WO2009087055A1 - Mikromechanischer drucksensor - Google Patents

Mikromechanischer drucksensor Download PDF

Info

Publication number
WO2009087055A1
WO2009087055A1 PCT/EP2008/068146 EP2008068146W WO2009087055A1 WO 2009087055 A1 WO2009087055 A1 WO 2009087055A1 EP 2008068146 W EP2008068146 W EP 2008068146W WO 2009087055 A1 WO2009087055 A1 WO 2009087055A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
pressure sensor
reinforcements
frame
sensor according
Prior art date
Application number
PCT/EP2008/068146
Other languages
English (en)
French (fr)
Inventor
Geert Brokmann
Original Assignee
CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH filed Critical CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH
Priority to EP08869465A priority Critical patent/EP2235491A1/de
Publication of WO2009087055A1 publication Critical patent/WO2009087055A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
    • G01L9/0025Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element with acoustic surface waves

Definitions

  • the invention relates to a micromechanical pressure sensor with a substrate and a membrane, on which piezoelectric sensor elements are located.
  • the invention can preferably be used for pressure measurements with frequently changing loads.
  • JP 61-82130 for example, a pressure sensor device is described, which detects pressure fluctuations of a gas or a liquid and converts it into electrical signals.
  • a device is used which detects fluctuations in the applied pressure as changes in the oscillation frequency of a sensor part.
  • DE 11 2004 002 281 T5 specifies an arrangement for pressure measurement, in which a sensor substrate contains on its lower surface a surface acoustic wave element for detecting pressure, which is fastened on a carrier substrate.
  • the surface acoustic wave element is hermetically sealed in the sealed space for pressure detection.
  • the invention has for its object to provide a pressure sensor of the type mentioned, which has small dimensions and are largely avoided in the Torsionsbe screw.
  • the invention also relates to combinations of features in which the individual features specified in the description and / or in the claims are combined with one another as desired.
  • the pressure sensor has a substrate with a frame on which the membrane is arranged. At the bottom of the membrane is a centrally located mass element. This allows small dimensions of the arrangement.
  • the strip-shaped sections of the membrane, which are located between frame and mass element, are each provided with two partial reinforcements. This achieves both a high level of safety against torsional stresses and also reduces nonlinearities of the pressure-deflection dependence.
  • the piezoelectric sensors are located in the reinforcements.
  • An advantageous embodiment provides that the reinforcements are mounted symmetrically in each case to the right and left of the middle of the strip-shaped sections.
  • the strip-shaped reinforcements are arranged at the corners of the mass element.
  • a further advantageous embodiment results from the fact that the piezoelectric zones in the membrane are connected to a Wheatstone measuring bridge, with which the pressure-dependent deflection of the membrane is detected.
  • the double arrangement of the stiffeners allows the piezoelectric zones in the membrane to be connected to two Wheatstone bridges. This can also be compensated for temperature differences in the measurement.
  • FIG. 1 shows a perspective view of a detail of an arrangement with eccentric reinforcement of the membrane
  • FIG. 2 shows a perspective view of a detail of an arrangement with reinforcement of the membrane at the corners
  • Figure 3 is a schematic representation of a measuring bridge circuit.
  • the arrangement shown in Figure 1 consists of a substrate which includes a rectangular frame 1, on the upper side of a membrane 2 is arranged. At the bottom of the membrane 2 is a centrally disposed mass element 3 with a rectangular cross-section.
  • the membrane 2 is provided with piezoelectric sensor elements. These are diffused in the edge region of the membrane 2 in this.
  • the strip-shaped sections of the membrane 2, which are located between the frame and mass element 3, are provided with two partial reinforcements 2.1 and 2.2. These reinforcements 2.1, 2.5 or 2.2 and 2.6 or 2.3 and 2.7 or 2.4 and 2.8 are mounted symmetrically to the right and left of the middle of the strip-shaped sections.
  • a measuring bridge circuit is shown schematically.
  • Each of the eight reinforcements 2.1 ... 2.8 contains piezoelectric sensor elements.
  • a piezoelectric sensor element of a reinforcement 2.1, 2.2, 2.3 and 2.4 located in a strip forms a resistance element of a measuring bridge.
  • a second measuring bridge can be formed from the piezoelectric sensor elements located in the gains 2.5, 2.6, 2.7 and 2.8.
  • Both Measuring bridges each contain a resistance element which is assigned to one of the four strip-shaped membrane sections.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft einen mikromechanischen Drucksensor mit einem Substrat und einer Membran, an der sich piezoelektrische Sensorelemente befinden. Der Erfindung liegt die Aufgabe zugrunde, einen Drucksensor zu schaffen, der geringe Abmessungen aufweist und bei dem Torsionsbeanspruchungen der Membran weitgehend vermieden werden. Erfindungsgemäß wird die Aufgabe mit einer Anordnung gelöst, bei der das Substrat einen Rahmen (1) aufweist, an dem die Membran (2) angeordnet ist, wobei sich an der Unterseite der Membran (2) ein zentral angeordnetes Masseelement (3) befindet und die Membran (2) an streifenförmigen Abschnitten, die sich zwischen Rahmen 1 und Masseelement (3) befinden, mit jeweils zwei partiellen Verstärkungen (2.1, 2.2) versehen ist.

