WO2009090972A1 - Light source, light emitting device, and display device - Google Patents

Light source, light emitting device, and display device Download PDF

Info

Publication number
WO2009090972A1
WO2009090972A1 PCT/JP2009/050414 JP2009050414W WO2009090972A1 WO 2009090972 A1 WO2009090972 A1 WO 2009090972A1 JP 2009050414 W JP2009050414 W JP 2009050414W WO 2009090972 A1 WO2009090972 A1 WO 2009090972A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light emitting
substrate
emitting elements
Prior art date
Application number
PCT/JP2009/050414
Other languages
French (fr)
Japanese (ja)
Inventor
Kenzo Hanawa
Yoshinori Abe
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Publication of WO2009090972A1 publication Critical patent/WO2009090972A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a light source, a light emitting device, and a display device.
  • LEDs light emitting diodes
  • Such light emitting devices are widely used as lighting devices, backlights for liquid crystal panels, and the like.
  • an increase in the amount of light of a light source in a backlight or the like is required as the screen size increases.
  • the amount of light emitted from the light-emitting element increases as the element size increases, but generally large-sized light-emitting elements have low luminous efficiency. That is, in the case of a large-sized light emitting element, the area of the electrode pad provided in the light emitting element must be increased in order to allow a current to flow uniformly through the light emitting element. At this time, since the electrode pad itself has a characteristic of absorbing light emitted from the light emitting element, the amount of light absorbed by the electrode pad increases as the area of the electrode pad increases.
  • the number of light emitting elements is increased, for example, in order to obtain a light emission amount equivalent to that of a large size light emitting element, it is necessary to provide a larger number of light emitting elements than a large size light emitting element. In this case, for example, the cost of mounting the light emitting element on the substrate to be mounted increases, leading to an increase in product cost.
  • the light emitting element having the smallest resistance value among these light emitting elements is compared with other light emitting elements.
  • a lot of current will flow. Since the light amount of the light emitting element is generally proportional to the current, the light amount may vary between the plurality of light emitting elements due to the variation in the amount of current flowing between the plurality of light emitting elements connected in parallel. Furthermore, since the load is concentrated on the light emitting element having the smallest resistance value, there is a high possibility that the lifetime of the light emitting element will be remarkably shortened, and there is a concern that the reliability as a light source may be reduced.
  • the present invention has been made to solve the technical problems as described above, and an object of the present invention is to provide a light amount generated between a plurality of light emitting elements in a light source in which a plurality of light emitting elements are connected in parallel. It is an object to provide a light source or the like that can suppress variations in the above.
  • a light source to which the present invention is applied includes a plurality of light emitting elements and parallel connection means for electrically connecting the plurality of light emitting elements in parallel, and each light emitting element constituting the plurality of light emitting elements.
  • Is composed of an element substrate, a first layer made of a group III nitride compound semiconductor and laminated directly on the element substrate, and laminated directly on the first layer, and the rocking curve half-width of the (0002) plane is And a second layer made of a group III nitride compound semiconductor having a rocking curve half-value width of 100 arcsec or less and a (10-10) plane of 250 arcsec or less.
  • the second layer is a group III nitride compound semiconductor having a rocking curve half-width of (0002) plane of 60 arcsec or less and a rocking curve half-width of (10-10) plane of 250 arcsec or less. Then, it is preferable from the point which can suppress further dispersion
  • the parallel connection means may be a mounted body in which a plurality of light emitting elements are attached and a power supply path for supplying power to the plurality of light emitting elements is formed.
  • the first layer can be characterized by having a layer thickness of 21 nm or more and 40 nm or less.
  • the first layer is formed by sputtering.
  • the element substrate may be a sapphire substrate
  • the first layer may be AlN
  • the second layer may be GaN.
  • a plurality of other light emitting elements different from the plurality of light emitting elements, another parallel connection means for electrically connecting the other plurality of light emitting elements in parallel, a parallel connection means and another Connection means for electrically connecting the parallel connection means may further be provided.
  • a plurality of light-emitting elements each including a plurality of light-emitting elements and a first power supply path that electrically connects the plurality of light-emitting elements in parallel
  • Each of the light-emitting elements constituting the plurality of light-emitting elements includes: an element substrate; and a mounting substrate provided with a second power-feed path electrically connected to the first power-feed path provided in the light-emitting body.
  • a first layer made of a group III nitride compound semiconductor and directly laminated on the element substrate, and laminated directly on the first layer, and a (0002) plane rocking curve half-width is 100 arcsec or less
  • the plurality of light emitters be arranged at equal intervals on the mounting substrate in terms of suppressing light amount unevenness as the whole light emitting device.
  • the display device when the present invention is regarded as a display device, the display device includes a display panel that displays an image, and a backlight that is provided on the back surface of the display panel and that irradiates light on the display panel. And a first power supply path provided in each of the light emitters, each of which has a plurality of light emitters attached thereto, and a first power supply path that electrically connects the plurality of light emitting elements in parallel.
  • Each of the light-emitting elements constituting the plurality of light-emitting elements is composed of an element substrate and a group III nitride compound semiconductor.
  • a second layer made of a Group III nitride compound semiconductor is ec or less.
  • two or more light emitters constituting a plurality of light emitters are electrically connected to each other to form a plurality of light emitter groups, and each of the plurality of connection conductors constituting the plurality of connection conductors. And a plurality of power supplies for supplying power to the connection conductor.
  • the present invention it is possible to provide a light source or the like that suppresses variations in the amount of light generated between a plurality of light emitting elements when the plurality of light emitting elements are electrically connected in parallel.
  • FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied.
  • the vertical direction V and the horizontal direction H of the liquid crystal display device are indicated by arrows.
  • the liquid crystal display device includes a liquid crystal display module 50 and a backlight device (backlight) 40 provided on the back side (lower side in FIG. 1) of the liquid crystal display module 50.
  • the backlight device 40 that functions as a light emitting device includes a backlight frame 41 that houses a light source, and a light emitting unit 42 in which a plurality of light emitting diodes (referred to as LEDs in the following description) are arranged.
  • the backlight device 40 is made of a resin having a light-transmitting property with respect to visible light as a laminated body of optical films, and a diffusion plate 43 (scattering and diffusing light in order to make the entire surface uniform brightness) Plate or film) and prism sheets 44 and 45, which are diffraction grating films having a light condensing effect forward. Further, if necessary, a diffusion / reflection type luminance enhancement film 46 for improving the luminance is provided.
  • the liquid crystal display module 50 is laminated on each glass substrate of the liquid crystal panel 51, which is configured by sandwiching liquid crystal between two glass substrates, and restricts vibration of light waves in a certain direction.
  • Polarizing plates 52 and 53 Further, peripheral members such as a driving LSI (not shown) are also attached to the liquid crystal display device.
  • the liquid crystal panel 51 as one of the display panels includes various components not shown.
  • two glass substrates are provided with a display electrode (not shown), an active element such as a thin film transistor (TFT), a liquid crystal, a spacer, a sealant, an alignment film, a common electrode, a protective film, a color filter, and the like.
  • TFT thin film transistor
  • the structural unit of the backlight device 40 is arbitrarily selected.
  • a unit of only the backlight frame 41 having the light emitting unit 42 is referred to as a “backlight device (backlight)”, and there may be a distribution form that does not include the diffusion plate 43, the prism sheets 44 and 45, and the brightness enhancement film 46. .
  • FIG. 2 is a view for explaining the configuration of the backlight frame 41 and the light emitting unit 42 in the backlight device 40 as the light emitting device.
  • the backlight device 40 is on the liquid crystal display module 50 side (upper surface side) shown in FIG. It is the figure seen from.
  • the backlight frame 41 forms a housing structure made of, for example, aluminum, magnesium, iron, or a metal alloy containing them.
  • the polyester film etc. which have the performance of white high reflection, for example are affixed inside the housing
  • the casing structure includes a back surface portion corresponding to the size of the liquid crystal display module 50 and side surface portions surrounding the four corners of the back surface portion.
  • a heat sink structure including cooling fins for exhaust heat may be formed on the back surface portion and the side surface portion as necessary.
  • a connector (not shown) for supplying power to a plurality of LED packages 20 (described later) constituting the light emitting unit 42 is provided on the back surface of the backlight frame 41.
  • the light emitting unit 42 includes eight light emitting modules 30.
  • the eight light emitting modules 30 are arranged in two rows in the vertical direction V and four rows in the horizontal direction H on the back surface of the backlight frame 41.
  • FIG. 3A and 3B are diagrams for explaining the light emitting module 30.
  • FIG. 3A is a top view of the light emitting module 30, and
  • FIG. 3B is a side view of the light emitting module 30 as viewed from the direction of arrow A shown in FIG. 3A.
  • FIG. 3B also shows a partial cross-sectional view of the LED package 20.
  • the light emitting module 30 includes a plurality (120 in this example) of LED packages 20 and a module substrate 31 as an attachment substrate.
  • the LED package 20 that functions as a light source and a light emitter includes a plurality of LED chips 10 (described later), and emits white light.
  • the plurality of LED packages 20 are arranged on the module substrate 31 in 12 rows in the vertical direction V and 10 rows in the horizontal direction H as shown in FIG. Further, in the light emitting module 30 to which the present embodiment is applied, the plurality of LED packages 20 arranged on the module substrate 31 have substantially equal intervals between the LED packages 20 adjacent to each other in the vertical direction V (in this example, The distance between the LED packages 20 adjacent to each other in the horizontal direction H is also set to be substantially equal (in this example, about 1 inch).
  • 120 LED packages 20 are arranged in a substantially lattice pattern on the module substrate 31.
  • the plurality of LED packages 20 need only be arranged at substantially equal intervals on the module substrate 31.
  • the three adjacent LED packages 20 may be arranged so as to form a substantially equilateral triangle. .
  • the distance from the outermost LED package 20 to the end of the module substrate 31 is designed to be shorter than 1/2 inch.
  • the intervals in the vertical direction V and the horizontal direction H between the adjacent LED packages 20 can be set. It is possible to arrange them equally (about 1 inch in this example).
  • 960 (120 ⁇ 8) LED packages 20 have substantially equal intervals in the vertical direction V and the horizontal direction H between adjacent LED packages 20. Arranged on the backlight frame 41 in a substantially lattice pattern.
  • the module substrate 31 has a plurality of LED packages 20 attached thereto.
  • the base material of the module substrate 31 for example, a so-called glass epoxy in which a glass fiber is impregnated with an epoxy resin can be used.
  • an electrical wiring pattern 32 for supplying power to the LED package 20 is formed on the surface of the module substrate 31 on which the LED package 20 is attached (hereinafter referred to as an attachment surface).
  • the electrical wiring pattern 32 and the LED package 20 are electrically connected by solder or the like on the mounting surface of the module substrate 31.
  • a white resist is formed on the mounting surface of the module substrate 31 so as to reflect the light emitted from the LED package 20.
  • the module substrate 31 is provided with a screw hole 36b for attaching the light emitting module 30 to the backlight frame 41. Then, the module substrate 31 is fixed to the backlight frame 41 at the screw hole 36b using screws 36a and the like.
  • a light emitting block 300 as a unit of light emission control is formed as shown by a broken line in FIG.
  • the light emitting block 300 as the light emitting body group has a total of 12 LED packages 20 with 6 rows in the vertical direction V and 2 rows in the horizontal direction H.
  • the light emitting module 30 is provided with a total of 10 blocks of the light emitting blocks 300 in two rows in the vertical direction V and five rows in the horizontal direction H.
  • the electrical wiring pattern 32 provided on the module substrate 31 functions as a second power supply path and a connection conductor.
  • FIG. 4A and 4B are diagrams for explaining the LED package 20.
  • 4A is a top view (light emitting surface side) of the LED package 20, and FIG. 4B is an IV-IV cross section shown in FIG. 4A.
  • the LED package 20 emits white light having three primary colors of red (R), green (G), and blue (B).
  • the LED package 20 includes three LED chips 10, a positive lead frame 291 and a negative lead frame 292, and a case 293 that functions as a mounting body.
  • Each LED chip 10 is a blue LED that emits blue light.
  • the size of the LED chip 10 is 350 ⁇ m square, and the thickness thereof is 80 ⁇ m.
  • the three LED chips 10 are electrically connected in parallel. The structure of the LED chip 10 will be described in detail later.
  • the positive lead frame 291 and the negative lead frame 292 are produced by punching a metal plate into an E shape. Then, as shown in FIG. 4B, the positional relationship between the positive lead frame 291 and the negative lead frame 292 is fixed by a case 293 made of white resin or the like.
  • the three LED chips 10 are each mechanically mounted on the positive lead frame 291 by solder or the like. Further, the positive electrodes (described later) of the three LED chips 10 are electrically connected to the positive lead frame 291 respectively, and the negative electrodes (described later) of the three LED chips 10 are electrically connected to the negative electrode lead frame 292 by bonding wires or the like. In this way, the three LED chips 10 in the LED package 20 are electrically connected in parallel.
  • the positive lead frame 291 and the negative lead frame 292 function as parallel connection means or one of the first power supply paths.
  • lead frame terminals 291a and 292a are respectively provided on the side of the positive lead frame 291 and the negative lead frame 292 that are not electrically connected to the LED chip 10 (see FIG. 4B). .
  • the lead frame terminals 291a and 292a are connected to the above-described electric wiring pattern 32 of the module substrate 31 using solder or the like, so that the electrical connection between the LED package 20 and the module substrate 31 and further mechanical A connection is made.
  • a reflecting wall 27 is provided around the three LED chips 10.
  • the reflection wall 27 reflects the light emitted from the LED chip 10 and efficiently irradiates the light emitted from the LED chip 10 toward the diffusion plate 43 and the like (see FIG. 1).
  • a sealing resin 28 is provided inside the reflecting wall 27 so as to fill the three LED chips 10.
  • the sealing resin 28 is added with a phosphor that emits red light upon receiving blue light and a phosphor that emits green light upon receiving blue light.
  • FIGS. 5A to 5C are diagrams for explaining another example of the shape of the lead frame of the LED package 20.
  • the basic structure of the LED package 20 shown in FIGS. 5A to 5C is the same as that shown in FIG. 4A, but the shapes of the positive lead frame 291 and the negative lead frame 292 are different. Is.
  • symbol is attached
  • the example of the LED package 20 shown in FIG. 5A includes a positive lead frame 291 having a convex shape and a negative lead frame 292 having a concave shape.
  • One LED chip 10 is attached to the protruding portion of the positive lead frame 291, and the other two LED chips 10 are attached to locations other than the protruding portion of the positive lead frame 291.
  • the LED chip 10 and the lead frame are electrically connected, and the three LED chips 10 are connected in parallel.
  • the positive lead frame 291 and the negative lead frame 292 each have a rectangular shape.
  • each lead frame is arranged substantially in parallel with a predetermined distance.
  • the three LED chips 10 are attached to the positive lead frame 291 and the three LED chips 10 are connected in parallel as in the above example.
  • the example of the LED package 20 shown in FIG. 5C includes a positive lead frame 291 having an L shape and a negative lead frame 292 having a square shape that fits inside the L shape. Is.
  • the three LED chips 10 are attached at predetermined intervals along the L shape of the positive lead frame 291 having an L shape. As in the above example, in this example as well, the three LED chips 10 provided in the LED package 20 are connected in parallel.
  • FIG. 6 is a diagram for explaining electrical connection in the light emitting module 30.
  • one light emitting module 30 will be described as a representative example, but the same applies to other light emitting modules 30 provided in the backlight device 40.
  • a frame indicated by a broken line indicates the light emitting block 300, and a frame indicated by an alternate long and short dash line corresponds to a unit of one LED package 20.
  • three LED chips 10 are connected in parallel. As described above, the parallel connection of these three LED chips 10 is realized by the lead frames 291 and 292.
  • one light emitting block 300 indicated by a broken line in FIG. 6 twelve LED packages 20 are connected in series.
  • the twelve LED packages 20 are connected in series by an electric wiring pattern 32 provided on the module substrate 31.
  • an individual power source P is provided for each light emitting block 300 (12 LED packages 20 connected in series).
  • the twelve LED packages 20 are connected to the power source P through the electrical wiring pattern 32 and the like.
  • each light emitting module 30 provided in the backlight device 40 a voltage is applied to twelve LED packages 20 connected in series for each light emitting block 300 by each power source P.
  • a current flows through each of the twelve LED packages 20 in each light emitting block 300.
  • a current flows through the three LED chips 10 connected in parallel to each other.
  • the LED chip 10 emits blue light. At this time, part of the blue light emitted from the LED chip 10 is converted into red or green by the phosphor added to the sealing resin 28. As a result, white light including red (R), green (G), and blue (B) light is emitted from one LED package 20.
  • white light including red (R), green (G), and blue (B) light is emitted from each LED package 20. It will be. Then, this light is mixed in the backlight frame 41 and irradiated to the diffusion plate 43. Further, after the color mixing is promoted by the diffusion plate 43 and the like, the light is irradiated toward the liquid crystal display module 50.
  • each light emitting block 300 is turned on by controlling each power supply P. , And can be controlled independently.
  • area control such as turning off the light emitting block 300 located on the back side of the place where the display image becomes black.
  • a temperature increase can be suppressed as compared with a case where one large-sized (for example, 550 ⁇ m square) chip is provided in the LED package 20. Is possible.
  • a large number of LED chips 10 are provided in order to obtain a predetermined light amount (such as luminance).
  • a predetermined light amount such as luminance
  • the LED package 20 to which the present embodiment is applied includes the three LED chips 10 together, the mounting operation on the mounting target substrate or the like can be reduced to, for example, 1/3.
  • the three LED chips 10 provided in the LED package 20 are connected in parallel. Therefore, in the LED package 20, it is possible to suppress the drive voltage as compared with the case where the three LED chips 10 are connected in series. Accordingly, the driving voltage of the backlight device 40 and further the liquid crystal display device can be suppressed.
  • FIG. 7 is a cross-sectional view schematically showing the LED chip 10.
  • the LED chip 10 includes a substrate 11 as an element substrate, a seed layer 12 as a first layer, and a semiconductor layer 100 made of a group III nitride compound semiconductor containing Ga as a group III element. I have. Then, the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are stacked in this order on the seed layer 12, and the semiconductor layer 100 is configured by these layers.
  • the substrate 11 in the LED chip 10 to which this embodiment is applied is made of sapphire.
  • the material that can be used for the substrate 11 is not particularly limited as long as it is a substrate material on which a group III nitride compound semiconductor crystal is epitaxially grown.
  • the seed layer 12 is formed on the c-plane of the substrate 11 (sapphire substrate).
  • the seed layer 12 is made of AlN.
  • the material that can be used for the seed layer 12 may be a group III nitride compound semiconductor, and may contain Ga and In as group III elements, but among them, a composition containing Al is desirable. .
  • GaAlN may be used as the material of the seed layer 12, and in that case, the composition of Al is preferably 50% or more.
  • the seed layer 12 needs to cover at least 60% or more, preferably 80% or more of the surface of the substrate 11, and is preferably formed so as to cover 90% or more.
  • the seed layer 12 is most preferably formed so as to cover 100% of the surface of the substrate 11, that is, the surface of the substrate 11 without a gap.
  • the substrate 11 is largely exposed.
  • the base layer 14a formed on the seed layer 12 and the base layer 14a formed directly on the substrate 11 have different lattice constants, resulting in a non-uniform crystal and hillocks and pits. There is a risk of it.
  • the seed layer 12 may be formed so as to cover the side surface in addition to the surface of the substrate 11, and may be formed so as to cover the back surface of the substrate 11.
  • the thickness of the seed layer 12 in the LED chip 10 is set to fall within a range of 21 nm to 40 nm.
  • the n-type semiconductor layer 14 includes a base layer 14a stacked on the seed layer 12, an n-type contact layer 14b stacked on the base layer 14a, and an n-type cladding layer 14c stacked on the n-type contact layer 14b. It consists of and. ⁇ Underlayer>
  • the underlying layer 14a as the second layer is made of GaN.
  • the material of the underlayer 14a may be the same as or different from that of the seed layer 12, but a group III nitride compound semiconductor containing Ga, that is, a GaN-based compound semiconductor is preferable, and the Al X Ga 1-X N layer More preferably, it is composed of (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.5, more preferably 0 ⁇ x ⁇ 0.1). Further, as a result of experiments by the present inventors, it was found that a group III nitride compound semiconductor containing Ga, that is, a GaN-based compound semiconductor is preferable as a material used for the underlayer 14a.
  • the underlayer 14a may be doped with n-type impurities within the range of 1 ⁇ 10 17 to 1 ⁇ 10 19 / cm 3 , but undoped ( ⁇ 1 ⁇ 10 17 / cm 3 ) And undoped is preferable in terms of maintaining good crystallinity.
  • the substrate 11 has conductivity
  • electrodes can be formed above and below the LED chip 10 by doping the base layer 14a with a dopant to make it conductive.
  • an insulating material is used as the substrate 11, a chip structure in which the positive electrode and the negative electrode are provided on the same surface of the LED chip 10 is taken. It is more preferable that the crystallinity is improved.
  • an n-type impurity For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
  • the film thickness of the base layer 14a is set to 6 ⁇ m.
  • the thickness of the underlayer 14a is not particularly limited, but is generally preferably in the range of 0.5 ⁇ m to 20 ⁇ m. If it is less than 0.5 ⁇ m, dislocation looping may be insufficient, and if it exceeds 20 ⁇ m, there is no change in function, and the processing time is unnecessarily prolonged. Preferably, it is in the range of 1 ⁇ m to 15 ⁇ m.
  • the n-type contact layer 14b is 2 ⁇ m thick Si-doped GaN having an electron concentration of 1 ⁇ 10 19 / cm 3 .
  • the n-type contact layer 14b is not limited to this, but the n-type contact layer 14b is an Al X Ga 1-X N layer (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ ), similarly to the base layer 14a. 0.5, more preferably 0 ⁇ x ⁇ 0.1).
