WO2009090869A1 - 無線送信装置及び無線送信方法 - Google Patents

無線送信装置及び無線送信方法 Download PDF

Info

Publication number
WO2009090869A1
WO2009090869A1 PCT/JP2009/000111 JP2009000111W WO2009090869A1 WO 2009090869 A1 WO2009090869 A1 WO 2009090869A1 JP 2009000111 W JP2009000111 W JP 2009000111W WO 2009090869 A1 WO2009090869 A1 WO 2009090869A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
signal
subcarrier
sequence
preamble sequence
Prior art date
Application number
PCT/JP2009/000111
Other languages
English (en)
French (fr)
Inventor
Atsushi Sumasu
Isamu Yoshii
Tomohiro Imai
Daichi Imamura
Seigo Nakao
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2009549982A priority Critical patent/JPWO2009090869A1/ja
Priority to US12/812,449 priority patent/US20100284487A1/en
Publication of WO2009090869A1 publication Critical patent/WO2009090869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0083Multi-mode cell search, i.e. where several modes or systems can be used, e.g. backwards compatible, dual mode or flexible systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity

Definitions

  • the present invention relates to a wireless transmission device and a wireless transmission method, and more particularly to a method of transmitting a preamble.
  • a mobile terminal In a wireless cellular system typified by a mobile phone or the like, a mobile terminal (UE) first transmits a known signal called a preamble to the base station (Node-B) in order to access the cellular network.
  • the preamble has two main roles. One is to identify a mobile terminal in an area (cell) covered by the base station, and the other is to detect a transmission timing shift of the mobile terminal.
  • the transmission timing detection needs to be performed at the base station because it is difficult to adjust the transmission timing of the mobile terminal alone. This will be described.
  • the timing at the time of reception at the base station must not be the same. This is because in mobile communication systems, pilot signals and control signals are periodically transmitted from the base station on the downlink, so that the transmission timing can be determined based on the downlink signal. Since the time to reach the terminal and the time to reach the base station from each mobile terminal differ in proportion to the distance between the base station and each mobile terminal, the reception timing at the base station is consequently different. Because it will end up.
  • the base station Since it is difficult for a mobile terminal alone to accurately measure its own radio wave propagation delay time with the base station and adjust the transmission timing, the base station receives the preamble and detects the reception timing shift. Each mobile terminal is notified of transmission timing correction according to the timing shift. In this way, transmission timing correction (transmission time alignment) is performed.
  • the base station does not know when to receive the preamble.
  • Each mobile terminal can determine the preamble transmission timing based on the downlink signal, so that the preamble reception range can be kept within a certain range, but the base station still has a deviation based on the propagation delay difference with each mobile terminal. It is necessary to receive in consideration.
  • the preamble is detected by always taking the correlation between the time waveform replica of all the preamble signals expected to be received and the received signal (or in the entire range in consideration of the reception timing deviation).
  • the corresponding mobile terminal is notified of the detection of the preamble and the transmission timing correction value.
  • 3GPP TS 36.211 V8.0.0 (2007-09) “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)”, 5.7 Physical random access channel .
  • JSST-MM2007-20 "Random access burst design and evaluation in Evolved-UTRA", DaichiIMAMURA, Katsuhiko HIRAMATSU, Tomohumi TAKATA, Takashi IWAI.
  • the base station since it is not known whether the preamble is transmitted until it is detected by the base station, even if the detection of the preamble fails, it is generally reported that the non-detection status such as NACK is notified from the base station to the mobile terminal. Is not done.
  • the mobile terminal that has transmitted the preamble retransmits the preamble if there is no notification from the base station after a predetermined time has elapsed after transmission. In this case, increasing the transmission power of the preamble is often performed.
  • the base station does not know the fact that it has received the first preamble when it fails to detect the preamble, so it combines with the first received signal like HARQ. That is not usually done.
  • the base station is required to accurately detect the preamble with a single reception.
  • the present invention has been made in consideration of such points, and provides a wireless transmission device and a wireless transmission method capable of improving the reception characteristics of a preamble.
  • One aspect of the wireless transmission device of the present invention includes a preamble sequence generation unit that generates a preamble sequence signal, a weighting unit that weights the preamble sequence signal with a weight vector using a plurality of antennas, and the weighted signal. Are arranged at random subcarrier intervals.
  • the periodicity on the time axis in the OFDM symbol can be reduced.
  • the preamble reception characteristics are improved, and the timing detection accuracy based on the preamble is improved.
  • Diagram for explaining the cause of timing detection error 2A is a diagram illustrating subcarriers in which a preamble is arranged, and FIG. 2B is a diagram illustrating autocorrelation characteristics in the time domain.
  • FIG. 3A is a diagram showing subcarriers in which a preamble is arranged, and FIG. 3B is a diagram showing autocorrelation characteristics in the time domain.
  • 4A is a diagram showing subcarriers in which a preamble is arranged, and FIG. 4B is a diagram showing autocorrelation characteristics in the time domain.
  • FIG. 5A is a diagram showing subcarriers in which a preamble is arranged, and FIG. 5B is a diagram showing autocorrelation characteristics in the time domain.
  • FIG. 11A to 11E are diagrams showing arrangement patterns of preambles on subcarriers in Embodiment 2.
  • FIGS. 13A and 13B are diagrams showing arrangement patterns of preambles on subcarriers in Embodiment 3.
  • FIG. 17A is a diagram showing examples of precoding weights used in PVS
  • FIG. 17B is a diagram showing antenna arrangement.
  • positioning in PVS The figure which shows the example of preamble arrangement
  • OFDMA OrthogonalequFrequency Division Multiplexing ⁇ ⁇ Access
  • SC-FDMA Single-Carrier
  • the inventors considered that it is preferable that the mobile terminal performs diversity transmission using a plurality of transmission antennas in order to improve the reception characteristics (detection performance) of the preamble.
  • the inventors may use PVS (Precoding Vector Switching), CDD (Cyclic Delay Digital Diversity), FSTD (Frequency Switched Transmit Transmit Diversity), and TSTD (Frequency Switched Transmit Transmit Diversity). I thought I liked it.
  • PVS Precoding Vector Switching
  • CDD Cyclic Delay Digital Diversity
  • FSTD Frequency Switched Transmit Transmit Diversity
  • TSTD Frequency Switched Transmit Transmit Diversity
  • PVS, CDD, FSTD, and TSTD are diversity transmissions that can be demodulated even if the base station that receives the preamble does not know the number of transmission antennas of each mobile terminal.
  • STBC Space-Time Block Code
  • SFBC Space-Frequency Block Code
  • CDS and FSTD are methods for obtaining a diversity effect by one reception detection among PVS, CDD, FSTD, and TSTD.
  • CDD was considered to have the possibility that the characteristics would be deteriorated in the case of a narrow band, and FSTD was considered most preferable.
  • each transmission antenna uses equally spaced subcarriers. For example, when there are two transmission antennas, a signal arranged only on even-numbered subcarriers is transmitted from one antenna, and a signal arranged only on odd-numbered subcarriers is transmitted from the other antenna.
  • a waveform using evenly spaced subcarriers causes a timing detection error because a repeated waveform appears in the OFDM symbol. For example, consider a case where there are two transmission antennas, a signal in which a preamble is arranged only on even subcarriers is transmitted from one antenna, and a signal in which a preamble is arranged only on odd subcarriers is transmitted from the other antenna.
  • FIG. 1 shows the situation.
  • FIG. 1 is a diagram focusing on only one antenna for the sake of simplicity, but the same applies to the case where the number of antennas is two. However, if the number of antennas is two, diversity gain can be obtained accordingly.