Description

Mikromechanischer Drucksensor
Die Erfindung betrifft einen mikromechanischen Drucksensor mit einem Substrat und einer Membran, an der sich piezoelektrische Sensorelemente befinden.
Die Erfindung ist vorzugsweise für Druckmessungen mit häufig wechselnden Belastungen einsetzbar.
Im Stand der Technik sind verschiedene mikromechanische Anordnungen zur Druckmessung bekannt.
In JP 61-82130 wird beispielsweise eine Drucksensorvorrichtung beschrieben, die Druckschwankungen eines Gases oder einer Flüssigkeit erkennt und in elektrische Signale umwandelt. Dabei wird eine Einrichtung verwendet, die Schwankungen des aufgebrachten Drucks als Änderungen der Oszillationsfrequenz eines Sensorteils erkennt.
Ferner ist in DE 11 2004 002 281 T5 eine Anordnung zur Druckmessung angegeben, bei der ein Sensorsubstrat auf seiner unteren Oberfläche ein oberflächenakustisches Wellenelement zur Druckerkennung enthält, welches auf einem Trägersubstrat befestigt ist. Das oberflächenakustische Wellenelement ist zur Druckerkennung hermetisch in dem abgedichteten Raum eingeschlossen.
Der Erfindung liegt die Aufgabe zugrunde, einen Drucksensor der eingangs genannten Art zu schaffen, der geringe Abmessungen aufweist und bei dem Torsionsbeanspruchungen der Membran weitgehend vermieden werden.
Erfindungsgemäß wird die Aufgabe mit einer Anordnung gelöst, welche die in Anspruch 1 angegebenen Merkmale enthält. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Gegenstand der Erfindung sind auch Merkmalskombinationen bei denen die in der Beschreibung und/oder in den Ansprüchen angegebenen Einzelmerkmale beliebig miteinander kombiniert werden.
Der Drucksensor weist ein Substrat mit einem Rahmen auf, an dem die Membran angeordnet ist. An der Unterseite der Membran befindet sich ein zentral angeordnetes Masseelement. Damit werden geringe Abmessungen der Anordnung ermöglicht. Die streifenförmigen Abschnitte der Membran, die sich zwischen Rahmen und Masseelement befinden, sind jeweils mit zwei partiellen Verstärkungen versehen. Damit werden sowohl eine hohe Sicherheit gegenüber Torsionsbeanspruchungen erreicht als auch Nichtlinearitäten der Druck-Auslenkungs-Abhängigkeit verringert. Zweckmäßigerweise befinden sich die piezoelektrischen Sensoren in den Verstärkungen.
Eine vorteilhafte Ausführung sieht vor, dass die Verstärkungen symmetrisch jeweils rechts und links der Mitte der streifenförmigen Abschnitte angebracht sind.
Ferner ist es möglich, dass die streifenförmigen Verstärkungen an den Ecken des Masseelementes angeordnet sind.
Eine weitere vorteilhafte Ausführung entsteht dadurch, dass die piezoelektrischen Zonen in der Membran zu einer Wheatstonschen Messbrücke geschaltet sind, mit der die druckabhängige Auslenkung der Membran erfasst wird.
Die zweifache Anordnung der Versteifungen ermöglicht es, dass die piezoelektrischen Zonen in der Membran zu zwei Wheatstonschen Messbrücken geschaltet sind. Damit können auch Temperaturunterschiede bei der Messung kompensiert werden.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispieles näher erläutert. In den zugehörigen Zeichnungen zeigen:
Figur 1 eine perspektivische Ansicht eines Ausschnittes auf eine Anordnung mit außermittiger Verstärkung der Membran,
Figur 2 eine perspektivische Ansicht eines Ausschnittes auf eine Anordnung mit Verstärkung der Membran an den Ecken,
und
Figur 3 eine schematische Darstellung einer Messbrückenschaltung.
Die in Figur 1 dargestellte Anordnung besteht aus einem Substrat, welches einen rechteckförmigen Rahmen 1 enthält, an dessen Oberseite eine Membran 2 angeordnet ist. An der Unterseite der Membran 2 befindet sich ein zentral angeordnetes Masseelement 3 mit rechteckigem Querschnitt. Die Membran 2 ist mit piezoelektrischen Sensorelementen versehen. Diese sind im Randbereich der Membran 2 in diese eindiffundiert. Die streifenförmigen Abschnitte der Membran 2, die sich zwischen Rahmen und Masseelement 3 befinden, sind mit jeweils zwei partiellen Verstärkungen 2.1 und 2.2 versehen. Diese Verstärkungen 2.1, 2.5 oder 2.2 und 2.6 o- der 2.3 und 2.7 oder 2.4 und 2.8 sind symmetrisch rechts und links der Mitte der streifenförmigen Abschnitte angebracht.
Bei der in Figur 2 gezeigten Ausführung befinden sich die Verstärkungen 2.1 ... 2.8 der streifenförmigen Abschnitte an den Ecken des Massenelementes.
In Figur 3 ist eine Messbrückenschaltung schematisch dargestellt. In jedem der acht Verstärkungen 2.1 ... 2.8 befinden sich piezoelektrische Sensorelemente. Dabei bildet jeweils ein piezoelektrisches Sensorelement aus einer sich in einem Streifen befindenden Verstärkung 2.1, 2.2, 2.3 und 2.4 ein Widerstandselement einer Messbrücke. Eine zweite Messbrücke kann aus den piezoelektrischen Sensorelementen gebildet werden, die sich in den Verstärkungen 2.5, 2.6, 2.7 und 2.8 befinden. Beide Messbrücken enthalten je ein Widerstandselement, welches einem der vier streifenförmigen Membranabschnitten zugeordnet ist.
B E Z U G S Z E I C H E N L I S T E
1 Rahmen
2 Membran 2.1...2.8 Verstärkung
3 Masseelement