  • the n-type contact layer 14b is preferably doped with an n-type impurity, and the n-type impurity is doped with 1 ⁇ 10 17 to 1 ⁇ 10 19 / cm 3 , preferably 1 ⁇ 10 18 to 1 ⁇ 10 19.
  • the n-type impurity is doped with 1 ⁇ 10 17 to 1 ⁇ 10 19 / cm 3 , preferably 1 ⁇ 10 18 to 1 ⁇ 10 19.
  • it does not specifically limit as an n-type impurity,
  • Si, Ge, Sn, etc. are mentioned, Preferably it is Si and Ge.
  • the group III nitride compound semiconductor constituting the underlayer 14a and the n-type contact layer 14b preferably has the same composition, and the total film thickness thereof is 0.5 ⁇ m to 20 ⁇ m, preferably 1 ⁇ m to 15 ⁇ m, and more preferably Is preferably set in the range of 1 ⁇ m to 10 ⁇ m. When the film thickness is within this range, the crystallinity of the semiconductor is maintained satisfactorily.
  • n-type cladding layer 14c It is preferable to provide an n-type cladding layer 14c between the n-type contact layer 14b and the light emitting layer 15.
  • the n-type cladding layer 14c is In 0.1 Ga 0.9 N having a thickness of 20 nm and an electron concentration of 1 ⁇ 10 18 / cm 3 .
  • the n-type clad layer 14a is not limited to this, and can be formed of AlGaN, GaN, GaInN, or the like.
  • n-type cladding layer 14c is made of GaInN, it is desirable to make it lower than the In concentration of GaInN in the well layer.
  • the n-type doping concentration of the n-type cladding layer 14c is preferably in the range of 1 ⁇ 10 17 to 1 ⁇ 10 20 / cm 3 , more preferably in the range of 1 ⁇ 10 18 to 1 ⁇ 10 19 / cm 3 .
  • a doping concentration within this range is preferable in terms of maintaining good crystallinity and reducing the operating voltage of the light emitting element.
  • the n-type contact layer can also serve as an underlayer and / or an n-type cladding layer, and the underlayer can also serve as an n-type contact layer and / or an n-type cladding layer. .
  • the light emitting layer 15 is a layer that is stacked on the n-type semiconductor layer 14 and a p-type semiconductor layer 16 is stacked thereon.
  • the light emitting layer 15 can take a multiple quantum well structure, a single well structure, a bulk structure, or the like.
  • the light emitting layer 15 includes a barrier layer 15a made of a group III nitride compound semiconductor and a well layer 15b made of a group III nitride compound semiconductor containing indium alternately and repeatedly.
  • the barrier layers 15a are arranged on the n-type semiconductor layer 14 side and the p-type semiconductor layer 16 side. In the example shown in FIG.
  • the light emitting layer 15 includes six barrier layers 15 a and five well layers 15 b that are alternately and repeatedly stacked, and the barrier layer 15 a is disposed on the uppermost layer and the lowermost layer of the light emitting layer 15.
  • the multi-quantum well configuration is such that a well layer 15b is disposed between the barrier layers 15a.
  • the barrier layer 15a is GaN having a thickness of 16 nm.
  • a group III nitride compound semiconductor such as Al c Ga 1-c N (0 ⁇ c ⁇ 0.3) can be used.
  • the well layer 15b is In 0.2 Ga 0.8 N having a layer thickness of 3 nm.
  • gallium indium nitride such as Ga 1-s In s N (0 ⁇ s ⁇ 0.4) can be used as a group III nitride compound semiconductor containing indium.
  • the p-type semiconductor layer 16 includes a p-type cladding layer 16a and a p-type contact layer 16b.
  • the p-type contact layer may also serve as the p-type cladding layer.
  • the p-type cladding layer 16a is made of Al 0.02 Ga 0.98 N doped with Mg, and its film thickness is 5 nm.
  • Examples of the p-type cladding layer 16a include those of Al d Ga 1-d N (0 ⁇ d ⁇ 0.4, preferably 0.1 ⁇ d ⁇ 0.3).
  • the p-type cladding layer 16a is made of such AlGaN, it is preferable in terms of confining carriers in the light emitting layer 15.
  • the p-type doping concentration of the p-type cladding layer 16a is preferably 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , more preferably 1 ⁇ 10 19 to 1 ⁇ 10 20 / cm 3 .
  • the p-type dope concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity.
  • Mg is mentioned.
  • the p-type contact layer 16b is Al 0.02 Ga 0.98 N doped with Mg, and the film thickness is 0.2 ⁇ m.
  • the p-type contact layer 16b includes at least Al e Ga 1-e N (0 ⁇ e ⁇ 0.5, preferably 0 ⁇ e ⁇ 0.2, more preferably 0 ⁇ e ⁇ 0.1). This is a Group III nitride compound semiconductor layer.
  • Al composition is in the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with the translucent positive electrode 17 (described later).
  • the p-type contact layer 16b contains a p-type dopant at a concentration in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , good ohmic contact can be maintained, cracking can be prevented, It is preferable in terms of maintaining crystallinity, and more preferably in the range of 5 ⁇ 10 19 to 5 ⁇ 10 20 / cm 3 .
  • a p-type impurity For example, Preferably Mg is mentioned.
  • the semiconductor layer 100 which comprises the LED chip 10 of this invention is not limited to the thing of embodiment mentioned above.
  • Group III nitride compound semiconductor represented by the symbol M represents a group V element different from nitrogen (N) and 0 ⁇ A ⁇ 1 is known.
  • these well-known group III nitride compound semiconductors can be used without any limitation.
  • a group III nitride compound semiconductor containing Ga as a group III element can contain other group III elements in addition to Al, Ga, and In. If necessary, Ge, Si, Mg, Ca, Zn , Be, P, As and B can also be contained. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.
  • the translucent positive electrode 17 is an electrode having translucency formed on the p-type semiconductor layer 16.
  • the material of the translucent positive electrode 17 is not particularly limited, but ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO), GZO (ZnO— A material such as Ga 2 O 2 ) can be used.
  • ITO In 2 O 3 —SnO 2
  • AZO ZnO—Al 2 O 3
  • IZO In 2 O 3 —ZnO
  • GZO ZnO— A material such as Ga 2 O 2
  • any structure including a conventionally known structure can be used without any limitation.
  • the translucent positive electrode 17 may be formed so as to cover the entire surface on the p-type semiconductor layer 16, or may be formed in a lattice shape or a tree shape with a gap.
  • the positive electrode bonding pad 18 is a substantially circular electrode formed on the translucent positive electrode 17.
  • the thickness of the positive electrode bonding pad 18 is preferably in the range of 100 to 1000 nm. Further, in view of the characteristics of the bonding pad, the larger the thickness, the higher the bondability. Therefore, the thickness of the positive electrode bonding pad 18 is more preferably 300 nm or more. Furthermore, the thickness is preferably 500 nm or less from the viewpoint of manufacturing cost.
  • the negative electrode 19 is in contact with the n-type contact layer 14 b of the n-type semiconductor layer 14 constituting the semiconductor layer 100. Therefore, as shown in FIG. 7, the negative electrode 19 has an exposed region 14d formed by removing a part of the p-type semiconductor layer 16, the light emitting layer 15, and the n-type semiconductor layer 14 to expose the n-type contact layer 14b. It is formed in a substantially circular shape on the top.
  • negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation.
  • a laminated semiconductor wafer in which the semiconductor layer 100 is formed on the substrate 11 is manufactured.
  • a substrate 11 is prepared. It is desirable to use the substrate 11 after pretreatment. For example, when the substrate 11 made of sapphire is used, a wet method such as a well-known RCA cleaning method can be used to keep the surface hydrogen-terminated. This stabilizes the film forming process.
  • the substrate 11 may be disposed in the chamber of the sputtering apparatus, and the pretreatment may be performed by a method such as sputtering before forming the seed layer 12.
  • a pretreatment for cleaning the surface can be performed in the chamber by exposing the substrate 11 to Ar or N 2 plasma.
  • plasma such as Ar gas or N 2 gas to act on the surface of the substrate 11
  • organic substances and oxides attached to the surface of the substrate 11 can be removed.
  • a voltage is applied between the substrate 11 and the chamber without applying power to the target, the plasma particles efficiently act on the substrate 11.
  • a seed layer 12 is formed on the substrate 11 by sputtering.
  • the orientation of the n-type semiconductor layer 14 formed on the seed layer 12 is greatly influenced by the state of the seed layer 12.
  • the MOCVD method has been desirable for obtaining the seed layer 12 having high crystallinity.
  • the MOCVD method is a method in which decomposed metals are stacked on the substrate 11. First, nuclei are formed, then crystals grow around the nuclei, and are gradually formed, so that they are as thin as the seed layer 12. In the case of forming a film, the uniformity may be insufficient.
  • the sputtering method is preferable because it enables high-density film formation, so that a uniform film can be formed even when a thin film is formed. Therefore, by forming the seed layer 12 by the sputtering method, the seed layer 12 can be formed so as to cover the surface of the substrate 11 without a gap, and the in-plane uniform seed layer 12 can be formed. An n-type semiconductor layer 14 having a high crystal orientation can be grown on the uniform seed layer 12.
  • an RF (high frequency) sputtering method is employed in which the target surface is hardly charged up and the deposition rate is stable.
  • the substrate temperature when the seed layer 12 was formed by sputtering was set to 300 to 800 ° C. Further, Al is used as a sputtering target. Moreover, about the pressure in a furnace, and the nitrogen partial pressure, the pressure in a furnace was 0.3 Pa or more. This is because at a pressure lower than this, the amount of nitrogen present is small and the sputtered metal adheres without becoming nitride. The upper limit of the pressure is not particularly defined as long as plasma can stably exist. Further, the ratio of the nitrogen flow rate to the flow rate of nitrogen and argon was set so that nitrogen was 20% or more and 90% or less.
  • the ratio of nitrogen flow rate may be 30% or more and 90% or less.
  • the nitrogen raw material a generally known compound can be used without any problem, but in particular, when nitrogen is used as the raw material, an apparatus is simple and it is difficult to obtain a high reaction rate.
  • N 2 is used in the present embodiment. Even with N 2 , a usable film forming speed can be obtained, and it is the most suitable nitrogen source in view of the balance with the apparatus cost.
  • a c-plane sapphire substrate was introduced into the sputtering apparatus, the substrate was heated to 500 ° C. in the chamber, and nitrogen gas was introduced at a flow rate of 40 sccm. Thereafter, the pressure in the chamber was maintained at 2.0 Pa, a high frequency bias of 100 W was applied to the substrate side, and the substrate surface was cleaned by exposure to nitrogen plasma for 15 seconds.
  • the distance between the target and the substrate is adjusted to 60 mm, argon and nitrogen gas are introduced, the substrate temperature is heated to 500 ° C., and then high-frequency power with a predetermined output is applied to the target side, and the pressure in the furnace is adjusted.
  • the film formation of the AlN layer was started on the c-plane of the sapphire substrate under the conditions of 10 sccm of argon gas and 30 sccm of nitrogen gas (the ratio of nitrogen to the total gas was 75%). Then, after depositing AlN for a predetermined time, the plasma was stopped and the substrate temperature was lowered.
  • the substrate 11 on which the seed layer 12 taken out from the sputtering apparatus was formed was introduced into an MOCVD furnace, and an n-type semiconductor layer 14 (GaN layer) was formed by the method described below.
  • the substrate was placed on a carbon susceptor for heating disposed in the MOCVD furnace, and after flowing nitrogen gas through the MOCVD furnace, the heater was operated to raise the substrate temperature to 1150 ° C. The amount of ammonia was adjusted so that the group V element / group III element ratio was 6000.
  • hydrogen containing trimethylgallium (TMG) vapor was supplied into the MOCVD furnace, and deposition of a GaN layer on the substrate was started.
  • TMG trimethylgallium
  • the supply of the raw material to the MOCVD furnace was terminated and the growth was stopped. Thereafter, power supply to the heater was stopped, and the temperature of the substrate was lowered to room temperature.
  • the taken-out substrate exhibited a colorless and transparent mirror shape.
  • an n-type semiconductor layer 14 including a base layer 14a, an n-type contact layer 14b, and an n-type cladding layer 14c, a barrier layer 15a, and a well layer
  • the light emitting layer 15 made of 15b, the p-type cladding layer 16a of the p-type semiconductor layer 16 and the p-type contact layer 16b are formed by MOCVD (metal organic chemical vapor deposition) capable of forming a layer with good crystallinity. A film was formed.
  • MOCVD metal organic chemical vapor deposition
  • the carrier gas in the MOCVD method is hydrogen (H 2 ) or nitrogen (N 2 ), trimethyl gallium (TMG) or triethyl gallium (TEG) as a Ga source which is a group III material, and trimethyl aluminum (TMA) as an Al source.
  • triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as an In source, and ammonia, hydrazine, or the like as an N source that is a group V material are used.
  • n-type impurity of the dopant element monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material, germane gas (GeH 4 ) is used as a Ge raw material, and tetramethyl germanium ((CH 3 ) 4 Ge ) And tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
  • Cp 2 Mg biscyclopentadienyl magnesium
  • EtCp 2 Mg bisethylcyclopentadienyl magnesium
  • a light-transmitting positive electrode 17 and a positive electrode bonding pad 18 are sequentially formed by using a photolithography method.
  • the exposed region 14d on the n-type contact layer 14b is formed by dry etching the semiconductor layer 100 on which the translucent positive electrode 17 and the positive electrode bonding pad 18 are formed.
  • the LED chip 10 shown in FIG. 7 is obtained by forming the negative electrode 19 on the exposed region 14d by using a photolithography method.
  • the manufacturing method of the LED chip 10 of the present invention is not limited to the above-described example.
  • the semiconductor layer 100 is formed by sputtering, MOCVD (metal organic chemical vapor deposition), or HVPE. Any method capable of growing a semiconductor layer, such as (halide vapor phase epitaxy) or MBE (molecular beam epitaxy) may be used in combination.
  • FIG. 8 is a diagram showing the relationship between the film thickness of the seed layer 12 and the rocking curve half width of the underlayer 14a for a plurality of LED chip samples.
  • the rocking curve half width is one of the indices for evaluating the degree of crystal orientation of the underlayer 14a and the like.
  • the n-type contact layer 14b is formed on the base layer 14a
  • the n-type cladding layer 14c is formed on the n-type contact layer 14b
  • the light emitting layer 15 is formed on the n-type cladding layer 14c
  • the p-type semiconductor layer 16 is formed.
  • the crystal structure of the underlayer 14a (AlN) is a close-packed structure, and the (10-10) plane corresponds to a plane perpendicular to the crystal substrate surface of the underlayer 14a.
  • the crystal of the underlayer 14a has a structure in which hexagonal columns grow vertically on the substrate surface. For example, if the hexagonal columns, which are crystals of the underlayer 14a, are arranged in the same direction in the plane, a gap cannot be formed, but if they are slightly different, a gap is generated between the hexagonal column and the hexagonal column. . This gap indicates the degree of crystal orientation and is considered to correspond to threading dislocations.
  • the underlayer 14a not only the (0002) plane parallel to the substrate surface but also the crystal orientation of the (10-10) plane perpendicular to the substrate surface needs to satisfy a predetermined condition. Further, since the underlayer 14 a is laminated on the seed layer 12, it is considered that the crystal orientation of the underlayer 14 a is greatly affected by the crystal state of the seed layer 12.
  • the present inventors prepared various types of samples having different thicknesses of the seed layer 12 formed on the substrate 11 and further formed the underlayer 14a thereon, and the underlayer 14a of each sample was prepared.
  • An experiment was conducted in which the crystal plane was measured by the rocking curve method. Specifically, Sample A1, Sample A2, Sample A3, and Sample A4 were manufactured as satisfying the film thickness condition (21 nm to 40 nm) of the seed layer 12 to which this embodiment is applied.
  • Sample B1 and Sample B2 that do not satisfy the film thickness condition of the seed layer 12 to which the present embodiment is applied were also produced.
  • the deposition conditions and film thickness of the seed layer 12 for these samples are shown below. These samples are all manufactured according to the manufacturing method described above except that the film formation conditions (or film thickness) of the seed layer 12 are different.
  • the X-ray rocking curve half-value width was measured for the (0002) plane and the (10-10) plane of the underlayer 14a.
  • CuK ⁇ ray was used as the X-ray source, and incident light having a divergence angle of 0.01 ° was used and measured using a Spectraly PANaltical X'pert Pro MRD apparatus.
  • the rocking curve measurement of the (0002) plane finds a peak corresponding to the (0002) plane, The correction is performed by optimizing 2 ⁇ and ⁇ , and then adjusting the Psi to measure the rocking curve in the direction in which the peak intensity is maximized.
  • the rocking curve of the (10-10) plane was measured using X-rays transmitted through the surface under the condition that X-rays were totally reflected. Specifically, when X-rays that diverge in the vertical direction are incident on the sample to be measured placed horizontally, a part of the X-rays are totally reflected, and the X-rays were used.
  • the detector was fixed at a 2 ⁇ position corresponding to the (10-10) plane, and ⁇ scan was performed. Then, a six-fold symmetric peak was measured, and after fixing the optical system at the peak position showing the maximum intensity, 2 ⁇ and ⁇ were optimized, and rocking curve measurement was performed.
  • the half width of the X-ray rocking curve of the (0002) plane of the underlayer 14a is as large as about 180 arcsec in the sample B1 in which the seed layer 12 has a film thickness of 20 nm or less.
  • Sample A1, Sample A2, Sample A3, and Sample A4 included in the range where the film thickness of the seed layer 12 is 21 nm or more and 40 nm or less has a small value of about 50 arcsec or less. Further, in the sample B2 in which the film thickness of the seed layer 12 is 41 nm or more, it is about 50 arcsec or less.
  • the half width of the X-ray rocking curve of the (10-10) plane of the underlayer 14a is as large as about 270 arcsec in the sample B1 in which the seed layer 12 has a film thickness of 20 nm or less.
  • Sample A1, Sample A2, Sample A3, and Sample A4 in which the film thickness of the seed layer 12 is included in the range of 21 nm to 40 nm is stable in the range of 200 to 225 arcsec.
  • the sample B2 in which the film thickness of the seed layer 12 is 41 nm or more it is about 260 arcsec and tends to be large in the region where the film thickness exceeds 41 nm.
  • the crystallinity of the seed layer 12 is poor, and the (0002) plane and (10-10) of the underlying layer 14a formed thereon It is considered that the plane orientation was not sufficient and the X-ray rocking curve half-width was increased.
  • the seed layer 12 is thicker than 21 nm, the seed layer 12 is crystallized and the crystal planes are aligned, thereby improving the orientation of the (0002) plane and the (10-10) plane of the underlayer 14a.
  • the X-ray rocking curve half-width is considered to have been reduced.
  • the underlying layer 14 a formed thereon becomes the information from the substrate 11. It is considered that the X-ray rocking curve half-value width was increased due to the poor degree of orientation.
  • I F -V F characteristics forward current-forward voltage characteristics between the LED chip 10 to which this embodiment is applied and the LED chip 90 for comparison. It is a figure for demonstrating.
  • the light emission amount of the LED chips is proportional to the current, when a plurality of comparative LED chips 90 having a large variation in I F -V F characteristics are connected in parallel as described above, The amount of emitted light varies greatly.
  • the I F -V F characteristics of the LED chips 10-1, 10-2, and 10-3 were almost the same. Therefore, as described above, the variation in resistance value among these LED chips 10 is small, and the variation in current flowing when the same voltage is applied is also small. Therefore, even when a plurality of LED chips 10 are connected in parallel, it is possible to suppress variation in the amount of light of each LED chip 10. Further, since the resistance values of the plurality of LED chips 10 are uniform, it is possible to suppress the load from being concentrated on any one of the LED chips 10, and the reliability (durability) as the LED package 20 including the plurality of LED chips 10. ) Can be increased.
  • the crystallinity of the semiconductor layer 100 stacked thereon is improved. Therefore, it is possible to obtain a homogeneous LED chip 10 from a laminated semiconductor wafer having good crystallinity, and further, variation in electrical characteristics such as resistance values among the obtained LED chips 10 is reduced. Further, as described in the previous stage, even when a plurality of LED chips 10 are attached to the LED package 20, the variation in the light amount of each LED chip 10 provided in one LED package 20 is naturally reduced. Also in the relationship with the LED package 20, the variation in the amount of light can be reduced. Furthermore, by providing the backlight device 40 with a plurality of LED packages 20 with small variations in the amount of light in this way, it is possible to suppress the occurrence of unevenness in the amount of light in the backlight device 40.
  • FIGS. 10A and 10B are diagrams for explaining the LED package 290.
  • FIG. FIG. 10A is a top view (light emitting surface side) of the LED package 290, and FIG. 10B is an XX cross section shown in FIG. 10A.
  • symbol is attached
  • the LED package 290 includes three LED chips 10 and a package substrate 22 on which the three LED chips 10 are mounted.
  • the package substrate 22 for example, a glass epoxy substrate or the like can be used as a material.
  • the package substrate 22 faces the module substrate 31 when the LED chip 10 is mounted (hereinafter referred to as a mounting surface) and the above-described LED package 20 is mounted. And a surface (hereinafter referred to as a non-mounting surface).
  • power supply bumps 25 and heat dissipation bumps 26 are provided on the mounting surface of the package substrate 22 that functions as a mounting body, corresponding to each LED chip 10.
  • the non-mounting surface of the package substrate 22 there are an electric wiring pattern 23 that becomes a path for supplying power to the LED chip 10 and a heat radiation pattern 24 that becomes a discharge path of heat generated by light emission of the LED chip 10. Is formed.
  • the three LED chips 10 are electrically connected in parallel by the electric wiring pattern 23.
  • the power supply bumps 25 provided on the mounting surface side of the package substrate 22 and the electric wiring pattern 23 provided on the non-mounting surface side are electrically connected through a through hole provided through the package substrate 22. Connected. Similarly, the heat dissipation bumps 26 provided on the mounting surface side of the package substrate 22 and the heat dissipation pattern 24 provided on the non-mounting surface side are heated by a through hole or the like provided through the package substrate 22. Connected.
  • the heat dissipation bump 26 and the LED chip 10 are thermally connected by soldering, and the electrodes provided on the LED chip 10 and the above-described power supply bump 25. Are electrically connected by wire bonding or the like.
  • the LED package 290 having the above configuration is electrically attached to the module substrate 31 in the same manner as the LED package 20 described above (see FIGS. 3A and 3B). At that time, by forming a wiring pattern for heat dissipation on the module substrate 31, heat generated from the LED package 290 can be more effectively released. Thus, the LED package 290 is preferable in that a heat dissipation path is formed in each of the three LED chips 10.
  • the plurality of LED chips 10 are electrically connected in parallel in the LED package 20 or the LED package 290 .
  • the plurality of LED chips 10 are configured to be directly mounted on the module substrate 31, and, for example, three of the plurality of LED chips 10 are electrically connected in parallel by the electric wiring pattern 32 provided on the module substrate 31. It can also be configured to be connected.
  • the module substrate 31 functions as a parallel connection unit and a connection unit.
  • the emitting LED package 20 can be obtained.
  • the present invention is not limited to this.
  • the number of LED chips 10 provided in the LED package 20 may be any number as long as it is plural.
  • FIG. 1 It is a figure which shows the whole structure of the liquid crystal display device with which this Embodiment is applied. It is a figure for demonstrating the structure of a backlight frame and a light emission unit.
  • (A) (b) is a figure for demonstrating a light emitting module.
  • (A) (b) is a figure for demonstrating an LED package.
  • (A)-(c) is a figure for demonstrating the other example about the shape of a lead frame. It is a figure for demonstrating the electrical connection in a light emitting module. It is sectional drawing which showed the LED chip typically. It is the figure which showed the relationship between the film thickness of a seed layer, and the rocking curve half value width of a base layer about the sample of a some LED chip.
  • (A) (b) is a figure for demonstrating the forward current-forward voltage characteristic with the LED chip to which this Embodiment is applied, and the LED chip for a comparison.
  • (A) (b) is a figure for demonstrating the other example about an LED package.
  • DESCRIPTION OF SYMBOLS 10 ... LED chip, 11 ... Board

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is a light source, which comprises a plurality of LED chips (10) connected electrically in parallel. Each of the plural LED chips (10) includes a substrate (11), a seed layer (12), an n-type semiconductor layer (14), a light emitting layer (15) and a p-type semiconductor layer (16). Moreover, the n-type semiconductor layer (14) contains a substrate layer (14a) laminated directly on the seed layer (12). This seed layer (12) is made of a III-group nitride compound semiconductor, and is filmed by a sputtering method to have a thickness set at 21 nm to 40 nm. Moreover, the substrate layer (14a) is made of a III-group nitride chemical semiconductor, in which a (0002) plane has a rocking curve half-value width of 100 arcsecs or less and in which a (10-10) plane has a rocking curve half-value width of 250 arcsecs or less. As a result, the light source can suppress the dispersion of light quantities, which occurs between the plural light emitting elements in case these elements are connected in parallel.

Description

光源、発光装置および表示装置Light source, light emitting device and display device
 本発明は、光源、発光装置および表示装置に関する。 The present invention relates to a light source, a light emitting device, and a display device.
 近年、発光ダイオード(LED:Light Emitting Diode)等の発光素子を用いた発光装置が種々実用化されてきている。このような発光装置は、照明装置や、液晶パネルのバックライト等として広く利用されている。また、例えば液晶テレビ等においては画面サイズの大型化等に伴いバックライト等における光源の光量の増大が求められている。このような要求に対し、上記の発光素子を用いたバックライト等の光源の光量の増大を図る態様として、大型サイズの発光素子を用いる、あるいは発光素子の数を増やす等が考えられる。 In recent years, various light emitting devices using light emitting elements such as light emitting diodes (LEDs) have been put into practical use. Such light emitting devices are widely used as lighting devices, backlights for liquid crystal panels, and the like. In addition, for example, in a liquid crystal television or the like, an increase in the amount of light of a light source in a backlight or the like is required as the screen size increases. In response to such a demand, it is conceivable to use a large-sized light emitting element or increase the number of light emitting elements as an aspect of increasing the light amount of a light source such as a backlight using the light emitting element.
 発光素子の発光量は、素子のサイズが大きいほど大きくなるが、一般に大型サイズの発光素子は発光効率が低い。即ち、大型サイズの発光素子の場合、発光素子に電流を均一に流すために、発光素子に設けられる電極パッドの面積を大きくせざるを得ない。このとき、電極パッド自体に発光素子から発せられる光を吸収する特性があるため、電極パッドの面積が大きくなった分、電極パッドにより吸収される光の量も増加する。 The amount of light emitted from the light-emitting element increases as the element size increases, but generally large-sized light-emitting elements have low luminous efficiency. That is, in the case of a large-sized light emitting element, the area of the electrode pad provided in the light emitting element must be increased in order to allow a current to flow uniformly through the light emitting element. At this time, since the electrode pad itself has a characteristic of absorbing light emitted from the light emitting element, the amount of light absorbed by the electrode pad increases as the area of the electrode pad increases.
 一方、発光素子の数を増やした場合、例えば大型サイズの発光素子と同等の発光量を得るためには、大型サイズの発光素子と比較して発光素子の数を多く設ける必要がある。この場合、例えば実装する基板への発光素子の実装費が嵩む等、製品のコストアップに繋がる。 On the other hand, when the number of light emitting elements is increased, for example, in order to obtain a light emission amount equivalent to that of a large size light emitting element, it is necessary to provide a larger number of light emitting elements than a large size light emitting element. In this case, for example, the cost of mounting the light emitting element on the substrate to be mounted increases, leading to an increase in product cost.
 これに対し、実装する基板への発光素子の実装数を減らす策として、複数の発光素子を1つに纏めてパッケージ化することが考えられる。このとき、1つのパッケージ内で複数の発光素子を電気的に並列接続するか、直列接続するかの方式が考えられる。ここで、直列接続する方式を用いた場合には、並列接続する方式と比較して、1つのパッケージの駆動電圧を高める必要があり、このパッケージをさらに複数個備えた発光装置の駆動電圧も高くなってしまう。 On the other hand, as a measure for reducing the number of light-emitting elements mounted on the substrate to be mounted, it is conceivable to package a plurality of light-emitting elements together. At this time, a method of electrically connecting a plurality of light emitting elements in one package or connecting them in series is conceivable. Here, when the series connection method is used, it is necessary to increase the driving voltage of one package as compared with the parallel connection method, and the driving voltage of a light emitting device including a plurality of packages is also high. turn into.
 一方、複数の発光素子を並列接続する方式についての公報記載の従来技術として、複数の発光素子を電気的に並列接続させた光源を、例えば上記のバックライト装置等に用いる技術が開示されている(例えば、特許文献1参照)。
 さらに、複数の発光素子を電気に並列接続させる際に、これら複数の発光素子の順方向電圧のばらつきが0.1V以内になるように、あらかじめ発光素子を選別してから用いるという技術も開示されている(例えば、特許文献2参照)。
On the other hand, as a conventional technique described in the publication about a method of connecting a plurality of light emitting elements in parallel, a technique is disclosed in which a light source in which a plurality of light emitting elements are electrically connected in parallel is used in, for example, the above backlight device. (For example, refer to Patent Document 1).
Furthermore, a technique is also disclosed in which when a plurality of light emitting elements are connected in parallel to electricity, the light emitting elements are selected and used in advance so that the variation in forward voltage of the plurality of light emitting elements is within 0.1V. (For example, refer to Patent Document 2).
特開2007-134722号公報JP 2007-134722 A 特開2006-222412号公報JP 2006-224212 A
 ところで、抵抗値等の電気的な特性に関してばらつきがある複数の発光素子を電気的に並列接続した場合、これらの発光素子のうち最も抵抗値の小さい発光素子には、他の発光素子と比較して多くの電流が流れることになる。発光素子の光量は一般的に電流に比例するため、並列接続された複数の発光素子間に流れる電流量のばらつきにより、複数の発光素子間に光量のばらつきが生じるおそれがある。さらに、抵抗値の最も小さい発光素子に負荷が集中するため、この発光素子の寿命が著しく短くなる可能性が高く、光源としての信頼性の低下も懸念される。 By the way, when a plurality of light emitting elements having variations in electrical characteristics such as resistance value are electrically connected in parallel, the light emitting element having the smallest resistance value among these light emitting elements is compared with other light emitting elements. A lot of current will flow. Since the light amount of the light emitting element is generally proportional to the current, the light amount may vary between the plurality of light emitting elements due to the variation in the amount of current flowing between the plurality of light emitting elements connected in parallel. Furthermore, since the load is concentrated on the light emitting element having the smallest resistance value, there is a high possibility that the lifetime of the light emitting element will be remarkably shortened, and there is a concern that the reliability as a light source may be reduced.
 本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、複数の発光素子を並列接続させた光源において、複数の発光素子間に生じる光量のばらつきを抑制することができる光源等を提供することにある。 The present invention has been made to solve the technical problems as described above, and an object of the present invention is to provide a light amount generated between a plurality of light emitting elements in a light source in which a plurality of light emitting elements are connected in parallel. It is an object to provide a light source or the like that can suppress variations in the above.
 かかる目的のもと、本発明が適用される光源は、複数の発光素子と、複数の発光素子を電気的に並列接続する並列接続手段とを備え、複数の発光素子を構成する各々の発光素子は、素子基板と、III族窒化物化合物半導体からなり素子基板の上に直接積層される第1の層と、第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層とを含む。 For this purpose, a light source to which the present invention is applied includes a plurality of light emitting elements and parallel connection means for electrically connecting the plurality of light emitting elements in parallel, and each light emitting element constituting the plurality of light emitting elements. Is composed of an element substrate, a first layer made of a group III nitride compound semiconductor and laminated directly on the element substrate, and laminated directly on the first layer, and the rocking curve half-width of the (0002) plane is And a second layer made of a group III nitride compound semiconductor having a rocking curve half-value width of 100 arcsec or less and a (10-10) plane of 250 arcsec or less.
 ここで、第2の層は、(0002)面のロッキングカーブ半値幅が60arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体であることを特徴とすれば、電気的に並列接続された複数の発光素子の例えば抵抗値等のばらつきをさらに抑制できる点から好ましい。 Here, the second layer is a group III nitride compound semiconductor having a rocking curve half-width of (0002) plane of 60 arcsec or less and a rocking curve half-width of (10-10) plane of 250 arcsec or less. Then, it is preferable from the point which can suppress further dispersion | variation in resistance value etc. of the some light emitting element connected in parallel electrically.
 このような光源において、並列接続手段は、複数の発光素子が取り付けられるとともに、複数の発光素子に給電する給電経路が形成された実装体であることを特徴とすることができる。
 また、このような光源において、第1の層は、21nm以上40nm以下の層厚を有することを特徴とすることができる。この場合、第1の層は、スパッタ法によって成膜されることを特徴とする。さらに、素子基板がサファイア基板であり、第1の層がAlNであり、第2の層がGaNであることを特徴とすることができる。
In such a light source, the parallel connection means may be a mounted body in which a plurality of light emitting elements are attached and a power supply path for supplying power to the plurality of light emitting elements is formed.
In such a light source, the first layer can be characterized by having a layer thickness of 21 nm or more and 40 nm or less. In this case, the first layer is formed by sputtering. Furthermore, the element substrate may be a sapphire substrate, the first layer may be AlN, and the second layer may be GaN.
 さらにまた、このような光源において、複数の発光素子とは異なる他の複数の発光素子と、他の複数の発光素子を電気的に並列接続する他の並列接続手段と、並列接続手段と他の並列接続手段とを電気的に接続する接続手段とをさらに備えることを特徴とすることができる。 Furthermore, in such a light source, a plurality of other light emitting elements different from the plurality of light emitting elements, another parallel connection means for electrically connecting the other plurality of light emitting elements in parallel, a parallel connection means and another Connection means for electrically connecting the parallel connection means may further be provided.
 そして、本発明を発光装置として捉えた場合、複数の発光素子と、複数の発光素子を電気的に並列接続する第1の給電経路とを備える発光体と、発光体が複数個取り付けられ、各々の発光体に設けられた第1の給電経路と電気的に接続される第2の給電経路が設けられた取付基板とを備え、複数の発光素子を構成する各々の発光素子は、素子基板と、III族窒化物化合物半導体からなり素子基板の上に直接積層される第1の層と、第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層とを含む。
 このとき、複数の発光体は、取付基板にて等間隔に配置されることを特徴とすれば、発光装置全体としての光量ムラを抑制できる点で好ましい。
When the present invention is regarded as a light-emitting device, a plurality of light-emitting elements each including a plurality of light-emitting elements and a first power supply path that electrically connects the plurality of light-emitting elements in parallel, Each of the light-emitting elements constituting the plurality of light-emitting elements includes: an element substrate; and a mounting substrate provided with a second power-feed path electrically connected to the first power-feed path provided in the light-emitting body. A first layer made of a group III nitride compound semiconductor and directly laminated on the element substrate, and laminated directly on the first layer, and a (0002) plane rocking curve half-width is 100 arcsec or less ( And a second layer made of a group III nitride compound semiconductor having a rocking curve half-width of 10-10) plane of 250 arcsec or less.
At this time, it is preferable that the plurality of light emitters be arranged at equal intervals on the mounting substrate in terms of suppressing light amount unevenness as the whole light emitting device.
 また、本発明を表示装置として捉えた場合、画像を表示する表示パネルと、表示パネルの背面に設けられ表示パネルに光を照射するバックライトとを含む表示装置であって、バックライトは、複数の発光素子と、複数の発光素子を電気的に並列接続する第1の給電経路とを備える発光体と、発光体が複数個取り付けられ、各々の発光体に設けられた第1の給電経路と電気的に接続される第2の給電経路が設けられた取付基板とを備え、複数の発光素子を構成する各々の発光素子は、素子基板と、III族窒化物化合物半導体からなり素子基板の上に直接積層される第1の層と、第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層とを含む。 Further, when the present invention is regarded as a display device, the display device includes a display panel that displays an image, and a backlight that is provided on the back surface of the display panel and that irradiates light on the display panel. And a first power supply path provided in each of the light emitters, each of which has a plurality of light emitters attached thereto, and a first power supply path that electrically connects the plurality of light emitting elements in parallel. Each of the light-emitting elements constituting the plurality of light-emitting elements is composed of an element substrate and a group III nitride compound semiconductor. A first layer directly stacked on the first layer, and a direct stack on the first layer, the rocking curve half-width of the (0002) plane is 100 arcsec or less, and the rocking curve half-width of the (10-10) plane is 250 arc And a second layer made of a Group III nitride compound semiconductor is ec or less.
 このような表示装置において、複数の発光体を構成する2以上の発光体をそれぞれ電気的に接続して複数の発光体群を形成する複数の接続導体と、複数の接続導体を構成する各々の接続導体に対して給電を行う複数の電源とをさらに含むことを特徴とすることができる。 In such a display device, two or more light emitters constituting a plurality of light emitters are electrically connected to each other to form a plurality of light emitter groups, and each of the plurality of connection conductors constituting the plurality of connection conductors. And a plurality of power supplies for supplying power to the connection conductor.
 本発明によれば、複数の発光素子を電気的に並列接続させた際の、複数の発光素子間に生じる光量のばらつきを抑制した光源等を提供することが可能となる。 According to the present invention, it is possible to provide a light source or the like that suppresses variations in the amount of light generated between a plurality of light emitting elements when the plurality of light emitting elements are electrically connected in parallel.
 以下、添付図面を参照して、本発明を実施するための最良の形態(以下、実施の形態という)について詳細に説明する。
<実施の形態1>
 図1は、本実施の形態が適用される液晶表示装置の全体構成を示す図である。なお、図1には、液晶表示装置の縦方向Vおよび横方向Hを矢印にて示している。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described below in detail with reference to the accompanying drawings.
<Embodiment 1>
FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied. In FIG. 1, the vertical direction V and the horizontal direction H of the liquid crystal display device are indicated by arrows.
 液晶表示装置は、液晶表示モジュール50と、この液晶表示モジュール50の背面側(図1では下部側)に設けられるバックライト装置(バックライト)40とを備えている。
 発光装置として機能するバックライト装置40は、光源を収容するバックライトフレーム(フレーム)41と、発光ダイオード(以下の説明ではLEDという)を複数個、配列させた発光ユニット42とを備えている。また、バックライト装置40は、光学フィルムの積層体として、可視光に対して光透過性を有する樹脂を材料とし、面全体を均一な明るさとするために光を散乱・拡散させる拡散板43(板またはフィルム)と、前方への集光効果を持たせた回折格子フィルムであるプリズムシート44、45とを備えている。また、必要に応じて、輝度を向上させるための拡散・反射型の輝度向上フィルム46が備えられる。
The liquid crystal display device includes a liquid crystal display module 50 and a backlight device (backlight) 40 provided on the back side (lower side in FIG. 1) of the liquid crystal display module 50.
The backlight device 40 that functions as a light emitting device includes a backlight frame 41 that houses a light source, and a light emitting unit 42 in which a plurality of light emitting diodes (referred to as LEDs in the following description) are arranged. Further, the backlight device 40 is made of a resin having a light-transmitting property with respect to visible light as a laminated body of optical films, and a diffusion plate 43 (scattering and diffusing light in order to make the entire surface uniform brightness) Plate or film) and prism sheets 44 and 45, which are diffraction grating films having a light condensing effect forward. Further, if necessary, a diffusion / reflection type luminance enhancement film 46 for improving the luminance is provided.
 一方、液晶表示モジュール50は、2枚のガラス基板により液晶が挟まれて構成される液晶パネル51と、この液晶パネル51の各々のガラス基板に積層され、光波の振動をある方向に制限するための偏光板52、53とを備えている。さらに、液晶表示装置には、図示しない駆動用LSIなどの周辺部材も装着される。 On the other hand, the liquid crystal display module 50 is laminated on each glass substrate of the liquid crystal panel 51, which is configured by sandwiching liquid crystal between two glass substrates, and restricts vibration of light waves in a certain direction. Polarizing plates 52 and 53. Further, peripheral members such as a driving LSI (not shown) are also attached to the liquid crystal display device.
 表示パネルの一つとしての液晶パネル51は、図示しない各種構成要素を含んで構成されている。例えば、2枚のガラス基板に、図示しない表示電極、薄膜トランジスタ(TFT:Thin Film Transistor)などのアクティブ素子、液晶、スペーサ、シール剤、配向膜、共通電極、保護膜、カラーフィルタ等を備えている。
 なお、バックライト装置40の構成単位は任意に選択される。例えば、発光ユニット42を有するバックライトフレーム41だけの単位にて「バックライト装置(バックライト)」と呼び、拡散板43、プリズムシート44、45、輝度向上フィルム46を含まない流通形態もあり得る。
The liquid crystal panel 51 as one of the display panels includes various components not shown. For example, two glass substrates are provided with a display electrode (not shown), an active element such as a thin film transistor (TFT), a liquid crystal, a spacer, a sealant, an alignment film, a common electrode, a protective film, a color filter, and the like. .
Note that the structural unit of the backlight device 40 is arbitrarily selected. For example, a unit of only the backlight frame 41 having the light emitting unit 42 is referred to as a “backlight device (backlight)”, and there may be a distribution form that does not include the diffusion plate 43, the prism sheets 44 and 45, and the brightness enhancement film 46. .
 図2は、発光装置としてのバックライト装置40におけるバックライトフレーム41および発光ユニット42の構成を説明するための図であり、バックライト装置40を図1に示す液晶表示モジュール50側(上面側)から見た図である。
 バックライトフレーム41は、例えばアルミニウムやマグネシウム、鉄、またはそれらを含む金属合金などで生成される筐体構造を形成している。そして、その筐体構造の内側に、例えば白色高反射の性能を有するポリエステルフィルムなどが貼られ、リフレクタとしても機能するようになっている。この筐体構造としては、液晶表示モジュール50の大きさに対応して設けられる背面部と、この背面部の四隅を囲う側面部を備えている。また、この背面部や側面部には、必要に応じて、排熱のための冷却フィン等からなるヒートシンク構造が形成されることもある。また、バックライトフレーム41の背面部には、発光ユニット42を構成する複数のLEDパッケージ20(後述)に給電を行うためのコネクタ(不図示)が設けられている。
FIG. 2 is a view for explaining the configuration of the backlight frame 41 and the light emitting unit 42 in the backlight device 40 as the light emitting device. The backlight device 40 is on the liquid crystal display module 50 side (upper surface side) shown in FIG. It is the figure seen from.
The backlight frame 41 forms a housing structure made of, for example, aluminum, magnesium, iron, or a metal alloy containing them. And the polyester film etc. which have the performance of white high reflection, for example are affixed inside the housing | casing structure, and it functions also as a reflector. The casing structure includes a back surface portion corresponding to the size of the liquid crystal display module 50 and side surface portions surrounding the four corners of the back surface portion. In addition, a heat sink structure including cooling fins for exhaust heat may be formed on the back surface portion and the side surface portion as necessary. In addition, a connector (not shown) for supplying power to a plurality of LED packages 20 (described later) constituting the light emitting unit 42 is provided on the back surface of the backlight frame 41.
 発光ユニット42は、8枚の発光モジュール30を備えている。そして、これら8枚の発光モジュール30は、バックライトフレーム41の背面部において、縦方向Vに2列、横方向Hに4列配置されている。 The light emitting unit 42 includes eight light emitting modules 30. The eight light emitting modules 30 are arranged in two rows in the vertical direction V and four rows in the horizontal direction H on the back surface of the backlight frame 41.
 図3(a),(b)は、発光モジュール30について説明するための図である。図3(a)は発光モジュール30の上面図であり、図3(b)は図3(a)に示す矢印A方向から見た発光モジュール30の側面図である。また、図3(b)には、LEDパッケージ20についての部分断面図もあわせて表示している。 3A and 3B are diagrams for explaining the light emitting module 30. FIG. 3A is a top view of the light emitting module 30, and FIG. 3B is a side view of the light emitting module 30 as viewed from the direction of arrow A shown in FIG. 3A. FIG. 3B also shows a partial cross-sectional view of the LED package 20.
 発光モジュール30は、複数(この例では120個)のLEDパッケージ20と、取付基板としてのモジュール用基板31とを備えている。
 光源および発光体として機能するLEDパッケージ20は、複数のLEDチップ10(後述)を備えており、白色光を発するものである。そして、複数のLEDパッケージ20は、図3(a)に示すように、モジュール用基板31上において縦方向Vに12列、横方向Hに10列配置される。また、本実施の形態が適用される発光モジュール30において、モジュール用基板31に配置される複数のLEDパッケージ20は、縦方向Vに隣接するLEDパッケージ20同士の間隔がほぼ等しく(この例では、約1インチ)なるように設定され、かつ、横方向Hに隣接するLEDパッケージ20同士の間隔もほぼ等しく(この例では、約1インチ)なるように設定されている。したがって、モジュール用基板31上において、120個のLEDパッケージ20は、ほぼ格子状に配列されている。なお、複数のLEDパッケージ20は、モジュール用基板31にて略等間隔に配置されていれば良く、例えば隣接する3つのLEDパッケージ20が略正三角形を形成するように配置されていても構わない。
The light emitting module 30 includes a plurality (120 in this example) of LED packages 20 and a module substrate 31 as an attachment substrate.
The LED package 20 that functions as a light source and a light emitter includes a plurality of LED chips 10 (described later), and emits white light. The plurality of LED packages 20 are arranged on the module substrate 31 in 12 rows in the vertical direction V and 10 rows in the horizontal direction H as shown in FIG. Further, in the light emitting module 30 to which the present embodiment is applied, the plurality of LED packages 20 arranged on the module substrate 31 have substantially equal intervals between the LED packages 20 adjacent to each other in the vertical direction V (in this example, The distance between the LED packages 20 adjacent to each other in the horizontal direction H is also set to be substantially equal (in this example, about 1 inch). Therefore, 120 LED packages 20 are arranged in a substantially lattice pattern on the module substrate 31. The plurality of LED packages 20 need only be arranged at substantially equal intervals on the module substrate 31. For example, the three adjacent LED packages 20 may be arranged so as to form a substantially equilateral triangle. .
 さらに、一枚の発光モジュール30において、最外郭に位置するLEDパッケージ20からモジュール用基板31の端部までの距離は、1/2インチより短くなるように設計されている。このように設定することで、図2に示すように、8枚の発光モジュール30をバックライトフレーム41に取り付けた際にも、隣接するLEDパッケージ20同士の縦方向Vおよび横方向Hの間隔を等しく(この例では約1インチ)配置することが可能となる。
 実際に、本実施の形態が適用される発光ユニット42において、960個(120×8)のLEDパッケージ20は、隣接するLEDパッケージ20同士の縦方向Vおよび横方向Hの間隔がほぼ等しくなるように配置されており、バックライトフレーム41にほぼ格子状に配列される。
Further, in one light emitting module 30, the distance from the outermost LED package 20 to the end of the module substrate 31 is designed to be shorter than 1/2 inch. By setting in this way, as shown in FIG. 2, when the eight light emitting modules 30 are attached to the backlight frame 41, the intervals in the vertical direction V and the horizontal direction H between the adjacent LED packages 20 can be set. It is possible to arrange them equally (about 1 inch in this example).
Actually, in the light emitting unit 42 to which the present embodiment is applied, 960 (120 × 8) LED packages 20 have substantially equal intervals in the vertical direction V and the horizontal direction H between adjacent LED packages 20. Arranged on the backlight frame 41 in a substantially lattice pattern.
 モジュール用基板31は上述したように複数のLEDパッケージ20が取り付けられるものである。このモジュール用基板31の母材には、例えば、ガラス繊維にエポキシ樹脂を含浸させたいわゆるガラエポ等を用いることができる。また、図3(b)に示すように、モジュール用基板31において、LEDパッケージ20が取り付けられる面(以下、取付面という)には、LEDパッケージ20に給電するための電気配線パターン32が形成される。そして、モジュール用基板31の取付面において、電気配線パターン32とLEDパッケージ20とがハンダ等によって電気的に接続される。
 また、このモジュール用基板31の取付面には、LEDパッケージ20から照射される光を反射するように白色レジストが形成されている。
