WO2009089018A2 - Porous electrodes and associated methods - Google Patents
Porous electrodes and associated methods Download PDFInfo
- Publication number
- WO2009089018A2 WO2009089018A2 PCT/US2009/000090 US2009000090W WO2009089018A2 WO 2009089018 A2 WO2009089018 A2 WO 2009089018A2 US 2009000090 W US2009000090 W US 2009000090W WO 2009089018 A2 WO2009089018 A2 WO 2009089018A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- porous
- active
- binder
- filler
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention generally relates to electrodes, electrochemical cells, and related methods.
- a typical electrochemical cell has a cathode and an anode which participate in an electrochemical reaction during operation of the cell.
- the electrodes may contain an electroactive material that can interact with one or more cell component(s) to facilitate the conduction of ions between electrodes.
- Some electrodes may be formed by coating a conductive substrate, including porous conductive substrates, with an electroactive material, often in the presence of a binder material to enhance adhesion and cohesion of the electroactive material to the electrode.
- a binder material to enhance adhesion and cohesion of the electroactive material to the electrode.
- the conductive substrate may be coated using a slurry containing an electroactive material and an insoluble binder material, which typically causes rapid slurry coagulation and can limit the amount of electroactive material loading achieved in the electrode.
- soluble binders solutions can stabilize the slurry and can facilitate the coating process.
- portions of the resulting electrode structure are often blocked by the deposited materials and may be rendered inaccessible to electroactive species during operation of the cell. This can result in cells having decreased rate capability and electroactive material utilization.
- the present invention provides methods of forming an electrode comprising forming a filler material on a first portion of a porous material, wherein the porous material comprises carbon; forming an electrode material on at least a second portion of the porous material, wherein the electrode material comprises an active electrode species and a binder material; and removing at least some of the filler material from the porous material, thereby forming the electrode.
- the present invention also provides methods of forming an electrode comprising contacting a porous material comprising carbon with a filler solution comprising a filler material, such that the filler material forms a coating on a first portion of the porous material, producing a first coated porous material; contacting the first coated porous material with an electrode material comprising an active electrode species and a binder material, such that the electrode material forms a coating on at least a second portion of the porous material, producing a second coated porous material; and removing at least some of the filler material from the second coated porous material, thereby forming the electrode.
- the present invention also provides methods of forming an electrode comprising contacting a porous material comprising carbon with an electrode composition comprising an active electrode species, a fluid carrier, and at least 5 wt % of a binder material, relative to the porous material, such that the electrode composition forms a coating on at least a portion of the porous material, producing a coated porous material; and removing at least some of the fluid carrier from the coated porous material, thereby forming the electrode, wherein the electrode comprises an active electrode species loading of at least 1.6 mg/cm 2 and a porosity of at least 50%.
- the present invention also relates to electrochemical cells comprising a cathode comprising an active electrode species, a porous material comprising carbon, and a binder material, wherein the binder material is at least partially soluble in a fluid carrier in which the active electrode species and the porous material are not appreciably soluble; an anode; and an electrolyte in electrochemical communication with the cathode and the anode, wherein the electrochemical cell has an active material capacity of at least 60% of the active material theoretical capacity.
- the present invention also provides methods of forming an electrode comprising forming an electrochemically active electrode precursor comprising a carbon-based electrically-conductive material and an active electrode species; and removing material essentially uniformly from the electrode precursor, thereby increasing surface area of the carbon-based electrically-conductive material, the active electrode species, or both, the surface area exposable to electrolyte during use of the electrode, to form the electrode.
- FIG. 1 shows an electrochemical cell, according to one embodiment of the invention.
- FIG. 2 shows an example of a binder material, according to one embodiment of the invention.
- FIG. 3 shows a graph of the vapor pressure of ammonium bicarbonate as a function of temperature.
- FIG. 4 shows a graph of (a) the solubility of ammonium bicarbonate in water as a function of temperature, and (b) the thermal cycling diagram of ammonium bicarbonate in water.
- FIG. 5 shows an Arrhenius plot for the vapor pressures of (a) hexane and (b) ammonium bicarbonate.
- FIG. 6 shows a plot of the specific capacity as a function of cycle number for two electrochemical cells.
- FIG. 7 shows a plot of specific capacity as a function of cycle number for an electrochemical cell, prepared using octane as liquid filler, at a discharge current of (a) 500 mA, (b) 2.2 A, and (c) 4.4 A, and an essentially identical electrochemical cell, prepared without octane as liquid filler, at a discharge current of (d) 500 mA, (e) 2.2 A, and (f) 4.4 A.
- the present invention relates to electrochemical cells, electrodes, and related methods.
- the invention involves the use of a removable filler material (e.g., sacrificial material) during fabrication of an electrochemical cell, or component thereof, to produce electrochemical devices having improved cell performance and rate capability.
- the invention may provide electrochemical cells which exhibit enhanced utilization of electroactive species and/or increased accessibility of electroactive species within the electrochemical cell during operation.
- the invention may provide electrodes which advantageously possess both high loading of an electroactive species (e.g., greater than 1.5 mg/cm 2 ) and good adhesion and cohesion properties.
- Some electrochemical cells (e.g., rechargeable batteries) of the invention may include a porous electrode comprising one or more electroactive materials, such as an electroactive sulfur-containing material, and a binder material.
- One aspect of the invention is the discovery that the use of a filler material (e.g., a sacrificial material) in the fabrication of an electrode can provide several advantages.
- incorporation of filler material within a substrate e.g, a porous carbon material
- subsequent removal of at least some of the filler material to expose portions of the substrate may provide improved accessibility of the substrate surface area to other components of the cell.
- the filler material may be used to maintain the porosity of an electrode material such that the electrolyte may contact interior portions of the electrode (e.g., pores) during cell operation.
- Another advantageous feature of the invention is the ability to achieve high loading of the active electrode species, as well as improved utilization/accessibility of the active electrode species, while also maintaining the stability and good mechanical properties of the electrode.
- FIG. 1 illustrates an electrochemical cell of the invention.
- cell 10 includes a cathode 30 that can be formed on a substantially planar surface of substrate 20.
- a porous separator material 40 can be formed adjacent to the cathode 30 and can be deposited into the cathode 30.
- An anode layer 50 can be formed adjacent porous separator material 40 and may be in electrical communication with the cathode 30.
- the anode 50 may also be formed on an electrolyte layer positioned on cathode 30.
- the orientation of the components can be varied and it should be understood that there are other embodiments in which the orientation of the layers is varied such that, for example, the anode layer or the electrolyte layer is first formed on the substrate.
- additional layers such as a multi-layer structure that protects an electroactive material (e.g., an electrode) from the electrolyte, may be present, as described in more detail in U.S. Patent Application No.
- a filler material may be used in a fabrication process to form a component of an electrochemical cell (e.g., an electrode).
- the term "filler material” as used herein refers to a material that is employed as a mechanical place holder, or a sacrificial material, in a sequence of fabrication steps in which multiple materials are processed for producing a desired structure, such as an electrochemical structure. Once the relevant materials of the structure are formed, at least some of the filler material may be removed while other materials are maintained in place, thereby producing the desired structure. In some embodiments, use of the filler material during the fabrication of porous electrodes may advantageously maintain the porosity of the electrode.
- the filler material may be formed on a first portion of a material (e.g., porous material), and an electrode material may be formed on at least a second portion of the material.
- the electrode material may comprise an active electrode species and a binder material, such as soluble binder material. Subsequent removal of at least some of the filler material from the material may then produce the desired electrode structure.
- the method comprises forming a filler material on at least a portion of a porous material (e.g., a porous material comprising carbon) such that a portion of the porous material surface is coated by the filler material and/or at least some of the pores are "filled” with the filler material.
- a porous material e.g., a porous material comprising carbon
- the method may involve contacting the porous material with a filler solution comprising a filler material, such that the filler material forms a coating on a first portion of the porous material, producing a coated porous material.
- the filler solution may comprise the filler material and at least one fluid carrier in which the filler material is appreciably soluble.
- the filler material is a solid.
- the filler material is a fluid (e.g., octane).
- Some examples of filler materials include, but are not limited to, ammonium bicarbonate and water. However, it should be understood that other filler material may be used in the context of the invention, as described more fully below.
- the filler material may be deposited within interior portions of a porous substrate via thermal cycling of a material having a positive temperature solubility gradient, i.e., a material having a solubility that increases as temperature increases.
- the filler material may be formed on the porous material by contacting the porous material with a filler solution comprising a filler material and a fluid carrier at a first temperature in which the filler material is substantially dissolved in the fluid carrier. The temperature of the filler solution and/or porous material may then be reduced to a second, lower temperature that may cause the filler material to precipitate within the pores of the porous material. The process may be repeated (e.g., cycled) until a sufficient amount of filler material is formed within the pores of the porous materials.
- the filler material may be formed on the porous material via various saturation methods, wherein the porous material may be exposed to a filler material vapor.
- an inert gas saturation method may be used, wherein the porous material is placed in a closed container through which an inert, dry gas (e.g., nitrogen, argon) is purged at a measured flow rate.
- a flow of filler material in vapor form may be introduced into the container, alone or in combination with the stream of inert gas.
- a vessel containing small beads may be fluidly attached to the inlet inert gas line, and a small stream of filler material fluid (e.g., octane) may be allowed to drip onto the surface of the small beads.
- the filler material fluid may then be vaporized into the inert gas stream to form a saturated inert gas, which may be allowed to contact (e.g., pass through) the carbon material and then exit the container.
- the filler material may then be formed on the porous substrate by alternately heating and cooling the filler vapor for several cycles as it contacts (e.g., passes through) the porous material.
- a vortex tube may be used to generate the hot inert gas.
- ambient saturation methods may be used, wherein the porous material is placed in a closed vessel and suspended (e.g., by a wire cloth) over a solution of filler material at the bottom of the vessel.
- the porous substrate may be saturated with filler material using a ball mill jar.
- the ball mill jar may be purged with a dry inert gas, and the porous substrate may be added to the ball mill jar.
- Filler material vapor may be added, and the porous substrate and filler material vapor may be tumbled until well mixed.
- the porous material may be dried prior to saturation.
- the filler material may be formed on the porous material in any amount suitable for a particular application. For example, in applications where it is desired that large portions of the porous material contact or are accessible to (e.g., exposed to) other components of the cell (e.g., electrolyte), during fabrication the filler material may be formed on a relatively large portion of the porous material surface and may be later removed or partially removed to expose the desired amount of porous material. Alternatively, in applications where it is desired that small portions of the porous material contact or are accessible to other components of the cell, during fabrication the filler material may be formed on a relatively small portion of the porous material surface.
- the porous material may comprise about 5-95 wt % filler material, relative to the porous material (e.g. porous carbon material). In some cases, the porous material may comprise about 15-85 wt %, 25-75 wt%, 35-65 wt%, or, in some cases, about 45-55 wt % filler material, relative to the porous material. In one set of embodiments, the porous material may comprise about 50 wt % filler material, relative to the porous material (e.g. porous carbon material).
- Methods of the invention may comprise formation of an electrode material or an electrode composition on at least a portion of the porous material, including portions that comprise filler material and/or portions that are free of filler material.
- the porous material may be treated (e.g., contacted, coated) with an electrode material comprising an active electrode species (e.g., sulfur) and a binder material. Additional materials, fluid carriers, other additives, and/or combinations thereof, may also be applied to the porous substrate in combination with the electrode material.
- the binder material and the active electrode species may be applied to the porous material from a mixture (e.g., electrode composition) comprising the binder material, the active electrode species, and at least one fluid carrier. Removal (e.g., evaporation or drying) of at least some of the fluid carrier may then form the electrode material on the surface of the porous material.
- the mixture may be provided as a homogeneous solution, a heterogeneous dispersion or slurry, or the like.
- simple screening tests may be conducted by simply combining small amounts of the mixture components (e.g., binder material, active electrode species, fluid carrier, etc.) to determine whether a solution or slurry is formed.
- the mixture may be further processed (e.g,. heated, stirred, sonicated, milled, etc.) prior to application to the porous substrate.
- the mixture may be processed to provide uniform mixture, to prevent agglomeration, or to impart other desired characteristics to the mixture.
- the mixture may be milled prior to application to the porous substrate.
- the electrode composition comprises an active electrode species (e.g., sulfur), a fluid carrier, and at least 5 wt %, at least 10 wt %, at least 15 wt %, at least 20 wt %, at least 25 wt %, at least 30 wt %, or greater, in some cases, of a binder material, relative to the porous material.
- an active electrode species e.g., sulfur
- a fluid carrier e.g., a fluid carrier
- the binder material may be at least partially soluble in the fluid carrier of the electrode composition. In some cases, the binder material may be at least partially soluble in a fluid carrier in which the active electrode species, porous material, and/or filler material are not appreciably soluble. In some cases, the mixture may be a slurry comprising an active electrode species, a binder material, and a fluid carrier in which the binder material is at least partially soluble and in which the active electrode species and the porous material are not appreciably soluble.
- the electrode composition (e.g., slurry) may advantageously comprise a high solid loading relative to known methods.
- a mixture comprising a high solid loading may result in undesired absorption of the fluid carrier by the carbon substrate, which can destabilize the mixture and/or cause precipitation of the binder material within the mixture.
- mixtures having high solid loading may be readily applied to carbon substrates comprising filler material.
- the filler material can block the pores of the porous carbon substrate to minimize or prevent absorption of the fluid carrier by the porous carbon substrate.
- the electrode may comprise an active electrode species loading of at least 1.6 mg/cm 2 .
