WO2009089559A1 - Rauchgasreinigungsanlage - Google Patents

Rauchgasreinigungsanlage Download PDF

Info

Publication number
WO2009089559A1
WO2009089559A1 PCT/AT2009/000010 AT2009000010W WO2009089559A1 WO 2009089559 A1 WO2009089559 A1 WO 2009089559A1 AT 2009000010 W AT2009000010 W AT 2009000010W WO 2009089559 A1 WO2009089559 A1 WO 2009089559A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
catalyst
flue gases
filter device
plant
Prior art date
Application number
PCT/AT2009/000010
Other languages
German (de)
English (en)
French (fr)
Inventor
Anton Secklehner
Original Assignee
Scheuch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scheuch Gmbh filed Critical Scheuch Gmbh
Priority to CN2009801092597A priority Critical patent/CN101977668A/zh
Priority to BRPI0907170A priority patent/BRPI0907170A2/pt
Priority to US12/863,248 priority patent/US20100307388A1/en
Priority to EP09702662A priority patent/EP2237861A1/de
Priority to RU2010134000/05A priority patent/RU2484883C2/ru
Publication of WO2009089559A1 publication Critical patent/WO2009089559A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds

Definitions

  • the invention relates to a system for purifying the flue gases of a furnace with at least one selective reduction catalyst for the reduction of nitrogen oxides contained in the flue gas and / or with at least one catalyst for the reduction of carbon monoxide, especially odoriferous, hydrocarbons or ammonia removal, and a Dust separation, and a method for purifying the flue gases of a furnace by selective catalytic reduction of nitrogen oxides with a reducing agent and a reduction catalyst and by dust deposition.
  • the flue gas denitration is usually carried out by reductive methods.
  • SNCR selective non-catalytic reduction
  • SCR selective catalytic reduction
  • NO x nitrogen oxides
  • a reducing agent - generally ammonia is used as a reducing agent - to elemental nitrogen and water, which subsequently as umweltunbedenkliche substances on the exhaust vent leave the incinerator.
  • the selective non-catalytic reduction is usually carried out at temperatures between 900 ° C and 1100 ° C, wherein the reducing agent is fed directly into the furnace.
  • the selective catalytic reduction can be carried out at significantly lower temperatures, since the catalyst significantly reduces the activation energies required for the reduction reactions.
  • Object of the present invention is to provide a system for denitrification of flue gases after the selective catalytic reduction process (SCR) and a method to provide which (s) in comparison to low-dust concepts a lower energy consumption and compared to high-dust plants has a longer service life of the catalyst.
  • SCR selective catalytic reduction process
  • This object of the invention is achieved by the aforementioned plant in which the dust is formed by at least a first and a second filter device and the reduction catalyst between the first and the second filter device is arranged, and by the method for cleaning the flue gases of a furnace in the The flue gases before they come into contact with the reduction catalyst are fed to a first dust separation and the fine dust cleaning of the flue gases takes place after the reduction of the nitrogen oxides.
  • the circuit of the denitrification catalyst according to the invention has the advantage that the flue gases for the denitration reactions do not have to be additionally heated, but these flue gases still have a sufficient energy content, i. the sufficient temperature to be able to operate the catalyst. It can thus be achieved in comparison to low-dust plants, a reduction of fuels.
  • the first filter device can be arranged in the flow direction of the flue gases immediately after the furnace or after a heat exchanger unit, so that the flue gases enter the first filter unit with a very high temperature, whereby the temperature drop in this filter unit - relatively speaking - can be kept low, and the flue gases leave the filter device at a temperature which favors the reduction of the nitrogen oxides on the catalyst.
  • high temperature is meant a temperature of at least 250 ° C.
  • the first filter device is an electrostatic precipitator.
  • this filter can be operated at a high temperature, and on the other hand that this filter technology is already very mature or electrostatic precipitators, for example, are already present in plants for cement production - in the past the dedusting was often carried out with electric motors.
