WO2009089782A1 - Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio - Google Patents

Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio Download PDF

Info

Publication number
WO2009089782A1
WO2009089782A1 PCT/CN2009/070063 CN2009070063W WO2009089782A1 WO 2009089782 A1 WO2009089782 A1 WO 2009089782A1 CN 2009070063 W CN2009070063 W CN 2009070063W WO 2009089782 A1 WO2009089782 A1 WO 2009089782A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
unit
random access
message
Prior art date
Application number
PCT/CN2009/070063
Other languages
English (en)
French (fr)
Inventor
Mingjiang Xie
Yinghua Huang
Boyun Xie
Zuoyan Zhu
Xiaofei Ma
Wen Gao
Binsong Tang
Wei Pan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009089782A1 publication Critical patent/WO2009089782A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • Radio link processing method, communication method and device after radio link failure The application is submitted to the Chinese Patent Office on January 8, 2008, and the application number is 200810002317.3, and the invention name is "detecting radio link failure, reducing radio link failure"
  • the priority of the Chinese Patent Application for the Method and Apparatus for Loss the entire contents of which is hereby incorporated by reference.
  • the present invention relates to communication technologies, and in particular, to a radio link processing method, a radio link failure communication method, and a device.
  • the UE side detects the radio link failure, that is, the radio link fails to detect the downlink signal, and the UE (User Equipment) passes the detection downlink.
  • the signal appears asynchronous to determine the radio link failure.
  • the UE detects that the downlink signal starts asynchronously, and the physical layer consecutively (the default is 20 times), the "non-synchronization" indication occurs, specifically, the CPHY-Out-of-Sync-IND indication is sent to the upper layer of the UE, and then After a certain period of time (default is 3 seconds), it is confirmed that a radio link failure has occurred.
  • the "asynchronous" indication of the physical layer is: the UE is on the control channel) or the F-DPCH (Famental Dedicated Physical Channel) channel quality, if it is lower than a certain threshold within 160ms Qout, the CRC (Cyclic Redundancy Check) of the last 20 downlink TB (Transport Block) is detected. If the CRC check fails, and all the non-zero CRCs within the previous 160ms. When the TB of the length is detected, the CRC check fails, indicating that the physical layer is "unsynchronized, indicating. After the UE determines that the radio link fails, the corresponding processing needs to be performed. The process includes: clearing the dedicated physical channel.
  • the configuration information may also send a cell update message to the new cell for handover.
  • the radio link is restored in two phases.
  • the UE first selects the original cell to perform radio link recovery. If it cannot be recovered in phase 1, it enters phase 2, and in phase 2, the UE autonomously selects a cell to try to recover.
  • the recovery signaling process is: the UE sends a radio resource control connection re-establishment request message to the cell, and after receiving the message, the cell checks whether there is a context of the UE, if there is a context of the UE , then The network sends a RRC connection re-establishment message to the UE, notifying the UE that the radio link has been restored, and the UE sends an RRC connection re-establishment complete message to the network side; if the cell There is no context of the UE, and the network sends a RRC connection re-establishment reject message to the UE. After receiving the message, the UE needs to re-initiate a new RRC connection setup procedure. Since the high-level service has not been released at this time, only the RRC layer service is interrupted. Therefore, in order to reduce the time of service interruption and improve the user's feeling, it is necessary to shorten the RRC establishment time as much as possible.
  • the inventors have found that in the existing LTE system, it is impossible to confirm whether the wireless link fails in time or not, and the method for detecting the failure of the wireless link in the above UMTS system cannot be applied to the LTE system.
  • An embodiment of the present invention provides a method and a device for processing a wireless link, which can detect a wireless link failure in time.
  • the terminal initiates random access
  • the embodiment of the invention further provides a wireless link processing method, including:
  • the response message of the other party is not received within a predetermined time, or the number of times the message is repeatedly transmitted exceeds a predetermined number of times, it is determined that the radio link has failed.
  • a terminal provided by the embodiment of the present invention includes a random access unit, configured to initiate random access, and a wireless link exists between the terminal and the base station;
  • An embodiment of the present invention provides a base station, including a sending unit and a receiving unit, and a detecting unit, configured to detect whether a wireless link fails;
  • Switching decision units for making handover decisions comprising: a determining unit, configured to determine, after the detecting unit detects that the radio link fails, whether the handover decision unit has made a handover decision; and when the handover decision unit fails to make a handover decision, instruct the handover decision unit Waiting for the terminal to return to the local cell, or instructing the handover decision unit to select a suitable target cell for handover; and when the handover decision unit has made a handover decision, instructing the sending unit to send a handover command to the terminal.
  • Another aspect of the present invention provides a communication method and device after a radio link failure. After the radio station fails to discover the radio link, the base station or the terminal can take corresponding measures to reduce the loss caused by the radio link failure.
  • the terminal sends a random access preamble to the original base station
  • the terminal After receiving the random access response of the original base station, the terminal sends an encrypted radio resource control recovery request to the original base station;
  • the terminal receives the radio resource control recovery message that is sent by the original base station and carries the new target cell information.
  • the terminal provided by the embodiment of the present invention includes a sending unit and a receiving unit, and further includes: a detecting unit, configured to detect whether the wireless link fails, and after detecting that the wireless link fails, instructing the sending unit to send to the original base station Random access preamble;
  • a recovery unit configured to: after the receiving unit receives the random access response sent by the original base station, instruct the sending unit to send an encrypted radio resource control recovery request to the original base station, and according to the radio resource received by the receiving unit Control the recovery message to obtain new target cell information.
  • the embodiment of the present invention initiates random access by using a terminal, if the number of failed random connections initiated by the terminal exceeds a predetermined number of times; or, the device in the system is the other party.
  • Sending a related message if the response message of the other party is not received within a predetermined time, the wireless link failure can be confirmed effectively and timely.
  • the radio link fails, the corresponding protection measures can be determined in time, thereby reducing the loss caused by the failure of the radio link.
  • FIG. 2 is a flow chart of a first embodiment of a method for reducing loss of a wireless link failure according to the present invention
  • FIG. 3 is a flow chart of a second embodiment of a method for reducing loss of a wireless link according to the present invention
  • a block diagram of a base station embodiment is a structural block diagram of an embodiment of a terminal of the present invention
  • FIG. 6 is a structural block diagram of another terminal embodiment of the present invention.
  • the terminal is more likely to find the problem of the wireless link, because the terminal needs to constantly detect the signal strength and quality of the serving cell, and the base station side may not have uplink data for detection for a long time, so it is difficult to find the wireless link problem in time.
  • the power of the base station can be made large, and the power is generally small due to the limitation of the volume and the battery capacity, the wireless link problem is mostly caused by the problem of the uplink signal strength. The method of failure.
  • the base station On the base station side, if the base station has downlink data to transmit, first, the base station needs to inform the terminal of a proprietary random access preamble identifier (RA Preamble Id) on the DPCCH channel, so that the UE can use it to initiate a random access procedure, and then The UE is configured to configure time-frequency resources for transmitting downlink data, or some downlink channel configuration information, so that the terminal can prepare for downlink data reception.
  • RA Preamble Id a proprietary random access preamble identifier
  • the base station may determine whether the radio link fails by determining whether the random access signal of the terminal is received within a predetermined time, and the predetermined time may be one or more TTIs after the message is sent. Time Interval, transmission time interval, each ⁇ is lms. If the random access signal of the terminal is not received within a predetermined time, the base station can determine that the radio link has failed.
  • the base station can transmit the RA Preamble Id multiple times, the base station can also send the number N according to the base station. If the base station repeatedly transmits the terminal-specific random access preamble for more than a predetermined number of times N, the base station can In view of the failure of the radio link, such radio link failure may be caused by downlink or uplink channel problems.