As described above, the module substrate 31 has a plurality of LED packages 20 attached thereto. As the base material of the module substrate 31, for example, a so-called glass epoxy in which a glass fiber is impregnated with an epoxy resin can be used. Further, as shown in FIG. 3B, an electrical wiring pattern 32 for supplying power to the LED package 20 is formed on the surface of the module substrate 31 on which the LED package 20 is attached (hereinafter referred to as an attachment surface). The The electrical wiring pattern 32 and the LED package 20 are electrically connected by solder or the like on the mounting surface of the module substrate 31.
A white resist is formed on the mounting surface of the module substrate 31 so as to reflect the light emitted from the LED package 20.
 また、図3(a)および図3(b)に示すように、モジュール用基板31には、発光モジュール30をバックライトフレーム41に取り付けるためのネジ穴36bが設けられている。そして、ネジ36a等を用いて、このネジ穴36bの部分にてモジュール用基板31をバックライトフレーム41に固定する。 As shown in FIGS. 3A and 3B, the module substrate 31 is provided with a screw hole 36b for attaching the light emitting module 30 to the backlight frame 41. Then, the module substrate 31 is fixed to the backlight frame 41 at the screw hole 36b using screws 36a and the like.
 そして、一枚の発光モジュール30において、図3(a)に破線に示すように、発光制御の単位となる発光ブロック300が形成されている。発光体群としての発光ブロック300は、縦方向Vに6列、横方向Hに2列の合計12個のLEDパッケージ20を有している。そして、発光モジュール30には、この発光ブロック300が縦方向Vに2列、横方向Hに5列の合計10ブロック設けられる。
 なお、本実施の形態において、モジュール用基板31に設けられた電気配線パターン32が第2の給電経路および接続導体として機能する。
In one light emitting module 30, a light emitting block 300 as a unit of light emission control is formed as shown by a broken line in FIG. The light emitting block 300 as the light emitting body group has a total of 12 LED packages 20 with 6 rows in the vertical direction V and 2 rows in the horizontal direction H. The light emitting module 30 is provided with a total of 10 blocks of the light emitting blocks 300 in two rows in the vertical direction V and five rows in the horizontal direction H.
In the present embodiment, the electrical wiring pattern 32 provided on the module substrate 31 functions as a second power supply path and a connection conductor.
 図4(a)(b)は、LEDパッケージ20について説明するための図である。図4(a)は、LEDパッケージ20の上面図(発光面側)であり、図4(b)は図4(a)に示すIV-IV断面である。
 LEDパッケージ20は、赤色(R)、緑色(G)、青色(B)の光の三原色を有する白色光を発するものである。そして、LEDパッケージ20は、図4(a)に示すように、3つのLEDチップ10と、正極用リードフレーム291および負極用リードフレーム292と、実装体として機能するケース293とを備えている。
 各LEDチップ10は、青色の光を発する青色LEDである。また、本実施の形態において、LEDチップ10のサイズは350μm角であり、その厚さが80μmのものである。そして、LEDパッケージ20において、これら3つのLEDチップ10は、電気的に並列接続されている。なお、このLEDチップ10の構造等については後に詳しく説明する。
4A and 4B are diagrams for explaining the LED package 20. 4A is a top view (light emitting surface side) of the LED package 20, and FIG. 4B is an IV-IV cross section shown in FIG. 4A.
The LED package 20 emits white light having three primary colors of red (R), green (G), and blue (B). 4A, the LED package 20 includes three LED chips 10, a positive lead frame 291 and a negative lead frame 292, and a case 293 that functions as a mounting body.
Each LED chip 10 is a blue LED that emits blue light. In the present embodiment, the size of the LED chip 10 is 350 μm square, and the thickness thereof is 80 μm. In the LED package 20, the three LED chips 10 are electrically connected in parallel. The structure of the LED chip 10 will be described in detail later.
 正極用リードフレーム291および負極用リードフレーム292は、図4(a)に示すように、金属板をE字状に打ち抜いて作製したものである。そして、図4(b)に示すように、白色樹脂等を材料とするケース293によって、これら正極用リードフレーム291および負極用リードフレーム292の各々の位置関係が固定される。
 そして、3つのLEDチップ10は、それぞれ正極用リードフレーム291の上にハンダ等により機械的に取り付けられる。さらに、3つのLEDチップ10の正極(後述)はそれぞれ正極用リードフレーム291に、3つのLEDチップ10の負極(後述)はそれぞれ負極用リードフレーム292にボンディングワイヤ等により電気的に接続される。このようにして、LEDパッケージ20における3つのLEDチップ10は電気的に並列接続されている。
 なお、本実施の形態において、正極用リードフレーム291および負極用リードフレーム292が、並列接続手段あるいは第1の給電経路の一つとして機能する。
As shown in FIG. 4A, the positive lead frame 291 and the negative lead frame 292 are produced by punching a metal plate into an E shape. Then, as shown in FIG. 4B, the positional relationship between the positive lead frame 291 and the negative lead frame 292 is fixed by a case 293 made of white resin or the like.
The three LED chips 10 are each mechanically mounted on the positive lead frame 291 by solder or the like. Further, the positive electrodes (described later) of the three LED chips 10 are electrically connected to the positive lead frame 291 respectively, and the negative electrodes (described later) of the three LED chips 10 are electrically connected to the negative electrode lead frame 292 by bonding wires or the like. In this way, the three LED chips 10 in the LED package 20 are electrically connected in parallel.
In the present embodiment, the positive lead frame 291 and the negative lead frame 292 function as parallel connection means or one of the first power supply paths.
 また、正極用リードフレーム291および負極用リードフレーム292において、LEDチップ10との電気的接続がなされない側には、それぞれリードフレーム端子291a、292aが設けられている(図4(b)参照)。そして、このリードフレーム端子291a、292aが上述したモジュール用基板31の電気配線パターン32にハンダ等を用いて接続されることで、LEDパッケージ20とモジュール用基板31との電気的接続さらには機械的接続がなされる。 In addition, lead frame terminals 291a and 292a are respectively provided on the side of the positive lead frame 291 and the negative lead frame 292 that are not electrically connected to the LED chip 10 (see FIG. 4B). . The lead frame terminals 291a and 292a are connected to the above-described electric wiring pattern 32 of the module substrate 31 using solder or the like, so that the electrical connection between the LED package 20 and the module substrate 31 and further mechanical A connection is made.
 また、図4(a)および(b)に示すように、3つのLEDチップ10の周囲には、反射壁27が設けられている。この反射壁27は、LEDチップ10から照射された光を反射するものであり、LEDチップ10から発せられた光を効率良く拡散板43等(図1参照)へ向けて照射する。さらに、この反射壁27の内側には、3つのLEDチップ10を埋めるように封止樹脂28が設けられる。そして、本実施の形態において、封止樹脂28には、青色の光を受けて赤色の光を発する蛍光体、および青色の光を受けて緑色の光を発する蛍光体が添加されている。 Further, as shown in FIGS. 4A and 4B, a reflecting wall 27 is provided around the three LED chips 10. The reflection wall 27 reflects the light emitted from the LED chip 10 and efficiently irradiates the light emitted from the LED chip 10 toward the diffusion plate 43 and the like (see FIG. 1). Further, a sealing resin 28 is provided inside the reflecting wall 27 so as to fill the three LED chips 10. In the present embodiment, the sealing resin 28 is added with a phosphor that emits red light upon receiving blue light and a phosphor that emits green light upon receiving blue light.
 図5(a)~(c)は、LEDパッケージ20のリードフレームの形状について他の例を説明するための図である。図5(a)~(c)に示すLEDパッケージ20は、図4(a)に示すものと基本的な構成は同様であるが、正極用リードフレーム291および負極用リードフレーム292の形状が異なるものである。なお、図4(a)を用いて説明したLEDパッケージ20と同様のものについては、同じ符号を付してその詳細な説明を省略する。 FIGS. 5A to 5C are diagrams for explaining another example of the shape of the lead frame of the LED package 20. The basic structure of the LED package 20 shown in FIGS. 5A to 5C is the same as that shown in FIG. 4A, but the shapes of the positive lead frame 291 and the negative lead frame 292 are different. Is. In addition, about the thing similar to the LED package 20 demonstrated using Fig.4 (a), the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 図5(a)に示すLEDパッケージ20の例は、凸形状を有する正極用リードフレーム291と、凹形状を有する負極用リードフレーム292とを備えたものである。そして、1つのLEDチップ10が正極用リードフレーム291の突出部に取り付けられ、他の2つのLEDチップ10がそれぞれ正極用リードフレーム291の突出部以外の場所に取り付けられている。そして、上記の例と同様に、LEDチップ10とリードフレームとの電気的接続がなされて、3つのLEDチップ10は並列接続される。 The example of the LED package 20 shown in FIG. 5A includes a positive lead frame 291 having a convex shape and a negative lead frame 292 having a concave shape. One LED chip 10 is attached to the protruding portion of the positive lead frame 291, and the other two LED chips 10 are attached to locations other than the protruding portion of the positive lead frame 291. As in the above example, the LED chip 10 and the lead frame are electrically connected, and the three LED chips 10 are connected in parallel.
 次に、図5(b)に示すLEDパッケージ20の例は、正極用リードフレーム291および負極用リードフレーム292がそれぞれ矩形状を有するものである。また、各々のリードフレームが所定の距離をもってほぼ平行に配置される。そして、3つのLEDチップ10は正極用リードフレーム291に取り付けられ、上記の例と同様に3つのLEDチップ10は並列接続される。 Next, in the example of the LED package 20 shown in FIG. 5B, the positive lead frame 291 and the negative lead frame 292 each have a rectangular shape. In addition, each lead frame is arranged substantially in parallel with a predetermined distance. The three LED chips 10 are attached to the positive lead frame 291 and the three LED chips 10 are connected in parallel as in the above example.
 さらに、図5(c)に示すLEDパッケージ20の例は、L字形状を有する正極用リードフレーム291と、L字形状の内側に収まるような正方形状を有する負極用リードフレーム292とを備えたものである。また、3つのLEDチップ10は、L字形状を有する正極用リードフレーム291のL字に沿って所定の間隔で取り付けられる。そして、上記の例と同様に、この例の場合においても、LEDパッケージ20に設けられる3つのLEDチップ10は並列接続される。 Furthermore, the example of the LED package 20 shown in FIG. 5C includes a positive lead frame 291 having an L shape and a negative lead frame 292 having a square shape that fits inside the L shape. Is. The three LED chips 10 are attached at predetermined intervals along the L shape of the positive lead frame 291 having an L shape. As in the above example, in this example as well, the three LED chips 10 provided in the LED package 20 are connected in parallel.
 図6は、発光モジュール30における電気接続について説明するための図である。
 ここでは、一枚の発光モジュール30を代表例として説明するが、バックライト装置40に設けられる他の発光モジュール30についても同様である。また、図6において破線で示す枠は発光ブロック300を示しており、一点鎖線で示す枠は1個のLEDパッケージ20の単位に相当する。
 まず、図6に一点鎖線で示すLEDパッケージ20においては、3つのLEDチップ10が並列接続されている。上述したように、これら3つのLEDチップ10の並列接続は、リードフレーム291、292によって実現されている。
FIG. 6 is a diagram for explaining electrical connection in the light emitting module 30.
Here, one light emitting module 30 will be described as a representative example, but the same applies to other light emitting modules 30 provided in the backlight device 40. In FIG. 6, a frame indicated by a broken line indicates the light emitting block 300, and a frame indicated by an alternate long and short dash line corresponds to a unit of one LED package 20.
First, in the LED package 20 indicated by a one-dot chain line in FIG. 6, three LED chips 10 are connected in parallel. As described above, the parallel connection of these three LED chips 10 is realized by the lead frames 291 and 292.
 そして、図6に破線で示す1箇所の発光ブロック300において、12個のLEDパッケージ20は、直列接続されている。この12個のLEDパッケージ20の直列接続は、モジュール用基板31に設けられる電気配線パターン32によって実現されている。さらに、図6に示すように、発光ブロック300(直列接続された12個のLEDパッケージ20)ごとに、それぞれ個別の電源Pが設けられている。そして、12個のLEDパッケージ20は、電気配線パターン32等を介して電源Pに接続される。 Then, in one light emitting block 300 indicated by a broken line in FIG. 6, twelve LED packages 20 are connected in series. The twelve LED packages 20 are connected in series by an electric wiring pattern 32 provided on the module substrate 31. Further, as shown in FIG. 6, an individual power source P is provided for each light emitting block 300 (12 LED packages 20 connected in series). The twelve LED packages 20 are connected to the power source P through the electrical wiring pattern 32 and the like.
 続いて、バックライト装置40(図1参照)の発光動作について説明する。
 バックライト装置40に設けられる各発光モジュール30では、各電源Pによって、発光ブロック300ごとに直列接続された12個のLEDパッケージ20に電圧がかけられる。そして、各発光ブロック300における12個のLEDパッケージ20にそれぞれ電流が流れる。このとき、各LEDパッケージ20では、互いに並列接続された3つのLEDチップ10に電流が流れる。
Next, the light emission operation of the backlight device 40 (see FIG. 1) will be described.
In each light emitting module 30 provided in the backlight device 40, a voltage is applied to twelve LED packages 20 connected in series for each light emitting block 300 by each power source P. A current flows through each of the twelve LED packages 20 in each light emitting block 300. At this time, in each LED package 20, a current flows through the three LED chips 10 connected in parallel to each other.
 そして、3つのLEDチップ10にそれぞれ電流が流された結果、LEDチップ10は青色に発光する。このとき、LEDチップ10から発せられた青色の光の一部は、封止樹脂28に添加された蛍光体によって赤色、あるいは緑色に変換される。結果として、1つのLEDパッケージ20から、赤色(R)、緑色(G)、青色(B)の光を含んだ白色光が発せられる。 Then, as a result of current flowing through the three LED chips 10, the LED chip 10 emits blue light. At this time, part of the blue light emitted from the LED chip 10 is converted into red or green by the phosphor added to the sealing resin 28. As a result, white light including red (R), green (G), and blue (B) light is emitted from one LED package 20.
 そして、他の発光ブロック300、さらには他の発光モジュール30においても同様に、各々のLEDパッケージ20から赤色(R)、緑色(G)、青色(B)の光を含んだ白色光が発せられることになる。そして、この光は、バックライトフレーム41内で混色されて拡散板43に照射され、さらに拡散板43等によって混色が促進された後、液晶表示モジュール50へ向けて照射される。 Similarly, in the other light emitting blocks 300, and also in the other light emitting modules 30, white light including red (R), green (G), and blue (B) light is emitted from each LED package 20. It will be. Then, this light is mixed in the backlight frame 41 and irradiated to the diffusion plate 43. Further, after the color mixing is promoted by the diffusion plate 43 and the like, the light is irradiated toward the liquid crystal display module 50.
 また、上述したように、本実施の形態が適用されるバックライト装置40においては、発光ブロック300ごとに電源Pが設けられているため、各電源Pを制御することにより発光ブロック300ごとに点灯、消灯の制御を独立して行うことができる。これにより、液晶表示装置として画像を表示する際に、表示画像の中で黒色となる場所の背面側に位置する発光ブロック300を消灯させる等の所謂エリア・コントロールを行うことが可能となる。 Further, as described above, in the backlight device 40 to which the present embodiment is applied, since the power supply P is provided for each light emitting block 300, each light emitting block 300 is turned on by controlling each power supply P. , And can be controlled independently. Thus, when an image is displayed as a liquid crystal display device, it is possible to perform so-called area control such as turning off the light emitting block 300 located on the back side of the place where the display image becomes black.
 また、LEDパッケージ20において3つのLEDチップ10を分散して設けることにより、例えばLEDパッケージ20に大型サイズ(例えば、550μm角)のチップを1つ設ける場合と比較して、温度上昇を抑制することが可能となる。 Further, by dispersing and providing three LED chips 10 in the LED package 20, for example, a temperature increase can be suppressed as compared with a case where one large-sized (for example, 550 μm square) chip is provided in the LED package 20. Is possible.
 なお、例えば、本実施の形態が適用される液晶表示装置のバックライトのように、発光面積が大きい装置の光源においては、所定の光量(輝度等)を得るために多数のLEDチップ10を設ける必要がある。このとき、本実施の形態が適用されるLEDパッケージ20が3つのLEDチップ10を纏めて備えているため、取付け対象の基板等に対する取付け作業を例えば1/3にすることができる。
 また、LEDパッケージ20に備えられる3個のLEDチップ10は並列接続されている。従って、LEDパッケージ20において、3個のLEDチップ10を直列接続した場合と比較して、駆動電圧を抑えることが可能である。そして、これに伴ってバックライト装置40、さらには液晶表示装置としての駆動電圧も抑えることができる。
For example, in a light source of a device having a large light emitting area such as a backlight of a liquid crystal display device to which the present embodiment is applied, a large number of LED chips 10 are provided in order to obtain a predetermined light amount (such as luminance). There is a need. At this time, since the LED package 20 to which the present embodiment is applied includes the three LED chips 10 together, the mounting operation on the mounting target substrate or the like can be reduced to, for example, 1/3.
The three LED chips 10 provided in the LED package 20 are connected in parallel. Therefore, in the LED package 20, it is possible to suppress the drive voltage as compared with the case where the three LED chips 10 are connected in series. Accordingly, the driving voltage of the backlight device 40 and further the liquid crystal display device can be suppressed.
 次に、上述したLEDパッケージ20において電気的に並列接続されるLEDチップ10の構成について説明する。
 図7は、LEDチップ10を模式的に示した断面図である。
 LEDチップ10は、図7に示すように、素子基板としての基板11、第1の層としてのシード層12、III族元素としてGaを含有するIII族窒化物化合物半導体からなる半導体層100とを備えている。そして、シード層12の上に、n型半導体層14、発光層15およびp型半導体層16の各層がこの順にて積層されており、これらによって半導体層100が構成される。
Next, the configuration of the LED chip 10 that is electrically connected in parallel in the LED package 20 described above will be described.
FIG. 7 is a cross-sectional view schematically showing the LED chip 10.
As shown in FIG. 7, the LED chip 10 includes a substrate 11 as an element substrate, a seed layer 12 as a first layer, and a semiconductor layer 100 made of a group III nitride compound semiconductor containing Ga as a group III element. I have. Then, the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are stacked in this order on the seed layer 12, and the semiconductor layer 100 is configured by these layers.
<基板>
 本実施の形態が適用されるLEDチップ10における基板11は、サファイアを材料としている。この基板11に用いることができる材料としては、III族窒化物化合物半導体結晶が表面にエピタキシャル成長される基板材料であれば特に限定されない。
<Board>
The substrate 11 in the LED chip 10 to which this embodiment is applied is made of sapphire. The material that can be used for the substrate 11 is not particularly limited as long as it is a substrate material on which a group III nitride compound semiconductor crystal is epitaxially grown.
<シード層>
 シード層12は、基板11(サファイア基板)のc面上に形成されている。本実施の形態において、シード層12はAlNを材料としている。シード層12に用いることができる材料としては、III族窒化物化合物半導体であれば良く、III族元素としてGa、Inを含んでいても構わないが、中でもAlを含んだ組成とすることが望ましい。また、シード層12の材料として、GaAlNを用いても良く、その場合には、Alの組成は50%以上であることが好適である。
<Seed layer>
The seed layer 12 is formed on the c-plane of the substrate 11 (sapphire substrate). In the present embodiment, the seed layer 12 is made of AlN. The material that can be used for the seed layer 12 may be a group III nitride compound semiconductor, and may contain Ga and In as group III elements, but among them, a composition containing Al is desirable. . Further, GaAlN may be used as the material of the seed layer 12, and in that case, the composition of Al is preferably 50% or more.
 そして、シード層12は、基板11の表面の少なくとも60%以上、好ましくは80%以上を覆っている必要があり、90%以上を覆うように形成されていることが好ましい。また、シード層12は、基板11の表面の100%、即ち、基板11の表面上を隙間無く覆うように形成されていることが最も好ましい。
 シード層12が基板11の表面を覆う領域が小さくなると、基板11が大きく露出した状態となる。このような場合、シード層12上に成膜される下地層14aと基板11上に直接成膜される下地層14aとの格子定数が異なるものとなり、均一な結晶とならず、ヒロックやピットを生じてしまう恐れがある。
 また、シード層12は、基板11の表面に加え、側面を覆うようにして形成されていても良く、さらに、基板11の裏面を覆うようにして形成しても良い。
 なお、本実施の形態において、LEDチップ10におけるシード層12の膜厚は、21nm以上40nm以下の範囲に収まるように設定されている。
The seed layer 12 needs to cover at least 60% or more, preferably 80% or more of the surface of the substrate 11, and is preferably formed so as to cover 90% or more. The seed layer 12 is most preferably formed so as to cover 100% of the surface of the substrate 11, that is, the surface of the substrate 11 without a gap.
When the region where the seed layer 12 covers the surface of the substrate 11 becomes small, the substrate 11 is largely exposed. In such a case, the base layer 14a formed on the seed layer 12 and the base layer 14a formed directly on the substrate 11 have different lattice constants, resulting in a non-uniform crystal and hillocks and pits. There is a risk of it.
The seed layer 12 may be formed so as to cover the side surface in addition to the surface of the substrate 11, and may be formed so as to cover the back surface of the substrate 11.
In the present embodiment, the thickness of the seed layer 12 in the LED chip 10 is set to fall within a range of 21 nm to 40 nm.
<半導体層>
<n型半導体層>
 n型半導体層14は、シード層12上に積層される下地層14aと、下地層14a上に積層されるn型コンタクト層14bと、n型コンタクト層14b上に積層されるn型クラッド層14cとから構成されている。
<下地層>
 第2の層としての下地層14aは、GaNを材料としている。下地層14aの材料は、シード層12と同じであっても異なっていても構わないが、Gaを含むIII族窒化物化合物半導体、すなわちGaN系化合物半導体が好ましく、AlGa1-XN層(0≦x≦1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることがより好ましい。また、本発明者等が実験したところ、下地層14aに用いる材料として、Gaを含むIII族窒化物化合物半導体、すなわちGaN系化合物半導体が好ましいことが明らかとなった。
<Semiconductor layer>
<N-type semiconductor layer>
The n-type semiconductor layer 14 includes a base layer 14a stacked on the seed layer 12, an n-type contact layer 14b stacked on the base layer 14a, and an n-type cladding layer 14c stacked on the n-type contact layer 14b. It consists of and.
<Underlayer>
The underlying layer 14a as the second layer is made of GaN. The material of the underlayer 14a may be the same as or different from that of the seed layer 12, but a group III nitride compound semiconductor containing Ga, that is, a GaN-based compound semiconductor is preferable, and the Al X Ga 1-X N layer More preferably, it is composed of (0 ≦ x ≦ 1, preferably 0 ≦ x ≦ 0.5, more preferably 0 ≦ x ≦ 0.1). Further, as a result of experiments by the present inventors, it was found that a group III nitride compound semiconductor containing Ga, that is, a GaN-based compound semiconductor is preferable as a material used for the underlayer 14a.
 下地層14aには、必要に応じて、n型不純物を1×1017~1×1019/cmの範囲内であればドープしても良いが、アンドープ(<1×1017/cm)とすることもでき、アンドープの方が良好な結晶性の維持という点で好ましい。
 例えば、基板11が導電性を有する場合には、下地層14aにドーパントをドープして導電性とすることにより、LEDチップ10の上下に電極を形成することができる。一方、基板11として絶縁性の材料を用いる場合には、LEDチップ10の同じ面に正極及び負極の各電極が設けられたチップ構造をとることになるので、基板11直上の層はドープしない結晶とした方が、結晶性が良好となることから好ましい。
 n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
If necessary, the underlayer 14a may be doped with n-type impurities within the range of 1 × 10 17 to 1 × 10 19 / cm 3 , but undoped (<1 × 10 17 / cm 3 ) And undoped is preferable in terms of maintaining good crystallinity.
For example, when the substrate 11 has conductivity, electrodes can be formed above and below the LED chip 10 by doping the base layer 14a with a dopant to make it conductive. On the other hand, when an insulating material is used as the substrate 11, a chip structure in which the positive electrode and the negative electrode are provided on the same surface of the LED chip 10 is taken. It is more preferable that the crystallinity is improved.
Although it does not specifically limit as an n-type impurity, For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
 また、下地層14aの膜厚は、6μmとなるように設定している。なお、下地層14aの厚さについては特別な制限はないが、一般に0.5μm~20μmの範囲が好ましい。0.5μm未満では転位のループ化が不十分な場合があり、20μmより大きくしても機能には変化がなく、いたずらに処理時間を延ばすのみである。好ましくは、1μm~15μmの範囲である。 Further, the film thickness of the base layer 14a is set to 6 μm. The thickness of the underlayer 14a is not particularly limited, but is generally preferably in the range of 0.5 μm to 20 μm. If it is less than 0.5 μm, dislocation looping may be insufficient, and if it exceeds 20 μm, there is no change in function, and the processing time is unnecessarily prolonged. Preferably, it is in the range of 1 μm to 15 μm.
<n型コンタクト層>
 n型コンタクト層14bは、1×1019/cmの電子濃度を持つ厚さ2μmのSiドープGaNである。
 なお、n型コンタクト層14bについては、これに限定されないが、n型コンタクト層14bは、下地層14aと同様にAlGa1-XN層(0≦x≦1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。
<N-type contact layer>
The n-type contact layer 14b is 2 μm thick Si-doped GaN having an electron concentration of 1 × 10 19 / cm 3 .
The n-type contact layer 14b is not limited to this, but the n-type contact layer 14b is an Al X Ga 1-X N layer (0 ≦ x ≦ 1, preferably 0 ≦ x ≦), similarly to the base layer 14a. 0.5, more preferably 0 ≦ x ≦ 0.1).
 さらに、n型コンタクト層14bには、n型不純物がドープされていることが好ましく、n型不純物を1×1017~1×1019/cm、好ましくは1×1018~1×1019/cmの濃度で含有すると、負極との良好なオーミック接触の維持、クラック発生の抑制、良好な結晶性の維持の点で好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeである。 Further, the n-type contact layer 14b is preferably doped with an n-type impurity, and the n-type impurity is doped with 1 × 10 17 to 1 × 10 19 / cm 3 , preferably 1 × 10 18 to 1 × 10 19. When it is contained at a concentration of / cm 3 , it is preferable in terms of maintaining good ohmic contact with the negative electrode, suppressing the occurrence of cracks, and maintaining good crystallinity. Although it does not specifically limit as an n-type impurity, For example, Si, Ge, Sn, etc. are mentioned, Preferably it is Si and Ge.