  • electrostatic precipitators were largely replaced by cloth filters due to the stricter environmental requirements - and incur no additional investment costs.
  • At least one raw material drying plant or raw material drying mill is arranged, so that the residual content of energy of the flue gases for drying of raw materials , which are used, for example, for cement production, can be used.
  • this achieves the effect that the flue gases leaving the catalyst bed are cooled even further before being subjected to the second filter device, which is preferably formed by a cloth filter, as a result of which this second filter device is subject to a lower thermal load even without the use of additional cooling devices.
  • the dust content of the flue gases in the first dust separation to a dust content of max. 3 g / Nm 3 , in particular max. 2.5 g / Nm 3 , for example, max. 1 g / Nm 3 , or of max. 30 g / Nm 3 , if another pre-separator, so no electrostatic precipitator, is used as the first filter device, reduced because it has been found that the efficiency of the system can be increased at these maximum dust levels of the flue gases.
  • the first dust separation is carried out at a temperature of the flue gas which is at least 250 ° C or at most 450 ° C, for example at most 350 ° C, whereby, as stated above, to special measures to reduce the temperature drop in The first filter device can be dispensed with and this can thus be made cheaper.
  • FIG. 1 A plant according to the invention in the form of a block diagram.
  • Fig. 1 shows a plant 1 for cement clinker production.
  • the denitrification plant according to the invention is not limited to use in the cement industry, although this is the preferred embodiment. It can also be equipped with waste incineration plants, caloric power plants, etc.
  • the plant 1 has a furnace 2 in the form of a rotary kiln, which is operated by a firing 3, whereby the cement clinker is formed from the known raw materials.
  • the flue gases leaving the furnace - arrow 4 - are introduced into a heat exchanger unit 5, which is formed in this embodiment in the form of a cyclone heat exchanger with in 4 cyclones to use the energy content of the flue gases to preheat the raw meal used.
  • the heat exchanger unit 5 leaving flue gas - arrow 6 - occurs in the sequence in the gas purification system.
  • This gas purification system comprises a first filter device 7, a reduction catalytic converter 8 and a second filter device 9.
  • the first filter device 7 is designed as an electrostatic precipitator.
  • the flue gas entering the electrostatic precipitator may optionally be preconditioned with water to increase the effectiveness of the electrostatic precipitator.
  • a spraying device 11 can be arranged in a supply line 10 to the first filter device 7, is sprayed with the water.
  • a mixed gas can be supplied to the flue gas via a mixed gas line 14, for example a gas originating from the furnace 2, a so-called bypass gas which can be withdrawn from the furnace 2 in the region of the heat exchanger unit 5.
  • Both in the mixed gas line 14 and in the supply line 10 corresponding conveying devices 15, such as exhaust fan, may be arranged.
  • the first filter device 7 may be provided with a thermal insulation which is suitable for these high temperatures, so that the reduction in the Raugastemperatur can be reduced.
  • the flue gas enters the reduction catalyst 8, wherein the end nitriding, ie the implementation of the nitrogen oxides to nitrogen and water according to the known reactions takes place.
  • a reducing agent is supplied by means of a reducing agent feed 16.
  • a reducing agent is usually ammonia used, as is known from the prior art. However, it is also possible to use ammonia-containing compounds or reducing agents which release ammonia at the elevated temperature.
  • the reducing agent feed 16 can also be dispensed with if excess ammonia is present in the exhaust gas of the plant 1 or, if the ammonia is too low, only the missing fraction can be supplied via the reducing agent feed 16.
  • titanium dioxide or vanadium pentoxide or titanium oxide as a carrier with vanadium pentoxide as the active composition, optionally mixed with tungsten oxide or mixed with other metal oxides.
  • these catalysts are known from the prior art, so that at this point a further discussion on its geometry or pore structure, etc. is unnecessary.
  • the supply of reducing agent takes place, for example, again via spray nozzles.