Claims

PATENTANSPRÜCHE
1. Mikromechanischer Drucksensor mit einem Substrat und einer Membran (2), an der sich piezoelektrische Sensorelemente befinden, dadurch gekennzeichnet, dass das Substrat einen Rahmen (1) aufweist, an dem die Membran (2) angeordnet ist, wobei sich an der Unterseite der Membran (2) ein zentral angeordnetes Masseelement (3) befindet und die Membran (2) an streifenförmigen Abschnitten, die sich zwischen Rahmen 1 und Masseelement (3) befinden, mit jeweils zwei partiellen Verstärkungen (2.1, 2.2) versehen ist.
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, dass der Rahmen 1 einen rechteckigen Querschnitt aufweist.
3. Drucksensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die piezoelektrischen Sensoren sich in den Verstärkungen (2.1 ... 2.8) befinden.
4. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungen (2.1 ... 2.8) symmetrisch rechts und links der Mitte der streifenförmigen Abschnitte angebracht sind.
5. Drucksensor nach Anspruch 4, dadurch gekennzeichnet, dass die streifenförmigen Verstärkungen (2.1 ... 2.8) an den Ecken des Masseelementes (3) angeordnet sind.
6. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die piezoelektrischen Zonen in der Membran (2) zu einer Wheatstonschen Messbrücke geschaltet sind, mit der die druckabhängige Auslenkung der Membran (2) erfasst wird. Drucksensor nach Anspruch 6, dadurch gekennzeichnet, dass die piezoelektrischen Zonen in der Membran (2) zu zwei Wheatstonschen Messbrücken geschaltet sind.
PCT/EP2008/068146 2008-01-09 2008-12-22 Mikromechanischer drucksensor WO2009087055A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08869465A EP2235491A1 (de) 2008-01-09 2008-12-22 Mikromechanischer drucksensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008003716.8 2008-01-09
DE102008003716A DE102008003716A1 (de) 2008-01-09 2008-01-09 Mikromechanischer Drucksensor

Publications (1)

Publication Number Publication Date
WO2009087055A1 true WO2009087055A1 (de) 2009-07-16

Family

ID=40490591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/068146 WO2009087055A1 (de) 2008-01-09 2008-12-22 Mikromechanischer drucksensor

Country Status (3)

