WO2009086671A1 - Ldpc码的编码方法和编码设备 - Google Patents

Ldpc码的编码方法和编码设备 Download PDF

Info

Publication number
WO2009086671A1
WO2009086671A1 PCT/CN2007/003962 CN2007003962W WO2009086671A1 WO 2009086671 A1 WO2009086671 A1 WO 2009086671A1 CN 2007003962 W CN2007003962 W CN 2007003962W WO 2009086671 A1 WO2009086671 A1 WO 2009086671A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection point
check
matrix
bit
code
Prior art date
Application number
PCT/CN2007/003962
Other languages
English (en)
French (fr)
Inventor
Wenming Liu
Original Assignee
Alcatel Shanghai Bell Co., Ltd.
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Shanghai Bell Co., Ltd., Alcatel Lucent filed Critical Alcatel Shanghai Bell Co., Ltd.
Priority to CN2007801020458A priority Critical patent/CN101911503A/zh
Priority to PCT/CN2007/003962 priority patent/WO2009086671A1/zh
Publication of WO2009086671A1 publication Critical patent/WO2009086671A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a low density parity check code
  • the coding method and equipment of (LDPC) can save the storage capacity of the transmitter and receiver, which is easy to implement in hardware.
  • LDPC low density parity check code
  • One area of interest is to reduce randomness when constructing the parity check matrix H.
  • a semi-random parity check matrix is introduced, which performs better in reducing the randomness of H and providing a simple coding structure.
  • the matrix can be stored in a memory for the transmitter and receiver.
  • the LDPC code is defined by a matrix H of in times n, where n is the length of the code and m is the number of parity bits in the code.
  • the matrix H is derived from a 13 ⁇ 4 multiplied binary basis matrix, where WA z is an integer.
  • the matrix H is extended by replacing each 1 in the base matrix with a 2 by 2 permutation matrix and replacing each 0 with a 2 by 2 zero matrix extension.
  • the permutations used are cyclically shifted right, and the set of permutation matrices contains a 2 by 2 unit matrix, and a cyclic right shift version of the identity matrix. Since each permutation matrix is specified by a single cyclic right shift, the binary base matrix information and the permutation replacement information can be combined into a single compressed model matrix. The same size as the binary base matrix H b , the base matrix Each of the binary elements in column i of row i, ie element (i, j), is replaced to create the model matrix H bra .
  • Each 0 of 3 ⁇ 4 is replaced by a blank or a negative value (e.g., -1) to represent a 2 by 2 all-zero matrix, and each of 1 is replaced by a cyclic shift size P (i, j) 0.
  • the model matrix can then be extended directly to H. Random selection can be made according to certain rules.
  • H b must be stored in the memory of the transmitter and receiver.
  • the present invention has been proposed. Accordingly, it is an object of the present invention to provide a low density parity check code (LDPC) encoding method and apparatus which can save storage capacity of a transmitter and a receiver and facilitate hardware implementation.
  • LDPC low density parity check code
  • a coding method of a low density parity check code LDPC comprising: using an iterative method to obtain a connection between a bit connection point and a check connection point in a bidirectional map. a permutation vector of the relationship; and generating a parity check matrix H using the permutation vector to generate an LDPC code.
  • connection relationship is determined by a plurality of parameters including a code length of 1!, a number of system bits k, a parameter, a parameter b, and an initial check connection point position ⁇ . .
  • the plurality of parameters are stored in a memory of the transmitter and the receiver.
  • the LPDC code is a regular LDPC code of ( ⁇ , 7).
  • the binary basis matrix corresponding to the parity check matrix H is decomposed into sub-matrices H bl and H b2 , wherein the sub-matrices H b2 are double diagonal matrices.
  • connection relationship between the bit connection point and the check connection point in the bidirectional map is expressed by:
  • a M ⁇ aA t +6) mod where Ai represents the position of the check connection point connected to the i-th bit connection point, and the position of the check connection point connected to the i+1th bit connection point, M4k b , k b is the number of columns of the submatrix H bl .
  • the set of bit connection points ⁇ , + ⁇ , ⁇ , + ⁇ - 1 ⁇ is related to the i-th bit node 07 003962, and the set of check connection points ⁇ ⁇ ⁇ + ⁇ , ⁇ , ⁇ + ⁇ -1 ⁇ is connected to the jth check node 0 '
  • a low density parity is also proposed.
  • An encoding device of a check code LDPC comprising: an obtaining device, using an iterative method to acquire a permutation vector reflecting a connection relationship between a bit connection point and a check connection point in the bidirectional map; and generating means using the permutation vector
  • a parity check matrix H is generated to generate an LDPC code.
  • FIG. 1 is a schematic view showing a bidirectional map applied to the present invention
  • FIG. 2 is a flow chart showing a coding method of an LDPC code according to the present invention
  • FIG. 3 is a graph showing a performance comparison of an encoding method of an LDPC code and a conventional encoding method according to the present invention.
  • the basic idea of the invention is to save the memory of the transmitter and receiver.
  • the parity check matrix H can be generated using a determined method, and the parity check matrix H can be determined only by some parameters. In this method, a recursive method is used to construct a single transform vector needed to define the matrix H.
  • the matrix H can be determined only by some parameters and does not have to be completely stored in the memory of the transmitter and receiver.
  • the LDPC code is defined by a matrix H of m times n, where n is the length of the code and m is the number of parity bits in the code.
  • the base matrix is extended by replacing each 1 in the base matrix with a 2 by 2 permutation matrix and replacing each 0 with a 2 by 2 zero matrix extension.
  • H b can be divided into two parts, where corresponds to the system bit, and H b2 corresponds to the parity bit, thus H 6
  • H b2 submatrix is in a double diagonal mode.
  • An example of the H b2 submatrix is as follows:
  • the regular LDPC code of (L, ) has a graphical representation in which each bit node is connected to ⁇ edges and each check node is connected to one edge.
  • Each check node has one check connection point, and each bit node has ⁇ bit connection points.
  • Each check node is connected to one bit connection point by ⁇ edges, and each bit node is connected to ⁇ check connection points through ⁇ edges.
  • the upper portion of ⁇ bit 1 is connected to the connection point of FIG parity ⁇ ⁇ connection points of the lower portion of FIG. 1. It should be noted that the ⁇ -bit connection point in the upper part of Figure 1 belongs to the
  • Lwi is a bit node
  • the qth check connection point in the lower part of Fig. 1 belongs to the check node.
  • the bit connection point set ⁇ , ⁇ ' ⁇ + ⁇ , ⁇ , + ⁇ - ⁇ is connected to the i-th bit node
  • the check connection point set ⁇ ⁇ + 1, ⁇ , ' + ⁇ -1 ⁇ is connected to the jth check node.
  • the main thing to note is the relationship between the bit connection point and the actual bit node in the figure. It can be noted that the edge between the p-th bit connection point and the A Pth check connection point represents the edge between the ⁇ /" bit node and the ⁇ p / d check nodes.
  • a M (aA t +b) mod MQ ⁇ i ⁇ M ⁇ 2 0 ⁇ ⁇ . ⁇ A - 1 where ⁇ and b satisfy the following conditions and ⁇ is any integer between 0 and M-i: Bl. a ⁇ M , b ⁇ M ⁇ '
  • the resulting bidirectional map does not have a loop of length 2 or 4.
  • FIG. 6 is not H bidirectional length of the ring 4, and for b may be selected to add the following additional constraints:
  • FIG. 2 is a flow chart showing a coding method of an LDPC code according to the present invention.
  • step 201 an iterative method is used to acquire a permutation vector reflecting a connection relationship between a bit connection point and a check connection point in the bidirectional map.
  • step 203 the parity check matrix H is generated using the permutation vector, thereby generating an LDPC code.
  • a recursive method can be used to construct a single permutation vector needed to define H.
  • the parity check matrix can be dynamically generated in the decoder and encoder without having to store the entire matrix in memory, which facilitates the hardware implementation of the decoder.
  • the encoding process is simpler than full Gaussian estimation and greatly reduces coding complexity.
  • the present invention can save storage capacity of the transmitter and receiver.
  • H b 3 ⁇ 4 13 ⁇ 4 matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Description

LDPC码的编码方法和编码设备 技术领域
本发明涉及无线通信领域, 具体地, 涉及一种低密度奇偶校验码
(LDPC) 的编码方法和设备, 能够节省发射机和接收机的存储量, 便 于硬件实现。 背景技术
在过去的十年间, 在差错控制编码时已经进行了大量的实质性的 改进。从 1993年引入 turbo码开始,接下来的注意力转移到低密度奇偶 校验码 (LDPC)。 所关注的一个领域为在构造奇偶校验矩阵 H时降低随 机性。半随机奇偶校验矩阵得到引入,其在降低 H的随机性和提供简单 的编码结构方面表现得较好。如所公知的,对于半随机奇偶校验矩阵, 可以将矩阵存储在用于发射机和接收机的存储器中。
LDPC码由 in乘 n的矩阵 H来定义, 其中 n是码的长度而 m是码中的奇 偶校验位的数量。 系统位的数量为 k=n - m
将矩阵 H定义为
Figure imgf000003_0001
p
* PUn„-2
Ρ
1 2,2 2,»i-2 A, "
其中, 是 2乘2的置换矩阵和 z乘 z的零矩阵的集合中的一个。矩 阵 H是从 1¾乘 的二元基矩阵 扩展而来的, 其中 和 W A z 是整数。 矩阵 H是通过将基矩阵中的每一个 1替换为 22的置换矩阵且 将每一个 0替换为 22的零矩阵扩展而来的。
所使用的置换是循环右移的, 并且置换矩阵的集合包含 2乘2的单 位矩阵、 以及单位矩阵的循环右移版本。 因为每一个置换矩阵由单个 的循环右移指定, 可以将二元基矩阵信息和置换替换信息组合到单个 的压縮模型矩阵 ¾„。 与二元基矩阵 Hb具有相同的大小, 对基矩阵 的每一个位于第 i行第 j列的二进制元素, 即元素(i, j), 进行替换来 创建该模型矩阵 Hbra。 ¾中的每一个 0由空白或负值(例如 -1) 来替换以 表示 2乘2的全零矩阵, 而 中的每一个 1由循环移位大小 P(i, j) 0来 替换。 然后, 可以将该模型矩阵 直接扩展为 H。 可以根据某种规则 来对 „进行随机选择。
在该传统方法中, 必须将 Hb存储在发射机和接收机的存储器中。 发明内容
为了克服现有技术的缺陷, 提出了本发明。 因此, 本发明的一个 目的是提出一种低密度奇偶校验码 (LDPC) 的编码方法和设备, 能够 节省发射机和接收机的存储量, 便于硬件实现。
为了实现上述目的, 根据本发明, 提出了一种低密度奇偶校验码 LDPC的编码方法, 所述方法包括: 利用迭代方法来获取反映双向图中 位连接点和校验连接点之间的连接关系的置换矢量; 以及利用置换矢 量来生成奇偶校验矩阵 H, 从而生成 LDPC码。
优选地, 所述连接关系由多个参数来确定, 所述多个参数包括码 长1!、 系统位的数量 k、 参数 、 参数 b和初始校验连接点位置 Α。。
优选地, 所述多个参数存储在发射机和接收机的存储器中。
优选地, 所述 LPDC码为(Α, 7)的规则 LDPC码。
优选地,与奇偶校验矩阵 H相对应的二元基矩阵 分解为子矩阵 Hbl 和 Hb2, 其中子矩阵 Hb2是双对角矩阵。
优选地, 双向图中位连接点和校验连接点之间的连接关系由下式 来表达:
AM = {aAt +6)mod 其中, Ai表示与第 i个位连接点连接的校验连接点位置, 而 示与第 i+1个位连接点连接的校验连接点位置, M4kb, kb是子矩阵 Hbl的列数。 优选地, 位连接点集合 { , +ι,···, + ι- 1}与第 i个位节点相 07 003962 连, 而校验连接点集合 { Α Ρ+ Ι,···, Ρ+ Ρ- 1}与第 j个校验节点相 连0 ' 另外, 根据本发明, 还提出了一种低密度奇偶校验码 LDPC的编码 设备, 所述设备包括: 获取装置, 利用迭代方法来获取反映双向图中 位连接点和校验连接点之间的连接关系的置换矢量; 以及生成装置, 利用置换矢量来生成奇偶校验矩阵 H, 从而生成 LDPC码。 附图说明
图 1是示出了应用于本发明的双向图的示意图;
图 2是示出了根据本发明的 LDPC码的编码方法的流程图; 以及 图 3是示出了根据本发明的 LDPC码的编码方法和传统编码方法的 性能比较的曲线图。 具体实施方式
下面将结合附图来描述本发明的实施例。
本发明的基本思想是节省发射机和接收机的存储器。 可以利用确 定的方法来产生奇偶校验矩阵 H,并且仅一些参数就可以确定奇偶校验 矩阵 H。 在该方法中, 利用递归方法来构造定义矩阵 H所需要的单个置 换矢量。该矩阵 H可以仅由一些参数确定,而不必完全存储在发射机和 接收机的存储器中。
LDPC码由 m乘 n的矩阵 H来定义, 其中 n是码的长度而 m是码中的奇 偶校验位的数量。 系统位的数量为 k = n-m。
将矩阵 H定义为
. ρ
0,0 ^0,2 θΛ 2
.. ρ ρ
Figure imgf000005_0001
ρ
尸 】,o rbb-\,nb-2
其中, P. .是 Ζ乘 Ζ的置换矩阵和 2乘2的零矩阵的集合中的一个。矩 阵 H是从 mb乘 nb的二元基矩阵 扩展而来的, 其中 ^ = ^ 和 z,m , z 是整数。该基矩阵是通过将基矩阵中的每一个 1替换为 2乘2的置换矩阵 且将每一个 0替换为 22的零矩阵扩展而来的。 可以将 Hb分为两个部分, 其中 对应于系统位, 而 Hb2对应于奇偶 校验位, 从而 H6
Figure imgf000006_0001
2是1¾乘 1¾的方阵, Hbl mb乘 kb的矩阵。 Hb2子矩阵是双对角线模式 的。 Hb2子矩阵的一个示例如下:
1 0 0 0 0
1 1 0 0 0
H 0 1 1 0 0
0 0 0 0 1 1
Hbl是稀疏矩阵, 在每一列中有 λ个 1,而在每一行中有 = 个 1, 并且可以被看作规则 LDPC码的奇偶校验矩阵。
( L, )的规则 LDPC码具有图形表示, 其中, 每一个位节点与 λ个 边相连而每一个校验节点与 Ρ个边相连。 每一个校验节点具有 Ρ个校 验连接点,而每一个位节点具有 λ个位连接点。每一个校验节点通过 ^ 个边与 Ρ个位连接点相连, 而每一个位节点通过 λ个边与 λ个校验连 接点相连。 图 1示出了当 λ =3的情况。 因此, 总共存在 Μ = Α. 个位 连接点或校验连接点。将图 1上部的第 Ρ个位连接点与该图 1的下部的第 ΑΡ个校验连接点相连。 应该注意到, 图 1上部的第 ρ个位连接点属于第
Lwi」个位节点, 而图 1下部的第 q个校验连接点属于第 校验节 点。如图 1所示,位连接点集合 { ,ζ'ι+ι,···, + ι-ΐ}与第 i个位节点相 连, 而校验连接点集合 { Α + 1,···, ' + Ρ-1}与第 j个校验节点相 连。 主要的是要注意该图中的位连接点和实际位节点之间的关系。 可 以注意到, 第 p个位连接点和第 AP个校验连接点之间的边表示第 ^/ 」 个位节点和第 μρ / d个校验节点之间的边。 利用以下迭代来产生序列 A,…^^:
AM = (aAt+b) mod M Q≤i≤M~2 0≤^。≤A - 1 其中 Ω和 b满足以下条件并且 ^是 0到 M— i之间的任意整数: Bl. a < M ,b < M ·'
B2. /?与 质;
B3.针对每一个能被 M整除的质数 ρ, (α— 1)是 p的倍数;
如果 是4的倍数, 则 -1)必须是 4的倍数。
Β4. a与 Μ互质; 定义 = (w(。- 1)), 如果以下条件满足:
B5. 1)能被 M整除;
Β6. b>2( -i);
B7. (a-Y)>4b + 2(p-\)
B8. ≥p或者(β— 1)<(Μ//7);
B9.不存在整数 ,其中 l≤/≤p— l, 并使得 (( +l) modZ = 0或者
((a2-l) mod = 0。
则所得到 的双向图不具有长度为 2或 4的环。 为了使 H6的双向图没有长度为 4的环, 对于 和 b的选择可以添 加以下的附加约束:
BIO. 2p-\<b;
Bll. P<^ ;
B12. 2 -l<2b; 由于 2是双对角矩阵, 本发明的编码过程比全高斯估计更为简 单, 且极大地降低了编码复杂度。
在该方案中, 如果给定了参数 n、 k、 a、 b和 Α。, 则可以根据以 上所描述的编码规则来获得奇偶校验矩阵 Η。 图 2是示出了根据本发明的 LDPC码的编码方法的流程图。 如图 2所示, 根据本发明, 在步骤 201, 利用迭代方法来获取反映 双向图中位连接点和校验连接点之间的连接关系的置换矢量。 然后, 在步骤 203, 利用置换矢量来生成奇偶校验矩阵 H, 从而生成 LDPC码。 根据本发明, 提出了通过以一些被称为关键值的整数定义矩阵 H 来对该技术进行改进。根据该关键值, 利用递归方法, 可以构造定义 H 所需要的单个置换矢量。 利用该关键值, 可以在解码器和编码器中动 态地产生奇偶校验矩阵, 而不必将整个矩阵存储在存储器中, 这便于 解码器的硬件实现。 另外, 编码过程比全高斯估计更为简单, 并极大 地降低了编码复杂度。
为了说明本发明的优点, 下面将给出一些仿真。 图 3示出了 [«,b, )] = [73,l l,0]的确定性半规则(432, 216) LDPC码与传统方法得到 的码率为 1/2的 LDPC码在 AWGN信道中的性能比较。两种码具有相等的码 长, 并且都使用 BPSK调制。从图 3中可以看到, 本发明的 LDPC码的性能 好于传统码的性能。 在 BER=le- 6时, SNR的增益大约为 0. 2dB。
如以上所分析的, 本发明可以节省发射机和接收机的存储量。 对 于传统方法, 需要将 1¾乘¾的矩阵 Hb„存储在存储器中。 而对于本发明 的方法, 仅需要将 n、 k、 a、 b和 A。存储在发射机和接收机中, 这极大 地节省了发射机和接收机的存储量。 尽管以上已经结合本发明的优选实施例示出了本发明, 但是本领 域的技术人员将会理解, 在不脱离本发明的精神和范围的情况下, 可 以对本发明进行各种修改、 替换和改变。 因此, 本发明不应由上述实 施例来限定, 而应由所附权利要求及其等价物来限定。

Claims

权 利 要 求
1、 一种低密度奇偶校验码 LDPC的编码方法, 所述方法包括: 利用迭代方法获取反映双向图中位连接点和校验连接点之间的 连接关系的置换矢量; 以及
利用置换矢量来生成奇偶校验矩阵 H, 从而生成 LDPC码。
2、 根据权利要求 1所述的方法, 其特征在于: 所述连接关系由多 个参数来确定, 所述多个参数包括码长 n、 系统位的数量 k、 参数 α、 参数 b和初始校验连接点位置 Α。。
3、 根据权利要求 2所述的方法, 其特征在于所述多个参数存储在 发射机和接收机的存储器中。
4、根据权利要求 2所述的方法,其特征在于所述 LPDC码为(Α,ρ)的 规则 LDPC码。
5、 根据权利要求 4所述的方法, 其特征在于: 与奇偶校验矩阵 H 相对应的二元基矩阵 ¾分解为子矩阵 Hbl和 Hb2, 其中子矩阵 Hb2是双对角 矩阵。
6、 根据权利要求 5所述的方法, 其特征在于: 双向图中位连接点 和校验连接点之间的连接关系由下式来表达:
Al+ = (aAf + Z?)励 d
其中, 八1表示与第 i个位连接点连接的校验连接点位置, 而 Ai+1表 示与第 i+1个位连接点连接的校验连接点位置, M = A . kb , kb是子矩阵 ¾,的列数。
7、 根据权利要求 6所述的方法, 其特征在于: 位连接点集合
( , +ι,···, + ι- 1}与第 i个位节点相连, 而校验连接点集合 { 'A + l,—, J'P + - 1}与第 j个校验节点相连。
8、 一种低密度奇偶校验码 LDPC的编码设备, 所述设备包括: 获取装置, 利用迭代方法获取反映双向图中位连接点和校验连接 点之间的连接关系的置换矢量; 以及
生成装置, 利用置换矢量来生成奇偶校验矩阵 H, 从而生成 LDPC 码。
PCT/CN2007/003962 2007-12-29 2007-12-29 Ldpc码的编码方法和编码设备 WO2009086671A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007801020458A CN101911503A (zh) 2007-12-29 2007-12-29 Ldpc码的编码方法和编码设备
PCT/CN2007/003962 WO2009086671A1 (zh) 2007-12-29 2007-12-29 Ldpc码的编码方法和编码设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003962 WO2009086671A1 (zh) 2007-12-29 2007-12-29 Ldpc码的编码方法和编码设备

Publications (1)

Publication Number Publication Date
WO2009086671A1 true WO2009086671A1 (zh) 2009-07-16

Family

ID=40852755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003962 WO2009086671A1 (zh) 2007-12-29 2007-12-29 Ldpc码的编码方法和编码设备

Country Status (2)

Country Link
CN (1) CN101911503A (zh)
WO (1) WO2009086671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108683424B (zh) * 2018-08-02 2023-05-30 华侨大学 全并行双向递归流水线ldpc编码器及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954510A (zh) * 2004-05-12 2007-04-25 三星电子株式会社 用于编码和解码具有可变编码率的块低密度奇偶校验码的装置和方法
CN1956368A (zh) * 2005-10-26 2007-05-02 中兴通讯股份有限公司 基于单位阵及其循环移位阵的ldpc码向量译码装置和方法
CN101080872A (zh) * 2004-12-15 2007-11-28 摩托罗拉公司 利用向量行分组的结构化ldpc设计

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954510A (zh) * 2004-05-12 2007-04-25 三星电子株式会社 用于编码和解码具有可变编码率的块低密度奇偶校验码的装置和方法
CN101080872A (zh) * 2004-12-15 2007-11-28 摩托罗拉公司 利用向量行分组的结构化ldpc设计
CN1956368A (zh) * 2005-10-26 2007-05-02 中兴通讯股份有限公司 基于单位阵及其循环移位阵的ldpc码向量译码装置和方法

Also Published As

Publication number Publication date
CN101911503A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
Jouguet et al. Long-distance continuous-variable quantum key distribution with a Gaussian modulation
CN107370490B (zh) 结构化ldpc的编码、译码方法及装置
Zhang et al. VLSI implementation-oriented (3, k)-regular low-density parity-check codes
Hocevar LDPC code construction with flexible hardware implementation
US8185797B2 (en) Basic matrix, coder/encoder and generation method of the low density parity check codes
Kim et al. The design of efficiently-encodable rate-compatible LDPC codes-[transactions papers]
CN101924565B (zh) Ldpc编码器、解码器、系统及方法
JP4602418B2 (ja) 検査行列生成方法、符号化方法、復号方法、通信装置、符号化器および復号器
US9075738B2 (en) Efficient LDPC codes
JP5506879B2 (ja) 低密度パリティ検査符号を使用する通信システムのチャネル復号化装置及び方法
CN108964669B (zh) 基于度分解和交替乘子法的ldpc码二次规划译码方法
TW200835168A (en) Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder
WO2006076834A1 (fr) Matrice de base fondee sur un ldcp irregulier et procedes de generation de cette matrice
CN109586732B (zh) 中短码ldpc编解码系统和方法
Cui et al. Design of high-performance and area-efficient decoder for 5G LDPC codes
Zhao et al. Spatially coupled codes via partial and recursive superposition for industrial IoT with high trustworthiness
Hooshmand et al. Improving the Rao-Nam Secret Key Cryptosystem Using Regular EDF-QC-LDPC Codes.
Zhang et al. Construction of multi-rate quasi-cyclic LDPC codes for satellite communications
Liang et al. A new class of multiple-rate codes based on block Markov superposition transmission
CN101262230A (zh) 一种低密度奇偶校验码矩阵的设计方法
Baldi et al. Using non-binary LDPC and MDPC codes in the McEliece cryptosystem
WO2009086671A1 (zh) Ldpc码的编码方法和编码设备
Genga et al. A low complexity encoder construction for systematic quasi-cyclic LDPC codes
Park et al. Structured puncturing for rate-compatible B-LDPC codes with dual-diagonal parity structure
CN107911123B (zh) 针对深空应用的一类低密度奇偶校验码的编码方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780102045.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07866197

Country of ref document: EP

Kind code of ref document: A1