WO2009084556A1 - Image display device - Google Patents
Image display device Download PDFInfo
- Publication number
- WO2009084556A1 WO2009084556A1 PCT/JP2008/073510 JP2008073510W WO2009084556A1 WO 2009084556 A1 WO2009084556 A1 WO 2009084556A1 JP 2008073510 W JP2008073510 W JP 2008073510W WO 2009084556 A1 WO2009084556 A1 WO 2009084556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- light
- display
- pixel
- display board
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/18—Edge-illuminated signs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S6/00—Lighting devices intended to be free-standing
- F21S6/002—Table lamps, e.g. for ambient lighting
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B19/00—Indicating the time by visual means
- G04B19/30—Illumination of dials or hands
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/35—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/20—Illuminated signs; Luminous advertising with luminescent surfaces or parts
- G09F13/22—Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
- G09F2013/222—Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent with LEDs
Definitions
- the present invention relates to a technique for displaying images such as characters and figures on a transparent display board.
- Patent Document 1 A technique to be attempted has also been proposed.
- the present invention has been made in response to the above-mentioned problems in the prior art, and an object thereof is to provide a technique capable of easily displaying images such as characters and figures on a transparent display board.
- the image display apparatus of the present invention employs the following configuration. That is, An image display device for displaying a predetermined image, A display plate, which is a transparent plate-like member having the image formed on the surface thereof, using transparent ink containing fine particles that scatter light; And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
- an image to be displayed is formed on the surface of a transparent display plate with transparent ink, and light is incident from the end face of the display plate toward the inside. Then, the light incident on the inside of the display panel propagates through the inside while being reflected by the surface of the display board. Then, the light that reaches the portion where the image is formed by the transparent ink is scattered around by the fine particles, and as a result, the image is illuminated and displayed.
- an image is formed with transparent ink on the surface of the display board, it can be performed much more easily than when an image is formed by digging a groove on the surface.
- the image to be displayed is a simple character or graphic, it can be easily drawn by handwriting, and even a complex graphic image can be easily printed by using a printing apparatus. it can. For this reason, images such as characters and figures can be easily displayed on a transparent display board. Further, since the image to be displayed is formed on the surface of the transparent display board using transparent ink, the image is formed on the surface of the display board to a consistent degree before the image is lit.
- transparent ink refers to ink applied to reflect light on the ink surface (for example, paint, correction liquid, various printing inks, etc., hereinafter referred to as reflective ink). Is called an ink applied on the assumption that light passes through the ink layer. For example, an ink obtained by diluting a commercially available so-called reflective ink to about half by using a commercially available so-called clear ink cannot sufficiently transmit light through the ink layer. Not applicable. In contrast, if the commercially available clear ink is used and the commercially available reflective ink is diluted to a quarter or less, the light can be sufficiently transmitted through the ink layer. Corresponds to “transparent ink”.
- the ratio between the clear ink and the reflective ink is defined by the volume ratio excluding the volatile component in each ink.
- “diluting reflective ink in half using clear ink” means that when the diluted ink is dried (or solidified), the component derived from the clear ink and the component derived from the reflective ink Say that the same volume is included.
- the ink layer is formed with transparent ink, most of the light can pass through the ink layer, but when the ink layer is formed with reflective ink, much light is blocked by the ink layer. Therefore, when a continuous ink layer of a certain area or more is formed on an acrylic plate or the like and light is illuminated from the back side, the light transmitted through the portion where the ink layer is formed is attenuated to 70% or less. Ink (ink that blocks 30% or more of the light that attempts to pass through the ink layer) does not fall under “transparent ink” in this specification. On the other hand, if the ink allows more than 70% of the light to pass through the ink layer, it corresponds to “transparent ink” in the present specification.
- a plurality of display plates on which images of transparent ink are formed are stacked, and light is incident from the end face of each display plate, whereby images on each display plate are displayed. It may be displayed. At this time, the display panels are laminated so that a gap is secured between the surfaces.
- red light is incident on the first display plate stacked with a gap between them, and the second display plate is green.
- Light may be incident and blue light may be incident on the third display panel.
- each display board Since a gap is secured between each display board, an image formed on the surface of each display board can be illuminated with the color of light incident on the display board. If red light, green light, and blue light are superimposed, various colors can be expressed. Accordingly, among the laminated display panels, if red light, green light, and blue light are respectively incident on the first display panel, the second display panel, and the third display panel, various color images are displayed. It becomes possible.
- the following may be performed.
- at least one of the plurality of display boards is an additional image display board, and an image (additional image) to be displayed in addition to the image of another display board is formed on the surface of the display board.
- the additional light incident part that makes light incident from the end face of the additional image display board makes light incident on the additional image display board while the other light incident part is incident on the inside of the display board. And a state in which no light is incident may be switched.
- the additional image display board can be displayed or displayed by making light incident on the additional image display board or stopping the incidence.
- the added image can be deleted.
- the additional image is also printed with transparent ink, it is difficult to notice the presence of the additional image unless light is incident.
- an image that is not an additional image is displayed brightly, it is even more difficult to notice that an additional image is formed.
- the additional image can be displayed or the display can be stopped in the state where the image is displayed as described above, the image can be displayed in a manner that makes it easier to attract the eyes.
- a plurality of convex portions may be provided at intervals on at least one of the surfaces of the plurality of display plates facing each other. And it is good also as laminating
- the adjacent display panels can be reliably separated by the convex portions formed on the surface, so that the gap between the display panels can be made extremely thin. .
- the thickness of each display panel can be reduced.
- the side surface formed by stacking the plurality of display plates is covered with a cover member. It is desirable to keep it.
- the gaps formed between the display panels are narrow, so that it becomes difficult to remove foreign substances such as dust and moisture from the side surfaces.
- the inner surface of the cover member that is, the surface facing the side surface of the stacked display body may be configured to reflect light.
- a part of the light incident from the end face of the display panel is emitted from the other end face to the outside of the display board without causing the transparent ink image to shine.
- the inner surface side of the cover member reflects light, the light emitted from the end face of the display panel can be returned to the inside of the display panel again. As a result, it is possible to make an image brighter with less light.
- the light scattering ratio at each location of the image takes into account not only the target luminance at that location but also the distribution of the light scattering rate from the end face of the display board to that location.
- the image may be printed so that the light scattering ratio determined as described above is obtained.
- the surface of the display plate is evenly divided into a plurality of pixels, and an image is printed by forming an ink layer of transparent ink in each pixel. good. And it is good also as changing the light-scattering ratio in each location of an image by varying the area of the ink layer formed in each pixel.
- an image can be printed using a general printing technique such as ink jet printing or screen printing, so that an image using transparent ink is appropriately and easily formed on the surface of the display board. It becomes possible.
- the area of the ink layer formed in the pixel may be determined as follows. First, an index value proportional to the area of the ink layer formed in the pixel is determined for the pixel on the most upstream side when viewed from the direction in which light enters. This index value may be determined in accordance with the target luminance (target luminance) for which the pixel is to be illuminated. Next, for the downstream pixel, the index value is determined based on the target luminance at the pixel position and the index value already obtained for each pixel upstream of the pixel. After determining the index value for each pixel in this manner, the index value for each pixel is then read so that the largest index value (maximum index value) among the index values obtained for each pixel is a predetermined area. Thus, the area of the ink layer formed in each pixel may be determined.
- each pixel of the image can be illuminated with appropriate brightness according to the target luminance regardless of whether it is upstream or downstream along the light traveling direction in the display panel. It becomes possible. Further, if the set value of the area for rereading the maximum index value is set to an appropriate value, the contrast when the image is illuminated can be set to an appropriate contrast. Therefore, it is possible to display an image with sufficient contrast without increasing the intensity of incident light.
- a color image may be displayed as follows. First, an R component display plate having an R light incident portion that receives red light at an end portion, a G component display plate having a G light incident portion that receives green light at an end portion, and blue light incident A display panel is formed by stacking together three B component display plates each having a B light incident portion provided at the end (the R component display plate, the G component display plate, and the B component display plate are combined. , RGB component display panels). In addition, an image of transparent ink is printed on the surface of each RGB component display board.
- the light scattering ratio at each pixel position is determined as follows. First, the index value of each pixel is determined for each RGB component display board.
- the index value of each pixel can be determined based on the above-described method, that is, based on the target luminance that is intended to illuminate the pixel and the index value that has already been obtained for the pixel upstream of the pixel. Subsequently, after extracting the maximum index value from all the index values obtained for each RGB component display board, the index values obtained for each pixel of each RGB component display board are re-read, The area of the ink layer to be formed is determined. When the index value is read as the area of the ink layer, it is read at a ratio such that the maximum index value becomes a predetermined area. According to the area determined in this way, an image for each component of RGB may be printed by forming an ink layer on each pixel.
- the display board for each of the RGB components it is important that all the image areas from the upstream side to the downstream side are illuminated with appropriate brightness along the light traveling direction.
- the brightness ratio between the components is also an appropriate ratio according to the color to be displayed.
- the image of each RGB component display board is printed by replacing the index value obtained for each pixel with the area of the ink layer. It is possible to make it shine.
- the index value obtained for each pixel is read as the area of the ink layer, it is not read separately for each RGB component display board, but among all the index values obtained for each RGB component display board.
- the maximum index value is extracted, and the index values of the RGB component display panels are read so that the maximum index value has a predetermined area. For this reason, the image of each RGB component display board can be made to shine so that the brightness between each RGB component becomes an appropriate ratio. As a result, it is possible to appropriately display a color image.
- the index value of each pixel is read so that the average value of the index values obtained in each pixel becomes a predetermined reference area, thereby The area may be determined. At this time, it is desirable that the reference area for rereading the average value of the index values is set to an area smaller than the predetermined area for rereading the maximum index value.
- a large index value may be obtained for only a few pixels.
- the index values of all the other pixels are read so that the maximum index value obtained with the few pixels becomes a predetermined area, the whole area is read as a small area, which is sufficient.
- the brightness cannot be secured.
- the average value of the index values obtained for each pixel is read so as to have a predetermined reference area, even if only a small number of pixels have a large index value, It is possible to replace the index value of the pixel with an appropriate area.
- the average value of the index values obtained for each component of RGB may be read so as to be a predetermined reference area. In this way, it is possible to appropriately display a color image by shining the image of each RGB component display board while maintaining the brightness between the RGB components at an appropriate ratio.
- each of these RGB components is displayed.
- the RGB component display plates may be stacked with a gap therebetween.
- the RGB formed by the convex portions formed on the surface can be reliably separated from each other. For this reason, the display board which laminated
- the plurality of protrusions be provided at least at the four corner positions of the display board. Since the four corners of the display panel are relatively unnoticeable, convex portions can be formed with little notice.
- the side surface is covered with a cover member so that foreign matter such as dust and moisture does not enter from the side surface where the plurality of display plates are stacked. It is desirable.
- the inner surface side of the cover member that is, the surface facing the side surface of the laminated display body is configured to reflect light
- the light emitted from the end surface of the display plate is again transmitted to the inside of the display plate. Therefore, the color image can be displayed brightly.
- an image made of transparent ink may be formed as follows instead of directly forming on the surface of the display plate. That is, as an image is formed on the surface of the display plate by forming an image with transparent ink on the surface of the transparent sheet and pasting the transparent sheet on the surface of the display plate in a replaceable manner. Also good.
- the transparent sheet does not contain fine particles that scatter light, when light is incident from the end face of the display panel, only the image formed on the transparent sheet can be illuminated. For this reason, it becomes possible to display an image in an impressive manner as if the image emerged with light from an empty place.
- the transparent sheet is pasted on the surface of the display board in a manner that can be pasted, the display content can be easily changed by pasting the transparent sheet.
- such a transparent sheet may be provided on one surface with an adhesive layer made of a transparent and fluid resin material and attached to the surface of the display plate by the adhesive layer.
- an adhesive layer made of a transparent and fluid resin material and attached to the surface of the display plate by the adhesive layer.
- a specific information storage unit that stores predetermined specific information corresponding to an image formed on the surface of the display board in a readable manner is provided on the display board. And specific information is read from a display board, and you may make it make light inject into the inside of a display board in the aspect according to the specific information.
- the manner in which the image is displayed differs depending on the manner in which the light is incident. For example, changing the intensity of incident light changes the brightness of the displayed image, and changing the incident light color changes the color of the displayed image.
- An appropriate mode for displaying an image is considered to be different depending on an image to be displayed. Therefore, specific information corresponding to the image formed on the display board is stored in advance on the display board in a readable manner.
- a storage medium such as an IC chip in which specific information is stored may be embedded in the display board, or the specific information may be described in a form such as a barcode at a predetermined location on the display board.
- specific information is read from the display board by an electromagnetic or optical technique, and light is incident on the inside of the display board in a manner determined according to the specific information.
- the content of the specific information is data (or a parameter describing the incident mode) describing the mode in which light is incident on the inside of the display board, the light can be incident in the mode described in the specific information. That's fine.
- the content of the specific information is data specifying an incident mode to be used from among a plurality of preset incident modes, the plurality of incident modes stored in advance are selected. What is necessary is just to read the incident mode specified by specific information and to inject the light in that mode. If it carries out like this, it will become possible to display the image printed on the display board in the suitable mode according to the image.
- the specific information may be stored on the display board in a rewritable manner, and the specific information stored on the display board may be rewritten using a specific information reading unit for reading the specific information from the display board. good. If the specific information on the display board can be rewritten, the image display mode can be changed to a more preferable mode. At this time, if a function for rewriting specific information is added to the specific information reading unit for reading the specific information, the specific information can be easily rewritten.
- the outermost surface of the display plate is smoothed by providing a clear layer made of a transparent resin not containing fine particles that scatter light on an image formed of transparent ink. It may be formed.
- the image by the transparent ink is formed on the display board, when viewed microscopically, it is raised from the surface of the display board. For this reason, even if it is formed of transparent ink, it may be noticed that an image is formed due to a difference in reflection (or gloss) of light on the surface. Furthermore, since the ink layer made of transparent ink is formed so as to rise from the surface of the display plate, light may escape to the outside from the end portion of the ink layer. As a result, depending on the direction in which the image is observed, the edge of the transparent ink may shine strongly, and the image may appear glare. Therefore, if the outermost surface of the display panel is formed smoothly by providing a transparent clear layer on the image formed by the transparent ink, it is possible to avoid such problems and display the image appropriately. Is possible.
- a light radiating portion that radiates light propagating through the inside of the display panel may be provided on an end surface of the display panel, but different from an end surface on which light is incident.
- the light radiating unit may be one in which the light propagating through the display panel can be radiated to the outside by simply opening the end face of the display panel, or the propagated light is diffused to the surroundings.
- a member that diffuses light may be attached to the end face of the display panel.
- the light incident from the end face of the display board propagates through the inside of the display board with almost no loss to the end face on the other end side except that it is used for displaying an image with transparent ink. To reach. Therefore, if the light reaching the end face on the other end side is emitted outside, the light that could not be used for image display can be used as indirect illumination light.
- the image is displayed using light scattering by the fine particles in the transparent ink, no light loss due to absorption occurs when the image is displayed. Therefore, all the light used to display the image is finally used as indirect illumination light after the image is lit.
- the image is formed on the surface of the transparent plate member with the transparent ink containing fine particles that scatter light.
- the image display apparatus of the present invention can be grasped in the following manner. That is, such an image display device as another aspect is An image display device for displaying a predetermined image, A display board on which the image is formed with transparent ink on the surface of a transparent plate-like member; And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
- the image formed with the transparent ink is made to shine on the surface of the display plate by entering light from the end face of the display plate toward the inside. Can be displayed. As a result, it is possible to display an image in a very impressive manner such that the image emerges with light from an empty place, and easily.
- FIG. 1 is an explanatory view showing an image display device 100 of the first embodiment incorporated in a glass window of a wristwatch 10.
- FIG. 1A shows a state in which the wristwatch 10 incorporating the image display device 100 is viewed from the front as viewed from the front of the wristwatch 10.
- FIG. 1B shows a cross section of a portion where the image display device 100 is incorporated as viewed from the side of the wristwatch 10.
- the image display device 100 of the first embodiment is incorporated in a display plate 110 formed by diverting a glass window of a wristwatch 10 and a window frame portion in which the glass window is fitted.
- the light emitting diode (hereinafter referred to as LED 126) and the operation button 122 provided on the side of the case of the wristwatch 10 are configured. Also, an image 112 in which characters are designed with transparent ink containing fine particles is drawn on the back side (the dial side) of the glass window. Since the image 112 is drawn with a transparent ink on a transparent glass window, as shown in FIG. 1A, the image 112 is not immediately noticed when it is slightly seen.
- the image display apparatus 100 of the first embodiment illustrated in FIG. 1 displays an image as follows. First, when the operation button 122 provided on the case side surface of the wristwatch 10 is pressed, the LED 126 incorporated in the window frame is turned on. As shown in FIG. 1B, the LED 126 is provided at a position facing the end face of the glass window (that is, the display panel 110) of the wristwatch 10, and the light emitted from the LED 126 is transmitted from the end face to the glass window. Incident inside. The light incident on the inside propagates through the inside of the display board 110 and shines the image 112 drawn on the back side of the display board 110. FIG.
- FIG. 1C shows a state in which an image formed of transparent ink is displayed on the glass window (display plate 110) of the wristwatch 10 in a shining manner.
- the mechanism by which light is incident from the end face of the glass window (display plate 110) and the image by the transparent ink is shined and displayed will be described in detail later.
- the wristwatch 10 incorporating the image display device 100 of the first embodiment is not different from a normal wristwatch as shown in FIG. 1 (a) as long as it is viewed without displaying an image.
- the operation button 122 is pressed and the LED 126 is turned on, as shown in FIG. 1C, the image 112 is displayed on the glass window.
- the LED 126 is incorporated in the window frame of the glass window, as long as the wristwatch 10 is normally viewed, the LED 126 is not noticed.
- the image display device 100 of the first embodiment it is only necessary to form an image with transparent ink, so that an image to be displayed can be easily formed without skilled or special devices. . Moreover, since the image is formed with the transparent ink, it can be difficult to notice that the image is formed at first glance. As a result, as described above, the image is very spectacular. Can be displayed.
- the principle of displaying an image drawn with transparent ink on the surface of the glass window (display plate 110) by entering light from the end face of the wristwatch 10 will be described.
- FIG. 2 is an explanatory diagram showing the principle of displaying an image 112 printed with transparent ink on the surface of the transparent display board 110 by turning on the LED 126.
- the LED 126 is provided at a position facing the end face of the display panel 110. For this reason, when the LED 126 is turned on, the light emitted from the LED 126 enters from the end face of the display panel 110 and travels into the display panel 110.
- FIG. 2A shows a state in which light from the LED 126 is incident from the end face of the display panel 110 and travels inside the display panel 110. Thus, most of the light incident from the end face intersects the surface of the display panel 110 at a shallow angle.
- the light reaching the surface of the display panel 110 at such a shallow angle is not transmitted from the surface to the outside of the display panel 110, but all of the light is reflected by the surface, and the reflected light again travels inside the display panel 110. proceed. Then, it intersects the surface on the opposite side at a shallow angle, all the light is reflected, and travels inside the display panel 110 again. Most of the light emitted from the LED 126 propagates inside the display panel 110 while being repeatedly reflected on the surface of the display panel 110 in this way. Such a phenomenon is a phenomenon that appears as an aspect of light refraction, and is sometimes referred to as “complete reflection”. In the image display apparatus 100 according to the present embodiment, light is propagated inside the transparent display plate 110 using the phenomenon called complete reflection, and the image 112 printed with the transparent ink is raised. Therefore, a phenomenon called complete reflection will be briefly described.
- FIG. 2B is an explanatory diagram conceptually showing how light is refracted.
- the refraction of light is a phenomenon that occurs when light tries to pass through the boundary surface between two media having different refractive indexes, and is summarized as “Snell's law”.
- the refractive index is a physical property value related to the ease of passage of light in the medium. According to Snell's law, when light traveling in a medium with a certain refractive index reaches the boundary with a medium with a different refractive index, some of the light is reflected at the boundary and the rest of the light is It passes through the boundary surface and travels through a medium having a different refractive index.
- the light reflected at the boundary surface is reflected in a direction in which the angle at which the light is incident on the boundary surface (incident angle ⁇ i) and the angle at which the light is reflected from the boundary surface (reflection angle ⁇ r) are equal.
- the incident angle ⁇ i is usually expressed by an angle between a normal line from the boundary surface and the traveling direction of light (incident light) incident on the boundary surface
- the reflection angle ⁇ r is the boundary angle It is represented by an angle formed by the normal of the surface and the traveling direction of the light reflected by the boundary surface (reflected light).
- the traveling direction of light (transmitted light) traveling through a medium having a different refractive index travels through the downstream medium, where n1 is the refractive index of the upstream medium and n2 is the refractive index of the downstream medium.
- n1 the refractive index of the upstream medium
- n2 the refractive index of the downstream medium.
- 2B conceptually shows a state in which a part of the incident light is reflected and the remaining light travels through different media as transmitted light according to Snell's law.
- the refractive index of acrylic resin is about 1.5
- the refractive index of air is about 1.0, which corresponds to the case of entering from a medium with a high refractive index into a low medium.
- the light travels in the air with its traveling direction being bent in a direction approaching the boundary surface (that is, the surface of the acrylic resin).
- the light traveling direction is bent away from the boundary surface. Will be.
- the traveling direction of the transmitted light becomes parallel to the boundary surface.
- Such a state is a state where light cannot enter the downstream medium.
- the incident angle ⁇ i at a large angle incident angle ⁇ i
- FIG. 2C conceptually shows such a state.
- the incident angle ⁇ i in which such a state is called a critical angle ⁇ c.
- the critical angle ⁇ c can be considered when light is to be emitted from a medium having a high refractive index into a medium having a low refractive index.
- the critical angle ⁇ c When light is incident on the boundary surface at an angle larger than the critical angle ⁇ c (that is, laid on the boundary surface), all the light is reflected by the boundary surface, and enters the medium having a low refractive index. I can't get out. In this specification, such a condition is referred to as a “complete reflection condition”.
- the critical angle ⁇ c is about 42 degrees.
- the light from the LED 126 is efficiently guided to the portion where the image 112 is printed on the surface of the display board 110 by using the above-described complete reflection condition.
- the ink layer 114 is illuminated. That is, the display panel 110 is formed of a transparent material such as acrylic resin or glass, and these materials are all media having a refractive index larger than that of air.
- the display panel 110 is formed of a transparent material such as acrylic resin or glass, and these materials are all media having a refractive index larger than that of air.
- the light incident from the end face Eventually, of the light incident from the end face, the light incident at an incident angle larger than the critical angle ⁇ c with respect to the surface of the display panel 110 is satisfied, and as a result, much of the light incident from the end face is satisfied. In this case, the light travels inside the display panel 110 while being repeatedly reflected on the surface of the display panel 110.
- FIG. 2A a state in which light incident from the end face of the transparent display panel 110 travels through the surface while being repeatedly reflected on the surface of the display panel 110 is represented by a thick broken line or a thick dashed line arrow. ing. In the vicinity of the end face, there is also light incident on the surface of the display panel 110 at an angle smaller than the critical angle ⁇ c (that is, from a direction perpendicular to the surface).
- An arrow indicated by a thin two-dot chain line in FIG. 2A illustrates light incident on the surface of the display panel 110 at an angle smaller than the critical angle ⁇ c ⁇ .
- a glass window (display plate 110) is provided at least in the vicinity of the LED 126 so that such a portion can be hidden. ) Is covered with a window frame. In this way, when the image 112 printed on the display board 110 is lit and displayed, it is possible to make it harder to understand the location where the light is supplied. It is possible to give a stronger impression as if it was raised.
- the light traveling inside the display board 110 eventually reaches a portion where the image 112 is printed on the surface of the display board 110 (an area where the ink layer 114 of transparent ink is formed). Since the material of the ink layer 114 is different from the material of the display board 110, the refractive index does not completely match. However, compared to the difference between the display board 110 and air, the display board 110 and the ink layer 114 are different.
- the refractive index is not significantly different (in practice, it is slightly larger than the refractive index of the display plate 110. For example, if the display plate 110 is made of acrylic resin, the refractive index of acrylic is approximately 1). .5, it is desirable that the refractive index be as large as possible, typically about 1.6. For this reason, the light that reaches the boundary surface between the display panel 110 and the ink layer 114 passes through the boundary surface as it is without being bent in the traveling direction, and travels inside the ink layer 114.
- transparent ink in which fine particles that scatter light (light-scattering fine particles 114p) are dispersed is used for image printing, and the light-scattering fine particles are also applied to the ink layer 114 formed on the surface of the display panel 110.
- 114p is in a dispersed state. Therefore, a part of the light traveling in the ink layer 114 collides with the light scattering fine particles 114p and is scattered around. Since the light scattering particles 114p are uniformly dispersed in the ink layer 114, the entire image printed with the transparent ink is brightly displayed.
- FIG. 2A the state in which the light traveling in the ink layer 114 collides with the light scattering fine particles 114p and is scattered is displayed by a thick broken line arrow or a thick dashed line arrow.
- the light that has not collided with the light scattering fine particles 114p travels as it is inside the ink layer 114 and reaches the surface of the ink layer 114.
- the refractive index of the ink layer 114 and the refractive index of the display panel 110 are substantially the same, the condition of complete reflection is also established on the surface of the ink layer 114. For this reason, the light that has reached the surface of the ink layer 114 is completely reflected by the surface, travels inside the ink layer 114, and further returns into the display board 110.