 なお、下地層14aおよびn型コンタクト層14bを構成するIII族窒化物化合物半導体は同一組成であることが好ましく、これらの合計の膜厚を0.5μm~20μm、好ましくは1μm~15μm、さらに好ましくは1μm~10μmの範囲に設定することが好ましい。膜厚がこの範囲であると半導体の結晶性が良好に維持される。 The group III nitride compound semiconductor constituting the underlayer 14a and the n-type contact layer 14b preferably has the same composition, and the total film thickness thereof is 0.5 μm to 20 μm, preferably 1 μm to 15 μm, and more preferably Is preferably set in the range of 1 μm to 10 μm. When the film thickness is within this range, the crystallinity of the semiconductor is maintained satisfactorily.
<n型クラッド層>
 n型コンタクト層14bと発光層15との間には、n型クラッド層14cを設けることが好ましい。n型クラッド層14cを設けることにより、活性層への電子供給、格子定数差の緩和、などの効果を持たせることができる。
 本実施の形態において、n型クラッド層14cは、1×1018/cmの電子濃度を持つ厚さ20nmのIn0.1Ga0.9Nである。
 なお、n型クラッド層14aは、これに限定されるものではなく、AlGaN、GaN、GaInNなどにより成膜することも可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造としてもよい。n型クラッド層14cをGaInNとする場合には、井戸層のGaInNのIn濃度よりも低くすることが望ましい。
<N-type cladding layer>
It is preferable to provide an n-type cladding layer 14c between the n-type contact layer 14b and the light emitting layer 15. By providing the n-type cladding layer 14c, effects such as electron supply to the active layer and relaxation of the lattice constant difference can be provided.
In the present embodiment, the n-type cladding layer 14c is In 0.1 Ga 0.9 N having a thickness of 20 nm and an electron concentration of 1 × 10 18 / cm 3 .
The n-type clad layer 14a is not limited to this, and can be formed of AlGaN, GaN, GaInN, or the like. Alternatively, a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked may be used. When the n-type cladding layer 14c is made of GaInN, it is desirable to make it lower than the In concentration of GaInN in the well layer.
 n型クラッド層14cのn型ドープ濃度は1×1017~1×1020/cmの範囲が好ましく、より好ましくは1×1018~1×1019/cmの範囲である。ドープ濃度がこの範囲であると、良好な結晶性の維持および発光素子の動作電圧低減の点で好ましい。
 なお、n型コンタクト層は、下地層、および/または、n型クラッド層を兼ねることが可能であり、下地層が、n型コンタクト層、及び/又はn型クラッド層を兼ねることも可能である。
The n-type doping concentration of the n-type cladding layer 14c is preferably in the range of 1 × 10 17 to 1 × 10 20 / cm 3 , more preferably in the range of 1 × 10 18 to 1 × 10 19 / cm 3 . A doping concentration within this range is preferable in terms of maintaining good crystallinity and reducing the operating voltage of the light emitting element.
The n-type contact layer can also serve as an underlayer and / or an n-type cladding layer, and the underlayer can also serve as an n-type contact layer and / or an n-type cladding layer. .
<発光層>
 発光層15は、n型半導体層14上に積層されるとともにp型半導体層16がその上に積層される層である。発光層15は多重量子井戸構造、単一井戸構造、バルク構造、などを採ることができる。本実施の形態において、発光層15は、図7に示すようにIII族窒化物化合物半導体からなる障壁層15aと、インジウムを含有するIII族窒化物化合物半導体からなる井戸層15bとが交互に繰り返して積層され、且つ、n型半導体層14側及びp型半導体層16側に障壁層15aが配されている。図7に示す例では、発光層15は、6層の障壁層15aと5層の井戸層15bとが交互に繰り返して積層され、発光層15の最上層及び最下層に障壁層15aが配され、各障壁層15a間に井戸層15bが配される多重量子井戸構成とされている。
<Light emitting layer>
The light emitting layer 15 is a layer that is stacked on the n-type semiconductor layer 14 and a p-type semiconductor layer 16 is stacked thereon. The light emitting layer 15 can take a multiple quantum well structure, a single well structure, a bulk structure, or the like. In the present embodiment, as shown in FIG. 7, the light emitting layer 15 includes a barrier layer 15a made of a group III nitride compound semiconductor and a well layer 15b made of a group III nitride compound semiconductor containing indium alternately and repeatedly. The barrier layers 15a are arranged on the n-type semiconductor layer 14 side and the p-type semiconductor layer 16 side. In the example shown in FIG. 7, the light emitting layer 15 includes six barrier layers 15 a and five well layers 15 b that are alternately and repeatedly stacked, and the barrier layer 15 a is disposed on the uppermost layer and the lowermost layer of the light emitting layer 15. The multi-quantum well configuration is such that a well layer 15b is disposed between the barrier layers 15a.
 本実施の形態において、障壁層15aは、厚さが16nmとするGaNである。この障壁層15aとしては、例えば、AlGa1-cN(0≦c<0.3)等のIII族窒化物化合物半導体を用いることが可能である。
 また、井戸層15bは、層厚3nmのIn0.2Ga0.8Nである。この井戸層15bには、インジウムを含有するIII族窒化物化合物半導体として、例えば、Ga1-sInN(0<s<0.4)等の窒化ガリウムインジウムを用いることができる。
In the present embodiment, the barrier layer 15a is GaN having a thickness of 16 nm. As the barrier layer 15a, for example, a group III nitride compound semiconductor such as Al c Ga 1-c N (0 ≦ c <0.3) can be used.
The well layer 15b is In 0.2 Ga 0.8 N having a layer thickness of 3 nm. For the well layer 15b, for example, gallium indium nitride such as Ga 1-s In s N (0 <s <0.4) can be used as a group III nitride compound semiconductor containing indium.
<p型半導体層>
 p型半導体層16は、p型クラッド層16a及びp型コンタクト層16bから構成されている。なお、p型コンタクト層がp型クラッド層を兼ねる構成であってもよい。
<P-type semiconductor layer>
The p-type semiconductor layer 16 includes a p-type cladding layer 16a and a p-type contact layer 16b. The p-type contact layer may also serve as the p-type cladding layer.
<p型クラッド層>
 p型クラッド層16aはMgをドープしたAl0.02Ga0.98Nを材料としており、その膜厚は5nmである。このp型クラッド層16aとしては、AlGa1-dN(0<d≦0.4、好ましくは0.1≦d≦0.3)のものが挙げられる。p型クラッド層16aが、このようなAlGaNからなると、発光層15へのキャリアの閉じ込めの点で好ましい。
<P-type cladding layer>
The p-type cladding layer 16a is made of Al 0.02 Ga 0.98 N doped with Mg, and its film thickness is 5 nm. Examples of the p-type cladding layer 16a include those of Al d Ga 1-d N (0 <d ≦ 0.4, preferably 0.1 ≦ d ≦ 0.3). When the p-type cladding layer 16a is made of such AlGaN, it is preferable in terms of confining carriers in the light emitting layer 15.
 p型クラッド層16aのp型ドープ濃度は、1×1018~1×1021/cmが好ましく、より好ましくは1×1019~1×1020/cmである。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。p型不純物としては、特に限定されないが、例えば、好ましくはMgが挙げられる。 The p-type doping concentration of the p-type cladding layer 16a is preferably 1 × 10 18 to 1 × 10 21 / cm 3 , more preferably 1 × 10 19 to 1 × 10 20 / cm 3 . When the p-type dope concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity. Although it does not specifically limit as a p-type impurity, For example, Preferably Mg is mentioned.
<p型コンタクト層>
 p型コンタクト層16bはMgをドープしたAl0.02Ga0.98Nであり、その膜厚は膜厚0.2μmである。このp型コンタクト層16bとしては、少なくともAlGa1-eN(0≦e<0.5、好ましくは0≦e≦0.2、より好ましくは0≦e≦0.1)を含んでなるIII族窒化物化合物半導体層である。Al組成が上記範囲であると、良好な結晶性の維持および透光性正極17(後述)との良好なオーミック接触の点で好ましい。
<P-type contact layer>
The p-type contact layer 16b is Al 0.02 Ga 0.98 N doped with Mg, and the film thickness is 0.2 μm. The p-type contact layer 16b includes at least Al e Ga 1-e N (0 ≦ e <0.5, preferably 0 ≦ e ≦ 0.2, more preferably 0 ≦ e ≦ 0.1). This is a Group III nitride compound semiconductor layer. When the Al composition is in the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with the translucent positive electrode 17 (described later).
 また、p型コンタクト層16bは、p型ドーパントを1×1018~1×1021/cmの範囲の濃度で含有していると、良好なオーミック接触の維持、クラック発生の防止、良好な結晶性の維持の点で好ましく、より好ましくは5×1019~5×1020/cmの範囲である。p型不純物としては、特に限定されないが、例えば、好ましくはMgが挙げられる。 Further, when the p-type contact layer 16b contains a p-type dopant at a concentration in the range of 1 × 10 18 to 1 × 10 21 / cm 3 , good ohmic contact can be maintained, cracking can be prevented, It is preferable in terms of maintaining crystallinity, and more preferably in the range of 5 × 10 19 to 5 × 10 20 / cm 3 . Although it does not specifically limit as a p-type impurity, For example, Preferably Mg is mentioned.
 なお、本発明のLEDチップ10を構成する半導体層100は、上述した実施形態のものに限定されるものではない。
 例えば、半導体層100の材料としては、上記のものの他、例えば一般式AlGaIn1-A(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素(N)とは別の第V族元素を表し、0≦A<1である。)で表わされるIII族窒化物化合物半導体が知られており、本発明においても、それら周知のIII族窒化物化合物半導体を何ら制限なく用いることができる。
In addition, the semiconductor layer 100 which comprises the LED chip 10 of this invention is not limited to the thing of embodiment mentioned above.
For example, as the material of the semiconductor layer 100, addition to the foregoing, for example, and by a general formula Al x Ga y In z N 1 -A M A (0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1 X + Y + Z = 1. Group III nitride compound semiconductor represented by the symbol M represents a group V element different from nitrogen (N) and 0 ≦ A <1 is known. However, these well-known group III nitride compound semiconductors can be used without any limitation.
 また、III族元素としてGaを含有するIII族窒化物化合物半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、Be、P、As及びB等の元素を含有することもできる。さらに、意図的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。 In addition, a group III nitride compound semiconductor containing Ga as a group III element can contain other group III elements in addition to Al, Ga, and In. If necessary, Ge, Si, Mg, Ca, Zn , Be, P, As and B can also be contained. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.
<透光性正極>
 透光性正極17は、p型半導体層16上に形成された透光性を有する電極である。
 透光性正極17の材質としては、特に限定されず、ITO(In-SnO)、AZO(ZnO-Al)、IZO(In-ZnO)、GZO(ZnO-Ga)等の材料を用いることができる。また、透光性正極17としては、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
 また、透光性正極17は、p型半導体層16上の全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。
<Translucent positive electrode>
The translucent positive electrode 17 is an electrode having translucency formed on the p-type semiconductor layer 16.
The material of the translucent positive electrode 17 is not particularly limited, but ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO), GZO (ZnO— A material such as Ga 2 O 2 ) can be used. Further, as the translucent positive electrode 17, any structure including a conventionally known structure can be used without any limitation.
The translucent positive electrode 17 may be formed so as to cover the entire surface on the p-type semiconductor layer 16, or may be formed in a lattice shape or a tree shape with a gap.
<正極ボンディングパッド>
 正極ボンディングパッド18は、透光性正極17上に形成された略円形の電極である。
 正極ボンディングパッド18の材料としては、Au、Al、NiおよびCu等を用いた各種構造が周知であり、これら周知の材料、構造のものを何ら制限無く用いることができる。ただし、GaNやITO、IZO等と結合をつくる必要があり、Cr、Ti等の酸化物が安定な金属で結合をつくった上でAu等を載せてワイヤボンディングを可能とする構造にする必要がある。
 正極ボンディングパッド18の厚さは、100~1000nmの範囲内であることが好ましい。また、ボンディングパッドの特性上、厚さが大きい方が、ボンダビリティーが高くなるため、正極ボンディングパッド18の厚さは300nm以上とすることがより好ましい。さらに、製造コストの観点から500nm以下とすることが好ましい。
<Positive electrode bonding pad>
The positive electrode bonding pad 18 is a substantially circular electrode formed on the translucent positive electrode 17.
As the material of the positive electrode bonding pad 18, various structures using Au, Al, Ni, Cu and the like are well known, and those known materials and structures can be used without any limitation. However, it is necessary to form a bond with GaN, ITO, IZO, etc., and it is necessary to form a bond with a stable metal oxide such as Cr, Ti, etc., and then make a structure that enables wire bonding by placing Au etc. is there.
The thickness of the positive electrode bonding pad 18 is preferably in the range of 100 to 1000 nm. Further, in view of the characteristics of the bonding pad, the larger the thickness, the higher the bondability. Therefore, the thickness of the positive electrode bonding pad 18 is more preferably 300 nm or more. Furthermore, the thickness is preferably 500 nm or less from the viewpoint of manufacturing cost.
<負極>
 負極19は、半導体層100を構成するn型半導体層14のn型コンタクト層14bに接するものである。このため、負極19は、図7に示すように、p型半導体層16、発光層15、及びn型半導体層14の一部を除去してn型コンタクト層14bを露出させてなる露出領域14dの上に略円形状に形成されている。
 負極19の材料としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができる。
<Negative electrode>
The negative electrode 19 is in contact with the n-type contact layer 14 b of the n-type semiconductor layer 14 constituting the semiconductor layer 100. Therefore, as shown in FIG. 7, the negative electrode 19 has an exposed region 14d formed by removing a part of the p-type semiconductor layer 16, the light emitting layer 15, and the n-type semiconductor layer 14 to expose the n-type contact layer 14b. It is formed in a substantially circular shape on the top.
As materials for the negative electrode 19, negative electrodes having various compositions and structures are well known, and these known negative electrodes can be used without any limitation.
 続いて、LEDチップ10の製造方法について説明する。
 図7に示すLEDチップ10を製造するには、まず、基板11上に半導体層100が形成された積層半導体ウェハを作製する。積層半導体ウェハを作製するには、まず、基板11を用意する。基板11は、前処理を施してから使用することが望ましい。例えば、サファイアからなる基板11を用いる場合には、よく知られたRCA洗浄方法などの湿式の方法を行いて、表面を水素終端させておく方法を用いることができる。このことにより、成膜プロセスが安定する。
Then, the manufacturing method of LED chip 10 is demonstrated.
To manufacture the LED chip 10 shown in FIG. 7, first, a laminated semiconductor wafer in which the semiconductor layer 100 is formed on the substrate 11 is manufactured. In order to produce a laminated semiconductor wafer, first, a substrate 11 is prepared. It is desirable to use the substrate 11 after pretreatment. For example, when the substrate 11 made of sapphire is used, a wet method such as a well-known RCA cleaning method can be used to keep the surface hydrogen-terminated. This stabilizes the film forming process.
 また、スパッタ装置のチャンバ内に基板11を配置し、シード層12を形成する前にスパッタするなどの方法によって前処理を行ってもよい。具体的には、チャンバ内において、基板11をArやNのプラズマ中に曝す事によって表面を洗浄する前処理を行なうことができる。ArガスやNガスなどのプラズマを基板11の表面に作用させることで、基板11表面に付着した有機物や酸化物を除去することができる。この場合、ターゲットにパワーを印加せずに、基板11とチャンバとの間に電圧を印加すれば、プラズマ粒子が効率的に基板11に作用する。 Further, the substrate 11 may be disposed in the chamber of the sputtering apparatus, and the pretreatment may be performed by a method such as sputtering before forming the seed layer 12. Specifically, a pretreatment for cleaning the surface can be performed in the chamber by exposing the substrate 11 to Ar or N 2 plasma. By causing plasma such as Ar gas or N 2 gas to act on the surface of the substrate 11, organic substances and oxides attached to the surface of the substrate 11 can be removed. In this case, if a voltage is applied between the substrate 11 and the chamber without applying power to the target, the plasma particles efficiently act on the substrate 11.
 基板11に前処理を行なった後、スパッタ法によって、基板11上にシード層12を成膜する。
 シード層12上に形成されるn型半導体層14の配向は、シード層12の状態による影響が大きい。これまで結晶性の高いシード層12を得るためにはMOCVD法が望ましいとされてきた。しかし、MOCVD法は基板11上で分解した金属を積み上げる方法であり、最初に核が形成され、次いで核の周囲に結晶が成長し、次第に成膜されてゆくので、シード層12のように薄い膜を形成する場合には、均一性が不十分となる場合がある。
 これに対してスパッタ法は、高密度の成膜が可能であるので、薄い膜を形成する場合でも均一な膜が生成でき、好ましい。よって、シード層12をスパッタ法によって形成することで、基板11の表面上を隙間無く覆うようにシード層12を形成し、さらに面内均一なシード層12を形成することができ、そして面内均一なシード層12の上に結晶配向の高いn型半導体層14を成長させることができる。
 なお、本実施の形態では、スパッタ法の中でも、ターゲット表面のチャージアップが発生しにくく、成膜速度が安定しているRF(高周波)スパッタ法を採用している。
After pre-processing the substrate 11, a seed layer 12 is formed on the substrate 11 by sputtering.
The orientation of the n-type semiconductor layer 14 formed on the seed layer 12 is greatly influenced by the state of the seed layer 12. In the past, the MOCVD method has been desirable for obtaining the seed layer 12 having high crystallinity. However, the MOCVD method is a method in which decomposed metals are stacked on the substrate 11. First, nuclei are formed, then crystals grow around the nuclei, and are gradually formed, so that they are as thin as the seed layer 12. In the case of forming a film, the uniformity may be insufficient.
On the other hand, the sputtering method is preferable because it enables high-density film formation, so that a uniform film can be formed even when a thin film is formed. Therefore, by forming the seed layer 12 by the sputtering method, the seed layer 12 can be formed so as to cover the surface of the substrate 11 without a gap, and the in-plane uniform seed layer 12 can be formed. An n-type semiconductor layer 14 having a high crystal orientation can be grown on the uniform seed layer 12.
In the present embodiment, among the sputtering methods, an RF (high frequency) sputtering method is employed in which the target surface is hardly charged up and the deposition rate is stable.
 スパッタ法によるシード層12の成膜時の基板温度は、300~800℃に設定した。また、スパッタのターゲットとしては、Alを用いている。また、炉内の圧力と窒素分圧については、炉内の圧力を0.3Pa以上とした。これより低い圧力では、窒素の存在量が少なく、スパッタされた金属が窒化物とならずに付着するためである。なお、圧力の上限については、プラズマが安定に存在できる程度であれば特に定めるものではない。
 また、窒素とアルゴンの流量に対する窒素流量の比は、窒素が20%以上90%以下となるように設定した。これ以下の流量比ではスパッタ金属が金属のまま付着し、一方これ以上の流量比ではアルゴンの量が少なくスパッタ速度が低下するためである。なお、特に望ましい条件として、窒素流量の比として、窒素を30%以上90%以下にすることが挙げられる。
The substrate temperature when the seed layer 12 was formed by sputtering was set to 300 to 800 ° C. Further, Al is used as a sputtering target. Moreover, about the pressure in a furnace, and the nitrogen partial pressure, the pressure in a furnace was 0.3 Pa or more. This is because at a pressure lower than this, the amount of nitrogen present is small and the sputtered metal adheres without becoming nitride. The upper limit of the pressure is not particularly defined as long as plasma can stably exist.
Further, the ratio of the nitrogen flow rate to the flow rate of nitrogen and argon was set so that nitrogen was 20% or more and 90% or less. This is because the sputtered metal adheres as it is at a flow rate ratio below this, while the amount of argon is small and the sputter rate decreases at a flow rate ratio above this. Note that, as a particularly desirable condition, the ratio of nitrogen flow rate may be 30% or more and 90% or less.
 窒素原料としては、一般に知られている化合物をなんら問題なく用いることができるが、特に窒素を原料として用いると装置が簡便で済む代わりに、高い反応速度を得にくくなる。ただし、本実施の形態においては、Nを用いている。Nであっても利用可能な程度の成膜速度を得ることができ、装置コストとの兼ね合いを考えると、最も好適な窒素源である。 As the nitrogen raw material, a generally known compound can be used without any problem, but in particular, when nitrogen is used as the raw material, an apparatus is simple and it is difficult to obtain a high reaction rate. However, N 2 is used in the present embodiment. Even with N 2 , a usable film forming speed can be obtained, and it is the most suitable nitrogen source in view of the balance with the apparatus cost.
 本実施の形態においては、c面サファイア基板をスパッタ装置に導入し、チャンバ内で基板を500℃まで加熱し、窒素ガスを40sccmの流量で導入した。その後、チャンバ内の圧力を2.0Paに保持して、基板側に100Wの高周波バイアスを印加し、窒素プラズマに15秒間曝すことで、基板表面を洗浄した。 In this embodiment, a c-plane sapphire substrate was introduced into the sputtering apparatus, the substrate was heated to 500 ° C. in the chamber, and nitrogen gas was introduced at a flow rate of 40 sccm. Thereafter, the pressure in the chamber was maintained at 2.0 Pa, a high frequency bias of 100 W was applied to the substrate side, and the substrate surface was cleaned by exposure to nitrogen plasma for 15 seconds.
 続いて、ターゲットと基板の距離を60mmに調整し、アルゴンと窒素ガスを導入し、基板温度を500℃に加熱し、その後、所定出力の高周波パワーをターゲット側に印加し、炉内の圧力を1.0Paに保ち、アルゴンガスを10sccm、窒素ガスを30sccm流通させた条件(ガス全体に対する窒素の比は75%)で、サファイア基板のc面上にAlN層の成膜を開始した。そして、所定の時間AlNを成膜した後、プラズマを立てるのを止め基板温度を低下させた。 Subsequently, the distance between the target and the substrate is adjusted to 60 mm, argon and nitrogen gas are introduced, the substrate temperature is heated to 500 ° C., and then high-frequency power with a predetermined output is applied to the target side, and the pressure in the furnace is adjusted. The film formation of the AlN layer was started on the c-plane of the sapphire substrate under the conditions of 10 sccm of argon gas and 30 sccm of nitrogen gas (the ratio of nitrogen to the total gas was 75%). Then, after depositing AlN for a predetermined time, the plasma was stopped and the substrate temperature was lowered.
 スパッタ装置から取り出したシード層12が成膜された基板11を、MOCVD炉に導入し、以下に示す方法によりn型半導体層14(GaN層)の成膜を行った。
 まず、MOCVD炉内に配置された加熱用のカーボン製サセプタ上に基板を置き、MOCVD炉内に窒素ガスを流通した後、ヒーターを作動させて基板温度を1150℃に昇温させた。アンモニアの量は、V族元素/III族元素比が6000となるように調節した。続いて、トリメチルガリウム(TMG)の蒸気を含む水素をMOCVD炉内へ供給し、基板上へのGaN層の成膜を開始した。約1時間に亘ってアンドープで6μmの膜厚のGaN層の成長を行った後、原料のMOCVD炉への供給を終了して成長を停止した。その後、ヒーターへの通電を停止して、基板の温度を室温まで降温した。なお、取り出した基板は無色透明のミラー状を呈した。
The substrate 11 on which the seed layer 12 taken out from the sputtering apparatus was formed was introduced into an MOCVD furnace, and an n-type semiconductor layer 14 (GaN layer) was formed by the method described below.
First, the substrate was placed on a carbon susceptor for heating disposed in the MOCVD furnace, and after flowing nitrogen gas through the MOCVD furnace, the heater was operated to raise the substrate temperature to 1150 ° C. The amount of ammonia was adjusted so that the group V element / group III element ratio was 6000. Subsequently, hydrogen containing trimethylgallium (TMG) vapor was supplied into the MOCVD furnace, and deposition of a GaN layer on the substrate was started. After the undoped GaN layer having a thickness of 6 μm was grown for about 1 hour, the supply of the raw material to the MOCVD furnace was terminated and the growth was stopped. Thereafter, power supply to the heater was stopped, and the temperature of the substrate was lowered to room temperature. The taken-out substrate exhibited a colorless and transparent mirror shape.
 その後シード層12の成膜された基板11上に、図7に示すように下地層14aとn型コンタクト層14bとn型クラッド層14cとからなるn型半導体層14、障壁層15a、井戸層15bとからなる発光層15、p型半導体層16のp型クラッド層16aおよびp型コンタクト層16bを、結晶性の良好な層の形成が可能なMOCVD法(有機金属化学気相成長法)で成膜した。 Thereafter, on the substrate 11 on which the seed layer 12 is formed, as shown in FIG. 7, an n-type semiconductor layer 14 including a base layer 14a, an n-type contact layer 14b, and an n-type cladding layer 14c, a barrier layer 15a, and a well layer The light emitting layer 15 made of 15b, the p-type cladding layer 16a of the p-type semiconductor layer 16 and the p-type contact layer 16b are formed by MOCVD (metal organic chemical vapor deposition) capable of forming a layer with good crystallinity. A film was formed.
 なお、MOCVD法におけるキャリアガスとしては、水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてアンモニア、ヒドラジンなどが用いられる。 The carrier gas in the MOCVD method is hydrogen (H 2 ) or nitrogen (N 2 ), trimethyl gallium (TMG) or triethyl gallium (TEG) as a Ga source which is a group III material, and trimethyl aluminum (TMA) as an Al source. Alternatively, triethylaluminum (TEA), trimethylindium (TMI) or triethylindium (TEI) as an In source, and ammonia, hydrazine, or the like as an N source that is a group V material are used.
 また、ドーパント元素のn型不純物には、Si原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマンガス(GeH)や、テトラメチルゲルマニウム((CHGe)やテトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。 In addition, as the n-type impurity of the dopant element, monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material, germane gas (GeH 4 ) is used as a Ge raw material, and tetramethyl germanium ((CH 3 ) 4 Ge ) And tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
 ドーパント元素のp型不純物には、Mg原料として例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム(EtCpMg)を用いることができる。 For the p-type impurity of the dopant element, for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) can be used as the Mg raw material.
 このようにして得られた図7に示す半導体層100のp型コンタクト層16b上に、フォトリソグラフィー法を用いて透光性正極17および正極ボンディングパッド18を順次形成する。
 次いで、透光性正極17および正極ボンディングパッド18の形成された半導体層100をドライエッチングすることにより、n型コンタクト層14b上の露出領域14dを形成する。
 その後、露出領域14d上に、フォトリソグラフィー法を用いて負極19を形成することにより、図7に示すLEDチップ10が得られる。
On the p-type contact layer 16b of the semiconductor layer 100 shown in FIG. 7 obtained in this manner, a light-transmitting positive electrode 17 and a positive electrode bonding pad 18 are sequentially formed by using a photolithography method.
Next, the exposed region 14d on the n-type contact layer 14b is formed by dry etching the semiconductor layer 100 on which the translucent positive electrode 17 and the positive electrode bonding pad 18 are formed.
Then, the LED chip 10 shown in FIG. 7 is obtained by forming the negative electrode 19 on the exposed region 14d by using a photolithography method.