  • the reducing agent itself can be added to the flue gas before the catalyst, but this reducing agent is preferably fed into or onto the catalyst bed.
  • the formation of the catalyst bed per se is also state of the art, so that reference should be made to the relevant literature.
  • the reduction catalytic converter it is possible for the reduction catalytic converter to be arranged on a plurality of superimposed planes through which the flue gas flows in succession.
  • the de-stoked flue gas - it should be mentioned at this point that with denestered flue gas a flue gas is meant, which corresponds to NO x the emission standards, eg the Austrian emission standards - passes via a line 17 to the second filter device 9.
  • This second filter device 9 is a bag filter executed, with filter cloths or filter bags. Also these bag filters are already known and used in the cement industry, so that further discussion is not necessary at this point. With the aid of these filter cloths, the dust content of the flue gas is at least reduced to values which correspond to the exhaust gas standards.
  • a spray cooling 18 may be arranged in front of the second filter device 9 to cool the flue gas before entering the second filter device 9 to a temperature, for example a maximum of 250 ° C, which reduces the thermal load of the filter cloth by the flue gases.
  • a conveying device 15 can again be arranged between the vent 19 and the second filter device 9.
  • the residual energy content of the flue gases leaving the reduction catalytic converter 8 is preferably used for drying the raw materials used for cement production.
  • two drying mills 20 are shown in Fig. 1, which are arranged in the flow direction of the flue gases between the reduction catalyst 8 and the second filter device 9.
  • these two drying mills 20 are connected in parallel, so that they can be flowed through simultaneously or alternatively by the denitrified flue gases.
  • For the corresponding circuit of the flow paths of the flue gas flaps 21 - 24 are shown in Fig. 1.
  • drying mills 20 can be connected in parallel to the direct introduction of the flue gases via the line 17 in the second filter device 9, including in this line 17, in turn, a flap 25 is arranged to order between the Flow direction can be switched over the line 17 or at least one of the drying mills 20.
  • the drying mills 20 themselves are designed according to the state of the art.
  • Dust content of the flue gas leaving the furnace 2 or the heat exchanger 5 60 to 120 g / Nm 3
  • Dust content of the flue gas leaving the electrostatic precipitator max. 3 g / Nm 3
  • Temperature of the flue gases after the reduction catalyst 8 280 ° C to 320 ° C.
  • Dust content of the flue gas entering the bag filter less than 3 g / Nm 3 for direct discharge or approx. 100 g / Nm 3 for "mill operation"
  • Dust content of the flue gas when leaving the bag filter max. 10 mg / Nm 3
  • the dust content of the flue gases in the reduction catalyst 8 is practically not reduced. If, nevertheless, a dust precipitation takes place in the reduction catalytic converter 8, this can be cleaned periodically, for example by blowing with compressed air.
  • the flue gas and carbon monoxide from, in particular, odoriferous, hydrocarbons or ammonia removal from exhaust gases from incinerators, especially the Appendix 1, are used.
  • a separate catalyst can be arranged before or after the denitrification catalyst, for example comprising titanium vanadium compounds which can be mixed with palladium and / or platinum.
  • Such catalysts are known from the prior art, so reference should be made to the relevant literature.
  • the reduction catalyst 8 can be designed as a multilayer catalyst with multiple beds for the individual catalysts, or there is also the possibility of several catalysts separately in the system 1 or a corresponding flue gas cleaning system are arranged, for example, in the flow direction of the flue gases behind each other in their own containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)
PCT/AT2009/000010 2008-01-16 2009-01-15 Rauchgasreinigungsanlage WO2009089559A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801092597A CN101977668A (zh) 2008-01-16 2009-01-15 烟道气纯化设备
BRPI0907170A BRPI0907170A2 (pt) 2008-01-16 2009-01-15 planta de purificação de gás de combustão
US12/863,248 US20100307388A1 (en) 2008-01-16 2009-01-15 Flue gas purification plant
EP09702662A EP2237861A1 (de) 2008-01-16 2009-01-15 Rauchgasreinigungsanlage
RU2010134000/05A RU2484883C2 (ru) 2008-01-16 2009-01-15 Установка для очистки дымового газа