- active electrode species loading or “electroactive species loading” refer to the amount of active electrode species that is formed or “loaded” on the electrode.
- the mixture may have a solid content (e.g., active electrode species content) of at least 10 wt%, at least 20 wt%, at least 30 wt%, at least 40 wt%, or greater.
- the mixture may also include other additives, such as plasticizers and/or crystallization modifiers.
- the additives may be selected to be compatible with (e.g., inert to, miscible with) other components of the slurry, such that the additives do not adversely affect the performance of the cell. Examples of additives include, but are not limited to, ethylene carbonate, propylene carbonate, polyethylene glycol and polypropylene glycol.
- the substrate e.g., porous material
- the porous material may be treated with an appropriate chemical that modifies the hydrophilicity, hydrophobicity, or other characteristic, of the porous material.
- a polymeric material may be formed on the porous material, or portion thereof prior to formation of a filler material on the porous material to enhance the interaction between the porous material and the filler material.
- the polymeric material may be poly(ethylene glycol), which may increase the affinity of the substrate for hydrophilic filler materials such as water.
- hydrophilic filler materials such as water.
- the substrate may be treated to produce a substantially anhydrous or dry material.
- an untreated, porous, carbon material may include water within its pores, which may hinder its performance and/or ability to be processed using methods described herein.
- the water may be at least partially removed from the substrate using various methods, including hot inert gas cycling or desiccant drying.
- Hot inert gas cycling typically involves placing the substrate in a sealed container through which an inert, dry gas (e.g., nitrogen, argon) is passed. The inert gas may be allowed to pass through the carbon material and then exit the container. The inert gas may be alternately heated and cooled for several cycles, thereby heating and cooling the substrate, and after the last cycle, the container may be sealed under inert gas for storage.
- Desiccant drying involves placing a substrate in a dessicator comprising water-absorbing beads, to remove water vapor from the surface of the substrate. The filler material, or portion thereof, may be removed from the porous material by various methods.
- the filler material may be removed by heating the substrate.
- the filler material may be at least partially removed by contacting (e.g., rinsing) the substrate with a fluid carrier or other chemical(s).
- a fluid carrier or other chemical(s).
- the filler material may be substantially soluble in a fluid carrier in which other components of the electrode are not appreciably soluble, such that the filler material may be removed at least in part via rinsing with the fluid carrier.
- the filler material may be removed at any point during or after the fabrication process, depending on the desired application.
- the filler material may be removed from the porous material during formation of the electrode material.
- the filler material, or portions thereof, may then be selectively removed to reveal portions of the underlying porous material, such that the resulting porous material has a surface comprising electrode material (comprising active electrode species and binder material) positioned at selected locations and conductive substrate material exposed at other locations on the surface.
- the ability to selectively remove at least some of the filler material may advantageously increase the amount of the porous material surface area that is accessible to other components of the cell, while other materials of the electrode (e.g., active electrode species, binder material) are maintained on or within the electrode surface.
- the amount of porous material surface area may be determined by the porosity of the electrode. That is, an increase in the porosity of the electrode may indicate an increase in the amount of porous material surface area of the electrode.
- the electrode may have a porosity of at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or greater.
- the porosity of the electrode may be determined using known methods, such as BET measurements.
- a porous carbon material may be treated (e.g,. coated) with poly(ethylene glycol) to increase the affinity of the porous carbon material for aqueous fluid carriers.
- the porous carbon material may then be exposed to (e.g., contacted by) a liquid filler material such as water, which can fill at least a portion of the pores of the porous carbon material.
- a slurry comprising an electrode material in the presence of hexane as a fluid carrier may be applied to the porous carbon material.
- the electrode material may comprise sulfur as the active electrode species and a polymeric soluble binder, such as poly(ethylene-co-propylene-co-5-methylene-2- norbornene).
- the porous carbon material may then be heated at a first temperature to remove the hexane, resulting in formation of the electrode material on the surface of the porous carbon material.
- Water e.g., filler material
- an electrochemically active electrode precursor comprising a carbon-based electrically-conductive material and an active electrode species.
- the electrode precursor may include a porous carbon substrate and an active electrode species (e.g., sulfur) formed on the substrate.
- Material may be removed from the electrode precursor essentially uniformly to form the electrode.
- removing material "essentially uniformly” from the electrode precursor means that material is removed uniformly throughout the bulk of the electrode precursor.
- removing material "essentially uniformly" from the electrode precursor may not refer to removal of discrete portion(s) of the electrode material via, for example, etching.
- at least some filler material may be removed from the electrode precursor.
- Electrodes may be prepared using methods as described herein, and may be incorporated within electrochemical devices. Accordingly, some embodiments of the invention also provide electrochemical cells.
- the electrochemical cell may comprise a cathode, an anode, and an electrolyte in electrochemical communication with the cathode and the anode.
- the cathode may comprise an active electrode species, a porous material comprising carbon, and a binder material (e.g., a soluble binder material).
- the cathode comprises sulfur as the electrode active material.
- electrodes fabricated using methods of the invention may have high sulfur loading, relative to known cells.
- the electrode has a sulfur loading of at least 1.5 mg/cm 2 (e.g., 1.6 mg/cm 2 ), at least 2.5 mg/cm 2 , at least 5.0 mg/cm 2 , or, in some cases, greater.
- the electrode may have a sulfur loading of 4.3 mg/cm 2 and an electrode material thickness of about 190 microns.
- the electrochemical cell may exhibit high active electrode species utilization, i.e., the electrode active material may be readily accessible to and may interact with other components or species within the cell during operation, such that cell performance is enhanced.
- the active material capacity may be at least 60%, at least 70%, at least 80%, or, in some cases, at least 90% of the active material theoretical capacity.
- the filler material be selected such that it may be stable (e.g., does not decompose, delaminate, react, dissolve, etc.) during formation of the electrode material and, upon formation of the electrode material, may readily decompose into one or more gases or vapors, facilitating rapid and complete removal.
- Those of ordinary skill in the art would be able to identify and select materials that exhibit this behavior by, for example, considering the chemical structure, or solubility, volatility, and/or vapor pressure of the filler material at a given temperature.
- FIG. 3 shows a graph of the vapor pressure of ammonium bicarbonate as a function of temperature, indicating that may be decomposed/removed at temperatures of around 50-60 0 C, or higher.
- the filler material may be selected such that it is substantially insoluble with respect to the electrode composition applied to the porous material during formation of the electrode material.
- Simple screening tests can be used to determine whether the filler materials are soluble or insoluble in a particular environment where they are desirably maintained in a structure during processing.
- a simple test which can be carried out in a routine laboratory environment, involves simply exposing the filler material to a variety of candidate processing solvents to determine solubility.
- the filler material may be either a liquid, solid, or combination thereof.
- suitable filler materials include, but are not limited to, organic and inorganic salts, such as ammonium carbonate, ammonium bicarbonate, and azidocarbonamide, sodium bicarbonate, potassium bicarbonate, sodium carbonate and sodium borohydride.
- the filler material is ammonium carbonate or ammonium bicarbonate.
- the filler material is a liquid, such as water or a hydrocarbon (e.g., octane).
- the filler material may be combined with a fluid carrier to form a filler solution, which may be applied to the porous substrate.
- Suitable fluid carriers include aqueous fluid carriers, non-aqueous fluid carriers, and combinations thereof. Those of ordinary skill in the art would be able to select the appropriate fluid carrier to form a filler solution, and simple screening tests may be used to determine whether a filler material is sufficiently soluble in a fluid carrier to facilitate formation of the filler material on the surface of the porous material. For example, small amounts of the filler material may be combined with a series of fluid carriers to determine compatibility.
- the fluid carrier may have a relatively low boiling point such that it may be removed at moderate temperature, and may have a low vaporization enthalpy to provide a high drying rate.
- the fluid carrier may be have a boiling point that is 100 °C or less, 90 °C or less, 80 °C or less, or, in some cases, lower.
- fluid carriers suitable for use in the filler solution include halogenated or partially halogenated hydrocarbons, such as methylene chloride, hydrocarbons such as pentane or hexane, aromatic compounds such as benzene, toluene, or xylene, alcohols such as methanol, ethanol, isopropanol, other aqueous solvents such as water, mixtures thereof, and the like.
- halogenated or partially halogenated hydrocarbons such as methylene chloride, hydrocarbons such as pentane or hexane, aromatic compounds such as benzene, toluene, or xylene, alcohols such as methanol, ethanol, isopropanol, other aqueous solvents such as water, mixtures thereof, and the like.
- a "binder material” refers to any material that, when present within the electrode, may enhance adhesion and cohesion of the active electrode species to the electrode. In some cases, a combination of binder materials may be used. Those of ordinary skill in the art would be able to select appropriate binder materials suitable for use in the invention, in combination with other materials associated with methods and electrochemical cells described herein.
- the binder material may be selected such that it is compatible with (e.g., inert with respect to) other components of the cell including, but not limited to, the cathode, the anode and the electrolyte.
- the electrochemical cell may comprise polysulfides
- the binder material may be selected such that it does not contain particular functional groups such as carbonyl groups (e.g,. esters, ketones, aldehydes, and the like), which may react with polysulfides within the cell during operation and may contaminate the cell with substantially irreversibly-formed side products.
- the binder material may also be selected to exhibit good adhesion to the porous material (e.g., porous carbon material) and/or does not crack or become delaminated during processing or during cell operation.
- binder materials which are substantially non-toxic may be used.
- the binder material may be selected to be substantially insoluble with respect to the electrolyte, i.e., the binder material may not be dissolved by the electrolyte, and/or to be appreciably soluble with respect to a fluid carrier.
- the binder material may be provided in a solvent in which the binder material is substantially soluble.
- the binder material may be substantially soluble in non-aqueous fluid carriers.
- the binder material may be substantially soluble in aqueous fluid carriers.
- the binder material may be a polymeric material.
- polymer binder materials include, but are not limited to, polyvinylidene fluoride (PVDF)-based polymers, such as poly(vinylidene fluoride) (PVDF) and its co- and terpolymers with hexafluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, polyvinyl fluoride), polytetraethylene (PTFE), ethylene-tetrafluoroethylene copolymers (ETFE), polybutadiene, cyanoethyl cellulose, carboxymethyl cellulose and its blends with styrene-butadiene rubber, polyacrylonitrile, ethylene propylene diene terpolymers, styrene-butadiene rubbers (SBR), polyimides or ethylene-vinyl acetate copolymers.
- PVDF polyvinylidene fluoride
- PVDF poly(vinylidene
- the binder material may be substantially soluble in aqueous fluid carriers and may include, but is not limited to, cellulose derivatives, typically methylcellulose (MC), carboxy methylcellulose (CMC) and hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol (PVA), polyacrylic acid salts, polyacryl amide (PA), polyvinyl pyrrolidone (PVP) or polyethylene oxide (PEO).
- cellulose derivatives typically methylcellulose (MC), carboxy methylcellulose (CMC) and hydroxypropyl methylcellulose (HPMC)
- PVA polyvinyl alcohol
- PA polyacrylic acid salts
- PA polyacryl amide
- PVP polyvinyl pyrrolidone
- PEO polyethylene oxide
- the binder material is poly(ethylene-co-propylene-co-
- EPMN 5-methylene-2-norbornene
- FIG. 2 shows the chemical structure of EPMN.
- EPMN may also provide sufficient adhesion to, for example, porous carbon materials, or to other substrate materials including metal substrates (e.g., aluminum).
- the binder material may be combined with a fluid carrier, in addition to other material such as an active electrode species, during formation of the electrode material on the porous material.
- a fluid carrier in which the binder material is appreciably miscible or soluble may be used.
- the fluid carrier may be selected such that the filler material is not appreciably miscible or soluble with respect to the fluid carrier, such that the filler material formed on the porous material remains substantially intact during formation of the electrode material.
- the fluid carrier may be selected such that the active electrode species is not appreciably miscible or soluble with respect to the fluid carrier. This may be advantageous in selectively arranging the electrode material at certain locations on the porous material. For example, it may be desired to form the electrode material primarily on the surface of a porous material and minimizing or preventing formation within interior locations (e.g., pores) of the porous material. Treatment of the porous material with an electrode composition comprising a binder material, an active electrode species, and a fluid carrier in which both the binder material and active electrode species are appreciably soluble may result in undesired deposition or crystallization of the active electrode species within the pores of the porous material.
- treatment with an electrode composition comprising a binder material, an active electrode species, and a fluid carrier in which the binder material is appreciably soluble and the active electrode species is not appreciably soluble can result in deposition of the active electrode species primarily at the surface of the porous material, which can improve utilization of the active electrode species during cell operation.
- sulfur may be formed on a porous carbon substrate in the presence of water and a water-soluble binder material, wherein the sulfur is not appreciably soluble in water.
- This may produce an electrode where a relatively high loading of sulfur may be formed on the exterior surface of the porous carbon material, rather than within the pores, resulting in enhanced accessibility of the sulfur during operation of the cell.
- the fluid carrier used during formation of the electrode material may be selected such that it exhibits a high vaporization rate at a temperature below the temperature at which the filler material may decompose to minimize or prevent premature removal of the filler material.
- the fluid carrier used during electrode material formation may be selected such, within a set temperature range, the vapor pressure of the fluid carrier is higher than the vapor pressure of any decomposition products formed by the filler material.
- the fluid carrier may have a boiling point or vaporization enthalpy that is below the decomposition temperature or vaporization enthalpy of the filler material. This may allow for removal of the fluid carrier to form the electrode material, while minimizing or preventing premature removal of the filler material.