- FIG. 2A a state in which light is completely reflected on the surface of the ink layer 114 and then returns to the display plate 110 is indicated by thin broken arrows.
- the image display device 100 displays the image 112 by causing the light scattering fine particles 114p of the ink layer 114 formed on the surface of the transparent display plate 110 to shine. Even if the light radiated from the LED 126 propagates through the inside of the display panel 110, it is not known, so that it looks to the observer as if the image itself is emitting light. In addition, when the LED 126 is not turned on, the display board 110 can be seen only as a transparent board at first glance, so it is very spectacular as if the image is shining from the transparent board. It is possible to display an image in a manner.
- the image display device 100 of the first embodiment shines the image 112 by shining the light scattering fine particles 114p dispersed in the ink layer 114. Therefore, if the concentration of the light scattering fine particles 114p is increased, it is possible to make the image brighter and clearer. Thus, the fact that the image is displayed brightly and clearly is effective in displaying the image with a deep impression. However, on the other hand, as the concentration of the light scattering fine particles 114p increases, the ink layer 114 gradually approaches a cloudy state. As the white turbidity of the ink layer 114 progresses, it becomes easier to notice that the image is printed on the surface of the display plate 110 even when the image is not shining.
- the concentration of the light scattering fine particles 114p is too high. Increasing the height acts in a direction that hinders the display of an image with a deep impression. Therefore, the concentration of the light scattering fine particles 114p contained in the transparent ink is the most in consideration of the viewpoint of making the image bright and clear and the viewpoint of suppressing the white turbidity in order to make it difficult to notice that the image is formed. The density is set so that an image can be displayed impressively.
- the light scattering fine particles 114p are preferably white fine powder (for example, powder of metal oxide such as aluminum oxide or titanium oxide) from the viewpoint of scattering light as efficiently as possible.
- the dial of the wristwatch 10 since the dial of the wristwatch 10 has a whitish color, the image 112 is formed on the glass window (display plate 110) even when the ink layer 114 is cloudy. It is difficult to notice what is being done.
- the concentration of the light-scattering fine particles 114p of the transparent ink is set to a relatively high concentration.
- the dial as a background is a whitish color when the image 112 is displayed, it is not so noticeable even if the image 112 is shined white. For this reason, an LED that emits light other than white (for example, red, green, and blue) is used as the LED 126.
- the LED 126 As a result, coupled with the light scattering fine particles 114p being set at a relatively high concentration, it is possible to display the image 112 clearly in red or the like with a whitish dial as a background. .
- the display board 110 and the transparent ink are both assumed to be colorless and transparent.
- the display board 110 is not necessarily transparent and colorless. Need not be.
- the display board 110 is slightly colored, an image printed using a transparent ink slightly colored with the same color is inconspicuous. Therefore, even if the transparent ink is slightly colored, if the color is the same color as that of the display panel 110, it can be suitably used as the transparent ink.
- the transparent ink is colorless and transparent, it can be suitably used regardless of the color of the display board 110.
- the image display device 100 of the first embodiment is incorporated in the glass window of the wristwatch 10 as long as it has a certain thickness (for example, 2 mm) and has a transparent portion. Not limited to this, it can be incorporated into various objects.
- a modification of the first embodiment in which the image display device 100 of the first embodiment is incorporated in an accessory such as a pendant top or a key holder will be described.
- FIG. 3 is an explanatory view showing an image display device 100 according to a modification of the first embodiment incorporated in the pendant top 20.
- FIG. 3A shows the external shape of the pendant top 20.
- the illustrated pendant top 20 is formed of a transparent material such as acrylic resin or glass, and a base part that also serves as the display board 110 and a base that is assembled to the main body part and through which a chain for hanging on the neck is passed. Part 120.
- an operation button 122 is provided on the base unit 120, and when the operation button 122 is pressed, an image is displayed on the main body unit in a shining manner.
- FIG. 3B shows a state in which the image 112 is shined and displayed on the main body by pressing the operation button 122.
- FIG. 3C shows the structure of the image display device 100 according to a modification of the first embodiment by taking a cross section of the pendant top 20.
- the main body of the pendant top 20 is formed by combining two transparent members, and one transparent member is the display board 110.
- An image 112 made of transparent ink containing fine particles is formed on the surface of the display panel 110 on the side that is combined with one transparent member.
- an LED 126 is provided inside the base portion 120 at a position facing the end face of the transparent member that also serves as the display plate 110. Therefore, when the operation button 122 is pressed to turn on the LED 126, light is incident from the end face of the display plate 110, and the image 112 made of transparent ink can be illuminated and displayed by the mechanism described above.
- the transparent member used as the display plate 110 is not a flat plate in a pure sense. However, if the condition of complete reflection is generally satisfied for the entire transparent member, it can be used as the display board 110 by forming an image with transparent ink on the surface. Also in the image display device 100 according to the modification of the first embodiment configured as described above, an image to be displayed may be formed with transparent ink, so that the image can be easily displayed. Moreover, since the image is formed with transparent ink on the surface of the transparent member, at first glance, it is not noticed that the image is formed. As a result, it is possible to display the image in a very impressive manner as if the image had been lifted with light from the place where there was nothing.
- an image 112 made of transparent ink is formed on the surface of a transparent flat plate to form the display plate 110, and both sides of the display plate 110 are covered with a transparent cover member.
- the pendant top 20 may be configured. In such a configuration, even if the light from the LED 126 enters the inside of the cover member, the light does not satisfy the condition of complete reflection, so that the light is attenuated immediately, and almost no light propagates inside the cover member. Therefore, even if a fine flaw is attached to the surface of the cover member, it can be avoided that the flaw is shining and becomes conspicuous.
- a plurality of display plates 110 may be stacked and light may be incident from the end face of each display plate 110.
- an LED 126R that emits red light, an LED 126G that emits green light, and an LED 126B that emits blue light are provided, and the light of the LED 126R is for red.
- the LED 126G may enter from the end face of the display panel 110R, and the light of the LED 126G may enter from the end face of the green display board 110G, and the light of the LED 126B may enter from the end face of the blue display board 110B. If the surfaces of the display board 110R, the display board 110G, and the display board 110B are not in direct contact with each other, the light incident from the respective end faces propagates only inside the display board 110, and the other display boards 110 Will not propagate to.
- a red image 112R is formed on the surface of the display plate of the display plate 110R
- a green image 112G is formed on the surface of the display plate of the display plate 110G
- a blue image is formed on the surface of the display plate of the display plate 110B.
- the image on each display board 110 can be displayed in each color.
- the displayed image 112 is switched by switching the display plate 110 on which light is incident. It is also possible.
- a reflective member may be provided around a member corresponding to the display plate 110.
- the display panel 110 is small, light incident from the end face immediately reaches the opposite end face, so that it is considered that most of the incident light passes through the display panel 110. Therefore, if a reflecting member that reflects light is provided around the display panel 110, the light passing through the display panel 110 can be reflected and returned to the inside of the display panel 110 again. Therefore, the image 112 can be brightly illuminated by effectively using the light from the LED 126.
- Second embodiment In the first embodiment described above, it has been described that a relatively simple image such as a character or a line drawing figure is displayed on the small display board 110. However, it is also possible to display a complicated image such as a photograph on the larger display board 110. Below, the image display apparatus 100 of such 2nd Example is demonstrated.
- FIG. 4 is an explanatory diagram showing a rough configuration of the image display apparatus 100 according to the second embodiment.
- the image display device 100 according to the second embodiment includes a large display board 110 on which an image is displayed, and a base portion 120 on which the display board 110 is erected.
- the display board 110 is formed of a transparent plate member such as an acrylic board or a glass board, and an image 112 to be displayed is printed on the surface of the display board 110 with a transparent ink containing light scattering fine particles. ing. Therefore, similarly to the first embodiment described above, in the image display device 100 of the second embodiment, it is difficult to notice that the image 112 is printed on the surface of the display board 110 at first glance. .
- such a display plate 110 is mounted in a groove provided on the upper surface of the base portion 120.
- FIG. 5 is an explanatory view showing a state where the display board 110 of the second embodiment is mounted on the base part 120.
- the base portion 120 in order to show the rough structure of the base portion 120, the base portion 120 is shown in a state where it is broken.
- a groove 124 in which the display panel 110 is mounted is formed in the approximate center of the top surface of the base portion 120, and a plurality of light emitting diodes (hereinafter referred to as LEDs 126) are formed at the bottom of the groove 124.
- LEDs 126 are formed at the bottom of the groove 124.
- the display board 110 is mounted in the groove 124 from above the base portion 120 as indicated by an arrow in the drawing.
- LED126 demonstrates as what is white LED which radiates
- FIG. 6 is a cross-sectional view conceptually showing the positional relationship between the display board 110 mounted in the groove 124 of the base portion 120 and the LEDs 126 provided in a row in the groove 124.
- the end face of the display board 110 faces the LEDs 126 arranged in a line.
- the LED 126 is turned on by operating the operation button 122 after the display board 110 is mounted on the base portion 120, the light emitted from the LED 126 enters the inside of the display board 110 from the end face. Then, after propagating through the display panel 110 by the mechanism described above with reference to FIG. 2, the image 112 printed with transparent ink is illuminated.
- FIG. 4 illustrates a state before the LED 126 is turned on (see FIG. 4A) and a state where the LED 126 is turned on and an image is displayed (see FIG. 4B).
- the range from the incident light from the end face of the display plate 110 until the light that does not satisfy the complete reflection condition disappears. Then, since a part of the light is transmitted to the outside, the display board 110 appears to shine lightly. Therefore, in the image display device 100 according to the second embodiment, the depth of the groove 124 of the base portion 120 is set to a depth at which such a portion appearing near the end face of the display plate 110 can be hidden. For this reason, when the image 112 printed on the display board 110 is illuminated and displayed, the portion to which the light is supplied can be hidden, so that the image appears as if it has been lifted from the transparent board. It becomes possible to give stronger.
- the second embodiment displays an image 112 on a relatively large display board 110.
- the displayed image is not a simple figure such as a character but a more complicated image.
- a special device is required for the image 112 printed with the transparent ink.
- the first method is to form a fine ink layer 114 on the surface of the display panel 110 and control the density of the ink layer 114 according to the brightness desired to be shined. If a so-called ink jet printer is used, a fine ink layer 114 can be formed on the surface of the display panel 110.
- the second method is a method of controlling the area of the ink layer 114 according to the brightness desired to shine.
- the second method using area modulation does not need to form a fine ink layer 114, and thus can be applied to screen printing and the like, and can be said to be a more versatile method. Therefore, in the following, a method of making an image of transparent ink shine with intermediate brightness using area modulation will be described.
- the principle of shining an image printed with transparent ink with a desired brightness by using area modulation is as follows. First, the surface of the display panel 110 is divided into small grids. Then, an ink layer 114 corresponding to an area of 1/4 of the cell is formed on each cell in a certain area, and an area of 1/2 of the cell is formed on each cell in another area. Assume that the ink layer 114 is formed. Then, the area where the ink layer 114 having a half area of the square is formed is made to shine about twice as bright as the area where the ink layer 114 having a quarter area of the square is formed. be able to.
- the image to be displayed is divided into small squares and the area of the ink layer 114 formed on the squares is controlled according to the brightness at which the squares are desired to be illuminated, each square is desired. It is possible to shine with brightness. Since the image data is normally described by luminance data representing the luminance of each pixel, it is considered that the ink layer 114 may be formed so as to have an area corresponding to the luminance data.
- FIG. 7 is an explanatory diagram showing a state in which the ink layer 114 is formed in the pixel with an area corresponding to the luminance data for each pixel.
- one pixel is divided into four small areas, two vertically and horizontally, and the ink layer 114 is formed in the number of small areas corresponding to the luminance data.
- the method is not limited to this, and the ink layer 114 may be formed in a number of small areas corresponding to the luminance data by dividing the pixels into a total of 16 small areas, for example, four vertically and horizontally. Furthermore, it may be divided into more small areas.
- the size of one pixel is determined by the number of pixels in the vertical and horizontal directions (that is, resolution) of the image data and the size of printing the image, but the resolution of the image data is too high, or If the size of one pixel becomes small because the size to be printed is too small, a large pixel is formed by combining a plurality of pixels, and then the large pixel is divided into a plurality of small regions. A similar process may be performed.
- one pixel has the following five states: “a state where no ink layer 114 is formed in the pixel”, “an ink layer only in one small region” "State to form 114", “State to form ink layer 114 in two small areas”, “State to form ink layer 114 in three small areas”, “State to form ink layer 114 in all small areas Can be in five states.
- the state where the ink layer 114 is formed in all the small regions in the pixel is the brightest state
- the state where no ink layer 114 is formed in the pixel is the darkest state.
- the ink layer 114 is formed in half of the small area in the pixel, the brightness is just intermediate.
- the pixels with the gradation value of the luminance data of 0 to 63 are included in the pixel.
- the ink layer 114 may be formed only in one small region for pixels with luminance data gradation values of 64 to 127. In the drawing, the small area where the ink layer 114 is formed is displayed with hatching. In addition, the ink layer 114 is formed in two small areas for pixels with luminance data gradation values of 128 to 191 and the ink is formed in three small areas for pixels with luminance data gradation values of 192 to 254. The layer 114 may be formed.
- the ink layer 114 may be formed in all small regions within the pixel. In this way, it becomes possible to make the pixel shine brighter as the gradation value of the luminance data increases.
- the luminance data changes in 256 levels from gradation value 0 to gradation value 255, whereas the brightness of the pixel is 5 including the state where no light is emitted. It can only be changed in stages. Therefore, in order to compensate for this, the following method is also used in combination in the second embodiment.
- the luminance data at a certain pixel has a gradation value of 16, and the gradation of the luminance data also applies to the right pixel, the lower pixel, and the lower right pixel of the pixel. Assume that the value was 16. Since the luminance data of any pixel has a gradation value of 16, according to the method of FIG. 7A, the ink layer 114 should not be formed for any pixel, and these four pixels are not illuminated at all. Become. However, actually, since the gradation value of the luminance data is “16”, it is in a state where only the gradation value of 16 is left.
- the luminance data having the gradation value 64 can be expressed by forming the ink layer 114 in one small area.
- the ink layer 114 can be more appropriately formed according to the gradation value of the luminance data. That is, as shown in FIG. 7A, when the gradation value of the luminance data increases by “64”, if the small area forming the ink layer 114 is increased by one, the gradation value of the luminance data As long as is not a multiple of 64, the remaining gradation values that cannot be reflected in the area of the ink layer 114 are generated little by little in each pixel. Therefore, these accumulated tone values are collected and when the tone value reaches 64, only one small region is added to form the ink layer 114. In FIG.
- the number of small regions for forming the ink layer 114 is determined in accordance with the gradation value, and the pixels are left unstacked at each pixel.
- the manner in which the ink layer 114 is additionally formed for one small region by collectively collecting the gradation values is conceptually shown.
- the ink layer 114 is formed in one small region for four pixels, the ink layer 114 is formed in one-fourth small region when converted to one pixel.
- the image data to be displayed on the display board 110 is acquired and the image is printed by replacing the area of the ink layer 114 by the above-described method based on the luminance data for each pixel, the image of the image data is It should be possible to display on the display board 110 as it is. However, when actually tested, it has been found that if the area of the ink layer 114 formed on each pixel is set to the area obtained by converting the luminance data of each pixel, the image cannot be properly illuminated. In order to display an image appropriately according to the image data, further devices as described below are required. Hereinafter, this point will be described in detail.
- FIG. 8 is an explanatory diagram illustrating image data of an image to be displayed.
- the small squares shown in the figure represent pixels, and the numerical values displayed in the pixels represent the gradation values of the luminance data for the pixels.
- luminance data is set for each pixel (that is, each cell).
- luminance data of each color component of R component, G component, and B component is set for each pixel.
- the luminance data is so-called 8-bit data, and is expressed as data of 256 gradations that can take gradation values of 0 to 255.
- FIG. 9 shows a state in which the luminance data for one column of image data is converted into the area of the ink layer 114 formed in the pixel.
- luminance data is converted into the area of the ink layer 114 for the image data for one column of pixels surrounded by a broken line in the image shown in FIG. 8 according to the method described above with reference to FIG.
- the result is displayed.
- the hatched portion in the drawing is a region where the ink layer 114 is formed. It is assumed that light propagates from the left side on the paper surface of FIG. 9 with respect to such an image for one column of pixels. As described above with reference to FIG.
- FIG. 10 is an explanatory diagram showing a basic concept when the image data is converted into the area of the ink layer 114 in the image display apparatus 100 of the second embodiment.
- FIG. 10 (a) focuses on a certain pixel (the nth pixel from the upstream side along the light traveling direction), and the light amount I (n) of light propagating from the upstream side to the pixel position.
- the relationship with the amount of light I (n + 1) is shown.
- the display board 110 on which the ink layer 114 is formed has a thickness, when referring to “a certain pixel position”, it is necessary to consider a depth corresponding to the thickness of the display board 110. Accordingly, the amount of light propagating from the upstream side to the pixel position represents the amount of all light incident on the pixel position, including the depth direction of the display panel 110.
- the light amount I (n) of light incident on the pixel of interest, the area S (n) of the ink layer 114 formed on the pixel, and the ink layer 114 are illuminated.
- a relationship is established between the amount of light R (n) used in the above and the amount of light I (n + 1) propagating to the adjacent pixel.
- the amount of light R (n) used to shine the ink layer 114 is considered to be proportional to the amount of light I (n) propagating from the upstream side. .
- the area S (n) of the ink layer 114 formed in the pixel is a proportional coefficient between the light amount I (n) propagating from the upstream side and the light amount R (n) for causing the ink layer 114 to shine. It is thought that it has decided. Correspondingly, in the uppermost expression in FIG. 10B, the proportionality coefficient between the light quantity I (n) and the light quantity R (n) is expressed as f (S ( n)).
- the brightness is also doubled (that is, the amount of light used for making the light is doubled), so the light amount I (n) and the light amount R (
- the function form shown in FIG. 10D can be used in consideration of the fact that the brightness recognized as the area S (n) increases tends to be saturated. is there.
- the remaining light amount T (n) It propagates to the pixels.
- the light amount I (n + 1) propagating to the adjacent pixel is a value obtained by multiplying the remaining light amount T (n) by exp ( ⁇ L).
- ⁇ is a light attenuation coefficient and is a physical property value determined by the material of the display panel 110.
- L is the size of one pixel, and is a value determined by the resolution of the image data and the size of the image to be printed as described above. Accordingly, when image data for one column of pixels as shown in FIG. 9 is given, the amount of light I (n) propagating in the display panel 110 from the most upstream pixel using the relationship shown in FIG. ) In order, the area S (n) of the ink layer 114 is determined, and the area of the ink layer 114 for each pixel is determined so that brightness corresponding to the luminance data of each pixel can be obtained. It becomes possible to do.
- FIG. 11 shows how the area of the ink layer 114 is determined for each pixel while considering the attenuation of light inside the display plate 110 and the loss of light caused by causing the ink layer 114 to shine on the surface of the display plate 110.
- human visual characteristics are considered as f (S) representing a coefficient between the amount of light I (n) incident on the pixel of interest and the amount of light R (n) for causing the pixel to shine.
- the function form of FIG. 10D was used, and the value of the constant K appearing in the function was 4.5.
- the value L corresponding to the pixel size is not the actual pixel size, but is considered per pixel, and the value of L is 1. This is because the actual pixel size can be changed in various ways depending on the size of the image to be displayed. Further, 0.004 was used as the light attenuation coefficient ⁇ .
- the constant K in f (S) is a value determined by various factors such as the surface state of the ink layer 114. However, these factors are not analyzed here, but values obtained from experience are used. Further, the light attenuation coefficient ⁇ is a physical property value originally determined by the material of the display plate 110, but here, a value obtained from experience is used. This is due to the following reason. In the actual image display device 100, the light propagating through the inside of the display board 110 spreads away from the LED 126 as the light source, and the intensity of the light becomes weaker. Therefore, in the calculation formula described above with reference to FIG.
- the phenomenon in which the light is weakened by the diffusion of the light is also treated as a kind of light attenuation.
- the influence of the above and the influence of the original light attenuation are collectively considered as one attenuation coefficient ⁇ .
- the value L corresponding to the size of the pixel is considered per pixel, not the actual length, it is not very meaningful to determine an exact value. For these reasons, the calculation shown in FIG. 11 uses a value obtained from experience, not the attenuation coefficient ⁇ determined by the physical properties of the display panel 110.
- FIG. 11A shows a numerical table divided into an upper stage, a middle stage, a lower stage, and a third stage, but the upper number table represents input values for calculation.
- the number table in the middle row shows the progress of the calculation performed based on the input in the upper row, and the number table in the lower row shows the finally obtained calculation result.
- each stage will be described in detail.
- FIG. 11A shows the pixel position and the image data (that is, the target luminance of the pixel) for the pixel.
- the gradation value of the image data changes greatly for each pixel except for two pixels from the edge of the image.
- the gradation value does not change so much between adjacent pixels.
- the gradation value changes more slowly.
- it is difficult to show the overall movement if the actual image data is used virtually generated data is used in FIG. It has been.
- the target luminance to be lit is a gradation value of zero. That is, since it is not necessary to shine this pixel, the area S (1) of the ink layer 114 formed in the pixel may be zero. Further, in this pixel, the reflected light amount R (1) used to illuminate the pixel has a gradation value of 0, so the incident light amount I (1) is transmitted as it is. Since the incident light amount I (1) can be set relatively freely by setting the LED 126, it is assumed here that the incident light amount I (1) has a gradation value of 1000, assuming that a sufficient amount of light is incident. The transmitted light amount T (1) of this pixel has a gradation value of 1000.
- the transmitted light amount T (1) does not directly become the incident light amount I (2) to the next pixel.
- light attenuation by one pixel acts on the transmitted light amount T (1), and the result is the incident light amount I (2) of the next pixel.
- the transmitted light amount T (1) at the pixel position 1 has a gradation value of 1000, but the light is attenuated before entering the adjacent pixel, and as a result, the adjacent pixel. It is shown that the incident light I (2) at (pixel position 2) decreases to a gradation value 996.
- the area S (2) of the ink layer 114 formed in the pixel is 0 as in the case of the pixel at the pixel position 1, and the incident light is incident.
- the light amount I (2) becomes the transmitted light amount T (2) as it is, and becomes the gradation value 996 of the transmitted light amount T (2).
- the light is attenuated by one pixel while the transmitted light T (2) is incident on the next pixel.
- the incident light I (3) to the next pixel has a gradation value 992. Decrease.
- the target luminance is set to a gradation value of 65.
- the incident light amount I (3) to this pixel is the gradation value 992. Therefore, for this pixel, the pixel has to be illuminated with the brightness equivalent to the gradation value 65 with the incident light amount I (3) having the gradation value 992 (in other words, the reflected light amount R (3) of the pixel). Is the gradation value 65).
- R (3) f (S) between the light amount used to illuminate the pixel (reflected light amount R) and the incident light amount I to the pixel. ) ⁇ I (3).
- the value of the area S (3) shown at the pixel position 3 in FIG. 11A is a value determined in this way.
- the pixel is detected with the light amount of the gradation value 65 for the incident light amount I (3) of the gradation value 992. It is possible to shine.
- the transmitted light amount T (3) at the pixel position 3 becomes a gradation value 927 obtained by subtracting the reflected light amount R (3) from the incident light amount I (3).
- the meaning of the value of area S (3) will be described later.
- the target luminance is set to a gradation value of 75.
- the incident light amount I (4) to the pixel has a gradation value 923 due to the attenuation acting on the transmitted light amount T (3) at the pixel position 3 described above. Therefore, since the incident light quantity I (4) and the reflected light quantity R (4) can also be known for this pixel, the area S (4) at that pixel can be determined in the same manner as in the case of the pixel position 3. . Thereafter, in exactly the same manner, for the pixel at the pixel position 5, the incident light amount I (5) has the gradation value 845 and the reflected light amount R (5) has the gradation value 130, so the area S (5) is 818.2.
- the incident light quantity I (6) has a gradation value 712 and the reflected light quantity R (6) has a gradation value 95, so the area S (6) is 692.8.
- the area S is calculated in order for all the pixels.
- the amount of incident light can be changed by the setting of the LED 126. If the amount of incident light changes, the area S for realizing the target luminance also changes. Therefore, the value of the area S is merely an area for realizing the target luminance under a certain fictitious incident light quantity, and the value of the area S is large as long as the incident light quantity value is a fictitious value. There is no meaning. That is, the value of the area S obtained in the middle number table in FIG. 11A is meaningful only in the ratio between pixels.
- the value of the obtained area S is interpreted as follows.
- the numerical table in the lower part of FIG. 11A shows the gradation values (corrected areas) obtained by rereading the area S in this way.
- the target luminance at the pixel position 5 is exactly twice that of the pixel position 3
- the area of the ink layer 114 to be formed is twice or more. This is because the area was corrected in consideration of the effect of decreasing the amount of incident light I because it was used to illuminate the pixel upstream of the pixel position 5 or due to attenuation.
- the area of the ink layer 114 is determined by applying the method shown in FIG. 7 to the gradation value (corrected area) obtained in this way, it will be located downstream in the light traveling direction. Even if it becomes, it becomes possible to display a good image that does not become a dark image.