  • the first half (period t1 to t2) and second half (period t2 to t3) has the same shape. Therefore, when correlation is detected using a replica on the receiving side, the correlation peak of the main wave occurs at two locations (“correct detection position” and “side lobe” in the figure), which causes a timing detection error. .
  • IFFT inverse Fourier transform
  • FIG. 2A, FIG. 3A, FIG. 4A, and FIG. 5A show to which subcarriers of the first transmission antenna Tx1 and the second transmission antenna Tx2 the preamble is arranged.
  • 2B, 3B, 4B, and 5B show autocorrelation characteristics obtained on the receiving side.
  • the horizontal axis indicates sampling points within one OFDM symbol section, and the vertical axis indicates autocorrelation values.
  • Example 1 As shown in FIG. 2A, for antenna Tx1, half of the transmission band is odd subcarriers (..., -9, -7, ...) and the other half is even subcarriers (2, 4, ). ) Was placed in the preamble. Similarly, for the antenna Tx2, the preamble is allocated to even-numbered subcarriers (..., -10, -8, ...) for half of the transmission band and the odd-numbered subcarriers (1, 3, ...) for the other half. In this case, as shown in FIG. 2B, a plurality of side lobes occurred near the center of the symbol.
  • Example 2 As shown in FIG. 3A, preambles were alternately arranged on the antenna Tx1 and the antenna Tx2 every two subcarriers. In this case, as shown in FIG. 3B, side lobes were generated at two locations across the center of the symbol.
  • Example 3 As shown in FIG. 4A, preambles are alternately arranged on the antenna Tx1 and the antenna Tx2 every three subcarriers. In this case, as shown in FIG. 4B, side lobes were generated at the central portion of the symbol and at two locations sandwiching it.
  • Example 4 As shown in FIG. 5A, preambles are arranged in the antenna Tx1 and the antenna Tx2 in units of 2 subcarriers or 3 subcarriers. In this case, as shown in FIG. 5B, side lobes occurred at two locations across the center of the symbol.
  • the inventors considered that the peak value of the side lobe increases in the autocorrelation value of the time waveform when the proportion of equally spaced subcarriers increases as the subcarrier used.
  • the gist of the present invention is to randomize the interval between subcarriers in which the preamble is arranged.
  • the preamble is not arranged on subcarriers that are equally spaced.
  • the periodicity on the time axis in the OFDM symbol can be reduced. Therefore, when the autocorrelation value of the preamble sequence is obtained in the time domain on the receiving side, the peak value of the side lobe is reduced. As a result, timing detection errors can be prevented.
  • FIG. 6 shows an arrangement pattern of preambles on subcarriers of the OFDM signal in the present embodiment.
  • the subcarrier pattern in which preamble sequence signals are continuously arranged is changed in the frequency direction. Specifically, 1, 2, 3, 5, 6, 7, 8, 11,..., 36, 38,... Transmitted from the first transmission antenna Tx1 are assigned preambles on the subcarriers. .., 39, 40, 41,..., Which are transmitted from the second transmitting antenna Tx2, are arranged in the subcarriers. And the preamble arrange
  • 1 continuous subcarrier (4) 2 continuous subcarriers (9, 10), 3 continuous subcarriers (12, 13, 14), 4 continuous subcarriers (19, 20, 21) , 22), two consecutive subcarriers (26, 27), two consecutive subcarriers (30, 31), two consecutive subcarriers (34, 35), one continuous subcarrier (37), and three consecutive subcarriers (39, 40). , 41),...,
  • the subcarrier pattern in which the preamble is continuously arranged changes in the frequency direction.
  • the subcarrier in which the preamble is arranged in the transmission antenna Tx1 does not arrange the preamble in the transmission antenna Tx2, and conversely the transmission antenna Tx1 in the subcarrier in which the preamble is arranged in the transmission antenna Tx2. Then, the preamble is not arranged. In this way, the preamble is arranged in a complementary manner between the antennas. That is, in this embodiment, FSTD is used as diversity transmission.
  • FIG. 7 shows the autocorrelation characteristics of the preamble on the receiving side when the preamble is arranged as shown in FIG. As can be seen from FIG. 7, no large peak appears except for a large peak appearing at the head position of the symbol. Therefore, timing detection errors can be prevented.
  • FIG. 8 shows a configuration example of a transmission apparatus for performing the transmission method described above.
  • the transmission apparatus in FIG. 8 is mounted on a mobile terminal, for example.
  • a control signal transmission system including a pilot signal transmission system, an encoding unit, a modulation unit, and the like.
  • a data transmission system is also installed.
  • the preamble sequence signal generated by the preamble sequence generation unit 101 is input to the transmission antenna sequences of the antenna Tx1 and the antenna Tx2. Incidentally, for example, a different preamble sequence signal is generated between terminals.
  • Subcarrier selection sections 103-1 and 103-2 place the preamble sequence at the subcarrier position to be used (the input position of IFFT) and output it to IFFT 104-1 and 104-2 in accordance with the instruction from subcarrier selection instruction section 102. To do.
  • subcarrier selection section 103-1 arranges the preamble sequence at the subcarrier position indicated by Tx1 in FIG. 6, and subcarrier selection section 103-2 determines the subcarrier position indicated by Tx2 in FIG.
  • the preamble sequence is placed in and output.
  • IFFTs Inverse Fourier Transform Units
  • 104-1 and 104-2 form an OFDM signal that is a time waveform signal by performing inverse Fourier transform on the signals input from the subcarrier selection units 103-1 and 103-2.
  • the OFDM signal is subjected to radio processing by the RF units 105-1 and 105-2, and then transmitted from the antennas Tx1 and Tx2.
  • FIG. 9 shows a configuration example of a receiving apparatus that receives the preamble transmitted from the transmitting apparatus in FIG.
  • the receiving apparatus in FIG. 9 is mounted on a base station, for example.
  • FIG. 9 shows only the configuration related to preamble reception, an actual base station is also equipped with a data reception system including a demodulation unit, a decoding unit, and the like.
  • the signal received by the antenna Rx1 is wirelessly processed by the RF unit 201 and then input to the preamble correlation calculation unit 202.
  • the preamble replica generation unit 203 generates or holds all the preamble waveform temporal waveform replicas that may be received, and supplies this to the preamble correlation calculation unit 202.
  • the preamble correlation calculation unit 202 obtains a correlation (that is, an autocorrelation value) between the time waveform replica of the supplied preamble sequence and the received signal.
  • the preamble detection determination and reception timing detection unit 204 determines which preamble has been detected based on the presence and position of a correlation peak equal to or greater than the threshold in the autocorrelation value obtained by the preamble correlation calculation unit 202, and the preamble Detection of a shift in reception timing.
  • the above-described preamble arrangement it is possible to suppress the occurrence of a plurality of peaks exceeding the threshold within one OFDM symbol, so that it is possible to detect a shift in reception timing without error.
  • the preamble sequence generated by one preamble sequence generation unit 101 is used for both the antenna Tx1 and the transmission antenna sequence of antenna Tx2, but as shown in FIG. 10, the sequence of antenna Tx1 is used. May be generated by the preamble sequence generator 101-1, and the preamble of the antenna Tx2 sequence may be generated by the preamble sequence generator 101-2. That is, an individual preamble sequence may be transmitted for each transmission antenna sequence.
  • the receiving device may receive with one antenna or may receive with a plurality of antennas.
  • the preamble sequences are arranged at random subcarrier intervals by changing the subcarrier pattern in which the preamble sequences are continuously arranged in the frequency direction. Can do. As a result, when the autocorrelation value of the preamble sequence is obtained in the time domain, the peak value of the side lobe is reduced, and as a result, timing detection errors can be prevented.
  • FSTD as a diversity transmission method, a diversity effect can be obtained by one reception detection, so that efficient preamble transmission can be realized.