- any fluid carrier may be suitable for use in electrode compositions, including aqueous fluid carries, non-aqueous fluid carriers, or combinations thereof.
- fluid carriers which may be used in methods of the invention include solvents such as benzene, p-cresol, toluene, xylene, diethyl ether, glycol monomethyl or dimethyl ether, petroleum ether, heptane, hexane, pentane, cyclohexane, methylene chloride, chloroform, carbon tetrachloride, dioxane, tetrahydrofuran (THF), methanol, ethanol, isoproanol, dimethyl sulfoxide, dimethylformamide, hexamethyl-phosphoric triamide, water, ethyl acetate, acetone, pyridine, triethylamine, picoline, mixtures thereof, or the like.
- a porous substrate may comprise ammonium bicarbonate as the filler material, and hexane may be used as the electrode composition fluid carrier during formation of the electrode material on the porous material.
- Hexane has a boiling point of 68.8 °C and a vaporization enthalpy of 330 J/g.
- FIG. 5 shows an Arrhenius plot for the vapor pressures of (a) hexane and (b) ammonium bicarbonate.
- a porous material comprising ammonium bicarbonate as a filler material may be treated (e.g., coated) with an electrode material in the presence of hexane and the hexane may be removed at a temperature below about 50-60 °C to form the electrode material on the porous substrate while the filler material remains intact.
- the temperature may be increased above 60 °C to remove (e.g., decompose) the ammonium bicarbonate and expose the pores of the porous substrate.
- the filler material, binder material, fluid carrier(s), as well as other materials associated with the fabrication process may be selected to have a particular relationship with respect to each other based on properties such as solubility, vapor pressure, decomposition temperature, and the like, such that a fabrication process may be carried out to produce a desired electrochemical structure. That is, the filler material, binder material, and other materials may be selected such that the desired materials may be desirably formed and/or maintained on the substrate during the fabrication process, while reducing or preventing decomposition or undesired loss of material.
- a hydrophobic filler material may be used in combination with a hydrophilic binder material.
- a hydrophilic filler material may be used in combination with a hydrophobic binder material.
- the binder and filler materials may be selected in combination with one or more fluid carriers such that the filler material may be removed from the substrate (e.g., electrode) after formation of the binder material on the substrate.
- the filler material is a hydrophilic material and the binder material is soluble in a hydrophobic solvent.
- the filler material is a hydrophobic material and the binder material is soluble in a hydrophilic solvent.
- the filler material may exhibit some solubility in the filler fluid carrier, and may be substantially insoluble in the binder fluid carrier.
- the binder material may exhibit some solubility in the binder fluid carrier, and may be substantially insoluble in the filler fluid carrier.
- an active electrode species or “electroactive species” refers to a species associated with an electrode (e.g., cathode, anode) that undergoes an electrochemical reaction during operation of the cell. For example, an active electrode species may undergo oxidation or reduction during charge/discharge of the electrochemical cell.
- Suitable electroactive materials for use as cathode active materials in the cathode of the electrochemical cells of the invention include, but are not limited to, electroactive transition metal chalcogenides, electroactive conductive polymers, electroactive sulfur- containing materials, and combinations thereof.
- electroactive transition metal chalcogenides pertains to compounds that contain one or more of the elements of oxygen, sulfur, and selenium.
- transition metal chalcogenides include, but are not limited to, the electroactive oxides, sulfides, and selenides of transition metals selected from the group consisting of Mn, V, Cr, Ti, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, and Ir.
- the transition metal chalcogenide is selected from the group consisting of the electroactive oxides of nickel, manganese, cobalt, and vanadium, and the electroactive sulfides of iron.
- a cathode includes one or more of the following materials: manganese dioxide, iodine, silver chromate, silver oxide and vanadium pentoxide, copper oxide, copper oxyphosphate, lead sulfide, copper sulfide, iron sulfide, lead bismuthate, bismuth trioxide, cobalt dioxide, copper chloride, manganese dioxide, and carbon.
- the cathode active layer comprises an electroactive conductive polymer.
- suitable electroactive conductive polymers include, but are not limited to, electroactive and electronically conductive polymers selected from the group consisting of polypyrroles, polyanilines, polyphenylenes, polythiophenes, and polyacetylenes. Examples of conductive polymers include polypyrroles, polyanilines, and polyacetylenes.
- electroactive materials for use as cathode active materials in electrochemical cells described herein include electroactive sulfur-containing materials.
- Electroactive sulfur-containing materials relates to cathode active materials which comprise the element sulfur in any form, wherein the electrochemical activity involves the oxidation or reduction of sulfur atoms or moieties.
- the nature of the electroactive sulfur-containing materials useful in the practice of this invention may vary widely, as known in the art.
- the electroactive sulfur-containing material comprises elemental sulfur.
- the electroactive sulfur-containing material comprises a mixture of elemental sulfur and a sulfur-containing polymer.
- suitable electroactive sulfur- containing materials may include, but are not limited to, elemental sulfur and organic materials comprising sulfur atoms and carbon atoms, which may or may not be polymeric.
- Suitable organic materials include those further comprising heteroatoms, conductive polymer segments, composites, and conductive polymers.
- sulfur-containing polymers examples include those described in: U.S. Patent Nos. 5,601 ,947 and 5,690,702 to Skotheim et al.; U.S. Patent Nos. 5,529,860 and 6,1 17,590 to Skotheim et al.; U.S. Patent No. 6,201,100 issued Mar. 13, 2001, to Gorkovenko et al. of the common assignee, and PCT Publication No. WO 99/33130.
- Other suitable electroactive sulfur-containing materials comprising polysulfide linkages are described in U.S. Patent No. 5,441,831 to Skotheim et al.; U.S. Patent No. 4,664,991 to Perichaud et al., and in U.S.
- an electroactive sulfur-containing material of a cathode active layer comprises greater than 50% by weight of sulfur.
- the electroactive sulfur-containing material comprises greater than 75% by weight of sulfur.
- the electroactive sulfur-containing material comprises greater than 90% by weight of sulfur.
- the cathode active layers of the present invention may comprise from about 20 to 100% by weight of electroactive cathode materials (e.g., as measured after an appropriate amount of solvent has been removed from the cathode active layer and/or after the layer has been appropriately cured).
- the amount of electroactive sulfur- containing material in the cathode active layer is in the range of 5-30% by weight of the cathode active layer. In another embodiment, the amount of electroactive sulfur- containing material in the cathode active layer is in the range of 20% to 90% by weight of the cathode active layer.
- suitable liquid media e.g., solvents
- suitable liquid media for the preparation of cathodes (as well as other components of cells described herein) include aqueous liquids, non-aqueous liquids, and mixtures thereof.
- liquids such as, for example, water, methanol, ethanol, isopropanol, propanol, butanol, tetrahydrofuran, dimethoxyethane, acetone, toluene, xylene, acetonitrile, cyclohexane, and mixtures thereof can be used.
- suitable solvents can also be used as needed.
- Positive electrode layers may be prepared by methods known in the art.
- one suitable method comprises the steps of: (a) dispersing or suspending in a liquid medium the electroactive sulfur-containing material, as described herein; (b) optionally adding to the mixture of step (a) a conductive filler and/or binder; (c) mixing the composition resulting from step (b) to disperse the electroactive sulfur-containing material; (d) casting the composition resulting from step (c) onto a suitable substrate; and (e) removing some or all of the liquid from the composition resulting from step (d) to provide the cathode active layer.
- Suitable negative electrode materials for anode active layers described herein include, but are not limited to, lithium metal such as lithium foil and lithium deposited onto a conductive substrate, and lithium alloys (e.g., lithium-aluminum alloys and lithium-tin alloys). While these are preferred negative electrode materials, the current collectors may also be used with other cell chemistries.
- Methods for depositing a negative electrode material (e.g., an alkali metal anode such as lithium) onto a substrate may include methods such as thermal evaporation, sputtering, jet vapor deposition, and laser ablation.
- the anode comprises a lithium foil, or a lithium foil and a substrate, these can be laminated together by a lamination process as known in the art to form an anode.
- Positive and/or negative electrodes may optionally include one or more layers that interact favorably with a suitable electrolyte, such as those described in U.S. Provisional Application Serial No. 60/872,939, filed December 4, 2006 and entitled “Separation of Electrolytes,” by Mikhaylik et al., which is incorporated herein by reference in its entirety.
- the electrolytes used in electrochemical or battery cells can function as a medium for the storage and transport of ions, and in the special case of solid electrolytes and gel electrolytes, these materials may additionally function as a separator between the anode and the cathode.
- Any liquid, solid, or gel material capable of storing and transporting ions may be used, so long as the material is electrochemically and chemically unreactive with respect to the anode and the cathode, and the material facilitates the transport of ions (e.g., lithium ions) between the anode and the cathode.
- the electrolyte is electronically non-conductive to prevent short circuiting between the anode and the cathode.
- the electrolyte can comprise one or more ionic electrolyte salts to provide ionic conductivity and one or more liquid electrolyte solvents, gel polymer materials, or polymer materials.
- Suitable non-aqueous electrolytes may include organic electrolytes comprising one or more materials selected from the group consisting of liquid electrolytes, gel polymer electrolytes, and solid polymer electrolytes. Examples of non- aqueous electrolytes for lithium batteries are described by Dorniney in Lithium Batteries, New Materials, Developments and Perspectives, Chapter 4, pp. 137-165, Elsevier, Amsterdam (1994). Examples of gel polymer electrolytes and solid polymer electrolytes are described by Alamgir et al.
- non-aqueous liquid electrolyte solvents include, but are not limited to, non-aqueous organic solvents, such as, for example, N-methyl acetamide, acetonitrile, acetals, ketals, esters, carbonates, sulfones, sulfites, sulfolanes, aliphatic ethers, cyclic ethers, glymes, polyethers, phosphate esters, siloxanes, dioxolanes, N- alkylpyrrolidones, substituted forms of the foregoing, and blends thereof. Fluorinated derivatives of the foregoing are also useful as liquid electrolyte solvents. In some cases, aqueous solvents can be used as electrolytes for lithium cells.
- Aqueous solvents can include water, which can contain other components such as ionic salts.
- the electrolyte can include species such as lithium hydroxide, or other species rendering the electrolyte basic, so as to reduce the concentration of hydrogen ions in the electrolyte.
- Liquid electrolyte solvents can also be useful as plasticizers for gel polymer electrolytes, i.e., electrolytes comprising one or more polymers forming a semi-solid network.
- a gel polymer electrolyte comprises between 10-20%, 20-40%, between 60-70%, between 70-80%, between 80-90%, or between 90-95% of a heterogeneous electrolyte by volume.
- one or more solid polymers can be used to form an electrolyte.
- useful solid polymer electrolytes include, but are not limited to, those comprising one or more polymers selected from the group consisting of polyethers, polyethylene oxides, polypropylene oxides, polyimides, polyphosphazenes, polyacrylonitriles, polysiloxanes, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing.
- the electrolyte may further comprise one or more ionic electrolyte salts, also as known in the art, to increase the ionic conductivity.
- ionic electrolyte salts for use in the electrolytes of the present invention include, but are not limited to, LiSCN, LiBr, LiI, LiClO 4 , LiAsF 6 , LiSO 3 CF 3 , LiSO 3 CH 3 , LiBF 4 , LiB(Ph) 4 , LiPF 6 , LiC(SO 2 CF 3 ) 3 , and LiN(SO 2 CF 3 ) 2 .
- electrolyte salts that may be useful include lithium poly sulfides (Li 2 S x ), and lithium salts of organic ionic polysulfides (LiS x R) n , where x is an integer from 1 to 20, n is an integer from 1 to 3, and R is an organic group, and those disclosed in U.S. Patent No. 5,538,812 to Lee et al.
- electrochemical cells may further comprise a separator interposed between the cathode and the anode.
- the separator may be a solid non- conductive or insulative material which separates or insulates the anode and the cathode from each other preventing short circuiting, and which permits the transport of ions between the anode and the cathode.
- the pores of the separator may be partially or substantially filled with electrolyte.
- Separators may be supplied as porous free standing films which are interleaved with the anodes and the cathodes during the fabrication of cells.
- the porous separator layer may be applied directly to the surface of one of the electrodes, for example, as described in PCT Publication No. WO 99/33125 to Carlson et al. and in U.S. Patent No. 5,194,341 to Bagley et al.
- separator materials are known in the art.
- suitable solid porous separator materials include, but are not limited to, polyolefins, such as polyethylenes and polypropylenes, glass fiber filter papers, and ceramic materials.
- separators and separator materials suitable for use in this invention are those comprising a microporous xerogel layer, for example, a microporous pseudo- boehmite layer, which may be provided either as a free standing film or by a direct coating application on one of the electrodes, as described in U.S. Patent Nos. 6,153,337 and 6,306,545 by Carlson et al. of the common assignee.
- Solid electrolytes and gel electrolytes may also function as a separator in addition to their electrolyte function.
- a reference to "A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
- “or” should be understood to have the same meaning as “and/or” as defined above.
- the phrase "at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
- This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified.
- “at least one of A and B" can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
- a filler material was formed on porous carbon material by thermal cycling to repeatedly dissolve and precipitate a filler material within the pores of the porous carbon material.
- ammonium carbonate or ammonium bicarbonate was used as the filler material, since each exhibits a positive temperature solubility gradient in water, i.e., the solubility of the ammonium carbonate or ammonium bicarbonate in water increases with increasing temperature and decreases with decreasing temperature.