- the pixels are two-dimensionally arranged in an actual image, and it is possible to determine the correction area by performing the same operation for all these pixels. Needless to say. That is, for each pixel, an area S corresponding to the target luminance is calculated, and the calculated area S value is converted into a corrected area by reading it at a certain ratio. Moreover, the ratio when the area S obtained for each pixel is read may be read at the same ratio for all the pixels constituting the image.
- FIG. 11B shows the result of replacing the area S with the corrected area so that the largest value in the calculated area S is the gradation value 255 in this way.
- the target luminance the amount of reflected light R
- the area S calculated for the target luminance are collectively displayed for reference. .
- the corrected area obtained by rereading the area S is shown in the lower number table.
- the value 818.2 obtained for the pixel position 5 has the largest area S calculated for the target luminance. . Therefore, when the area S in the upper number table is read so that the value 818.2 becomes the gradation value 255, the corrected area shown in the lower number table can be obtained.
- the pixel having the maximum area S is in a solid state (a state in which the ink layer 114 is formed in all four small regions in the pixel). ) So that the correction area can be set. Therefore, it is possible to display an image efficiently by making the most of the gradation range that can be expressed using the area of the ink layer 114 formed in the pixel, and the display panel 110 has good contrast. It is possible to display a simple image.
- the corrected area is set so that the pixel having the largest area S is in a solid state.
- the correction area of other pixels may be reduced due to the influence of this pixel.
- the average value (or intermediate value, median value, etc.) of the area S obtained in each pixel may be read so as to be an appropriate correction area. In this way, even if very few pixels have a large area S, most of the pixels can be read as appropriate correction areas.
- the area S calculated from the target luminance is a value that is meaningful for the relative size between the pixels, not the absolute size for each pixel, and is meaningful for this relative size. Based on the area S, a corrected area that is meaningful in absolute size is determined.
- the parameters such as the attenuation coefficient ⁇ and the constant K used to calculate the area S are not numerical values that are uniquely determined by physical properties, shapes, or the like, but are determined empirically. Value is used.
- the pixel size L must be a value having a dimension of length according to the calculation formula shown in FIG. 10, but when calculating the area S as described above, it is referred to as “per pixel”. It is calculated using a value that does not have a length dimension. This is possible because the area S is a meaningful value for the relative size between the pixels, not the absolute size for individual pixels.
- the area S is only meaningful in relative size and the area S is converted into a corrected area that is meaningful in absolute size, the area S is calculated.
- various parameters for example, attenuation coefficient ⁇ , constant K, pixel size L
- the corrected area can be calculated directly without going through the area S. Seems to be possible.
- each pixel is formed by, for example, forming the ink layer 114 by overcoating or changing the concentration of scattering particles in the ink layer 114. Even when changing the intensity of shining, it is important to determine the correction area via the area S in order to display an image appropriately. In the following, this point will be described with some supplementation.
- the calculation result illustrated in FIG. 11 it is possible to directly calculate the value shown in the corrected area instead of the value shown as the area S.
- a new proportionality coefficient A is brought into the calculation formula for the area S, and a value obtained by multiplying the value of the conventional area S by the proportionality coefficient A may be used as the new area S.
- the conventional area S value 818.2 only needs to be the gradation value 255. Therefore, if the value of the proportionality coefficient A is set to 255 / 818.2, the correction is made. It is possible to directly calculate the gradation value of the area as the value of the area S.
- the proportionality coefficient A set for one image data cannot be applied to another image data.
- the amount of incident light I (5) to the pixel position 5 is reduced along with the change in the target luminance at the pixel position 3 to the gradation value 70.
- the value of area S (5) must also be increased from 818.2.
- the value of the proportional coefficient A also changes.
- the value of the proportionality coefficient A is completely different. Furthermore, even if a pixel having the same target luminance as that of the pixel position 1 is added upstream of the pixel position 1, the amount of attenuation of light on the upstream side changes. Strictly speaking, the value of the proportional coefficient A is It will not be the same.
- an ink layer 114 of transparent ink is formed as described above based on the image data of the image to be displayed. For this reason, even when the display board 110 becomes large or when a relatively complicated image such as a photographic image or a natural image is displayed, it is possible to display the image appropriately by shining it. .
- the image displayed on the display board 110 has been described as a single-color image expressed using only the brightness of pixels.
- the color image can be appropriately displayed by calculating the area S from the target luminance and determining the correction area based on the obtained area S.
- the image display apparatus 100 of 3rd Example which can display a color image is demonstrated.
- FIG. 12 is an exploded view illustrating a configuration of a display plate 110 that can display a color image mounted on the image display apparatus 100 according to the third embodiment.
- color image data for displaying a color image is composed of luminance data of each component of RGB, and in response to this, a color image is displayed by the image display device 100 of the third embodiment.
- one display board 110 is configured by superimposing the display panel 110R for R component, the display board 110G for G component, and the display board 110B for B component.
- a small protrusion 118 is formed on the surface of the display plate 110 so that the surfaces of the display plates 110R, 110G, and 110B of the respective color components are not in contact with each other.
- the protrusion 118 may be formed by printing transparent ink, or may be formed by adhering a small member to the surface of the display panel 110.
- the projections 118 are formed by printing on the surface of the display panel 110 using a transparent UV ink that is cured by ultraviolet rays. By doing so, it is possible to easily form the protrusion 118 having an accurate height at an accurate position.
- the image 112 and the protrusion 118 can be formed simultaneously.
- fine display particles (typically having a particle size of about several tens of micrometers) may be sprayed on the surface of the display panel 110 to stack the display panel 110 in that state. By doing so, a gap can be secured between the display panels 110 by the fine particles sprayed on the surface. Moreover, if the particles are fine particles, there is no possibility that the observer of the image display apparatus 100 will notice.
- FIG. 13 is an explanatory diagram showing a state in which the display plate 110 is mounted in the groove of the base portion 120 used in the image display device 100 of the third embodiment.
- FIG. 13 shows the base 120 viewed from the side (direction along the surface of the display plate 110).
- a red LED 126R that emits red light
- a green LED 126G that emits green light
- a blue LED 126B that emits blue light are formed at the bottom of the groove 124. , Provided in a row.
- the end face of the R component display board 110R faces the red LED 126R
- the end face of the G component display board 110G faces the green LED 126G
- the blue LED 126B is configured so that the end faces of the display panel 110B for the B component face each other. Therefore, if the red LED 126R is turned on, red light is incident on the inside of the R component display board 110R, and the image printed with the transparent ink on the surface of the display board 110R is made red.
- the green LED 126G is turned on, the G image printed on the G component display board 110G is displayed in green
- the blue LED 126B is turned on, the B image printed on the B component display board 110B is displayed. The image is displayed in blue.
- the R image, the G image, and the B image are combined and a color image is displayed on the transparent display board 110.
- the color of the color image is determined by the ratio of the amounts of light of red light, green light, and blue light, in order to display a color image of an appropriate color, R printed on the R component display board 110R. It is important to shine the image, the G image printed on the G component display board 110G, and the B image printed on the B component display board 110B with appropriate brightness.
- the ink layer 114 made of transparent ink is formed on the surfaces of the display plates 110R, 110G, and 110B for each component in consideration of light attenuation. Can be formed in an appropriate area.
- a method for printing an image using transparent ink so that the ink layer 114 of each component of RGB has an appropriate area will be described.
- FIG. 14 is an explanatory diagram showing how the area of the ink layer 114 is determined for each of the RGB components in order to appropriately print an image on the surface of the display plate 110R, 110G, 110B for each of the RGB components.
- image data of the color image to be displayed is acquired.
- the color image data is usually expressed by R component luminance data, G component luminance data, and B component luminance data. Therefore, the acquired color image data is separated into luminance data for these RGB components.
- the area SR for the R component is calculated based on the luminance data of the R component.
- the area SR is a value that is meaningful for the relative size between pixels.
- the area SR can be calculated in the same manner by simply replacing the “target luminance” portion with the luminance data of the R component in the numerical table shown in FIG.
- the area SG for the G component is calculated from the luminance data for the G component
- the area SB for the B component is calculated from the luminance data for the B component.
- the R component area SR, the G component area SG, and the B component area SB are obtained for all the pixels constituting the color image.
- the largest area Smax is extracted from all the areas SR, SG, and SB including all the pixels.
- the R component area SR, the G component area SG, and the B component area SB are set so that the extracted maximum area Smax has a certain gradation value (typically, gradation value 255).
- the R component correction area, the G component correction area, and the B component correction area are calculated.
- the areas of the ink layers 114R, 114G, and 114B formed in each pixel are determined based on the correction area of each component obtained for each pixel in this way.
- the method described above with reference to FIG. 7 may be applied.
- an R component ink layer 114R is formed on the R component display board 110R
- a G component ink layer 114G is formed on the G component display board 110G.
- a B component ink layer 114B is formed on the display panel 110B.
- the display plates 110R, 110G, and 110B for each component are formed of a transparent material, and the ink layers 114R, 114G, and 114B of each component are also formed of a transparent ink.
- the red LED 126R, the green LED 126G, and the blue LED 126B are not lit, it is difficult to notice that an image with transparent ink is printed. Accordingly, the red LED 126R is turned on to cause the ink layer 114R of the display board 110R to glow red, the green LED 126G is turned on to cause the ink layer 114G of the display board 110G to glow green, and the blue LED 126B is turned on to turn on the ink layer 114B of the display board 110B. If the light is shined blue, it is possible to display an image in a very impressive manner as if a color image has floated with light from the transparent display plate 110.
- small protrusions 118 are provided on the surface of the display panel for G component 110G and the surface of the display panel for B component 110B, respectively.
- the surfaces of 110G and display board 110B are not in contact with each other. For this reason, it is avoided that the light propagating through the inside of a certain display board 110 enters the inside of the adjacent display board 110 and shines the adjacent image.
- the G image that should originally be emitted in the G color is emitted in the R color. As a result, the color image cannot be displayed in the original color.
- FIG. 15 illustrates a state in which a full-color color image is displayed on the image display device 100 of the third embodiment.
- the areas SR, SG, and SB are calculated based on the luminance data for all of the R component, G component, and B component.
- the areas SR, SG, and SB are meaningful values for the relative sizes between the pixels, and light loss caused by illuminating the pixels on the upstream side or light when propagating from the upstream side. In consideration of the influence of attenuation of the pixel, it is a value that indicates what ratio should be used to illuminate each pixel with brightness according to the luminance data.
- the R component is used by the method described above with reference to FIG. Ink image, G component ink image, and B component ink image are printed.
- the first condition described above that is, the condition that the image does not become darker from the upstream side to the downstream side in the light traveling direction is the same for any RGB component image. Can be satisfied.
- both the operation for calculating the areas SR, SG, and SB from the luminance data of each component and the operation for converting the areas SR, SG, and SB into the corrected areas of the respective components form an image with ink according to the obtained corrected areas.
- the operation is basically performed for each component. However, only when determining the ratio of replacing the areas SR, SG, and SB of each component with the corrected area, the RGB components are handled as a whole and replaced. The ratio is determined. That is, as shown in FIG. 14, the area Smax, which is the largest value, is extracted from the total areas SR, SG, and SB obtained for each of the three components for all pixels constituting the image, and the area Smax is the floor.
- the areas SR, SG, and SB are converted into corrected areas for each component so that the tone value is 255 (or a predetermined gradation value). For this reason, the second condition described above, that is, the condition that the balance of the brightness of the R image, the G image, and the B image is maintained at the balance of the RGB components indicated in the color image data can be satisfied. it can.
- the first condition and the second condition described above can be satisfied at the same time by displaying a color image by the method shown in FIG.
- a star decoration attached to the tip of a Christmas tree is displayed in gold, a leaf portion is displayed in deep green, and a trunk portion is brown. It is possible to display a color image in a very impressive manner.
- the concentration of the light scattering fine particles 114p is increased, the R image, the G image, and the B image can be clearly emitted. As a result, a color image can be clearly displayed.
- the concentration of the light scattering fine particles 114p increases, the ink layer 114 gradually becomes cloudy, so that even when the image is not illuminated, it is easy to notice that the image is printed on the surface of the display plate 110. . Therefore, also in the image display device 100 of the third embodiment, the density of the light scattering fine particles 114p included in the transparent ink is the most impressive in consideration of the viewpoint of clearly displaying the color image and the viewpoint of suppressing the cloudiness.
- the density is set so that a color image can be displayed.
- the R image, the G image, and the B image due to the cloudy ink layer 114 appear to overlap, so that it is understood that something is printed as it is, It is difficult to understand what is printed. Therefore, when displaying a plurality of images in a superimposed manner, such as when displaying a color image using an R image, a G image, and a B image, the light scattering particles are smaller than when displaying without overlapping images. Even if the density of 114p is set in a direction in which white turbidity further advances, an impressive display can be performed.
- the display plates 110R, 110G, and 110B for each component of RGB are laminated to form one display plate 110, and the display plate 110R for each component. , 110G, 110B, a small protrusion 118 provided on the surface provides a gap corresponding to the height of the protrusion 118. If foreign matter such as dust or moisture enters the gap, it may be difficult to display an image clearly. Moreover, in order to make the display board 110 thin and to make the positional deviation of the image of each component inconspicuous when the display board 110 is viewed from an oblique direction, the gap is usually set very narrowly, Once a foreign object enters, it is difficult to remove it. Therefore, in order to avoid the occurrence of such a problem, the display panel 110 may be configured as follows.
- FIG. 16 is an explanatory view showing a display board 110 according to a modification of the third embodiment in which the side face on which the display boards 110R, 110G, and 110B of RGB components are stacked is covered with a cover member 110S.
- the cover member 110S it is possible to avoid the entry of foreign substances into the narrow gaps between the display panels 110.
- the cover member 110S has a surface on the side facing the display plate 110 so as to reflect light.
- the light incident from the end face of the display panel 110 travels through the inside while repeating the complete reflection on the surface of the display board 110, and eventually reaches the outside from the opposite or side end face. To be emitted.
- the light radiated from the end face does not shine the image formed on the surface of the display panel 110, and is, in other words, light that is wasted.
- the surface of the cover member 110S is a surface that reflects light, such as a mirror, for example, the light that is thrown away from the end face of the display board 110 is returned to the inside of the display board 110 again, and an image is displayed. Can shine. As a result, it is possible to brighten the image on the display panel 110 without making the light incident from the end face unnecessarily strong.
- the small projections 118 are provided on the surface of the display plate 110 to avoid contact between the surfaces of the display plates 110.
- the display panel 110 may be configured by stacking the thin frame members 110W between the RGB display panels 110R, 110G, and 110B.
- FIG. 17 is an explanatory view showing a display board 110 of another modification of the third embodiment in which the frame member 110W is sandwiched between the display boards 110R, 110G, and 110B of each component.
- the frame member 110 ⁇ / b> W has a frame shape by cutting out a portion where an image is displayed. For this reason, it is possible to avoid contact between the surfaces of the display boards 110 by laminating the display boards 110R, 110G, and 110B of RGB components with such a frame member 110W interposed therebetween.
- the gap between the display panel 110 and the display panel 110 is blocked by the frame member 110W on the side surface of the display panel 110 formed by stacking, there is no possibility that foreign matters such as dust are mixed. .
- the frame member 110W is formed of a transparent material, the entire display board 110 in which the display boards 110R, 110G, and 110B of RGB components are laminated can be kept transparent. However, in this case, the light (light of other colors) of the adjacent display board 110 enters through the portion of the frame member 110W. Therefore, in order to suppress this influence, it is desirable that the frame member 110W has a shape as thin as possible (the width of the contact portion with the display plate 110 is narrow). On the other hand, if the frame member 110W is made of an opaque material, the outer peripheral portion of the display board 110 cannot be transparent, but the light of the adjacent display board 110 enters through the frame member 110W. Can be avoided.
- FIG. 18 is an explanatory diagram showing a rough structure of the display board 110 used in the image display device 100 of the fourth embodiment.
- the display board 110 of the fourth embodiment is an additional display board on the display board 110 of the third embodiment (the display board 110 in which each of RGB components 110R, 110G, and 110B is laminated).
- 110E is laminated.
- a gap is secured by the protrusion 118 between the additional display panel 110E and the R component display panel 110R.
- An image to be additionally displayed is formed on the surface of the additional display board 110E with transparent ink.
- images of a Christmas tree are formed on the display plates 110R, 110G, and 110B for each of RGB components, as in the third embodiment.
- An additional image 112E representing the characters “Merry! Xmas!” Is formed on the surface of the additional display board 110E. Since this additional image 112E is also formed on the surface of the transparent display board 110 using transparent ink, it is difficult to notice that the additional image 112E is formed at a glance.
- FIG. 19 is an explanatory view showing a state where the display board 110 of the fourth embodiment is mounted in the groove 124 of the base portion 120.
- the display board 110 of the fourth embodiment is composed of four display boards.
- the base portion 120 of the fourth embodiment is provided with four rows of LEDs at the bottom of the groove 124 as shown in FIG. Among these, a row of red LEDs 126R is provided at a position facing the end face of the display panel 110R for the R component. Similarly, a row of green LEDs 126G is provided at a position facing the end face of the G component display board 110G, and a row of blue LEDs 126B is provided at a position facing the end face of the B component display board 110B.
- a row of white LEDs 126E that emit white light is provided at a position facing the end face of the additional display board 110E.
- LED which emits not only white light but what kind of light.
- the red LED 126R, the green LED 126G, and the blue LED 126B are turned on in a state where the display plate 110 of the fourth embodiment is mounted on the base portion 120, it is exactly the same as the image display device 100 of the third embodiment described above. Color images can be displayed. In this state, if the white LED 126E is turned on, an additional image 112E (for example, an image of “Merry! Xmas!” As illustrated in FIG. 19) formed on the additional display board 110E is lit and displayed. Or turn off the display.
- an additional image 112E for example, an image of “Merry! Xmas!” As illustrated in FIG. 19
- FIG. 20 conceptually shows how the additional image 112E of the characters “Merry! Xmas!” Formed on the additional display board 110E is displayed or deleted while the Christmas tree image 112 is displayed.
- FIG. FIG. 20A shows a state where the additional image 112E is not displayed. Since the additional image 112E is formed of a transparent ink on the transparent display board 110E, unless the image of the additional image 112E is illuminated, the display board 110E is provided at first glance, or the display board It is difficult to notice that the additional image 112E is formed on 110E. When the white LED 126E is turned on from this state to light up the additional image 112E (see FIG. 20B), the additional image 112E (the image of “Merry! Xmas!” In FIG.
- the image display apparatus 100 of the second embodiment can not only display an image (here, an image of a Christmas tree) but also display the additional image 112E in a floating manner or erase it. Therefore, it is possible to display an image in a manner that is very easy to catch the eye.
- FIG. 21 is an explanatory view illustrating the image display device 100 of the fourth embodiment in which a plurality of display plates 110 are stacked as an additional display plate 110E.
- an image of the characters “Merry! Xmas!” Is formed of transparent ink as an additional image 112E on one of the additional display plates 110E.
- an image showing snow as an additional image 112F is formed with transparent ink.
- a white LED 126E and a white LED 126F are provided facing the end faces of these additional display boards 110E, and when the white LED 126E is turned on, as shown in FIG. 21B, “Merry! Xmas! "Can be displayed superimposed on the Christmas tree, and if the white LED 126F is turned on, an image as if snow is falling on the Christmas tree is displayed as shown in FIG. Can do. Further, when the white LED 126E and the white LED 126F are turned on, as shown in FIG. 21 (d), an image of the letter “Merry! Xmas!” Is displayed over the image such as snowing on the Christmas tree. Is possible.
- the white LED 126E (or the white LED 126F) is turned on or off to display the additional image 112E (or the additional image 112F) or to turn off the display. Can be performed manually by pressing an operation button 122 provided on the base 120.
- a timer may be built in the base unit 120, and the white LED 126E (white LED 126F) may be turned on or off at a predetermined timing or randomly according to a program stored in advance.
- the additional display board 110E on which the additional image 112E is formed is laminated on the display board 110 of the third embodiment capable of displaying a color image.
- the display plate 110E may be stacked on the display plate 110 capable of displaying a monochrome image.
- E. Fifth embodiment In each of the above-described embodiments, it has been described that the base unit 120 simply allows light to enter the display panel 110 to which the base unit 120 is attached to shine an image. However, the information stored in the display board 110 may be read out, and light may be incident in a manner corresponding to the information to make the image glow.
- the image display apparatus 100 according to the fifth embodiment will be described.
- FIG. 22 is an explanatory diagram showing the structure of the base unit 120 in the image display device 100 of the fifth embodiment.
- FIG. 22 also shows a part of the display board 110 attached to the base portion 120. Similar to the base portion 120 of the various embodiments described above, also in the fifth embodiment, the upper surface of the base portion 120 is provided with a groove 124 on which the display plate 110 is mounted, and a plurality of grooves are provided at the bottom of the groove. LEDs 126 are provided in a row.
- FIG. 22 shows a state in which the LED substrate 127 on which the plurality of LEDs 126 are mounted is provided at the bottom of the groove 124.
- a control unit 128 that controls the light emission operation of the LED 126 is provided inside the base unit 120, and this control unit 128 is connected to a data reading unit 132 provided on the side wall of the groove.
- a tag 130 is attached to a predetermined position on the surface of the display board 110, and the data reading unit 132 of the base unit 120 uses the display board 110 as a base part. It is provided at a position so as to face the tag 130 of the display board 110 when mounted in the 120 groove 124.
- the tag 130 of the display board 110 stores predetermined data (specific information) corresponding to an image printed on the surface of the display board 110. The specific information stored in 130 can be read using the data reading unit 132.
- FIG. 23 is a block diagram conceptually showing the function of the base unit 120 used in the image display device 100 of the fifth embodiment.
- the control unit 128 of the base unit 120 includes an LED driver 128d that is connected to the LED board 127 and drives each LED 126, a memory 128m that stores a plurality of types of drive patterns that drive each LED 126, and the like. In the illustrated example, six types of drive patterns of pattern A1, pattern A2, pattern B1, pattern B2, pattern C, and pattern D are stored.
- the data reading section 132 of the base section 120 reads data from the tag 130 attached to the surface of the display board 110 and inputs the data to the control section 128.
- FIG. 24 is an explanatory diagram showing the structure of the tag 130 attached to the surface of the display board 110.
- the tag 130 has a two-layer structure in which a tag sheet 130a formed by embedding an IC chip or an antenna in a resin sheet and a resin-made reflective sheet 130b vapor-deposited on aluminum are bonded together by an adhesive layer. It has a structure.
- Such a tag 130 is attached to a predetermined position of the display board 110 (a position surrounded by a thin broken-line rectangle in the drawing) via an adhesive layer.
- the tag 130 attached to the display board 110 and the data reading part 132 provided on the base part 120 are in a position facing each other.
- the data reading unit 132 of the base unit 120 can read the data stored in the IC chip of the tag 130 in a non-contact manner via the antenna.
- the tag 130 having a two-layer structure covered with the reflection sheet 130b from the top of the tag sheet 130a is used for the following reason.
- the light incident from the LED 126 propagates inside the display panel 110 while being completely reflected by the surface.
- the tag 130 is affixed with an adhesive layer, depending on the refractive index of the adhesive layer, the above-described complete reflection condition is difficult to be satisfied.
- the refractive index of the resin sheet constituting the tag sheet is also different from the refractive index of the display plate 110, and the condition of complete reflection is difficult to be satisfied depending on the refractive index of the resin sheet.
- the image display apparatus 100 employs a tag 130 having a two-layer structure in which a tag sheet 130a is covered with a reflection sheet 130b. By doing this, even if the condition of complete reflection is lost at the place where the tag 130 is attached, all the light that penetrates the tag sheet 130a and exits from the surface is reflected by the reflective sheet 130b, 110 can be returned. As a result, it is possible to prevent light from being attenuated at the position of the tag 130.
- the tag 130 is described as a tag in which an IC chip and an antenna are formed in a seal shape and configured to be able to read data stored in the IC chip in a non-contact manner.
- the embodiment of the present invention is not limited to such an embodiment, and tags of various embodiments can be used.
- a tag configured such that an IC chip and an electrode are formed in a seal shape and data in the IC chip can be read by contacting terminals can be used.
- FIG. 25 is an explanatory diagram illustrating drive patterns stored in the memory 128m of the control unit 128.
- Each drive pattern is given a pattern number, and the drive pattern can be specified by the pattern number.
- the driving pattern (pattern A1) specified by the pattern number A1 the light emission intensity of the LED 126 increases as time passes, and when the light intensity reaches a certain light intensity, the light intensity decreases slowly after being kept for a while. Then, the pattern is set to repeat turning off at the end.
- the drive pattern (pattern A2) specified by the pattern number A2 is set to a pattern whose light intensity is generally weaker than that of the pattern A1.
- the drive pattern (pattern B1) specified by the pattern number B1 is set to a pattern in which the light intensity slowly increases with time and turns off suddenly when reaching a certain light intensity.
- the light intensity of all the LEDs 126 is not changed at the same time, but for example, by turning on the LEDs little by little from the LED 126 on one end side and turning off the light after a predetermined time has passed, It is also possible to set a pattern in which the light band moves toward the side.
- a plurality of types of drive patterns are stored in the memory 128m of the control unit 128, and these drive patterns can be specified by pattern numbers.
- a pattern number for specifying a drive pattern is stored in the IC chip of the tag 130.