  • a preamble sequence signal is arranged on a subcarrier having the same pattern as that of a PN sequence.
  • a PN sequence in particular, a Gold sequence having the same length as the number of subcarriers and the same number of bits 1 and 0 is used, and the arrangement of subcarriers is made to correspond to the arrangement pattern of the Gold sequence, It is proposed to arrange a preamble sequence signal on a subcarrier corresponding to the position of either bit 1 or bit 0 of the Gold sequence.
  • FIG. 11 shows an example of an arrangement pattern of preambles on subcarriers created using the Gold sequence.
  • the preamble sequence is arranged on the subcarriers shown in black in FIGS. 11A, 11B, 11C, 11D, or 11E. And about the subcarrier transmitted from antenna Tx2, what is necessary is just to arrange
  • Such an operation may be performed by generating a Gold sequence in the subcarrier selection instructing unit 102 in FIG. 8 and performing subcarrier selection based on it in the subcarrier selecting units 103-1 and 103-2.
  • FIG. 12 shows the autocorrelation characteristics of the preamble on the receiving side when the subcarrier arrangement shown in FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D or FIG.
  • FIG. 12 shows the autocorrelation characteristics of the preamble on the receiving side when the subcarrier arrangement shown in FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D or FIG.
  • no large peak appears except for a large peak at the head position of the symbol. Therefore, timing detection errors can be prevented.
  • an M sequence having the same length as the PN sequence, excluding the DC (direct current) subcarrier from the number of subcarriers, is used, and the subcarrier arrangement is made to correspond to the arrangement pattern of the M series.
  • FIG. 13 shows an example of an arrangement pattern of preambles on subcarriers created using the M-sequence.
  • the preamble sequence is arranged on the subcarriers shown in black in FIG. 13A or 13B. And about the subcarrier transmitted from antenna Tx2, what is necessary is just to arrange
  • the M carrier is generated by the subcarrier selection instruction unit 102 of FIG. 8, and the subcarrier selection units 103-1 and 103-2 may perform subcarrier selection based thereon.
  • FIG. 14 shows the autocorrelation characteristics of the preamble on the receiving side when the subcarrier arrangement shown in FIG. 13A or 13B is applied. As can be seen from FIG. 14, no large peak appears except for a large peak appearing at the head position of the symbol. Therefore, timing detection errors can be prevented.
  • the central subcarrier is often not used because it is affected by the DC offset.
  • the M sequence has a sequence length of 2n-1 (n: natural number), it easily matches OFDM subcarriers that do not use DC subcarriers.
  • the M sequence has almost the same number of bits 0 and 1 (bit 0 is necessarily one less than bit 1), there is no need to select a sequence in which the same number of bits 1 and 0 occur as in the Gold sequence. This is suitable for arranging the same number of preambles on a subcarrier among a plurality of antennas.
  • the reception side can determine the number of transmission antennas.
  • FIG. 15 shows a preamble arrangement pattern on subcarriers when the number of transmission antennas is two, which is the same arrangement as described in FIG.
  • FIG. 16 shows a preamble arrangement pattern on subcarriers when there is one transmission antenna.
  • the preamble arrangement pattern of FIG. 16 is arranged on subcarriers in which the preamble is shifted by one subcarrier compared to the preamble arrangement pattern of FIG.
  • the time waveform varies depending on the number of transmission antennas, so by preparing a plurality of replicas corresponding to the number of transmission antennas on the receiving side, The number of transmission antennas can be determined.
  • the channel of each transmitting antenna can be estimated, and then used for channel compensation of a signal (for example, a random access signal) transmitted from the mobile terminal.
  • a signal for example, a random access signal
  • FIG. 17 shows an example of precoding weights used in PVS when there are two transmission antennas.
  • weight 1 indicates that both signals are transmitted in the same phase
  • weight 2 indicates that a signal from the second transmission antenna is transmitted in the opposite phase of the first transmission antenna.
  • FIG. 18 shows a schematic diagram when PVS is applied in the frequency direction.
  • the same preamble sequence is arranged for odd-numbered subcarriers and even-numbered subcarriers, in-phase weighting is performed on odd-numbered subcarriers, and reverse-phased weighting is performed on even-numbered subcarriers.
  • the base station reception side
  • the correlation calculation is performed using the replica created only by the odd subcarriers and the replica created only by the even subcarriers. Side lobes other than the position will occur.
  • FIG. 19 shows an example of weight arrangement of the present embodiment in which side lobes are suppressed while PVS is applied.
  • the pattern of weight arrangement is the same as that of the first embodiment, and weight 1 is applied to the subcarrier in which the preamble is arranged by the transmission antenna Tx1 of the first embodiment, and weight 2 is applied to the subcarrier in which the preamble is arranged by the transmission antenna Tx2. is doing.
  • weight 1 is applied to the subcarrier in which the preamble is arranged by the transmission antenna Tx1 of the first embodiment
  • weight 2 is applied to the subcarrier in which the preamble is arranged by the transmission antenna Tx2.
  • the FSTDs of Embodiments 1 to 4 can be said to be an embodiment when PVS is applied in the frequency direction.
  • [a1, a2] and [b1, a2] are used as the weights [Tx1, Tx2].
  • [1, 1] and [1, ⁇ 1] has been described as one specific example.
  • FSTD it is equivalent to using [1, 0], [0, 1] as weights.
  • a preamble sequence signal is generated, the preamble sequence signal is weighted with a weighting vector using a plurality of antennas, and the weighted signal is distributed at random subcarrier intervals. It can be said that it is arranged.
  • the subcarrier selection instruction unit 102 and the subcarrier selection units 103-1 and 103-2 also function as weighting means in addition to the function as subcarrier arrangement means. Can do.
  • the first weighting unit performs the first weighting on the first preamble sequence signal or the second preamble sequence signal to generate the first weighted signal.
  • a second weight for generating a second weighted signal by applying a second weight to the first preamble sequence or the second preamble sequence, and the first weighting is performed by an arrangement unit.
  • the subsequent signal and the second weighted signal are arranged at random subcarrier intervals, and the first weighted signal and the second weighted signal are overlapped. It can be said that it is arranged so as not to. It can be said that FSTD is a case where a weight vector including a weight of 0 is used.
  • the preamble transmission method described above may also be applied to the case of transmitting a preamble using more than two transmission antennas. it can.
  • the subcarrier in which the preamble is arranged is divided into two by the PN sequence, and then the preamble arrangement after the two divisions Is multiplied by the PN sequence again to divide it into two, so that a four-part preamble arrangement, that is, a preamble arrangement for four transmission antennas can be created.
  • side lobes can be prevented from appearing in the autocorrelation characteristics in the preamble time waveform transmitted from each transmission antenna.
  • the transmission method of the present invention is not limited to this, and is applied to, for example, a case where a preamble sequence is transmitted from one antenna. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the preamble arrangement using the Gold sequence and the M sequence pattern according to the second, third, and fourth embodiments is particularly effective when the FSTD is used because the same number of preambles can be randomly arranged on both transmission antennas. .
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention has an effect that the timing detection accuracy based on the preamble is improved, and is suitable for application to a mobile terminal, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 プリアンブルの受信特性を改善させる無線送信方法。本発明の無線送信方法は、プリアンブル系列を連続して配置するサブキャリア(送信アンテナTx1: 1,2,3,  5,6,7,8,…、送信アンテナTx2: 4,  9,10,  12,13,14,…)のパターンを周波数方向で変化させるようにした。これにより、プリアンブル系列をランダムなサブキャリア間隔で配置することができるので、時間領域でプリアンブル系列の自己相関値を求めた場合に、サイドローブのピーク値が小さくなり、この結果、タイミングの検出誤りを防止できる。