 なお、本発明のLEDチップ10の製造方法は、上述した例に限定されるものではなく、例えば半導体層100の成膜は、スパッタ法、MOCVD法(有機金属化学気相成長法)、HVPE法(ハライド気相成長法)、MBE法(分子線エピタキシー法)等、半導体層を成長させることのできる如何なる方法を組み合わせて行なってもよい。 The manufacturing method of the LED chip 10 of the present invention is not limited to the above-described example. For example, the semiconductor layer 100 is formed by sputtering, MOCVD (metal organic chemical vapor deposition), or HVPE. Any method capable of growing a semiconductor layer, such as (halide vapor phase epitaxy) or MBE (molecular beam epitaxy) may be used in combination.
 次に、シード層12の膜厚と下地層14aの結晶性との関係について説明する。
 図8は、複数のLEDチップのサンプルについて、シード層12の膜厚と下地層14aのロッキングカーブ半値幅との関係を示した図である。なお、ロッキングカーブ半値幅とは、下地層14a等の結晶の配向度合いを評価する指標の1つである。
Next, the relationship between the film thickness of the seed layer 12 and the crystallinity of the foundation layer 14a will be described.
FIG. 8 is a diagram showing the relationship between the film thickness of the seed layer 12 and the rocking curve half width of the underlayer 14a for a plurality of LED chip samples. The rocking curve half width is one of the indices for evaluating the degree of crystal orientation of the underlayer 14a and the like.
 ここで、半導体層100では、下地層14a上にn型コンタクト層14b、n型コンタクト層14bの上にn型クラッド層14c、n型クラッド層14cの上に発光層15、p型半導体層16と順に積層されている。したがって、下地層14aの結晶の配向性が良好であれば半導体層100の結晶性が良くなり、下地層14aの結晶の配向性が良好でなければ半導体層100の結晶性は悪くなる。 Here, in the semiconductor layer 100, the n-type contact layer 14b is formed on the base layer 14a, the n-type cladding layer 14c is formed on the n-type contact layer 14b, the light emitting layer 15 is formed on the n-type cladding layer 14c, and the p-type semiconductor layer 16 is formed. Are stacked in order. Accordingly, if the crystal orientation of the base layer 14a is good, the crystallinity of the semiconductor layer 100 is good. If the crystal orientation of the base layer 14a is not good, the crystallinity of the semiconductor layer 100 is bad.
 また、下地層14a(AlN)の結晶構造は最密充填構造となっており、(10-10)面は下地層14aの結晶の基板面に垂直な面に相当する。下地層14aの結晶は、基板面に六角柱が垂直に成長した構造をしている。例えば、下地層14aの結晶である六角柱が平面内で同じ向きで揃って配置されていると隙間はできないが、少しでも違っていると、六角柱と六角柱との間に隙間が発生する。この隙間は結晶の配向度合いを示すものであって、貫通転位に相当すると考えられる。したがって、下地層14aにおいては、基板面に平行な(0002)面のみならず、基板面に垂直な(10-10)面の結晶の配向性も所定の条件を満足することが必要である。
 さらに、この下地層14aはシード層12の上に積層されるため、下地層14aの結晶の配向性は、シード層12の結晶状態の影響を大きく受けると考える。
The crystal structure of the underlayer 14a (AlN) is a close-packed structure, and the (10-10) plane corresponds to a plane perpendicular to the crystal substrate surface of the underlayer 14a. The crystal of the underlayer 14a has a structure in which hexagonal columns grow vertically on the substrate surface. For example, if the hexagonal columns, which are crystals of the underlayer 14a, are arranged in the same direction in the plane, a gap cannot be formed, but if they are slightly different, a gap is generated between the hexagonal column and the hexagonal column. . This gap indicates the degree of crystal orientation and is considered to correspond to threading dislocations. Therefore, in the underlayer 14a, not only the (0002) plane parallel to the substrate surface but also the crystal orientation of the (10-10) plane perpendicular to the substrate surface needs to satisfy a predetermined condition.
Further, since the underlayer 14 a is laminated on the seed layer 12, it is considered that the crystal orientation of the underlayer 14 a is greatly affected by the crystal state of the seed layer 12.
 そこで、本発明者等は、基板11の上に形成するシード層12の厚さを各種変え、さらにその上に下地層14aを形成した6種類のサンプルを準備し、各サンプルの下地層14aの結晶面をロッキングカーブ法によって測定する、という実験を行った。
 具体的には、本実施の形態が適用されるシード層12の膜厚の条件(21nm~40nmのもの)を満たすものとしてサンプルA1、サンプルA2、サンプルA3およびサンプルA4を作製した。また、これに対して、本実施の形態が適用されるシード層12の膜厚の条件を満たさないサンプルB1およびサンプルB2も作製した。これらのサンプルについてのシード層12の成膜条件および膜厚については以下に示す。なお、これらのサンプルは、シード層12の成膜条件(あるいは膜厚)を異ならせている以外、全て上述した製造方法に従って作製されている。
Therefore, the present inventors prepared various types of samples having different thicknesses of the seed layer 12 formed on the substrate 11 and further formed the underlayer 14a thereon, and the underlayer 14a of each sample was prepared. An experiment was conducted in which the crystal plane was measured by the rocking curve method.
Specifically, Sample A1, Sample A2, Sample A3, and Sample A4 were manufactured as satisfying the film thickness condition (21 nm to 40 nm) of the seed layer 12 to which this embodiment is applied. On the other hand, Sample B1 and Sample B2 that do not satisfy the film thickness condition of the seed layer 12 to which the present embodiment is applied were also produced. The deposition conditions and film thickness of the seed layer 12 for these samples are shown below. These samples are all manufactured according to the manufacturing method described above except that the film formation conditions (or film thickness) of the seed layer 12 are different.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の6種類のサンプルに対して、下地層14aの(0002)面および(10-10)面について、X線ロッキングカーブ半値幅を測定した。
 このX線ロッキングカーブ法の測定において、X線源としては、CuKα線を使い、発散角が0.01°の入射光を使ってスペクトリス社製PANalytical X‘pert Pro MRD装置を使って測定した。
With respect to the above six types of samples, the X-ray rocking curve half-value width was measured for the (0002) plane and the (10-10) plane of the underlayer 14a.
In the measurement of the X-ray rocking curve method, CuKα ray was used as the X-ray source, and incident light having a divergence angle of 0.01 ° was used and measured using a Spectraly PANaltical X'pert Pro MRD apparatus.
 なお、基板の装置への取り付け方や基板に対する配向方向が被測定試料によって違うことによる誤差を考慮して、(0002)面のロッキングカーブ測定は(0002)面に相当するピークを見つけた後、2θとωを最適化し、その後、Psiを調整してピーク強度が最大になる方向でのロッキングカーブ測定を行なうことにより補正を行なっている。 In consideration of errors due to the way the substrate is attached to the apparatus and the orientation direction with respect to the substrate differ depending on the sample to be measured, the rocking curve measurement of the (0002) plane finds a peak corresponding to the (0002) plane, The correction is performed by optimizing 2θ and ω, and then adjusting the Psi to measure the rocking curve in the direction in which the peak intensity is maximized.
 また、(10-10)面のロッキングカーブ測定は、X線が全反射する条件で面内を透過するX線を用いて行った。具体的には水平に置いた被測定試料に対して垂直方向に発散するX線を水平方向から入射すると一部が全反射するので、そのX線を利用した。また、検出器を(10-10)面相当の2θ位置に固定してφスキャンを行った。そして、六回対称のピークが測定され、最大強度を示すピーク位置に光学系を固定した後、2θ及びωを最適化して、ロッキングカーブ測定を行った。 In addition, the rocking curve of the (10-10) plane was measured using X-rays transmitted through the surface under the condition that X-rays were totally reflected. Specifically, when X-rays that diverge in the vertical direction are incident on the sample to be measured placed horizontally, a part of the X-rays are totally reflected, and the X-rays were used. The detector was fixed at a 2θ position corresponding to the (10-10) plane, and φ scan was performed. Then, a six-fold symmetric peak was measured, and after fixing the optical system at the peak position showing the maximum intensity, 2θ and ω were optimized, and rocking curve measurement was performed.
 図8に示すように、下地層14aの(0002)面のX線ロッキングカーブ半値幅は、シード層12の膜厚が20nm以下であるサンプルB1においては、約180arcsecと大きい。これに対して、シード層12の膜厚が21nm以上40nm以下の範囲に含まれるサンプルA1、サンプルA2、サンプルA3およびサンプルA4は、約50arcsec以下という小さい値となった。また、シード層12の膜厚が41nm以上となるサンプルB2では、約50arcsec以下となった。 As shown in FIG. 8, the half width of the X-ray rocking curve of the (0002) plane of the underlayer 14a is as large as about 180 arcsec in the sample B1 in which the seed layer 12 has a film thickness of 20 nm or less. On the other hand, Sample A1, Sample A2, Sample A3, and Sample A4 included in the range where the film thickness of the seed layer 12 is 21 nm or more and 40 nm or less has a small value of about 50 arcsec or less. Further, in the sample B2 in which the film thickness of the seed layer 12 is 41 nm or more, it is about 50 arcsec or less.
 一方、図8に示すように、下地層14aの(10-10)面のX線ロッキングカーブ半値幅は、シード層12の膜厚が20nm以下であるサンプルB1においては、約270arcsecと大きい。これに対して、シード層12の膜厚が21nm~40nmの範囲に含まれるサンプルA1、サンプルA2、サンプルA3およびサンプルA4では、200~225arcsecの範囲で安定している。そして、シード層12の膜厚が41nm以上となるサンプルB2においては、約260arcsecとなり、膜厚が41nmを超えた領域では大きくなる傾向にあった。 On the other hand, as shown in FIG. 8, the half width of the X-ray rocking curve of the (10-10) plane of the underlayer 14a is as large as about 270 arcsec in the sample B1 in which the seed layer 12 has a film thickness of 20 nm or less. On the other hand, Sample A1, Sample A2, Sample A3, and Sample A4 in which the film thickness of the seed layer 12 is included in the range of 21 nm to 40 nm is stable in the range of 200 to 225 arcsec. And in the sample B2 in which the film thickness of the seed layer 12 is 41 nm or more, it is about 260 arcsec and tends to be large in the region where the film thickness exceeds 41 nm.
 以上の結果を考察するに、シード層12の膜厚が21nmより薄い領域では、シード層12の結晶性が悪く、その上に形成された下地層14aの(0002)面および(10-10)面の配向が十分でなく、X線ロッキングカーブ半値幅が大きくなったと考えられる。一方、シード層12の膜厚が21nmより厚くなると、シード層12が結晶化して結晶面が揃ったことで、下地層14aの(0002)面および(10-10)面の配向性が向上し、X線ロッキングカーブ半値幅が小さくなったと考えられる。しかし、(10-10)面の結晶性は基板11から情報を得ているので、シード層12の膜厚が40nmを超えると、その上に形成される下地層14aは、基板11からの情報を得にくくなり、配向の程度が悪くなって、X線ロッキングカーブ半値幅が大きくなったと考えられる。 Considering the above results, in the region where the thickness of the seed layer 12 is less than 21 nm, the crystallinity of the seed layer 12 is poor, and the (0002) plane and (10-10) of the underlying layer 14a formed thereon It is considered that the plane orientation was not sufficient and the X-ray rocking curve half-width was increased. On the other hand, when the seed layer 12 is thicker than 21 nm, the seed layer 12 is crystallized and the crystal planes are aligned, thereby improving the orientation of the (0002) plane and the (10-10) plane of the underlayer 14a. The X-ray rocking curve half-width is considered to have been reduced. However, since the crystallinity of the (10-10) plane is obtained from the substrate 11, when the film thickness of the seed layer 12 exceeds 40 nm, the underlying layer 14 a formed thereon becomes the information from the substrate 11. It is considered that the X-ray rocking curve half-value width was increased due to the poor degree of orientation.
 図9(a)(b)は、本実施の形態が適用されるLEDチップ10と、比較用のLEDチップ90との順方向電流-順方向電圧特性(以下、I-V特性という)について説明するための図である。
 ここでは、上記のサンプルA3と同様なシード層12の膜厚条件に基づいて作製された積層半導体ウェハから切り出した3つのLEDチップ10(10-1、10-2、10-3)と、上記のサンプルB1と同様なシード層12の膜厚条件に基づいて作製された積層半導体ウェハから切り出した比較用の3つのLEDチップ90(90-1、90-2、90-3)を準備し、それぞれのI-V特性を測定した。
9A and 9B show forward current-forward voltage characteristics (hereinafter referred to as I F -V F characteristics) between the LED chip 10 to which this embodiment is applied and the LED chip 90 for comparison. It is a figure for demonstrating.
Here, three LED chips 10 (10-1, 10-2, 10-3) cut out from a laminated semiconductor wafer manufactured based on the film thickness condition of the seed layer 12 similar to the above sample A3, and the above Three LED chips 90 (90-1, 90-2, 90-3) for comparison cut out from a laminated semiconductor wafer manufactured based on the film thickness condition of the seed layer 12 similar to the sample B1 of Each I F -V F characteristic was measured.
 まず、比較用のLEDチップ90については、図9(b)に示すように、比較用のLEDチップ90-1、90-2および90-3の間でI-V特性にばらつきが生じた。つまり、比較用の複数のLEDチップ90間における抵抗値のばらつきが大きいことが分かった。これは、比較用の複数のLEDチップ90にそれぞれ同じ電圧をかけたとき、各LEDチップ90に流れる電流のばらつきが大きいことを意味する。 First, with respect to the comparative LED chip 90, as shown in FIG. 9B, variations in I F -V F characteristics occur between the comparative LED chips 90-1, 90-2 and 90-3. It was. That is, it has been found that the resistance value varies greatly among the plurality of comparative LED chips 90. This means that when the same voltage is applied to the plurality of LED chips 90 for comparison, the variation in the current flowing through each LED chip 90 is large.
 また、LEDチップの発光量は電流に比例するため、このようにI-V特性が大きくばらついた比較用の複数のLEDチップ90を並列接続させた場合には、これらのLEDチップ90ごとに発光量が大きくばらつくことになる。 In addition, since the light emission amount of the LED chips is proportional to the current, when a plurality of comparative LED chips 90 having a large variation in I F -V F characteristics are connected in parallel as described above, The amount of emitted light varies greatly.
 これに対して、図9(a)に示すように、LEDチップ10-1、10-2および10-3についてのI-V特性は、それぞれほぼ同程度であった。したがって、上述したように、これらのLEDチップ10ごとの抵抗値のばらつきも小さく、同じ電圧をかけたときに流れる電流のばらつきも小さくなる。したがって、複数のLEDチップ10を並列接続した場合であっても、各LEDチップ10の光量のばらつきを抑制することが可能となる。
 さらに、複数のLEDチップ10の抵抗値が均一なため、いずれか1つのLEDチップ10に負荷が集中することを抑制でき、複数のLEDチップ10を備えたLEDパッケージ20としての信頼性(耐久性)を高めることが可能となる。
On the other hand, as shown in FIG. 9A, the I F -V F characteristics of the LED chips 10-1, 10-2, and 10-3 were almost the same. Therefore, as described above, the variation in resistance value among these LED chips 10 is small, and the variation in current flowing when the same voltage is applied is also small. Therefore, even when a plurality of LED chips 10 are connected in parallel, it is possible to suppress variation in the amount of light of each LED chip 10.
Further, since the resistance values of the plurality of LED chips 10 are uniform, it is possible to suppress the load from being concentrated on any one of the LED chips 10, and the reliability (durability) as the LED package 20 including the plurality of LED chips 10. ) Can be increased.
 上述したように、基板11上に形成されるシード層12の成膜条件を最適にすることで、その上に積層される半導体層100の結晶性を良好にしている。よって、結晶性が良好な積層半導体ウェハから均質なLEDチップ10を得ることができ、さらに、得られた複数のLEDチップ10同士の例えば抵抗値等の電気的特性のばらつきも小さくなる。
 また、前段で説明したように、複数個のLEDチップ10をLEDパッケージ20に取り付けた場合でも、1個のLEDパッケージ20に設けられる各LEDチップ10の光量のばらつきが小さくなることはもちろん、他のLEDパッケージ20との関係においても、光量のばらつきを小さくすることができる。さらに、このように光量のばらつきが小さい複数のLEDパッケージ20をバックライト装置40に備えることで、バックライト装置40における光量ムラの発生を抑制することができる。
As described above, by optimizing the deposition conditions of the seed layer 12 formed on the substrate 11, the crystallinity of the semiconductor layer 100 stacked thereon is improved. Therefore, it is possible to obtain a homogeneous LED chip 10 from a laminated semiconductor wafer having good crystallinity, and further, variation in electrical characteristics such as resistance values among the obtained LED chips 10 is reduced.
Further, as described in the previous stage, even when a plurality of LED chips 10 are attached to the LED package 20, the variation in the light amount of each LED chip 10 provided in one LED package 20 is naturally reduced. Also in the relationship with the LED package 20, the variation in the amount of light can be reduced. Furthermore, by providing the backlight device 40 with a plurality of LED packages 20 with small variations in the amount of light in this way, it is possible to suppress the occurrence of unevenness in the amount of light in the backlight device 40.
 以上に説明したLEDパッケージ20はリードフレームを用いたものであるが、必ずしもリードフレームを用いた態様に限定されるものではない。
 図10(a)(b)は、LEDパッケージ290について説明するための図である。図10(a)は、LEDパッケージ290の上面図(発光面側)であり、図10(b)は図10(a)に示すX-X断面である。なお、上述したLEDパッケージ20と同様のものについては、同じ符号を付してその詳細な説明を省略する。
The LED package 20 described above uses a lead frame, but is not necessarily limited to an embodiment using a lead frame.
FIGS. 10A and 10B are diagrams for explaining the LED package 290. FIG. FIG. 10A is a top view (light emitting surface side) of the LED package 290, and FIG. 10B is an XX cross section shown in FIG. 10A. In addition, about the thing similar to the LED package 20 mentioned above, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 図10(a)に示すように、LEDパッケージ290は、3つのLEDチップ10と、これら3つのLEDチップ10を実装するパッケージ用基板22とを備えている。パッケージ用基板22は、例えばガラエポ基板等を材料として用いることができる。そして、パッケージ用基板22は、図10(b)に示すように、LEDチップ10を実装する面(以下、実装面という)と、上述したLEDパッケージ20を取り付ける際にモジュール用基板31に対向する面(以下、非実装面という)とを有している。 As shown in FIG. 10A, the LED package 290 includes three LED chips 10 and a package substrate 22 on which the three LED chips 10 are mounted. As the package substrate 22, for example, a glass epoxy substrate or the like can be used as a material. As shown in FIG. 10B, the package substrate 22 faces the module substrate 31 when the LED chip 10 is mounted (hereinafter referred to as a mounting surface) and the above-described LED package 20 is mounted. And a surface (hereinafter referred to as a non-mounting surface).
 図10(b)に示すように、実装体として機能するパッケージ用基板22の実装面には、各LEDチップ10に対応して、給電バンプ25と放熱用バンプ26とがそれぞれ設けられている。一方、パッケージ用基板22の非実装面には、LEDチップ10に給電する際の経路となる電気配線パターン23、およびLEDチップ10の発光に伴って発生する熱の放出経路となる放熱パターン24が形成されている。そして、電気配線パターン23によって、3つのLEDチップ10の電気的な並列接続がなされている。 As shown in FIG. 10B, power supply bumps 25 and heat dissipation bumps 26 are provided on the mounting surface of the package substrate 22 that functions as a mounting body, corresponding to each LED chip 10. On the other hand, on the non-mounting surface of the package substrate 22, there are an electric wiring pattern 23 that becomes a path for supplying power to the LED chip 10 and a heat radiation pattern 24 that becomes a discharge path of heat generated by light emission of the LED chip 10. Is formed. The three LED chips 10 are electrically connected in parallel by the electric wiring pattern 23.
 そして、パッケージ用基板22の実装面側に設けられた給電バンプ25と非実装面側に設けられた電気配線パターン23とは、パッケージ用基板22を貫通して設けられるスルーホール等によって電気的に接続される。また、同様に、パッケージ用基板22の実装面側に設けられた放熱用バンプ26と非実装面側に設けられる放熱パターン24とは、パッケージ用基板22を貫通して設けられるスルーホール等によって熱的に接続される。 The power supply bumps 25 provided on the mounting surface side of the package substrate 22 and the electric wiring pattern 23 provided on the non-mounting surface side are electrically connected through a through hole provided through the package substrate 22. Connected. Similarly, the heat dissipation bumps 26 provided on the mounting surface side of the package substrate 22 and the heat dissipation pattern 24 provided on the non-mounting surface side are heated by a through hole or the like provided through the package substrate 22. Connected.
 各LEDチップ10をパッケージ用基板22に取り付ける際には、放熱用バンプ26とLEDチップ10とがハンダ付けにより熱的に接続され、さらに、LEDチップ10に設けられた電極と上述した給電バンプ25とがワイヤボンディング等によって電気的に接続される。 When each LED chip 10 is attached to the package substrate 22, the heat dissipation bump 26 and the LED chip 10 are thermally connected by soldering, and the electrodes provided on the LED chip 10 and the above-described power supply bump 25. Are electrically connected by wire bonding or the like.
 そして、以上のような構成を有するLEDパッケージ290は、上述したLEDパッケージ20と同様に、モジュール用基板31に電気的に取り付けられる(図3(a)(b)参照)。なお、その際に、モジュール用基板31に放熱用の配線パターンを形成しておくことで、LEDパッケージ290から発生した熱をさらに効果的に放出することが可能となる。このように、LEDパッケージ290は、3つのLEDチップ10にそれぞれ放熱経路が形成されている点で好ましい。 The LED package 290 having the above configuration is electrically attached to the module substrate 31 in the same manner as the LED package 20 described above (see FIGS. 3A and 3B). At that time, by forming a wiring pattern for heat dissipation on the module substrate 31, heat generated from the LED package 290 can be more effectively released. Thus, the LED package 290 is preferable in that a heat dissipation path is formed in each of the three LED chips 10.
 以上のように、LEDパッケージ20あるいはLEDパッケージ290において複数のLEDチップ10が電気的に並列接続される例について説明した。しかしながら、必ずしもLEDパッケージ20等のパッケージの単位にて複数のLEDチップ10を電気的に並列接続させる必要はない。例えば、複数のLEDチップ10をモジュール用基板31に直接実装するように構成し、モジュール用基板31に設けられる電気配線パターン32によって、それら複数のLEDチップ10のうち例えば3つずつ電気的に並列接続されるように構成させることも可能である。この場合、モジュール用基板31が並列接続手段および接続手段として機能する。 As described above, the example in which the plurality of LED chips 10 are electrically connected in parallel in the LED package 20 or the LED package 290 has been described. However, it is not always necessary to electrically connect the plurality of LED chips 10 in parallel in units of packages such as the LED package 20. For example, the plurality of LED chips 10 are configured to be directly mounted on the module substrate 31, and, for example, three of the plurality of LED chips 10 are electrically connected in parallel by the electric wiring pattern 32 provided on the module substrate 31. It can also be configured to be connected. In this case, the module substrate 31 functions as a parallel connection unit and a connection unit.
 また、LEDチップ10における井戸層15bのInの組成を変えることにより、紫外光を発光させることも可能である。その場合には、例えば、封止樹脂28に紫外光を受けて赤色の光を発する蛍光体、緑色の光を発する蛍光体、および青色の光を発する蛍光体を添加することにより、白色光を発するLEDパッケージ20を得ることができる。 Further, it is possible to emit ultraviolet light by changing the In composition of the well layer 15b in the LED chip 10. In that case, for example, by adding a phosphor that emits red light upon receiving ultraviolet light to the sealing resin 28, a phosphor that emits green light, and a phosphor that emits blue light, The emitting LED package 20 can be obtained.
 また、以上の説明において、LEDパッケージ20に設けられるLEDチップ10の数量が3つである例を説明したが、これに限定するものではない。LEDパッケージ20に設けられるLEDチップ10の数量は複数であればいくつであっても構わない。 In the above description, the example in which the number of LED chips 10 provided in the LED package 20 is three has been described. However, the present invention is not limited to this. The number of LED chips 10 provided in the LED package 20 may be any number as long as it is plural.
本実施の形態が適用される液晶表示装置の全体構成を示す図である。It is a figure which shows the whole structure of the liquid crystal display device with which this Embodiment is applied. バックライトフレームおよび発光ユニットの構成を説明するための図である。It is a figure for demonstrating the structure of a backlight frame and a light emission unit. (a)(b)は、発光モジュールについて説明するための図である。(A) (b) is a figure for demonstrating a light emitting module. (a)(b)は、LEDパッケージについて説明するための図である。(A) (b) is a figure for demonstrating an LED package. (a)~(c)は、リードフレームの形状について他の例を説明するための図である。(A)-(c) is a figure for demonstrating the other example about the shape of a lead frame. 発光モジュールにおける電気接続について説明するための図である。It is a figure for demonstrating the electrical connection in a light emitting module. LEDチップを模式的に示した断面図である。It is sectional drawing which showed the LED chip typically. 複数のLEDチップのサンプルについて、シード層の膜厚と下地層のロッキングカーブ半値幅との関係を示した図である。It is the figure which showed the relationship between the film thickness of a seed layer, and the rocking curve half value width of a base layer about the sample of a some LED chip. (a)(b)は、本実施の形態が適用されるLEDチップ、比較用のLEDチップとの順方向電流-順方向電圧特性について説明するための図である。(A) (b) is a figure for demonstrating the forward current-forward voltage characteristic with the LED chip to which this Embodiment is applied, and the LED chip for a comparison. (a)(b)は、LEDパッケージについての他の例を説明するための図である。(A) (b) is a figure for demonstrating the other example about an LED package.
符号の説明Explanation of symbols
10…LEDチップ、11…基板、12…シード層、14a…下地層、14b…n型コンタクト層、14c…n型クラッド層、14d…露出領域、15a…障壁層、15b…井戸層、16…p型半導体層、16a…p型クラッド層、16b…p型コンタクト層、100…半導体層、20…LEDパッケージ、30…発光モジュール、31…モジュール用基板、300…発光ブロック、40…バックライト装置、42…発光ユニット、50…液晶表示モジュール DESCRIPTION OF SYMBOLS 10 ... LED chip, 11 ... Board | substrate, 12 ... Seed layer, 14a ... Underlayer, 14b ... N-type contact layer, 14c ... N-type clad layer, 14d ... Exposed region, 15a ... Barrier layer, 15b ... Well layer, 16 ... p-type semiconductor layer, 16a ... p-type cladding layer, 16b ... p-type contact layer, 100 ... semiconductor layer, 20 ... LED package, 30 ... light emitting module, 31 ... module substrate, 300 ... light emitting block, 40 ... backlight device 42 ... light emitting unit, 50 ... liquid crystal display module