  • the terminal when the UE has uplink data to be transmitted, the terminal needs to send a message requesting the base station to allocate time-frequency resources; if the message fails to be sent, or the message is sent successfully but the response of the base station is not received within a predetermined time, Then the terminal can determine that the radio link has failed. There are two situations:
  • the base station configures the UE with the air interface resource that can send the uplink data
  • the UE needs to first send some resource request information with a small amount of data on the air interface resource: for example, SR (Schedule Request) or BSR (Buffer Status) Report, Cache Status Report), to request the base station side to allocate enough resources to send data.
  • SR Service Request
  • BSR Buffer Status Report
  • Cache Status Report Cache Status Report
  • the UE needs to send the SR to the base station through the RA (Random Access) process. After the base station responds and configures certain uplink resources, the UE can send the uplink data.
  • RA Random Access
  • the UE may consider that a radio link failure has occurred.
  • the sending process is unsuccessful, for example, it is known by the HARQ (Hybrid Automatic Repeat reQuest) process; or the transmitted SR and BSR do not receive the response of the base station within a certain period of time; Or, if the RA process fails within a certain number of times and within a certain time range, the UE may consider that a radio link failure has occurred.
  • HARQ Hybrid Automatic Repeat reQuest
  • RA procedures there are two RA procedures: one is based on the RA process of competition, and the other is based on the non-contention RA process.
  • a RA process based on contention is initiated; when most RA processes are switched to the target cell, and when the base station has downlink data to be sent, a non-contention based RA is initiated. process.
  • the two RA procedures are described below.
  • the RA process is completed by several interactions between the UE and the base station, and includes at least four messages: Message 1 is sent by the UE to the base station, and message 1 includes an RA Preamble;
  • Message 2 The RA response sent by the base station to the UE, where the message includes the RA Preamble, RA-RNTI
  • Radio Network Temporary Identity a temporary C-RNTI (Cell-RNTI, Cellular Radio Network Temporary Identity), and an uplink air interface resource allocated to the UE for transmitting the message 3;
  • Message 3 sent by the UE to the base station, if multiple UEs initiate RA, the base station can pass Message 3 knows exactly which UE is initiating the RA;
  • Message 4 After the UE accesses successfully, the base station sends a message to the UE.
  • the UE may be set that the UE does not receive the message 4 within a certain time T1, and the reason may be various. For example, the message 1 is not successfully sent, the message is not received, and the message 3 is not. If the transmission is successful, it is considered that the RA has failed.
  • the so-called non-competition means that the base station allocates a private RA Preamble to the UE in advance, so that the UE can know which UE the UE is, as long as the UE sends the private RA Preamble to the base station through the message 1.
  • the UE can know that the connection has been successfully established with the base station, and then through the uplink resource allocated in the message 2, the UE can interact with the base station through the message 3, for example, sending the BSR to the base station. .
  • the UE For this non-contention-based RA process, it can be set that within a certain time T2, if the UE does not receive the message 2, it is considered that the RA fails; or, within a certain time T2, the UE does not successfully send the message 3 to the base station. , it is considered that RA failed.
  • the target cell is a proprietary RA.
  • the Preamble defines the validity period. During the validity period, the UE accesses the base station based on the non-contention RA procedure. Once the proprietary RA Preamble expires, the UE needs to restart the contention-based RA procedure. At this time, the RA failure can also be determined according to the above method.
  • the reference signal of the physical layer is a special physical layer signal defined in the LTE system, and can be used for detecting the downlink signal quality of the base station by the UE, and detecting the uplink signal quality of the UE by the base station.
  • the uplink reference signal of the UE is divided into two types:
  • One is a Demodulation Reference Signal, which is sent to the base station together with the uplink data or signaling, and is used by the base station to detect the uplink signal quality of the UE; the other is the sounding reference signal (Sounding Reference Signal) ), even if there is no uplink data transmission, the UE will often upload it to the base station for the base station to detect the uplink signal quality of the UE.
  • Sounding Reference Signal Sounding Reference Signal
  • the UE Since the UE needs to continuously measure the signal quality of the serving cell, it is possible to determine whether the radio link fails by detecting the quality of the reference signal. If it is within a certain time T (such as 160ms), When the quality of the reference signal is continuously detected below a certain threshold Qfailure, it can be considered that the wireless link fails. If the quality of the reference signal is continuously detected to be greater than a certain threshold within a certain time (such as 40ms), Qrecovery At this time, it can be considered that the wireless link has been restored.
  • T such as 160ms
  • Qfailure When the quality of the reference signal is continuously detected below a certain threshold Qfailure, it can be considered that the wireless link fails. If the quality of the reference signal is continuously detected to be greater than a certain threshold within a certain time (such as 40ms), Qrecovery At this time, it can be considered that the wireless link has been restored.
  • Both the base station and the UE can use the method, and since the downlink signal of the base station is always being transmitted, the embodiment is not limited to the necessity of data transmission to detect whether the radio link fails.
  • the quality of the channel identified by the CQI value is detected within a certain period of time. If the quality of the channel drops to a certain threshold, the downlink radio link may be considered to be unsuccessful. Alternatively, when a retransmission failure occurs after a certain number of consecutive retransmissions within a certain time T, or a statistical probability that a retransmission failure occurs within a certain time T is higher than a certain threshold (for example, 90%), the downlink wireless may be considered to occur. The link failed.
  • a certain threshold for example, 90%
  • the base station side can also pass the number of statistics retransmissions; or judge whether the uplink signal has a radio link failure according to the CQI fed back by the UE, and the UE passes the PUSCH (Physical Uplink Shared Channel) or the PDSCH (Physical Downlink).
  • the Shared Channel the physical downlink shared channel feeds back the CQI to the base station.
  • the base station side may try to schedule different time-frequency resources to determine whether the signal quality caused by the frequency selective fading is not good. This factor can be taken into consideration, that is, after the base station attempts to schedule different time-frequency resources, the channel quality or the retransmission success rate identified by the CQI value is lower than a certain indicator, and the radio link failure is considered to occur, including the downlink. The radio link fails and the downlink radio link fails.
  • the downlink PDSCH Physical Downlink Shared Channel
  • the PMCH Physical Multicast Channel
  • the PBCH Physical Broadcast Channel
  • the uplink PUSCH for the downlink Physical Uplink Shared Channel
  • a CRC of a certain number of TBs (such as 20) fails to be verified, or if a CRC fails for all received TBs within a certain period of time (such as within 160 ms), it can be considered as a radio link failure.
  • the embodiment of the present invention further provides a device for detecting a failure of a wireless link.
  • the device includes: a signal receiving unit 11, a signal sending unit 12, and a wireless link failure detecting unit 13.
  • the signal receiving unit 11 is configured to receive a wireless signal
  • the signal transmitting unit 12 is configured to send a wireless signal
  • the wireless link failure detecting unit 13 is configured to detect a signal received by the signal receiving unit 11 or a signal sent by the signal transmitting unit 12, and according to The result of the test determines if the wireless link has failed.
  • the radio link failure detecting unit 13 can have many different implementations. For example, there are the following:
  • the radio link failure detecting unit 13 detects whether the receiving unit 11 has not received the random access signal within a predetermined time, and if so, determines that the radio link has failed;
  • the radio link failure detecting unit 13 detects whether the quality of the reference signal continuously received by the receiving unit 11 within a certain period of time is lower than a threshold value, and if so, determines that the radio link fails;
  • the radio link failure detecting unit 13 detects whether the channel quality indicator received by the receiving unit 11 falls to a threshold value within a predetermined time, and if so, determines that the radio link fails;
  • the radio link failure detecting unit 13 detects whether the signal transmission unit 11 has a retransmission failure probability higher than a threshold value within a predetermined time, and if yes, determines that the radio link fails;
  • the radio link failure detecting unit 13 detects the CRC of the TB received by the signal transmitting unit 11, and if the calibration of a predetermined number of CRCs fails, or if the CRC check fails for all the TBs within a certain period of time, the wireless is determined. The link failed.
  • radio link failure detecting unit 13 of the embodiment of the present invention is not limited to the foregoing implementation manners.
  • the wireless link failure can be detected in time.
  • embodiments of the present invention also provide a method of reducing loss of radio link failure.
  • FIG. 2 there is shown a flow diagram of one embodiment of a method of reducing radio link failure loss.