Description

無線送信装置及び無線送信方法
 本発明は、無線送信装置及び無線送信方法に関し、特にプリアンブルの送信の仕方に関する。
 携帯電話機等に代表される無線セルラシステムにおいては、携帯端末(UE)は、セルラ網にアクセスするために、まず基地局(Node-B)にプリアンブル(Preamble)と呼ばれる既知信号を送信する。プリアンブルには、主に2つの役割がある。1つはその基地局がカバーするエリア(セル)における携帯端末を識別することで、もう1つはその携帯端末の送信タイミングずれを検出することである。
 送信タイミング検出は、携帯端末の送信タイミング調整を携帯端末単独で行うことが難しいため、基地局で行う必要がある。これについて説明する。
 フレーム等の時間的単位で区切られて動作するセルラシステムの場合、上り回線においては、各携帯端末からの送信信号が基地局で定められたタイミングで受信されることが求められる。
 しかしながら、セルラシステムと各携帯端末との距離は一定でないため、基地局での受信時のタイミングは同時にはならない。なぜなら、移動体通信システムでは、基地局から下り回線で周期的にパイロット信号や制御信号が送信されているので、下り回線の信号を基準に送信タイミングを決めることができるが、基地局から各携帯端末までに到達する時間と各携帯端末から基地局までに到達する時間のそれぞれが、基地局と各携帯端末との距離に比例して異なるために、結果的に基地局での受信タイミングが異なってしまうからである。
 携帯端末が単独で基地局と自らの電波伝搬遅延時間を正確に測定し送信タイミングを調整することは困難であるため、基地局がプリアンブルを受信することで、受信タイミングのずれを検出し、受信タイミングずれに応じた送信タイミング補正を各携帯端末に通知する。このようにして、送信タイミングの補正(送信タイムアライメント)が行われる。
 ところで、プリアンブルは、携帯端末がセルラ網にアクセスするために最初に送信する信号という性格上、基地局はいつプリアンブルを受信するか分からない。各携帯端末が下り回線信号を基準にプリアンブル送信タイミングを決定することで、プリアンブルの受信範囲をある程度の範囲に収めることはできるが、それでも基地局は各携帯端末との伝搬遅延差に基づくずれは考慮して受信する必要がある。
 基地局では、受信が想定される全てのプリアンブル信号の時間波形レプリカと受信信号との相関を常に(あるいは受信タイミングずれを考慮した範囲の全てで)とることで、プリアンブルの検出を行う。プリアンブルが検出できた場合は、該当する携帯端末にプリアンブルを検出したことと、送信タイミング補正値とを通知する。
3GPP TS 36.211 V8.0.0 (2007-09) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)", 5.7 Physical random access channel. 日本シミュレーション学会技術研究報告 JSST-MM2007-20, "Random access burst design and evaluation in Evolved-UTRA", DaichiIMAMURA, Katsuhiko HIRAMATSU, Tomohumi TAKATA, Takashi IWAI.
 ところで、プリアンブルは、基地局で検出されるまで送信されているかどうかわからないため、プリアンブルの検出が失敗したとしても、基地局から携帯端末にNACKのような非検出の状況が通知されることは一般には行われない。
 そこで、プリアンブルを送信した携帯端末は、送信して所定の時間経過後、基地局から通知がなければプリアンブルの再送を行う。この場合、プリアンブルの送信電力を大きくすることもよく行われることである。
 しかしながら、携帯端末からプリアンブルが再送された場合でも、基地局はプリアンブル検出に失敗している時点で、初回のプリアンブルを受信した事実を知らないので、HARQのように初回に受信した信号と合成するということは通常は行われない。
 このようなことから、携帯端末の消費電力低減、及び、セルラ網への迅速なアクセス開始のためには、基地局が、1回の受信でプリアンブルを正確に検出することが求められる。
 本発明は、かかる点を考慮してなされたものであり、プリアンブルの受信特性を改善させることができる無線送信装置及び無線送信方法を提供する。
 本発明の無線送信装置の一つの態様は、プリアンブル系列信号を生成するプリアンブル系列生成手段と、複数のアンテナを用いて、前記プリアンブル系列信号を重み付けベクトルによって重み付けする重み付け手段と、前記重み付けされた信号をランダムなサブキャリア間隔で配置する配置手段と、を具備する構成を採る。
 本発明によれば、等間隔なサブキャリアの組合せが減るので、OFDMシンボル内の時間軸での周期性を減少させることができる。この結果、時間領域における相関値で、サイドローブが出ないようなるため、プリアンブルの受信特性が改善し、プリアンブルに基づくタイミング検出精度が向上する。
タイミング検出誤りの原因の説明に供する図 図2Aはプリアンブルを配置するサブキャリアを示す図、図2Bは時間領域での自己相関特性を示す図 図3Aはプリアンブルを配置するサブキャリアを示す図、図3Bは時間領域での自己相関特性を示す図 図4Aはプリアンブルを配置するサブキャリアを示す図、図4Bは時間領域での自己相関特性を示す図 図5Aはプリアンブルを配置するサブキャリアを示す図、図5Bは時間領域での自己相関特性を示す図 本発明の実施の形態1における、サブキャリアへのプリアンブルの配置パターンを示す図 図6のプリアンブル配置パターンを用いた場合の、時間領域での自己相関特性を示す図 送信装置の構成例を示すブロック図 受信装置の構成例を示すブロック図 送信装置の構成例を示すブロック図 図11A~図11Eは、実施の形態2における、サブキャリアへのプリアンブルの配置パターンを示す図 図11のプリアンブル配置パターンを用いた場合の、時間領域での自己相関特性を示す図 図13A及び図13Bは、実施の形態3における、サブキャリアへのプリアンブルの配置パターンを示す図 図13のプリアンブル配置パターンを用いた場合の、時間領域での自己相関特性を示す図 実施の形態4における、送信アンテナが2本の場合のサブキャリアへのプリアンブルの配置パターンを示す図 実施の形態4における、送信アンテナが1本の場合のサブキャリアへのプリアンブルの配置パターンを示す図 図17AはPVSで用いるプリコーディング重みの例を示す図、図17Bはアンテナ配置を示す図 PVSにおける一般的なプリアンブル配置を示す図 実施の形態5における、PVSでのプリアンブル配置例を示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。(1)ダイバーシチ送信の検討
 先ず、本発明の実施の形態を説明する前に、本発明に至った過程について説明する。
 例えば次世代の移動体通信システムとして検討されているIMT-Advancedでは、複数の周波数単位(サブキャリア)の集合によって回線を構築するOFDMA(Orthogonal Frequency Division Multiplexing Access)や、SC-FDMA(Single-Carrier Frequency Division Multiple Access)などのアクセス方式が、上り回線に適用されることが考えられる。以下の実施の形態では、主に、携帯端末が周波数(サブキャリア)方向にプリアンブル系列を配置したOFDMあるいはSCFDM信号をプリアンブル信号として送信することを想定する。
 また、発明者らは、プリアンブルの受信特性(検出性能)を向上させるために、携帯端末が複数の送信アンテナを用いてダイバーシチ送信を行うことが好ましいと考えた。
 また、発明者らは、従来提案されているダイバーシチ送信のうち、PVS(Precoding Vector Switching)、CDD(Cyclic Delay Diversity)、FSTD(Frequency Switched Transmit Diversity)、TSTD(Frequency Switched Transmit Diversity)を用いることが好ましてと考えた。
 これは、PVS、CDD、FSTD、TSTDは、プリアンブルを受信する基地局が、各携帯端末の送信アンテナ数がわからなくても、復調可能なダイバーシチ送信だからである。例えば、STBC(Space-Time Block Code)や、SFBC(Space-Frequency Block Code)などは受信特性が良好な送信ダイバーシチ方法として知られるが、送信アンテナ数や適用する符号が送受信で事前に共有されている必要があるため、プリアンブルの送信には適さないと考えた。
 さらに、発明者らは、PVS、CDD、FSTD、TSTDのうち、プリアンブル送信に用いる送信ダイバーシチ方法を、1回の受信検出でダイバーシチ効果が得られる方法であるCDDとFSTDに絞った。ただし、CDDは狭帯域の場合にかえって特性が悪くなる可能性があると考え、FSTDが最も好ましいと考えた。
 発明者らは、このような検討により、プリアンブルをダイバーシチ送信する場合には、FSTDを用いるのが最も好ましいという結論に至った。なお、後述するが、FSTDは周波数方向にPVSを適用した場合の一形態と言うことができるので、本発明は、FSTDを含むPVSを適用している。
 (2)使用するサブキャリアの検討
 また、発明者らは、プリアンブルを配置するサブキャリアについて検討した。
 送信ダイバーシチとしてFSTDを用いる場合、一般に、各送信アンテナでは等間隔のサブキャリアを使用する。例えば、送信アンテナが2本の場合、一方のアンテナからは偶数サブキャリアだけに配置した信号を送信し、他方のアンテナからは奇数サブキャリアだけに配置した信号を送信する。
 しかしながら、等間隔のサブキャリアを使った波形は、OFDMシンボル内に繰り返し波形が現れるので、タイミング検出誤りを起こす。例えば、送信アンテナが2本で、一方のアンテナからは偶数サブキャリアだけにプリアンブルを配置した信号を送信し、他方のアンテナからは奇数サブキャリアだけにプリアンブルを配置した信号を送信した場合について考える。