- FIG. 4 shows a graph of (a) the solubility of ammonium bicarbonate in water as a function of temperature, and (b) the thermal cycling diagram of ammonium bicarbonate in water. According to the thermal cycling diagram in FIG.
- an aqueous solution of ammonium carbonate or ammonium bicarbonate was contacted with the porous carbon material and was heated to about 50 °C, filling the carbon pores with the solution. The solution temperature was then reduced to near 0 °C, causing the filler material to precipitate within the carbon pores. The process was repeated 2-3 times to deposit the desired amount of filler material within the pores. A filler content of approximately 75- 90% by weight was achieved, relative to the porous carbon material.
- Example 2 In the following example, an electrochemical cell was prepared using a filler material and a soluble binder material, as described herein, and its sulfur specific capacity was evaluated.
- a composite comprising XE2 carbon (1 1.1 wt%) and ammonium bicarbonate (88.9 wt%) was prepared by adding XE2 to a saturated solution of ammonium bicarbonate at 50 °C or greater. The mixture was then cooled to 0 0 C and NH 4 HCO 3 was allowed to precipitate in the carbon pores. The precipitated NH4HCO 3 was filtered to provide the XE2 composite, which was then washed with ethanol. The composite (21.37 g) was then mixed with 33.3 g of a solution of 3 wt% EPDMN binder in hexane and 6.63 g of sulfur powder. An additional 35.3 g of hexane was added to the slurry mixture, which was then milled for 40 minutes with stainless steel balls in a vial.
- the milled slurry mixture was hand drawn on a carbon- coated 12 micron Al substrate (AL Rexam primer), and the coated cathode was dried at +70 0 C in the oven for 1 hour to remove the solvent and filler material.
- the resulting composite contained sulfur (66.3 wt%), XE2 (23.7 wt%), and EPDMN (10 wt%).
- the cathode had a good adhesion and cohesion.
- the sulfur coated loading was 5.18 mg/cm 2 .
- Electrochemical cells were then assembled using the coated cathode described above and 6 mil Li foil as the electrodes (active area 33 cm 2 ), 9 m Tonen separator and 1.02 g electrolyte.
- the electrolyte contained primarily 1,3-Dioxolane (DOL) and 1- Methoxy-2-ethoxyethane (MEE), with various and lower amounts of CF 3 SO 2 ) 2 NLi and LiNO 3 depending upon the specific experiment.
- the electrolyte contained 69.16 wt % DOL, 21.34 wt % MEE 5 6.72 wt % (CF 3 SO 2 ) 2 NLi, and 2.77 wt % LiNO 3 .
- the cell was cycled at 15 mA discharge to 1.7 V and 15 mA charge to 2.5 V.
- the sulfur specific capacity at the 5 th cycle was 1048 mAh/g and 101 1 mAh/g at the 40 th cycle.
- the same electrochemical cell was prepared as described above, except that instead of an XE2-ammonium bicarbonate composite, a pure XE2 without filler was used to prepare the slurry and coat the cathode.
- the cathode coating had very poor adhesion and cohesion to the XE2 substrate.
- the cathode had a sulfur loading of 2.17 mg/cm 2 , and was assembled into an electrochemical cell as described above.
- the sulfur specific capacity was 937 mAh/g at the 5 th cycle and dropped to 845 mAh/g at the 40 th cycle.
- an electrochemical cell was prepared using a filler material and a soluble binder material, as described herein, and its sulfur specific capacity was evaluated.
- An XE2-ammonium carbonate (NHU) 2 CO 3 composite having an XE2 content of 15.7 wt % and an ammonium bicarbonate content of 84.3 wt% was prepared according to the method described in Example 2.
- the composite was then mixed with 33.3 g of a solution of 3 wt% EPDMN binder in hexane and 6.63 g of sulfur powder.
- the XE2- (NRj) 2 CO 3 composite was then coated as described in Example 2, using a milled hexane slurry mixture containing 9.97% sulfur, 22.06% XE2-(NH 4 ) 2 CO 3 composite, and 1.5 % EPMN soluble binder, by weight.
- the coated cathode was dried at +70 0 C in the oven for 1 hour to remove the solvent and filler material.
- the resulting composite contained sulfur (66.3 wt%), XE2 (23.7 wt%), EPDMN (10 wt%).
- the cathode had a good adhesion and cohesion.
- the sulfur coated loading was 4.3 mg/cm 2 .
- Electrochemical cells were then assembled similar to Example 2 using the coated cathode described above. The cell was cycled at conditions similar to Example 2. Sulfur specific capacity at 5 th cycle was 1214 mAh/g.
- the same electrochemical cell was prepared as described above, except that instead of an XE2-ammonium bicarbonate composite, a pure XE2 without filler was used to prepare the slurry and coat the cathode.
- the cathode coating had low sulfur loading and very poor adhesion and cohesion to the XE2 substrate, and, when assembled into an electrochemical cell, displayed poor sulfur specific capacity, similar to the control experiment described in Example 2.
- an electrochemical cell was prepared using a filler material and a soluble binder material, as described herein, and its sulfur specific capacity was evaluated.
- An XE2-water composite having an XE2 content of 28.5 wt % and water content of 71.5% was prepared by adding carbon to boiling water, stirring and cooling to room temperature.
- the XE2-H 2 O composite was then coated using a milled hexane slurry mixture containing 9.97 g of XE2-H 2 O composite, 7.96 g sulfur, 40 g of 3 wt % solution of EPDMN in hexane, and 10 g hexane.
- the coated cathode was dried at +70 °C in the oven for 1 hour to remove the solvent and than for 1 hour at 100 °C to remove filler material.
- the resulting composite contained sulfur (66.3 wt%), XE2 (23.7 wt%), EPDMN (10 wt%).
- the cathode had a good adhesion and cohesion.
- the sulfur coated loading was 3.4 mg/cm 2 .
- Electrochemical cells were then assembled and cycled similar to Example 2. Sulfur specific capacity at 5 th cycle was 1070 mAh/g and was 947 mAh/g at 40 th cycle.
- the same electrochemical cell was prepared as described above, except that instead of an XE2-water composite, a pure XE2 without filler was used to prepare the slurry and coat the cathode.
- the cathode coating had low sulfur loading and very poor adhesion and cohesion to the XE2 substrate, and, when assembled into an electrochemical cell, displayed poor sulfur specific capacity, similar to the control experiment described in Example 2.
- Porous XE2 carbon was coated as described in Example 2 using either (1) a slurry containing EPMN in hexane (e.g., no filler material) or (2) a slurry containing ammonium bicarbonate filler material, and EPMN in hexane.
- the coated XE2 carbon was dried at room temperature and then heated to 70 0 C to remove the solvent and filler material, producing a coated XE2 carbon having a carbon to binder ratio of 3:1 by weight.
- Two electrochemical cells A and B were prepared using the methods described in Example 3.
- Cell A was cycled at a discharge current density of 0.5 mA/cm 2 and a charge current density of 0.5 mA/cm 2 .
- a discharge current density of 0.5 mA/cm 2 and a charge current density of 0.5 mA/cm 2 were applied for the first 5 cycles.
- a discharge current density of 1.0 mA/cm 2 and a charge current density of 0.5 mA/cm 2 were applied.
- FIG. 6 shows the specific capacity as a function of cycle number for Cell A and Cell B.
- Cell A delivered a specific capacity of 1 160- 1260 mAh/g, or 69-75% of sulfur utilization for the first 8 cycles.
- Cell B delivered specific capacity of 940 mAh/g or 56% of sulfur utilization at discharge current density of 1.0 mA/cm .
- Example 7
- electrochemical cells were prepared using cathodes prepared with a liquid filler material present on a porous substrate and a soluble binder material, as described herein. These electrochemical cells were then compared to substantially similar cells prepared using cathodes with a porous substrate and a soluble binder material, but without a liquid filler material applied to the porous substrate. The specific capacities of these electrochemical cells were compared at several discharge currents.
- the liquid filler used in this example was octane and filler was applied to the porous substrate using a saturation method similar to a technique described above. 13Og of Vulcan carbon powder was placed in a metal sieve, the sieve mesh being small enough to support the carbon powder without loss of material through the sieve.
- This sieve was then placed in a glass dessicator, suspended above several grams of dessicant material.
- the vessel was then evacuated by use of a normal mechanical roughing pump; the vessel was purged of gas by this method for several minutes.
- the carbon powder was allowed to sit in the evacuated vessel overnight, for roughly 16 hours.
- the dessicator was then opened in a dry atmosphere and the sieve containing the carbon removed.
- the dessicant was replaced with 7Og of octane at room temperature and a magnetic stir bar was placed in the bottom of the vessel.
- the carbon in the sieve was replaced in the dessicator and the vessel was again evacuated using a mechanical roughing pump for several minutes.
- the vessel was evacuated it was placed on a magnetic stir/heat plate and the octane agitated at the slowest setting. The carbons were then left to absorb the octane from the atmosphere for two days. On the third day the heating element in the stir/heat plate was turned on and the temperature of the vessel was raised to 80°C to increase the rate of octane absorption from the vapor. Once there was no liquid visible in the bottom of the dessicator the carbons were removed and promptly used to prepare the cathode slurry.
- the octane filled carbons were mixed with a solution of 2156.3g of solvent containing 47.5 wt% water, 34.4g of PVOH, and 178.8g of sulfur that had been milled for 25 minutes. Once the carbons were mixed with this solution they were milled together for an additional 5 minutes to make a 13.75% solid slurry. This slurry was coated onto a substrate using and atmospheric slot die coater and then dried using IR ovens near 100°C for approximately 3 minutes. The resulting dry cathode contained 52 wt% Sulfur, 38 wt% Vulcan carbon and 10 wt% PVOH. The loading of the cathode was 1.85 mg/cm 2 . Control cathodes were prepared as above except using Vulcan carbons as they were received from the material supplier. The slurry prepared for the control cathodes underwent all of the same milling, mixing, and coating procedures as described above.
- Electrochemical cells were fabricated using both cathodes described above facing 3 mil Li foil, and employing 9 ⁇ m Tonen separator. Some electrochemical cells were prepared with a liquid filler and some were prepared without a liquid filler.
- DOL Dioxolane
- DME Dimethoxyethane
- FIG. 7 shows a plot of the average specific capacity as a function of cycle number for the cells prepared using octane as liquid filler, at a discharge current of (a) 500 mA (Group 1), (b) 2.2 A (Group 2), and (c) 4.4 A (Group 3), and for the groups of cells prepared without octane as liquid filler, at a discharge current of (d) 500 mA (Group 4), (e) 2.2 A (Group 5), and (f) 4.4 A (Group 6).