  • This embodiment describes a procedure for reducing radio link failure loss after a radio link failure occurs prior to completion of a handover. It mainly includes the following steps:
  • Step 201 The base station detects that the radio link fails, and the method for the base station to detect whether the radio link fails occurs may refer to the foregoing description.
  • Step 202 it is determined whether a handover decision has been made; if the determination result is yes, step 203 is performed; otherwise, step 204 is performed;
  • Step 203 The base station sends a handover command to the terminal one or more times.
  • Step 204 it is determined whether the base station receives the measurement report sent by the terminal; if the determination result is no, step 205 is performed; otherwise, step 206 is performed;
  • Step 205 The base station waits for the terminal to return to the local cell.
  • the handover request can be avoided from being sent to the neighboring cell, and the burden on the network side is increased, because the wireless link failure at this time is likely to be an abnormality of the terminal (such as a sudden power failure), or the terminal enters some dead zone and the adjacent cell The signal is also not good.
  • Step 206 it is determined that the signal strength or quality of the local cell and/or the signal strength or quality of the neighboring cell meet the predetermined condition; if the determination result is no, step 205 is performed; otherwise, step 207 is performed;
  • the predetermined condition includes one of the following:
  • the signal strength or quality of the cell is lower than a predetermined first threshold
  • the signal strength or quality of the neighboring cell is higher than a predetermined second threshold
  • the signal strength or quality of the neighboring cell is higher than the predetermined range of signal strength or quality of the local cell
  • the foregoing neighboring cell may be the same frequency as the local cell, or different frequency, or different system; the first threshold value and the second threshold value may be the same or different;
  • Step 207 The base station makes a handover decision, and selects a suitable target cell for the terminal to perform handover. That is to say, although the radio link fails, if the quality of the cell is reduced to a certain extent from the measurement report and there is a neighboring cell with good quality, although the switching condition in the normal time is not satisfied, Switching decisions should be made in a timely manner to identify one or more neighboring areas.
  • the base station performs the handover decision in the case that the handover decision request of the base station is satisfied at the same time, for the plurality of optional target cells, one or more cells with better neighboring cell signal strength or quality reported by the terminal should be selected.
  • a primary target cell and one or more neighboring cells may be selected for the terminal;
  • the base station transmits a handover request to the primary target cell and transmits a relocation indication to the neighboring cell. Because once the terminal initiates random access to these cells, these cells can be redirected to the original target cell's designated handover target cell in the RRC Reestablishment Reject message.
  • FIG. 3 it is a schematic flowchart of another embodiment of a method for reducing radio link failure loss.
  • This embodiment describes that a terminal handover fails, and after a radio link failure occurs when attempting to return to the original cell, the radio link is reduced.
  • the process of failure loss It mainly includes the following steps:
  • Step 301 The terminal detects that the radio link fails when performing the handover.
  • Step 302 The terminal sends a random access preamble to the original base station.
  • the terminal may send the random access preamble through a non-contention RA process to improve efficiency and reduce delay;
  • Step 303 The terminal receives a random access response of the original base station.
  • Step 304 Send an encrypted radio resource control recovery request to the original base station by using the digital control channel.
  • the terminal can carry the radio resource control recovery request sent to the original base station.
  • the buffer status report information is used to enable the original base station to know whether the terminal has data to upload, and allocate uplink resources to the terminal.
  • the base station may still try to send a handover command to the terminal; if the base station has not made the handover decision, according to whether the measurement report is received and the signal strength of the local cell in the measurement report is received Or the quality and the signal strength or quality of the neighboring cell, if certain conditions are met, the handover decision may be made in time, or the terminal may be restored to the wireless link in the cell, thereby minimizing the loss of user data and reducing The load on the network side.
  • the terminal may send a random access preamble to the original base station through the non-contention RA process to improve efficiency and reduce delay;
  • the eNB sends the RRC message to the terminal, it may carry the new target cell information in the message, and may carry other handover parameters, so that the terminal can be handed over to the target cell in the shortest time, and the radio link failure is reduced. Delay in user business.
  • the embodiment of the present invention further provides a base station, as shown in FIG. 4, including a sending unit 41, a receiving unit 42, a detecting unit 43, a switching decision unit 44, and a determining unit 45.
  • the detecting unit 43 is configured to detect whether the wireless link fails.
  • the handover decision unit 44 is configured to make a handover decision
  • the determining unit 45 is configured to determine, after the detecting unit 43 detects that the radio link fails, whether the handover decision unit 44 has made a handover decision; when the handover decision unit 44 does not make a handover decision, instruct the handover decision unit 44 to wait for the terminal to return.
  • the local cell, or the indication handover decision unit 44 makes a handover decision and selects a suitable target cell for the handover; when the handover decision unit 44 has made the handover decision, the indication sending unit 41 sends the handover command to the terminal one or more times.
  • the judging unit 45 includes: a measurement report judging subunit 451 and a condition judging subunit 452.
  • the measurement report judging sub-unit 451 is configured to determine whether the receiving unit 42 has received the measurement report of the terminal. If the receiving unit 42 does not receive the measurement report, the switching decision unit 44 is instructed to wait for the terminal to return to the present. If the receiving unit 42 has received the measurement report, the notification condition determining sub-unit 452 performs condition determination; the condition determining sub-unit 452 is configured to determine the signal strength or quality and/or phase of the local cell in the measurement report. Whether the neighbor cell signal strength or quality satisfies a predetermined condition, and if so, instructs the handover decision unit 44 to make a handover decision; otherwise, indicates the handover decision list Element 44 waits for the terminal to return to the cell.
  • the predetermined condition includes one of the following:
  • the signal strength or quality of the cell is lower than a predetermined first threshold
  • the signal strength or quality of the neighboring cell is higher than a predetermined second threshold
  • the signal strength or quality of the neighboring cell is higher than the signal strength or quality predetermined range of the local cell.
  • the first threshold value and the second threshold value may be the same or different.
  • the handover decision unit 44 includes: a selection subunit and an indication subunit.
  • the selecting subunit is configured to select one primary target cell and one or more neighboring cells for the terminal;
  • the indication subunit is configured to instruct the sending unit 41 to send a handover request to the primary target cell, and
  • the neighboring cell sends a relocation indication.
  • the embodiment of the present invention further provides a terminal.
  • the terminal includes: a sending unit 51, a receiving unit 52, a detecting unit 53, and a restoring unit 54.
  • the detecting unit 53 is configured to detect whether the wireless link fails, and after detecting the failure of the wireless link, instructing the sending unit 51 to send a random access preamble to the original base station;
  • the recovery unit 54 is configured to: after the receiving unit 52 receives the random access response sent by the original base station, instruct the sending unit 51 to send an encrypted radio resource control recovery request to the original base station through the digital control channel, and according to the wireless received by the receiving unit 52.
  • the resource control recovery message acquires new target cell information.
  • the RRC status report information may be carried in the RRC request recovery request, so that the original base station knows whether the terminal has data to upload, and allocates uplink resources to the terminal.
  • the terminal of the embodiment may further include an uplink resource acquiring unit 55, configured to obtain, according to the message received by the receiving unit 52, an uplink resource allocated by the original base station to the terminal according to the buffer status report information.
  • an embodiment of the present invention further provides a terminal, where the terminal includes a random access unit 61, configured to initiate random access, and a wireless link exists between the terminal and the base station;
  • the detecting unit 62 is configured to: the number of failures of the random access initiated by the random access unit 61 exceeds a predetermined number of times to determine that the radio link fails.
  • the random access unit 61 is configured to initiate the random access after the terminal needs to send uplink data or receives a message for allocating resources sent by the base station.
  • the terminal and the base station in the embodiment of the present invention may take various protection measures after the radio link fails. Thereby reducing the loss caused by the failure of the wireless link.

Description

无线链路处理方法、 无线链路失败后通信方法及设备 本申请要求于 2008 年 1 月 8 日提交中国专利局、 申请号为 200810002317.3、 发明名称为 "检测无线链路失败、 减少无线链路失败损失的 方法及设备"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术, 具体涉及无线链路处理方法、无线链路失败后通信 方法及设备。
背景技术
在现有的 UMTS ( Universal Mobile Telecommunications System, 通用移动 通信系统) 系统中, 主要是 UE侧检测无线链路失败, 即检测下行信号的无线 链路失败, UE ( User Equipment, 用户设备)通过检测下行信号出现非同步来 确定无线链路失败。 从 UE检测到下行信号出现非同步开始, 物理层连续多次 (缺省为 20次) 出现 "非同步" 指示, 具体为给 UE的高层发出 CPHY-Out-of-Sync-IND指示, 再经过一定时间 (缺省为 3秒)后, 则确认出现 了无线链路失败。 其中, 所述物理层出现 "非同步" 指示是以下情况: UE对 控制信道)或者 F-DPCH ( Fractional Dedicated Physical Channel, 区域专用物 理信道)信道质量, 如果其在 160ms内低于某个阔值 Qout, 则检测最近的 20个 下行 TB ( Transport Block, 传输块) 的 CRC ( Cyclic Redundancy Check, 循环 冗余校验), 如果出现 CRC校验失败, 而且, 先前的 160ms内, 所有的非零 CRC 长度的 TB收到时都检测出 CRC校验失败, 则表示物理层出现"非同步,,指示。 在 UE确定无线链路失败后, 需要进行相应的处理, 该处理包括: 清除专用的 物理信道配置信息, 还可能发送小区更新消息到新的小区以进行切换。
目前, LTE ( Long Term Evolved, 长期演进) 系统中, 当发生无线链路失 败后, 分为两个阶段进行无线链路的恢复, 在阶段 1 , UE先选择原小区进行无 线链路的恢复, 如果在阶段 1无法恢复, 则进入阶段 2, 在阶段 2 , UE自主选择 一个小区尝试恢复。 恢复信令流程为: UE向小区发送无线资源控制连接恢复 请求 ( Radio Resource Control connection re-establishment request ) 消息, 小区 收到该消息后, 检查是否存在该 UE的上下文, 如果存在有该 UE的上下文, 则 网络向 UE发送无线资源控制连接恢复( RRC connection re-establishment )消息, 通知 UE无线链路已经恢复, UE向网络侧发送无线资源控制连接恢复完成 ( RRC connection re-establishment complete )消息; 如果该小区不存在该 UE的 上下文, 网络向 UE发送无线资源控制连接恢复拒绝 ( RRC connection re-establishment reject ) 消息, UE收到该消息后需要重新发起新的 RRC连接建 立过程。 由于此时高层业务还没有释放, 仅仅是 RRC层业务中断, 所以为了减 少业务中断的时间以及提高用户的感受度, 需要尽量缩短 RRC建立的时间。
在实现本发明的过程中, 发明人发现, 在现有 LTE 系统中, 无法及时有 效确认无线链路是否失败, 上述 UMTS 系统中检测无线链路失败的方法也无 法应用到 LTE系统中。
发明内容
本发明实施例一方面提供一种无线链路处理方法及设备,能够及时检测无 线链路失败。
本发明实施例提供的一种无线链路处理方法, 包括:
终端发起随机接入;
若所述终端发起的随机接入的失败次数超过预定的次数,则确定无线链路 失败。
本发明实施例还提供了一种无线链路处理方法, 包括:
当基站有数据需要传送时, 向对方发送分配资源的消息; 或者, 当终端有 数据需要传送时, 向对方发送请求资源的消息;
如果在预定时间内未收到对方的响应消息、或者重复发送消息的次数超过 预定次数, 则确定无线链路失败。
本发明实施例提供的一种终端, 包括随机接入单元, 用于发起随机接入, 所述终端和基站之间存在无线链路;
检测单元,用于所述随机接入单元发起的随机接入的失败次数超过预定的 次数, 确定无线链路失败。
本发明实施例提供了一种基站,包括发送单元和接收单元,以及检测单元, 用于检测无线链路是否失败;
切换决策单元, 用于进行切换决策; 判断单元, 用于在所述检测单元检测到无线链路失败后, 判断所述切换决 策单元是否做出了切换决策; 在所述切换决策单元未做出切换决策时, 指示所 述切换决策单元等待终端回到本小区,或者指示所述切换决策单元为终端选择 合适的目标小区进行切换; 在所述切换决策单元已做出切换决策时,指示所述 发送单元发送切换命令给终端。
本发明实施例另一方面提供一种无线链路失败后的通信方法及设备,在基 站或终端发现无线链路失败后, 能够釆取相应的措施, 减少无线链路失败带来 的损失。
本发明实施例提供的一种无线链路失败后的通信方法, 包括:
终端向原基站发送随机接入前导;
终端收到原基站的随机接入响应后,向原基站发送加密的无线资源控制恢 复请求;
终端接收原基站发送的携带新的目标小区信息的无线资源控制恢复消息。 本发明实施例提供的一种终端, 包括发送单元和接收单元, 还包括: 检测单元, 用于检测无线链路是否失败, 并在检测到无线链路失败后, 指 示所述发送单元向原基站发送随机接入前导;
恢复单元, 用于在所述接收单元收到所述原基站发送的随机接入响应后, 指示所述发送单元向原基站发送加密的无线资源控制恢复请求,并根据所述接 收单元接收的无线资源控制恢复消息, 获取新的目标小区信息。
由以上本发明实施例提供的技术方案可以看出,本发明实施例通过终端发 起随机接入, 若所述终端发起的随机接入的失败次数超过预定的次数; 或者, 系统中的设备向对方发送相关消息, 若在预定时间内未收到对方的响应消息, 可以有效及时地确认无线链路失败。 同时, 若无线链路失败, 可以及时确定相 应的保护措施, 从而减少了无线链路失败带来的损失。
附图说明 图 2是本发明减少无线链路失败损失的方法第一实施例的流程图; 图 3是本发明减少无线链路失败损失的方法第二实施例的流程图; 图 4是本发明基站实施例的结构框图; 图 5是本发明终端实施例的结构框图;
图 6是本发明另一终端实施例的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图 和实施方式对本发明实施例作进一步的详细说明。
一般而言, 终端更容易发现无线链路的问题, 因为终端需要不断检测服务 小区的信号强度和质量, 而基站侧可能长时间没有上行数据可供检测, 所以难 以及时发现无线链路问题。 而且, 由于基站的功率可以做得很大, 而终端由于 体积及电池容量的限制, 功率一般较小, 所以无线链路问题大多是由于上行信 号强度问题所引起的。 失败的方法。
一、 在有数据要发送时, 检测是否无线链路失败
在基站侧, 如果基站有下行数据要发送, 首先, 基站需要在 DPCCH信道 上告诉终端一个专有的随机接入前导标识( RA Preamble Id ), 以便于 UE用它 发起随机接入过程, 然后再告诉给 UE配置用于发送下行数据的时频资源, 或 者一些下行信道配置信息, 以便于终端做好下行数据的接收准备。在这种情况 下, 如果 UE没有收到基站在 DPCCH信道上发送的 RA Preamble Id, 则 UE 不会发送随机接入信号, 基站自然也就不能收到终端的随机接入信号; 或者 UE虽然收到了基站发送的 RA Preamble Id,但 UE的随机接入过程由于信道质 量问题而最终失败 (这种情况可以认为是无线链路问题导致的 ), 这种情况下, 基站也就不能收到终端的随机接入信号。 因此, 在该实施例中, 基站可以通过 判断在预定时间内是否收到终端的随机接入信号来确定无线链路是否失败,该 预定时间可以为消息下发后的一到多个 TTI ( Transmission Time Interval , 传输 时间间隔 ), 每个 ΤΤΙ是 lms。如果在预定时间内未收到终端的随机接入信号 , 则基站就可以确定无线链路失败。