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM31/2008 2008-01-16
AT0003108U AT10369U1 (de) 2008-01-16 2008-01-16 Rauchgasreinigungsanlage

Publications (1)

Publication Number Publication Date
WO2009089559A1 true WO2009089559A1 (de) 2009-07-23

Family

ID=40104815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2009/000010 WO2009089559A1 (de) 2008-01-16 2009-01-15 Rauchgasreinigungsanlage

Country Status (7)

Country Link
US (1) US20100307388A1 (zh)
EP (1) EP2237861A1 (zh)
CN (1) CN101977668A (zh)
AT (1) AT10369U1 (zh)
BR (1) BRPI0907170A2 (zh)
RU (1) RU2484883C2 (zh)
WO (1) WO2009089559A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136396A1 (de) * 2009-05-27 2010-12-02 Polysius Ag Verfahren und anlage zur wärmebehandlung von feinkörnigem material
WO2012013383A1 (de) 2010-07-27 2012-02-02 Elex Cemcat Ag Rauchgasreinigungsanlage einer zementklinkerproduktionsanlage
DE102011000564A1 (de) 2011-02-08 2012-08-09 Elex Cemcat Ag Verfahren und Anlage zur Herstellung von Zementklinker
US20120247371A1 (en) * 2011-04-04 2012-10-04 Thyssenkrupp Polysius Ag Method and installation for producing cement clinker
DE102011001933A1 (de) 2011-04-08 2012-10-11 Elex Cemcat Ag Verfahren und Anlage zur Herstellung von Zementklinker und zur Reinigung der dabei entstehenden Abgase
DE102011050125A1 (de) 2011-05-05 2012-11-08 Elex Cemcat Ag Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage
DE102015202698A1 (de) 2015-02-13 2016-08-18 Elex Cemcat Ag Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen sowie Anlage zur thermischen Aufarbeitung von Mineralstoffen
WO2018073239A1 (de) * 2016-10-17 2018-04-26 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur reinigung von vorwärmerabgasen einer anlage der zement- und/oder mineralsindustrie
AT17408U1 (de) * 2021-03-24 2022-03-15 Scheuch Man Holding Gmbh Vorrichtung und Verfahren zur Herstellung von Zementklinker
CN114471108A (zh) * 2022-02-14 2022-05-13 北京科技大学 工业烟气同步脱碳脱硝及余热回收利用的装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010010565A (es) * 2008-03-25 2011-03-21 Agc Glass Europe Horno para fundir vidrio.
AT510406B1 (de) * 2011-04-04 2012-04-15 Scheuch Gmbh Schlauchfilter zur reinigung staubbelasteter gase und injektordüse für ein solches schlauchfilter
DE102011050677B4 (de) * 2011-05-27 2014-08-28 Südbayerisches Portland-Zementwerk Gebr. Wiesböck & Co. GmbH Vorrichtung und Verfahren zur Herstellung von Zementklinker
WO2013019393A1 (en) * 2011-07-29 2013-02-07 Flsmidth A/S Pollution control system for kiln exhaust
CN102935331A (zh) * 2011-08-15 2013-02-20 上海索菲玛汽车滤清器有限公司 用于还原废气中的氮氧化物的设备
CN102661667A (zh) * 2012-05-31 2012-09-12 河南中材环保有限公司 一种水泥窑炉脱硝、余热利用及除尘系统及方法
DE102013016701B4 (de) * 2013-10-08 2017-06-14 Khd Humboldt Wedag Gmbh Verfahren zur Entstickung von Bypassabgasen in einer Anlage zur Herstellung von Zementklinker und Anlage zur Herstellung von Zementklinker
DE102013112210A1 (de) 2013-11-06 2015-05-07 Thyssenkrupp Ag Verfahren zur Reinigung von Bypassgasen der Zement- oder Mineralsindustrie sowie Anlage der Zement- oder Mineralsindustrie