- Cells fabricated with cathode prepared using a liquid filler system applied to the porous substrate had 1087, 1005, and 920 mAh/g SU
- Cells fabricated from a cathode prepared without a liquid filler system applied to the porous substrate had 1089, 929, and 717 mAh/g SU
- FIG. 7 cells prepared using octane as a liquid filler exhibited improved performance at elevated discharge currents relative to essentially identical cells prepared without a liquid filler.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09700611.8A EP2240973B1 (en) | 2008-01-08 | 2009-01-08 | Porous electrodes and associated methods |
CN200980104676.2A CN101939862B (en) | 2008-01-08 | 2009-01-08 | Porous electrodes and associated methods |
JP2010541565A JP5619622B2 (en) | 2008-01-08 | 2009-01-08 | Porous electrodes and related methods |
US12/811,576 US9034421B2 (en) | 2008-01-08 | 2009-01-08 | Method of forming electrodes comprising sulfur and porous material comprising carbon |
US13/240,113 US20120070746A1 (en) | 2007-09-21 | 2011-09-22 | Low electrolyte electrochemical cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1033008P | 2008-01-08 | 2008-01-08 | |
US61/010,330 | 2008-01-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/535,328 Continuation-In-Part US9105938B2 (en) | 2007-09-21 | 2009-08-04 | Application of force in electrochemical cells |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/679,371 Continuation-In-Part US20110006738A1 (en) | 2007-09-21 | 2008-09-19 | Electrolyte additives for lithium batteries and related methods |
PCT/US2008/010894 Continuation-In-Part WO2009042071A2 (en) | 2007-09-21 | 2008-09-19 | Electrolyte additives for lithium batteries and related methods |
US12/811,576 A-371-Of-International US9034421B2 (en) | 2008-01-08 | 2009-01-08 | Method of forming electrodes comprising sulfur and porous material comprising carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009089018A2 true WO2009089018A2 (en) | 2009-07-16 |
WO2009089018A3 WO2009089018A3 (en) | 2009-10-08 |
Family
ID=40853699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/000090 WO2009089018A2 (en) | 2007-09-21 | 2009-01-08 | Porous electrodes and associated methods |
Country Status (6)
Country | Link |
---|---|
US (1) | US9034421B2 (en) |
EP (1) | EP2240973B1 (en) |
JP (1) | JP5619622B2 (en) |
KR (1) | KR101601992B1 (en) |
CN (1) | CN101939862B (en) |
WO (1) | WO2009089018A2 (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011028251A2 (en) | 2009-08-24 | 2011-03-10 | Sion Power Corporation | Release system for electrochemical cells |
WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
JP2013503439A (en) * | 2009-08-28 | 2013-01-31 | シオン・パワー・コーポレーション | Electrochemical cell having a sulfur-containing porous structure |
US8632915B2 (en) | 2010-04-26 | 2014-01-21 | Battelle Memorial Institute | Nanocomposite protective coatings for battery anodes |
JP2014506389A (en) * | 2011-01-14 | 2014-03-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Cathode composition |
WO2014142953A1 (en) | 2013-03-15 | 2014-09-18 | Sion Power Corporation | Protective structures for electrodes |
US8936870B2 (en) | 2011-10-13 | 2015-01-20 | Sion Power Corporation | Electrode structure and method for making the same |
US9034421B2 (en) | 2008-01-08 | 2015-05-19 | Sion Power Corporation | Method of forming electrodes comprising sulfur and porous material comprising carbon |
US9077041B2 (en) | 2012-02-14 | 2015-07-07 | Sion Power Corporation | Electrode structure for electrochemical cell |
US9214678B2 (en) | 2012-03-09 | 2015-12-15 | Sion Power Corporation | Porous support structures, electrodes containing same, and associated methods |
US9490478B2 (en) | 2013-03-05 | 2016-11-08 | Sion Power Corporation | Electrochemical cells comprising fibril materials |
US9531009B2 (en) | 2013-01-08 | 2016-12-27 | Sion Power Corporation | Passivation of electrodes in electrochemical cells |
US9548489B2 (en) | 2012-01-30 | 2017-01-17 | Nexeon Ltd. | Composition of SI/C electro active material |
US9559348B2 (en) | 2013-01-08 | 2017-01-31 | Sion Power Corporation | Conductivity control in electrochemical cells |
US9577267B2 (en) | 2012-12-19 | 2017-02-21 | Sion Power Corporation | Electrode structure and method for making same |
US9728768B2 (en) | 2013-03-15 | 2017-08-08 | Sion Power Corporation | Protected electrode structures and methods |
US9994960B2 (en) | 2013-07-03 | 2018-06-12 | Sion Power Corporation | Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries |
US10008716B2 (en) | 2012-11-02 | 2018-06-26 | Nexeon Limited | Device and method of forming a device |
US10020479B2 (en) | 2013-08-08 | 2018-07-10 | Sion Power Corporation | Self-healing electrode protection in electrochemical cells |
US10077506B2 (en) | 2011-06-24 | 2018-09-18 | Nexeon Limited | Structured particles |
US10090513B2 (en) | 2012-06-01 | 2018-10-02 | Nexeon Limited | Method of forming silicon |
EP2820703B1 (en) * | 2012-02-28 | 2018-12-26 | Nexeon Limited | Use of a removeable filler during manufacture of a composite electrode |
US10312545B2 (en) | 2008-08-05 | 2019-06-04 | Sion Power Corporation | Application of force in electrochemical cells |
US10319988B2 (en) | 2014-05-01 | 2019-06-11 | Sion Power Corporation | Electrode fabrication methods and associated systems and articles |
US10396355B2 (en) | 2014-04-09 | 2019-08-27 | Nexeon Ltd. | Negative electrode active material for secondary battery and method for manufacturing same |
US10476072B2 (en) | 2014-12-12 | 2019-11-12 | Nexeon Limited | Electrodes for metal-ion batteries |
US10490796B2 (en) | 2014-02-19 | 2019-11-26 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
WO2020028485A1 (en) | 2018-07-31 | 2020-02-06 | Sion Power Corporation | Multiplexed charge discharge battery management system |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
US10862105B2 (en) | 2013-03-15 | 2020-12-08 | Sion Power Corporation | Protected electrode structures |
WO2021086377A1 (en) | 2019-10-31 | 2021-05-06 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
WO2021127385A1 (en) | 2019-12-20 | 2021-06-24 | Sion Power Corporation | Systems and methods for protecting a circuit, rechargeable electrochemical cell, or battery |
WO2021127371A1 (en) | 2019-12-20 | 2021-06-24 | Sion Power Corporation | Systems and methods for providing, assembling, and managing integrated power bus for rechargeable electrochemical cell or battery |
WO2022051308A1 (en) | 2020-09-01 | 2022-03-10 | Sion Power Corporation | Multiplexed battery management system |
US11322804B2 (en) | 2018-12-27 | 2022-05-03 | Sion Power Corporation | Isolatable electrodes and associated articles and methods |
US11637353B2 (en) | 2018-12-27 | 2023-04-25 | Sion Power Corporation | Electrodes, heaters, sensors, and associated articles and methods |
US11791511B2 (en) | 2019-11-19 | 2023-10-17 | Sion Power Corporation | Thermally insulating compressible components for battery packs |
US11824228B2 (en) | 2019-11-19 | 2023-11-21 | Sion Power Corporation | Compression systems for batteries |
US11826861B1 (en) | 2020-08-12 | 2023-11-28 | Sion Power Corporation | Joining systems, clamping fixtures, and related systems and methods |
US11923495B2 (en) | 2020-03-13 | 2024-03-05 | Sion Power Corporation | Application of pressure to electrochemical devices including deformable solids, and related systems |
US11978917B2 (en) | 2019-11-19 | 2024-05-07 | Sion Power Corporation | Batteries with components including carbon fiber, and associated systems and methods |
US11984575B2 (en) | 2019-11-19 | 2024-05-14 | Sion Power Corporation | Battery alignment, and associated systems and methods |
US12087941B2 (en) | 2019-01-16 | 2024-09-10 | Lg Energy Solution, Ltd. | Lithium secondary battery |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100239914A1 (en) * | 2009-03-19 | 2010-09-23 | Sion Power Corporation | Cathode for lithium battery |
JP5169395B2 (en) * | 2008-04-07 | 2013-03-27 | トヨタ自動車株式会社 | Coating apparatus and coating method |
US20110206992A1 (en) * | 2009-08-28 | 2011-08-25 | Sion Power Corporation | Porous structures for energy storage devices |
EP2609646A1 (en) | 2010-08-24 | 2013-07-03 | Basf Se | Electrolyte materials for use in electrochemical cells |
KR101109747B1 (en) * | 2011-04-06 | 2012-02-15 | (주)신행건설 | Method of preparation of activated carbon and method of prepartion of electrode thin-plate activated carbon film for simultaneous gas and dust removal in air polluion and electrode thin-plate preparaed by the method |
KR101865944B1 (en) * | 2012-05-16 | 2018-06-08 | 현대자동차주식회사 | Smart composite for controlling heat conductivity |
US9577289B2 (en) | 2012-12-17 | 2017-02-21 | Sion Power Corporation | Lithium-ion electrochemical cell, components thereof, and methods of making and using same |
CN103424456B (en) * | 2013-07-23 | 2018-08-10 | 华瑞科学仪器(上海)有限公司 | A kind of three-electrode electrochemical sensor |
US9577250B2 (en) * | 2014-02-11 | 2017-02-21 | Battelle Memorial Institute | Thick electrodes including nanoparticles having electroactive materials and methods of making same |
KR101604352B1 (en) | 2014-04-22 | 2016-03-18 | (주)오렌지파워 | Negative electrode active material and rechargeable battery having the same |
EP3192112A4 (en) | 2014-09-09 | 2018-04-11 | Sion Power Corporation | Protective layers in lithium-ion electrochemical cells and associated electrodes and methods |
US10538839B2 (en) * | 2014-09-15 | 2020-01-21 | Korea Institute Of Industrial Technology | Method for manufacturing metal or metal oxide porous thin films having a three-dimensional open network structure through pore size adjustment in a dry process, and films manufactured by said method |
US11557753B2 (en) | 2014-10-23 | 2023-01-17 | Sion Power Corporation | Ion-conductive composite for electrochemical cells |
US10461321B2 (en) | 2015-02-18 | 2019-10-29 | Nanotek Instruments, Inc. | Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process |
US11258059B2 (en) * | 2015-02-18 | 2022-02-22 | Global Graphene Group, Inc. | Pre-sulfurized cathode for alkali metal-sulfur secondary battery and production process |
JP6932083B2 (en) | 2015-05-21 | 2021-09-08 | ビーエイエスエフ・ソシエタス・エウロパエアBasf Se | Glass-ceramic electrolyte for lithium-sulfur batteries |
CN105070892B (en) * | 2015-09-22 | 2018-03-06 | 中国科学院化学研究所 | A kind of preparation method and application of selenium carbon complex |
US10734638B2 (en) | 2015-09-22 | 2020-08-04 | Ii-Vi Delaware, Inc. | Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery |
US11784303B2 (en) | 2015-09-22 | 2023-10-10 | Ii-Vi Delaware, Inc. | Immobilized chalcogen and use thereof in a rechargeable battery |
US11588149B2 (en) | 2015-09-22 | 2023-02-21 | Ii-Vi Delaware, Inc. | Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery |
JP7061065B2 (en) | 2015-11-13 | 2022-04-27 | シオン・パワー・コーポレーション | Additives for electrochemical cells |
CN117558971A (en) | 2015-11-24 | 2024-02-13 | 锡安能量公司 | Ion-conducting compounds and related uses thereof |
US10707535B2 (en) * | 2016-01-15 | 2020-07-07 | Global Graphene Group, Inc. | Production process for alkali metal-sulfur batteries having high volumetric and gravimetric energy densities |
US11018385B2 (en) * | 2016-01-20 | 2021-05-25 | Cornell University | Multi-domained sulfur electrodes, and manufacturing therefor |
US11171324B2 (en) | 2016-03-15 | 2021-11-09 | Honda Motor Co., Ltd. | System and method of producing a composite product |
US11383213B2 (en) | 2016-03-15 | 2022-07-12 | Honda Motor Co., Ltd. | System and method of producing a composite product |
WO2017216558A1 (en) | 2016-06-14 | 2017-12-21 | Nexeon Limited | Electrodes for metal-ion batteries |
EP3472173B1 (en) | 2016-06-21 | 2021-10-27 | Sion Power Corporation | Coatings for components of electrochemical cells |
KR102006727B1 (en) | 2016-11-02 | 2019-08-02 | 주식회사 엘지화학 | Sulfur-carbon composite and lithium-sulfur battery including the same |
WO2018116295A1 (en) * | 2016-12-19 | 2018-06-28 | StoreDot Ltd. | Layer preparation, treatment, transfer and lamination in cell stack assembly processes for lithium ion batteries |
US10033023B2 (en) | 2016-12-19 | 2018-07-24 | StoreDot Ltd. | Surface activation in electrode stack production and electrode-preparation systems and methods |
US9966591B1 (en) | 2016-12-19 | 2018-05-08 | StoreDot Ltd. | Electrode stack production methods |
US11183690B2 (en) | 2016-12-23 | 2021-11-23 | Sion Power Corporation | Protective layers comprising metals for electrochemical cells |
US11870059B2 (en) | 2017-02-16 | 2024-01-09 | Consejo Superior De Investigaciones Cientificas (Csic) | Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery |
US11024923B2 (en) | 2017-03-09 | 2021-06-01 | Sion Power Corporation | Electrochemical cells comprising short-circuit resistant electronically insulating regions |
WO2018170413A1 (en) | 2017-03-17 | 2018-09-20 | Sion Power Corporation | Electrode edge protection in electrochemical cells |
JP7210475B2 (en) | 2017-05-19 | 2023-01-23 | シオン・パワー・コーポレーション | Electrochemical cell passivator |
US10868306B2 (en) | 2017-05-19 | 2020-12-15 | Sion Power Corporation | Passivating agents for electrochemical cells |