Country Link
EP (1) EP2235491A1 (de)
DE (1) DE102008003716A1 (de)
WO (1) WO2009087055A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117105A3 (de) * 2010-03-26 2011-11-17 Elmos Semiconductor Ag Mikroelektromechanische vorrichtung und ihre verwendung
WO2012171747A1 (de) * 2011-06-14 2012-12-20 Endress+Hauser Gmbh+Co. Kg Interferometrische druckmesszelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520304B1 (de) * 2018-03-21 2019-03-15 Piezocryst Advanced Sensorics Drucksensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182130A (ja) 1984-09-28 1986-04-25 Shimadzu Corp 表面弾性波圧力センサ
DE112004002281T5 (de) 2003-11-27 2006-10-26 Kyocera Corp. Drucksensorvorrichtung
WO2007073994A1 (de) 2005-12-22 2007-07-05 Robert Bosch Gmbh Mikromechanisches sensorelement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780532A (en) * 1980-11-07 1982-05-20 Hitachi Ltd Semiconductor load converter
DD267107A1 (de) * 1987-12-23 1989-04-19 Teltov Geraete Regler Drucksensor fuer kleine nenndruecke
DD285831A5 (de) * 1989-07-11 1991-01-03 Veb Geraete- Und Regler-Werke Teltow,Betrieb Des Veb Kombinat,Dd Drucksensor fuer kleine druecke
US5068203A (en) * 1990-09-04 1991-11-26 Delco Electronics Corporation Method for forming thin silicon membrane or beam
US6255728B1 (en) * 1999-01-15 2001-07-03 Maxim Integrated Products, Inc. Rigid encapsulation package for semiconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182130A (ja) 1984-09-28 1986-04-25 Shimadzu Corp 表面弾性波圧力センサ
DE112004002281T5 (de) 2003-11-27 2006-10-26 Kyocera Corp. Drucksensorvorrichtung
WO2007073994A1 (de) 2005-12-22 2007-07-05 Robert Bosch Gmbh Mikromechanisches sensorelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2235491A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117105A3 (de) * 2010-03-26 2011-11-17 Elmos Semiconductor Ag Mikroelektromechanische vorrichtung und ihre verwendung
US8916944B2 (en) 2010-03-26 2014-12-23 Elmos Semiconductor Ag Stress-sensitive micro-electromechanical device and use thereof
WO2012171747A1 (de) * 2011-06-14 2012-12-20 Endress+Hauser Gmbh+Co. Kg Interferometrische druckmesszelle

Also Published As

Publication number Publication date
DE102008003716A1 (de) 2009-07-30
EP2235491A1 (de) 2010-10-06

Similar Documents

Publication Publication Date Title
EP1797603B1 (de) Sensorelement mit zumindest einem messelement, welches piezoelektrische und pyroelektrische eigenschaften aufweist
DE102011076008B4 (de) Kraftaufnehmer, insbesondere Wägezelle
EP1494004B1 (de) Differenzdrucksensor
WO2009077263A1 (de) Drehratensensor und verfahren zum betrieb eines drehratensensors
DE60008304T2 (de) Scherkraftlastzelle
EP3499199A1 (de) Wim sensor und verfahren zur herstellung des wim sensors
WO2009087055A1 (de) Mikromechanischer drucksensor
WO2012031961A1 (de) Lastmesseinrichtung für eine aufzugsanlage
DE102009031705A1 (de) Mikromechanischer Drucksensor
DE19743288A1 (de) Mikromechanischer Sensor
EP0896658B1 (de) Mikromechanischer druck- und kraftsensor
DE3740688C2 (de)
EP0950884A1 (de) Kapazitiver Sensor
DE102004028979A1 (de) Fahrzeuggewicht-Messvorrichtung
WO2017071861A1 (de) Messaufnehmer mit einer zu schwingungen anregbaren messleitung und versteifungsstegen
DE3701372C2 (de)
WO2000028293A1 (de) Kapazitiver messaufnehmer und betriebsverfahren
DE19858828A1 (de) Kapazitiver Sensor
DE10049462A1 (de) Verfahren und Vorrichtung zum elektrischen Nullpunktabgleich für ein mikromechanisches Bauelement
DE19601077C2 (de) Kraftsensor
DE102007002593A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
WO2000026608A2 (de) Verformungsmesser
DE2715339B2 (de) Kontinuierlich abtastbare Druckmeßdose für barometrische oder manometrische Zwecke
DE4139439A1 (de) Kraftsensor
DE10114481B4 (de) Verfahren und Vorrichtung zur dynamischen Messung der Achslast oder des Gewichts von Fahrzeugen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008869465

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE