JP2009076260A - Lithium-sulfur battery - Google Patents

Lithium-sulfur battery Download PDF

Info

Publication number
JP2009076260A
JP2009076260A JP2007242543A JP2007242543A JP2009076260A JP 2009076260 A JP2009076260 A JP 2009076260A JP 2007242543 A JP2007242543 A JP 2007242543A JP 2007242543 A JP2007242543 A JP 2007242543A JP 2009076260 A JP2009076260 A JP 2009076260A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
sulfur
nickel
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242543A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakano
秀之 中野
Jiro Sakata
二郎 坂田
Hitoshi Kumagai
等 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007242543A priority Critical patent/JP2009076260A/en
Publication of JP2009076260A publication Critical patent/JP2009076260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-sulfur battery endowed with both a high output and excellent cycle characteristics. <P>SOLUTION: The lithium-sulfur battery comprises a cathode 20 made of nickel, an anode 16 made of lithium, and electrolyte containing lithium ion and an iron-sulfur complex. Since the iron-sulfur complex is thus fixed on the surface of the cathode 20 at an initial charging reaction, sulfide ion is prevented from eluting again into the electrolyte to restrain a self-discharge phenomenon. With this, the lithium-sulfur endowed with both the high output and the excellent cycle characteristics can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム硫黄電池に関する。   The present invention relates to a lithium sulfur battery.

従来、硫黄単体を正極活物質に用いたリチウム硫黄電池が知られている。リチウムの理論容量密度は約3862mAh/gであり、硫黄の理論容量密度は約1675mAh/gであるため、正極活物質として硫黄を、負極活物質としてリチウムを用いることで、非常にエネルギー密度の高い二次電池の提供が可能となる。   Conventionally, a lithium-sulfur battery using sulfur alone as a positive electrode active material is known. The theoretical capacity density of lithium is about 3862 mAh / g, and the theoretical capacity density of sulfur is about 1675 mAh / g. Therefore, by using sulfur as the positive electrode active material and lithium as the negative electrode active material, the energy density is very high. A secondary battery can be provided.

通常のリチウム硫黄電池では、電解質中の硫化物イオン(S2-)は、正極における充電反応過程において、多硫化物イオン(Sy 2-)に酸化される。そして、生産した多硫化物イオン(Sy 2-)のうちの大部分は、更に酸化されることにより、正極の表面に硫黄として析出する。正極に析出した硫黄は、下記式(1)に示すように、正極付近に残った多硫化物イオン(S(y-1) 2-)と反応することにより、再び多硫化物イオン(Sy 2-)として電解液中に溶出する。そして、この電解質中に溶出した多硫化物イオンが負極と反応して還元されることにより、負極で放電現象(自己放電現象)が起きる。この結果、充放電サイクル特性が低下する。
(y-1) 2- + S → Sy 2- (1)
In a normal lithium-sulfur battery, sulfide ions (S 2− ) in the electrolyte are oxidized to polysulfide ions (S y 2− ) in the charging reaction process at the positive electrode. And most of the produced polysulfide ions (S y 2− ) are further oxidized to be deposited as sulfur on the surface of the positive electrode. As shown in the following formula (1), the sulfur deposited on the positive electrode reacts with the polysulfide ions (S (y-1) 2− ) remaining in the vicinity of the positive electrode, thereby again producing polysulfide ions (S y 2- ) Elution into the electrolyte solution. The polysulfide ions eluted in the electrolyte react with the negative electrode and are reduced, whereby a discharge phenomenon (self-discharge phenomenon) occurs in the negative electrode. As a result, the charge / discharge cycle characteristics deteriorate.
S (y-1) 2- + S → S y 2- (1)

こうしたことから、自己放電現象を抑制する技術がいくつか報告されている。例えば、特許文献1に記載のリチウム硫黄電池では、銅などの硫黄と化合物を形成する金属を含む正極を用い、正極上に硫黄を化合物として固定することによって、硫黄が再び電解質中に溶出することを防ぎ、自己放電現象を抑制している。
特開2005−251473
For this reason, several techniques for suppressing the self-discharge phenomenon have been reported. For example, in the lithium-sulfur battery described in Patent Document 1, sulfur is eluted into the electrolyte again by using a positive electrode containing a metal that forms a compound with sulfur, such as copper, and fixing the sulfur as a compound on the positive electrode. Prevents the self-discharge phenomenon.
JP 2005-251473 A

しかしながら、特許文献1に記載のリチウム硫黄電池では、2サイクル目以降の充放電効率が略100%でありサイクル特性は良好であるものの、充放電時に流すことができる電流値が極めて低く、高出力を得ることができないという問題があった。すなわち、高出力と良好なサイクル特性を兼ね備えることができないという問題があった。   However, in the lithium-sulfur battery described in Patent Document 1, the charge / discharge efficiency after the second cycle is approximately 100% and the cycle characteristics are good, but the current value that can be passed during charge / discharge is extremely low, and the high output There was a problem that could not get. That is, there is a problem that high output and good cycle characteristics cannot be combined.

本発明は、上述した課題に鑑みなされたものであり、高出力と良好なサイクル特性を兼ね備えたリチウム硫黄電池を提供することを主目的とする。   The present invention has been made in view of the above-described problems, and has as its main object to provide a lithium-sulfur battery having both high output and good cycle characteristics.

上述した目的を達成するために、本発明者らは、正極にニッケル、負極にリチウム、電解質にリチウムイオンと鉄−硫黄錯体とを添加したリチウム硫黄電池を組み立てたところ、高出力と良好なサイクル特性を兼ね備えていることを見いだし、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors assembled a lithium-sulfur battery in which nickel was added to the positive electrode, lithium was added to the negative electrode, and lithium ions and an iron-sulfur complex were added to the electrolyte. It has been found that it has characteristics, and the present invention has been completed.

すなわち、本発明のリチウム硫黄電池は、ニッケル及びコバルトのうち少なくとも1つの金属元素を含む正極と、リチウムイオンを吸蔵放出する材料を含む負極と、リチウムイオンを含む非水電解質とを含み、前記正極及び前記非水電解質の少なくとも一方に遷移金属−硫黄錯体を含むものである。   That is, the lithium-sulfur battery of the present invention includes a positive electrode containing at least one metal element of nickel and cobalt, a negative electrode containing a material that absorbs and releases lithium ions, and a nonaqueous electrolyte containing lithium ions, And at least one of the non-aqueous electrolytes contains a transition metal-sulfur complex.

こうした本発明のリチウム硫黄電池の充放電反応は、例えば金属リチウムを負極活物質とし、硫黄を正極活物質とした場合には、以下のように進行する。
The charge / discharge reaction of the lithium-sulfur battery of the present invention proceeds as follows, for example, when metallic lithium is used as the negative electrode active material and sulfur is used as the positive electrode active material.

本発明のリチウム硫黄電池によれば、正極にニッケル及びコバルトのうち少なくとも1つの金属元素を含む電極を用い、正極又は非水電解質に遷移金属−硫黄錯体を添加することにより、自己放電現象を抑制することができる。このような効果が得られる理由は定かではないが、正極にニッケル及びコバルトのうち少なくとも1つの金属元素を含む電極を用いることで、初回の充電により正極上に遷移金属−硫黄錯体が固定化され、硫化物イオンが再び電解質中に溶出することを防ぐことができ、高出力と良好なサイクル特性とを兼ね備えた状態で、自己放電現象の抑制が実現されたと推定される。   According to the lithium-sulfur battery of the present invention, an electrode containing at least one metal element of nickel and cobalt is used as a positive electrode, and a self-discharge phenomenon is suppressed by adding a transition metal-sulfur complex to the positive electrode or a non-aqueous electrolyte. can do. The reason why such an effect can be obtained is not clear, but by using an electrode containing at least one metal element of nickel and cobalt for the positive electrode, the transition metal-sulfur complex is immobilized on the positive electrode by the first charge. It is estimated that the suppression of the self-discharge phenomenon can be realized in a state where the sulfide ions can be prevented from being eluted again into the electrolyte and have both high output and good cycle characteristics.

本発明のリチウム硫黄電池において、負極は、リチウムイオンを吸蔵放出する材料を負極活物質として含んでいるものであれば、特に限定されるものではない。ここで、リチウムイオンを吸蔵放出する材料としては、例えば金属リチウムやリチウム合金のほか、金属酸化物、金属硫化物、リチウムイオンを吸蔵放出する炭素質物質などが挙げられる。リチウム合金としては、例えば、アルミニウムやシリコン、スズ、マグネシウム、インジウム、カルシウムなどとリチウムとの合金が挙げられる。金属酸化物としては、例えばスズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物などが挙げられる。金属硫化物としては、例えばスズ硫化物やチタン硫化物などが挙げられる。リチウムイオンを吸蔵放出する炭素質物質としては、例えば黒鉛、コークス、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素などが挙げられる。   In the lithium-sulfur battery of the present invention, the negative electrode is not particularly limited as long as it contains a material that absorbs and releases lithium ions as a negative electrode active material. Here, examples of materials that occlude and release lithium ions include metal lithium and lithium alloys, metal oxides, metal sulfides, and carbonaceous substances that occlude and release lithium ions. Examples of the lithium alloy include alloys of lithium with aluminum, silicon, tin, magnesium, indium, calcium, and the like. Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the carbonaceous material that absorbs and releases lithium ions include graphite, coke, mesophase pitch-based carbon fiber, spherical carbon, and resin-fired carbon.

本発明のリチウム硫黄電池において、正極は、硫黄を正極活物質とし、正極材中にニッケル及びコバルトのうち少なくとも1つを含むものであれば、特に限定されるものではない。このとき、ニッケル又はコバルトを主成分とし、銅,鉄,マンガン,ニッケル及びコバルトからなる群から選ばれた少なくとも1つを含むものであってもよい。正極活物質は、正極材中に遷移金属−硫黄錯体として含ませて供給してもよいし、後述する電解質中に溶解した遷移金属−硫黄錯体により供給してもよい。正極は、導電助剤と結着剤とを所定量混合した後、集電体に圧着して形成してもよい。ここで、導電助剤としては、導電性を有する材料であれば特に限定されない。例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよいし、銅や銀、ニッケル、アルミニウムなどの金属粉末類でもよいし、ポリフェニレン誘導体などの有機導電性材料でもよい。また、これらを単体で用いてもよいし、複数を混合して用いてもよい。結着剤としては、特に限定されるものではないが、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体などが挙げられる。これらの材料は単独で用いてもよいし、複数を混合して用いてもよい。集電体としては、ステンレス鋼やアルミニウム、銅、ニッケルなどの金属板や金属メッシュを用いることもできる。   In the lithium-sulfur battery of the present invention, the positive electrode is not particularly limited as long as sulfur is a positive electrode active material and the positive electrode material contains at least one of nickel and cobalt. At this time, nickel or cobalt may be the main component, and at least one selected from the group consisting of copper, iron, manganese, nickel, and cobalt may be included. The positive electrode active material may be supplied as a transition metal-sulfur complex contained in the positive electrode material, or may be supplied by a transition metal-sulfur complex dissolved in an electrolyte described later. The positive electrode may be formed by mixing a predetermined amount of a conductive additive and a binder and then pressure bonding to a current collector. Here, the conductive auxiliary agent is not particularly limited as long as it is a conductive material. For example, carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black and thermal black may be used, and natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite may be used. Further, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper, silver, nickel, and aluminum, or organic conductive materials such as polyphenylene derivatives may be used. These may be used alone or in combination. Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. are mentioned. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Examples include olefin copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, and ethylene-acrylic acid copolymer. . These materials may be used alone or in combination. As the current collector, a metal plate such as stainless steel, aluminum, copper, nickel, or a metal mesh can be used.