 図1に、その様子を示す。図1は、説明を簡単にするために、1本のアンテナのみに着目した図であるが、アンテナ数が2本の場合でも同様である。ただし、アンテナ数を2本にすると、その分だけダイバーシチゲインが得られる。
 図1に示すように、偶数サブキャリアSC2、SC4、………にプリアンブルを配置して逆フーリエ変換(IFFT)処理を施すと、OFDMシンボルの前半(期間t1~t2)と後半(期間t2~t3)が同じ形となる。そのため、受信側でレプリカを用いて相関を検出した場合、主波の相関ピークが2箇所(図中の「正しい検出位置」と「サイドローブ」)に発生してしまうので、タイミング検出誤りを起こす。
 因みに、FSTDでなくても、サブキャリア方向にPVSを等間隔に適用するよう方法の場合でも、同様に複数の相関ピークが発生する。
 次に、発明者らは、どのようなサブキャリアにプリアンブルを配置した場合に、サイドローブが発生するのかを、詳しく調べた。その様子を、以下の図2、図3、図4、図5に示す。図2A、図3A、図4A、図5Aは、第1の送信アンテナTx1、第2の送信アンテナTx2のどのサブキャリアにプリアンブルを配置したかを示すものである。図2B、図3B、図4B、図5Bは、受信側で得られる自己相関特性を示す。なお、図2B、図3B、図4B、図5Bにおける横軸は、1OFDMシンボル区間内でのサンプリングポイントを示し、縦軸は、自己相関値を示す。
 (例1):図2Aに示すように、アンテナTx1については、送信帯域の半分は奇数サブキャリア(…, -9, -7,…)に、もう半分は偶数サブキャリア(2, 4,…)にプリアンブルを配置した。同様に、アンテナTx2については、送信帯域の半分は偶数サブキャリア(…, -10, -8, …)に、もう半分は奇数サブキャリア(1, 3, …)にプリアンブルを配置した。この場合、図2Bに示すように、シンボルの中央付近に複数のサイドローブが発生した。
 (例2):図3Aに示すように、2サブキャリアずつ交互に、アンテナTx1とアンテナTx2にプリアンブルを配置した。この場合、図3Bに示すように、シンボルの中央を挟んで2箇所にサイドローブが発生した。
 (例3):図4Aに示すように、3サブキャリアずつ交互に、アンテナTx1とアンテナTx2にプリアンブルを配置した。この場合、図4Bに示すように、シンボルの中央部分と、それを挟んで2箇所にサイドローブが発生した。
 (例4):図5Aに示すように、2サブキャリア単位又は3サブキャリア単位で、アンテナTx1とアンテナTx2にプリアンブルを配置した。この場合、図5Bに示すように、シンボルの中央を挟んで2箇所にサイドローブが発生した。
 発明者らは、以上の実験結果から、使用するサブキャリアとして、等間隔のサブキャリアの割合が多くなると、時間波形の自己相関値において、サイドローブのピーク値が大きくなると考えた。
 本発明の骨子は、プリアンブルを配置するサブキャリアの間隔をランダム化することである。換言すれば、プリアンブルをできるだけ等間隔のサブキャリアに配置しないことである。これにより、OFDMシンボル内の時間軸での周期性を減少させることができるので、受信側で、時間領域でプリアンブル系列の自己相関値を求めた場合に、サイドローブのピーク値が小さくなり、この結果、タイミングの検出誤りを防止できる。
 (実施の形態1)
 図6に、本実施の形態における、OFDM信号のサブキャリアへのプリアンブルの配置パターンを示す。本実施の形態では、プリアンブル系列信号を連続して配置するサブキャリアのパターンを周波数方向で変化させるようになっている。具体的には、第1の送信アンテナTx1から送信する1,2,3,5,6,7,8,11,………,36,38,………番目のサブキャリアにプリアンブルを配置し、第2の送信アンテナTx2から送信する4,9,10,12,13,14,………,39,40,41,………番目のサブキャリアにプリアンブルを配置する。そして、図6のようにサブキャリアに配置されたプリアンブルは、同一時間にアンテナTx1及びアンテナTx2から送信される。
 ここで、図6から分かるように、第1のアンテナTx1では、3連続サブキャリア(1,2,3)、4連続サブキャリア(5,6,7,8)、1連続サブキャリア(11)、4連続サブキャリア(15,16,17,18)、3連続サブキャリア(23,24,25)、2連続サブキャリア(28,29)、2連続サブキャリア(32,33)、1連続サブキャリア(36)、1連続サブキャリア(38)、………といったように、プリアンブルを連続して配置するサブキャリアのパターンが周波数方向で変化している。
 同様に、第2のアンテナTx2では、1連続サブキャリア(4)、2連続サブキャリア(9,10)、3連続サブキャリア(12,13,14)、4連続サブキャリア(19,20,21,22)、2連続サブキャリア(26,27)、2連続サブキャリア(30,31)、2連続サブキャリア(34,35)、1連続サブキャリア(37)、3連続サブキャリア(39,40,41)、………といったように、プリアンブルを連続して配置するサブキャリアのパターンが周波数方向で変化している。
 因みに、図6からも分かるように、送信アンテナTx1でプリアンブルを配置したサブキャリアには送信アンテナTx2ではプリアンブルを配置せず、逆に、送信アンテナTx2でプリアンブルを配置したサブキャリアには送信アンテナTx1ではプリアンブルを配置しない。このように、アンテナ間で相補的にプリアンブルを配置するようになっている。つまり、本実施の形態では、ダイバーシチ送信として、FSTDを用いている。
 図7に、図6のようにプリアンブルを配置した場合の、受信側でのプリアンブルの自己相関特性を示す。図7から分かるように、シンボルの先頭位置で大きなピークが現れる以外は、大きなピークは現れない。よって、タイミングの検出誤りを防止できる。
 図8に、上述した送信方法を実施するための送信装置の構成例を示す。図8の送信装置は、例えば移動端末に搭載される。なお、図8では、プリアンブル送信に関わる構成のみを示しているが、実際の移動端末には、パイロット信号送信系から構成される制御信号送信系や、符号化部及び変調部等から構成されるデータ送信系等も搭載される。
 プリアンブル系列生成部101で生成されたプリアンブル系列信号は、アンテナTx1及びアンテナTx2の送信アンテナ系列に入力される。因みに、このプリアンブル系列信号は、例えば、端末間で異なるものが生成される。
 サブキャリア選択部103-1、103-2は、サブキャリア選択指示部102の指示に従って、使用するサブキャリア位置(IFFTの入力位置)にプリアンブル系列を配置してIFFT104-1、104-2に出力する。
 具体的には、サブキャリア選択部103-1は、図6のTx1で示されるサブキャリア位置にプリアンブル系列を配置し、サブキャリア選択部103-2は、図6のTx2で示されるサブキャリア位置にプリアンブル系列を配置して出力する。
 IFFT(逆フーリエ変換部)104-1、104-2は、サブキャリア選択部103-1、103-2から入力された信号を逆フーリエ変換することで、時間波形信号であるOFDM信号を形成する。OFDM信号は、RF部105-1、105-2によって無線処理が施された後、アンテナTx1、Tx2から送信される。
 図9に、図8の送信装置から送信されたプリアンブルを受信する受信装置の構成例を示す。図9の受信装置は、例えば基地局に搭載される。なお、図9では、プリアンブル受信に関わる構成のみを示しているが、実際の基地局には、復調部及び復号部等から構成されるデータ受信系も搭載される。
 アンテナRx1で受信された信号は、RF部201によって無線処理された後、プリアンブル相関演算部202に入力される。プリアンブルレプリカ生成部203は、受信の可能性のあるプリアンブル系列の時間波形レプリカを全て生成又は保持しており、これをプリアンブル相関演算部202に供給する。
 プリアンブル相関演算部202は、供給されたプリアンブル系列の時間波形レプリカと受信信号との相関(すなわち自己相関値)を求める。プリアンブル検出判定及び受信タイミング検出部204は、プリアンブル相関演算部202で得られた自己相関値における閾値以上の相関ピークの有無及び位置に基づいて、どのプリアンブルを検出したかという判定と、そのプリアンブルの受信タイミングのずれを検出する。
 ここで、上述したプリアンブル配置を用いれば、1OFDMシンボル内で、閾値以上のピークが複数発生することを抑制できるので、受信タイミングのずれを誤り無く検出できるようになる。
 なお、図8では、1つのプリアンブル系列生成部101で生成したプリアンブル系列を、アンテナTx1及びアンテナTx2の送信アンテナ系列の両方で用いる場合を示したが、図10に示すように、アンテナTx1の系列のプリアンブルはプリアンブル系列生成部101-1で生成し、アンテナTx2の系列のプリアンブルはプリアンブル系列生成部101-2で生成してもよい。つまり、送信アンテナ系列ごとに、個別のプリアンブル系列を送信してもよい。
 また、受信装置は、図9のように、1本のアンテナで受信してもよいし、複数のアンテナで受信してもよい。
 以上説明したように、本実施の形態によれば、プリアンブル系列を連続して配置するサブキャリアのパターンを周波数方向で変化させるようにしたことにより、プリアンブル系列をランダムなサブキャリア間隔で配置することができる。これにより、時間領域でプリアンブル系列の自己相関値を求めた場合に、サイドローブのピーク値が小さくなり、この結果、タイミングの検出誤りを防止できる。
 また、ダイバーシチ送信の方法として、FSTDを適用したことにより、1回の受信検出でダイバーシチ効果が得られるので、効率的なプリアンブル送信を実現できる。
 (実施の形態2)
 本実施の形態では、PN系列と同一パターンのサブキャリアにプリアンブル系列信号を配置することを提示する。本実施の形態では、PN系列として、特に、サブキャリア数と同じ長さでかつビット1とビット0が同数のGold系列を用い、当該Gold系列の配列パターンにサブキャリアの配列を対応させて、当該Gold系列のビット1又はビット0のいずれかの位置に対応するサブキャリアにプリアンブル系列信号を配置することを提案する。