DE102014100896A1 (de) * 2014-01-27 2015-07-30 Thyssenkrupp Ag Verfahren zur Wärmebehandlung eines Stoffstroms und zur Reinigung von dabei entstehenden Abgasen
PL3002051T4 (pl) * 2014-10-03 2020-07-27 General Electric Technology Gmbh Odpylacz użyteczny z reaktorem płuczkowym do oczyszczania spalin na sucho
CN107781834A (zh) * 2016-08-30 2018-03-09 中国辐射防护研究院 一种废浸渍活性炭焚烧处理装置及方法
CN108426263B (zh) * 2018-03-28 2019-10-18 清华大学 燃煤烟气处理系统
WO2021083426A2 (zh) * 2020-12-21 2021-05-06 苏州喜全软件科技有限公司 一种印染锅炉废气处理装置
CN113069920A (zh) * 2021-05-08 2021-07-06 中材萍乡水泥有限公司 一种水泥生产超低排放脱硝设备
CN114870620A (zh) * 2022-05-07 2022-08-09 北京京西燃气热电有限公司 一种柔性接触式密封装置
CN115143794B (zh) * 2022-06-14 2024-08-02 成都易态科技有限公司 烟气过滤除尘设备及烟气过滤除尘设备的滤芯再生方法
CN116747643B (zh) * 2023-08-24 2023-12-19 山西毅诚科信科技有限公司 一种新型水泥窑脱硝除尘装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307068A (en) * 1977-08-31 1981-12-22 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for treating an exhaust gas
DE3404277A1 (de) * 1984-02-08 1985-08-08 Metallgesellschaft Ag, 6000 Frankfurt Dampferzeugungsanlage mit abgasreinigungseinrichtung
DE3642179A1 (de) * 1986-12-10 1988-06-23 Hoelter Heinz Verfahren und vorrichtung zur simultanen so(pfeil abwaerts)2(pfeil abwaerts)- und no(pfeil abwaerts)x(pfeil abwaerts)-abscheidung hinter feuerungsanlagen mit koks-precoat-filter-system
DE19612240A1 (de) 1996-03-27 1997-10-02 Abb Patent Gmbh Verfahren und Vorrichtung zur Abscheidung von Schadstoffen, insbesondere von Stickoxiden, aus Rauchgas
DE19635383A1 (de) 1996-08-31 1998-03-05 Katalysatorenwerke Huels Gmbh DeNOx-Katalysator für stark Staub-haltige Abgase
DE29623503U1 (de) 1995-09-08 1998-09-17 Elex Ag, Schwerzenbach Rauchgasreinigungsanlage
WO2001058581A1 (en) * 2000-02-13 2001-08-16 The Babcock & Wilcox Company Circulating fluidized bed reactor with selective catalytic reduction
WO2004001290A1 (de) * 2002-06-20 2003-12-31 Steag Encotec Gmbh Kohlekraftwerk
US20040042946A1 (en) 2000-12-04 2004-03-04 Gilles Vicard Method and installation for purifying cement plant fumes
EP1493481A2 (fr) * 2003-07-01 2005-01-05 Lab Sa Procédé et installation d'épuration de fumées, associant deux unités de séparation et une épuration catalytique
US20050008546A1 (en) * 2003-07-07 2005-01-13 Norihisa Kobayashi Exhaust gas treatment system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601378A1 (de) * 1986-01-18 1987-07-23 Degussa Verfahren zur reinigung von oxide des stickstoffs und schwefels enthaltenden abgasen aus verbrennungsanlagen
SU1749633A1 (ru) * 1990-03-01 1992-07-23 А.И Жигайлов Устройство дл очистки газов от цементной пыли и других примесей
RU2001672C1 (ru) * 1990-11-26 1993-10-30 Александр Маркович Гольдман Установка дл очистки дымовых газов от сернистого ангидрида и окислов азота
DE4117444C2 (de) * 1991-05-28 1993-11-11 Babcock Anlagen Gmbh Verfahren zum Behandeln von Rückständen einer Abfallverbrennungsanlage und Abfallverbrennungsanlage zur Durchführung des Verfahrens
US7198698B1 (en) * 2001-05-02 2007-04-03 Air Control Techniques, P.C. Method of photochemically removing ammonia from gas streams