- the pattern number stored in the IC chip of the tag 130 is read by the data reading unit 132 of the base unit 120 and input to the control unit 128.
- a drive pattern corresponding to the pattern number is specified from the drive patterns stored in the memory 128m in the control unit 128, and the LED driver 128d drives the LED board 126 according to the specified drive pattern. Light is emitted from each LED 126 according to the drive pattern.
- the LED 126 is driven with a drive pattern corresponding to the pattern number in the tag 130 attached to the display board 110, and the image on the display board 110 can be illuminated. Accordingly, by storing an appropriate pattern number in the tag 130 according to an image printed on the surface of the display board 110 with transparent ink, the display board 110 can be appropriately attached only to the base unit 120. It is possible to display the image on the display board 110 by causing the LED 126 to shine with a pattern. If the display board 110 on which a different image is printed is replaced, a new pattern number is read from the tag 130 of the newly attached display board 110, and a new drive pattern corresponding to the read pattern number. Accordingly, the LED 126 is driven. As described above, in the image display device 100 of the fifth embodiment, the pattern of the LED 126 emitting light is switched simply by replacing the display plate 110, and the image is appropriately displayed by being printed with the transparent ink on the surface of the display plate 110. It becomes possible.
- a drive pattern corresponding to the pattern number read from the tag 130 may not be stored in the memory 128m of the control unit 128. Therefore, a standard drive pattern is determined in advance among a plurality of drive patterns stored in the memory 128m, and a drive pattern corresponding to the pattern number read from the tag 130 is not stored in the memory 128m. In this case, the LED 126 may be caused to emit light using a standard driving pattern.
- the memory 128m may be configured by a memory capable of rewriting stored data, and a new drive pattern may be stored in the memory 128m using the data writing unit 129 provided in the base unit 120.
- the new drive pattern may be created, for example, using the operation switch 122 provided on the front surface of the base unit 120, or a new drive pattern may be acquired from an external computer or a mobile phone.
- a tag into which data can be written from the outside may be adopted so that the pattern number stored in the tag 130 can be changed. At this time, as indicated by a broken line arrow in FIG. 23, the pattern number stored in the IC chip of the tag 130 may be rewritten from the data writing unit 129 via the data reading unit 132. .
- the data reading unit 132 Since the data reading unit 132 is configured to be able to access the IC chip in the tag 130 and read out the stored data, the data reading unit 132 also passes through the data reading unit 132 when rewriting the data in the tag 130. The data in the tag 130 can be easily rewritten without adding any special equipment.
- the tag 130 of the display board 110 has been described as being stored with only one pattern number.
- a plurality of pattern numbers may be stored in the tag 130, and the LED 126 may be caused to emit light using a plurality of drive patterns corresponding to the pattern numbers in order. Or you may make it switch the pattern which actually drives LED126 among these several drive patterns using the operation switch 122 of the base part 120.
- a plurality of driving patterns for actually driving the LED 126 are stored on the base 120 side, and the tag 130 on the display board 110 side has a plurality of driving patterns.
- the pattern number for specifying one pattern is stored.
- the drive pattern itself for driving the LED 126 may be stored in the tag 130 of the display panel 110.
- FIG. 26 shows a rough configuration of the image display apparatus 100 according to such a modification.
- a drive pattern in the illustrated example, the pattern A1
- the tag 130 attached to the display board 110.
- a drive pattern is read from the tag 130, supplied to the base unit 120 via the data reading unit 132, and an LED driver according to the supplied drive pattern. 128d drives each LED 126.
- the LED 126 emits light with an appropriate pattern according to the image, An image can be displayed appropriately.
- the display board 110 is replaced, a new drive pattern corresponding to the image of the replaced display board 110 is read out. Therefore, the light emission pattern of the LED 126 can be appropriately changed according to the image simply by replacing the display board 110. It becomes possible to change to.
- the image display apparatus 100 of such a modification it is not necessary to store a plurality of drive patterns in the control unit 128 in the base unit 120, and thus the configuration of the base unit 120 may be simplified. it can.
- the image display device 100 of the fifth embodiment described above only the pattern number needs to be stored in the tag 130 of the display board 110. Therefore, it is possible to use a simple tag 130 such as a barcode.
- the tag 130 may be configured by a memory that can rewrite data from the outside, such as an IC chip, and the drive pattern stored in the tag 130 may be rewritten from the outside.
- a data writing unit 129 is provided in the base unit 120, and the IC chip of the tag 130 is inserted through the data reading unit 132 that reads the driving pattern from the tag 130.
- the stored pattern number may be rewritten.
- a broken arrow shown in FIG. 26B represents a state in which the drive pattern in the tag 130 is rewritten from the data writing unit 129 through the data reading unit 132.
- the data reading unit 132 Since the data reading unit 132 is configured to be able to access the IC chip in the tag 130 and read out the stored data, the data reading unit 132 also passes through the data reading unit 132 when rewriting the data in the tag 130. The data in the tag 130 can be easily rewritten.
- an image is directly formed on the surface of the display plate 110 using transparent ink.
- an image made of transparent ink is formed on the surface of the transparent sheet, and the transparent sheet is pasted to form an image made of transparent ink on the surface of the display board 110. It may be formed. Even in this case, it is possible to shine and display the image formed on the surface of the transparent sheet by making light incident from the end face of the display plate 110. Then, if the transparent sheet is pasted on the display board 110 in a replaceable manner, the displayed image can be changed by pasting the transparent sheet.
- FIG. 27 is an explanatory diagram showing the principle that allows the image of the transparent sheet 111 attached to the surface of the display plate 110 to be displayed by shining light from the end face of the display plate 110.
- the light incident from the end face of the display panel 110 travels inside the display panel 110 while being completely reflected on the surface of the display panel 110.
- the refractive index of the transparent sheet 111 is not significantly different from the refractive index of the display panel 110. For this reason, when the light traveling inside the display plate 110 reaches a position where the transparent sheet 111 is attached to the surface, the light travels directly into the transparent sheet 111 without being reflected by the surface of the display plate 110. To do.
- the surface of the transparent sheet 111 (the surface in contact with the air) is substantially parallel to the surface of the display panel 110 to which the transparent sheet 111 is attached. Then, it returns to the inside of the display board 110 again. That is, since the refractive index of the display plate 110 and the transparent sheet 111 are not significantly different, there is no significant difference between the transparent sheet 111 and the display plate 110 for the light traveling inside the display plate 110. For this reason, the inside of the display plate 110 or the transparent sheet 111 advances while being completely reflected repeatedly.
- a transparent sheet 111 having a thickness of about 100 microns to 1 millimeter is used.
- an adhesive layer made of a resin material having substantially the same refractive index as that of the transparent sheet or the display plate 110 is provided on one surface of the transparent sheet 111, and the display can be performed in a manner that can be replaced by the adhesive layer. Affixed to the plate 110. For this reason, the transparent sheet 111 can be easily replaced.
- the transparent sheet 111 since the image of the transparent sheet 111 is formed of transparent ink, the transparent sheet 111 with a different image can be easily created. Therefore, in the image display device 100 according to the sixth embodiment, it is possible to easily change the displayed image by replacing the transparent sheet 111.
- FIG. 28 shows how the transparent sheet 111 on which the image 112 made of transparent ink is formed is pasted.
- the adhesive layer provided on the transparent sheet 111 is preferably formed of a resin material having fluidity (for example, a gel material). If there is an air gap between the attached transparent sheet 111 and the display plate 110, light is reflected on the surface of the display plate 110 at that portion. For this reason, light does not reach the transparent sheet 111, and the ink layer 114 in that portion cannot be illuminated.
- the adhesive layer of the transparent sheet 111 is formed of a resin material having fluidity, even if fine irregularities exist on the surface of the display plate 110, the irregularities are filled with the adhesive layer, and no gap is formed. Thus, the transparent sheet can be brought into close contact with the surface of the display board. In addition, even when dust in the air is caught when sticking the transparent sheet, if the dust is small, it will be embedded in the adhesive layer, so the transparent sheet can be brought into close contact with the surface of the display board. Become.
- the thickness of the adhesive layer of the transparent sheet 111 is deformed with respect to the irregularities on the surface of the display panel 110, so that dust can be embedded even when dust in the air is sandwiched. It is desirable to have a thickness of several microns to several tens of microns so that it can be achieved.
- the adhesive layer does not necessarily require strong adhesive force, but it is desirable that the adhesive layer has fluidity that can be deformed and adhered to fine irregularities.
- the image using the transparent ink is merely formed on the display board 110 (or the transparent sheet 111). Accordingly, the portion where the ink layer 114 made of transparent ink is formed is in a state of being slightly raised from the surface of the display panel 110 (or the transparent sheet 111). However, the outermost surface of the display board 110 including the ink layer 114 may be formed smoothly by forming a clear layer made of a transparent resin that does not include light-scattering fine particles on an image using transparent ink. .
- the image display apparatus 100 according to the seventh embodiment will be described.
- FIG. 29 is an explanatory diagram showing a state in which a clear layer 116 made of a transparent resin is provided on the ink layer 114 and the outermost surface is formed smoothly.
- a clear layer 116 made of a transparent resin not containing the light scattering fine particles 114p is formed on the ink layer 114 formed on the display plate 110.
- the outermost surface of the display panel 110 (therefore, the boundary surface between the clear layer 116 and the air) is substantially smooth.
- the display plate 110 having such a configuration makes it possible to make an image made of transparent ink more difficult to see, and when the image is shined, the image is more beautiful. Can be displayed. The reason why such an effect can be obtained will be described below.
- FIG. 30 is an explanatory diagram showing an enlarged ink layer 114 formed of transparent ink on the surface of the display board 110.
- the ink layer 114 is formed so as to rise from the surface of the display panel 110.
- the end surface of the ink has a curved shape due to the surface tension of the transparent ink.
- the end portion of the ink layer 114 after the transparent ink is hardened also has a curved shape.
- the actual ink layer 114 has a shape in which a curved portion (end portion) is formed around a portion (top surface portion) that can be regarded as a substantially flat surface. .
- the image formed on the surface of the display board 110 is formed by gathering such ink layers 114.
- the portion of the display board 110 (or the transparent sheet 111) where the image is not formed is substantially in a mirror-like state, whereas the portion where the ink layer 114 is formed (particularly at the end portion). Since the way the light is reflected (in part), it may be noticed that an image of transparent ink is formed there.
- the ink layer 114 may not be appropriately lighted at the end of the ink layer 114 for the following reason.
- the actual ink layer 114 can be roughly divided into a top surface portion that can be regarded as a substantially flat surface, and an end portion having a curved shape. For this reason, light that has entered the ink layer 114 from the inside of the display panel 110 is roughly classified into three types.
- light that collides with the light-scattering fine particles 114p is represented by a thick solid arrow
- light that reaches the top surface is represented by a thin broken arrow
- light that reaches the end surface is represented by a thick dashed line arrow. Is represented by.
- the light reaching the ink layer 114 is light that has traveled while being completely reflected on the surface of the display plate 110, and the top surface portion of the ink layer 114 can be considered to be substantially parallel to the surface of the display plate 110. Nearly perfect reflection conditions are met at the top surface. Accordingly, the top surface portion of the ink layer 114 is completely reflected as indicated by the thin broken arrow in FIG. 30, proceeds inside the ink layer 114, and returns to the display plate 110 again.
- the surface of the ink layer 114 is greatly inclined with respect to the surface of the display plate 110, so that the condition of complete reflection is not satisfied. Therefore, a part of the light reaching the end of the ink layer 114 is reflected, and the remaining light is refracted on the surface of the end as shown by the thick dashed line arrow in FIG. After changing, go straight in the air. Unlike the light scattered around by the light scattering fine particles 114p (light indicated by a thick broken line in the figure), such light travels straight in the air in a certain direction determined by the angle refracted at the surface of the end. , It will feel dazzling when it enters the eyes of the observer. For this reason, when the image displayed on the display board 110 is observed from a certain angle, the light from the end of each ink layer 114 enters the eyes and feels dazzling. In some cases, the images appear to be glaring. It may end up.
- FIG. 31 is an explanatory diagram conceptually showing a portion corresponding to the top surface portion and a portion corresponding to the end portion of the ink layers 114 having different sizes. From FIG. 31A to FIG. 31B and FIG. 31C, as the area of the ink layer 114 gradually increases, the ratio of the end portion to the entire area of the ink layer 114 increases. In general, when printing a high-quality image, it is usual to increase the resolution of the image, and the size of each ink layer 114 is reduced accordingly. As a result, the ratio of the end portion of the entire ink layer 114 to the whole becomes high, and it becomes easy to notice that an image is formed, or glare of the image is likely to occur.
- FIG. 32 is an explanatory diagram conceptually showing a state in which a part of an image printed with transparent ink on the surface of the display board 110 is enlarged. Small rectangles indicated by broken lines in the figure represent pixels. Among these pixels, an image is printed by generating pixels in which an ink layer 114 of transparent ink is formed with an appropriate distribution. In the image printed by forming such a small ink layer 114, the ratio of the end portions of the ink layer 114 is increased as described above with reference to FIG.
- the image display device 100 of the seventh embodiment as shown in FIG. 29, by providing a transparent clear layer 116 on the ink layer 114, the outermost surface of the display board 110 (clear layer 116 and The boundary surface with air is formed almost smoothly. For this reason, it is possible to avoid the occurrence of such a problem. Hereinafter, this reason will be described.
- FIG. 33 is an explanatory diagram showing the reason why it is possible to avoid the notice of the image made of the transparent ink or the feeling of the image becoming glaring by forming the clear layer 116 on the ink layer 114. is there.
- the outermost surface of the display panel 110 (the boundary surface between the clear layer 116 and air) can be formed almost smoothly.
- the portion where the image is formed with the transparent ink is also almost in the state of a mirror like the portion where the image is not elaborated, so that the image is formed due to the difference in light reflection. It can be difficult to notice.
- the image looks glaring when light is incident from the end face of the display plate 110 for the following reason.
- light that has propagated through the inside of the display panel 110 and then is scattered around by the light scattering fine particles 114 p in the ink layer 114 is represented by dashed arrows.
- the refractive index of the ink layer 114 and the clear layer 116 is not so different, the light that has passed through the ink layer 114 without colliding with the light scattering fine particles 114p almost reaches the boundary surface with the clear layer 116. It passes through the boundary surface without being reflected, and reaches the boundary surface between the clear layer 116 and the air.
- the refractive index of the clear layer 116 and that of air are greatly different, and the upper surface of the clear layer 116 is formed smoothly, so that almost perfect reflection conditions are satisfied. As a result, the light is completely reflected on the surface of the clear layer 116 and returns to the display panel 110 again.
- the clear layer 116 it is desirable to use the same material as the transparent ink for forming the ink layer 114, but using a transparent ink that does not include the light scattering fine particles 114p.
- the clear layer 116 is formed by printing using a transparent ink not containing the light scattering fine particles 114p, or by applying from the top of the image by spraying or the like. What is necessary is just to form. In this way, it is possible to completely eliminate a slight light loss due to a part of light reflected at the boundary surface between the ink layer 114 and the clear layer 116 due to a difference in refractive index.
- the clear layer 116 can be substantially formed by the following method. That is, a transparent ink (hereinafter referred to as UV ink) having a property of being cured by irradiation with ultraviolet rays or the like is used as the transparent ink, and an image of the UV ink including the light scattering fine particles 114p is displayed on the surface of the display plate 110.
- the ink layer 114 is formed by irradiating ultraviolet rays or the like after printing, the ultraviolet ray or the like is irradiated after a certain amount of time has elapsed after printing the image with the UV ink. Also good.
- the UV ink before curing is combined with the adjacent UV ink by the surface tension, and as a result, the edge is reduced. Then, when the end portion is reduced to some extent, the UV ink is cured by irradiating ultraviolet rays or the like. This makes it possible to print an image with a low proportion of the edge portion of the ink layer 114. Therefore, when the image with the transparent ink is noticed due to the difference in the reflection of light, or when the image is shining, It is possible to avoid the appearance of an image.
- the viscosity of the transparent ink may be slightly decreased to such an extent that it can be combined with the adjacent ink.
- the edge is reduced by combining with the adjacent transparent ink, so an image with a low ratio of the edge of the ink layer 114 is printed. be able to.
- FIG. 34 is an explanatory diagram illustrating the image display device 100 of the eighth embodiment used as an indirect illumination device.
- a state in which an image is displayed by entering light from the end surface on the lower end side of the display plate 110 in a state where the image display device 100 is installed in the room is shown.
- the image is displayed in this manner, the light reaching the upper end of the display board 110 without emitting the image is emitted toward the ceiling, so that not only the image can be displayed but also indirect illumination can be performed. It becomes possible.
- the image display apparatus 100 of the eighth embodiment as shown in FIG. 34 has an extremely high light utilization efficiency while displaying an image, and as a result, it is indirect while ensuring a sufficient amount of light even with a relatively weak light source. Illumination can be performed. Hereinafter, this reason will be described.
- a lighting device capable of performing indirect illumination while displaying an image using light displays an image based on the following principle. That is, a part of the lighting device is configured by a panel or sheet formed of a translucent material, and an image is drawn on the panel or sheet. Then, by illuminating the back of the sheet or panel with a light source, an image is displayed and at the same time indirect illumination is performed. If the image is printed with colored transparent ink, etc., the colored image will be displayed shining like a stained glass, and if it is printed with an opaque material, the image will be displayed like a shadow picture. The In such a lighting device, the light use efficiency is reduced for the following reasons because the image is displayed by irradiating light from the back side of the panel (or sheet) formed of an opaque material. It is inevitable.
- red transparent ink or a red transparent member
- the blue light component and the green light component are absorbed, so the amount of light that can be used for illumination is It will decrease to less than half (roughly 1/3).
- the situation is the same for colored transparent inks other than red (or colored transparent members), and most of the light components are absorbed by the colored transparent ink (or colored transparent members), and the amount of light that can be used for illumination. The ratio will be negligible.
- the panel (or sheet) is necessarily an opaque material. It is necessary to form with. This is because if a panel or sheet is made of a transparent material such as acrylic resin or glass, the light for displaying the image will pass through the panel (or sheet) and illuminate the room, so indirect lighting It is because it does not become. When a panel or sheet is made of an opaque material, a considerable proportion of light is absorbed when passing through the panel (or sheet).
- the light use efficiency has to be low, and it is difficult to ensure a sufficient amount of light. .
- the image printed on the display board 110 with the transparent ink is not illuminated from the back side, but light is emitted from the end face of the display board 110 to the inside of the display board 110.
- the incident light propagates toward the end face on the other end side while repeating complete reflection inside the display panel 110.
- the display plate 110 is formed using a transparent material such as acrylic resin. , It will not be directly lighting.
- the light emitted from the LED 126 is not incident on the end face of the display plate 110 as it is, but once it is converged by a lens or the like and then incident, light that does not satisfy the condition of complete reflection near the end face of the 110 is obtained. Can be reduced. As a result, the utilization efficiency of light emitted from the LED 126 can be further increased. Alternatively, it is needless to say that the light utilization efficiency can be improved not by converging the light from the LED 126 but also by using the light leaking outside in the vicinity of the end face of the display panel 110 as illumination light. .
- the principle of displaying an image by the image display apparatus 100 of the eighth embodiment is that light is scattered by the light scattering fine particles 114p dispersed in the transparent ink as described above with reference to FIG. Is.
- the light that collides with the light-scattering fine particles 114p scatters to the surroundings and brightens the image, so that eventually this light is also used as a kind of illumination, and almost no loss of light is caused by displaying the image. Absent. Even when light passes through the light scattering fine particles 114p and reaches the surface of the ink layer 114 without colliding with the light scattering fine particles 114p, the light is completely reflected on the surface and the ink layer 114 and the display plate 110 are reflected. In this case, no light loss occurs.
- the transparent ink a colorless ink or a slightly colored ink is used, so that the ink layer 114 of the transparent ink hardly absorbs light.
- the image displayed simultaneously with the indirect illumination can be displayed in a very impressive manner as if the image has emerged from the transparent display board 110 with light.
- the light incident from the end face is described as being emitted upward from the opposite end face.
- some light may be emitted to the outside from the end surface on the side surface side.
- the light emitted from the end face on the side surface side can be used as indirect illumination light, similarly to the light emitted from the end face on the upper end side.
- a reflection plate such as a reflection tape may be provided on the end surface on the side surface so that light that is about to be emitted to the outside from the end surface on the side surface side may be reflected and returned to the inside of the display plate 110. In this way, it is possible to emit light from the end face on the side surface side to the outside from the end face on the upper end side without causing any loss of light.
- a transparent sheet 111 on which an image 112 with transparent ink is formed as in the sixth embodiment described above with reference to FIGS.
- it may be attached to the surface of the display board 110. In this way, for example, by changing the transparent sheet 111 depending on the season, it is possible to change the displayed image and perform indirect illumination more appropriately.
- FIG. 35 is an explanatory view illustrating an image display device 100 of a first modification of the eighth embodiment provided with a light diffusing unit 150 on the upper end side.
- FIG. 35A shows a state in which the light diffusing unit 150 is mounted on the upper end side (the side opposite to the base unit 120) of the display panel 110.
- FIG. The light diffusion part 150 shown in FIG. 35 has a substantially rectangular parallelepiped shape, and a rectangular recess is formed on the lower surface side. Then, the light diffusing portion 150 is mounted by fitting the concave portion to the upper end of the display plate 110.
- the light diffusing unit 150 is made of a transparent material such as an acrylic resin, and light scattering particles 150p are dispersed therein.
- the light diffusing portion 150 itself is made of a transparent material, but is slightly cloudy because the light scattering fine particles 150p are dispersed at a high density.
- FIG. 35B shows a cross-sectional view of the internal state when light is incident on the display plate 110 with the light diffusing unit 150 attached.
- a thin broken line or a thin one-dot chain line arrow shown in the figure represents a state in which light propagates while completely reflecting inside the display panel 110. In this way, when the light propagating through the inside of the display panel 110 reaches the end face, the light enters the light diffusion portion 150 from the end face.
- the light scattering fine particles 150p are dispersed at a high density in the light diffusing portion 150, the light collides with the light scattering fine particles 150p, is scattered to the surroundings, and the entire light diffusing portion 150 is lit. become.
- the light emitted from the light diffusing unit 150 in this way is not light that travels with directionality like light generated from the light source (in this case, the LED 126), but soft light that is scattered by the light scattering fine particles 150p. Therefore, the same effect as indirect illumination can be obtained.
- the mechanism for causing the light diffusing unit 150 to shine is light scattering by the light scattering fine particles 150p when viewed microscopically, and no light loss occurs. For this reason, although the obtained light is soft light, it is possible to realize indirect illumination with very high light utilization efficiency with almost no loss of light.
- red light is radiated upward from the upper end of the display plate 110R (the R component display plate 110R) that displays the R image.
- Green light is emitted from the upper end of the display plate 110G (G component display plate 110R) for displaying an image
- blue light is emitted from the upper end of the display plate 110B (R component display plate 110R) for displaying a B image.
- Radiated upward Even if red, green, and blue light are separately emitted in this way, the light is applied to almost the same part and mixed there to give almost white color, so indirect illumination can be performed as usual. It is.
- the intensity of light of each color varies, and as a result, the color is exhibited, so that a unique lighting effect can be obtained.
- a member that diffuses light may be provided at the upper end of the display plate 110. If it carries out like this, light of each component of RGB can be mixed at the same time it diffuses light with this member, and it can be set as substantially white light.
- FIG. 36 is an explanatory view exemplifying an image display device 100 of a second modification of the eighth embodiment provided with the light mixing and diffusing unit 160 at the upper end.
- FIG. 36A shows a state where the light mixing and diffusing unit 160 is mounted on the upper end side (the side opposite to the base unit 120) of the display plate 110.
- FIG. The light mixing and diffusing portion 160 has a substantially rectangular parallelepiped shape, similar to the light diffusing portion 150 described above, and a recess is formed on the lower surface side. Then, the concave portion is attached by fitting the concave portion to the upper end of the display plate 110.
- the light mixing and diffusing unit 160 is also formed of a transparent material such as an acrylic resin similarly to the light diffusing unit 150 described above, and light scattering fine particles 160p similar to the light scattering fine particles 150p are dispersed therein at a high density.
- the entire light mixing and diffusing unit 160 is slightly cloudy.
- FIG. 36B is a cross-sectional view showing a state in which red light is emitted from the R component display plate 110R in a state where the light mixing diffusion unit 160 is mounted on the display plate 110.
- the light mixing and diffusing unit 160 of the first modified example is different from the light diffusing unit 150 described above in that a gap is provided between the upper end of the display panel 110 and the light mixing and diffusing unit 160. Yes. Therefore, the red light emitted from the R component display panel 110R spreads in the gap and irradiates the entire top of the light mixing and diffusing unit 160.
- a shielding member 162 may be provided. By doing so, it is possible to avoid that the side surface of the light mixing and diffusing unit 160 on the R component display plate 110R side is lit red by red light from the upper end of the R component display plate 110R. Further, as the shielding member 162, a reflecting member that reflects light may be used instead of a simple shielding member. In this way, it is possible to guide all the red light emitted from the upper end of the R component display panel 110R to the top of the light mixing diffusion unit 160.
- FIG. 36 (c) shows a state in which the green light emitted from the G component display plate 110G irradiates the entire top of the light mixing and diffusing unit 160.
- FIG. 36 (d) shows a state in which the blue light from the B component display plate 110 ⁇ / b> G irradiates the entire top of the light mixing and diffusing unit 160.