 図11に、Gold系列を用いて作成した、プリアンブルのサブキャリアへの配置パターンの例を示す。図11は、サブキャリア数が64個の場合の例を示しており、この場合、64ビットのGold系列生成し、ビット1とビット0が同数発生するものを採用する。Gold系列とサブキャリア配置とを対応させ、Gold系列において、ビット=1となるところのサブキャリア(図中の黒塗りで示したサブキャリア)にプリアンブル系列を配置する。
 アンテナTx1から送信するサブキャリアのうち、図11A、図11B、図11C、図11D又は図11Eの黒塗りで示したサブキャリアにプリアンブル系列を配置する。そして、アンテナTx2から送信するサブキャリアについては、アンテナTx1でプリアンブル系列を配置しなかったサブキャリアにプリアンブル系列を配置すればよい。
 このような操作は、図8のサブキャリア選択指示部102でGold系列を生成し、サブキャリア選択部103-1、103-2でそれに基づくサブキャリア選択を行えばよい。
 図12に、図11A、図11B、図11C、図11D又は図11Eで示したサブキャリア配置を適用した場合の、受信側でのプリアンブルの自己相関特性を示す。図12から分かるように、シンボルの先頭位置で大きなピークが現れる以外は、大きなピークは現れない。よって、タイミングの検出誤りを防止できる。
 加えて、図11のパターンp1~p5間での相互相関特性も非常に小さく抑えられるので、例えばパターンp1~p5を異なるセルのプリアンブル配置に適用した場合等に、セル間の干渉を抑制する効果を得ることもできる。
 (実施の形態3)
 本実施の形態では、PN系列として、特に、サブキャリア数からDC(直流)サブキャリアを除いた長さと同じ長さのM系列を用い、当該M系列の配列パターンにサブキャリアの配列を対応させて、当該M系列のビット0の位置に対応するサブキャリアにプリアンブル系列を配置することを提案する。
 図13に、M系列を用いて作成した、プリアンブルのサブキャリアへの配置パターンの例を示す。M系列とサブキャリア配置とを対応させ、M系列において、ビット=0となるところのサブキャリア(図中の黒塗りで示したサブキャリア)にプリアンブル系列を配置する。
 アンテナTx1から送信するサブキャリアのうち、図13A又は図13Bの黒塗りで示したサブキャリアにプリアンブル系列を配置する。そして、アンテナTx2から送信するサブキャリアについては、アンテナTx1でプリアンブル系列を配置しなかったサブキャリアにプリアンブル系列を配置すればよい。
 このような操作は、図8のサブキャリア選択指示部102でM系列を生成し、サブキャリア選択部103-1、103-2でそれに基づくサブキャリア選択を行えばよい。
 図14に、図13A又は図13Bで示したサブキャリア配置を適用した場合の、受信側でのプリアンブルの自己相関特性を示す。図14から分かるように、シンボルの先頭位置で大きなピークが現れる以外は、大きなピークは現れない。よって、タイミングの検出誤りを防止できる。
 加えて、図13のパターンp1、p2間での相互相関特性も非常に小さく抑えられるので、例えばパターンp1、p2を異なるセルのプリアンブル配置に適用した場合等に、セル間の干渉を抑制する効果を得ることもできる。
 ところで、OFDMでは、中心のサブキャリアはDCオフセットの影響を受けるため使用されないことが多い。M系列は、系列長が2n-1(n:自然数)なので、DCサブキャリアを使用しないOFDMのサブキャリアにマッチしやすい。また、M系列は、ビット0とビット1がほぼ同数(ビット0が必ずビット1より1個少ない)なので、Gold系列のようにビット1とビット0が同数発生する系列を選択するという手間がなく、複数アンテナ間で同数のプリアンブルをサブキャリアに配置するのに適している。
 (実施の形態4)
 本実施の形態では、受信側で、送信アンテナの本数を判別し得る、プリアンブルの配置の仕方について説明する。
 図15及び図16に示すように、送信アンテナの数に応じて、プリアンブルを配置するサブキャリアをシフトさせることで、受信側で、送信アンテナの本数を判別できるようになる。
 図15は、送信アンテナ数が2本の場合の、サブキャリアへのプリアンブル配置パターンを示し、図6で説明したのと同様の配置となっている。一方、図16は、送信アンテナが1本の場合のサブキャリアへのプリアンブル配置パターンを示す。図16のプリアンブル配置パターンは、図15のプリアンブル配置パターンと比較して、プリアンブルが1サブキャリア分だけシフトさせたサブキャリアに配置されている。
 このようにすることで、同じプリアンブル系列を用いた場合でも、送信アンテナの本数に応じて時間波形が異なるので、受信側で送信アンテナの本数に応じた複数のレプリカを用意しておくことで、送信アンテナの本数を判別できるようになる。
 因みに、送信アンテナ数が判別できると、各送信アンテナの回線推定を行うことができ、次に携帯端末から送信されてくる信号(例えばランダムアクセス信号)の回線補償に用いることができる。
 (実施の形態5)
 上述した実施の形態1~4では、本発明をFSTDに適用する場合について説明したが、本発明はプリアンブルを周波数方向にPVS(Precoding Vector Switching)した場合にも適用できる。この場合、周波数方向にプリコーディングベクトル処理を施す範囲を、実施の形態1~4のプリアンブル配置パターンを選択したのと同様に決定すればよい。
 図17に、送信アンテナが2本の場合に、PVSで用いるプリコーディング重みの例を示す。図17Aにおいて、重み1は2本とも同じ位相で送信することを示しており、重み2は2本目の送信アンテナからの信号を1本目の送信アンテナの逆相で送信することを示している。
 図18に、PVSを周波数方向に適用した場合の概略図を示す。奇数サブキャリアと偶数サブキャリアで同じプリアンブル系列を配置し、奇数サブキャリアに同相の重みづけを行い、偶数サブキャリアに逆相の重み付けを行うようになっている。この場合、基地局(受信側)でプリアンブルの相関をとるときに、奇数サブキャリアだけで作成したレプリカと偶数サブキャリアだけで作成したレプリカとを用いて相関演算を行うことになるので、正しい検出位置以外のサイドローブが発生することになる。
 図19に、PVSをかけつつサイドローブを抑圧する、本実施の形態の重み配置の例を示す。重み配置のパターンは、実施の形態1と同様であり、実施の形態1の送信アンテナTx1でプリアンブルを配置したサブキャリアに重み1を、送信アンテナTx2でプリアンブルを配置したサブキャリアに重み2を適用している。これにより、実施の形態1の効果と同様に、タイミングの検出誤りを防止できるといった効果を得ることができる。
 なお、実施の形態1~4のFSTDは周波数方向にPVSを適用した場合の一形態ということもできる。周波数方向にPVSを適用する場合を一般的に表現すると、重み[Tx1,Tx2]として、[a1,a2]と[b1,a2]を用いていると言うことができる。本実施の形態では具体例の一つとして、[1,1],[1,-1]を用いた場合について説明した。FSTDの場合は、重みとして[1,0],[0,1]を用いるのと等価である。
 つまり、実施の形態1~5で説明した方法は、プリアンブル系列信号を生成し、複数のアンテナを用いて、前記プリアンブル系列信号を重み付けベクトルによって重み付けし、重み付けされた信号をランダムなサブキャリア間隔で配置していると言うことができる。例えば、図8の構成では、サブキャリア選択指示部102及びサブキャリア選択部103-1、103-2が、サブキャリア配置手段としての機能に加えて、重み付け手段としての機能も果たしていると言うことができる。
 さらに、実施の形態1~5で説明した方法は、重み付け手段によって、第1のプリアンブル系列信号又は第2のプリアンブル系列信号に第1の重み付けを行って第1の重み付け後信号を生成する第1の重み付けと、前記第1のプリアンブル系列又は第2のプリアンブル系列に第2の重み付けを行って第2の重み付け後信号を生成する第2の重み付けとを行い、配置手段によって、前記第1の重み付け後の信号と前記第2の重み付け後の信号とをそれぞれランダムなサブキャリア間隔で配置し、かつ前記第1の重み付け後の信号と前記第2の重み付け後の信号が配置されるサブキャリアが重複しないように配置しているということができる。なお、FSTDは、重みベクトルとして、重みが0を含んだものを用いた場合であるということができる。
 (他の実施の形態)
 なお、上述した実施の形態では、送信アンテナが2本の場合で説明したが、上述したプリアンブルの送信方法は、2本よりも多い送信アンテナを用いてプリアンブルを送信する場合にも適用することができる。例えばプリアンブルを送信する送信アンテナが4本の場合は、先ず、上述した実施の形態で説明したように、プリアンブルを配置するサブキャリアをPN系列で2分割し、次に、2分割後のプリアンブル配置に再びPN系列を乗じて2分割すれば、4分割したプリアンブル配置、すなわち4本の送信アンテナ分のプリアンブル配置を作成することができる。これにより、各送信アンテナから送信されるプリアンブルの時間波形において、自己相関特性にサイドローブが出ないようにすることができる。
 また、上述した実施の形態では、ダイバーシチ送信の方法として、FSTDを用いた場合について説明したが、本発明の送信方法はこれに限らず、例えば1本のアンテナからプリアンブル系列を送信する場合に適用した場合でも、上述した実施の形態と同様の効果を得ることができる。ただし、実施の形態2、3、4のGold系列及びM系列パターンを用いたプリアンブル配置は、両方の送信アンテナに同数のプリアンブルをランダムに配置できるので、FSTDを用いた場合に特に効果的である。
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2008年1月15日出願の特願2008-005996の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、プリアンブルに基づくタイミング検出精度が向上するといった効果を有し、例えば携帯端末に適用して好適である。