另外, 由于基站可以多次发送 RA Preamble Id, 因此, 还可以根据基站发 数 N, 如果基站重复发送终端专有的随机接入前导超过预定次数 N, 则基站可 以认为是无线链路失败,这种无线链路失败可能是由于下行或者上行信道问题 导致的。
在终端侧, 当 UE有上行数据要发送时, 终端需要发送请求基站分配时频 资源的消息; 如果所述消息发送失败、或者所述消息发送成功但在预定时间内 未收到基站的响应, 则终端可以确定无线链路失败。 有以下两种情况:
1 )如果基站为 UE配置了可以发送上行数据的空口资源, 则 UE需要首 先在该空口资源上发送一些数据量很小的资源请求信息: 比如 SR ( Schedule Request, 调度请求)或者 BSR ( Buffer Status Report, 緩存状态报告), 以请求 基站侧分配足够的资源以便发送数据。
2 )如果没有可用的上行空口资源, 则 UE需要通过 RA ( Random Access, 随机接入)过程, 向基站发送 SR, 基站响应并配置一定上行资源后, UE才能 发送上行数据。
在这两种情况下,如果 UE发现发送过程不成功,譬如通过 HARQ( Hybrid Automatic Repeat reQuest, 混合自动重发请求)过程得知; 或者发送的 SR、 BSR在一定时间内没有得到基站的响应; 或者在一定次数以及一定时间范围 内的 RA过程失败, 则 UE可以认为出现了无线链路失败。
在 LTE系统中, RA过程有两种: 一种是基于竟争的 RA过程, 另一种是 基于非竟争的 RA过程。 通常, 当 UE有上行数据、 或者 UE发起随机接入时 会发起基于竟争的 RA过程; 多数切换到目标小区的 RA过程、 以及基站有下 行数据要发送时, 会发起基于非竟争的 RA过程。 下面对这两种 RA过程进行 说明。
1、 基于竟争的 RA过程
RA过程通过 UE和基站之间的几次交互完成, 至少包括四个消息: 消息 1 , 由 UE发送给基站, 消息 1中包含 RA Preamble;
消息 2 ,基站发送给 UE的 RA响应,该消息中包含 RA Preamble、 RA-RNTI
( RA-Radio Network Temporary Identity , 随机接入无线网络临时标识)、 一个 临时的 C-RNTI ( Cell - RNTI, 小区无线网络临时标识 )和分配给 UE发送消 息 3用的上行空口资源;
消息 3 , 由 UE发送给基站, 如果有多个 UE发起 RA, 则基站可以通过 消息 3确切地知道是哪个 UE在发起 RA;
消息 4 , UE接入成功后, 基站发送给 UE的消息。
对于这种基于竟争的 RA过程, 可以设定在一定时间 T1内, UE没有收 到消息 4 ,其原因可以有多种, 比如, 消息 1没有发送成功、没有收到消息 2、 消息 3没有发送成功, 则认为是 RA失败。
2、 基于非竟争的 RA过程
所谓非竟争是指: 基站事先为 UE分配了一个专有 RA Preamble, 这样, 只要 UE通过消息 1把专有 RA Preamble发给基站,基站即可知道 UE是哪个 UE。 当该 UE收到基站发送的消息 2后, UE即可知道已经成功和基站建立 连接了,然后通过消息 2内分配的上行资源, UE就可以通过消息 3和基站进 行交互, 比如发送 BSR给基站。
对于这种基于非竟争的 RA过程, 可以设定在一定时间 T2内, UE没有 收到消息 2 , 则认为是 RA失败; 或者, 在一定的时间 T2内, UE没有成功 发送消息 3给基站, 则认为是 RA失败。
需要说明的是, 对于有些特殊情况, 比如切换时, 目标小区对专有 RA
Preamble定义了有效期, 有效期内 UE基于非竟争的 RA过程接入基站, 一 旦专有 RA Preamble过期,则 UE需要重新开始基于竟争的 RA过程。这时同 样可以依照上述方法来确定 RA失败。
二、 通过检测参考信号 (Reference Signal ) 的信号质量确认是否无线链 路失败
物理层的参考信号是一种 LTE 系统中定义的特殊物理层信号, 可用于 UE检测基站的下行信号质量, 以及基站检测 UE的上行信号质量。
UE的上行参考信号分两种:
一种是解调参考信号(Demodulation Reference Signal ), 该解调参考信号 与上行数据或者信令一起发给基站, 用于基站检测 UE的上行信号质量; 另一种是探测参考信号( Sounding Reference Signal ), 即使没有上行数据 传送, UE也会经常上传它给基站, 用于基站检测 UE的上行信号质量。
因为 UE需要不断测量服务小区的信号质量, 所以可以通过检测参考信 号的质量来确定是否无线链路失败。 如果在一定时间 T (比如 160ms ) 内, 连续检测到参考信号的质量低于某个阔值 Qfailure时, 则可以认为是出现了 无线链路失败; 如果在一定时间 (比如 40ms ) 内, 连续检测到参考信号的质 量大于某个阔值 Qrecovery时, 则可以认为无线链路已经恢复。
基站和 UE都可以釆用该方法, 而且, 由于基站的下行信号一直在发送, 因此, 该实施例不受限于一定要有数据传送的时候才能检测是否无线链路失 败。
三、 通过重传次数和 CQI ( Channel Quality Indicator, 信道质量指示)来 判断是否上下行无线链路失败
假定有上下行数据正在发送过程中的无线链路质量不好, 这可以体现在 UE对物理层测量得到的 CQI中, 也可以体现在 HARQ过程中对上下行数据 的重传次数的统计中。
检测在一定时间内 CQI值所标识的信道质量, 如果该信道质量下降到一 定阔值, 则可以认为下行的无线链路失败。 或者, 在一定时间 T内连续出现 超过一定次数的重传失败、 或者在一定时间 T内出现重传失败的统计概率高 于某个阔值(比如 90 % ) 时, 可以认为出现了下行的无线链路失败。
同理, 基站侧也可以通过统计的重传次数; 或者根据 UE反馈的 CQI来 判断上行信号是否出现无线链路失败, UE 通过 PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道 )或者 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)将 CQI反馈给基站。
另外需要注意的是,根据 UE反馈的、 以及基站自己获取的 CQI等参数, 基站侧可以尝试调度不同的时频资源, 以判断是否是因为频率选择性衰落造 成的信号质量不好。 可以将该因素考虑在内, 即基站在尝试调度不同的时频 资源后, 依旧 CQI值所标识的信道质量或者重传成功率低于某个指标, 则认 为出现无线链路失败, 这里包括下行无线链路失败和下行无线链路失败。
四、 通过 TB的 CRC判断是否无线链路失败
在 LTE 系统中, 可以针对下行的 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)、 PMCH ( Physical Multicast Channel, 物理多 播信道)、PBCH( Physical Broadcast, Channel物理广播信道),和上行的 PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道)信道中的数据, 通过 检测这些信道中的 TB的 CRC来确定是否无线链路失败, 该 CRC要求为非 零长度。
比如, 如果连续一定数目 (比如 20个) 的 TB的 CRC出现校验失败, 或者在一定时间内 (比如 160ms内 ), 所有收到 TB出现 CRC校验失败, 则可 以认为是无线链路失败。
本发明实施例还提供了一种检测无线链路失败的设备, 如图 1所示, 该 设备包括: 信号接收单元 11、 信号发送单元 12、 无线链路失败检测单元 13。 其中,信号接收单元 11用于接收无线信号; 信号发送单元 12用于发送无线信 号;无线链路失败检测单元 13用于检测信号接收单元 11接收的信号或者信号 发送单元 12发送的信号, 并根据检测结果确定无线链路是否失败。
在具体应用时, 无线链路失败检测单元 13可以有多种不同的实现方式。 比如, 可以有以下几种:
( 1 )无线链路失败检测单元 13号检测接收单元 11是否在预定时间内未 收到随机接入信号, 如果是, 则确定无线链路失败;
( 2 )无线链路失败检测单元 13检测接收单元 11是否在一定时间内连续 收到的参考信号的质量低于一阔值, 如果是, 则确定无线链路失败;
( 3 )无线链路失败检测单元 13检测接收单元 11是否收到的信道质量指 示 CQI在预定时间内下降到一阔值, 如果是, 则确定无线链路失败;
( 4 )无线链路失败检测单元 13检测信号发送单元 11是否在预定时间内 的重传失败概率高于一阔值, 如果是, 则确定无线链路失败;
( 5 )无线链路失败检测单元 13检测信号发送单元 11收到的 TB的 CRC, 如果连续预定数目的 CRC出现校验失败, 或者在一定时间内所有的 TB出现 CRC校验失败, 则确定无线链路失败。
当然, 以上仅列举说明了无线链路失败检测单元 13的几种实现方式, 本 发明实施例的无线链路失败检测单元 13并不限于上述这几种实现方式。 如基站等。
可见,针对 LTE系统中没有专有的物理控制信道供 UE对每个无线帧检测 过多种方法检测无线链路是否失败。具体地, 可以在基站或终端有数据需要传 送时,根据向对方发送分配或请求资源的消息是否成功, 或者是否在预定时间 内未收到对方的响应来确定无线链路是否失败;还可以通过检测参考信号质量 的方式; 或者在上下行数据发送过程中, 根据 CQI或者重传概率; 或者通过 检测 TB的 CRC的方式来确定无线链路是否失败。 利用本发明实施例的方法 及设备, 可以及时检测到无线链路失败。
在出现无线链路失败后, 需要进行无线链路的恢复, 以减少业务中断的时 间, 提高用户的感受度。 原基站之间的无线链路失败、终端与目标基站之间的无线链路失败、基站做出 切换决策前无线链路失败、基站做出切换决策后无线链路失败等等。 为此, 本 发明实施例还提供了一种减少无线链路失败损失的方法。
参照图 2所示,是减少无线链路失败损失的方法的一个实施例的流程示意 图, 该实施例描述了终端切换完成前出现无线链路失败后, 减少无线链路失败 损失的流程。 主要包括以下步骤:
步骤 201 , 基站检测到无线链路失败, 基站检测是否出现无线链路失败的 方法可参照前面的描述;
步骤 202,判断是否已做出切换决策;如果判断结果为是,则执行步骤 203; 否则, 执行步骤 204;
步骤 203 , 基站一次或多次发送切换命令给终端;
步骤 204, 判断基站是否收到终端发来的测量报告; 如果判断结果为否, 则执行步骤 205; 否则, 执行步骤 206;
步骤 205 , 基站等待终端回到本小区;
这样, 可以避免发送切换请求给相邻小区, 增加网络侧的负担, 因为此时 的无线链路失败很可能是终端出现了异常(比如突然断电), 或者终端进入某 些死角而相邻小区信号同样不好的情况。
步骤 206,判断所述测量 ^艮告中本小区信号强度或质量和 /或相邻小区信号 强度或质量满足预定条件; 如果判断结果为否, 则执行步骤 205; 否则, 执行 步骤 207; 所述预定条件包括以下之一:
本小区信号强度或质量低于预定的第一门限值;
相邻小区信号强度或质量高于预定的第二门限值;
相邻小区信号强度或质量高于本小区信号强度或质量预定范围;
上述相邻小区可以是和本小区同频的、 或者异频的、 或者异系统的; 所述 第一门限值和第二门限值可以相同, 也可以不同;
步骤 207 , 基站做出切换决策, 并为终端选择合适的目标小区进行切换。 也就是说, 虽然出现了无线链路失败,但如果从测量报告中发现本小区质 量下降到一定程度,且有质量较好的相邻小区时,尽管还不满足正常时候的切 换条件, 但也应该及时做出切换决策, 确定一个或者多个邻区。 这时基站在进 行切换决策时,在同时满足基站的切换决策要求的情况下,对多个可选目标小 区, 应该选择终端上报的邻区信号强度或者质量更好的一个或者多个小区。
可以为终端选择一个主要目标小区、 以及一个或多个相邻小区;
基站向所述主要目标小区发送切换请求,并向所述相邻小区发送重定位指 示。 因为一旦终端向这些小区发起随机接入, 可以让这些小区在 RRC重建拒 绝消息中将终端重定向到原小区指定的切换目标小区中去。
参照图 3所示,是减少无线链路失败损失的方法的另一个实施例的流程示 意图,该实施例描述了终端切换失败,尝试回到原小区时出现无线链路失败后, 减少无线链路失败损失的流程。 主要包括以下步骤:
步骤 301 , 终端在进行切换时检测到无线链路失败;
步骤 302, 终端向原基站发送随机接入前导;
终端可以通过非竟争的 RA过程, 发送所述随机接入前导, 以提高效率, 减少时延;
步骤 303 , 终端接收原基站的随机接入响应;
步骤 304,通过数字控制信道向原基站发送加密的无线资源控制恢复请求; 步骤 305 , 终端接收原基站发送的携带新的目标小区信息的无线资源控制 恢复消息, 在该消息中还可以携带其他切换参数, 比如为所述目标小区分配的 C-RNTL
在上述步骤 304中,终端向原基站发送的无线资源控制恢复请求中可以携 带緩存状态报告信息, 以使原基站知道终端是否有数据需要上传, 以及为终端 分配上行资源。 做出了切换决策, 为终端选择了合适的目标小区, 则基站可以依旧尝试发送切 换命令给终端; 如果基站还未做出切换决策, 则根据是否收到测量报告以及测 量报告中本小区信号强度或质量以及相邻小区信号强度或质量,在满足一定条 件下, 也可以及时做出切换决策, 或者等待终端恢复在本小区的无线链路, 从 而最大可能地减少了用户数据的丟失, 同时降低了网络侧的负荷。
另外 ,在终端切换失败后 ,尝试回到原小区时出现无线链路失败的情况下 , 终端可以通过非竟争的 RA过程, 向原基站发送随机接入前导, 以提高效率, 减少时延; 原基站向终端发送无线资源控制恢复消息时, 可以在该消息中携带 新的目标小区信息,还可以携带其他切换参数,从而可以在最短时间内使终端 切换到目标小区, 降低由于无线链路失败对用户业务的延误。
本发明实施例还提供了一种基站, 如图 4所示, 包括发送单元 41、 接收 单元 42、 检测单元 43、 切换决策单元 44、 判断单元 45。 其中, 检测单元 43 用于检测无线链路是否失败;
切换决策单元 44用于进行切换决策;
判断单元 45用于在检测单元 43检测到无线链路失败后,判断切换决策单 元 44是否做出了切换决策; 在切换决策单元 44未做出切换决策时,指示切换 决策单元 44等待终端回到本小区 ,或者指示切换决策单元 44做出切换决策并 为终端选择合适的目标小区进行切换;在切换决策单元 44已做出切换决策时, 指示发送单元 41一次或多次发送切换命令给终端。
如图所示, 判断单元 45包括: 测量报告判断子单元 451和条件判断子单 元 452。 其中, 测量报告判断子单元 451用于判断接收单元 42是否已收到所 述终端的测量 告, 如果接收单元 42未收到所述测量^艮告, 则指示切换决策 单元 44等待终端回到本小区; 如果接收单元 42已收到所述测量 ^艮告, 则通知 条件判断子单元 452进行条件判断;条件判断子单元 452用于判断所述测量报 告中本小区信号强度或质量和 /或相邻小区信号强度或质量是否满足预定条 件, 如果是, 则指示切换决策单元 44做出切换决策; 否则, 指示切换决策单 元 44等待终端回到本小区。
所述预定条件包括以下之一:
本小区信号强度或质量低于预定的第一门限值;
相邻小区信号强度或质量高于预定的第二门限值;
相邻小区信号强度或质量高于本小区信号强度或质量预定范围。
上述第一门限值和第二门限值可以相同, 也可以不同。