本発明のリチウム硫黄電池において、正極に含まれるニッケル又はコバルトの形状は問わない。例えば、正極にニッケルが含まれる場合を例に挙げると、発泡ニッケルを用いてもよいし、ニッケル粉末を用いてもよい。また、組成に関しては、電解液が電極に含浸可能な電極構成であればよい。例えば、発泡ニッケルを用いる場合には単独で用いることが可能であり、ニッケル粉末を用いる場合にはケッチェンブラック、カーボンナノチューブ、アセチレンブラック等の高比表面積を有する構成助剤にニッケル粉末を付着させたものを用いることが可能である。構成助剤にニッケル粉末を付着させたものは、発泡ニッケルを用いた場合に比べてサイクル特性が一層良好になる傾向があるため、好ましい。このとき、構成助剤の割合としては、70wt%〜20wt%であることが好ましく、50wt%〜30wt%であることがより好ましい。構成助剤の割合が70wt%を超えると遷移金属−硫黄錯体を固定化するためのニッケルの割合が少なくなるため好ましくなく、20wt%未満では、正極の表面積が狭くなるため好ましくない。また、ニッケルと構成助剤とは混合してもよいし、構成助剤にメッキしてもよい。構成助剤にメッキをした場合には、ニッケルが構成助剤の表面に位置しており、遷移金属−硫黄錯体の固定化がよりスムーズに行われると考えられるため、より好ましい。   In the lithium sulfur battery of the present invention, the shape of nickel or cobalt contained in the positive electrode is not limited. For example, when the case where nickel is included in the positive electrode is taken as an example, foamed nickel or nickel powder may be used. Further, regarding the composition, any electrode configuration may be used as long as the electrolyte can be impregnated into the electrode. For example, when nickel foam is used, it can be used alone. When nickel powder is used, the nickel powder is adhered to a constituent auxiliary agent having a high specific surface area such as ketjen black, carbon nanotube, and acetylene black. Can be used. A material in which nickel powder is adhered to a constituent auxiliary agent is preferable because cycle characteristics tend to be further improved as compared with the case of using foamed nickel. At this time, the proportion of the constituent auxiliary is preferably 70 wt% to 20 wt%, and more preferably 50 wt% to 30 wt%. If the proportion of the constituent auxiliary agent exceeds 70 wt%, the proportion of nickel for immobilizing the transition metal-sulfur complex decreases, which is not preferable, and if it is less than 20 wt%, the surface area of the positive electrode decreases, which is not preferable. Further, nickel and the constituent auxiliary may be mixed, or the constituent auxiliary may be plated. In the case where the constituent auxiliary agent is plated, nickel is positioned on the surface of the auxiliary constituent agent, and it is considered that the transition metal-sulfur complex can be more smoothly immobilized.

本発明のリチウム硫黄電池において、非水電解質としては、リチウムイオンが含まれていれば、特に限定されるものではないが、例えば、リチウムイオンを含む電解液やゲル電解質、固体電解質を用いることができる。リチウムイオンとしては、特に限定されるものではないが、例えば、LiPF6,LiClO4,LiBF4,Li(CF3SO22Nなどの公知の支持塩を用いることができる。電解液の溶媒には、特に限定されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)などのカーボネート類、γ−ブチロラクトン、γ−バレロラクトン、3−メチル−γ−ブチロラクトン、2−メチル−γ−ブチロラクトンなどの環状エステル類、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキソランなどの環状エーテル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、ジメチルエーテル、メチルエチルエーテル、ジプロピルエーテルなどの鎖状エーテル類など、従来の二次電池やキャパシタに使われる有機溶媒又はそれらの混合溶媒を用いることができる。また、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミド、1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどのイオン液体を用いることもできる。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類又はアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、非水電解質には、遷移金属−硫黄錯体が含まれていてもよい。 In the lithium-sulfur battery of the present invention, the nonaqueous electrolyte is not particularly limited as long as it contains lithium ions. For example, an electrolyte solution, a gel electrolyte, or a solid electrolyte containing lithium ions may be used. it can. Examples of the lithium-ion, but are not particularly limited, for example, may be a known supporting salt such as LiPF 6, LiClO 4, LiBF 4 , Li (CF 3 SO 2) 2 N. Although it does not specifically limit to the solvent of electrolyte solution, For example, carbonates, such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and dimethyl carbonate (DMC), (gamma) -butyrolactone, Cyclic esters such as γ-valerolactone, 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1 , 3-dioxolane, cyclic ethers such as 2-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, dimethyl ether, methyl ethyl ether, dipropyl ether, etc. Conventional ethers, etc. Organic solvents or their mixed solvents used in batteries and capacitors may be used. Alternatively, ionic liquids such as 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide and 1-ethyl-3-butylimidazolium tetrafluoroborate can be used. The gel electrolyte is not particularly limited, but for example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. As the inorganic solid electrolyte, for example, a nitride of Li, an oxyacid salt, and the like are well known. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination. The nonaqueous electrolyte may contain a transition metal-sulfur complex.

本発明のリチウム硫黄電池において、遷移金属−硫黄錯体としては、正極に固定化可能なものであれば、特に限定されるものではないが、例えば、遷移金属として、鉄、ニッケル及びコバルトからなる群より選ばれた少なくとも1つを用いてもよく、対イオンとして、アルカリ金属イオン、アルカリ土類金属イオン又はアンモニウムイオンを用いてもよく、遷移金属イオンにS2x2x(xは1〜5のいずれかの整数)が配位した構造を有していてもよい。ここで、アルカリ金属としてはリチウム、ナトリウム、カリウムなどが挙げられ、アルカリ土類金属としてはカルシウム、ストロンチウム、バリウムなどが挙げられる。また、Cx2xとしては、メチレン、エチレン、1,2−プロピレン、1,3−プロピレン、1,2−ブチレン、1,3−ブチレン、1,4−ブチレン、1,2−ペンチレン、1,3−ペンチレン、1,4−ペンチレン,1,5−ペンチレンなどが挙げられる。また、遷移金属−硫黄錯体は、正極の表面全体を十分に固定化することができる量であればよいが、非水電解質中に添加する場合には、濃度が高いほど好ましく、電池を使用する温度範囲(例えば25℃前後)で飽和濃度であるかそれよりわずかに低い濃度であることが好ましい。遷移金属−硫黄錯体は、最初に充電されたときに正極表面に固定されることになるが、錯体中の硫黄は正極活物質としても用いられるため、高濃度であることが望ましい。 In the lithium-sulfur battery of the present invention, the transition metal-sulfur complex is not particularly limited as long as it can be immobilized on the positive electrode. For example, the transition metal includes a group consisting of iron, nickel, and cobalt. At least one selected from the above may be used, an alkali metal ion, an alkaline earth metal ion, or an ammonium ion may be used as a counter ion, and S 2 C x H 2x (x is 1 to 5 may be a coordinated structure. Here, examples of the alkali metal include lithium, sodium, and potassium, and examples of the alkaline earth metal include calcium, strontium, and barium. C x H 2x includes methylene, ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4-butylene, 1,2-pentylene, , 3-pentylene, 1,4-pentylene, 1,5-pentylene and the like. The transition metal-sulfur complex may be in an amount that can sufficiently fix the entire surface of the positive electrode, but when added to the non-aqueous electrolyte, the concentration is preferably higher and the battery is used. A saturated concentration or a slightly lower concentration is preferable in a temperature range (for example, around 25 ° C.). The transition metal-sulfur complex is fixed to the surface of the positive electrode when it is initially charged. However, since sulfur in the complex is also used as the positive electrode active material, a high concentration is desirable.

本発明のリチウム硫黄電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム硫黄電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。   The lithium sulfur battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium-sulfur battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a microporous film of an olefin resin such as polyethylene or polypropylene Is mentioned. These may be used alone or in combination.

本発明のリチウム硫黄電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。   The shape of the lithium-sulfur battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc.

以下、本発明の具体例を実施例を用いて説明する。   Hereinafter, specific examples of the present invention will be described using examples.

[実施例1]
正極は厚さ1.6mm、φ14mmの気孔率95%の発泡ニッケル(富山住友電工製 セルメット(CELMET)#6)を、減圧下80℃で10時間乾燥させたものを用いた。負極は厚さ1mmの金属リチウムをφ18mmに成形したものを用いた。非水電解質は後述する手法で得た鉄−硫黄錯体を用いて調整した非水電解質を用いた。
[Example 1]
The positive electrode used was 1.6 mm thick and φ14 mm foamed nickel (Celmet # 6 manufactured by Sumitomo Electric Toyama), dried at 80 ° C. for 10 hours under reduced pressure. The negative electrode used was a metal lithium having a thickness of 1 mm molded into φ18 mm. As the non-aqueous electrolyte, a non-aqueous electrolyte prepared using an iron-sulfur complex obtained by the method described later was used.

まず、ナトリウムメトキシド(CH3ONa,84mmol)とエタンジチオール(H2(edt),42mmol)を100mLのメタノールに溶かし、これに塩化鉄(FeCl3,20mmol)を70mLのメタノールで溶かした溶液をゆっくりと加えた。これを36時間攪拌した後、Ar雰囲気下でグラスフィルター濾過した。得られた固体を水で洗浄し、洗液と濾液を合わせた。10mLの水に溶かしたテトラブチルアンモニウムブロミド(n−Bu4N)Brを静かに加えて放置した。これをアセトニトリルから再結晶して、黒色の鉄−硫黄錯体を得た。なお、この鉄−硫黄錯体の合成方法は、公知文献(Inorganic Chemistry,Vol.14,No6,1426−1429(1975))に記載されている方法である。 First, sodium methoxide (CH 3 ONa, 84 mmol) and ethanedithiol (H 2 (edt), 42 mmol) were dissolved in 100 mL of methanol, and a solution of iron chloride (FeCl 3 , 20 mmol) dissolved in 70 mL of methanol was dissolved therein. Slowly added. This was stirred for 36 hours and then filtered through a glass filter under an Ar atmosphere. The obtained solid was washed with water, and the washing and the filtrate were combined. Tetrabutylammonium bromide (n-Bu 4 N) Br dissolved in 10 mL of water was gently added and allowed to stand. This was recrystallized from acetonitrile to obtain a black iron-sulfur complex. In addition, the synthesis | combining method of this iron-sulfur complex is a method described in well-known literature (Inorganic Chemistry, Vol.14, No. 6,146-1429 (1975)).

次に、1,2−ジメトキシエタンと1,3−ジオキソランとを体積比で9:1に混合した溶液に、リチウムビス(トリフルオロメチルスルホニル)イミド:LiN(SO2CF32を1mol/Lの濃度になるように溶解した。そこに、上記方法で合成した鉄−硫黄錯体を25℃付近で飽和状態になるまで溶解して非水電解液を調製した。 Next, 1 mol / liter of lithium bis (trifluoromethylsulfonyl) imide: LiN (SO 2 CF 3 ) 2 was added to a solution in which 1,2-dimethoxyethane and 1,3-dioxolane were mixed at a volume ratio of 9: 1. It melt | dissolved so that it might become the density | concentration of L. Then, the iron-sulfur complex synthesized by the above method was dissolved at about 25 ° C. until saturated, to prepare a nonaqueous electrolytic solution.

このようにして得られた正極、負極及び非水電解液を使用して評価セルを作製した。図1は評価セルの説明図であり、図1(a)は評価セル10の組立前の断面図、図1(b)は評価セル10の組立後の断面図である。評価セル10を組み立てるにあたり、まず、外周面にねじ溝が刻まれたステンレス製の円筒基体12の上面中央に設けられたキャビティ14に、負極16(上述した厚さ1mm、φ18mmの金属リチウム)と、ポリエチレン製セパレータ18(微多孔性ポリエチレン膜、東燃化学(株)製)と、正極20(上述した厚さ1.6mm、φ14mmの発泡ニッケル)とをこの順に積層した。そして、上述した非水電解液4mLをキャビティ14に充填したあと、ポリエチレン製のリング22の穴に液密に固定されたステンレス製の円柱24を正極20の上に配置し、ステンレス製のコップ状の蓋26を円筒基体12にねじ込んだ。更に、円柱24の上にPTFE製の絶縁用樹脂リング27を配置し、蓋26の上面中央に設けられた開口26aの内周面に刻まれたねじ溝に貫通孔25aを持つ加圧ボルト25をねじ込み、負極16とセパレータ18と正極20とを加圧密着させた。このようにして、評価セル10を組み立てた。なお、蓋26の上面中央に設けられた開口26aの径は円柱24の径よりも大きいことから、蓋26と円柱24とは非接触な状態となっている。また、キャビティ14の周辺にはパッキン28が配置されているため、キャビティ14内に注入された電解液が外部に漏れることはない。この評価セル10では、蓋26と加圧ボルト25と円筒基体12とが負極16と一体化されて全体が負極側となり、円柱24が正極20と一体化されると共に負極16と絶縁されているため正極側となる。   An evaluation cell was prepared using the positive electrode, the negative electrode and the nonaqueous electrolytic solution thus obtained. FIG. 1 is an explanatory view of an evaluation cell, FIG. 1 (a) is a cross-sectional view before the evaluation cell 10 is assembled, and FIG. 1 (b) is a cross-sectional view after the evaluation cell 10 is assembled. In assembling the evaluation cell 10, first, the negative electrode 16 (the above-described metal lithium having a thickness of 1 mm and φ18 mm) is placed in the cavity 14 provided in the center of the upper surface of the stainless steel cylindrical base 12 having a thread groove on the outer peripheral surface. The separator 18 made of polyethylene (microporous polyethylene film, manufactured by Tonen Chemical Co., Ltd.) and the positive electrode 20 (foamed nickel having the thickness of 1.6 mm and φ14 mm described above) were laminated in this order. After filling the cavity 14 with 4 mL of the non-aqueous electrolyte described above, a stainless steel cylinder 24 fixed in a liquid-tight manner in the hole of the polyethylene ring 22 is placed on the positive electrode 20, and a stainless steel cup shape is formed. The lid 26 was screwed into the cylindrical base 12. Further, an insulating resin ring 27 made of PTFE is disposed on the cylinder 24, and a pressure bolt 25 having a through hole 25a in a screw groove carved in an inner peripheral surface of an opening 26a provided at the center of the upper surface of the lid 26. The negative electrode 16, the separator 18, and the positive electrode 20 were pressed and adhered. In this way, the evaluation cell 10 was assembled. In addition, since the diameter of the opening 26a provided in the upper surface center of the lid | cover 26 is larger than the diameter of the cylinder 24, the lid | cover 26 and the cylinder 24 are a non-contact state. In addition, since the packing 28 is disposed around the cavity 14, the electrolyte injected into the cavity 14 does not leak to the outside. In this evaluation cell 10, the lid 26, the pressure bolt 25, and the cylindrical base 12 are integrated with the negative electrode 16, so that the whole becomes the negative electrode side, and the column 24 is integrated with the positive electrode 20 and insulated from the negative electrode 16. Therefore, it becomes the positive electrode side.

このようにして作製した評価セルを用いて、評価を行った。まず、正極面積あたり0.5mA/cm2の放電電流で、2.8V(vs.Li/Li+)の充電終止電位まで充電を行った後、正極面積あたり0.5mA/cm2の放電電流で、1.5V(vs.Li/Li+)の放電終止電位まで放電を行った。そして、この充放電を1サイクルとして、10サイクル評価を行った。なお、評価は25℃の恒温槽内で行った。この結果、初回充電容量は、0.005mAhであり、放電容量は0.032mAhであった。また、2回目以降の充放電容量は、図2に示すように推移した。図2から明らかなように、実施例1のリチウム硫黄電池は、正極面積あたり0.5mA/cm2の高電流で充放電を行っても2サイクル目以降の充放電効率が略100%であり、高出力と良好なサイクル特性を有しているといえる。なお、1サイクル目の充電容量に対して放電容量が約6倍になっている原因は今のところ不明であるが、初回の充電は鉄の3価から2価への価数変化に起因している可能性があり、引き続く放電は鉄と硫黄がリチウムと反応した容量となっている可能性がある。 Evaluation was performed using the evaluation cell thus prepared. First, at a discharging current of the cathode area per 0.5 mA / cm 2, 2.8V after charging until the charging end potential of (vs.Li/Li +), the discharge current of the cathode area per 0.5 mA / cm 2 Then, the battery was discharged to a discharge end potential of 1.5 V (vs. Li / Li + ). Then, this cycle was evaluated as 10 cycles. In addition, evaluation was performed in a 25 degreeC thermostat. As a result, the initial charge capacity was 0.005 mAh and the discharge capacity was 0.032 mAh. The charge / discharge capacity after the second time changed as shown in FIG. As is apparent from FIG. 2, the lithium-sulfur battery of Example 1 has a charge / discharge efficiency of about 100% after the second cycle even when charge / discharge is performed at a high current of 0.5 mA / cm 2 per positive electrode area. It can be said that it has high output and good cycle characteristics. The reason why the discharge capacity is about 6 times the charge capacity of the first cycle is unknown at present, but the first charge is due to the valence change from trivalent to divalent iron. The subsequent discharge may have a capacity in which iron and sulfur react with lithium.

[実施例2]
実施例1の鉄−硫黄錯体の合成で使用したエタンジチオールをプロパンジチオールに代えた以外は、実施例1と同様にして評価セルを作成した。この評価セルにつき、実施例1と同様の条件で評価を行った。その結果を図3に示す。図3から明らかなように、実施例2のリチウム硫黄電池は、正極面積あたり0.5mA/cm2の高電流で充放電を行っても、実施例1と同様、2サイクル目以降の充放電効率が略100%であり、高出力と良好なサイクル特性を有しているといえる。このように、鉄−硫黄錯体の配位子のサイズをS224からS236に大きくしても、電池特性には影響がなく、良好な結果が得られることがわかる。
[Example 2]
An evaluation cell was prepared in the same manner as in Example 1 except that ethanedithiol used in the synthesis of the iron-sulfur complex of Example 1 was replaced with propanedithiol. This evaluation cell was evaluated under the same conditions as in Example 1. The result is shown in FIG. As is clear from FIG. 3, the lithium-sulfur battery of Example 2 was charged / discharged at the second and subsequent cycles in the same manner as in Example 1 even when it was charged / discharged at a high current of 0.5 mA / cm 2 per positive electrode area. The efficiency is almost 100%, and it can be said that it has high output and good cycle characteristics. Thus, even if the size of the ligand of the iron-sulfur complex is increased from S 2 C 2 H 4 to S 2 C 3 H 6 , the battery characteristics are not affected and good results can be obtained. Recognize.

[実施例3]
実施例1で用いた正極を下記の手法で作成した正極に代えた以外は、実施例1と同様にして評価セルを作製した。すなわち、まず、導電助剤としてのケッチェンブラック(KB,ケッチェンブラックインターナショナル株式会社製 ECP600JD)とニッケル粉末(Ni)と結着剤としてのポリテトラフルオロエチレン(PTFE)とを、それぞれの重量が47.5:47.5:5になるように混合した。これをφ14mmのSUSメッシュに圧着したものを正極とし、電池組み付け直前に80℃で10時間減圧乾燥して用いた。
[Example 3]
An evaluation cell was produced in the same manner as in Example 1 except that the positive electrode used in Example 1 was replaced with the positive electrode prepared by the following method. That is, first, Ketjen black (KB, ECP600JD manufactured by Ketjen Black International Co., Ltd.) as a conductive additive, nickel powder (Ni), and polytetrafluoroethylene (PTFE) as a binder are each weighted. It mixed so that it might become 47.5: 47.5: 5. This was bonded to a φ14 mm SUS mesh as a positive electrode, and was used under reduced pressure drying at 80 ° C. for 10 hours immediately before battery assembly.

こうした得られた正極を用いて実施例1と同様にして評価セルを作製し、実施例1と同様の条件で評価を行った。その結果を図4に示す。図4から明らかなように、実施例3のリチウム硫黄電池は、正極面積あたり0.5mA/cm2の高電流で充放電を行っても、2サイクル目以降の充放電効率が略100%であり、高出力と良好なサイクル特性を有しているといえる。また、実施例3では、実施例1,2に比べてサイクル回数を重ねても充放電容量が低下しにくいことがわかる。 Using the positive electrode thus obtained, an evaluation cell was prepared in the same manner as in Example 1 and evaluated under the same conditions as in Example 1. The result is shown in FIG. As is apparent from FIG. 4, the lithium-sulfur battery of Example 3 has a charge / discharge efficiency of about 100% after the second cycle even when charge / discharge is performed at a high current of 0.5 mA / cm 2 per positive electrode area. It can be said that it has high output and good cycle characteristics. Moreover, in Example 3, even if it repeats the number of cycles compared with Examples 1 and 2, it turns out that a charge / discharge capacity does not fall easily.

[実施例4]
実施例1で用いた正極を下記の手法で作成した正極に代えた以外は、実施例1と同様にして評価セルを作成した。すなわち、まず、ニッケルメッキを行うため、ケッチェンブラック(ケッチェンブラックインターナショナル株式会社製 ECP600JD)とテフロン(ダイキン社製 テフロンは登録商標)とを重量が90:10となるように混合し、縦2cm×横3cm、厚さt=1mmに成形したものを一方の電極(−)とした。また、もう一方の電極(+)としてニッケル板を用い、0.1Aの低電流を3分間流すことでケッチェンブラック表面にニッケルメッキを行った。このとき用いたメッキ液の組成は、硫酸ニッケル(NiSO4・6H2O)240g/Lと塩化ニッケル(NiCL2・6H2O)45g/L、ホウ酸(H3BO3)30g/Lである。これを100mL用いてニッケルメッキを室温で行った。このようにして得られた負極をφ14mmに打ち抜いて評価セルの正極とした。
[Example 4]
An evaluation cell was prepared in the same manner as in Example 1 except that the positive electrode used in Example 1 was replaced with the positive electrode prepared by the following method. That is, first, in order to perform nickel plating, Ketjen Black (ECP600JD made by Ketjen Black International Co., Ltd.) and Teflon (Teflon made by Daikin Co., Ltd. are registered) are mixed so that the weight is 90:10, and the length is 2 cm. X One of the electrodes (-) was molded to a width of 3 cm and a thickness t = 1 mm. Further, a nickel plate was used as the other electrode (+), and nickel plating was performed on the ketjen black surface by flowing a low current of 0.1 A for 3 minutes. The composition of the plating solution used at this time was nickel sulfate (NiSO 4 .6H 2 O) 240 g / L, nickel chloride (NiCL 2 .6H 2 O) 45 g / L, boric acid (H 3 BO 3 ) 30 g / L. is there. Using 100 mL of this, nickel plating was performed at room temperature. The negative electrode thus obtained was punched out to 14 mm to be a positive electrode of an evaluation cell.

こうして得られた正極を用いて実施例1と同様にして評価セルを作製し、実施例1と同様の条件で評価を行った。その結果を図5に示す。図5から、実施例4のリチウム硫黄電池は、正極面積あたり0.5mA/cm2の高電流で充放電を行っても、2サイクル目以降の充放電効率が略100%であり、高出力と良好なサイクル特性を兼ね備えていることがわかる。また、実施例4では、実施例1,2に比べてサイクル回数を重ねても充放電容量がほとんど低下しないことがわかる。 Using the positive electrode thus obtained, an evaluation cell was produced in the same manner as in Example 1, and evaluated under the same conditions as in Example 1. The result is shown in FIG. From FIG. 5, the lithium-sulfur battery of Example 4 has a charge / discharge efficiency of about 100% after the second cycle even if it is charged / discharged at a high current of 0.5 mA / cm 2 per positive electrode area. It can be seen that both have good cycle characteristics. Moreover, in Example 4, even if it repeats the cycle number compared with Examples 1 and 2, it turns out that charging / discharging capacity | capacitance hardly falls.

ちなみに、鉄−硫黄錯体を電解液に溶解する代わりに正極に鉄−硫黄錯体を担持させたところ、実施例1〜4とほぼ同様の結果が得られた。これは、正極に担持された鉄−硫黄錯体が電解液に溶出して実施例1〜4と同様の形態となり、その後充放電が繰り返されたためと考えられる。   Incidentally, when the iron-sulfur complex was supported on the positive electrode instead of dissolving the iron-sulfur complex in the electrolytic solution, almost the same results as in Examples 1 to 4 were obtained. This is presumably because the iron-sulfur complex supported on the positive electrode was eluted into the electrolyte solution to form the same as in Examples 1 to 4, and charging and discharging were repeated thereafter.

[比較例1]
実施例3のニッケル粉末を銅粉末に代えた以外は、実施例3と同様にして評価セルを作製した。この評価セルにつき、実施例1と同様の条件で評価を行った。その結果を図6に示す。図6から、銅を正極に用いた場合には、充電容量がサイクル回数を重ねると増加することがわかる。これは、おそらく正極の銅がイオン化して電解液に溶解することが原因で生じる自己放電現象によるものと考えられる。つまり、銅を正極に用いた場合には、実施例1〜4と異なり、自己放電現象を抑制できないといえる。
[Comparative Example 1]
An evaluation cell was produced in the same manner as in Example 3 except that the nickel powder in Example 3 was replaced with copper powder. This evaluation cell was evaluated under the same conditions as in Example 1. The result is shown in FIG. FIG. 6 shows that when copper is used for the positive electrode, the charge capacity increases as the number of cycles increases. This is presumably due to a self-discharge phenomenon caused by the positive electrode copper being ionized and dissolved in the electrolyte. That is, when copper is used for the positive electrode, unlike in Examples 1 to 4, it can be said that the self-discharge phenomenon cannot be suppressed.

[比較例2]
実施例1の鉄−硫黄錯体を加えなかったこと以外は、実施例1と同様にして評価セルを作製した。この比較例2は、実施例2の鉄−硫黄錯体を加えなかったこと以外は、実施例2と同様にして非水電解質電池を組み立てたということもできる。したがって、この比較例2は、実施例1の比較例であると共に実施例2の比較例でもある。この評価セルにつき、実施例1と同様の条件で評価を行った。その結果を図7に示す。図7から、比較例2では電池として機能しないことがわかる。つまり、実施例1〜4では、電解液中に鉄−硫黄錯体が溶解しており、これが充電により正極に固定化され、更に引き続き行われる放電・充電でリチウムと可逆的に反応することで二次電池になるのに対し、比較例2では、電解液中に鉄−硫黄錯体が溶解していないため、電池にならなかったといえる。
[Comparative Example 2]
An evaluation cell was prepared in the same manner as in Example 1 except that the iron-sulfur complex of Example 1 was not added. In Comparative Example 2, it can also be said that a nonaqueous electrolyte battery was assembled in the same manner as in Example 2 except that the iron-sulfur complex of Example 2 was not added. Therefore, the comparative example 2 is a comparative example of the first embodiment and a comparative example of the second embodiment. This evaluation cell was evaluated under the same conditions as in Example 1. The result is shown in FIG. FIG. 7 shows that Comparative Example 2 does not function as a battery. That is, in Examples 1 to 4, the iron-sulfur complex is dissolved in the electrolytic solution, and this is immobilized on the positive electrode by charging, and further, reversibly reacts with lithium by subsequent discharging and charging. In contrast to Comparative Example 2, since the iron-sulfur complex was not dissolved in the electrolytic solution, it could be said that the battery did not become a secondary battery.

本発明のリチウム硫黄電池は、主に電気化学産業に利用可能であり、例えばハイブリッド車や電気自動車の動力源、携帯電話やパソコンなど民生用家電機器の電源、ロードレベリング(負荷平準化)などへの電気化学的デバイスに利用することができる。   The lithium-sulfur battery of the present invention can be used mainly in the electrochemical industry, for example, as a power source for hybrid vehicles and electric vehicles, as a power source for consumer electronics such as mobile phones and personal computers, and load leveling (load leveling). It can be used for electrochemical devices.

評価セル10の断面図である。2 is a cross-sectional view of an evaluation cell 10. FIG. 実施例1の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of Example 1. FIG. 実施例2の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of Example 2. FIG. 実施例3の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of Example 3. FIG. 実施例4の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of Example 4. 比較例1の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of the comparative example 1. 比較例2の放充電容量の変化を表すグラフである。It is a graph showing the change of the charging / discharging capacity | capacitance of the comparative example 2.

符号の説明Explanation of symbols

10 評価セル、12 円筒基体、14 キャビティ、16 負極、18 セパレータ、20 正極、22 リング、24 円柱、25 加圧ボルト、25a 貫通孔、26 蓋、26a 開口、27 絶縁用樹脂リング、28 パッキン。 DESCRIPTION OF SYMBOLS 10 Evaluation cell, 12 Cylindrical base | substrate, 14 Cavity, 16 Negative electrode, 18 Separator, 20 Positive electrode, 22 Ring, 24 Cylinder, 25 Pressure bolt, 25a Through-hole, 26 Lid, 26a Opening, 27 Insulating resin ring, 28 Packing.

Claims (6)

ニッケル及びコバルトのうち少なくとも1つの金属元素を含む正極と、
リチウムイオンを吸蔵放出する材料を含む負極と、
リチウムイオンを含む非水電解質と、
を備え、
前記正極及び前記非水電解質の少なくとも一方に遷移金属−硫黄錯体を含む、
リチウム硫黄電池。
A positive electrode containing at least one metal element of nickel and cobalt;
A negative electrode containing a material that occludes and releases lithium ions;
A non-aqueous electrolyte containing lithium ions;
With
Including a transition metal-sulfur complex in at least one of the positive electrode and the non-aqueous electrolyte,
Lithium sulfur battery.
前記正極は、発泡ニッケルを用いたものである、
請求項1に記載のリチウム硫黄電池。
The positive electrode uses nickel foam,
The lithium sulfur battery according to claim 1.
前記正極は、カーボンブラックの表面にニッケルを付けたものである、
請求項1に記載のリチウム硫黄電池。
The positive electrode is obtained by adding nickel to the surface of carbon black.
The lithium sulfur battery according to claim 1.
前記遷移金属は、鉄、ニッケル及びコバルトからなる群より選ばれた少なくとも1つである、
請求項1〜3のいずれか1項に記載のリチウム硫黄電池。
The transition metal is at least one selected from the group consisting of iron, nickel and cobalt.
The lithium sulfur battery according to any one of claims 1 to 3.
前記遷移金属−硫黄錯体は、遷移金属イオンにS2x2x(xは1〜5のいずれかの整数)が配位した構造を持つものである、
請求項1〜4のいずれか1項に記載のリチウム硫黄電池。
The transition metal-sulfur complex has a structure in which S 2 C x H 2x (x is an integer of 1 to 5) is coordinated to a transition metal ion.
The lithium sulfur battery according to any one of claims 1 to 4.
前記遷移金属−硫黄錯体は、対イオンとしてアルカリ金属イオン、アルカリ土類金属イオン又はアンモニウムイオンを持つものである、
請求項1〜5のいずれか1項に記載のリチウム硫黄電池。
The transition metal-sulfur complex has an alkali metal ion, an alkaline earth metal ion or an ammonium ion as a counter ion.
The lithium sulfur battery according to any one of claims 1 to 5.
JP2007242543A 2007-09-19 2007-09-19 Lithium-sulfur battery Pending JP2009076260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242543A JP2009076260A (en) 2007-09-19 2007-09-19 Lithium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242543A JP2009076260A (en) 2007-09-19 2007-09-19 Lithium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2009076260A true JP2009076260A (en) 2009-04-09

Family

ID=40611049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242543A Pending JP2009076260A (en) 2007-09-19 2007-09-19 Lithium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2009076260A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9105938B2 (en) 2008-08-05 2015-08-11 Sion Power Corporation Application of force in electrochemical cells
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US9819010B2 (en) 2013-03-12 2017-11-14 Sony Corporation Secondary cell, method for manufacturing secondary cell, positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, battery pack, electronic device, and electric vehicle
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
CN112928255A (en) * 2021-01-25 2021-06-08 合肥工业大学 Lithium-sulfur battery composite positive electrode material and preparation method and application thereof
CN114420926A (en) * 2022-01-19 2022-04-29 湖北亿纬动力有限公司 Positive host material and preparation method and application thereof
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US10320027B2 (en) 2008-08-05 2019-06-11 Sion Power Corporation Application of force in electrochemical cells
US11735761B2 (en) 2008-08-05 2023-08-22 Sion Power Corporation Application of force in electrochemical cells
US11121397B2 (en) 2008-08-05 2021-09-14 Sion Power Corporation Application of force in electrochemical cells
US9105938B2 (en) 2008-08-05 2015-08-11 Sion Power Corporation Application of force in electrochemical cells
US11108076B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
US11108077B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
US9780404B2 (en) 2008-08-05 2017-10-03 Sion Power Corporation Application of force in electrochemical cells
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US10312545B2 (en) 2008-08-05 2019-06-04 Sion Power Corporation Application of force in electrochemical cells
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US9819010B2 (en) 2013-03-12 2017-11-14 Sony Corporation Secondary cell, method for manufacturing secondary cell, positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, battery pack, electronic device, and electric vehicle
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US11784297B2 (en) 2017-05-19 2023-10-10 Sion Power Corporation Passivating agents for electrochemical cells
US11929523B2 (en) 2019-11-19 2024-03-12 Sion Power Corporation Batteries, and associated systems and methods
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
CN112928255A (en) * 2021-01-25 2021-06-08 合肥工业大学 Lithium-sulfur battery composite positive electrode material and preparation method and application thereof
CN112928255B (en) * 2021-01-25 2022-05-06 合肥工业大学 Lithium-sulfur battery composite positive electrode material and preparation method and application thereof
CN114420926A (en) * 2022-01-19 2022-04-29 湖北亿纬动力有限公司 Positive host material and preparation method and application thereof
CN114420926B (en) * 2022-01-19 2024-03-15 湖北亿纬动力有限公司 Positive electrode host material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2009076260A (en) Lithium-sulfur battery
JP6071389B2 (en) Lithium secondary battery
JP5290247B2 (en) Electrolytic solution for lithium battery, lithium battery, and operating method of lithium battery
US8415074B2 (en) Nonaqueous electrolyte battery
CN109524605A (en) Mixed metal organic frame diaphragm for electrochemical cell
JP2011181528A (en) Secondary battery in which lithium ion mobility and battery capacity are improved
KR101730955B1 (en) Cathode and lithium battery using same
JP5099168B2 (en) Lithium ion secondary battery
KR20150126820A (en) Lithium ion secondary battery
JPWO2010073332A1 (en) Lithium air battery
JP6365305B2 (en) Lithium secondary battery
WO2001028027A1 (en) Non-aqueous electrochemical device
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
KR20180086601A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP5851801B2 (en) Lithium secondary battery
JP2012164480A (en) Battery
CN103178244A (en) Hybrid energy storage element
KR101044561B1 (en) Anode material and battery using the same
JPWO2005027254A1 (en) Non-aqueous electrolyte containing additive for improving capacity of lithium-ion battery and lithium-ion battery using the same
JP2005018998A (en) Negative electrode material and battery using the same
JP2013186972A (en) Nonaqueous electrolyte secondary battery
JP6846757B2 (en) Electrode active material for secondary batteries and secondary batteries using it
US20210210781A1 (en) Specific electrochemical cell for accumulator operating according to the principle of forming an alloy with the active material of the negative electrode comprising a specific pair of electrodes
JP2009064584A (en) Nonaqueous electrolyte battery
CN101494285B (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material