Claims (15)

  1.  プリアンブル系列信号を生成するプリアンブル系列生成手段と、
     複数のアンテナを用いて、前記プリアンブル系列信号を重み付けベクトルによって重み付けする重み付け手段と、
     前記重み付けされた信号をランダムなサブキャリア間隔で配置する配置手段と、
     を具備する無線送信装置。
  2.  前記重み付け手段は、第1のプリアンブル系列信号又は第2のプリアンブル系列信号に第1の重み付けを行って第1の重み付け後信号を生成する第1の重み付けと、前記第1のプリアンブル系列又は第2のプリアンブル系列に第2の重み付けを行って第2の重み付け後信号を生成する第2の重み付けとを行い、
     前記配置手段は、前記第1の重み付け後の信号と前記第2の重み付け後の信号とをそれぞれランダムなサブキャリア間隔で配置し、かつ前記第1の重み付け後の信号と前記第2の重み付け後の信号が配置されるサブキャリアが重複しないように配置する、
     請求項1に記載の無線送信装置。
  3.  前記重み付けベクトルは、重みが0のものを含む
     請求項1に記載の無線送信装置。
  4.  前記配置手段は、前記プリアンブル系列信号を連続して配置するサブキャリアのパターンを周波数方向で変化させる、
     請求項1に記載の無線送信装置。
  5.  前記配置手段は、PN系列と同一パターンのサブキャリアに前記プリアンブル系列信号を配置する、
     請求項1に記載の無線送信装置。
  6.  前記配置手段は、前記PN系列として、サブキャリア数と同じ長さでかつビット1とビット0が同数のGold系列を用い、当該Gold系列の配列パターンにサブキャリアの配列を対応させて、当該Gold系列のビット1又はビット0の位置のいずれかに対応するサブキャリアに前記プリアンブル系列信号を配置する、
     請求項5に記載の無線送信装置。
  7.  前記配置手段は、前記PN系列として、サブキャリア数からDCサブキャリアを除いた長さと同じ長さのM系列を用い、当該M系列の配列パターンにサブキャリアの配列を対応させて、当該M系列のビット0の位置に対応するサブキャリアに前記プリアンブル系列信号を配置する、
     請求項5に記載の無線送信装置。
  8.  前記配置手段は、送信アンテナ数に応じて、前記プリアンブル系列信号を配置するサブキャリアを周波数方向にシフトさせる、
     請求項1に記載の無線送信装置。
  9.  プリアンブル系列信号を生成するプリアンブル系列生成ステップと、
     複数のアンテナを用いて、前記プリアンブル系列信号を重み付けベクトルによって重み付けする重み付けステップと、
     前記重み付けされた信号をランダムなサブキャリア間隔で配置する配置ステップと、
     を含む無線送信方法。
  10.  前記重み付けステップでは、第1のプリアンブル系列信号又は第2のプリアンブル系列信号に第1の重み付けを行って第1の重み付け後信号を生成する第1の重み付けと、前記第1のプリアンブル系列又は第2のプリアンブル系列に第2の重み付けを行って第2の重み付け後信号を生成する第2の重み付けとを行い、
     前記配置ステップでは、前記第1の重み付け後の信号と前記第2の重み付け後の信号とをそれぞれランダムなサブキャリア間隔で配置し、かつ前記第1の重み付け後の信号と前記第2の重み付け後の信号が配置されるサブキャリアが重複しないように配置する、
     請求項9に記載の無線送信方法。
  11.  前記重み付けベクトルは、重みが0のものを含む
     請求項9に記載の無線送信方法。
  12.  前記配置ステップでは、前記プリアンブル系列信号を連続して配置するサブキャリアのパターンを周波数方向で変化させる、
     請求項9に記載の無線送信方法。
  13.  前記配置ステップでは、PN系列と同一パターンのサブキャリアに前記プリアンブル系列信号を配置する、
     請求項9に記載の無線送信方法。
  14.  前記配置ステップでは、前記PN系列として、サブキャリア数と同じ長さでかつビット1とビット0が同数のGold系列を用い、当該Gold系列の配列パターンにサブキャリアの配列を対応させて、当該Gold系列のビット1又はビット0の位置のいずれかに対応するサブキャリアに前記プリアンブル系列信号を配置する、
     請求項13に記載の無線送信方法。
  15.  前記配置ステップでは、前記PN系列として、サブキャリア数からDCサブキャリアを除いた長さと同じ長さのM系列を用い、当該M系列の配列パターンにサブキャリアの配列を対応させて、当該M系列のビット0の位置に対応するサブキャリアに前記プリアンブル系列信号を配置する、
     請求項13に記載の無線送信方法。
     
PCT/JP2009/000111 2008-01-15 2009-01-14 無線送信装置及び無線送信方法 WO2009090869A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009549982A JPWO2009090869A1 (ja) 2008-01-15 2009-01-14 無線送信装置及び無線送信方法
US12/812,449 US20100284487A1 (en) 2008-01-15 2009-01-14 Wireless transmission device and wireless transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-005996 2008-01-15
JP2008005996 2008-01-15

Publications (1)

Publication Number Publication Date
WO2009090869A1 true WO2009090869A1 (ja) 2009-07-23

Family

ID=40885261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000111 WO2009090869A1 (ja) 2008-01-15 2009-01-14 無線送信装置及び無線送信方法

Country Status (3)

Country Link
US (1) US20100284487A1 (ja)
JP (1) JPWO2009090869A1 (ja)
WO (1) WO2009090869A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500645A (ja) * 2009-07-29 2013-01-07 ゼットティーイー コーポレイション 直交周波数分割多重方式におけるランダムアクセス信号の検出方法及び装置
JP5339636B2 (ja) * 2008-08-05 2013-11-13 パナソニック株式会社 無線通信装置及び無線通信方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8422575B2 (en) * 2010-09-17 2013-04-16 Acer Incorporated Broadcasting system and multi-carrier communication system
CN103477583B (zh) 2011-04-19 2016-11-09 太阳专利托管公司 预编码方法、预编码装置
CN104753842B (zh) * 2015-04-18 2017-10-13 中国电子科技集团公司第四十一研究所 基于峰值位置判别的信号调制方式识别方法
ES2749918T3 (es) * 2015-09-28 2020-03-24 Ericsson Telefon Ab L M Preámbulo de acceso aleatorio para minimizar el retroceso de PA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299675A (ja) * 1999-04-12 2000-10-24 Sony Corp データ通信システム、信号受信装置、データ通信方法およびシンボル検出装置
JP2006014321A (ja) * 2004-06-21 2006-01-12 Samsung Electronics Co Ltd 広帯域無線接続通信システムにおける動作モード情報を送受信する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836784B2 (ja) * 2003-06-30 2011-12-14 アギア システムズ インコーポレーテッド Fdmに基づくプリアンブル構造を使用する複数アンテナ通信システムにおける後方互換性通信のための方法および装置
JP4130191B2 (ja) * 2004-01-28 2008-08-06 三洋電機株式会社 送信装置
US7817732B2 (en) * 2004-07-16 2010-10-19 Qualcomm Incorporated Channel tracking with scattered pilots
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299675A (ja) * 1999-04-12 2000-10-24 Sony Corp データ通信システム、信号受信装置、データ通信方法およびシンボル検出装置
JP2006014321A (ja) * 2004-06-21 2006-01-12 Samsung Electronics Co Ltd 広帯域無線接続通信システムにおける動作モード情報を送受信する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th,", 30 September 2007, article KAPSEOK CHANG ET AL.: "Open-loop Transmit Diversity for Broadcast Channel Transmission in E-UTRA", pages: 1293 - 1297 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339636B2 (ja) * 2008-08-05 2013-11-13 パナソニック株式会社 無線通信装置及び無線通信方法
JP2013500645A (ja) * 2009-07-29 2013-01-07 ゼットティーイー コーポレイション 直交周波数分割多重方式におけるランダムアクセス信号の検出方法及び装置

Also Published As

Publication number Publication date
US20100284487A1 (en) 2010-11-11
JPWO2009090869A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
US11700099B2 (en) Method and apparatus for transmitting reference signal in multi-antenna system
RU2720462C1 (ru) Способ и устройство для передачи данных восходящей линии связи в системе беспроводной связи
US10439778B2 (en) Mobile station and reception method
CN109923828B (zh) 无线通信系统中终端的探测方法和用于所述探测方法的装置
US10341004B2 (en) Apparatus and method for beam training
CN106576036B (zh) 发送用于估计模拟波束的训练符号的方法和设备
US7991063B2 (en) Transmission symbols mapping for antenna diversity
US20100015927A1 (en) Radio communication device and radio communication method
WO2009090869A1 (ja) 無線送信装置及び無線送信方法
US8457566B2 (en) Preamble transmission method in a multiple antenna system
EP3821543B1 (en) Time-overlapping beam-swept transmissions
US11405877B2 (en) Downlink synchronization signals
US11218194B2 (en) Method and apparatus for transmitting reference signal in multi-antenna system
KR101513729B1 (ko) 다중 안테나 시스템에서 프리앰블 전송 방법
WO2023146440A1 (en) Calibration for wireless communication network
KR20060016190A (ko) 단말의 3-안테나를 통한 상향 신호 전송방법
KR20090055159A (ko) Ofdm방식을 이용하는 이동 통신 시스템에서의 적응적주파수 블록 도약 방법, 그 시스템 그리고 기지국 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009549982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12812449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702909

Country of ref document: EP

Kind code of ref document: A1