WO2018218057A2 (en) | 2017-05-24 | 2018-11-29 | Sion Power Corporation | Ionically conductive compounds and related uses |
US11081684B2 (en) | 2017-05-24 | 2021-08-03 | Honda Motor Co., Ltd. | Production of carbon nanotube modified battery electrode powders via single step dispersion |
CN110710048B (en) * | 2017-06-09 | 2023-03-07 | 赛昂能源有限公司 | In-situ current collector |
US20190036102A1 (en) | 2017-07-31 | 2019-01-31 | Honda Motor Co., Ltd. | Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive |
US10658651B2 (en) | 2017-07-31 | 2020-05-19 | Honda Motor Co., Ltd. | Self standing electrodes and methods for making thereof |
US11201318B2 (en) | 2017-09-15 | 2021-12-14 | Honda Motor Co., Ltd. | Method for battery tab attachment to a self-standing electrode |
CN111279526A (en) | 2017-09-15 | 2020-06-12 | 赛昂能源有限公司 | Protective film for electrochemical cell |
US11121358B2 (en) | 2017-09-15 | 2021-09-14 | Honda Motor Co., Ltd. | Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder |
US11555799B2 (en) | 2018-01-04 | 2023-01-17 | Lyten, Inc. | Multi-part nontoxic printed batteries |
TWI782162B (en) * | 2018-01-16 | 2022-11-01 | 德商巴斯夫歐洲公司 | Process for the production of moldings made of porous material impregnated with polysulfide |
CN112219294A (en) | 2018-04-30 | 2021-01-12 | 利腾股份有限公司 | Lithium ion battery and battery material |
WO2020139802A2 (en) | 2018-12-27 | 2020-07-02 | Sion Power Corporation | Electrochemical devices and related articles, components, configurations, and methods |
US11535517B2 (en) | 2019-01-24 | 2022-12-27 | Honda Motor Co., Ltd. | Method of making self-standing electrodes supported by carbon nanostructured filaments |
US11352258B2 (en) | 2019-03-04 | 2022-06-07 | Honda Motor Co., Ltd. | Multifunctional conductive wire and method of making |
US11325833B2 (en) | 2019-03-04 | 2022-05-10 | Honda Motor Co., Ltd. | Composite yarn and method of making a carbon nanotube composite yarn |
US11710828B2 (en) | 2019-05-22 | 2023-07-25 | Sion Power Corporation | Electrochemical devices including porous layers |
CN114008851A (en) | 2019-05-22 | 2022-02-01 | 赛昂能源有限公司 | Electrically coupled electrodes and related articles and methods |
WO2021002703A1 (en) * | 2019-07-02 | 2021-01-07 | 주식회사 엘지화학 | Sulfur-carbon composite, positive electrode for lithium secondary battery including same, and lithium secondary battery |
US11539042B2 (en) * | 2019-07-19 | 2022-12-27 | Honda Motor Co., Ltd. | Flexible packaging with embedded electrode and method of making |
US11299397B2 (en) | 2019-07-30 | 2022-04-12 | Lyten, Inc. | 3D self-assembled multi-modal carbon-based particles integrated into a continuous electrode film layer |
US11335911B2 (en) | 2019-08-23 | 2022-05-17 | Lyten, Inc. | Expansion-tolerant three-dimensional (3D) carbon-based structures incorporated into lithium sulfur (Li S) battery electrodes |
US11127941B2 (en) | 2019-10-25 | 2021-09-21 | Lyten, Inc. | Carbon-based structures for incorporation into lithium (Li) ion battery electrodes |
US11398622B2 (en) | 2019-10-25 | 2022-07-26 | Lyten, Inc. | Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery |
US11539074B2 (en) | 2019-10-25 | 2022-12-27 | Lyten, Inc. | Artificial solid electrolyte interface (A-SEI) cap layer including graphene layers with flexible wrinkle areas |
US11342561B2 (en) | 2019-10-25 | 2022-05-24 | Lyten, Inc. | Protective polymeric lattices for lithium anodes in lithium-sulfur batteries |
US11133495B2 (en) | 2019-10-25 | 2021-09-28 | Lyten, Inc. | Advanced lithium (LI) ion and lithium sulfur (LI S) batteries |
US11127942B2 (en) | 2019-10-25 | 2021-09-21 | Lyten, Inc. | Systems and methods of manufacture of carbon based structures incorporated into lithium ion and lithium sulfur (li s) battery electrodes |
US11631893B2 (en) | 2019-10-25 | 2023-04-18 | Lyten, Inc. | Artificial solid electrolyte interface cap layer for an anode in a Li S battery system |
US11508966B2 (en) | 2019-10-25 | 2022-11-22 | Lyten, Inc. | Protective carbon layer for lithium (Li) metal anodes |
US11056728B2 (en) | 2019-10-31 | 2021-07-06 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
US11424492B2 (en) | 2019-10-31 | 2022-08-23 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
US20210193984A1 (en) | 2019-12-20 | 2021-06-24 | Sion Power Corporation | Systems and methods for fabricating lithium metal electrodes |
US11901580B2 (en) | 2020-01-10 | 2024-02-13 | Lyten, Inc. | Selectively activated metal-air battery |
JP2023538829A (en) | 2020-08-03 | 2023-09-12 | シオン・パワー・コーポレーション | Electrochemical cell clamp and related methods |
JP2023540504A (en) | 2020-09-04 | 2023-09-25 | シオン・パワー・コーポレーション | conductive release layer |
US11705554B2 (en) | 2020-10-09 | 2023-07-18 | Sion Power Corporation | Electrochemical cells and/or components thereof comprising nitrogen-containing species, and methods of forming them |
CN116438676A (en) | 2020-10-14 | 2023-07-14 | 赛昂能源有限公司 | Electrolyte for reducing gas production |
US11367895B1 (en) | 2021-07-23 | 2022-06-21 | Lyten, Inc. | Solid-state electrolyte for lithium-sulfur batteries |
US11404692B1 (en) | 2021-07-23 | 2022-08-02 | Lyten, Inc. | Lithium-sulfur battery cathode formed from multiple carbonaceous regions |
US11735745B2 (en) | 2021-06-16 | 2023-08-22 | Lyten, Inc. | Lithium-air battery |
US12009470B2 (en) | 2021-07-23 | 2024-06-11 | Lyten, Inc. | Cylindrical lithium-sulfur batteries |
US11600876B2 (en) | 2021-07-23 | 2023-03-07 | Lyten, Inc. | Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials |
US11670826B2 (en) | 2021-07-23 | 2023-06-06 | Lyten, Inc. | Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries |
CN115312777A (en) * | 2022-09-07 | 2022-11-08 | 湖北亿纬动力有限公司 | Low-tortuosity thick electrode and preparation method and application thereof |
US11870063B1 (en) | 2022-10-24 | 2024-01-09 | Lyten, Inc. | Dual layer gradient cathode electrode structure for reducing sulfide transfer |
Family Cites Families (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE634204A (en) | 1962-06-27 | 1900-01-01 | ||
US3716409A (en) | 1971-09-08 | 1973-02-13 | Atomic Energy Commission | Cathodes for secondary electrochemical power-producing cells |
BE793984A (en) | 1972-01-14 | 1973-05-02 | Foseco Int | NEW MANUFACTURING OF POROUS CERAMIC PRODUCTS |
US3833421A (en) | 1972-12-27 | 1974-09-03 | Atomic Energy Commission | Secondary electrochemical cells with a chalcogen cathode |
GB1396062A (en) | 1973-07-12 | 1975-05-29 | Comp Generale Electricite | Rechargeable solid state electro-chemical cell having a lithium anode and a method of manufacturing the same |
US3859139A (en) * | 1974-01-11 | 1975-01-07 | United Aircraft Corp | Novel composite fuel cell electrode |
US3951689A (en) | 1975-08-20 | 1976-04-20 | Ford Motor Company | Alkali metal/sulfur cell with gas fuel cell electrode |
US4011374A (en) * | 1975-12-02 | 1977-03-08 | The United States Of America As Represented By The United States Energy Research And Development Administration | Porous carbonaceous electrode structure and method for secondary electrochemical cell |
JPS5289341A (en) | 1976-01-20 | 1977-07-26 | Sharp Corp | Indication device |
US4184013A (en) | 1976-07-24 | 1980-01-15 | Brown, Boveri & Cie Ag | Electrochemical storage cell |
US4169120A (en) | 1976-12-15 | 1979-09-25 | Great Lakes Carbon Corporation | Sulfur electrode for sodium-sulfur batteries |
IL61085A (en) | 1980-09-19 | 1983-07-31 | Univ Ramot | Nonaqueous sulfur cell |
US4339325A (en) * | 1980-10-31 | 1982-07-13 | Diamond Shamrock Corporation | One pass process for forming electrode backing sheet |
US4337140A (en) * | 1980-10-31 | 1982-06-29 | Diamond Shamrock Corporation | Strengthening of carbon black-teflon-containing electrodes |
US4720400A (en) | 1983-03-18 | 1988-01-19 | W. L. Gore & Associates, Inc. | Microporous metal-plated polytetrafluoroethylene articles and method of manufacture |
US4624902A (en) | 1983-06-27 | 1986-11-25 | Voltaix, Incorporated | Coatings for electrochemical electrodes and methods of making the same |
WO1985001293A1 (en) | 1983-09-20 | 1985-03-28 | Societe Nationale Elf Aquitaine | New derivatives of polycarbone sulfides, preparation and applications thereof, particularly in electrochemistry |
US4556618A (en) * | 1983-12-01 | 1985-12-03 | Allied Corporation | Battery electrode and method of making |
FR2570882B1 (en) | 1984-09-21 | 1986-12-05 | Comp Generale Electricite | POSITIVE ACTIVE MATERIAL BASED ON AN ELECTRONIC CONDUCTIVE POLYMER FOR AN ELECTROCHEMICAL GENERATOR |
US4677415A (en) | 1985-05-08 | 1987-06-30 | Motorola, Inc. | Ceramic humidity sensor |
US4689544A (en) | 1985-10-17 | 1987-08-25 | Hughes Aircraft Company | Control of the charging of pressurized gas-metal electrical storage cells |
DE3615240A1 (en) | 1986-05-06 | 1987-11-12 | Bbc Brown Boveri & Cie | ELECTROCHEMICAL STORAGE CELL |
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
USH858H (en) | 1988-10-24 | 1990-12-04 | The United States Of America As Represented By The Secretary Of The Air Force | Electrical battery cell wicking structure and method |
US5126082A (en) | 1988-11-30 | 1992-06-30 | Howmet Corporation | Method of making ceramic cores and other articles |
US4917974A (en) | 1989-04-14 | 1990-04-17 | The United States Of America As Represented By The Department Of Energy | Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same |
US5162175A (en) | 1989-10-13 | 1992-11-10 | Visco Steven J | Cell for making secondary batteries |
US5324599A (en) | 1991-01-29 | 1994-06-28 | Matsushita Electric Industrial Co., Ltd. | Reversible electrode material |
US5328946A (en) * | 1991-08-29 | 1994-07-12 | E. I. Du Pont De Nemours And Company | Solvents for tetrafluoroethylene polymers |
US5194341A (en) | 1991-12-03 | 1993-03-16 | Bell Communications Research, Inc. | Silica electrolyte element for secondary lithium battery |
US5895732A (en) | 1992-04-24 | 1999-04-20 | Ensci, Inc. | Battery element containing macroporous additives |
JPH05325978A (en) | 1992-05-20 | 1993-12-10 | Shin Kobe Electric Mach Co Ltd | Nickel sintered substrate and manufacture thereof for alkaline storage battery |
US5441831A (en) | 1992-12-17 | 1995-08-15 | Associated Universities, Inc. | Cells having cathodes containing polycarbon disulfide materials |
US5433917A (en) | 1993-09-16 | 1995-07-18 | The Penn State Research Foundation | PZT ceramic compositions having reduced sintering temperatures and process for producing same |
US5538812A (en) | 1994-02-04 | 1996-07-23 | Moltech Corporation | Electrolyte materials containing highly dissociated metal ion salts |
US5961672A (en) | 1994-02-16 | 1999-10-05 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US5648187A (en) | 1994-02-16 | 1997-07-15 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US5516598A (en) | 1994-07-28 | 1996-05-14 | Polyplus Battery Company, Inc. | Secondary cell using organosulfur/metal charge transfer materials as positive electrode |
JP3717085B2 (en) | 1994-10-21 | 2005-11-16 | キヤノン株式会社 | Negative electrode for secondary battery, secondary battery having the negative electrode, and method for producing electrode |
US5814420A (en) | 1994-11-23 | 1998-09-29 | Polyplus Battery Company, Inc. | Rechargeable positive electrodes |
US5686201A (en) | 1994-11-23 | 1997-11-11 | Polyplus Battery Company, Inc. | Rechargeable positive electrodes |
US6030720A (en) | 1994-11-23 | 2000-02-29 | Polyplus Battery Co., Inc. | Liquid electrolyte lithium-sulfur batteries |
US6358643B1 (en) | 1994-11-23 | 2002-03-19 | Polyplus Battery Company | Liquid electrolyte lithium-sulfur batteries |
US5582623A (en) | 1994-11-23 | 1996-12-10 | Polyplus Battery Company, Inc. | Methods of fabricating rechargeable positive electrodes |
JPH08213026A (en) | 1994-11-28 | 1996-08-20 | Katayama Tokushu Kogyo Kk | Metallic porous body for battery electrode substrate, battery plate, and manufacture thereof |
US5723230A (en) | 1995-02-27 | 1998-03-03 | Yazaki Corporation | Oligosulfide type electrode material and secondary battery containing such electrode material |
US5529860A (en) | 1995-06-07 | 1996-06-25 | Moltech Corporation | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same |
US5601947A (en) | 1995-06-07 | 1997-02-11 | Moltech Corporation | Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same |
AU5882896A (en) | 1995-06-07 | 1996-12-30 | Moltech Corporation | Electroactive high storage capacity polyacetylene-co-polysul fur materials and electrolytic cells containing same |
US5643512A (en) | 1995-08-16 | 1997-07-01 | Northrop Grumman Corporation | Methods for producing ceramic foams using pre-ceramic resins combined with liquid phenolic resin |
US5792575A (en) | 1995-09-11 | 1998-08-11 | Yazaki Corporation | Lithium sulfur secondary battery and elecrode material for a non-aqueous battery |
JP3555097B2 (en) | 1995-09-28 | 2004-08-18 | 矢崎総業株式会社 | Electrode materials and secondary batteries |
JP3525403B2 (en) | 1995-09-28 | 2004-05-10 | 矢崎総業株式会社 | Electrode materials and secondary batteries |
JPH09147868A (en) | 1995-11-17 | 1997-06-06 | Yazaki Corp | Sulfide secondary battery and activated carbon fiber for electrode material |
DE19611510A1 (en) | 1996-03-23 | 1997-09-25 | Degussa | Gas diffusion electrode for membrane fuel cells and process for their manufacture |
