEが傾斜を持っているか、つまり電界Eが空間的にどれだけ急に変化をするかを意味する。また、Kはクラウジウス・モソッティ数と呼ばれ、(数2)で表され、Re[K]>0は正の誘電泳動を表し、微生物は電界勾配と同方向、つまり、電界集中部に向かって泳動される。Re[K]<0は負の誘電泳動を表し、電解集中部から遠ざかる方向、すなわち弱電界部に向かって泳動される。
Figure JPOXMLDOC01-appb-M000002
 ここで、ε およびε はそれぞれ、微生物および溶液の複素誘電率を表し、一般に複素誘電率ε は(数3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、ε:微生物あるいは試料液の比誘電率、σ:微生物あるいは試料液の導電率、ω:印加電界の角周波数を表す。
 (数1)(数2)(数3)から、誘電泳動力は、微生物の半径、クラウジウス・モソッティ数の実部(以下、Re[K]と表す)および電界強度に依存することが分かる。また、Re[K]は、試料液および微生物の複素誘電率、電界周波数に依存して変化することが分かる。
 そのため、DEPIM法では、これらのパラメータを適切に選択し、微生物に働く誘電泳動力を十分大きくし、微生物を電極ギャップに確実に捕集する必要がある。また、DEPIM法では、上記誘電泳動による電極への微生物捕集と同時に、電気的計測を行い、試料液中の微生物数を定量測定することを特徴としている。
 微生物は、前述した構造を有するため、電気的には固有のインピーダンスを持った微粒子と考えることができる。そのため、誘電泳動によりマイクロ電極のギャップ間に捕集される微生物数が増加すると、その捕集数に応じて電極間のインピーダンスが変化する。
 従って、電極間インピーダンス時間変化の傾きは、単位時間当たりに電極ギャップ間に捕集される微生物数に応じた値となり、傾きの大きさは試料液中の微生物濃度に対応する。よって、電極間インピーダンス時間変化の傾きを測定することで、試料液中の微生物濃度、言い換えれば微生物数を測定することが可能となる。
 更に、DEPIM法では、誘電泳動を開始直後のインピーダンス時間変化の傾きから微生物数を定量することで、短時間での微生物測定を実現している。以上、DEPIM法の測定原理について概説したが、詳しくは非特許文献2を参照されたい。
米国特許出願公開2006/0177815号明細書 特許第2987201号明細書 特開2000-125846号公報 Hywel Morgan、他:「AC Electrokinetics:colloids and nanoparticles」、RESERCH STUDIES PRESS LTD.2003年出版、pp.15~63 J.Suehiro, R.Yatsunami, R.Hamada, M,Hara,J.Phys. D: Appl. Phys. 32(1999)2814-2820
 一般に、測定装置が使用される環境は様々であり、微粒子測定装置も例外ではない。特に、環境温度(室温)は空調の有無などによって大きく変わる因子であり、0℃~40℃程度の範囲で変わる可能性は十分にある。
 一方、液体の粘度は、温度によって変化することが一般に知られており、微粒子が懸濁された液体(以下、試料液と呼ぶ)の粘度が変化することで、微粒子に働く誘電泳動力と粘性力のバランスに変化が生じるため、環境温度によって測定結果に差異が生じ、微粒子測定結果の精度が低下するという問題がある。また、物質の比誘電率および導電率は、温度によって変化することが一般に知られており、この温度変化によって誘電泳動力が変化し、同様に微粒子測定結果の精度が低下するという問題がある。
 しかしながら、特許文献1~3においては、これら問題を解決する手段については、開示も示唆もされていない。
 本発明の目的は、上記事情に鑑みてなされたものであって、微粒子測定装置が設置された環境温度あるいは、試料液の温度によって測定結果に変動が無く、必要十分な精度で測定することが可能な微粒子測定装置および微粒子測定方法を提供することである。
 本発明者らは、微粒子を誘電泳動する際に、溶液の温度変化に伴い電極にトラップされる微粒子の量的な変化が生じることを見出した。すなわち、溶液温度の変化に伴い、溶液粘度が変化することによって、微粒子に生じる誘電泳動力と粘性力が相対的に変化する結果、電極へトラップされる微粒子量が変化する。あるいは、溶液温度の変化に伴い、溶液と微粒子の複素誘電率が変化することによって、微粒子に働く誘電泳動力が変化し、電極へトラップされる微粒子量が変化する。トラップされる微粒子量が変わると、測定される応答も変化する。溶液温度とトラップ量の関係を定量化すれば、溶液に含まれる微粒子濃度を正確に推定できることが明らかとなった。本発明は、かかる知見に基づき達成されたものである。
 本発明に係る微粒子測定装置は、微粒子含有の試料液を導入するセルと、前記セル内部の前記試料液に浸漬される位置に設けられた少なくとも一対の電極と、前記電極間に、交流電界を発生するための電圧を印加する泳動電源部と、前記交流電界によって誘起された誘電泳動力によって移動した微粒子による電磁気的な変化を測定する測定部と、温度を検出する温度検出手段と、前記測定部が測定した結果に対し、前記温度検出手段が検出した結果に基づいて補正処理を行い、前記試料液中の微粒子を測定する制御演算部と、を備える。
 この構成によれば、温度変動によって微粒子に働く誘電泳動力およびその他全ての力のバランスが変化した場合にも、補正によってその影響をキャンセルすることができるため、様々な環境温度でも正しい測定結果を提示することが可能な微粒子測定装置を実現できる。
 また、本発明に係る微粒子測定装置は、前記温度検出手段が、前記セル内部の前記試料液に浸漬される位置に設けられ、前記制御演算部が、前記測定部が測定した結果に対し、前記温度検出手段が検出した試料液の温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである。
 この構成によれば、試料液の温度を直接測定できるので、溶液温度に依存する、微粒子に働く力の変化を正確に補正することができ、高精度な微粒子測定装置を実現することができる。
 また、本発明に係る微粒子測定装置は、前記温度検出手段が、前記電極が形成された基板上の前記試料液に浸漬される位置に設けられ、前記制御演算部が、前記測定部が測定した結果に対し、前記温度検出手段が測定した試料液の温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである。
 この構成によれば、電極チップ上に誘電泳動を行う電極と、温度測定を行う温度検出手段を共存させることができるため、配線を行うためのコネクタを1つにすることができるため、簡易な構造で、異なる温度条件においても正確な結果を提示可能な粒子測定装置を実現することができる。
 また、本発明に係る微粒子測定装置は、前記温度検出手段が、前記セルの壁面外側に接する位置に設けられ、前記制御演算部が、前記測定部が測定した結果に対し、前記温度検出手段が測定した前記セルの温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである。
 この構成によれば、温度検出手段が直接試料液に接しないため、腐蝕や劣化が防げるし、測定対象が微生物であり、汚染を考慮してセルを使い捨てにする場合であっても、温度検出手段の汚染が防げ、温度検出手段を繰り返し使用することができるため、1回の測定にかかる費用を抑えつつ、異なる温度条件においても正確な結果を提示可能な粒子測定装置を実現することができる。
 また、本発明に係る微粒子測定装置は、前記セルの壁面の一部に端子を備え、前記端子が、前記セル内部で前記電極に電気的に接続され、前記セル外部で前記泳動電源部および前記測定部に電気的に接続され、かつ、前記端子が、前記セル内部で前記試料液に接し、前記セル外部では前記温度検出手段に接するものである。
 この構成によれば、電極を電気的に接続する端子と、試料液の温度を検出するための端子を共用としているため、異なる温度条件においても正確な結果を提示可能な粒子測定装置のセル構造を簡略化できる。
 また、本発明に係る微粒子測定装置は、前記端子が、低電気抵抗かつ高熱伝導率であるものである。
 この構成によれば、セル外部に設けた温度検出手段を用いて、セル内部の試料液温度をより正確に検出できるため、異なる温度条件においてもより正確な結果を提示可能な粒子測定装置を実現することができる。
 また、本発明に係る微粒子測定装置は、前記温度検出手段が、前記電極間に温度測定電圧が印加された場合に前記測定部が測定した結果から試料液の温度を推定することにより、温度を検出するものである。
 この構成によれば、誘電泳動を行う電極が温度検出手段を兼ねる構成で実現できるため、装置の構成が簡素化され、異なる温度条件においても正確な結果を提示可能な粒子測定装置を実現することができる。
 また、本発明に係る微粒子測定装置は、前記制御演算部が、前記温度検出手段が測定した温度に基づき、前記電極間に印加する交流電圧の振幅あるいは周波数を決定するものである。
 この構成によれば、試料液の温度に応じて十分かつ一定の誘電泳動力を作用させる電圧値を選択することにより、常に高いS/Nで測定することができるため、より高精度な微粒子測定を実現できる。
 また、本発明に係る微粒子測定装置は、前記制御演算部が、前記測定部が測定した結果に対し、前記測定部が当該測定を行った時点における前記温度検出手段による温度検出結果に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである。
 この構成によれば、電磁気的な変化の測定時点における温度を測定することによって、リアルタイムの温度変化に基づいた補正を行うことができるため、測定途中で試料液の温度が変化する場合にも、正確な測定結果を提示することが可能な微粒子測定装置を実現できる。
 また、本発明に係る微粒子測定装置は、前記セル内部の前記試料液に浸漬される位置に温度検出手段として更に少なくとも1極の温度検出用電極を備え、温度検出用電極は前記測定部に接続され、前記測定部は温度検出用電極のインピーダンスを測定し、前記制御演算部は、温度検出用電極のインピーダンスから前記試料液の温度を測定する。
 この構成によれば、リアルタイムの温度測定を実現することが可能な微粒子測定装置を実現できる。
 また、本発明に係る微粒子測定方法は、微粒子含有の試料液に浸漬した一対の電極間に発生させた交流電界によって誘起された誘電泳動力によって移動した前記微粒子による電磁気的な変化を測定することにより、前記試料液中における微粒子を測定する微粒子測定方法であって、温度を検出する温度検出ステップと、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した温度に基づく補正処理を行う補正処理ステップと、を有する。
 この構成によれば、温度変動によって微粒子に働く誘電泳動力およびその他全ての力のバランスが変化した場合にも、補正によってその影響をキャンセルすることができるため、様々な環境温度でも正しい測定結果を提示することが可能な微粒子測定方法を実現できる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップが、前記試料液の温度を検出し、前記補正処理ステップが、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した試料液の温度に基づく補正処理を行うものである。
 この構成によれば、試料液の温度を直接測定できるので、溶液温度に依存する、微粒子に働く力の変化を正確に補正することができ、高精度な微粒子測定方法を実現することができる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップが、前記試料液の温度を、誘電泳動を行う電極基板上で検出するものである。
 この構成によれば、電極チップ上に誘電泳動を行う電極と、温度測定を行う温度検出手段を共存させることができるため、配線を行うためのコネクタを1つにすることができるため、簡易な構造で、異なる温度条件においても正確な結果を提示可能な粒子測定方法を実現することができる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップが、前記試料液が貯留された、セルの温度を検出し、前記補正処理ステップが、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した前記セルの温度に基づく補正処理を行うものである。
 この構成によれば、温度検出手段が直接試料液に接することなく試料液温度を検出できるため、腐蝕や劣化が防げるし、測定対象が微生物であり、汚染を考慮してセルを使い捨てにする場合であっても、温度検出手段の汚染が防げ、温度検出手段を繰り返し使用することができるため、1回の測定にかかる費用を抑えつつ、異なる温度条件においても正確な結果を提示可能な粒子測定方法を実現することができる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップが、前記試料液が貯留されたセルの壁面の一部に設けられた、端子の温度を検出し、前記補正処理ステップが、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した前記端子の温度に基づく補正処理を行うものである。
 この構成によれば、電極を電気的に接続する端子と、試料液の温度を検出するための端子を共用としているため、簡略なセル構造で、異なる温度条件においても正確な結果を提示可能な粒子測定方法を実現できる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップが、前記電極間に、温度測定のための電圧を印加するステップと、前記電極間のインピーダンスを測定した結果から、試料液温度を推定するステップと、を含み、前記補正処理ステップが、前記電極間に、誘電泳動のための電圧を印加するステップと、誘電泳動によって前記微粒子を所定位置に配置し、電磁気的な変化を測定するステップと、前記電磁気的な変化の測定結果に対して、前記推定した試料液温度に基づく補正処理を行うステップと、を含む。
 この構成によれば、誘電泳動を行う電極が温度検出手段を兼ねる構成で実現できるため、異なる温度条件においても正確な結果を提示可能な粒子測定方法を簡易な装置で実現することができる。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップで測定した温度に基づいて前記電極間に印加する誘電泳動のための電圧の振幅あるいは周波数を決定する。
 また、本発明に係る微粒子測定方法は、前記温度検出ステップを実施した時点において、前記電磁気的な変化の測定を行うステップを有し、前記補正処理ステップが、前記電磁気的な変化の測定結果に対して、当該測定時点において検出した温度に基づく補正処理を行うものである。
 この構成によれば、電磁気的な変化の測定時点における温度を測定することによって、リアルタイムの温度変化に基づいた補正を行うことができるため、測定途中で試料液の温度が変化する場合にも、正確な測定結果を提示することが可能な微粒子測定方法を実現できる。
 本発明に係る微粒子測定装置および微粒子測定方法によれば、温度変動によって微粒子に働く誘電泳動力およびその他全ての力のバランスが変化した場合にも、補正によってその影響をキャンセルすることができるため、様々な環境温度でも正しい測定結果を提示することが実現できる。
本発明の実施形態にかかる微粒子測定装置を説明するための概略構成図 本発明の実施形態にかかる微粒子測定装置の電極チップを説明するための概略図 本発明の実施形態において測定電極11a,11b間に印加される電圧によって生じる電気力線15を示す図 本実施形態にかかる微粒子測定方法を説明するためのフローチャート 本発明の第2の実施形態にかかる微粒子測定装置を説明するための概略構成図 本発明の第2の実施形態にかかる温度検出手段の概略図 本発明の第2の実施形態にかかる温度検出手段のもう一つの概略図 本発明の第3の実施形態にかかる電極チップの概略図 本発明の第4の実施形態にかかるセルと温度検出手段の第一の概略図 本発明の第4の実施形態にかかるセルと温度検出手段の第二の概略図 本発明の第5の実施形態にかかるセルと温度検出手段の概略図 本発明の第6の実施形態にかかる微粒子測定装置を説明するための概略構成 試料液2の温度に対する電極チップ3上の電極11a、11b間のインピーダンス変化を、試料液2の温度が25℃の時の値で規格化してプロットしたグラフ 本発明の第7の実施形態にかかる微粒子測定方法を説明するためのフローチャート 本発明の第8の実施形態にかかる微粒子測定方法を説明するためのフローチャート 本発明の第8の実施形態にかかるキャパシタンスの経時変化を表すグラフ 本発明の第8の実施形態にかかる補正後のキャパシタンス経時変化を表すグラフ 本発明の第9の実施形態の微粒子測定装置における電極チップ3を示す概略図 本発明の実施例1にかかる環境温度とキャパシタンス傾きを表すグラフ 本発明の実施例1にかかる環境温度と補正係数を表すグラフ 本発明の実施例2にかかる環境温度毎の補正前キャパシタンス傾きを現すグラフ 本発明の実施例2にかかる環境温度毎の補正後キャパシタンス傾きを現すグラフ 本発明の実施例1にかかる光学的な測定手段を説明するための構成図 本発明の第1の実施形態にかかる誘電泳動で配置された微粒子を説明するための図
符号の説明
1 セル
2 試料液
3 電極チップ
4 泳動電源部
5 測定部
6 制御演算部
7 攪拌手段
8 温度検出手段
9 表示手段
10 基板
11a,11b 電極
13 ギャップ
15 電気力線
60 サーミスタ
61 接続極
62 配線
63 導電体
80a、80b、81a、81b パッド
100 熱伝達部
110 接続端子
111 接触端子
200 微粒子
201 光源
202 受光部
203 カバー
204 スペーサ
(第1の実施形態)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。図1は、本実施形態の微粒子測定装置の構成図、図2は、本実施形態の微粒子測定装置の電極チップを表す概略図である。
 図1において、1は測定対象の微粒子が含まれる試料液2を保持するセル、3は誘電泳動で微粒子を捕集する電極対を含む電極チップ、4は泳動電源部、5は電極間インピーダンスを測定する測定部、6は微粒子測定装置全体の制御やインピーダンス算出などの演算行う制御演算部、7は溶液の攪拌を行う攪拌手段、8は温度を検出するための温度検出手段である。
 図2において、10は基板、11a、11bは基板10上に形成され一対の極をなす電極である。基板10には、金属などの導電性材料によって電極11a、11bのパターンが形成される。
 電極11a、11bはその幅に対して十分に薄い薄膜であることが望ましく、例えば100μmの幅に対して厚さ1000Å程度である。これにより、厚さ方向で見たエッジ部分に不平等電界が形成され、微粒子を効率的に誘電泳動することが可能となる。
 図3は、測定電極11a,11b間に印加される電圧によって生じる電気力線15を示す。本実施の形態では測定電極11a,11bの端面で電界集中が最も大きいため、ギャップ13付近の構成が電界集中部にあたる。従ってギャップ13部分にもっとも強く微粒子が泳動される。
 本実施の形態では、基板10は、セル1とは分離した形態となっているが、基板10をセル1の壁面の一部として一体にしてもよい。
 また、電極11a、11bの平面パターンは、そのギャップ13間に誘電泳動により微粒子を捕集し、捕集した微粒子によるインピーダンス変化を効率よく測定可能な形状でパターニングされる。具体的には、例えば、図2に示すような、電極11a、11bの対向部分が互いに入れ子状になった、いわゆる櫛歯形状が最も好ましい形状の一つである。
 微粒子を効率よく捕集するためには、ギャップ13部の面積を広くし、微粒子が電極に捕集される確率を高くする必要がある。ただし、ギャップ13間の距離を長くすると、電極11a、11b間に同じ電圧を印加したときの電界強度が低下し、誘電泳動力が弱まる結果、微粒子を効率的に捕集できなくなる。このため、ギャップ13間距離は、例えば1~100μm程度に狭くすることが望ましい。
 微粒子を効率的に捕集するためには、電極11a、11bが対向する対向部の長さ方向に電極パターンを伸ばすのが効果的であり、例えば20~1000mm程度が望ましい。このとき、電極平面パターンを櫛歯形状にすることにより、対向部を実質的に長くすることができるし、電極パターンを微少領域に集積化が可能なため、電極チップ3を小型化することができるメリットがある。
 以上は電極の設計を行う際の一例であって、ギャップ13間の距離、対向部の長さ、電極の厚さやパターンは、電極11a、11b間に印加する電圧、微粒子の大きさに合わせて最適な組み合わせを選択することが望ましい。
 次に、電極チップ3の作成方法を説明する。電極チップ3は、ホウ珪酸ガラスの基板10上に、スパッタリングや蒸着によってクロムを下地とした白金薄膜を作成した後、一般的なフォトリソグラフィーによって電極11a、11bのパターンを形成したものである。
 本実施の形態における電極チップ3では、基板10にガラスを用いたが、絶縁性の材料であればいずれも使用可能であり、例えば、PETやポリカーボネートなどのプラスチック材料や、セラミックなど基板材料の使用を妨げるものではない。また、薄膜材料は導電性の材料であればいずれも使用可能であり、金、銀、銀などの金属粒子含有の導電性ペースト、カーボンなども選択可能である。
 また、電極11a、11bのパターニングは、選択した材料で所望のパターンを形成できればフォトリソグラフィー以外も選択可能であり、レーザー加工、スクリーン印刷、インクジェット印刷など、生産性やコストなどを勘案して最も適切な加工法が選択可能である。
 電極チップ3は、微粒子が含まれた試料液2を保持したセル1内に浸漬され、泳動電源部4および測定部5に電気的に接続される。セル1には、マグネチックスターラなどの攪拌手段7を設けることができる。
 試料液2をセル1内で攪拌することにより、試料液2内での微粒子濃度を均一にすることができ、かつ、多くの微粒子を電極11a、11bのギャップ13間に導くことができるため、より効率的に微粒子をギャップ13間に捕集でき、測定時間の短縮や測定感度の向上が可能である。
 また、セル1を、電極チップ3上にスペーサと蓋などを設けて作成した微小チャンバーとした場合は、攪拌手段7は微小チャンバーを含む循環流路を持つ閉流路として実現することも可能である。ペリスタポンプなどによって試料液を微小チャンバー内の電極チップ3上に循環することによって、前記マグネチックスターラによる攪拌と同様な効果を得ることが可能である。
 泳動電源部4は、誘電泳動を行うための交流電圧を、電極11a、11b間に印加する。これにより電極11a、11b間に誘起された不平等電界によって微粒子を誘電泳動し、電界集中部である電極エッジを含む電極11a、11b間のギャップ13に捕集する。なお、ここで交流電圧というのは、正弦波のほか、ほぼ一定の周期で流れの向きを変える電圧のことであり、かつ両方向の電流の平均値がほぼ等しいものである。
 測定部5は、電極11a、11b間のインピーダンスを算出するために必要な測定を行う。測定部5は、具体的には、電極11a、11b間に流れる電流値と、泳動電源部4が印加した電圧と電流の位相差を測定するための回路等から構成される。測定部5は、誘電泳動によって微粒子が移動し電界集中部近傍であるギャップ13に濃縮されることに起因する電極11a、11b間の電流および位相差の変化を測定する。測定部5で測定した電流値と位相差は、制御演算部6に渡される。
 制御演算部6は、図示しないマイクロプロセッサと、予め設定されたプログラムやデータテーブルなどを保存するためのメモリ、タイマー等から構成され、前記プログラムおよびデータテーブルに従い泳動電源部4を制御する。泳動電源部4は、制御演算部6の制御に従って、電極11a、11b間に特定の周波数と電圧をもった交流電圧を印加する。
 さらに制御演算部6は、測定部5と信号の送受信を行ない、測定部5が測定した電流値と位相差のデータを受け取る。制御演算部6は、これら電圧、電流、位相差、周波数のデータから、電極11a、11b間のインピーダンスを算出し、結果を逐次メモリに格納する。
 制御演算部6は、これら一連の測定動作を、予め設定されたプログラムに従って一定の時間間隔毎に行い、定められた時間が経過すると、泳動電源部4を制御し、電極11a、11b間への電圧印加を停止して、測定動作を終了する。
 次に、制御演算部6は、メモリに格納されたインピーダンス測定結果から、インピーダンス時間変化の傾きを算出する。メモリ中のデータテーブルには、与えられた電圧や周波数、微粒子種など毎に、検量線データが格納されている。制御演算部6は、算出したインピーダンス時間変化の傾きと検量線を比較することで、試料液中に含まれる微粒子濃度を算出し、メモリへの結果格納、あるいはLCDなどの表示手段9に結果表示を行うなどする。
 本実施の形態では、測定結果を微粒子濃度で表すこととしているが、予め試料液の容量が規定されている場合は、微粒子数に換算して結果表示しても良い。また、使用者は測定された微粒子数を試料1mlあたりの微粒子数として直接知ることができるが、表示手段9には、たとえば多いまたは少ないであるとか、目的に応じてほかの表示方法で結果表示を行っても良い。
 さらに、試料中の微粒子数を調べて殺菌装置を制御するとか、温度などの培養条件を制御するなど、使用者が直接微粒子数を知る必要が無く、本微粒子測定装置を含む任意の装置の制御を行うために微粒子数が明らかであれば良いような場合には、表示手段は特に設ける必要がないのは言うまでもない。
 温度検出手段8は、温度による測定結果の差異を補償するための元データとなる、環境温度を測定する。温度を測定する素子としては、必要な温度範囲(0~50℃程度)で必要な精度で温度測定できればいずれも使用可能であるが、本実施の形態では、NTCサーミスタを使用している。NTCサーミスタは、温度上昇と共に抵抗値が低下する一種の抵抗素子である。本実施の形態では、制御演算部6にサーミスタの抵抗値を測定する回路、および、メモリ内に抵抗値と温度を換算するテーブルを持たせている。すなわち、制御演算部6は、温度検出手段8を介して環境温度を測定する。
 以下、温度が微粒子の測定結果に与える影響について記述する。誘電泳動を利用した微粒子検出は、誘電泳動力によって電極に微粒子をトラップすることが、直接測定応答値の大きさに影響するものであることは明らかである。DEPIM法の場合、より大きな誘電泳動力を働かせることにより、より多くの微粒子を電極にトラップできる結果、電極間のインピーダンス変化もトラップされる微粒子数に比例して大きくなる。
 一方、液体中の微粒子には、誘電泳動力以外に働く力がある。例えば重力、粘性力、抗力、ブラウン運動などである。微粒子検出の際には、誘電泳動力と、その他の力とのバランスによって、電極にトラップされる微粒子数が定まる。一般に、粘性力は液体粘度の温度依存性により温度上昇と共に低下するし、ブラウン運動は温度上昇と共に激しくなる。従って、温度変化によって電極にトラップされる微粒子数が異なり、微粒子検出の結果が変化することになる。
 また、誘電泳動力に着目すると、前述の(数2)および(数3)から明らかなように、誘電泳動力は、溶液と微粒子の誘電率および導電率に依存することが分かる。一般に、誘電率および導電率は温度依存性を持つことが知られている。そのため、温度によって誘電泳動力も変化することになり、微粒子検出の結果に影響を与える。
 そこで、本実施の形態では、温度検出手段8が温度を検出した結果に基づき、微粒子測定結果に補正を加えることによって、環境温度が変化しても正確な結果を提示できるようにしている。
 具体的には、予め演算部6のメモリ内に、温度に対する補正係数を記録したテーブル(以下、補正テーブルと呼ぶ)を保存しておく。温度検出手段8を介して制御演算部6が測定した温度に基づき、制御演算部6が前記補正テーブルを参照して補正係数を決定し、インピーダンス変化の時間傾きあるいは、検量線により算出した微粒子濃度に補正係数を乗じて、最終的な測定結果として提示する。
 補正テーブルは、微粒子に働く全ての力を含む運動方程式を立ててこれを解き、電極にトラップされる微粒子数を温度の関数として求めることで作成することができる。運動方程式は解析的に解くことは難しいため、各種シミュレーションを使うことができる。誘電泳動に関する運動の数値解析については、例えば、D.Phys.D:Appl.Phys.31(1998)3160-3167を参照されたい。
 補正係数は、各温度でトラップされる微粒子数を、温度Ttでトラップされる微粒子数で規格化したものの逆数とする。温度Ttは、制御演算部6のメモリ内に格納された検量線データを取得した際の温度とする。こうすることにより、温度変化による測定結果の変動をキャンセルし、真の微粒子濃度を最終的な測定結果として提示することができる。
 また、より簡易的には、以下のような実験を行い、実験的に補正テーブルを作成することも可能である。すなわち、想定される範囲の温度条件下で、同一微粒子濃度の検体を測定し、各温度での測定結果を求める。それぞれの測定結果を温度Ttでの測定結果によって規格化したものの逆数を補正係数とすれば良い。
 表1に、補正テーブルの作成例を示す。
Figure JPOXMLDOC01-appb-T000001
 αは温度Tの関数で、補正係数を表す。温度Tは、基準となる温度をTtとし、想定温度範囲の最も低い温度をTmin、最も高い温度をTmaxで表す。表1の例では、補正係数を求める温度ステップは1℃としているが、これはより細かいあるいは、より粗いステップでも良い。温度ステップは、求められる測定精度に応じて、決めればよい。
 また、補正テーブルの代わりに、補正係数αを温度Tの関数として数式化し、制御演算部6がこの数式を元に補正計算を行っても良い。実験的に温度Tと補正係数αとの関係を求めた場合には、数式は、温度Tと補正係数αのプロットを、線形あるいは多項式でフィッティングした関数を用いることができる。
 図4は、本実施形態にかかる微粒子測定方法を説明するためのフローチャートである。以下、フローチャートを参照して、試料の導入からセル1内の微粒子の濃縮、測定、結果提示にいたるまでの一連の流れを説明する。まず、初期状態では、セル1に測定対象の微粒子が含有された試料液を投入する(ステップS11)。
 次いで、制御演算部6は、温度検出手段8を介して、環境温度を測定する(ステップS12)。この環境温度測定結果は、制御演算部6内のメモリに一時的に蓄えられ、後に補正を行う際に参照される。
 次に、制御演算部6は、測定した温度を、予めメモリ内に記憶された温度範囲(以下、測定温度範囲と呼ぶ)と比較し、測定した温度が測定温度範囲外か、すなわちエラーか、を判断する(ステップS13)。測定温度範囲は、通常測定装置が使用されると思われる温度範囲を設定しておけばよく、例えば、室内での使用を鑑み0℃~50℃とする。比較した結果、測定温度範囲を逸脱していれば(ステップS13:Yes)、ステップS14に進み、測定温度範囲外である旨、エラー表示を行い、ステップS23に進み測定動作を終了する。
 比較した結果、測定温度範囲内であれば(ステップS13:No)、制御演算部6は、補正テーブルを参照し、電極に印加すべき電圧振幅値および周波数を選択し、電極11a、11b間へ電圧印加を開始する(ステップS15)。この場合の電圧振幅値および周波数は、微粒子をギャップ13にトラップするために十分な誘電泳動力が働くような値を選択すればよく、本実施の形態では10Vp-p、100KHzとしている。
 電極11a、11b間に所定の電圧が印加されると、測定部5は、直ちに電圧印加直後の初期状態のデータとして、電極11a、11b間のインピーダンスを測定し、測定結果は、制御演算部6に渡され、メモリに初期のインピーダンス値として保存される(ステップS16)。
 次に、制御演算部6は、図示しない時計手段によって所定の時間が経過するまで待つ(ステップS17)。この時、泳動電源部4は電圧印加を保持したままである。
 所定の時間が経過すると、制御演算部6は所定の測定回数が満了したかを判断し(ステップS18)、満了していなければステップS16に戻る。ステップS16に戻り、制御演算部6は、測定部5に命じて、電極11a、11b間のインピーダンスを測定させ、その結果をメモリ6aに所定時間経過後の結果として保存する。
 所定の測定回数が満了した場合(ステップS18:Yes)、制御演算部6は泳動電源部4に電圧印加を止めるよう指示する(ステップS19)。
 電圧印加を停止後、制御演算部6は、メモリに保存された、電極11a、11b間インピーダンスの経時変化データから、インピーダンス変化の傾きを算出する(ステップS20)。
 次いで、制御演算部6は、補正テーブルより参照して、ステップS12で測定した温度に対応する補正係数を、ステップS20で求めたインピーダンス傾きに乗じる。例えば、温度測定結果がTt+1(℃)であれば、補正係数はα(Tt+1)となる。微粒子濃度の算出は、メモリに予め保存された、検量線から求める(ステップS21)。この検量線としては、微粒子濃度が明らかな校正用試料を、本実施の形態で説明した微粒子測定装置の測定系を用いて予め測定し、その時の微粒子数とインピーダンス変化の相関関係からばらつきを回帰分析して得られる曲線をあらわす関数を使用する。校正用試料の測定の際、温度は、補正係数を求める際に規格化を行う温度Ttの条件にて測定を行う。
 制御演算部6は、ステップS21で算出した結果を表示手段9に表示させ(ステップS22)、一連の測定動作を終了する。尚、本実施の形態では、補正係数αをインピーダンス傾きに乗じて補正を行ったが、検量線から微粒子濃度を求めた後に補正を行うことによっても、全く同様な補正効果を得られる。また、温度測定はステップS13で行ったが、温度測定は補正テーブルを参照するステップS21までの任意のタイミングで測定可能である。
 本実施の形態では、測定部5は、誘電泳動で電極に微粒子をトラップした場合のインピーダンス変化を測定することで微粒子濃度を測定しているが、測定部5としては、誘電泳動によって微粒子を所定位置に移動したことを、何らかの手段で測定する測定装置および測定方法であればいずれも適用可能である。
 例えば、測定部5を電磁気的な手段、代表的には顕微鏡などの光学的な手段で測定することで、電極間にトラップされた微粒子を測定することが可能である。図23は、測定部5を光学的測定で実現した場合の構成図である。図23において、200は測定対象の微粒子で、電極11a,11bによって形成される不平等電界によって、所定の位置に移動する。201は光源、202は光源201が照射した光を受ける受光部である。光源201および受光部202の光軸は、微粒子200が誘電泳動によって移動する箇所を横切るように設置される。
 セル1は、基板10と、カバー203および、スペーサ204から構成され、これらによって形成される空間に試料液2が充填される。また、カバー203およびスペーサ204は、光源201が照射した光を透過し、誘電泳動された微粒子が観察できるよう、ガラスやPET樹脂など、透明な材料を用いる。
 図24(a)は正の誘電泳動によって電極11a,11b間に微粒子200がトラップされる様子、図24(b)は負の誘電泳動によって電極11a,11b間のギャップ13に微粒子200が配置される様子を示す。正の誘電泳動の場合、電界集中部である電極エッジ部に数珠状に連なった形状(以下、パールチェインと呼ぶ)で配列される。負の誘電泳動の場合、弱電界部であるギャップ13の中心部にパールチェインで配列される。この時、ギャップ13にトラップされた微粒子200を、光源201と受光部202から構成される光学系で撮像し、制御演算部6が画像解析を行い、ギャップ13に配列された微粒子200の個数、投影面積などを算出する。この算出は、電極11a,11b間の電界印加から一定時間後、あるいは電界印加からの所定時間が経過する毎に行う。このように、試料液2中の微粒子数や微粒子濃度、微粒子同士の結合の度合いを測定する。
 誘電泳動によってギャップ13に配列される微粒子数、あるいは形成されるパールチェイン数は、当然ながら、誘電泳動力と粘性力その他の力のバランスによって決まり、それらの力が温度によって変化するため、温度による補正が必要となる。本実施の形態では、誘電泳動とインピーダンス測定にて微粒子濃度を測定する場合の補正係数の求め方を示したが、それぞれの測定手段に応じて、実験的に補正係数のテーブルや関数を作成することが可能であり、誘電泳動を利用したあらゆる微粒子測定装置、微粒子測定方法に適用が可能である。
 以上、本実施の形態によれば、温度変動によって微粒子に働く誘電泳動力およびその他全ての力のバランスが変化した場合にも、補正によってその影響をキャンセルすることができるため、様々な環境温度に設置された微粒子測定装置でも正しい測定結果を提示することができる。
(実施の形態2)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1と同様な構成については説明を省略する。
 図5は、本実施形態の微粒子測定装置の構成図である。試料液2内の微粒子に働く力の温度による変化は、直接は試料液2の温度に依存する。従って、環境温度よりも試料液2の温度の測定結果に基づいて補正を行った方が、精度良く補正を行うことができる。そこで、本実施の形態では、温度検出手段8がセル1の試料液2内に配置されており、試料液2の温度を測定できる構成となっている。
 図6は、セル1内に温度検出手段8として、チップ型のサーミスタ60を、セル1の試料液2側の表面に配置した模式図である。温度検出手段8は、試料液2内のいずれかに配置されていれば試料液2の温度測定が可能である。しかし、試料液2の流動などによってサーミスタ60が動揺すると、温度測定にノイズが加わる恐れがあるため、本実施形態では、サーミスタ60をセル1の壁面に固定している。
 61はサーミスタ60の電気的な接続極、62はセル1の壁面に設けられた電気的な配線で、一般的な電子回路配線に用いられる銅箔パターンなどで構成され、セル1外の制御演算部6とサーミスタ60を電気的に接続している。63は、サーミスタ60の接続極61と配線62を電気的に接続する導電体であり、電気的な導通とサーミスタ60の固定が同時にできるため、半田を用いることが望ましい。
 サーミスタ60は、図7のように、セル1の試料液2側の壁面に埋め込まれる構成にしても良い。この場合、配線62もセル1内に埋め込まれており、サーミスタ60を挿入したときに電気的な接続および機械的な固定ができるようなスペースをセル1内に有している。
 以上、本実施の形態によれば、セル1内の試料液2の温度を直接測定できるので、溶液温度に依存する、微粒子に働く力の変化を正確に補正することができ、高精度な微粒子測定装置を実現することができる。
(実施の形態3)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1~2と同様な構成については説明を省略する。
 図8は、本実施の形態を示す、電極チップ3の概略図である。電極チップ3の基板10の表面上、試料液2に電極チップ3を含浸した際に試料液2内に浸かる位置に温度検出手段8が配置される。本実施の形態では、温度検出手段8にサーミスタを用いており、図6と同様な方法で固定および電気的な接続を行っている。温度検出手段8および、電極11a、11bは、配線62を介してパッド80a、80b、81a、81bに接続される。パッド80a、80bは、電極11a、11bの電気的接続を担い、パッド81a、81bは、温度検出手段8の電気的接続を担っている。パッド80a、80b、81a、81bは、電極チップ3を挿入するコネクタ端子のピッチに合うように設計され、パッド80a、80bはそれぞれ泳動電源部4および測定部5へ、パッド81a、81bは制御演算部6に電気的に接続される。
 以上、本実施の形態によれば、電極チップ3上に誘電泳動を行う電極と、温度測定を行う温度検出手段を共存させることにより、配線を行うためのコネクタを1つにすることができるため、簡易な構造で粒子測定装置を実現することができる。
(実施の形態4)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1~3と同様な構成については説明を省略する。
 図9は、本実施の形態を表す微粒子測定装置の概略図である。セル1の外側、試料液2と接しない側の壁面に、温度検出手段8が接する構造を有しており、セル1の温度を測定できる構成になっている。
 本実施の形態では、セル1はプラスチック、温度検出手段8はサーミスタを使用している。通常、セル1は、試料液2を内部に貯留した形で保存されているため、試料液2とセル1は等温になっていると考えられる。このため、温度検出手段8をセル1の壁面に接するようにすれば、間接的に試料液2の温度を測定することが可能である。更に、温度検出手段8とセル1の間に熱伝導を助ける、シリコーングリスを塗布することで、より正確に試料液2の温度を検出することが可能になる。
 試料液2の温度をより正確に反映する必要があれば、セル1の材料を熱伝導率の高いものにすると良い。例えば、銀や銅などの金属材料などである。セル1のコストや廃棄が問題になるのであれば、図10に示すように、セル1の壁面の一部に熱伝導率の高い熱伝達部100を設け、熱伝達部100と温度検出手段8を接触させることも可能である。
 以上、本実施の形態によれば、温度検出手段が直接試料液に接しないため、腐蝕や劣化が防げる。また、測定対象が微生物であり、汚染を考慮してセルを使い捨てにする場合であっても、温度検出手段の汚染が防げ、温度検出手段は繰り返し使用することができるため、1回の測定に掛かる費用を抑えることができる。
(実施の形態5)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1~4と同様な構成については説明を省略する。
 図11は、本実施の形態を表す微粒子測定装置の概略図である。セル1の壁面に接続端子110が埋め込まれている。接続端子110は、セル1の試料液2に接する側(以下、内側と呼ぶ)と、セル1の試料液2に接しない側(以下、外側と呼ぶ)の両方に露出面を持つ。接続端子110は、低い抵抗率と高い熱伝導率を持つ材料が望ましく、本実施の形態では銅を用いている。
 接続端子110は、セル1の内側で、電極基板3上に形成された、誘電泳動を誘起するための電極10a、10bに電気的に接続される。接続端子110はセル1の外側で、接触端子111を介して、泳動電源部4および測定部5に電気的に接続される。つまり、接続端子110は、電気的には、電極基板3上に形成された電極10a、10bと泳動電源部4および測定部5を接続するための中継機能を果たしている。
 接続端子110のセル1の外側の露出面に、温度検出手段8が接しており、温度検出手段8が接続端子110の温度を測定することで、間接的に試料液2の温度を測定出来る構成になっている。つまり、接続端子110は、熱的には、試料液2の温度を温度検出手段8に伝える中継機能を果たしている。
 以上、本実施の形態によれば、電極を電気的に接続する端子と、試料液の温度を検出するための端子を共用としているため、セルの構造を簡略化できる。
(実施の形態6)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1~5と同様な構成については説明を省略する。図12は、本実施形態の微粒子測定装置の構成図である。
 図12において、1は測定対象の微粒子が含まれる試料液2を保持するセル、3は誘電泳動で微粒子を捕集する電極対を含む電極チップ、4は泳動電源部、5は電極間インピーダンスを測定する測定部、6は微粒子測定装置全体の制御やインピーダンス算出などの演算を行う制御演算部、7は溶液の攪拌を行う攪拌手段である。
 本実施の形態では、誘電泳動で微粒子を捕集する電極チップ3が温度検出手段を兼ねる構成となっている。以下、電極チップ3で温度を検知する方法について説明する。
 図13は、試料液2の温度に対する電極チップ3上の電極11a、11b間のインピーダンス変化を、試料液2の温度が25℃の時の値で規格化してプロットしたグラフである。この時、試料液2中には微粒子は含まれていない。図13中、1のプロットは電極インピーダンスの抵抗成分の逆数であるコンダクタンスGA、2のプロットは電極インピーダンスの容量成分であるキャパシタンスCAの変化を示す。コンダクタンスは温度上昇に対して単調増加、キャパシタンスは温度上昇に対して単調減少している。
 このことから、試料液2のインピーダンス測定から、試料液2の温度を推定することが可能である。具体的には、制御演算部6内のメモリにコンダクタンスGAまたはキャパシタンスCAと、試料液2の温度とを関係付けしたテーブルを設けることにより、電極11a、11b間のインピーダンス測定より試料液2の温度測定が可能である。あるいは、試料液2の温度とGAあるいはCAの関係から、適当な近似式を求めておき、その近似式を用いて計算することも可能である。図13のプロットから、直線近似でほぼ近似できることが分かる。
 電極11a、11b間のインピーダンス測定から温度を測定する際に電極11a、11b間に印加する電圧(以下、温度測定電圧と呼ぶ)は、誘電泳動を行う際の電圧(以下、誘電泳動電圧と呼ぶ)よりも低く、誘電泳動を生じさせない程度の電圧とすることが望ましい。なぜならば、温度測定電圧を印加することによって微粒子に誘電泳動が生じると、電極11a、11b間のインピーダンスに変化が生じるため、正確な温度推定が行えないからである。このため、本実施の形態では、温度測定電圧は誘電泳動電圧の5分の1であることが望ましく、誘電泳動電圧は10Vp-p、温度測定電圧は2Vp-pとしている。
 また、温度推定を行うためのインピーダンス測定は、キャパシタンスの値を用いるほうが好ましい。なぜならば、電極11a、11b間のコンダクタンスは、試料液2の導電率によって変化するものであり、試料液2の導電率は測定に供する検体によって異なるため、異なる導電率の試料液2に対してそれぞれテーブルが必要となり、温度推定が困難になるからである。従って、本実施の形態では温度推定に用いるインピーダンス測定値にキャパシタンスを用い、測定結果の補正を行う。
 以上、本実施の形態によれば、誘電泳動を行う電極が、温度検出手段を兼ねる構成で実現できるため、微粒子測定装置の構成が簡素化され、低コストな微粒子測定装置を実現することができる。
(実施の形態7)
 以下、本発明の実施の形態7の微粒子測定装置について、図表を用いて説明する。本実施の形態7では、誘電泳動を行う前の試料液2の温度測定結果から、誘電泳動を行うための電圧値を設定することで、試料液2の温度に依らず一定の測定結果を得られる構成としている。
 図14は、本実施の形態にかかる微粒子測定方法を説明するためのフローチャートである。以下、フローチャートを参照して、一連の測定の流れを説明するが、実施の形態1と重複する部分については説明を省略する。
 ステップS24において、制御演算部6は、メモリ内のテーブルあるいは関数を参照し、ステップS12の温度測定結果に対応する電圧振幅値および周波数を決定する。この時制御演算部6が決定する電圧振幅値あるいは周波数は、想定された環境温度の範囲内において、試料液2中の測定対象微粒子に働く誘電泳動力が十分大きくかつ一定になるような条件をテーブルあるいは関数化しておく。
 次いで、制御演算部6は、ステップS24で決定した電圧を電極11a、11b間に印加する(ステップS15)。ステップS20で、インピーダンス傾きを算出するが、測定対象微粒子に働く誘電泳動力が一定になるため、インピーダンス傾きは温度に依存せず、試料液2中に含まれる測定対象微粒子の濃度にのみ依存する。従って、温度に基づく補正を行う必要は無く、ステップS22で制御演算部6はメモリ中に保存されている検量線から試料液2中の微粒子濃度などの結果出力を表示手段9に指示し、測定を完了する。
 試料液2の温度によって誘電泳動力が低下した場合、得られるインピーダンス傾きも小さくなるため、小さなインピーダンス傾きを基に補正を行った場合は十分なS/Nが得られない場合がある。本実施の形態によれば、試料液2の温度に応じて十分かつ一定の誘電泳動力を作用させる電圧値を選択することにより、常に高いS/Nで測定することができるため、より高精度な微粒子測定を実現することができる。
(実施の形態8)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、実施の形態1~7と同様な構成については説明を省略する。
 上述した各実施の形態の微粒子測定装置において、誘電泳動で試料液2中の微粒子を電極11a、11b間に捕捉しながらインピーダンス測定することを考えると、誘電泳動を行っている最中に試料液2の温度が変化することが考えられる。例えば、試料液2を10℃程度で冷蔵保存しておき、その試料液2を室温25℃の環境に移して即、測定を開始することを想定すると、試料液2の温度は、10℃から平衡の約25℃に達するまで上昇する。
 この場合、ある一時点で測定した温度を元に測定結果の補正を行えば、ある一時点での試料液2の温度と、実際に誘電泳動されている時点で試料液2の温度に乖離が生じ、正確な補正ができないという問題がある。
 そこで、本実施の形態では、制御演算部6がインピーダンスを測定する際に、ほぼ同時に温度検出手段8から温度情報を取得し、リアルタイムに測定した試料液2の温度情報を元に、より正確な補正を行う。
 図15は本実施の形態を示すフローチャートである。ステップS16とステップS17の間にステップS30として温度測定を行う点、ステップS20でインピーダンス傾きを算出する際に同時に図4のステップS21に相当する補正を行う点以外は、実施の形態1のフローチャート(図4)と同様である。本実施の形態では、ステップS16でインピーダンス測定を行った直後にステップS30で、温度測定を行い、制御演算部6は、インピーダンス測定結果および温度測定結果を、同じ時間タイミングの結果として、メモリに保存する。例えば、表2に示すように、時間とキャパシタンスCと温度Tとを関連付けた形式でデータを保存しておく。
Figure JPOXMLDOC01-appb-T000002
 本実施の形態では、温度測定はインピーダンス測定の直後であったが、ステップS16とステップS30とを入れ替えて、温度測定の直後にインピーダンス測定を行っても良い。インピーダンスを測定した時点の温度を測定することが肝要である。
 表2において、teは測定時間である。この例では、キャパシタンスを測定しているが、インピーダンスあるいはコンダクタンスでも良く、測定間隔は1秒毎となっているが、任意の測定間隔に設定可能である。
 予め設定された測定回数(測定時間に相当する)を完了し、ステップS19で電圧印加停止した後、制御演算部6は、ステップS20でインピーダンスの時間傾きを算出する。この時、保存したインピーダンスと温度のデータとを用いてインピーダンス傾きの補正を行う。以下、補正の方法について説明する。
 図16は、横軸に時間tを取り、縦軸にインピーダンスの代表としてキャパシタンスCを取り、誘電泳動で微粒子を捕捉しながらインピーダンス測定を行った時の、キャパシタンスCの変化をプロットしたものである。添え字nは任意の整数である。グラフ中、時間tn-1からtになったとき、キャパシタンスCn-1はからCに、温度はTn-1からTに変化している。任意の時間におけるキャパシタンスCの時間変化の傾きΔCは、(数4)で表される。
Figure JPOXMLDOC01-appb-M000004
 ΔCは、測定間隔の間に変化した温度の影響を含んでいるため、制御演算部6は、この時の温度変化を元に傾きを補正する。補正係数は、表1に示すようなαを用いる。補正後の傾きをΔC‘とすると、傾きの補正は数5で表される。
Figure JPOXMLDOC01-appb-M000005
 この時、温度Tは、(数6)のように2点の平均値T‘を用いることでより正確な補正を行うことができる。
Figure JPOXMLDOC01-appb-M000006
 求めた補正後の傾きΔC‘を用いて、(数7)によって、キャパシタンスの補正値CTを得ることができる。
Figure JPOXMLDOC01-appb-M000007
 CTは、時間ゼロ(測定開始直後の時点)でゼロを取り、測定開始時点からのキャパシタンス変動分を示す値である。全ての測定データについてCTを求め、得られたデータのプロットを示したのが図17である。得られたプロットから最小二乗法などによって直線1を求め、その傾きを算出し、最終的なインピーダンス傾きとして、微粒子数に換算を行い、ステップS22で結果を出力して測定動作を完了する(ステップS23)。
 以上、本実施の形態によれば、インピーダンス測定時点の温度を測定することによってリアルタイムの温度変化に基づいた補正を行うことができるため、測定途中で試料液の温度が変化する場合にも、正確な測定結果を提示することができる。
(実施の形態9)
 以下、本発明の実施の形態の微粒子測定装置について、図表を用いて説明する。尚、既述の実施の形態と同様な構成については説明を省略する。本実施の形態では、測定中の試料液2の温度変化を測定する手段を、電極チップ3上に温度測定用の電極を設け、電極チップ3を簡易な構成にしつつ、リアルタイムの温度測定を実現するものである。
 図18は、本実施形態の微粒子測定装置における電極チップ3を示す概略図である。図23において、11cは、試料液2に浸漬する位置において11aに隣接する位置に配置される第三の電極である。11cの試料液2と反対側の一端には、測定部5に接続されるパッド80cが設けられている。測定部5は、制御演算部6の指示により、第三の電極11cと電極11a間のインピーダンスを測定し、制御演算部6は測定部5のインピーダンス測定値からキャパシタンスを算出する。測定されたキャパシタンスの値は試料液2の誘電率に比例し、誘電率は前述の通り試料液2の温度を反映したものであるから、制御演算部6は第三の電極11cと電極11間のインピーダンス測定結果から試料液2の温度を測定することができる。
 このとき、11cと11a間のインピーダンスを測定するための電圧は、試料液2中の測定対象微粒子が誘電泳動あるいは電気泳動されないような電圧振幅および周波数に設定することが望ましい。これにより、電極間に微粒子が捕集されたことによって生じるインピーダンス変化に起因する温度測定誤差を回避することができる。また、誘電泳動とインピーダンス測定を行う電極11aを温度測定用の電極としても共用することで、温度検出手段をサーミスタなど別途も受ける必要が無く、電極チップ3および測定部5の構成を簡易にし、かつ、測定中の試料液温度測定をリアルタイムに行うことで精度の高い補正を実現することができる。
 尚、ここでは第三の電極11cと電極11a間のインピーダンスを測定することとしたが、試料液2の誘電率を正確に測定できる限りにおいては、電極11a、11bのどちらを対極として用いても良い。また、電極11aあるいは11bのいずれかを温度測定用の電極として共用する構成としたが、温度測定用の電極対を別途設け、誘電泳動とインピーダンス測定を行う電極と共用しない構成とすることを妨げるものではない。
(補正係数の算出)
 試料液の温度と、インピーダンス時間変化との関係から、補正係数を求めるために、以下の実験を行った。
(1)試料液の調整
 標準寒天培地(MB0010、栄研器材(株))上で37℃、16時間の好気培養を行った大腸菌K-12株(NBRC3301、製品評価技術基盤機構)をコンラージ棒で採取し、0.1M D-マニトール溶液(導電率、約5μS/cm)に懸濁したものを標準試料とし、適宜希釈して6.82×10cfu/mlの懸濁濃度となるように調整した。尚、懸濁濃度は、適宜希釈した標準試料を標準寒天培地状に塗抹し、37℃、16時間の好気培養を行った結果生育したコロニー数を計数することによって規定した。
(2)測定装置
 図1の測定装置を使用した。印加電圧振幅は5Vp-p、周波数は100KHzで、60秒間のインピーダンス測定の後、キャパシタンスの傾きを測定応答とした。電極チップ3と試料液2を含むセル1は、恒温層内に静置して恒温層内温度と試料液2の温度が等しくなるようにした。温度は5℃、25℃、40℃の3段階とした。
(3)結果
 それぞれの温度で得られた測定応答を、25℃での測定応答の値で規格化してプロットしたのが図19である。25℃を基準に、5℃では応答が低下し、40℃では応答が上昇した。この要因の一つとして、試料液2の温度による粘度の変化が考えられる。試料液2の温度低下と共に粘度は高くなり、低温では微粒子に働く粘性力が大きくなるため、単位時間当たりに誘電泳動力によって電極にトラップされる微粒子数が少なくなる結果、図19のような応答変化となっている。
 図20は、図19で示した規格化したキャパシタンス傾きの逆数をプロットしたものである。これが補正係数αに相当する。3点のプロットを多項式近似によってフィッティングしたものが曲線1である。曲線1の多項式の関数から、補正係数αを算出することが可能である。
(温度補正の効果確認)
 実施例1で求めた補正係数αの関数を用いて、補正によって正確な測定を行えることを確認するため、以下の実験を行った。
(1)試料液の調整
 試料液の調整方法は、実施例1と同様である。試料液の大腸菌濃度を6.82×10~6.82×10cfu/mlの懸濁濃度となるように調整を行った。
(2)測定装置
 測定装置および温度の条件は実施例1と同様であるため、説明を省略する。
(3)結果
 表3は、試料液温度が5℃、25℃、40℃の時の、大腸菌濃度6.82×10および6.82×10cfu/mlでのキャパシタンス傾きΔCTを示す。各大腸菌濃度において、(数8)にて平均値と最大値の比率ERmaxを、(数9)にて平均値と最小値の比率ERminをそれぞれ求め、その百分率を誤差の大きさとして評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-M000008
 (数8)において、ΔCTmaxは各濃度におけるキャパシタンス傾きの最大値、ΔCTavは、各濃度のキャパシタンス傾きの平均値である。
Figure JPOXMLDOC01-appb-M000009
 (数9)において、ΔCTminは各濃度におけるキャパシタンス傾きの最小値である。
 表3に示したように、補正を行わない場合、試料液の温度が5℃~40℃の範囲で変動すると、±50%程度の大きな測定誤差を生じる。図21は、横軸に大腸菌濃度、縦軸にキャパシタンス傾きΔCTをプロットした。試料液の温度によって、同じ大腸菌濃度におけるΔCTの値に乖離が生じているのが分かる。
 一方、表4は、上記の測定結果に、実施例1で求めた補正係数αを乗じて算出した、補正後のキャパシタンス傾きを示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、補正を行うことによって、誤差は±1~2%程度まで抑えることができ、試料液の温度に依らない、正確な測定を行うことができる。図22は、補正後のΔCTと大腸菌濃度の関係をプロットしたグラフである。図22のグラフは、試料液温度に依らず、同じ大腸菌濃度では、ほぼ同じキャパシタンス傾きを算出できることを示している。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年1月22日出願の日本特許出願(特願2008-011445)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、異なる環境温度や、異なる温度の試料液においても、溶液に含有された微粒子数を正確に測定することができる微粒子測定装置等として有用である。

Claims (18)

  1.  微粒子含有の試料液を導入するセルと、
     前記セル内部の前記試料液に浸漬される位置に設けられた少なくとも一対の電極と、
     前記電極間に、交流電界を発生するための電圧を印加する泳動電源部と、
     前記交流電界によって誘起された誘電泳動力によって移動した微粒子による電磁気的な変化を測定する測定部と、
     温度を検出する温度検出手段と、
     前記測定部が測定した結果に対し、前記温度検出手段が検出した結果に基づいて補正処理を行い、前記試料液中の微粒子を測定する制御演算部と、
     を備える微粒子測定装置。
  2.  請求項1に記載の微粒子測定装置であって、
     前記温度検出手段は、前記セル内部の前記試料液に浸漬される位置に設けられ、
     前記制御演算部は、前記測定部が測定した結果に対し、前記温度検出手段が検出した試料液の温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである微粒子測定装置。
  3.  請求項1に記載の微粒子測定装置であって、
     前記温度検出手段は、前記電極が形成された基板上の前記試料液に浸漬される位置に設けられ、
     前記制御演算部は、前記測定部が測定した結果に対し、前記温度検出手段が測定した試料液の温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである微粒子測定装置。
  4.  請求項1に記載の微粒子測定装置であって、
     前記温度検出手段は、前記セルの壁面外側に接する位置に設けられ、
     前記制御演算部は、前記測定部が測定した結果に対し、前記温度検出手段が測定した前記セルの温度に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである微粒子測定装置。
  5.  請求項1に記載の微粒子測定装置であって、
     前記セルの壁面の一部に端子を備え、
     前記端子は、前記セル内部で前記電極に電気的に接続され、前記セル外部で前記泳動電源部および前記測定部に電気的に接続され、かつ、
     前記端子は、前記セル内部で前記試料液に接し、前記セル外部では前記温度検出手段に接するものである微粒子測定装置。
  6.  請求項5に記載の微粒子測定装置であって、
     前記端子は、低電気抵抗かつ高熱伝導率である微粒子測定装置。
  7.  請求項1に記載の微粒子測定装置であって、
     前記温度検出手段は、前記電極間に温度測定電圧が印加された場合に前記測定部が測定した結果から試料液の温度を推定することにより、温度を検出するものである微粒子測定装置。
  8.  請求項1に記載の微粒子測定装置であって、
     前記制御演算部は、前記温度検出手段が測定した温度に基づき、前記電極間に印加する交流電圧の振幅あるいは周波数を決定する微粒子測定装置。
  9.  請求項1に記載の微粒子測定装置であって、
     前記制御演算部は、前記測定部が測定した結果に対し、前記測定部が当該測定を行った時点における前記温度検出手段による温度検出結果に基づいて補正処理を行い、前記試料液中の微粒子を測定するものである微粒子測定装置。
  10.  請求項9に記載の微粒子測定装置であって、
     前記セル内部の前記試料液に浸漬される位置に温度検出手段として更に少なくとも1極の温度検出用電極を備え、
     温度検出用電極は前記測定部に接続され、
     前記測定部は温度検出用電極のインピーダンスを測定し、
     前記制御演算部は、温度検出用電極のインピーダンスから前記試料液の温度を測定する微粒子測定装置。
  11.  微粒子含有の試料液に浸漬した一対の電極間に発生させた交流電界によって誘起された誘電泳動力によって移動した前記微粒子による電磁気的な変化を測定することにより、前記試料液中における微粒子を測定する微粒子測定方法であって、
     温度を検出する温度検出ステップと、
     前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した温度に基づく補正処理を行う補正処理ステップと、
     を有する微粒子測定方法。
  12.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップは、前記試料液の温度を検出し、
     前記補正処理ステップは、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した試料液の温度に基づく補正処理を行うものである微粒子測定方法。
  13.  請求項12に記載の微粒子測定方法であって、
     前記温度検出ステップは、前記試料液の温度を、誘電泳動を行う電極基板上で検出するものである微粒子測定方法。
  14.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップは、前記試料液が貯留された、セルの温度を検出し、
     前記補正処理ステップは、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した前記セルの温度に基づく補正処理を行うものである微粒子測定方法。
  15.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップは、前記試料液が貯留されたセルの壁面の一部に設けられた、端子の温度を検出し、
     前記補正処理ステップは、前記電磁気的な変化の測定結果に対して、前記温度検出ステップで検出した前記端子の温度に基づく補正処理を行うものである微粒子測定方法。
  16.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップは、
     前記電極間に、温度測定のための電圧を印加するステップと、
     前記電極間のインピーダンスを測定した結果から、試料液温度を推定するステップと、を含み、
     前記補正処理ステップは、
     前記電極間に、誘電泳動のための電圧を印加するステップと、
     誘電泳動によって前記微粒子を所定位置に配置し、電磁気的な変化を測定するステップと、
     前記電磁気的な変化の測定結果に対して、前記推定した試料液温度に基づく補正処理を行うステップと、を含む微粒子測定方法。
  17.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップで測定した温度に基づいて前記電極間に印加する誘電泳動のための電圧の振幅あるいは周波数を決定する微粒子測定方法。
  18.  請求項11に記載の微粒子測定方法であって、
     前記温度検出ステップを実施した時点において、前記電磁気的な変化の測定を行うステップを有し、
     前記補正処理ステップは、前記電磁気的な変化の測定結果に対して、当該測定時点において検出した温度に基づく補正処理を行う微粒子測定方法。
PCT/JP2009/000239 2008-01-22 2009-01-22 微粒子測定装置および微粒子測定方法 WO2009093458A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550475A JPWO2009093458A1 (ja) 2008-01-22 2009-01-22 微粒子測定装置および微粒子測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-011445 2008-01-22
JP2008011445 2008-01-22

Publications (1)

Publication Number Publication Date
WO2009093458A1 true WO2009093458A1 (ja) 2009-07-30

Family

ID=40900967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000239 WO2009093458A1 (ja) 2008-01-22 2009-01-22 微粒子測定装置および微粒子測定方法

Country Status (2)

Country Link
JP (1) JPWO2009093458A1 (ja)
WO (1) WO2009093458A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125600A1 (ja) * 2010-03-31 2011-10-13 パナソニック電工 株式会社 細胞活性化方法および細胞活性化装置
GB2565668A (en) * 2016-04-08 2019-02-20 Ibm Particle manipulation and trapping in microfluidic devices using two-dimensional material
WO2021157060A1 (ja) * 2020-02-07 2021-08-12 日本電信電話株式会社 粒子配列運搬デバイスおよび粒子配列運搬方法
WO2023042469A1 (ja) * 2021-09-15 2023-03-23 株式会社Screenホールディングス 細胞外電位計測プレート

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010351A1 (ko) * 2022-07-05 2024-01-11 주식회사 씨젠 복수의 표적 분석물 각각에 대한 근사 신호의 획득 방법 및 이를 수행하는 컴퓨터 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125846A (ja) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd 微生物数測定装置及び微生物数測定方法
JP2002330752A (ja) * 2001-05-08 2002-11-19 Sanden Corp 微生物数測定装置
JP2003065947A (ja) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd 屈折率測定装置、屈折率測定方法、および定性定量分析装置
JP2005031090A (ja) * 2004-07-13 2005-02-03 Espec Corp 湿度センサおよびその製法
JP2006304625A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 微生物測定装置
JP2007198818A (ja) * 2006-01-25 2007-08-09 Shimadzu Corp 粒子計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195426A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Ind Co Ltd 微生物数測定装置及び微生物数測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125846A (ja) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd 微生物数測定装置及び微生物数測定方法
JP2002330752A (ja) * 2001-05-08 2002-11-19 Sanden Corp 微生物数測定装置
JP2003065947A (ja) * 2001-08-29 2003-03-05 Matsushita Electric Ind Co Ltd 屈折率測定装置、屈折率測定方法、および定性定量分析装置
JP2005031090A (ja) * 2004-07-13 2005-02-03 Espec Corp 湿度センサおよびその製法
JP2006304625A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 微生物測定装置
JP2007198818A (ja) * 2006-01-25 2007-08-09 Shimadzu Corp 粒子計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARLOS ROSALES: "Electrode surface ratio optimization for thermal performance in 3-D dielectrophoretic single-cell traps", ELECTROPHORESIS, vol. 27, no. 10, 2006, pages 1984 - 1995 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125600A1 (ja) * 2010-03-31 2011-10-13 パナソニック電工 株式会社 細胞活性化方法および細胞活性化装置
GB2565668A (en) * 2016-04-08 2019-02-20 Ibm Particle manipulation and trapping in microfluidic devices using two-dimensional material
GB2565668B (en) * 2016-04-08 2020-10-14 Ibm Particle manipulation and trapping in microfluidic devices using two-dimensional material
WO2021157060A1 (ja) * 2020-02-07 2021-08-12 日本電信電話株式会社 粒子配列運搬デバイスおよび粒子配列運搬方法
JPWO2021157060A1 (ja) * 2020-02-07 2021-08-12
JP7375834B2 (ja) 2020-02-07 2023-11-08 日本電信電話株式会社 粒子配列運搬デバイスおよび粒子配列運搬方法
WO2023042469A1 (ja) * 2021-09-15 2023-03-23 株式会社Screenホールディングス 細胞外電位計測プレート

Also Published As

Publication number Publication date
JPWO2009093458A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5842050B2 (ja) 微粒子測定装置および微粒子測定方法
JP5241044B2 (ja) 微粒子測定装置及び微粒子測定方法
JPWO2009037804A1 (ja) 微粒子測定装置および微粒子測定方法
Wang et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy
US8123920B2 (en) Method and apparatus for assay of electrochemical properties
WO2009093458A1 (ja) 微粒子測定装置および微粒子測定方法
Gu et al. Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors
JP4740664B2 (ja) 微生物検査チップおよび微生物検査方法
Tsai et al. Analytical and numerical modeling methods for electrochemical impedance analysis of single cells on coplanar electrodes
Cifrić et al. Review of electrochemical biosensors for hormone detection
US10078067B2 (en) Apparatus and method for detection and quantification of biological and chemical analytes
Pliquett et al. Testing miniaturized electrodes for impedance measurements within the β-dispersion–a practical approach
Kashyap et al. Adjusting the distance of electrochemical microsensors from secreting cell monolayers on the micrometer scale using impedance
Hossain et al. Micro-heater embedded ISFET pH sensor with high-k gate dielectrics for enhanced sensitivity
Spiller et al. A sensitive microsystem as biosensor for cell growth monitoring and antibiotic testing
EP1429129B1 (en) Temperature correction method for thermal analysis apparatus and thermal analysis apparatus
KR20090075939A (ko) 미생물 농도 측정 센서 및 미생물 농도 측정 시스템
CN112384796B (zh) 包含电导率传感器的流体通道中血细胞比容的测量方法
JP3734131B2 (ja) 微生物数測定装置および微生物数測定方法
JP2009192479A (ja) 微粒子測定装置およびそれに用いる電極
Hariprasad et al. Electrical conductivity as a tool to detect salt in clinical proteomics samples
EP1473359A1 (en) Non-invasive fast assessment of bacterial load in blood and blood products
JP5205889B2 (ja) 電極基板とそれを用いた微生物・微粒子測定装置
Merclin et al. Improvements of conductivity measurements of electrolyte solutions using a new conductometric cell design
JP2009069096A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550475

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703938

Country of ref document: EP

Kind code of ref document: A1