- a shielding member 162 is provided between the upper end of the display plate 110 and the light mixing and diffusing portion 160, the light is emitted from the G component display plate 110G or the B component display plate 110B. The emitted green light and blue light can be prevented from leaking from the side surface of the light mixing and diffusing unit 160.
- the red light from the R component display plate 110R, the green light from the G component display plate 110G, and the B component display plate 110B are processed as described above. Is irradiated on the entire top of the light mixing and diffusing unit 160.
- the light mixing diffusion unit 160 is formed of a transparent material such as acrylic resin, red light, green light, and blue light respectively enter the light mixing diffusion unit 160, It collides with the light scattering fine particles 160p dispersed inside the light mixing and diffusing unit 160 and is scattered around.
- red light, green light, and blue light are mixed in the light mixing and diffusing unit 160 and diffused to the surroundings, so that it is possible to realize indirect illumination similar to the case where white light is used.
- the light mixing and diffusing unit 160 since the light scattering fine particles 160p are dispersed at a high density, almost all light is scattered by the light scattering fine particles 160p while traveling in the light mixing and diffusing unit 160. The For this reason, it becomes possible to mix and diffuse all the light emitted from the R component display board 110R, the G component display board 110G, and the B component display board 110B.
- the light mixing and diffusing unit 160 merely scatters light, and no light loss occurs. . Therefore, it is possible to realize a very high light utilization efficiency while causing the color image to be displayed on the display panel 110 and the light mixing and diffusing unit 160 to perform indirect illumination with soft white light.
- the end surface shapes on the light emission side are the R component display plate 110R, the G component display plate 110G, and the B component display plate 110B. Both of them are described as being the same.
- the light can reach the entire top portion depending on the positional relationship between the display panels 110R, 110G, and 110B and the top portion of the light mixing and diffusing portion 160.
- FIG. 37 is an explanatory view exemplifying a state in which the end face shape on the light emitting side is changed for each of the R component display board 110R, the G component display board 110G, and the B component display board 110B.
- the end face shape is appropriate for each display panel, the gap between the upper end of the display panel 110 and the top of the light mixing and diffusing unit 160 is reduced, and the top is brought closer to the upper end of the display panel 110. Therefore, the light mixing and diffusing unit 160 can be made compact.
- each display It is also possible to mix light emitted from the end face of the plate more uniformly.
- FIG. 38 is an explanatory view illustrating an image display device 100 of a third modified example in which the overall light intensity and the ratio of the light intensity between colors can be changed.
- an operation switch 122a for changing the overall light intensity and an operation switch 122b for changing the ratio of the light intensity between colors are provided on the base portion 120. It is shown.
- the operation switch 122a is rotated, the overall light intensity can be increased or decreased without changing the intensity ratio of red light, green light, and blue light. It is also possible to turn off the illumination by turning the operation switch 122a fully counterclockwise.
- Such a function inserts a variable resistor into a circuit that supplies power from a power source built in the base unit 120 to a red LED 126R that emits red light, a green LED 126G that emits green light, and a blue LED 126B that emits blue light. This can be easily realized.
- FIG. 38B conceptually shows that the entire light intensity can be changed by operating the operation switch 122a.
- the operation switch 122b shown in FIG. 38A When the operation switch 122b shown in FIG. 38A is rotated, it is possible to change the ratio of the light intensity of red light (R light), green light (G light), and blue light (B light). is there. For example, when the operation switch 122b is set at a position where “standard” is displayed, the light intensities of red light (R light), green light (G light), and blue light (B light) are set to the same ratio. Further, when the operation switch 122b is rotated counterclockwise, the ratio of red light (R light) is decreased and the ratio of green light (G light) is slightly decreased.
- the color image displayed on the display board 110 can be changed to a cool color tone that is bluish as a whole, and at the same time, by mixing these lights, the light of a cool color tone that is bluish as a whole is obtained. Indirect lighting can be performed.
- FIG. 38C conceptually shows how the ratio of red light (R light), green light (G light), and blue light (B light) changes as the operation switch 122b is operated. Yes.
- Changing the ratio of red light (R light), green light (G light), and blue light (B light) in accordance with the operation of the operation switch 122b in this way is based on the power supply built in the base unit 120. This can be easily realized by inserting a dedicated control circuit between the red LED 126R, the green LED 126G, and the blue LED 126B. Then, if the ratio of the light intensity of each color is changed in this way by operating the operation switch 122b, the color of the image displayed on the display board 110 and the indirect illumination is changed from a range from a cool color tone to a warm color tone. It can be set freely.
- the brightness for displaying an image and the intensity of indirect illumination can be adjusted by operating the operation switch 122a.
- the operation switch 122b by operating the operation switch 122b, the displayed image and the color tone of the indirect illumination can be adjusted. As a result, it is possible to display an image with an appropriate color tone and perform indirect illumination according to the season and situation.
- the light scattering fine particles 114p are dispersed in the ink layer 114, and the ink layer 114 is made to shine by scattering light with the light scattering fine particles 114p.
- the ink layer 114 shine it is not always necessary to disperse the light scattering fine particles 114p, and the following method can also be adopted.
- FIG. 39 is an explanatory diagram showing the reason why the ink layer 114 can be illuminated without using the light scattering fine particles 114p in the image display device 100 according to the first modification.
- the LED 126 when the LED 126 is turned on and light is incident on the inside of the display plate 110 from the end face, the incident light is reflected on the display plate 110 according to the principle described above with reference to FIG. It progresses inside while repeating perfect reflection on the surface.
- a state in which light incident from the end face of the display panel 110 travels through the inside while repeating complete reflection on the surface is represented by a broken line or a one-dot chain line arrow.
- the light traveling inside the display panel 110 eventually reaches the ink layer 114 formed on the surface with transparent ink.
- the refractive index of the ink layer 114 is relatively close to the refractive index of the display plate 110, the light reaching the boundary surface between the display plate 110 and the ink layer 114 is hardly bent in the traveling direction. After passing through the boundary surface as it is and proceeding inside the ink layer 114, the boundary surface between the ink layer 114 and air (the surface of the ink layer 114) is reached.
- the surface of the ink layer 114 is not as flat as the surface of the display panel 110, and unevenness is formed on the surface. For this reason, on the surface of the ink layer 114, a portion where the condition of complete reflection is not satisfied is generated at a constant rate and almost uniformly. From such a portion, according to the Snell's law described above, A certain ratio of light is transmitted to the outside. As a result, the ink layer 114 appears to shine.
- an inkjet printer prints an image by ejecting fine ink droplets. Therefore, an image 112 printed on the surface of the display board 110 using an ink jet printer is formed by collecting fine (small area) ink layers 114 (see FIG. 32). In addition, when the area of the ink layer 114 is small, the surface of the ink layer 114 (boundary surface with air) is formed into a curved surface as illustrated in FIG. 32 by the action of the surface tension of the ink.
- the ratio of the light transmitted to the outside without satisfying the condition of complete reflection in the light reaching the ink layer 114 is increased. Even when it is not included, the image 112 can be illuminated with sufficiently practical brightness.
- the image 112 is formed using the transparent ink not including the light scattering fine particles 114p, the image 112 formed on the surface of the display panel 110 can be made more inconspicuous. .
- the LED 126 By turning on the LED 126 and causing the image 112 to shine, it is possible to display the image in a very impressive manner as if the image floated from the transparent plate.
- an ink jet printer has been described as an example.
- the image 112 may be printed by a method other than the ink jet printer. The above-mentioned matters apply in exactly the same way.
- the visible light incident from the end face of the display plate 110 is scattered by the light scattering fine particles 114p in the ink layer 114 or transmitted through the surface of the ink layer 114. It was explained as something that shines. In this case, if red light is incident, the image is displayed in red, and if white light is incident, the image is displayed in white.
- the image 112 shines with the color of light incident from the end face.
- the image 112 may be formed using a transparent ink containing a fluorescent material.
- Fluorescence means that when it is irradiated with visible light, ultraviolet light, infrared light, electromagnetic waves, etc., it is temporarily excited, and is irradiated when returning from the excited state to a more stable state. This is a phenomenon in which light having a wavelength different from that of light is emitted. In addition, light emitted by the fluorescence phenomenon may be simply referred to as “fluorescence”. Different fluorescent materials can emit light of different wavelengths and shine in different colors even when irradiated with the same light. Therefore, if such a fluorescent material is used, an image can be displayed as follows.
- a plurality of types of transparent inks containing fluorescent materials that shine in different colors are prepared. These transparent inks emit different colors of fluorescence depending on the type of fluorescent material contained.
- a paint containing a fluorescent material is commercially available from Shinroihi Co., Ltd. under the trade name “Leuhi Marker” or “Magic Lumino Paint”. These products are transparent under normal conditions, but have the property of emitting fluorescence when irradiated with ultraviolet light.
- the fluorescent color is also red paint, green paint, blue paint, etc.
- Various fluorescent products are commercially available.
- an image 112 is formed on the surface of one display board 110 using these fluorescent colored transparent inks, and an LED 126 that generates ultraviolet light is provided facing the end face of the display board 110. deep. If the LED 126 is turned on and ultraviolet light is incident from the end face, it is possible to display the image 112 with each fluorescent color.
- the image display device 100 it is possible to print the image 112 using a transparent ink under normal light, and it is not necessary to disperse the light scattering fine particles 114p. For this reason, in a state where the LED 126 is not lit, it is possible to make the image 112 formed on the display board 110 more inconspicuous.
- the surface of the display board 110 since it is not necessary to form the surface of the ink layer 114 with unevenness or to form the image 112 with the fine (small area) ink layer 114, the surface of the display board 110 may be changed depending on how light is reflected. It is also possible to avoid the fact that the image 112 has been formed. As a result, it is possible to display the image in a very impressive manner as if the image was shining from the transparent plate.
- the image 112 may be formed on the surface of the plurality of display plates 110.
- an image 112 is formed on the surface of a certain display board 110 using transparent ink having a red fluorescent color, and the other display board 110 has a green color.
- the image 112 may be formed using fluorescent transparent ink, and the image 112 may be formed on another display plate 110 using blue fluorescent transparent ink, and the images 112 may be used in a superimposed manner. In this way, since the image 112 can be formed by being shared by the plurality of display boards 110, it is possible to form a finer image 112 than when the image 112 is formed on one display board 110. Become.
- An image can be displayed on a transparent display board in an extremely attractive and impressive manner. For this reason, advertising, decoration, transmission of various information, indirect lighting, etc. can be performed extremely effectively.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
Abstract
It is possible to easily display an image such as characters and graphics on a transparent display panel. An image is formed on a surface of a transparent display panel by using a transparent ink and light is applied from an end face into an interior of the display panel. The light introduced propagates inside the panel while being reflected by the surface of the display panel. When the light reaches the image formed by the transparent ink, the light is scattered by microparticles contained in the ink to display the image. Since an image is formed by a transparent ink, it is possible to easily form and display an image. Moreover, the image formed on a surface of a transparent display panel by using a transparent ink is not noticed unless light is applied to the image. Accordingly, the image comes up simultaneously with the light and can give a deep impression to a viewer.
Description
本発明は、透明な表示板に文字や図形などの画像を表示する技術に関する。
The present invention relates to a technique for displaying images such as characters and figures on a transparent display board.
透明な表示板上に文字や図形などを形成しておき、光を用いて、これら画像を表示する技術は、種々の技術が提案されている。その多くのものは、表示板の背面側から光を照射することで、表示板に形成された文字や図形を表示しようとする技術である。
Various technologies have been proposed for forming characters and figures on a transparent display board and displaying these images using light. Many of them are techniques for displaying characters and figures formed on a display board by irradiating light from the back side of the display board.
これに対して、透明な表示板の表面に略三角形断面の溝を掘って図形を描いておき、表示板の側面から表示板内に光を導入することによって、文字や図形を浮き上がらせて表示しようとする技術も提案されている(特許文献1)。
On the other hand, by drawing a figure by digging a groove with a substantially triangular cross section on the surface of a transparent display board and introducing light into the display board from the side of the display board, characters and figures are raised and displayed A technique to be attempted has also been proposed (Patent Document 1).
このような提案されている技術によれば、透明な表示板の側面から光を導入するために、背面から光を照射する方法に較べて表示部分を薄くすることが可能であり、また、いわゆる液晶画面を用いる方法に較べて遙かに簡単に文字や、図形、画像などを表示することが可能である。
According to such a proposed technique, in order to introduce light from the side surface of the transparent display plate, it is possible to make the display portion thinner as compared with a method of irradiating light from the back side. Characters, figures, images, etc. can be displayed much more easily than the method using a liquid crystal screen.
しかし、提案されている技術では、表示板の表面に溝を掘って図形を描いておく必要があり、このような図形を描くことはそれほど容易ではないという問題があった。
However, in the proposed technique, it is necessary to dig a groove on the surface of the display board and draw a figure, and there is a problem that it is not so easy to draw such a figure.
この発明は、従来の技術における上述した課題に対応してなされたものであり、文字や図形などの画像を透明な表示板に簡便に表示可能な技術の提供を目的とする。
The present invention has been made in response to the above-mentioned problems in the prior art, and an object thereof is to provide a technique capable of easily displaying images such as characters and figures on a transparent display board.
上述した課題の少なくとも一部を解決するために、本発明の画像表示装置は次の構成を採用した。すなわち、
所定の画像を表示する画像表示装置であって、
光を散乱させる微粒子を含んだ透明インクによって、前記画像が表面に形成された透明な板状部材である表示板と、
前記表示板の端面から該表示板の内部に向けて光を入射する光入射部と
を備えることを要旨とする。 In order to solve at least a part of the problems described above, the image display apparatus of the present invention employs the following configuration. That is,
An image display device for displaying a predetermined image,
A display plate, which is a transparent plate-like member having the image formed on the surface thereof, using transparent ink containing fine particles that scatter light;
And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
所定の画像を表示する画像表示装置であって、
光を散乱させる微粒子を含んだ透明インクによって、前記画像が表面に形成された透明な板状部材である表示板と、
前記表示板の端面から該表示板の内部に向けて光を入射する光入射部と
を備えることを要旨とする。 In order to solve at least a part of the problems described above, the image display apparatus of the present invention employs the following configuration. That is,
An image display device for displaying a predetermined image,
A display plate, which is a transparent plate-like member having the image formed on the surface thereof, using transparent ink containing fine particles that scatter light;
And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
このような本発明の画像表示装置においては、透明な表示板の表面に、表示しようとする画像を透明インクによって形成しておき、表示板の端面から内部に向かって光を入射する。すると、表示板の内部に入射された光は、表示板の表面で反射しながら内部を伝播していく。そして、透明インクによる画像が形成された部分に到達した光は、微粒子によって周囲に散乱され、その結果として、画像が光って表示されることになる。
In such an image display device of the present invention, an image to be displayed is formed on the surface of a transparent display plate with transparent ink, and light is incident from the end face of the display plate toward the inside. Then, the light incident on the inside of the display panel propagates through the inside while being reflected by the surface of the display board. Then, the light that reaches the portion where the image is formed by the transparent ink is scattered around by the fine particles, and as a result, the image is illuminated and displayed.
表示板の表面に透明インクで画像を形成するのであれば、表面に溝を掘って画像を形成することに比べて、遙かに容易に行うことができる。たとえば、表示しようとする画像が簡単な文字や図形であれば、手書きによっても簡単に描くことが可能であり、複雑な図形の画像であっても、印刷装置を用いれば容易に印刷することができる。このため、文字や図形などの画像を透明な表示板に簡便に表示することが可能となる。また、表示しようとする画像は、透明な表示板の表面に透明なインクを用いて形成されているので、画像を光らせる前の状態で一貫した程度では、表示板の表面に画像が形成されていることには気付かれ難い。そして、表示板の端面から光を入射して画像を光らせても、表示板の内部を伝播する光は見えないから、端面から光が入射されていることにも気付かれ難い。その結果、何もない処から光とともに画像が浮かび上がってくるような、たいへんに印象深い態様で画像を表示することができる。
If an image is formed with transparent ink on the surface of the display board, it can be performed much more easily than when an image is formed by digging a groove on the surface. For example, if the image to be displayed is a simple character or graphic, it can be easily drawn by handwriting, and even a complex graphic image can be easily printed by using a printing apparatus. it can. For this reason, images such as characters and figures can be easily displayed on a transparent display board. Further, since the image to be displayed is formed on the surface of the transparent display board using transparent ink, the image is formed on the surface of the display board to a consistent degree before the image is lit. It is hard to notice that Even if light is incident from the end face of the display panel to shine an image, the light propagating through the inside of the display board is not visible, and it is difficult to notice that the light is incident from the end face. As a result, the image can be displayed in a very impressive manner such that the image emerges with light from an empty place.
尚、本明細書中で言う「透明インク」とは、インクの表面で光を反射させるために塗布されるインク(例えばペンキや、修正液、各種の印刷用インクなど。以下、反射型インクと呼ぶ)とは異なり、光がインク層を透過することを前提として塗布されるインクを言う。例えば、市販のいわゆるクリアインクを用いて、市販のいわゆる反射型インクを半分程度に希釈したインクは、光がインク層を十分に透過することができないので、本明細書中で言う「透明インク」には該当しない。これに対して、市販のクリアインクを用いて、市販の反射型インクを4分の1以下に希釈したインクであれば、光がインク層を十分に透過し得るので、本明細書中の「透明インク」に該当する。尚、ここでクリアインクと反射型インクとの比率は、それぞれのインク中の揮発成分を除いた体積比率によって定義される。例えば、「クリアインクを用いて反射型インクを半分に希釈する」とは、希釈したインクを乾燥(あるいは固化)させた時に、クリアインクに由来する成分と、反射型インクに由来する成分とが、同体積ずつ含まれていることを言う。
In this specification, “transparent ink” refers to ink applied to reflect light on the ink surface (for example, paint, correction liquid, various printing inks, etc., hereinafter referred to as reflective ink). Is called an ink applied on the assumption that light passes through the ink layer. For example, an ink obtained by diluting a commercially available so-called reflective ink to about half by using a commercially available so-called clear ink cannot sufficiently transmit light through the ink layer. Not applicable. In contrast, if the commercially available clear ink is used and the commercially available reflective ink is diluted to a quarter or less, the light can be sufficiently transmitted through the ink layer. Corresponds to “transparent ink”. Here, the ratio between the clear ink and the reflective ink is defined by the volume ratio excluding the volatile component in each ink. For example, “diluting reflective ink in half using clear ink” means that when the diluted ink is dried (or solidified), the component derived from the clear ink and the component derived from the reflective ink Say that the same volume is included.
また、透明インクでインク層を形成した場合、ほとんどの光はインク層を透過することができるが、反射型インクでインク層を形成した場合は、多くの光がインク層で遮られてしまう。従って、アクリル板などの上に一定面積以上の連続したインク層を形成して、その背面側から光を照らしたときに、インク層が形成された部分を透過する光が7割以下に減衰するインク(インク層を透過しようとする光のうち、3割以上の光を遮ってしまうインク)は、本明細書に言う「透明インク」には該当しない。これに対して、7割より多くの光がインク層を透過するインクであれば、本明細書に言う「透明インク」に該当する。
In addition, when the ink layer is formed with transparent ink, most of the light can pass through the ink layer, but when the ink layer is formed with reflective ink, much light is blocked by the ink layer. Therefore, when a continuous ink layer of a certain area or more is formed on an acrylic plate or the like and light is illuminated from the back side, the light transmitted through the portion where the ink layer is formed is attenuated to 70% or less. Ink (ink that blocks 30% or more of the light that attempts to pass through the ink layer) does not fall under “transparent ink” in this specification. On the other hand, if the ink allows more than 70% of the light to pass through the ink layer, it corresponds to “transparent ink” in the present specification.
尚、透明インクで画像を印刷した場合でも、光の加減によっては白っぽく見えてしまうことがある。これは、インク層を形成することで表示板の表面に微細な凹凸ができてしまい、その凹凸で光が乱反射される結果、インク層自体は透明であるにも拘わらず、画像が白っぽく見えてしまう場合があるためである。しかし、この場合でも、凹凸による乱反射を抑えてやれば、画像は透明となる。従って、たとえ画像が白っぽく見えた場合でも、上から透明なアクリルラッカーを塗布することで画像が透明になるのであれば、その画像は本明細書に言う「透明インク」を用いて形成されていると言うことができる。何故なら、このような場合は、インク層は透明である(ほとんどの光を透過させる)にも拘わらず、表面の凹凸で光が乱反射していたために、画像が白っぽく見えていたと判断できるからである。逆に言えば、アクリルラッカーを塗布しても、ほとんど透き通らないようであれば、本明細書で言う「透明インク」で形成された画像には該当しない。
Even when an image is printed with transparent ink, it may appear whitish depending on light. This is because the formation of the ink layer creates fine irregularities on the surface of the display plate, and as a result of the irregular reflection of the light, the image appears whitish even though the ink layer itself is transparent. This is because there is a case where it ends up. However, even in this case, if the irregular reflection due to the unevenness is suppressed, the image becomes transparent. Therefore, even if the image looks whitish, if the image becomes transparent by applying a transparent acrylic lacquer from above, the image is formed using the “transparent ink” referred to in this specification. Can be said. This is because in such a case, although the ink layer is transparent (transmits most of the light), it can be determined that the image looked whitish because light was irregularly reflected by the surface irregularities. is there. In other words, even if an acrylic lacquer is applied, it does not correspond to an image formed with “transparent ink” as used in the present specification as long as it does not show through.
また、上述した本発明の画像表示装置においては、透明インクによる画像が形成された表示板を複数枚積層して、各々の表示板の端面から光を入射することにより、各表示板の画像を表示することとしても良い。この時、各表示板は、表面間に隙間が確保されるようにして積層しておく。
In the image display device of the present invention described above, a plurality of display plates on which images of transparent ink are formed are stacked, and light is incident from the end face of each display plate, whereby images on each display plate are displayed. It may be displayed. At this time, the display panels are laminated so that a gap is secured between the surfaces.
複数の表示板を積層しても、表面間に隙間が確保されていれば、ある表示板に入射した光が隣の表示板に進入して隣の表示板の画像を光らせてしまうことを確実に回避することができる。このため、例えば、表示板毎に異なる色の光を入射した場合には、各表示板に形成された画像を別々の色で光らせて表示することが可能となる。また、表示板毎に異なるタイミングで光を入射した場合には、光が入射された表示板の画像のみを光らせて表示することが可能となる。
Even if multiple display panels are stacked, if there is a gap between the surfaces, it is certain that light incident on one display panel will enter the next display panel and shine an image on the next display panel. Can be avoided. For this reason, for example, when light of a different color is incident on each display board, it is possible to display images formed on the display boards with different colors. In addition, when light is incident at different timings for each display panel, it is possible to display only the image of the display panel on which the light is incident.
また、複数の表示板を積層した本発明の画像表示装置では、間に隙間が確保された状態で積層された第1の表示板には赤色光を入射し、第2の表示板には緑色光を入射し、第3の表示板には青色光を入射することとしてもよい。
Further, in the image display device of the present invention in which a plurality of display plates are stacked, red light is incident on the first display plate stacked with a gap between them, and the second display plate is green. Light may be incident and blue light may be incident on the third display panel.
各表示板の間には隙間が確保されているので、各表示板の表面に形成された画像を、その表示板に入射した光の色で光らせることができる。そして、赤色光、緑色光、青色光を重ね合わせれば、種々の色を表現することも可能となる。従って、積層した表示板のうち、第1の表示板、第2の表示板、第3の表示板に、それぞれ赤色光、緑色光、青色光を入射してやれば、多彩な色彩の画像を表示することが可能となる。
Since a gap is secured between each display board, an image formed on the surface of each display board can be illuminated with the color of light incident on the display board. If red light, green light, and blue light are superimposed, various colors can be expressed. Accordingly, among the laminated display panels, if red light, green light, and blue light are respectively incident on the first display panel, the second display panel, and the third display panel, various color images are displayed. It becomes possible.
また、複数の表示板を積層した本発明の画像表示装置では、次のようにしても良い。先ず、複数の表示板の中の少なくとも1つは追加画像表示板とし、この表示板には、他の表示板の画像に追加して表示される画像(追加画像)を表面に形成しておく。そして、追加画像表示板の端面から光を入射する追加光入射部は、他の光入射部が表示板の内部に光を入射している間も、追加画像表示板に対して光を入射している状態と、光を入射していない状態とを切り換え可能に構成してもよい。
Further, in the image display device of the present invention in which a plurality of display plates are laminated, the following may be performed. First, at least one of the plurality of display boards is an additional image display board, and an image (additional image) to be displayed in addition to the image of another display board is formed on the surface of the display board. . Further, the additional light incident part that makes light incident from the end face of the additional image display board makes light incident on the additional image display board while the other light incident part is incident on the inside of the display board. And a state in which no light is incident may be switched.