JP2000511342A (en) | 1996-05-22 | 2000-08-29 | モルテック コーポレイション | Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them |
US6168886B1 (en) | 1996-07-02 | 2001-01-02 | Ensci Inc | Battery element containing metal macroporous additives |
US6403261B2 (en) | 1996-07-31 | 2002-06-11 | Valentin Nikolaevich Mitkin | Carbon-containing material and a method of making porous electrodes for chemical sources of electric current |
US6395367B1 (en) * | 1996-12-30 | 2002-05-28 | Hydro-Quebec | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US6171723B1 (en) | 1997-10-10 | 2001-01-09 | 3M Innovative Properties Company | Batteries with porous components |
JP4095145B2 (en) * | 1997-12-09 | 2008-06-04 | Tdk株式会社 | Electrode manufacturing method |
US6201100B1 (en) | 1997-12-19 | 2001-03-13 | Moltech Corporation | Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same |
US6194099B1 (en) | 1997-12-19 | 2001-02-27 | Moltech Corporation | Electrochemical cells with carbon nanofibers and electroactive sulfur compounds |
US6110619A (en) * | 1997-12-19 | 2000-08-29 | Moltech Corporation | Electrochemical cells with cationic polymers and electroactive sulfur compounds |
US6153337A (en) | 1997-12-19 | 2000-11-28 | Moltech Corporation | Separators for electrochemical cells |
US6528211B1 (en) | 1998-03-31 | 2003-03-04 | Showa Denko K.K. | Carbon fiber material and electrode materials for batteries |
JP3403090B2 (en) | 1998-09-18 | 2003-05-06 | キヤノン株式会社 | Metal oxide having a porous structure, electrode structure, secondary battery, and method for producing these |
US6110621A (en) | 1998-11-24 | 2000-08-29 | The University Of Chicago | Carbons for lithium batteries prepared using sepiolite as an inorganic template |
US6302928B1 (en) * | 1998-12-17 | 2001-10-16 | Moltech Corporation | Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers |
US6168694B1 (en) | 1999-02-04 | 2001-01-02 | Chemat Technology, Inc. | Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications |
US6680013B1 (en) | 1999-04-15 | 2004-01-20 | Regents Of The University Of Minnesota | Synthesis of macroporous structures |
JP3940546B2 (en) | 1999-06-07 | 2007-07-04 | 株式会社東芝 | Pattern forming method and pattern forming material |
JP2001093577A (en) | 1999-09-20 | 2001-04-06 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
WO2001036206A1 (en) * | 1999-11-12 | 2001-05-25 | Fargo Electronics, Inc. | Thermal printhead compensation |
US20070221265A1 (en) | 2006-03-22 | 2007-09-27 | Sion Power Corporation | Rechargeable lithium/water, lithium/air batteries |
US7247408B2 (en) | 1999-11-23 | 2007-07-24 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US6528033B1 (en) | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
US7001690B2 (en) | 2000-01-18 | 2006-02-21 | Valence Technology, Inc. | Lithium-based active materials and preparation thereof |
JP2001345106A (en) * | 2000-03-31 | 2001-12-14 | Japan Storage Battery Co Ltd | Electrode for fuel cell and manufacturing method |
WO2001089991A1 (en) | 2000-05-24 | 2001-11-29 | Finecell Co., Ltd. | Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them |
EP1164651A1 (en) * | 2000-06-12 | 2001-12-19 | Asahi Glass Co., Ltd. | Electrode catalyst for polymer electrolyte fuel cell and method for its production |
CN1901255B (en) * | 2000-10-20 | 2013-11-06 | 麻省理工学院 | Reticulated and controlled porosity battery structures |
KR100378007B1 (en) * | 2000-11-22 | 2003-03-29 | 삼성에스디아이 주식회사 | Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same |
KR100385357B1 (en) | 2001-06-01 | 2003-05-27 | 삼성에스디아이 주식회사 | Lithium-sulfur battery |
US6753036B2 (en) | 2001-07-16 | 2004-06-22 | The Regents Of The University Of California | Method for fabrication of electrodes |
AU2002330924A1 (en) | 2001-07-27 | 2003-02-17 | A 123 Systems | Battery structures, self-organizing structures and related methods |
KR100396492B1 (en) | 2001-10-17 | 2003-09-02 | 삼성에스디아이 주식회사 | Positive active material for lithium-sulfur battery and method of preparing positive active material composition comprising same |
US7005214B2 (en) | 2001-11-02 | 2006-02-28 | Wilson Greatbatch Technologies, Inc. | Noble metals coated on titanium current collectors for use in nonaqueous Li/CFx cells |
US20030108785A1 (en) | 2001-12-10 | 2003-06-12 | Wu L. W. | Meso-porous carbon and hybrid electrodes and method for producing the same |
US20030113622A1 (en) * | 2001-12-14 | 2003-06-19 | Blasi Jane A. | Electrolyte additive for non-aqueous electrochemical cells |
KR100436712B1 (en) | 2001-12-19 | 2004-06-22 | 삼성에스디아이 주식회사 | Cathode electrode, method for manufacturing the same, and lithium battery containing the same |
CA2367290A1 (en) * | 2002-01-16 | 2003-07-16 | Hydro Quebec | High stability polymer electrolyte > 4 volts as electrolyte for a hybrid supercondenser and electrochemical generator |
JP3897709B2 (en) | 2002-02-07 | 2007-03-28 | 日立マクセル株式会社 | Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US6849360B2 (en) | 2002-06-05 | 2005-02-01 | Eveready Battery Company, Inc. | Nonaqueous electrochemical cell with improved energy density |
US6913998B2 (en) | 2002-07-01 | 2005-07-05 | The Regents Of The University Of California | Vapor-deposited porous films for energy conversion |
AU2003246253B8 (en) * | 2002-07-30 | 2010-01-07 | Honda Giken Kogyo Kabushiki Kaisha | Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor |
US6915838B2 (en) | 2002-08-21 | 2005-07-12 | Pel Technologies Llc | Cast ceramic anode for metal oxide electrolytic reduction |
KR100484642B1 (en) | 2002-09-23 | 2005-04-20 | 삼성에스디아이 주식회사 | Positive active material for lithium-sulfur battery and method for preparing the same |
US20060121080A1 (en) | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
US7001669B2 (en) | 2002-12-23 | 2006-02-21 | The Administration Of The Tulane Educational Fund | Process for the preparation of metal-containing nanostructured films |
US8137525B1 (en) | 2003-01-13 | 2012-03-20 | The Regents Of The University Of California | Colloidal sphere templates and sphere-templated porous materials |
FR2850301B1 (en) | 2003-01-23 | 2007-10-19 | Commissariat Energie Atomique | ORGANIC-INORGANIC HYBRID MATERIAL COMPRISING A MESOPOROUS MINERAL PHASE AND AN ORGANIC PHASE, MEMBRANE AND FUEL CELL |
JP4389535B2 (en) | 2003-09-26 | 2009-12-24 | 東レ株式会社 | Porous carbon substrate, gas diffuser using the substrate, membrane-electrode assembly, and fuel cell |
TWI288495B (en) | 2003-03-27 | 2007-10-11 | Nec Tokin Corp | Electrode and electrochemical cell therewith |
US7189477B2 (en) | 2003-04-10 | 2007-03-13 | Sion Power Corporation | Low temperature electrochemical cells |
US20050158535A1 (en) | 2003-05-15 | 2005-07-21 | Miqin Zhang | Methods for making porous ceramic structures |
KR100612227B1 (en) | 2003-05-22 | 2006-08-11 | 삼성에스디아이 주식회사 | Positive electrode for lithium sulfur battery and lithium sulfur battery comprising same |
US7261966B2 (en) * | 2003-06-30 | 2007-08-28 | Zongshen Pem Power Systems Inc. | Apparatus and method for conducting fluid in a fuel cell and fuel cell employing same |
JP4407211B2 (en) | 2003-09-02 | 2010-02-03 | 日産自動車株式会社 | Nonaqueous electrolyte secondary battery |
US7019494B2 (en) | 2004-01-06 | 2006-03-28 | Moltech Corporation | Methods of charging lithium sulfur cells |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
US7316868B2 (en) | 2004-02-11 | 2008-01-08 | Sion Power Corporation | Electrolytes for lithium-sulfur electrochemical cells |
US7695843B2 (en) * | 2004-02-13 | 2010-04-13 | Microcell Corporation | Microfibrous fuel cell assemblies comprising fiber-supported electrocatalyst layers, and methods of making same |
JP2005251429A (en) | 2004-03-01 | 2005-09-15 | Mitsui Mining & Smelting Co Ltd | METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY |
JP2005310836A (en) | 2004-04-16 | 2005-11-04 | Kaneka Corp | Electrode for electrochemical element and manufacturing method thereof |
US20060024579A1 (en) * | 2004-07-27 | 2006-02-02 | Vladimir Kolosnitsyn | Battery electrode structure and method for manufacture thereof |
US7063913B2 (en) * | 2004-08-25 | 2006-06-20 | General Motors Corporation | Diffusion media with microporous layer |
JP4452595B2 (en) * | 2004-09-22 | 2010-04-21 | アオイ電子株式会社 | Composite material containing sulfur and / or sulfur compound and method for producing the same |
JP4456448B2 (en) | 2004-09-22 | 2010-04-28 | アオイ電子株式会社 | Battery positive electrode material containing sulfur and / or sulfur compound having S—S bond and method for producing the same |
JP4351605B2 (en) * | 2004-09-22 | 2009-10-28 | アオイ電子株式会社 | Composite material containing sulfur and / or sulfur compound and method for producing the same |
US7688075B2 (en) | 2005-04-20 | 2010-03-30 | Sion Power Corporation | Lithium sulfur rechargeable battery fuel gauge systems and methods |
WO2007025152A1 (en) | 2005-08-24 | 2007-03-01 | Nanodynamics Inc. | Colloidal templating process for manufacture of highly porous ceramics |
GB0518139D0 (en) | 2005-09-06 | 2005-10-12 | Univ Cambridge Tech | Synthesis of rutile structure titanium oxide nanostructures |
US7534519B2 (en) | 2005-09-16 | 2009-05-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Symmetrical, bi-electrode supported solid oxide fuel cell |
JP4899396B2 (en) * | 2005-09-28 | 2012-03-21 | 住友ベークライト株式会社 | Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same |
KR100709222B1 (en) | 2006-02-20 | 2007-04-18 | 삼성에스디아이 주식회사 | Stack for mixed reactant fuel cell and mixed reactant fuel cell system comprising same |
JP5099299B2 (en) | 2006-02-28 | 2012-12-19 | 株式会社エクォス・リサーチ | Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery |
CN100452502C (en) | 2006-05-17 | 2009-01-14 | 福建南平南孚電池有限公司 | Non-aqueous solution lithium-ferrous disulfide primary cell |
KR101487862B1 (en) | 2006-10-25 | 2015-01-30 | 옥시스 에너지 리미티드 | A lithium-sulphur battery with a high specific energy and a method of operating same |
KR101422311B1 (en) | 2006-12-04 | 2014-07-22 | 시온 파워 코퍼레이션 | Separation of electrolytes |
US8084102B2 (en) | 2007-02-06 | 2011-12-27 | Sion Power Corporation | Methods for co-flash evaporation of polymerizable monomers and non-polymerizable carrier solvent/salt mixtures/solutions |
JP4779988B2 (en) | 2007-02-13 | 2011-09-28 | トヨタ自動車株式会社 | All-solid lithium secondary battery |
JP5157216B2 (en) * | 2007-03-29 | 2013-03-06 | Tdk株式会社 | Method for producing active material and active material |
US8237538B2 (en) | 2007-04-09 | 2012-08-07 | The Board Of Trustees Of The University Of Illinois | Porous battery electrode for a rechargeable battery and method of making the electrode |
US7872563B2 (en) | 2007-04-09 | 2011-01-18 | The Board Of Trustees Of The University Of Illinois | Variably porous structures |
US20090035664A1 (en) | 2007-05-25 | 2009-02-05 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
US20090202903A1 (en) | 2007-05-25 | 2009-08-13 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
US20080318128A1 (en) | 2007-06-22 | 2008-12-25 | Sion Power Corporation | Lithium alloy/sulfur batteries |
US20090035646A1 (en) | 2007-07-31 | 2009-02-05 | Sion Power Corporation | Swelling inhibition in batteries |
KR100949332B1 (en) | 2007-08-24 | 2010-03-26 | 삼성에스디아이 주식회사 | Electrode for rechargeable lithium battery and rechargeable lithium battery including same |
JP2009076260A (en) | 2007-09-19 | 2009-04-09 | Toyota Central R&D Labs Inc | Lithium-sulfur battery |
US20120070746A1 (en) | 2007-09-21 | 2012-03-22 | Sion Power Corporation | Low electrolyte electrochemical cells |
WO2009042071A2 (en) | 2007-09-21 | 2009-04-02 | Sion Power Corporation | Electrolyte additives for lithium batteries and related methods |
US20100239914A1 (en) | 2009-03-19 | 2010-09-23 | Sion Power Corporation | Cathode for lithium battery |
KR20090038309A (en) | 2007-10-15 | 2009-04-20 | 삼성전자주식회사 | Electrode for secondary battery, manufacturing method thereof, and secondary battery employing the same |
EP2212949B1 (en) | 2007-10-26 | 2016-12-07 | Sion Power Corporation | Primer for battery electrode |
EP2240973B1 (en) | 2008-01-08 | 2018-03-28 | Sion Power Corporation | Porous electrodes and associated methods |
US8264205B2 (en) | 2008-02-08 | 2012-09-11 | Sion Power Corporation | Circuit for charge and/or discharge protection in an energy-storage device |
KR20100126737A (en) | 2008-02-12 | 2010-12-02 | 메사추세츠 인스티튜트 오브 테크놀로지 | Small-scale batteries and electrodes for use thereof |
AU2009223442B2 (en) | 2008-03-12 | 2014-01-30 | Toyota Jidosha Kabushiki Kaisha | Sulfur-carbon material |
US20090298457A1 (en) * | 2008-06-02 | 2009-12-03 | Andreas Jakobs | Output driver calibration |
US8173302B2 (en) * | 2008-06-11 | 2012-05-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Sulfur-carbon material |
JP5286972B2 (en) | 2008-06-25 | 2013-09-11 | 日産自動車株式会社 | Negative electrode for lithium ion secondary battery |
JP5731382B2 (en) | 2008-08-05 | 2015-06-10 | シオン・パワー・コーポレーション | Force application in electrochemical cells |
US20120028128A1 (en) | 2009-03-18 | 2012-02-02 | Santoku Corporation | All-solid-state lithium battery |
US8087309B2 (en) | 2009-05-22 | 2012-01-03 | Sion Power Corporation | Hermetic sample holder and method for performing microanalysis under controlled atmosphere environment |