Claims (11)

  1.  複数の発光素子と、
     前記複数の発光素子を電気的に並列接続する並列接続手段とを備え、
     前記複数の発光素子を構成する各々の発光素子は、
     素子基板と、
     III族窒化物化合物半導体からなり前記素子基板の上に直接積層される第1の層と、
     前記第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層と
    を含む
    ことを特徴とする光源。
    A plurality of light emitting elements;
    A parallel connection means for electrically connecting the plurality of light emitting elements in parallel;
    Each light emitting element constituting the plurality of light emitting elements,
    An element substrate;
    A first layer made of a group III nitride compound semiconductor and directly stacked on the element substrate;
    The III-nitride compound semiconductor is directly laminated on the first layer and has a rocking curve half-width of (0002) plane of 100 arcsec or less and a rocking curve half-width of (10-10) plane of 250 arcsec or less. And a second layer.
  2.  前記第2の層は、
     (0002)面のロッキングカーブ半値幅が60arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体であることを特徴とする請求項1記載の光源。
    The second layer is
    2. The light source according to claim 1, wherein the light source is a group III nitride compound semiconductor having a rocking curve half width of (0002) plane of 60 arcsec or less and a rocking curve half width of (10-10) plane of 250 arcsec or less.
  3.  前記並列接続手段は、前記複数の発光素子が取り付けられるとともに、当該複数の発光素子に給電する給電経路が形成された実装体であることを特徴とする請求項1記載の光源。 2. The light source according to claim 1, wherein the parallel connection means is a mounting body on which the plurality of light emitting elements are attached and a power supply path for supplying power to the plurality of light emitting elements is formed.
  4.  前記第1の層は、21nm以上40nm以下の層厚を有することを特徴とする請求項1記載の光源。 The light source according to claim 1, wherein the first layer has a layer thickness of 21 nm or more and 40 nm or less.
  5.  前記第1の層は、スパッタ法によって成膜されることを特徴とする請求項4記載の光源。 The light source according to claim 4, wherein the first layer is formed by sputtering.
  6.  前記素子基板がサファイア基板であり、前記第1の層がAlNであり、前記第2の層がGaNであることを特徴とする請求項1記載の光源。 The light source according to claim 1, wherein the element substrate is a sapphire substrate, the first layer is AlN, and the second layer is GaN.
  7.  前記複数の発光素子とは異なる他の複数の発光素子と、
     前記他の複数の発光素子を電気的に並列接続する他の並列接続手段と、
     前記並列接続手段と前記他の並列接続手段とを電気的に接続する接続手段とをさらに備えることを特徴とする請求項1記載の光源。
    A plurality of other light emitting elements different from the plurality of light emitting elements;
    Other parallel connection means for electrically connecting the other plurality of light emitting elements in parallel;
    The light source according to claim 1, further comprising connection means for electrically connecting the parallel connection means and the other parallel connection means.
  8.  複数の発光素子と、当該複数の発光素子を電気的に並列接続する第1の給電経路とを備える発光体と、
     前記発光体が複数個取り付けられ、各々の当該発光体に設けられた前記第1の給電経路と電気的に接続される第2の給電経路が設けられた取付基板とを備え、
     前記複数の発光素子を構成する各々の発光素子は、
     素子基板と、
     III族窒化物化合物半導体からなり前記素子基板の上に直接積層される第1の層と、
     前記第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層と
    を含む
    ことを特徴とする発光装置。
    A light-emitting body comprising a plurality of light-emitting elements and a first power supply path that electrically connects the plurality of light-emitting elements in parallel;
    A plurality of the light emitters, and a mounting substrate provided with a second power feed path that is electrically connected to the first power feed path provided in each of the light emitters,
    Each light emitting element constituting the plurality of light emitting elements,
    An element substrate;
    A first layer made of a group III nitride compound semiconductor and directly stacked on the element substrate;
    The III-nitride compound semiconductor is directly laminated on the first layer and has a rocking curve half-width of (0002) plane of 100 arcsec or less and a rocking curve half-width of (10-10) plane of 250 arcsec or less. And a second layer.
  9.  前記複数の発光体は、前記取付基板にて等間隔に配置されることを特徴とする請求項8記載の発光装置。 The light emitting device according to claim 8, wherein the plurality of light emitters are arranged at equal intervals on the mounting substrate.
  10.  画像を表示する表示パネルと、当該表示パネルの背面に設けられ当該表示パネルに光を照射するバックライトとを含む表示装置であって、
     前記バックライトは、
     複数の発光素子と、当該複数の発光素子を電気的に並列接続する第1の給電経路とを備える発光体と、
     前記発光体が複数個取り付けられ、各々の当該発光体に設けられた前記第1の給電経路と電気的に接続される第2の給電経路が設けられた取付基板とを備え、
     前記複数の発光素子を構成する各々の発光素子は、
     素子基板と、
     III族窒化物化合物半導体からなり前記素子基板の上に直接積層される第1の層と、
     前記第1の層の上に直接積層され、(0002)面のロッキングカーブ半値幅が100arcsec以下であり(10-10)面のロッキングカーブ半値幅が250arcsec以下であるIII族窒化物化合物半導体からなる第2の層と
    を含む
    ことを特徴とする表示装置。
    A display device that includes a display panel that displays an image, and a backlight that is provided on the back surface of the display panel and emits light to the display panel,
    The backlight is
    A light-emitting body comprising a plurality of light-emitting elements and a first power supply path that electrically connects the plurality of light-emitting elements in parallel;
    A plurality of the light emitters, and a mounting substrate provided with a second power feed path that is electrically connected to the first power feed path provided in each of the light emitters,
    Each light emitting element constituting the plurality of light emitting elements,
    An element substrate;
    A first layer made of a group III nitride compound semiconductor and directly stacked on the element substrate;
    The III-nitride compound semiconductor is directly laminated on the first layer and has a rocking curve half-width of (0002) plane of 100 arcsec or less and a rocking curve half-width of (10-10) plane of 250 arcsec or less. And a second layer.
  11.  前記複数の発光体を構成する2以上の発光体をそれぞれ電気的に接続して複数の発光体群を形成する複数の接続導体と、
     前記複数の接続導体を構成する各々の接続導体に対して給電を行う複数の電源と
    をさらに含むことを特徴とする請求項10記載の表示装置。
    A plurality of connecting conductors that electrically connect two or more light emitters constituting the plurality of light emitters to form a plurality of light emitter groups;
    The display device according to claim 10, further comprising: a plurality of power supplies that supply power to each of the connection conductors constituting the plurality of connection conductors.
PCT/JP2009/050414 2008-01-16 2009-01-15 Light source, light emitting device, and display device WO2009090972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008007413A JP5526478B2 (en) 2008-01-16 2008-01-16 Light source, light emitting device and display device
JP2008-007413 2008-01-16

Publications (1)

Publication Number Publication Date
WO2009090972A1 true WO2009090972A1 (en) 2009-07-23

Family

ID=40885360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050414 WO2009090972A1 (en) 2008-01-16 2009-01-15 Light source, light emitting device, and display device

Country Status (3)

Country Link
JP (1) JP5526478B2 (en)
TW (1) TWI380475B (en)
WO (1) WO2009090972A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851949A (en) * 2014-02-19 2015-08-19 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
CN117239043A (en) * 2023-11-16 2023-12-15 江西鸿利光电有限公司 Light-emitting device and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039937B1 (en) 2010-04-28 2011-06-09 엘지이노텍 주식회사 Light emitting device, method for fabricating the same, light emitting device package and lighting system
FR2964176B1 (en) * 2010-09-01 2015-10-16 Saint Gobain DECORATIVE AND LIGHTING PANEL WITH ELECTROLUMINESCENT DIODES
JP2013012684A (en) * 2011-06-30 2013-01-17 Sharp Corp Nitride semiconductor light-emitting element
JP2020092155A (en) * 2018-12-05 2020-06-11 株式会社ダイセル Optical semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242856A (en) * 2006-03-08 2007-09-20 Rohm Co Ltd Chip-type semiconductor light emitting device
JP2007287751A (en) * 2006-04-12 2007-11-01 Toyoda Gosei Co Ltd Light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034241B2 (en) * 2003-06-27 2008-01-16 日本ライツ株式会社 LIGHT SOURCE DEVICE AND LIGHT SOURCE DEVICE MANUFACTURING METHOD
JP4833616B2 (en) * 2004-09-13 2011-12-07 昭和電工株式会社 Method for producing group III nitride semiconductor
JP4856463B2 (en) * 2005-10-17 2012-01-18 株式会社 日立ディスプレイズ Liquid crystal display
WO2007129773A1 (en) * 2006-05-10 2007-11-15 Showa Denko K.K. Iii nitride compound semiconductor laminated structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242856A (en) * 2006-03-08 2007-09-20 Rohm Co Ltd Chip-type semiconductor light emitting device
JP2007287751A (en) * 2006-04-12 2007-11-01 Toyoda Gosei Co Ltd Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851949A (en) * 2014-02-19 2015-08-19 丰田合成株式会社 Method for producing group III nitride semiconductor light-emitting device
CN117239043A (en) * 2023-11-16 2023-12-15 江西鸿利光电有限公司 Light-emitting device and preparation method thereof
CN117239043B (en) * 2023-11-16 2024-02-27 江西鸿利光电有限公司 Light-emitting device and preparation method thereof

Also Published As

Publication number Publication date
TW200933939A (en) 2009-08-01
JP2009170672A (en) 2009-07-30
TWI380475B (en) 2012-12-21
JP5526478B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US7786493B2 (en) Light emitting diode, method for manufacturing light emitting diode, integrated light emitting diode, method for manufacturing integrated light emitting diode, light emitting diode backlight, light emitting diode illumination device, light emitting diode display, electronic apparatus, electronic device, and method for manufacturing electronic device
US8334200B2 (en) Semiconductor light-emitting device, method of manufacturing semiconductor light-emitting device, and lamp
JP5526478B2 (en) Light source, light emitting device and display device
US8723158B2 (en) Light emitting diode, light emitting device package including the same and lighting system
US8748863B2 (en) Light emitting device
KR101860320B1 (en) Light emitting device
US8405102B2 (en) Light emitting device, and lighting apparatus
US20130105761A1 (en) Light emitting device and method for manufacturing the same
JP4815013B2 (en) Nitride-based semiconductor light-emitting element, lighting device, liquid crystal display device, and manufacturing method of lighting device
KR101739573B1 (en) Light-emitting element
US8729576B2 (en) Light emitting device
KR101838019B1 (en) Light emitting device and method of fabricating the same
JP4988069B2 (en) Nitride-based semiconductor light-emitting element, lighting device, liquid crystal display device, and manufacturing method of lighting device
KR101778159B1 (en) Light Emitting device and Light Emitting device Package
JP2008226868A (en) Group iii nitride compound semiconductor laminated structure
US20160072004A1 (en) Semiconductor light emitting device
KR101709991B1 (en) Light emitting device and fabrication method thereof
KR101717669B1 (en) Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus
KR102017496B1 (en) Light emitting device
KR20120065605A (en) Semiconductor light emitting device, manufacturing method of the same and light emitting apparataus
KR20180080932A (en) Semiconductor Light Emitting Device
KR20120075209A (en) Method for manufacturing lcd, lcd module including led
KR20120075208A (en) Led and manufacturing method for the same, lcd module including led
KR20130066990A (en) Light emitting device
KR20190065211A (en) Light emitting device and light emitting device package having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702335

Country of ref document: EP

Kind code of ref document: A1