こうすれば、追加画像表示板以外の表示板に形成された画像を表示した状態で、追加画像表示板に光を入射したり、入射を止めたりすることで、追加画像を表示したり、表示されている追加画像を消したりすることができる。しかも、追加画像も透明インクで印刷されているから、光を入射しなければ追加画像の存在には気が付き難い。加えて、追加画像ではない画像が明るく表示されているために、追加画像が形成されていることには、より一層気が付き難い。そのような状態で、追加画像表示板の端面から光を入射すると、何もないところから追加画像が浮き上がって来たような印象を与える。また、光の入射を止めると、元の画像はそのままで、追加画像だけが掻き消えたような印象を与えることができる。このように画像を表示した状態で、追加画像を表示したり、表示を停止したりすることができれば、より一層、人目を引き付け易い態様で画像を表示することが可能となる。
In this way, with the image formed on the display board other than the additional image display board being displayed, the additional image display board can be displayed or displayed by making light incident on the additional image display board or stopping the incidence. The added image can be deleted. Moreover, since the additional image is also printed with transparent ink, it is difficult to notice the presence of the additional image unless light is incident. In addition, since an image that is not an additional image is displayed brightly, it is even more difficult to notice that an additional image is formed. In such a state, when light is incident from the end face of the additional image display board, an impression is given as if the additional image has been lifted from nothing. Further, when the incidence of light is stopped, it is possible to give an impression that only the additional image is scraped off while the original image remains unchanged. If the additional image can be displayed or the display can be stopped in the state where the image is displayed as described above, the image can be displayed in a manner that makes it easier to attract the eyes.
あるいは、複数の表示板を積層した本発明の画像表示装置では、複数の表示板の互いに向き合う表面の少なくとも一方に、間隔を空けて複数の凸部を設けることとしてもよい。そして、その凸部によって、表示板の表面間に隙間を確保した状態で、複数の表示板を積層することとしてもよい。
Alternatively, in the image display device of the present invention in which a plurality of display plates are stacked, a plurality of convex portions may be provided at intervals on at least one of the surfaces of the plurality of display plates facing each other. And it is good also as laminating | stacking a some display board in the state which ensured the clearance gap between the surfaces of the display board with the convex part.
こうすれば、複数の表示板を積層したときに、表面に形成された凸部によって、隣接する表示板同士を確実に隔てておくことができるので、表示板の間の隙間を極めて薄くすることができる。加えて、たとえ表示板が撓んだとしても、隣接する表示板と接触する虞がないので、個々の表示板の厚さも薄くすることができる。その結果、画像表示装置を見る者に対しては、複数の表示板が積層されているのではなく、1つの表示板であるかのような印象を与え、その1つの表示板の中から、例えば種々の色の画像が浮かび上がってきたり、あるいは、次々と異なる画像が浮かび上がってきたりするかのような、印象深い態様で画像を表示することが可能となる。
In this way, when a plurality of display panels are stacked, the adjacent display panels can be reliably separated by the convex portions formed on the surface, so that the gap between the display panels can be made extremely thin. . In addition, even if the display panel is bent, there is no possibility of coming into contact with the adjacent display panel, so that the thickness of each display panel can be reduced. As a result, for the person who sees the image display device, an impression as if it is one display board is given rather than a plurality of display boards being laminated, and from among the one display board, For example, it is possible to display an image in an impressive manner such as images of various colors appearing or different images appearing one after another.
尚、表示板の隙間を確保するために、表面に複数の凸部を設ける際には、少なくとも表示板の四隅の位置に凸部を設けることが望ましい。表示板の面積が小さい場合、表示する図形も小さくなるので、比較的近くから観察されることになるが、近くから観察されると、表示板の表面に形成された凸部が気付かれ易くなる。しかし、表示板の四隅の位置は比較的目に止まり難いので、表示板の四隅の位置であれば、ほとんど気付かれることなく、凸部を形成することが可能となる。また、表示板の面積が小さい場合は、表示板自体の撓みも小さいので、少なくとも四隅に凸部を設けておけば、表示板の間に隙間を確保しておくことができる。
In order to secure a gap between the display plates, when providing a plurality of projections on the surface, it is desirable to provide projections at least at the four corner positions of the display plate. When the area of the display board is small, the figure to be displayed is also small, so it will be observed relatively close, but when observed from near, the convex part formed on the surface of the display board will be easily noticed . However, since the positions of the four corners of the display panel are relatively unnoticeable, the convex portions can be formed with almost no notice at the four corner positions of the display panel. In addition, when the area of the display panel is small, the deflection of the display panel itself is also small. Therefore, if protrusions are provided at least at the four corners, a gap can be secured between the display panels.
また、表面に複数の凸部を設けることで、隙間を確保した状態で複数の表示板を積層した場合には、複数の表示板を積層することによって形成された側面を、カバー部材によって覆っておくことが望ましい。複数の凸部が形成された表示板を積層すると、表示板の間に形成される隙間は狭いので、側面からゴミや水分などの異物が入り込むと取り除くことが困難となる。そこで、表示体を積層した側面をカバー部材によって覆っておけば、表示板の間に異物が入り込むことを回避することができる。また、このとき、カバー部材の内面側、すなわち、積層した表示体の側面に向かい合う側の面を、光を反射するようにしておいてもよい。表示板の端面から入射された光の一部は、透明インクによる画像を光らせることなく、他の端面から表示板の外部に放出されてしまう。しかし、カバー部材の内面側を、光を反射するようにしておけば、表示板の端面から放出された光を、再び表示板の内部に戻すことができる。その結果、少ない光で、より一層、明るく画像を光らせることが可能となる。
In addition, by providing a plurality of convex portions on the surface, when a plurality of display plates are stacked in a state where a gap is ensured, the side surface formed by stacking the plurality of display plates is covered with a cover member. It is desirable to keep it. When the display panels having a plurality of projections are stacked, the gaps formed between the display panels are narrow, so that it becomes difficult to remove foreign substances such as dust and moisture from the side surfaces. Thus, if the side surface on which the display bodies are stacked is covered with a cover member, it is possible to avoid foreign matter from entering between the display plates. At this time, the inner surface of the cover member, that is, the surface facing the side surface of the stacked display body may be configured to reflect light. A part of the light incident from the end face of the display panel is emitted from the other end face to the outside of the display board without causing the transparent ink image to shine. However, if the inner surface side of the cover member reflects light, the light emitted from the end face of the display panel can be returned to the inside of the display panel again. As a result, it is possible to make an image brighter with less light.
また、上述した本発明の画像表示装置においては、画像の各箇所での光散乱割合が、その箇所での目標輝度だけでなく、表示板の端面からその箇所までの光散乱割合の分布も考慮して決定された光散乱割合となるように、画像を印刷することとしてもよい。
In the image display device of the present invention described above, the light scattering ratio at each location of the image takes into account not only the target luminance at that location but also the distribution of the light scattering rate from the end face of the display board to that location. The image may be printed so that the light scattering ratio determined as described above is obtained.
表示板の表面に透明インクで画像を印刷しておき、表示板の端面から光を入射して光らせる場合、端面から入射された光は、表面に印刷された画像を光らせながら内部を進行することになる。このため、下流側になると光の強さが不足して、十分な明るさで画像を光らせることが困難になる場合がある。しかし、その箇所での目標輝度だけでなく、光を入射した側の端面からその箇所までの光散乱割合の分布も考慮して、画像の各箇所での光散乱割合を設定しておけば、たとえ光の強さが不足しても、光散乱割合によって補うことができる。その結果、画像の全ての領域を適切な明るさで光らせることが可能となり、適切に画像を表示することが可能となる。
When an image is printed on the surface of the display board with transparent ink, and light is incident from the end face of the display board and shines, the light incident from the end face travels inside while shining the image printed on the surface. become. For this reason, the intensity of light is insufficient on the downstream side, and it may be difficult to shine an image with sufficient brightness. However, considering not only the target brightness at that location, but also the distribution of the light scattering rate from the end surface on the light incident side to that location, if you set the light scattering rate at each location of the image, Even if the light intensity is insufficient, it can be compensated by the light scattering ratio. As a result, all areas of the image can be illuminated with appropriate brightness, and the image can be displayed appropriately.
また、上述した本発明の画像表示装置においては、表示板の表面を複数の画素に均等に区分して、各画素内に、透明なインクによるインク層を形成することによって画像を印刷しても良い。そして、各画素内に形成されるインク層の面積を異ならせることによって、画像の各箇所での光散乱割合を変更することとしても良い。
Further, in the above-described image display device of the present invention, the surface of the display plate is evenly divided into a plurality of pixels, and an image is printed by forming an ink layer of transparent ink in each pixel. good. And it is good also as changing the light-scattering ratio in each location of an image by varying the area of the ink layer formed in each pixel.
このような方法によれば、インクジェット印刷やスクリーン印刷などの一般的な印刷技術を用いて画像を印刷することができるので、表示板の表面に透明インクによる画像を、適切に且つ簡単に形成することが可能となる。
According to such a method, an image can be printed using a general printing technique such as ink jet printing or screen printing, so that an image using transparent ink is appropriately and easily formed on the surface of the display board. It becomes possible.
また、画素内に形成するインク層の面積は、次のようにして決定しても良い。先ず、光が入射する方向から見て最も上流側にある画素について、その画素内に形成するインク層の面積に比例した指標値を決定する。この指標値は、その画素を光らせようとする目標の輝度(目標輝度)に応じて決定すればよい。次いで、それより下流の画素については、その画素位置での目標輝度と、その画素よりも上流側にある各画素について既に得られている指標値とに基づいて、指標値を決定する。こうして、各画素についての指標値を決定したら、その後、各画素について得られた指標値の中で最も大きな指標値(最大指標値)が所定の面積となるように各画素の指標値を読み替えることによって、各画素内に形成するインク層の面積を決定することとしてもよい。
Further, the area of the ink layer formed in the pixel may be determined as follows. First, an index value proportional to the area of the ink layer formed in the pixel is determined for the pixel on the most upstream side when viewed from the direction in which light enters. This index value may be determined in accordance with the target luminance (target luminance) for which the pixel is to be illuminated. Next, for the downstream pixel, the index value is determined based on the target luminance at the pixel position and the index value already obtained for each pixel upstream of the pixel. After determining the index value for each pixel in this manner, the index value for each pixel is then read so that the largest index value (maximum index value) among the index values obtained for each pixel is a predetermined area. Thus, the area of the ink layer formed in each pixel may be determined.
こうすれば、表示板内での光の進行方向に沿って上流側にあるか、下流側にあるかに拘わらず、画像の各々の画素を目標輝度に応じた適切な明るさで光らせることが可能となる。また、最大指標値を読み替える面積の設定値を適切な値に設定すれば、画像を光らせる際のコントラストを、適切なコントラストに設定することができる。従って、入射する光の強さをむやみに増加させることなく、十分なコントラストで画像を表示することが可能となる。
In this way, each pixel of the image can be illuminated with appropriate brightness according to the target luminance regardless of whether it is upstream or downstream along the light traveling direction in the display panel. It becomes possible. Further, if the set value of the area for rereading the maximum index value is set to an appropriate value, the contrast when the image is illuminated can be set to an appropriate contrast. Therefore, it is possible to display an image with sufficient contrast without increasing the intensity of incident light.
また、上述した本発明の画像表示装置において、次のようにしてカラー画像を表示可能としても良い。先ず、赤色光を入射するR光入射部が端部に設けられたR成分表示板と、緑色光を入射するG光入射部が端部に設けられたG成分表示板と、青色光を入射するB光入射部が端部に設けられたB成分表示板とを、三枚合わせに重ねて表示板を構成する(尚、R成分表示板、G成分表示板、B成分表示板をまとめて、RGBの各成分表示板と称することがある)。また、RGBの各成分表示板の表面には、それぞれに透明インクによる画像を印刷しておく。ここで、それぞれの画像は、各画素位置での光散乱割合を次のようにして決定する。先ず、RGBの各成分表示板について、各画素の指標値を決定する。各画素の指標値は、上述した方法、すなわちその画素を光らせようとする目標輝度と、その画素よりも上流側にある画素について既に得られている指標値とに基づいて決定することができる。続いて、RGBの各成分表示板について得られた全ての指標値の中から最大指標値を抽出した後、RGBの各成分表示板の各画素について得られた指標値を読み替えて、各画素内に形成するインク層の面積を決定する。指標値をインク層の面積に読み替える際には、最大指標値が所定の面積となるような比率で読み替える。こうして決定した面積に従って、各画素にインク層を形成することによって、RGBの各成分についての画像を印刷することとしてもよい。
Further, in the image display device of the present invention described above, a color image may be displayed as follows. First, an R component display plate having an R light incident portion that receives red light at an end portion, a G component display plate having a G light incident portion that receives green light at an end portion, and blue light incident A display panel is formed by stacking together three B component display plates each having a B light incident portion provided at the end (the R component display plate, the G component display plate, and the B component display plate are combined. , RGB component display panels). In addition, an image of transparent ink is printed on the surface of each RGB component display board. Here, for each image, the light scattering ratio at each pixel position is determined as follows. First, the index value of each pixel is determined for each RGB component display board. The index value of each pixel can be determined based on the above-described method, that is, based on the target luminance that is intended to illuminate the pixel and the index value that has already been obtained for the pixel upstream of the pixel. Subsequently, after extracting the maximum index value from all the index values obtained for each RGB component display board, the index values obtained for each pixel of each RGB component display board are re-read, The area of the ink layer to be formed is determined. When the index value is read as the area of the ink layer, it is read at a ratio such that the maximum index value becomes a predetermined area. According to the area determined in this way, an image for each component of RGB may be printed by forming an ink layer on each pixel.
カラー画像を適切な色で表示するためには、R色の光と、G色の光と、B色の光とを適切な比率で混合させる必要がある。従って、RGBの各成分についての表示板を重ね合わせて、適切にカラー画像を表示するためには、次のようなことが重要となる。先ず、RGBの各成分についての表示板では、光の進行方向に沿って上流側から下流側までの全ての画像領域で、適切な明るさで光らせることが重要である。また、RGBの各成分の画像を光らせた時に、各成分間の明るさの比率も、表示しようとする色に応じた適切な比率となっていることが重要である。上述した本発明の画像表示装置では、RGBの各成分表示板の画像は、画素毎に求めた指標値をインク層の面積に読み替えることによって印刷されているので、全ての画像領域を適切な明るさで光らせることが可能である。また、画素毎に求めた指標値をインク層の面積に読み替える際には、RGBの各成分表示板について別個に読み替えるのではなく、RGBの各成分表示板について得られた全ての指標値の中から最大指標値を抽出し、その最大指標値が所定の面積となるように、RGBの各成分表示板の指標値を読み替えている。このため、RGBの各成分間の明るさが適切な比率となるように、RGBの各成分表示板の画像を光らせることができる。その結果、カラー画像を適切に表示させることが可能となる。
In order to display a color image with an appropriate color, it is necessary to mix R light, G light, and B light at an appropriate ratio. Therefore, in order to display a color image appropriately by superimposing display boards for RGB components, the following is important. First, in the display board for each of the RGB components, it is important that all the image areas from the upstream side to the downstream side are illuminated with appropriate brightness along the light traveling direction. In addition, when an image of each component of RGB is illuminated, it is important that the brightness ratio between the components is also an appropriate ratio according to the color to be displayed. In the image display device of the present invention described above, the image of each RGB component display board is printed by replacing the index value obtained for each pixel with the area of the ink layer. It is possible to make it shine. Further, when the index value obtained for each pixel is read as the area of the ink layer, it is not read separately for each RGB component display board, but among all the index values obtained for each RGB component display board. The maximum index value is extracted, and the index values of the RGB component display panels are read so that the maximum index value has a predetermined area. For this reason, the image of each RGB component display board can be made to shine so that the brightness between each RGB component becomes an appropriate ratio. As a result, it is possible to appropriately display a color image.
尚、各画素で得られた最大指標値を用いる代わりに、各画素で得られた指標値の平均値が所定の基準面積となるように、各画素の指標値を読み替えることによって、インク層の面積を決定することとしてもよい。このとき、指標値の平均値を読み替える基準面積は、上述した最大指標値を読み替える所定の面積よりも小さな面積に設定しておくことが望ましい。
Instead of using the maximum index value obtained in each pixel, the index value of each pixel is read so that the average value of the index values obtained in each pixel becomes a predetermined reference area, thereby The area may be determined. At this time, it is desirable that the reference area for rereading the average value of the index values is set to an area smaller than the predetermined area for rereading the maximum index value.
実際に各画素での指標値を算出すると、ごく一部の画素でだけ、大きな指標値が得られる場合がある。このような場合に、その僅かな画素で得られた最大指標値が所定の面積となるように、他の全画素の指標値を読み替えると、全体的に小さな面積に読み替えられてしまい、十分な明るさを確保できない場合が起こり得る。このような場合には、各画素で得られた指標値の平均値が、所定の基準面積となるように読み替えてやれば、たとえごく一部の画素が大きな指標値を有する場合でも、他の画素の指標値を適切な面積に読み替えることが可能となる。
When calculating the index value for each pixel, a large index value may be obtained for only a few pixels. In such a case, if the index values of all the other pixels are read so that the maximum index value obtained with the few pixels becomes a predetermined area, the whole area is read as a small area, which is sufficient. There may be a case where the brightness cannot be secured. In such a case, if the average value of the index values obtained for each pixel is read so as to have a predetermined reference area, even if only a small number of pixels have a large index value, It is possible to replace the index value of the pixel with an appropriate area.
もちろん、カラー画像を表示する場合には、RGBの各成分について得られた指標値の平均値が、所定の基準面積となるように読み替えてやればよい。こうすれば、RGBの各成分間の明るさを適切な比率に保ったまま、RGBの各成分表示板の画像を光らせて、適切にカラー画像を表示することが可能となる。
Of course, when displaying a color image, the average value of the index values obtained for each component of RGB may be read so as to be a predetermined reference area. In this way, it is possible to appropriately display a color image by shining the image of each RGB component display board while maintaining the brightness between the RGB components at an appropriate ratio.
また、R成分表示板と、G成分表示板と、B成分表示板とを三枚合わせに重ねることによって、カラー画像を表示可能とした本発明の画像表示装置においては、これらRGBの各成分表示板が向き合う少なくとも一方の表面に、間隔を空けて複数の凸部を設けることによって、RGBの各成分表示板を、間に隙間を確保した状態で積層することとしても良い。
Further, in the image display apparatus of the present invention which can display a color image by superimposing three R component display boards, G component display boards, and B component display boards, each of these RGB components is displayed. By providing a plurality of convex portions at intervals on at least one surface where the plates face each other, the RGB component display plates may be stacked with a gap therebetween.
こうすれば、たとえRGBの各成分表示板の間の隙間を薄くしても、あるいは各成分表示板の厚さを薄くして表示板が撓みやすくなっても、表面に形成された凸部によって、RGBの各成分表示板同士を確実に隔てておくことができる。このため、RGBの各成分表示板を三枚合わせに積層した表示板を、複数の表示板を積層していることを意識させない程度に薄くすることができる。そして、このように表示板を薄くすることができれば、たとえ多少、斜め方向から画像を観察した場合でも、RGBの各成分間での位置ずれも目立たなくなるので、より一層、効果的にカラー画像を表示することが可能となる。
In this way, even if the gaps between the RGB component display boards are made thin, or even if the thickness of each component display board is made thin and the display board is easily bent, the RGB formed by the convex portions formed on the surface. These component display boards can be reliably separated from each other. For this reason, the display board which laminated | stacked each RGB component display board 3 sheets can be made thin to such an extent that it is not conscious of having laminated | stacked the several display board. If the display board can be made thin in this way, even if the image is observed from an oblique direction, the positional deviation between the RGB components becomes inconspicuous. It is possible to display.
尚、カラー画像を表示するために、表示板の表面に複数の凸部を形成する場合にも、複数の凸部は少なくとも表示板の四隅の位置に設けることが望ましい。表示板の四隅であれば比較的目に止まり難いので、ほとんど気付かれることなく、凸部を形成することができる。また、凸部によって隙間を確保した状態で複数の表示板を積層した場合、複数の表示板が積層された側面からゴミや水分などの異物が入り込まないように、カバー部材によって側面を覆っておくことが望ましい。このとき、カバー部材の内面側、すなわち、積層した表示体の側面に向かい合う側の面を、光を反射するようにしておけば、表示板の端面から放出される光を、再び表示板の内部に戻すことができるので、カラー画像を明るく表示することが可能となる。
Even when a plurality of protrusions are formed on the surface of the display board in order to display a color image, it is desirable that the plurality of protrusions be provided at least at the four corner positions of the display board. Since the four corners of the display panel are relatively unnoticeable, convex portions can be formed with little notice. In addition, when a plurality of display plates are stacked in a state where a gap is secured by the convex portion, the side surface is covered with a cover member so that foreign matter such as dust and moisture does not enter from the side surface where the plurality of display plates are stacked. It is desirable. At this time, if the inner surface side of the cover member, that is, the surface facing the side surface of the laminated display body is configured to reflect light, the light emitted from the end surface of the display plate is again transmitted to the inside of the display plate. Therefore, the color image can be displayed brightly.
また、上述した本発明の画像表示装置においては、透明インクによる画像を、表示板の表面に直接形成するのではなく、次のようにして形成しても良い。すなわち、透明シートの表面に透明インクによる画像を形成しておき、この透明シートを、貼り替え可能な態様で、表示板の表面に貼り付けることによって、表示板の表面に画像を形成することとしても良い。
Further, in the image display device of the present invention described above, an image made of transparent ink may be formed as follows instead of directly forming on the surface of the display plate. That is, as an image is formed on the surface of the display plate by forming an image with transparent ink on the surface of the transparent sheet and pasting the transparent sheet on the surface of the display plate in a replaceable manner. Also good.
透明シートは光を散乱させる微粒子を含まないので、表示板の端面から光を入射すると、透明シートに形成された画像だけを光らせることができる。このため、何もないところから光とともに画像が浮かび上がってきたような、印象深い態様で画像を表示することが可能となる。加えて、透明シートは、表示板の表面に貼り替え可能な態様で貼り付けられているので、透明シートを貼り替えることで、表示内容を容易に変更することが可能となる。
Since the transparent sheet does not contain fine particles that scatter light, when light is incident from the end face of the display panel, only the image formed on the transparent sheet can be illuminated. For this reason, it becomes possible to display an image in an impressive manner as if the image emerged with light from an empty place. In addition, since the transparent sheet is pasted on the surface of the display board in a manner that can be pasted, the display content can be easily changed by pasting the transparent sheet.
尚、このような透明シートは、一方の表面に、透明で流動性を有する樹脂材料による接着層を設けておき、その接着層によって、表示板の表面に貼り付けるようにしてもよい。透明シートを表示板に貼り付ける際には、透明シートと表示板との間に隙間ができないように密着させることが重要となる。従って、透明シートを接着層によって貼り付けるようにすれば、たとえ表示板の表面に細かな凹凸が存在する場合でも、接着層によって凹凸を埋めて、透明シートを表示板の表面に密着させることができる。また、透明シートを貼る際に、空気中の埃を挟み込んでしまった場合でも、小さな埃であれば接着層内に埋め込まれてしまうので、透明シートを表示板の表面に密着させることができる。
It should be noted that such a transparent sheet may be provided on one surface with an adhesive layer made of a transparent and fluid resin material and attached to the surface of the display plate by the adhesive layer. When the transparent sheet is attached to the display board, it is important that the transparent sheet is closely attached so that there is no gap between the transparent sheet and the display board. Therefore, if the transparent sheet is pasted by the adhesive layer, even if fine irregularities exist on the surface of the display board, the transparent sheet can be adhered to the surface of the display board by filling the irregularities with the adhesive layer. it can. In addition, even when dust in the air is sandwiched when the transparent sheet is pasted, if the dust is small, it is embedded in the adhesive layer, so that the transparent sheet can be brought into close contact with the surface of the display board.
また、上述した本発明の画像表示装置においては、次のようにしても良い。先ず、表示板の表面に形成された画像に対応する所定の特定情報を読み出し可能に記憶した特定情報記憶部を、表示板に設けておく。そして、表示板から特定情報を読み出して、その特定情報に応じた態様で、表示板の内部に光を入射するようにしてもよい。
Further, in the image display device of the present invention described above, the following may be performed. First, a specific information storage unit that stores predetermined specific information corresponding to an image formed on the surface of the display board in a readable manner is provided on the display board. And specific information is read from a display board, and you may make it make light inject into the inside of a display board in the aspect according to the specific information.
表示板上に表示される画像は、端面から入射された光を反射して光っているので、光を入射する態様に応じて、画像が表示される態様も異なってくる。例えば、入射する光の強さを変えれば、表示される画像の明るさが変わり、入射する光の色を変えれば、表示される画像の色が変わる。画像を表示する適切な態様は、表示しようとする画像に応じて異なるものと考えられる。そこで、表示板に形成された画像に対応する特定情報を、読み出し可能な態様で表示板に予め記憶しておく。例えば、特定情報を記憶したICチップのような記憶媒体を表示板に埋め込んでおいてもよいし、あるいは表示板の所定箇所にバーコードなどの態様で特定情報を記載しておいても良い。そして、画像を表示する際には、電磁的あるいは光学的な手法などによって、表示板から特定情報を読み出して、特定情報に応じて定まる態様で、表示板の内部に光を入射してやる。このとき、例えば特定情報の内容が、表示板の内部に光を入射する態様を記述したデータ(あるいは入射態様を記述するパラメータ)であれば、特定情報に記述された態様で、光を入射してやればよい。これに対して、特定情報の内容が、予め設定されている複数の入射態様の中から使用する入射態様を特定するデータであった場合には、予め記憶されている複数の入射態様の中から特定情報によって特定された入射態様を読み出して、その態様で光を入射すればよい。こうすれば、表示板に印刷された画像を、画像に応じて適切な態様で表示することが可能となる。
Since the image displayed on the display board shines by reflecting the light incident from the end face, the manner in which the image is displayed differs depending on the manner in which the light is incident. For example, changing the intensity of incident light changes the brightness of the displayed image, and changing the incident light color changes the color of the displayed image. An appropriate mode for displaying an image is considered to be different depending on an image to be displayed. Therefore, specific information corresponding to the image formed on the display board is stored in advance on the display board in a readable manner. For example, a storage medium such as an IC chip in which specific information is stored may be embedded in the display board, or the specific information may be described in a form such as a barcode at a predetermined location on the display board. When an image is displayed, specific information is read from the display board by an electromagnetic or optical technique, and light is incident on the inside of the display board in a manner determined according to the specific information. At this time, for example, if the content of the specific information is data (or a parameter describing the incident mode) describing the mode in which light is incident on the inside of the display board, the light can be incident in the mode described in the specific information. That's fine. On the other hand, when the content of the specific information is data specifying an incident mode to be used from among a plurality of preset incident modes, the plurality of incident modes stored in advance are selected. What is necessary is just to read the incident mode specified by specific information and to inject the light in that mode. If it carries out like this, it will become possible to display the image printed on the display board in the suitable mode according to the image.