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307068A (en) * 1977-08-31 1981-12-22 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for treating an exhaust gas
DE3404277A1 (de) * 1984-02-08 1985-08-08 Metallgesellschaft Ag, 6000 Frankfurt Dampferzeugungsanlage mit abgasreinigungseinrichtung
DE3642179A1 (de) * 1986-12-10 1988-06-23 Hoelter Heinz Verfahren und vorrichtung zur simultanen so(pfeil abwaerts)2(pfeil abwaerts)- und no(pfeil abwaerts)x(pfeil abwaerts)-abscheidung hinter feuerungsanlagen mit koks-precoat-filter-system
DE29623503U1 (de) 1995-09-08 1998-09-17 Elex Ag, Schwerzenbach Rauchgasreinigungsanlage
DE19612240A1 (de) 1996-03-27 1997-10-02 Abb Patent Gmbh Verfahren und Vorrichtung zur Abscheidung von Schadstoffen, insbesondere von Stickoxiden, aus Rauchgas
DE19635383A1 (de) 1996-08-31 1998-03-05 Katalysatorenwerke Huels Gmbh DeNOx-Katalysator für stark Staub-haltige Abgase
WO2001058581A1 (en) * 2000-02-13 2001-08-16 The Babcock & Wilcox Company Circulating fluidized bed reactor with selective catalytic reduction
US20040042946A1 (en) 2000-12-04 2004-03-04 Gilles Vicard Method and installation for purifying cement plant fumes
WO2004001290A1 (de) * 2002-06-20 2003-12-31 Steag Encotec Gmbh Kohlekraftwerk
EP1493481A2 (fr) * 2003-07-01 2005-01-05 Lab Sa Procédé et installation d'épuration de fumées, associant deux unités de séparation et une épuration catalytique
US20050008546A1 (en) * 2003-07-07 2005-01-13 Norihisa Kobayashi Exhaust gas treatment system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136396A1 (de) * 2009-05-27 2010-12-02 Polysius Ag Verfahren und anlage zur wärmebehandlung von feinkörnigem material
WO2012013383A1 (de) 2010-07-27 2012-02-02 Elex Cemcat Ag Rauchgasreinigungsanlage einer zementklinkerproduktionsanlage
DE102011000564A1 (de) 2011-02-08 2012-08-09 Elex Cemcat Ag Verfahren und Anlage zur Herstellung von Zementklinker
WO2012107404A1 (de) 2011-02-08 2012-08-16 Elex Cemcat Ag Verfahren und anlage zur herstellung von zementklinker
US20120247371A1 (en) * 2011-04-04 2012-10-04 Thyssenkrupp Polysius Ag Method and installation for producing cement clinker
US9067827B2 (en) * 2011-04-04 2015-06-30 Thyssenkrupp Industrial Solutions Ag Method and installation for producing cement clinker
US8936678B2 (en) 2011-04-08 2015-01-20 Elex Cemcat Ag Process and plant for producing cement clinker and for purifying the offgases formed
WO2012136631A1 (de) 2011-04-08 2012-10-11 Elex Cemcat Ag Verfahren und anlage zur herstellung von zementklinker und zur reinigung der dabei entstehenden abgase
DE102011001933A1 (de) 2011-04-08 2012-10-11 Elex Cemcat Ag Verfahren und Anlage zur Herstellung von Zementklinker und zur Reinigung der dabei entstehenden Abgase
DE102011050125A1 (de) 2011-05-05 2012-11-08 Elex Cemcat Ag Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage
DE102011050125B4 (de) 2011-05-05 2019-04-18 Maerz Ofenbau Ag Rauchgasreinigungsanlage einer Zementklinkerproduktionsanlage
DE102015202698A1 (de) 2015-02-13 2016-08-18 Elex Cemcat Ag Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen sowie Anlage zur thermischen Aufarbeitung von Mineralstoffen
WO2016128545A1 (de) 2015-02-13 2016-08-18 Elex Cemcat Ag Verfahren zur reinigung von abgasen bei der thermischen aufarbeitung von mineralstoffen
DE102015202698B4 (de) * 2015-02-13 2020-11-05 Maerz Ofenbau Ag Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen
WO2018073239A1 (de) * 2016-10-17 2018-04-26 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur reinigung von vorwärmerabgasen einer anlage der zement- und/oder mineralsindustrie
AT17408U1 (de) * 2021-03-24 2022-03-15 Scheuch Man Holding Gmbh Vorrichtung und Verfahren zur Herstellung von Zementklinker
CN114471108A (zh) * 2022-02-14 2022-05-13 北京科技大学 工业烟气同步脱碳脱硝及余热回收利用的装置