切换决策单元 44包括: 选择子单元和指示子单元。 其中, 所述选择子单 元用于为终端选择一个主要目标小区、 以及一个或多个相邻小区; 所述指示子 单元用于指示发送单元 41向所述主要目标小区发送切换请求, 并向所述相邻 小区发送重定位指示。
本发明实施例还提供了一种终端, 如图 5 所示, 该终端包括: 发送单元 51、 接收单元 52、 检测单元 53和恢复单元 54。
检测单元 53用于检测无线链路是否失败, 并在检测到无线链路失败后, 指示发送单元 51向原基站发送随机接入前导;
恢复单元 54用于在接收单元 52收到所述原基站发送的随机接入响应后 , 指示发送单元 51通过数字控制信道向原基站发送加密的无线资源控制恢复请 求, 并根据接收单元 52接收的无线资源控制恢复消息, 获取新的目标小区信 息。
在所述无线资源控制恢复请求中可以携带緩存状态报告信息 ,以使原基站 知道终端是否有数据需要上传, 以及为终端分配上行资源。 为此, 该实施例的 终端还可以包括上行资源获取单元 55 , 用于根据接收单元 52接收的消息, 获 取所述原基站根据所述緩存状态报告信息为所述终端分配的上行资源。
参照图 6, 本发明实施例还提供一种终端, 该终端包括随机接入单元 61 , 用于发起随机接入, 所述终端和基站之间存在无线链路;
检测单元 62, 用于随机接入单元 61发起的随机接入的失败次数超过预定 的次数, 确定无线链路失败。
随机接入单元 61用于当所述终端需要发送上行数据, 或者接收到所述基 站发送的分配资源的消息后, 发起所述随机接入。
本发明实施例的终端和基站,可以在无线链路失败后,釆取多种保护措施, 从而减少无线链路失败带来的损失。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 读取存储介质中, 所述的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体实施方式对本发 明进行了阐述, 以上实施例的说明只是用于帮助理解本发明的系统及方法; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用 范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种无线链路处理方法, 其特征在于, 包括:
所述终端发起随机接入;
若所述终端发起的随机接入的失败次数超过预定的次数,则确定无线链路 失败。
2、 根据权利要求 1所述的方法, 其特征在于, 所述终端和基站之间存在 无线链路, 所述终端发起随机接入为: 当所述终端需要发送上行数据, 或者接 收到基站发送的分配资源的消息后, 发起所述随机接入。
3、 根据权利要求 2所述的方法, 其特征在于, 所述基站向对方发送分配 资源的消息是: 基站在专用物理控制信道上发送的终端专有的随机接入前导。
4、 根据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括: 在无线链路失败后,如果基站还未做出切换决策, 则基站等待终端回到本 小区, 或者为终端选择合适的目标小区进行切换;
如果基站已经做出了切换决策, 则基站发送切换命令给终端。
5、 根据权利要求 4所述的方法, 其特征在于, 所述基站等待终端回到本 小区, 或者为终端选择合适的目标小区进行切换的过程包括:
如果基站未收到终端发来的测量 ^艮告, 则等待终端回到本小区; 如果基站收到了终端发来的测量报告,并且所述测量报告中本小区信号强 度或质量和 /或相邻小区信号强度或质量满足预定条件, 则做出切换决策; 否 则, 等待终端回到本小区。
6、 一种无线链路处理方法, 其特征在于, 包括: 当基站有数据需要传送 时, 向对方发送分配资源的消息; 或者, 当终端有数据需要传送时, 向对方发 送请求资源的消息;
如果在预定时间内未收到对方的响应消息、或者重复发送消息的次数超过 预定次数, 则确定无线链路失败。
7、 根据权利要求 6所述的方法, 其特征在于, 所述基站向对方发送分配 资源的消息是: 基站在专用物理控制信道上发送的终端专有的随机接入前导; 所述对方的响应消息是终端的随机接入信号。
8、 根据权利要求 6所述的方法, 其特征在于, 所述终端向对方发送的请 求资源的消息是:
所述终端通过随机接入过程向基站发送的调度请求或者緩存状态报告。
9、 一种无线链路失败后的通信方法, 其特征在于, 包括:
终端向原基站发送随机接入前导;
终端收到原基站的随机接入响应后,向原基站发送加密的无线资源控制恢 复请求;
终端接收原基站发送的携带新的目标小区信息的无线资源控制恢复消息。
10、 根据权利要求 9所述的方法, 其特征在于, 所述无线资源控制恢复请 求中携带緩存状态报告信息; 所述方法还包括:
所述原基站根据所述緩存状态报告信息确定所述终端是否有数据需要上 传, 并为所述终端分配上行资源。
11、 一种终端, 其特征在于, 包括:
随机接入单元, 用于发起随机接入, 所述终端和基站之间存在无线链路; 检测单元,用于所述随机接入单元发起的随机接入的失败次数超过预定的 次数, 确定无线链路失败。
12、 根据权利要求 11所述的终端, 其特征在于, 所述随机接入单元用于 当所述终端需要发送上行数据, 或者接收到所述基站发送的分配资源的消息 后, 发起所述随机接入。
13、 一种终端, 包括发送单元和接收单元, 其特征在于, 还包括: 检测单元, 用于检测无线链路是否失败, 并在检测到无线链路失败后, 指 示所述发送单元向原基站发送随机接入前导;
恢复单元, 用于在所述接收单元收到所述原基站发送的随机接入响应后, 指示所述发送单元向原基站发送加密的无线资源控制恢复请求,并根据所述接 收单元接收的无线资源控制恢复消息, 获取新的目标小区信息。
14、 根据权利要求 13所述的终端, 其特征在于, 所述无线资源控制恢复 请求中携带緩存状态报告信息; 所述终端还包括:
上行资源获取单元, 用于根据所述接收单元接收的消息, 获取所述原基站 根据所述緩存状态报告信息为所述终端分配的上行资源。
15、 一种基站, 包括发送单元和接收单元, 其特征在于, 还包括: 检测单元, 用于检测无线链路是否失败;
切换决策单元, 用于进行切换决策;
判断单元, 用于在所述检测单元检测到无线链路失败后, 判断所述切换决 策单元是否做出了切换决策; 在所述切换决策单元未做出切换决策时, 指示所 述切换决策单元等待终端回到本小区,或者指示所述切换决策单元为终端选择 合适的目标小区进行切换; 在所述切换决策单元已做出切换决策时,指示所述 发送单元发送切换命令给终端。
16、 根据权利要求 15所述的基站, 其特征在于, 所述判断单元包括: 测 量才艮告判断子单元和条件判断子单元;
所述测量报告判断子单元,用于判断所述接收单元是否已收到所述终端的 测量 告, 如果所述接收单元未收到所述测量 告, 则指示所述切换决策单元 等待终端回到本小区; 如果所述接收单元已收到所述测量 4艮告, 则通知所述条 件判断子单元进行条件判断;
所述条件判断子单元,用于判断所述测量 ^艮告中本小区信号强度或质量和 /或相邻小区信号强度或质量是否满足预定条件, 如果是, 则指示所述切换决 策单元做出切换决策; 否则, 指示所述切换决策单元等待终端回到本小区。
17、 根据权利要求 15所述的基站, 其特征在于, 所述切换决策单元包括: 选择子单元,用于为终端选择一个主要目标小区、以及一个或多个相邻小区; 指示子单元, 用于指示所述发送单元向所述主要目标小区发送切换请求, 并向所述相邻小区发送重定位指示。
PCT/CN2009/070063 2008-01-08 2009-01-07 Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio WO2009089782A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810002317.3 2008-01-08
CN2008100023173A CN101483927B (zh) 2008-01-08 2008-01-08 检测无线链路失败的方法及设备

Publications (1)

Publication Number Publication Date
WO2009089782A1 true WO2009089782A1 (fr) 2009-07-23

Family

ID=40880807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070063 WO2009089782A1 (fr) 2008-01-08 2009-01-07 Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio

Country Status (2)

Country Link
CN (1) CN101483927B (zh)
WO (1) WO2009089782A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809580A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站
WO2020164555A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 双连接系统中处理连接失败的方法、装置及存储介质
CN111885678A (zh) * 2020-07-30 2020-11-03 广东小天才科技有限公司 上行异常的数据处理方法、终端设备和介质
CN112673581A (zh) * 2018-07-12 2021-04-16 株式会社Ntt都科摩 用户终端
CN112789808A (zh) * 2018-08-10 2021-05-11 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114826528A (zh) * 2010-07-27 2022-07-29 索尼公司 电子设备

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998474B (zh) * 2009-08-13 2012-07-18 电信科学技术研究院 一种载波聚合技术中的无线链路失败判决方法及装置
CN101998661B (zh) * 2009-08-13 2014-01-29 电信科学技术研究院 一种判决无线链路失败的方法和装置
CN101998475A (zh) * 2009-08-13 2011-03-30 中兴通讯股份有限公司 一种载波聚合中触发无线链路失败的方法及系统
CN101998431A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种无线链路失败的判别方法及装置
WO2011032319A1 (zh) * 2009-09-21 2011-03-24 华为技术有限公司 小区无线链路失败处理方法和用户设备
CN102104892B (zh) * 2009-12-22 2015-06-03 中兴通讯股份有限公司 检测无线链路失败的方法
US9166677B2 (en) * 2010-01-19 2015-10-20 Qualcomm Incorporated Method and apparatus for associating a relay in wireless communications
CN101808354B (zh) * 2010-03-09 2012-12-26 西安电子科技大学 基于移动终端信息检测切换失败场景的方法
WO2011134108A1 (en) * 2010-04-27 2011-11-03 Nokia Siemens Networks Oy Method of determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, access node for determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, and user equipment
WO2012040940A1 (zh) * 2010-09-30 2012-04-05 中兴通讯股份有限公司 无线信号质量的测量方法及装置
CN102647788B (zh) * 2011-02-17 2014-10-22 普天信息技术研究院有限公司 一种资源分配方法
CN102685792B (zh) * 2011-03-10 2015-09-23 电信科学技术研究院 一种无线链路监测的方法、系统和设备
CN102685785B (zh) * 2011-03-18 2016-08-03 华为技术有限公司 无线资源控制rrc连接重建立的方法和设备
CN102761984A (zh) * 2011-04-28 2012-10-31 普天信息技术研究院有限公司 一种资源释放方法
CN102149140B (zh) * 2011-05-10 2014-04-02 北京邮电大学 一种端到端多链路并行传输的网络控制方法
CN103024918A (zh) * 2011-09-27 2013-04-03 中兴通讯股份有限公司 小区用户处理方法及装置
CN104025689B (zh) * 2011-09-30 2019-02-22 诺基亚技术有限公司 随机接入与专用调度请求资源之间的选择
CA2861883A1 (en) * 2012-01-20 2013-07-25 Fujitsu Limited Method for analyzing a cause of link failure, method of network optimization and apparatus
CN103369673A (zh) * 2012-04-09 2013-10-23 华为技术有限公司 业务通知的方法、装置及系统
CN103379529B (zh) * 2012-04-26 2017-04-12 联发科技(新加坡)私人有限公司 无线链路故障的恢复方法及用户设备
CN103491570B (zh) * 2013-09-12 2016-08-31 电信科学技术研究院 一种进行测量上报的方法和设备
WO2015042804A1 (zh) * 2013-09-25 2015-04-02 华为技术有限公司 切换方法及装置
CN105306177B (zh) * 2014-07-09 2019-01-04 普天信息技术有限公司 窄带传输的链路探测方法、通信设备和终端
CN105637781B (zh) * 2014-09-25 2019-08-13 华为技术有限公司 随机接入方法、网络设备及用户设备
CN105491687B (zh) * 2014-10-09 2019-01-04 普天信息技术有限公司 一种终端掉线的获知方法及终端、基站
CN105722213B (zh) * 2014-12-04 2019-08-13 中国移动通信集团公司 一种多连接场景下的终端连接状态的获取方法及装置
CN105873115B (zh) * 2015-01-23 2021-06-25 中兴通讯股份有限公司 接入技术网络间的网络资源调整方法及终端
CN106465208B (zh) * 2015-05-20 2020-01-03 华为技术有限公司 重定向方法、设备及系统
CN111866819B (zh) * 2016-02-05 2022-09-13 中兴通讯股份有限公司 终端与网络间连接处理方法和装置
WO2017133678A1 (zh) * 2016-02-05 2017-08-10 中兴通讯股份有限公司 终端与网络间连接处理方法和装置
CN112887043A (zh) 2016-09-22 2021-06-01 Oppo广东移动通信有限公司 用于切换的方法和设备
CN108024288A (zh) * 2016-11-04 2018-05-11 电信科学技术研究院 一种信息处理方法及装置
US10674389B2 (en) * 2016-12-01 2020-06-02 Qualcomm Incorporated Access terminal radio link monitoring (RLM) on a shared communication medium
CN108632885B (zh) 2017-03-21 2021-02-12 华为技术有限公司 缓存器状态报告发送的方法、终端设备和网络设备
CN108737048B (zh) 2017-04-21 2021-10-01 华为技术有限公司 参考信号的发送方法、基站以及用户设备
CN108882316B (zh) * 2017-05-10 2021-11-19 华为技术有限公司 小区切换方法、终端、基站设备和通信系统
WO2018227480A1 (en) * 2017-06-15 2018-12-20 Qualcomm Incorporated Refreshing security keys in 5g wireless systems
CN109428687B (zh) * 2017-07-21 2020-12-15 华为技术有限公司 触发无线链路失败rlf的方法和装置
CN110149182B (zh) 2018-02-12 2022-05-31 华为技术有限公司 一种信息传输方法、相关设备及系统
CN110611921B (zh) * 2018-06-15 2021-06-01 维沃移动通信有限公司 一种无线链路状态判断方法及终端
CN110611933B (zh) * 2018-06-15 2021-06-01 维沃移动通信有限公司 一种链路质量监测方法及终端
CN110611920B (zh) * 2018-06-15 2021-06-01 维沃移动通信有限公司 一种无线链路监测方法及终端
CN110944352B (zh) * 2018-09-25 2022-11-01 维沃移动通信有限公司 一种旁链路的链路失败检测方法及终端
CN111385912A (zh) * 2018-12-28 2020-07-07 展讯通信(上海)有限公司 一种小区变更方法及装置、存储介质、终端
CN111526599B (zh) * 2019-02-01 2022-05-31 华为技术有限公司 一种无线资源控制rrc消息发送方法及装置
CN113645010B (zh) * 2019-02-14 2022-07-29 华为技术有限公司 触发无线链路失败的方法及设备
WO2021168865A1 (zh) * 2020-02-29 2021-09-02 华为技术有限公司 一种通信方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592165A (zh) * 2003-09-07 2005-03-09 中兴通讯股份有限公司 宽带码分多址系统中初始接入时的频间负荷均衡控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1533113A (zh) * 2003-03-20 2004-09-29 华为技术有限公司 利用媒体网关控制协议进行传输链路状态检测的方法
CN100399751C (zh) * 2006-01-20 2008-07-02 北京朗通环球科技有限公司 一种检测和维护ppp链路的方法
CN100512317C (zh) * 2006-03-06 2009-07-08 中兴通讯股份有限公司 一种在异制链路层通路动态建立点对点协议通道的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592165A (zh) * 2003-09-07 2005-03-09 中兴通讯股份有限公司 宽带码分多址系统中初始接入时的频间负荷均衡控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Overall description Stage 2", 3GPP TS 36.300 V8.3.0, December 2007 (2007-12-01) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826528A (zh) * 2010-07-27 2022-07-29 索尼公司 电子设备
CN108809580A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站
US11463149B2 (en) 2017-05-05 2022-10-04 Samsung Electronics Co., Ltd. Methods for transmitting uplink signal and downlink signal, UE and base station
US11902000B2 (en) 2017-05-05 2024-02-13 Samsung Electronics Co., Ltd. Methods for transmitting uplink signal and downlink signal, UE and base station
CN112673581A (zh) * 2018-07-12 2021-04-16 株式会社Ntt都科摩 用户终端
CN112673581B (zh) * 2018-07-12 2024-02-13 株式会社Ntt都科摩 用户终端
CN112789808A (zh) * 2018-08-10 2021-05-11 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112789808B (zh) * 2018-08-10 2024-01-30 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2020164555A1 (zh) * 2019-02-14 2020-08-20 电信科学技术研究院有限公司 双连接系统中处理连接失败的方法、装置及存储介质
CN111885678A (zh) * 2020-07-30 2020-11-03 广东小天才科技有限公司 上行异常的数据处理方法、终端设备和介质

Also Published As

Publication number Publication date
CN101483927A (zh) 2009-07-15
CN101483927B (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2009089782A1 (fr) Procédé de gestion d'une liaison radio, et procédé et dispositif de communication utilisés après la défaillance d'une liaison radio
CN108024387B (zh) 在无线通讯系统中识别上行链路时序前移的方法与装置
CN106105329B (zh) 移动通信系统中的机器类型通信用户设备的网络选择和随机接入方法及装置
JP4965958B2 (ja) Rrc接続時のセル/キャリア切り換えおよび切り戻し制御
US10187246B2 (en) Method and apparatus for transmission mode conversion
KR101037342B1 (ko) 랜덤 액세스 절차 실패 처리 방법 및 관련 통신 기기
KR101432913B1 (ko) 핸드오버 시나리오 판단 파라미터를 리포팅하는 방법과 ue, 및 핸드오버 시나리오 판단 기지국
JP5614822B2 (ja) 無線リソース制御接続再確立のトリガー方法及びトリガー装置
US8868080B2 (en) Handover in case of a radio link failure
CN112534897A (zh) 通信系统、通信终端及基站
KR101950666B1 (ko) 통신 시스템에서의 연결 재수립을 위한 방법 및 구조
EP3873135B1 (en) System for implementing multiple radio access networks (rans) convergence and method thereof
WO2016049431A1 (en) Service-specific air-interface selection
EP3291604B1 (en) Method for establishing connection with radio resource, user equipment and base station
JP2010507933A (ja) Nsraリソース割当手順
WO2010115304A1 (zh) 一种随机接入方法、演进基站及终端设备
KR20170114258A (ko) 핸드오버 수행 방법 및 그 장치
CN106416365B (zh) 移动通信系统中的终端的越区切换方法和装置
EP3595395B1 (en) User equipment and method
WO2010145697A1 (en) Connection re-establishment in a communication system
KR102099642B1 (ko) 단말 대 단말 통신에서 데이터 전송하는 방법 및 장치
CA3144098A1 (en) Wireless communication method for mobility control
WO2015017975A1 (zh) 指示信息发送与接收方法和装置
JP7305780B2 (ja) 通信制御方法及びユーザ装置
JP7346575B2 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09702781

Country of ref document: EP

Kind code of ref document: A1