JP2013502700A (en) | 2009-08-24 | 2013-01-24 | シオン・パワー・コーポレーション | Stripping system for electrochemical cells |
IN2012DN02063A (en) | 2009-08-28 | 2015-08-21 | Sion Power Corp | |
US20110206992A1 (en) | 2009-08-28 | 2011-08-25 | Sion Power Corporation | Porous structures for energy storage devices |
US9112240B2 (en) | 2010-01-04 | 2015-08-18 | Nanotek Instruments, Inc. | Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same |
EP2609645A4 (en) | 2010-08-24 | 2016-07-06 | Sion Power Corp | Electrically non-conductive materials for electrochemical cells |
WO2013123131A1 (en) | 2012-02-14 | 2013-08-22 | Sion Power Corporation | Electrode structure for electrochemical cell |
WO2013134655A1 (en) | 2012-03-09 | 2013-09-12 | Sion Power Corporation | Porous support structures, electrodes containing same, and associated methods |
-
2009
- 2009-01-08 EP EP09700611.8A patent/EP2240973B1/en active Active
- 2009-01-08 KR KR1020107017571A patent/KR101601992B1/en active IP Right Grant
- 2009-01-08 JP JP2010541565A patent/JP5619622B2/en not_active Expired - Fee Related
- 2009-01-08 CN CN200980104676.2A patent/CN101939862B/en active Active
- 2009-01-08 WO PCT/US2009/000090 patent/WO2009089018A2/en active Application Filing
- 2009-01-08 US US12/811,576 patent/US9034421B2/en active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2240973A4 |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9034421B2 (en) | 2008-01-08 | 2015-05-19 | Sion Power Corporation | Method of forming electrodes comprising sulfur and porous material comprising carbon |
US10312545B2 (en) | 2008-08-05 | 2019-06-04 | Sion Power Corporation | Application of force in electrochemical cells |
US11108077B2 (en) | 2008-08-05 | 2021-08-31 | Sion Power Corporation | Application of force in electrochemical cells |
US11735761B2 (en) | 2008-08-05 | 2023-08-22 | Sion Power Corporation | Application of force in electrochemical cells |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
US11108076B2 (en) | 2008-08-05 | 2021-08-31 | Sion Power Corporation | Application of force in electrochemical cells |
US11121397B2 (en) | 2008-08-05 | 2021-09-14 | Sion Power Corporation | Application of force in electrochemical cells |
US10320027B2 (en) | 2008-08-05 | 2019-06-11 | Sion Power Corporation | Application of force in electrochemical cells |
EP3671908A1 (en) | 2009-08-24 | 2020-06-24 | Sion Power Corporation | Release system for electrochemical cells |
WO2011028251A2 (en) | 2009-08-24 | 2011-03-10 | Sion Power Corporation | Release system for electrochemical cells |
JP2013503439A (en) * | 2009-08-28 | 2013-01-31 | シオン・パワー・コーポレーション | Electrochemical cell having a sulfur-containing porous structure |
US9419274B2 (en) | 2009-08-28 | 2016-08-16 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
US9005809B2 (en) | 2009-08-28 | 2015-04-14 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
US8632915B2 (en) | 2010-04-26 | 2014-01-21 | Battelle Memorial Institute | Nanocomposite protective coatings for battery anodes |
JP2014506389A (en) * | 2011-01-14 | 2014-03-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Cathode composition |
WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
US9548492B2 (en) | 2011-06-17 | 2017-01-17 | Sion Power Corporation | Plating technique for electrode |
US11456459B2 (en) | 2011-06-17 | 2022-09-27 | Sion Power Corporation | Plating technique for electrode |
US10822713B2 (en) | 2011-06-24 | 2020-11-03 | Nexeon Limited | Structured particles |
US10077506B2 (en) | 2011-06-24 | 2018-09-18 | Nexeon Limited | Structured particles |
US8936870B2 (en) | 2011-10-13 | 2015-01-20 | Sion Power Corporation | Electrode structure and method for making the same |
US9040197B2 (en) | 2011-10-13 | 2015-05-26 | Sion Power Corporation | Electrode structure and method for making the same |
US9548489B2 (en) | 2012-01-30 | 2017-01-17 | Nexeon Ltd. | Composition of SI/C electro active material |
US10388948B2 (en) | 2012-01-30 | 2019-08-20 | Nexeon Limited | Composition of SI/C electro active material |
US9077041B2 (en) | 2012-02-14 | 2015-07-07 | Sion Power Corporation | Electrode structure for electrochemical cell |
EP2820703B1 (en) * | 2012-02-28 | 2018-12-26 | Nexeon Limited | Use of a removeable filler during manufacture of a composite electrode |
US9214678B2 (en) | 2012-03-09 | 2015-12-15 | Sion Power Corporation | Porous support structures, electrodes containing same, and associated methods |
US10090513B2 (en) | 2012-06-01 | 2018-10-02 | Nexeon Limited | Method of forming silicon |
US10008716B2 (en) | 2012-11-02 | 2018-06-26 | Nexeon Limited | Device and method of forming a device |
US9577267B2 (en) | 2012-12-19 | 2017-02-21 | Sion Power Corporation | Electrode structure and method for making same |
US9531009B2 (en) | 2013-01-08 | 2016-12-27 | Sion Power Corporation | Passivation of electrodes in electrochemical cells |
US9559348B2 (en) | 2013-01-08 | 2017-01-31 | Sion Power Corporation | Conductivity control in electrochemical cells |
US9490478B2 (en) | 2013-03-05 | 2016-11-08 | Sion Power Corporation | Electrochemical cells comprising fibril materials |
US10461333B2 (en) | 2013-03-05 | 2019-10-29 | Sion Power Corporation | Electrochemical cells comprising fibril materials |
US9728768B2 (en) | 2013-03-15 | 2017-08-08 | Sion Power Corporation | Protected electrode structures and methods |
US11245103B2 (en) | 2013-03-15 | 2022-02-08 | Sion Power Corporation | Methods of forming electrode structures |
US10333134B2 (en) | 2013-03-15 | 2019-06-25 | Sion Power Corporation | Protected electrode structures and methods |
US11894545B2 (en) | 2013-03-15 | 2024-02-06 | Sion Power Corporation | Protected electrode structures |
US10862105B2 (en) | 2013-03-15 | 2020-12-08 | Sion Power Corporation | Protected electrode structures |
WO2014142953A1 (en) | 2013-03-15 | 2014-09-18 | Sion Power Corporation | Protective structures for electrodes |
US9994960B2 (en) | 2013-07-03 | 2018-06-12 | Sion Power Corporation | Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries |
US9994959B2 (en) | 2013-07-03 | 2018-06-12 | Sion Power Corporation | Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries |
US11041248B2 (en) | 2013-07-03 | 2021-06-22 | Sion Power Corporation | Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries |
US10573869B2 (en) | 2013-08-08 | 2020-02-25 | Sion Power Corporation | Self-healing electrode protection in electrochemical cells |
US10020479B2 (en) | 2013-08-08 | 2018-07-10 | Sion Power Corporation | Self-healing electrode protection in electrochemical cells |
US10490796B2 (en) | 2014-02-19 | 2019-11-26 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
US11165122B2 (en) | 2014-02-19 | 2021-11-02 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
US11710847B2 (en) | 2014-02-19 | 2023-07-25 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
US10396355B2 (en) | 2014-04-09 | 2019-08-27 | Nexeon Ltd. | Negative electrode active material for secondary battery and method for manufacturing same |
US10693134B2 (en) | 2014-04-09 | 2020-06-23 | Nexeon Ltd. | Negative electrode active material for secondary battery and method for manufacturing same |
US10319988B2 (en) | 2014-05-01 | 2019-06-11 | Sion Power Corporation | Electrode fabrication methods and associated systems and articles |
US10476072B2 (en) | 2014-12-12 | 2019-11-12 | Nexeon Limited | Electrodes for metal-ion batteries |
WO2020028485A1 (en) | 2018-07-31 | 2020-02-06 | Sion Power Corporation | Multiplexed charge discharge battery management system |
US11322804B2 (en) | 2018-12-27 | 2022-05-03 | Sion Power Corporation | Isolatable electrodes and associated articles and methods |
US11637353B2 (en) | 2018-12-27 | 2023-04-25 | Sion Power Corporation | Electrodes, heaters, sensors, and associated articles and methods |
US11728528B2 (en) | 2018-12-27 | 2023-08-15 | Sion Power Corporation | Isolatable electrodes and associated articles and methods |
US12087941B2 (en) | 2019-01-16 | 2024-09-10 | Lg Energy Solution, Ltd. | Lithium secondary battery |
WO2021086377A1 (en) | 2019-10-31 | 2021-05-06 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
US11929523B2 (en) | 2019-11-19 | 2024-03-12 | Sion Power Corporation | Batteries, and associated systems and methods |
US11791511B2 (en) | 2019-11-19 | 2023-10-17 | Sion Power Corporation | Thermally insulating compressible components for battery packs |
US11824228B2 (en) | 2019-11-19 | 2023-11-21 | Sion Power Corporation | Compression systems for batteries |
US11978917B2 (en) | 2019-11-19 | 2024-05-07 | Sion Power Corporation | Batteries with components including carbon fiber, and associated systems and methods |
US11984575B2 (en) | 2019-11-19 | 2024-05-14 | Sion Power Corporation | Battery alignment, and associated systems and methods |
US12051829B2 (en) | 2019-11-19 | 2024-07-30 | Sion Power Corporation | Systems and methods for applying and maintaining compression pressure on electrochemical cells |
WO2021127371A1 (en) | 2019-12-20 | 2021-06-24 | Sion Power Corporation | Systems and methods for providing, assembling, and managing integrated power bus for rechargeable electrochemical cell or battery |
US12068461B2 (en) | 2019-12-20 | 2024-08-20 | Sion Power Corporation | Systems and methods for providing, assembling, and managing integrated power bus for rechargeable electrochemical cell or battery |
WO2021127385A1 (en) | 2019-12-20 | 2021-06-24 | Sion Power Corporation | Systems and methods for protecting a circuit, rechargeable electrochemical cell, or battery |
US11923495B2 (en) | 2020-03-13 | 2024-03-05 | Sion Power Corporation | Application of pressure to electrochemical devices including deformable solids, and related systems |
US11826861B1 (en) | 2020-08-12 | 2023-11-28 | Sion Power Corporation | Joining systems, clamping fixtures, and related systems and methods |
WO2022051308A1 (en) | 2020-09-01 | 2022-03-10 | Sion Power Corporation | Multiplexed battery management system |
Also Published As
Publication number | Publication date |
---|---|
JP2011509509A (en) | 2011-03-24 |
WO2009089018A3 (en) | 2009-10-08 |
CN101939862B (en) | 2014-03-12 |
EP2240973B1 (en) | 2018-03-28 |
KR20100113553A (en) | 2010-10-21 |
JP5619622B2 (en) | 2014-11-05 |
KR101601992B1 (en) | 2016-03-09 |
US20110008531A1 (en) | 2011-01-13 |
EP2240973A2 (en) | 2010-10-20 |
CN101939862A (en) | 2011-01-05 |
EP2240973A4 (en) | 2013-05-01 |
US9034421B2 (en) | 2015-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9034421B2 (en) | Method of forming electrodes comprising sulfur and porous material comprising carbon | |
EP3340346B1 (en) | Protected electrode structure for electrochemical cells | |
US11831010B2 (en) | Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same | |
EP3059790B1 (en) | Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same | |
TWI521773B (en) | Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material | |
US20080318128A1 (en) | Lithium alloy/sulfur batteries | |
EP3018735B1 (en) | Cathode for lithium-air battery and manufacturing method therefor | |
US20100285367A1 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
US20090191458A1 (en) | Porous network negative electrodes for non-aqueous electrolyte secondary battery | |
KR20140120751A (en) | Negative electrode active material and method of manufacturing the same, and electrochemical device having the negative electrode active material | |
JP2021027032A (en) | Method for manufacturing positive electrode active material, and positive electrode active material | |
KR20180099572A (en) | Preparation method of N-doped graphene, preparation method of Sulfur-graphene composite, and anode of Lithium-Sulfur battery comprising the same | |
KR20140048761A (en) | Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same | |
WO2020049843A1 (en) | Coated positive electrode active material, method of manufacturing lithium ion secondary battery, and lithium ion secondary battery | |
KR101964279B1 (en) | Method of removing moisture in cathode for Lithium-Sulfur battery | |
JP3735518B2 (en) | Non-aqueous electrolyte battery | |
WO2000052774A1 (en) | Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell | |
JP2007042602A (en) | Polymer battery | |
KR101611404B1 (en) | Separator for lithium ion secondary battery and method for the same | |
JP2022138313A (en) | Lithium-sulfur battery | |
JPH09259923A (en) | Polymer battery and manufacture thereof | |
WO2019118409A1 (en) | Rechargeable batteries, lithium metal electrodes, battery separators, and methods of forming and using the same | |
WO2011123519A1 (en) | Negative electrode materials for non-aqueous electrolyte secondary battery | |
CN117813713A (en) | Polymer solid electrolyte and preparation method thereof | |
JP2024535395A (en) | Polymer solid electrolyte and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104676.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09700611 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010541565 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107017571 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009700611 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12811576 Country of ref document: US |