Also Published As

Publication number Publication date
BRPI0907170A2 (pt) 2017-06-06
CN101977668A (zh) 2011-02-16
RU2010134000A (ru) 2012-02-27
EP2237861A1 (de) 2010-10-13
AT10369U1 (de) 2009-02-15
RU2484883C2 (ru) 2013-06-20
US20100307388A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
WO2009089559A1 (de) Rauchgasreinigungsanlage
DE102014005508B4 (de) Verfahren und Anlage zur Entstickung von Rauchgasen mit SNCR (Selektive nichtkatalytische Reduktion) und nachgeschaltetem Katalysator zum Ammoniakabbau
EP0863790B1 (de) Rauchgasreinigungsanlage
EP3672919B1 (de) Anlage und verfahren zur herstellung von zementklinker
EP2694902B1 (de) Verfahren und anlage zur herstellung von zementklinker und zur reinigung der dabei entstehenden abgase
EP3265733B1 (de) Verfahren und anlage zur entstickung von bypassgasen in einem mehrstufigen system von mischkammern bei einer anlage zur herstellung von zementklinker
WO2016169638A1 (de) Behandlung von abgasen der zementklinkerherstellung
AT505542B1 (de) Anlage zur reinigung der rauchgase eines ofens
WO2012107404A1 (de) Verfahren und anlage zur herstellung von zementklinker
EP2437866B1 (de) Verfahren und anlage zur abscheidung von quecksilber aus abgasen eines zementherstellungsprozesses
DE4018786A1 (de) Verfahren zur reinigung der abgase von anlagen zur herstellung von zementklinker
WO1999005329A1 (de) Verfahren zum betrieb einer sinteranlage sowie sinteranlage
EP3256236B1 (de) Verfahren zur reinigung von abgasen bei der thermischen aufarbeitung von mineralstoffen
DE102014106991B4 (de) Vorrichtungen und Verfahren zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
DE19612240A1 (de) Verfahren und Vorrichtung zur Abscheidung von Schadstoffen, insbesondere von Stickoxiden, aus Rauchgas
EP0161470B1 (de) Verfahren und Vorrichtung zur Entfernung unerwünschter gasförmiger Bestandteile aus einem Rauchgas
DE102008012449A1 (de) Rauchgasreinigungsanlage
DE4209166A1 (de) Verfahren und einrichtung zur katalytischen entfernung von schadstoffen aus rauchgas
DE19705663A1 (de) Einrichtung zur Reduktion von Stickoxiden in einem mit Staub beladenen Abgas
WO2010136396A1 (de) Verfahren und anlage zur wärmebehandlung von feinkörnigem material
DE102008013065A1 (de) Anlage zur Reinigung der Rauchgase eines Ofens
DE19638584C2 (de) Verfahren zur Abscheidung von Staub aus einem staubhaltigen und wasserdampfhaltigen Abgas in einem filtrierenden Abscheider
WO2018108561A1 (de) Verfahren und vorrichtung zur rauchgasbehandlung von rauchgasen fossil befeuerter dampfkraftwerke mittels eines adsorptionsmittels
EP2340885A1 (de) Verfahren und Anlage zur Rauchgas-Reinigung
EP1322401B1 (de) Verfahren zum reinigen von rauchgasen hinter feuerungsanlagen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109259.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5067/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009702662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12863248

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010134000

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0907170

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100715