尚、特定情報は、書き換え可能な態様で表示板に記憶しておき、表示板から特定情報を読み出すための特定情報読出部を用いて、表示板に記憶されている特定情報を書き換え可能としても良い。表示板の特定情報を書き換えることができれば、画像の表示態様を、より好ましい態様に変更することが可能となる。また、このとき、特定情報を読み出すための特定情報読出部に、特定情報を書き換える機能を追加することで対応すれば、特定情報を簡単に書き換えることが可能となる。
The specific information may be stored on the display board in a rewritable manner, and the specific information stored on the display board may be rewritten using a specific information reading unit for reading the specific information from the display board. good. If the specific information on the display board can be rewritten, the image display mode can be changed to a more preferable mode. At this time, if a function for rewriting specific information is added to the specific information reading unit for reading the specific information, the specific information can be easily rewritten.
また、上述した本発明の画像表示装置においては、透明インクによって形成された画像の上に、光を散乱させる微粒子を含まない透明樹脂によるクリア層を設けることによって、表示板の最表面を平滑に形成してもよい。
Further, in the above-described image display device of the present invention, the outermost surface of the display plate is smoothed by providing a clear layer made of a transparent resin not containing fine particles that scatter light on an image formed of transparent ink. It may be formed.
透明インクによる画像は表示板の上に形成されているので、微視的に見れば、表示板の表面から盛り上がった状態となっている。このため、たとえ透明インクで形成されていても、表面での光の反射(あるいは光沢)の違いによって、画像が形成されていることに気付かれてしまう場合がある。更には、透明インクによるインク層が表示板の表面から盛り上がって形成されているために、インク層の端の部分から光が外部に抜けてくる場合がある。その結果、画像を観察する方向によっては透明インクの端部が強く光って、画像がぎらついて見えてしまうことがある。従って、透明インクによって形成された画像の上に、透明なクリア層を設けることによって、表示板の最表面を平滑に形成してやれば、こうした問題の発生を回避して、適切に画像を表示することが可能となる。
Since the image by the transparent ink is formed on the display board, when viewed microscopically, it is raised from the surface of the display board. For this reason, even if it is formed of transparent ink, it may be noticed that an image is formed due to a difference in reflection (or gloss) of light on the surface. Furthermore, since the ink layer made of transparent ink is formed so as to rise from the surface of the display plate, light may escape to the outside from the end portion of the ink layer. As a result, depending on the direction in which the image is observed, the edge of the transparent ink may shine strongly, and the image may appear glare. Therefore, if the outermost surface of the display panel is formed smoothly by providing a transparent clear layer on the image formed by the transparent ink, it is possible to avoid such problems and display the image appropriately. Is possible.
また、上述した本発明の画像表示装置においては、次のようにしても良い。表示板の端面、但し、光が入射される端面とは異なる端面に、表示板の内部を伝播してきた光を外部に放射する光放射部を設けることとしても良い。ここで、光放射部は、単に表示板の端面を開放することで、表示板の内部を伝播してきた光が外部に放射可能にしたものでも良いし、あるいは、伝播してきた光を周囲に拡散させることができるように、光を拡散させる部材を、表示板の端面に取り付けたものでも良い。
Further, in the image display device of the present invention described above, the following may be performed. A light radiating portion that radiates light propagating through the inside of the display panel may be provided on an end surface of the display panel, but different from an end surface on which light is incident. Here, the light radiating unit may be one in which the light propagating through the display panel can be radiated to the outside by simply opening the end face of the display panel, or the propagated light is diffused to the surroundings. For example, a member that diffuses light may be attached to the end face of the display panel.
詳細なメカニズムは後述するが、表示板の端面から入射された光は、透明インクによる画像を表示するために用いられる以外は、ほとんど損失なく表示板の内部を伝播して他端側の端面に到達する。従って、他端側の端面に到達した光が外部に放射するようにしておけば、画像の表示に利用できなかった光を、間接照明光として利用することができる。また、画像の表示も、透明インク中の微粒子による光の散乱を利用して行うため、画像を表示する際にも吸収による光の損失が生じない。従って、画像を表示するために用いられた光も、画像を光らせた後は、全ての光が最終的には間接照明光として利用される。その結果、印象的な態様で画像を表示しながら、表示板の端面から入射したほとんど全ての光を使用して、極めて効率の高い間接照明を実現することができる。更に、表示板の内部を伝播してきた光を拡散させる部材を設けておけば、表示板の端面から放射された光を周囲に拡散させて、手軽に間接照明を実現することが可能となる。
Although the detailed mechanism will be described later, the light incident from the end face of the display board propagates through the inside of the display board with almost no loss to the end face on the other end side except that it is used for displaying an image with transparent ink. To reach. Therefore, if the light reaching the end face on the other end side is emitted outside, the light that could not be used for image display can be used as indirect illumination light. In addition, since the image is displayed using light scattering by the fine particles in the transparent ink, no light loss due to absorption occurs when the image is displayed. Therefore, all the light used to display the image is finally used as indirect illumination light after the image is lit. As a result, it is possible to realize indirect illumination with extremely high efficiency using almost all the light incident from the end face of the display panel while displaying an image in an impressive manner. Furthermore, if a member for diffusing the light propagating through the inside of the display panel is provided, the light emitted from the end face of the display panel can be diffused to the surroundings to easily realize indirect illumination.
尚、上述した本発明の画像表示装置では、透明な板状部材の表面に、光を散乱させる微粒子を含んだ透明インクによって画像を形成するものとして説明した。しかし、後述するように、微粒子を含まない透明インクを用いて画像を形成した場合でも、画像を光らせて表示することが可能である。従って、本発明の画像表示装置は、次のような態様で把握することも可能である。すなわち、このような他の態様としての画像表示装置は、
所定の画像を表示する画像表示装置であって、
透明な板状部材の表面に、透明インクによって前記画像が形成された表示板と、
前記表示板の端面から該表示板の内部に向けて光を入射する光入射部と
を備えることを要旨とする。 In the above-described image display device of the present invention, the image is formed on the surface of the transparent plate member with the transparent ink containing fine particles that scatter light. However, as will be described later, even when an image is formed using a transparent ink that does not contain fine particles, the image can be displayed with light. Therefore, the image display apparatus of the present invention can be grasped in the following manner. That is, such an image display device as another aspect is
An image display device for displaying a predetermined image,
A display board on which the image is formed with transparent ink on the surface of a transparent plate-like member;
And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
所定の画像を表示する画像表示装置であって、
透明な板状部材の表面に、透明インクによって前記画像が形成された表示板と、
前記表示板の端面から該表示板の内部に向けて光を入射する光入射部と
を備えることを要旨とする。 In the above-described image display device of the present invention, the image is formed on the surface of the transparent plate member with the transparent ink containing fine particles that scatter light. However, as will be described later, even when an image is formed using a transparent ink that does not contain fine particles, the image can be displayed with light. Therefore, the image display apparatus of the present invention can be grasped in the following manner. That is, such an image display device as another aspect is
An image display device for displaying a predetermined image,
A display board on which the image is formed with transparent ink on the surface of a transparent plate-like member;
And a light incident portion for entering light from the end face of the display plate toward the inside of the display plate.
このような他の態様で把握された本発明の画像表示装置においても、表示板の端面から内部に向かって光を入射することで、表示板の表面に透明インクで形成された画像を光らせて表示することができる。その結果、何もない処から光とともに画像が浮かび上がってくるような、たいへんに印象深い態様で、しかも簡単に画像を表示することが可能となる。
Also in the image display device of the present invention grasped in such another aspect, the image formed with the transparent ink is made to shine on the surface of the display plate by entering light from the end face of the display plate toward the inside. Can be displayed. As a result, it is possible to display an image in a very impressive manner such that the image emerges with light from an empty place, and easily.
以下では、上述した本願発明の内容を明確にするために、次のような順序に従って実施例を説明する。
A.第1実施例:
A-1.第1実施例の装置構成:
A-2.画像の表示原理:
A-3.第1実施例の変形例:
B.第2実施例:
B-1.第2実施例の装置構成:
B-2.画像の印刷方法:
C.第3実施例:
C-1.第3実施例の装置構成:
C-2.画像の印刷方法:
C-3.第3実施例の変形例:
D.第4実施例:
E.第5実施例:
F.第6実施例:
G.第7実施例:
H.第8実施例:
H-1.第8実施例の第1の変形例:
H-2.第8実施例の第2の変形例:
H-3.第8実施例の第3の変形例:
I.変形例:
I-1.第1変形例:
I-2.第2変形例: Hereinafter, in order to clarify the contents of the present invention described above, examples will be described in the following order.
A. First embodiment:
A-1. Apparatus configuration of the first embodiment:
A-2. Image display principle:
A-3. Modification of the first embodiment:
B. Second embodiment:
B-1. Apparatus configuration of the second embodiment:
B-2. How to print an image:
C. Third embodiment:
C-1. Apparatus configuration of the third embodiment:
C-2. How to print an image:
C-3. Modification of the third embodiment:
D. Fourth embodiment:
E. Example 5:
F. Example 6:
G. Example 7:
H. Example 8:
H-1. First modification of the eighth embodiment:
H-2. Second modification of the eighth embodiment:
H-3. Third modification of the eighth embodiment:
I. Variation:
I-1. First modification:
I-2. Second modification:
A.第1実施例:
A-1.第1実施例の装置構成:
A-2.画像の表示原理:
A-3.第1実施例の変形例:
B.第2実施例:
B-1.第2実施例の装置構成:
B-2.画像の印刷方法:
C.第3実施例:
C-1.第3実施例の装置構成:
C-2.画像の印刷方法:
C-3.第3実施例の変形例:
D.第4実施例:
E.第5実施例:
F.第6実施例:
G.第7実施例:
H.第8実施例:
H-1.第8実施例の第1の変形例:
H-2.第8実施例の第2の変形例:
H-3.第8実施例の第3の変形例:
I.変形例:
I-1.第1変形例:
I-2.第2変形例: Hereinafter, in order to clarify the contents of the present invention described above, examples will be described in the following order.
A. First embodiment:
A-1. Apparatus configuration of the first embodiment:
A-2. Image display principle:
A-3. Modification of the first embodiment:
B. Second embodiment:
B-1. Apparatus configuration of the second embodiment:
B-2. How to print an image:
C. Third embodiment:
C-1. Apparatus configuration of the third embodiment:
C-2. How to print an image:
C-3. Modification of the third embodiment:
D. Fourth embodiment:
E. Example 5:
F. Example 6:
G. Example 7:
H. Example 8:
H-1. First modification of the eighth embodiment:
H-2. Second modification of the eighth embodiment:
H-3. Third modification of the eighth embodiment:
I. Variation:
I-1. First modification:
I-2. Second modification:
A.第1実施例 :
A-1.装置構成 :
図1は、腕時計10のガラス窓に組み込まれた第1実施例の画像表示装置100を示す説明図である。図1(a)には、腕時計10の正面から見て、画像表示装置100が組み込まれた腕時計10を、正面から見た様子が示されている。また、図1(b)には、腕時計10の側方から見て、画像表示装置100が組み込まれている部分の断面が示されている。図1に示されているように、第1実施例の画像表示装置100は、腕時計10のガラス窓を流用して形成された表示板110と、ガラス窓が嵌め込まれた窓枠の部分に組み込まれた発光ダイオード(以下、LED126)と、腕時計10のケース側面に設けられた操作ボタン122などから構成されている。また、ガラス窓の裏面側(文字盤側)には、微粒子を含んだ透明インクによって、文字を意匠化した画像112が描かれている。この画像112は、透明なガラス窓に透明インクによって描かれているために、図1(a)に示されるように、少し見た程度では、直ちに気付かれることはない。 A. First Example:
A-1. Device configuration :
FIG. 1 is an explanatory view showing animage display device 100 of the first embodiment incorporated in a glass window of a wristwatch 10. FIG. 1A shows a state in which the wristwatch 10 incorporating the image display device 100 is viewed from the front as viewed from the front of the wristwatch 10. FIG. 1B shows a cross section of a portion where the image display device 100 is incorporated as viewed from the side of the wristwatch 10. As shown in FIG. 1, the image display device 100 of the first embodiment is incorporated in a display plate 110 formed by diverting a glass window of a wristwatch 10 and a window frame portion in which the glass window is fitted. The light emitting diode (hereinafter referred to as LED 126) and the operation button 122 provided on the side of the case of the wristwatch 10 are configured. Also, an image 112 in which characters are designed with transparent ink containing fine particles is drawn on the back side (the dial side) of the glass window. Since the image 112 is drawn with a transparent ink on a transparent glass window, as shown in FIG. 1A, the image 112 is not immediately noticed when it is slightly seen.
A-1.装置構成 :
図1は、腕時計10のガラス窓に組み込まれた第1実施例の画像表示装置100を示す説明図である。図1(a)には、腕時計10の正面から見て、画像表示装置100が組み込まれた腕時計10を、正面から見た様子が示されている。また、図1(b)には、腕時計10の側方から見て、画像表示装置100が組み込まれている部分の断面が示されている。図1に示されているように、第1実施例の画像表示装置100は、腕時計10のガラス窓を流用して形成された表示板110と、ガラス窓が嵌め込まれた窓枠の部分に組み込まれた発光ダイオード(以下、LED126)と、腕時計10のケース側面に設けられた操作ボタン122などから構成されている。また、ガラス窓の裏面側(文字盤側)には、微粒子を含んだ透明インクによって、文字を意匠化した画像112が描かれている。この画像112は、透明なガラス窓に透明インクによって描かれているために、図1(a)に示されるように、少し見た程度では、直ちに気付かれることはない。 A. First Example:
A-1. Device configuration :
FIG. 1 is an explanatory view showing an
図1に例示した第1実施例の画像表示装置100では、次のようにして画像を表示する。先ず、腕時計10のケース側面に設けられた操作ボタン122を押すと、窓枠に組み込まれたLED126が点灯する。図1(b)に示されているようにLED126は、腕時計10のガラス窓(すなわち、表示板110)の端面と向かい合う位置に設けられており、LED126から放射された光は、端面からガラス窓の内部に入射する。内部に入射した光は、表示板110の内部を伝播していき、表示板110の裏面側に描かれた画像112を光らせる。図1(c)には、腕時計10のガラス窓(表示板110)に透明インクによって形成された画像が光って表示されている様子が示されている。ガラス窓(表示板110)の端面から光を入射することで、透明インクによる画像が光って表示されるメカニズムについては、後ほど詳しく説明する。
The image display apparatus 100 of the first embodiment illustrated in FIG. 1 displays an image as follows. First, when the operation button 122 provided on the case side surface of the wristwatch 10 is pressed, the LED 126 incorporated in the window frame is turned on. As shown in FIG. 1B, the LED 126 is provided at a position facing the end face of the glass window (that is, the display panel 110) of the wristwatch 10, and the light emitted from the LED 126 is transmitted from the end face to the glass window. Incident inside. The light incident on the inside propagates through the inside of the display board 110 and shines the image 112 drawn on the back side of the display board 110. FIG. 1C shows a state in which an image formed of transparent ink is displayed on the glass window (display plate 110) of the wristwatch 10 in a shining manner. The mechanism by which light is incident from the end face of the glass window (display plate 110) and the image by the transparent ink is shined and displayed will be described in detail later.
第1実施例の画像表示装置100が組み込まれた腕時計10は、画像を表示していない状態で一見した限りでは、図1(a)に示すように、通常の腕時計と何ら変わるところはない。しかし、操作ボタン122を押してLED126を点灯させると、図1(c)に示すように、ガラス窓に画像112が光って表示されることになる。ここで、LED126はガラス窓の窓枠内に組み込まれているため、普通に腕時計10を見る限りではLED126が組み込まれていることには気がつかない。また、LED126からの光がガラス窓(表示板110)の内部を伝播していても、そのことは分からないから、画像112が光って表示されても、何処からか照らされているようには見えない。その結果、腕時計10の観察者には、何も無かったガラス窓の中から、光とともに画像112が浮き上がってきたかのような、たいへんに印象的な態様で画像112を表示することが可能となる。
The wristwatch 10 incorporating the image display device 100 of the first embodiment is not different from a normal wristwatch as shown in FIG. 1 (a) as long as it is viewed without displaying an image. However, when the operation button 122 is pressed and the LED 126 is turned on, as shown in FIG. 1C, the image 112 is displayed on the glass window. Here, since the LED 126 is incorporated in the window frame of the glass window, as long as the wristwatch 10 is normally viewed, the LED 126 is not noticed. In addition, even if the light from the LED 126 propagates through the inside of the glass window (display panel 110), it is not known, so even if the image 112 is lit and displayed, it seems that it is illuminated from somewhere. can not see. As a result, it becomes possible for the observer of the wristwatch 10 to display the image 112 in a very impressive manner as if the image 112 had floated with light from the empty glass window.
もちろん、腕時計10のガラス窓に溝を掘って画像を描いたり、あるいは細かい傷を付けて画像を描いたりしておいた場合でも、LED126を点灯させて、これらの画像を光らせることは可能である。しかし、溝を掘って描かれた画像や、細かい傷を付けて描かれた画像は、LED126を点灯する前から、そこに画像が描かれていることが明らかである。このため、たとえLED126を点灯させて画像を光らせたとしても、上述したように印象的な態様で画像を表示することは不可能である。加えて、溝を掘って画像を描いたり、細かい傷を付けて画像を描いたりするためには、熟練した技術や特別な装置などが必要となるので、表示板110の表面に画像を描くことは決して容易なことではない。
Of course, even if an image is drawn by digging a groove in the glass window of the wristwatch 10 or an image is drawn with fine scratches, it is possible to light up these images by turning on the LED 126. . However, it is clear that an image drawn by digging a groove or an image drawn with fine scratches is drawn there before the LED 126 is turned on. For this reason, even if the LED 126 is turned on to shine the image, it is impossible to display the image in an impressive manner as described above. In addition, in order to draw an image by digging a groove or drawing an image with fine scratches, skilled techniques and special devices are required, so an image is drawn on the surface of the display board 110. Is never easy.
これに対して、第1実施例の画像表示装置100では、透明インクによって画像を形成すればよいので、熟練や特別な装置が無くても、表示しようとする画像を簡単に形成することができる。しかも、透明インクによって画像を形成しているために、一見した限りでは画像が形成されていることに気付かれ難くすることができ、その結果として、上述したように、たいへん印象的な態様で画像を表示することが可能となる。以下では、腕時計10の端面から光を入射することで、ガラス窓(表示板110)の表面に、透明インクで描かれた画像を光って表示される原理について説明する。
On the other hand, in the image display device 100 of the first embodiment, it is only necessary to form an image with transparent ink, so that an image to be displayed can be easily formed without skilled or special devices. . Moreover, since the image is formed with the transparent ink, it can be difficult to notice that the image is formed at first glance. As a result, as described above, the image is very impressive. Can be displayed. Hereinafter, the principle of displaying an image drawn with transparent ink on the surface of the glass window (display plate 110) by entering light from the end face of the wristwatch 10 will be described.
A-2.画像の表示原理 :
図2は、LED126を点灯することで、透明な表示板110の表面に透明インクで印刷された画像112が表示される原理を示した説明図である。前述したように、LED126は、表示板110の端面に向かい合わせの位置に設けられている。このためLED126を点灯させると、LED126から放射された光は、表示板110の端面から入射して表示板110の内部に進行する。図2(a)には、LED126からの光が、表示板110の端面から入射して、表示板110の内部を進行する様子が示されている。このようにして端面から入射された光の大部分は、表示板110の表面と浅い角度で交差する。このように浅い角度で表示板110の表面に達した光は、表面から表示板110の外部に透過することなく、全ての光が表面で反射し、反射した光は再び表示板110の内部を進行する。そして反対側の表面に対しても浅い角度で交差し、全ての光が反射して、再び表示板110の内部を進行する。LED126から放射された光の大部分は、こうして表示板110の表面で反射を繰り返しながら、表示板110の内部を伝播していく。このような現象は、光の屈折の一態様として現れる現象であり「完全反射」と呼ばれることがある。本実施例の画像表示装置100では、この完全反射と呼ばれる現象を利用して透明な表示板110の内部で光を伝播させて、透明インクで印刷された画像112を浮かび上がらせている。そこで、完全反射と呼ばれる現象について簡単に説明しておく。 A-2. Image display principle:
FIG. 2 is an explanatory diagram showing the principle of displaying animage 112 printed with transparent ink on the surface of the transparent display board 110 by turning on the LED 126. As described above, the LED 126 is provided at a position facing the end face of the display panel 110. For this reason, when the LED 126 is turned on, the light emitted from the LED 126 enters from the end face of the display panel 110 and travels into the display panel 110. FIG. 2A shows a state in which light from the LED 126 is incident from the end face of the display panel 110 and travels inside the display panel 110. Thus, most of the light incident from the end face intersects the surface of the display panel 110 at a shallow angle. The light reaching the surface of the display panel 110 at such a shallow angle is not transmitted from the surface to the outside of the display panel 110, but all of the light is reflected by the surface, and the reflected light again travels inside the display panel 110. proceed. Then, it intersects the surface on the opposite side at a shallow angle, all the light is reflected, and travels inside the display panel 110 again. Most of the light emitted from the LED 126 propagates inside the display panel 110 while being repeatedly reflected on the surface of the display panel 110 in this way. Such a phenomenon is a phenomenon that appears as an aspect of light refraction, and is sometimes referred to as “complete reflection”. In the image display apparatus 100 according to the present embodiment, light is propagated inside the transparent display plate 110 using the phenomenon called complete reflection, and the image 112 printed with the transparent ink is raised. Therefore, a phenomenon called complete reflection will be briefly described.
図2は、LED126を点灯することで、透明な表示板110の表面に透明インクで印刷された画像112が表示される原理を示した説明図である。前述したように、LED126は、表示板110の端面に向かい合わせの位置に設けられている。このためLED126を点灯させると、LED126から放射された光は、表示板110の端面から入射して表示板110の内部に進行する。図2(a)には、LED126からの光が、表示板110の端面から入射して、表示板110の内部を進行する様子が示されている。このようにして端面から入射された光の大部分は、表示板110の表面と浅い角度で交差する。このように浅い角度で表示板110の表面に達した光は、表面から表示板110の外部に透過することなく、全ての光が表面で反射し、反射した光は再び表示板110の内部を進行する。そして反対側の表面に対しても浅い角度で交差し、全ての光が反射して、再び表示板110の内部を進行する。LED126から放射された光の大部分は、こうして表示板110の表面で反射を繰り返しながら、表示板110の内部を伝播していく。このような現象は、光の屈折の一態様として現れる現象であり「完全反射」と呼ばれることがある。本実施例の画像表示装置100では、この完全反射と呼ばれる現象を利用して透明な表示板110の内部で光を伝播させて、透明インクで印刷された画像112を浮かび上がらせている。そこで、完全反射と呼ばれる現象について簡単に説明しておく。 A-2. Image display principle:
FIG. 2 is an explanatory diagram showing the principle of displaying an
図2(b)は、光が屈折する様子を概念的に示した説明図である。光の屈折は、屈折率の異なる2つの媒質の境界面を光が通過しようとするときに生じる現象であり、「スネルの法則」としてまとめられている。ここで屈折率とは、媒質中での光の通り易さに関連する物性値である。スネルの法則によれば、ある屈折率の媒質中を進行している光が、異なる屈折率を有する媒質との境界面に達すると、一部の光は境界面で反射し、残りの光は境界面を通過して異なる屈折率の媒質中を進行する。このとき、境界面で反射する光は、境界面に光が入射する角度(入射角θi )と境界面から光が反射する角度(反射角θr )とが等しくなる方向に反射する。ここで、入射角θi は、通常、境界面から法線を立てて、法線と境界面に入射する光(入射光)の進行方向との間の角度によって表され、反射角θr は、境界面の法線と境界面で反射した光(反射光)の進行方向とのなす角度によって表されている。
FIG. 2B is an explanatory diagram conceptually showing how light is refracted. The refraction of light is a phenomenon that occurs when light tries to pass through the boundary surface between two media having different refractive indexes, and is summarized as “Snell's law”. Here, the refractive index is a physical property value related to the ease of passage of light in the medium. According to Snell's law, when light traveling in a medium with a certain refractive index reaches the boundary with a medium with a different refractive index, some of the light is reflected at the boundary and the rest of the light is It passes through the boundary surface and travels through a medium having a different refractive index. At this time, the light reflected at the boundary surface is reflected in a direction in which the angle at which the light is incident on the boundary surface (incident angle θi) and the angle at which the light is reflected from the boundary surface (reflection angle θr) are equal. Here, the incident angle θi is usually expressed by an angle between a normal line from the boundary surface and the traveling direction of light (incident light) incident on the boundary surface, and the reflection angle θr is the boundary angle It is represented by an angle formed by the normal of the surface and the traveling direction of the light reflected by the boundary surface (reflected light).
また、異なる屈折率の媒質中を進行する光(透過光)の進行方向は、上流側の媒質の屈折率をn1 、下流側の媒質の屈折率をn2 とし、下流側の媒質中を進行する透過光の角度(透過角度θt )とすると、下流側の媒質中を、
n1 ・sinθi =n2 ・sinθt
を満足するような透過角度θt の方向に進行する。ここで、透過角度θt は、屈折率の異なる媒質間の境界面の法線と、透過光の進行方向との間の角度によって表されている。図2(b)には、このようなスネルの法則に従って、入射光の一部が反射するとともに、残りの光が透過光として、異なる媒質中を進行する様子が概念的に示されている。例えば、アクリル樹脂の板の中を進行している光が板の表面に達すると、スネルの法則によって、表面部分で進行方向が曲げられた後に、空気中を進行することになる。ここで、アクリル樹脂の屈折率は約1.5、空気の屈折率は約1.0であり、屈折率の高い媒質から低い媒質中に進入する場合に相当するから、空気中に入った透過光は、境界面(すなわち、アクリル樹脂の表面)に近付く方向に進行方向が曲げられて、空気中を進行することになる。また逆に、空気中を進行する光がアクリル樹脂内に進入する場合のように、屈折率の低い媒質から高い媒質中に進入する場合は、境界面から離れる方向に、光の進行方向が曲げられることになる。 The traveling direction of light (transmitted light) traveling through a medium having a different refractive index travels through the downstream medium, where n1 is the refractive index of the upstream medium and n2 is the refractive index of the downstream medium. If the angle of the transmitted light (transmission angle θt), in the downstream medium,
n1 · sinθi = n2 · sinθt
It proceeds in the direction of the transmission angle θt that satisfies the above. Here, the transmission angle θt is represented by an angle between the normal line of the boundary surface between the media having different refractive indexes and the traveling direction of the transmitted light. FIG. 2B conceptually shows a state in which a part of the incident light is reflected and the remaining light travels through different media as transmitted light according to Snell's law. For example, when light traveling through an acrylic resin plate reaches the surface of the plate, the light travels in the air after the traveling direction is bent at the surface portion according to Snell's law. Here, the refractive index of acrylic resin is about 1.5, and the refractive index of air is about 1.0, which corresponds to the case of entering from a medium with a high refractive index into a low medium. The light travels in the air with its traveling direction being bent in a direction approaching the boundary surface (that is, the surface of the acrylic resin). Conversely, when the light traveling in the air enters the acrylic resin from the low refractive index medium, the light traveling direction is bent away from the boundary surface. Will be.
n1 ・sinθi =n2 ・sinθt
を満足するような透過角度θt の方向に進行する。ここで、透過角度θt は、屈折率の異なる媒質間の境界面の法線と、透過光の進行方向との間の角度によって表されている。図2(b)には、このようなスネルの法則に従って、入射光の一部が反射するとともに、残りの光が透過光として、異なる媒質中を進行する様子が概念的に示されている。例えば、アクリル樹脂の板の中を進行している光が板の表面に達すると、スネルの法則によって、表面部分で進行方向が曲げられた後に、空気中を進行することになる。ここで、アクリル樹脂の屈折率は約1.5、空気の屈折率は約1.0であり、屈折率の高い媒質から低い媒質中に進入する場合に相当するから、空気中に入った透過光は、境界面(すなわち、アクリル樹脂の表面)に近付く方向に進行方向が曲げられて、空気中を進行することになる。また逆に、空気中を進行する光がアクリル樹脂内に進入する場合のように、屈折率の低い媒質から高い媒質中に進入する場合は、境界面から離れる方向に、光の進行方向が曲げられることになる。 The traveling direction of light (transmitted light) traveling through a medium having a different refractive index travels through the downstream medium, where n1 is the refractive index of the upstream medium and n2 is the refractive index of the downstream medium. If the angle of the transmitted light (transmission angle θt), in the downstream medium,
n1 · sinθi = n2 · sinθt
It proceeds in the direction of the transmission angle θt that satisfies the above. Here, the transmission angle θt is represented by an angle between the normal line of the boundary surface between the media having different refractive indexes and the traveling direction of the transmitted light. FIG. 2B conceptually shows a state in which a part of the incident light is reflected and the remaining light travels through different media as transmitted light according to Snell's law. For example, when light traveling through an acrylic resin plate reaches the surface of the plate, the light travels in the air after the traveling direction is bent at the surface portion according to Snell's law. Here, the refractive index of acrylic resin is about 1.5, and the refractive index of air is about 1.0, which corresponds to the case of entering from a medium with a high refractive index into a low medium. The light travels in the air with its traveling direction being bent in a direction approaching the boundary surface (that is, the surface of the acrylic resin). Conversely, when the light traveling in the air enters the acrylic resin from the low refractive index medium, the light traveling direction is bent away from the boundary surface. Will be.
上述したスネルの法則から、屈折率の高い媒質中を進行していた光が屈折率の低い媒質との境界に達した場合には、全ての光が反射するような特別な条件が存在していることが分かる。すなわち、上述したように、屈折率の高い媒質から低い媒質中に光が進行する場合、下流側の媒質中を進行する光は、入射してきた方向に対して、若干、境界面の側に進行方向が曲げられる。従って、境界面に入射する光の角度を次第に寝かせて(入射角θi を大きくして)いくと、境界面の下流側に透過した光の向きは、スネルの法則によって境界面に近付く方向に曲げられるので、ある入射角θi に達した時点で透過光の進行方向が境界面と平行になってしまう。このような状態は、下流側の媒質中に光が進入できない状態である。更に、この入射角θi よりも寝かせて(大きな角度入射角θi で)境界面に光が入射すると、全ての光が境界面で反射してしまうことを意味している。図2(c)には、このような状態が概念的に示されている。また、このような状態(透過光の進行方向が境界面と平行になる状態)となる入射角θi は、臨界角θc と呼ばれている。
From the above Snell's law, when light traveling in a medium with a high refractive index reaches the boundary with a medium with a low refractive index, there is a special condition that all light is reflected. I understand that. That is, as described above, when light travels from a medium having a high refractive index to a medium having a low refractive index, the light traveling in the downstream medium travels slightly toward the boundary surface with respect to the incident direction. The direction is bent. Therefore, when the angle of light incident on the boundary surface is gradually laid down (incident angle θi is increased), the direction of light transmitted downstream of the boundary surface is bent in a direction approaching the boundary surface by Snell's law. Therefore, when the incident angle θi 光 is reached, the traveling direction of the transmitted light becomes parallel to the boundary surface. Such a state is a state where light cannot enter the downstream medium. Furthermore, when light is incident on the boundary surface more than the incident angle θi (at a large angle incident angle θi), it means that all the light is reflected on the boundary surface. FIG. 2C conceptually shows such a state. Further, the incident angle θi in which such a state (the traveling direction of transmitted light is parallel to the boundary surface) is called a critical angle θc.
これに対して、屈折率の低い媒質中から屈折率の高い媒質中に光が進行しようとする場合には、境界面を透過した光は、スネルの法則によって境界面から遠ざかる方向に曲げられる。このため、透過光の進行方向が境界面と平行になる状態は起こり得ず、臨界角θc は存在しない。
On the other hand, when light is going to travel from a medium having a low refractive index to a medium having a high refractive index, the light transmitted through the boundary surface is bent in a direction away from the boundary surface by Snell's law. For this reason, a state where the traveling direction of the transmitted light is parallel to the boundary surface cannot occur, and there is no critical angle θc.
以上に説明したように、屈折率の高い媒質中から低い媒質中に光が出ようとする場合には臨界角θc を考えることができる。そして、境界面に対して臨界角θc よりも大きな角度で(すなわち、境界面に対して寝かせて)光が入射すると、全ての光が境界面で反射してしまい、屈折率の低い媒質中に出ていくことができなくなる。本明細書中では、このような条件を「完全反射の条件」と呼ぶことにする。ちなみに、アクリル樹脂(屈折率は約1.5)内から空気(屈折率は約1.0)中に光が出ようとする場合には、臨界角θc は約42度となる。
As described above, the critical angle θc can be considered when light is to be emitted from a medium having a high refractive index into a medium having a low refractive index. When light is incident on the boundary surface at an angle larger than the critical angle θc (that is, laid on the boundary surface), all the light is reflected by the boundary surface, and enters the medium having a low refractive index. I can't get out. In this specification, such a condition is referred to as a “complete reflection condition”. By the way, when light is going to be emitted from the acrylic resin (refractive index is about 1.5) into the air (refractive index is about 1.0), the critical angle θc is about 42 degrees.
本実施例の画像表示装置100では、上述した完全反射の条件を利用することにより、LED126からの光を、表示板110の表面に画像112が印刷された部分まで効率よく導いて、画像112のインク層114を光らせている。すなわち、表示板110は、アクリル樹脂あるいはガラスなどの透明材料によって形成されているが、これらの材料は何れも、空気よりは屈折率が大きな媒質である。また、薄い表示板110の端面から光を入射すると、入射された光の大部分は、表示板110の表面に対して浅い角度で(大きな入射角で)進行する。結局、端面から入射した光の中で、表示板110の表面に対して臨界角θc よりも大きな入射角で入射した光については完全反射の条件が成り立ち、その結果、端面から入射した光の多くは表示板110の表面で反射を繰り返しながら、表示板110の内部を進行していくことになる。
In the image display apparatus 100 according to the present embodiment, the light from the LED 126 is efficiently guided to the portion where the image 112 is printed on the surface of the display board 110 by using the above-described complete reflection condition. The ink layer 114 is illuminated. That is, the display panel 110 is formed of a transparent material such as acrylic resin or glass, and these materials are all media having a refractive index larger than that of air. When light is incident from the end face of the thin display panel 110, most of the incident light travels at a shallow angle (at a large incident angle) with respect to the surface of the display panel 110. Eventually, of the light incident from the end face, the light incident at an incident angle larger than the critical angle θc with respect to the surface of the display panel 110 is satisfied, and as a result, much of the light incident from the end face is satisfied. In this case, the light travels inside the display panel 110 while being repeatedly reflected on the surface of the display panel 110.
図2(a)では、透明な表示板110の端面から入射した光が、表示板110の表面で反射を繰り返しながら内部を進行していく様子が、太い破線あるいは太い一点鎖線の矢印によって表されている。尚、端面の近傍では、臨界角θc よりも小さな角度で(すなわち、表面に対して垂直に近い方向から)、表示板110の表面に入射する光も存在する。図2(a)中に細い二点差線で示した矢印は、臨界角θc よりも小さな角度で、表示板110の表面に入射する光を例示したものである。このような光については、完全反射の条件が成り立たないので、光の一部は表示板110の表面を透過して空気中に進行し、残りの光は表示板110の内部に反射する。反射した光は表示板110の内部を通過して反対側の表面に達するが、反対側の表面でも完全反射の条件は成り立っていないので、この表面でも一部の光は空気中に進行し、残りの光は反射して再び表示板110の内部を通過する。完全反射の条件を満たさない光は、こうしたことを繰り返しながら減衰するため、端面から少し進行するまでにほとんど消滅してしまう。そして、それより先の領域では、完全反射の条件を満たした光のみが、表示板110の内部を進行することになる。
In FIG. 2A, a state in which light incident from the end face of the transparent display panel 110 travels through the surface while being repeatedly reflected on the surface of the display panel 110 is represented by a thick broken line or a thick dashed line arrow. ing. In the vicinity of the end face, there is also light incident on the surface of the display panel 110 at an angle smaller than the critical angle θc (that is, from a direction perpendicular to the surface). An arrow indicated by a thin two-dot chain line in FIG. 2A illustrates light incident on the surface of the display panel 110 at an angle smaller than the critical angle θc 角. For such light, since the condition of complete reflection does not hold, a part of the light passes through the surface of the display panel 110 and travels into the air, and the remaining light is reflected inside the display panel 110. The reflected light passes through the inside of the display panel 110 and reaches the surface on the opposite side, but since the condition for complete reflection is not satisfied even on the surface on the opposite side, a part of the light also travels in the air on this surface, The remaining light is reflected and passes through the display panel 110 again. Light that does not satisfy the conditions for complete reflection is attenuated by repeating this process, so that it almost disappears until it slightly travels from the end face. In the area beyond that, only light that satisfies the condition of complete reflection travels inside the display panel 110.
尚、表示板110の端面から入射した光のうち、完全反射の条件を満たさない光が消滅するまでの範囲では、光の一部が外部に透過してくるので、表示板110が淡く光って見えることがある。図1(b)に示したように、本実施例の画像表示装置100を組み込んだ腕時計10では、このような部分を隠すことができるように、少なくともLED126の近傍では、ガラス窓(表示板110)の端面付近が、窓枠によって覆われた状態となっている。こうすれば、表示板110に印刷された画像112を光らせて表示したときに、その光が供給されている箇所を、より分かり難くすることができるので、透明な表示板110の中から画像が浮き上がってきたかのような印象を、より強く与えることが可能となる。
Note that, in the range from the incident light from the end face of the display panel 110 until the light that does not satisfy the complete reflection condition disappears, a part of the light is transmitted to the outside, so that the display panel 110 shines lightly. May be visible. As shown in FIG. 1B, in the wristwatch 10 incorporating the image display device 100 of this embodiment, a glass window (display plate 110) is provided at least in the vicinity of the LED 126 so that such a portion can be hidden. ) Is covered with a window frame. In this way, when the image 112 printed on the display board 110 is lit and displayed, it is possible to make it harder to understand the location where the light is supplied. It is possible to give a stronger impression as if it was raised.
こうして表示板110の内部を進行した光は、やがて表示板110の表面に画像112が印刷された部分(透明インクによるインク層114が形成された領域)に到達する。インク層114の材質は、表示板110の材質とは違うので、屈折率も完全には一致していないが、表示板110と空気との違いに比べれば、表示板110とインク層114とでは、屈折率が大きく異なることはない(実際には、表示板110の屈折率よりも若干大きく、例えば表示板110がアクリル樹脂で形成されている場合であれば、アクリルの屈折率である約1.5に対して、できるだけ大きな屈折率、代表的には1.6程度の屈折率であることが望ましい)。このため、表示板110とインク層114との境界面に達した光は、ほとんど進行方向を曲げられることなく、そのまま境界面を通過してインク層114の内部を進行する。
Thus, the light traveling inside the display board 110 eventually reaches a portion where the image 112 is printed on the surface of the display board 110 (an area where the ink layer 114 of transparent ink is formed). Since the material of the ink layer 114 is different from the material of the display board 110, the refractive index does not completely match. However, compared to the difference between the display board 110 and air, the display board 110 and the ink layer 114 are different. The refractive index is not significantly different (in practice, it is slightly larger than the refractive index of the display plate 110. For example, if the display plate 110 is made of acrylic resin, the refractive index of acrylic is approximately 1). .5, it is desirable that the refractive index be as large as possible, typically about 1.6. For this reason, the light that reaches the boundary surface between the display panel 110 and the ink layer 114 passes through the boundary surface as it is without being bent in the traveling direction, and travels inside the ink layer 114.
ここで、画像の印刷には、光を散乱する微粒子(光散乱微粒子114p)が分散された透明インクが用いられており、表示板110の表面に形成されたインク層114にも、光散乱微粒子114pが分散した状態となっている。このため、インク層114内を進行する光の一部は、光散乱微粒子114pに衝突して周囲に散乱される。インク層114には、光散乱微粒子114pが均一に分散しているため、透明インクで印刷された画像全体が明るく光って表示されることになる。図2(a)には、インク層114を進行する光が、光散乱微粒子114pに衝突して散乱する様子が、太い破線の矢印、あるいは太い一点鎖線の矢印によって表示されている。
Here, transparent ink in which fine particles that scatter light (light-scattering fine particles 114p) are dispersed is used for image printing, and the light-scattering fine particles are also applied to the ink layer 114 formed on the surface of the display panel 110. 114p is in a dispersed state. Therefore, a part of the light traveling in the ink layer 114 collides with the light scattering fine particles 114p and is scattered around. Since the light scattering particles 114p are uniformly dispersed in the ink layer 114, the entire image printed with the transparent ink is brightly displayed. In FIG. 2A, the state in which the light traveling in the ink layer 114 collides with the light scattering fine particles 114p and is scattered is displayed by a thick broken line arrow or a thick dashed line arrow.
一方、光散乱微粒子114pに衝突しなかった光は、そのままインク層114の内部を進行して、インク層114の表面に到達する。上述したように、インク層114の屈折率と表示板110の屈折率とはほぼ同じであるから、インク層114の表面でも完全反射の条件が成立する。このため、インク層114の表面に到達した光は、表面で完全反射した後、インク層114の内部を進行し、更に、表示板110の中へと戻っていく。図2(a)には、インク層114の表面で完全反射した後、再び表示板110の中へと光が戻っていく様子が、細い破線の矢印によって表示されている。
On the other hand, the light that has not collided with the light scattering fine particles 114p travels as it is inside the ink layer 114 and reaches the surface of the ink layer 114. As described above, since the refractive index of the ink layer 114 and the refractive index of the display panel 110 are substantially the same, the condition of complete reflection is also established on the surface of the ink layer 114. For this reason, the light that has reached the surface of the ink layer 114 is completely reflected by the surface, travels inside the ink layer 114, and further returns into the display board 110. In FIG. 2A, a state in which light is completely reflected on the surface of the ink layer 114 and then returns to the display plate 110 is indicated by thin broken arrows.
本実施例の画像表示装置100は、透明な表示板110の表面に形成されたインク層114の光散乱微粒子114pを光らせることによって画像112を表示している。LED126から放射された光が表示板110の内部を伝播していても、そのことは分からないから、観察者にはあたかも画像自体が光を発しているように見える。しかも、LED126を点灯させていない場合は、表示板110は、一見した程度では、単なる透明な板にしか見えないから、透明な板の中から光って画像が浮き上がってきたような、たいへんに印象深い態様で画像を表示することが可能となるのである。
The image display device 100 according to the present embodiment displays the image 112 by causing the light scattering fine particles 114p of the ink layer 114 formed on the surface of the transparent display plate 110 to shine. Even if the light radiated from the LED 126 propagates through the inside of the display panel 110, it is not known, so that it looks to the observer as if the image itself is emitting light. In addition, when the LED 126 is not turned on, the display board 110 can be seen only as a transparent board at first glance, so it is very impressive as if the image is shining from the transparent board. It is possible to display an image in a manner.
尚、以上の説明から明らかなように、第1実施例の画像表示装置100は、インク層114内に分散している光散乱微粒子114pを光らせることによって、画像112を光らせている。従って、光散乱微粒子114pの濃度を高くすれば、より明るくハッキリと画像を光らせることができる。このように画像が明るくハッキリと光って表示されること自体は、印象深く画像を表示するために有効なことである。しかしその一方で、光散乱微粒子114pの濃度が高くなると、インク層114が次第に白濁した状態に近付いていく。インク層114の白濁が進むと、画像を光らせていない時でも、表示板110の表面に画像が印刷されていることに気付かれ易くなるので、この点からは、光散乱微粒子114pの濃度をあまりに高くすることは、印象深く画像を表示することを阻害する方向に作用する。従って、透明インクに含まれる光散乱微粒子114pの濃度は、画像を明るくハッキリと光らせる観点と、画像が形成されていることに気付かれ難くするために白濁を抑制する観点とを考慮して、最も印象的に画像を表示することができるような濃度に設定されている。また、光散乱微粒子114pは、できるだけ効率よく光を散乱させる観点から、白色の微粉末(例えば、酸化アルミニウムや、酸化チタンなどの金属酸化物の粉末)を用いることが望ましい。
As is apparent from the above description, the image display device 100 of the first embodiment shines the image 112 by shining the light scattering fine particles 114p dispersed in the ink layer 114. Therefore, if the concentration of the light scattering fine particles 114p is increased, it is possible to make the image brighter and clearer. Thus, the fact that the image is displayed brightly and clearly is effective in displaying the image with a deep impression. However, on the other hand, as the concentration of the light scattering fine particles 114p increases, the ink layer 114 gradually approaches a cloudy state. As the white turbidity of the ink layer 114 progresses, it becomes easier to notice that the image is printed on the surface of the display plate 110 even when the image is not shining. From this point, the concentration of the light scattering fine particles 114p is too high. Increasing the height acts in a direction that hinders the display of an image with a deep impression. Therefore, the concentration of the light scattering fine particles 114p contained in the transparent ink is the most in consideration of the viewpoint of making the image bright and clear and the viewpoint of suppressing the white turbidity in order to make it difficult to notice that the image is formed. The density is set so that an image can be displayed impressively. The light scattering fine particles 114p are preferably white fine powder (for example, powder of metal oxide such as aluminum oxide or titanium oxide) from the viewpoint of scattering light as efficiently as possible.
図1に例示した第1実施例の画像表示装置100では、腕時計10の文字盤が白っぽい色であるため、インク層114が白濁していても、ガラス窓(表示板110)に画像112が形成されていることには気付かれ難くなっている。このことと対応して、透明インクの光散乱微粒子114pの濃度は、比較的高い濃度に設定されている。また、画像112が表示されたときに背景となる文字盤が白っぽい色であるため、画像112を白く光らせてもあまり目立たない。このためLED126には、白色以外の色(例えば、赤色や、緑色、青色など)に発光するLEDが用いられている。その結果、光散乱微粒子114pが比較的高い濃度に設定されていることと相俟って、白っぽい文字盤を背景として、赤色などにハッキリと画像112を光らせて表示することが可能となっている。
In the image display device 100 of the first embodiment illustrated in FIG. 1, since the dial of the wristwatch 10 has a whitish color, the image 112 is formed on the glass window (display plate 110) even when the ink layer 114 is cloudy. It is difficult to notice what is being done. Correspondingly, the concentration of the light-scattering fine particles 114p of the transparent ink is set to a relatively high concentration. In addition, since the dial as a background is a whitish color when the image 112 is displayed, it is not so noticeable even if the image 112 is shined white. For this reason, an LED that emits light other than white (for example, red, green, and blue) is used as the LED 126. As a result, coupled with the light scattering fine particles 114p being set at a relatively high concentration, it is possible to display the image 112 clearly in red or the like with a whitish dial as a background. .
尚、本明細書中では、表示板110も、透明インクも、何れも無色透明であるものとして説明するが、表示板110の表面に透明インクで印刷された画像が目立たなければ、必ずしも無色透明である必要はない。例えば、表示板110が僅かに色を帯びている場合は、同じ色を僅かに帯びた透明インクを用いて印刷された画像は目立たない。従って、透明インクが僅かに色を帯びていた場合でも、その色が表示板110と同じ系統の色であれば、透明インクとして好適に用いることができる。もちろん、透明インクが無色透明であれば、表示板110がどのような色を帯びている場合でも好適に用いることが可能である。
In this specification, the display board 110 and the transparent ink are both assumed to be colorless and transparent. However, if an image printed with the transparent ink is not conspicuous on the surface of the display board 110, the display board 110 is not necessarily transparent and colorless. Need not be. For example, when the display board 110 is slightly colored, an image printed using a transparent ink slightly colored with the same color is inconspicuous. Therefore, even if the transparent ink is slightly colored, if the color is the same color as that of the display panel 110, it can be suitably used as the transparent ink. Of course, as long as the transparent ink is colorless and transparent, it can be suitably used regardless of the color of the display board 110.
A-3.第1実施例の変形例 :
以上では、第1実施例の画像表示装置100を、腕時計10のガラス窓に組み込んだ場合について説明した。しかし、第1実施例の画像表示装置100は、ある程度の厚みがあって(例えば、2ミリメートル)透明な部分を有する物であれば、腕時計10のガラス窓のような純粋な意味での平板に限らず、種々の物に組み込むことが可能である。以下では、ペンダントトップなどのアクセサリーや、キーホルダーに第1実施例の画像表示装置100を組み込んだ第1実施例の変形例について説明する。 A-3. Modification of the first embodiment:
The case where theimage display device 100 of the first embodiment is incorporated in the glass window of the wristwatch 10 has been described above. However, the image display device 100 of the first embodiment is a flat plate in a pure sense like the glass window of the wristwatch 10 as long as it has a certain thickness (for example, 2 mm) and has a transparent portion. Not limited to this, it can be incorporated into various objects. Hereinafter, a modification of the first embodiment in which the image display device 100 of the first embodiment is incorporated in an accessory such as a pendant top or a key holder will be described.
以上では、第1実施例の画像表示装置100を、腕時計10のガラス窓に組み込んだ場合について説明した。しかし、第1実施例の画像表示装置100は、ある程度の厚みがあって(例えば、2ミリメートル)透明な部分を有する物であれば、腕時計10のガラス窓のような純粋な意味での平板に限らず、種々の物に組み込むことが可能である。以下では、ペンダントトップなどのアクセサリーや、キーホルダーに第1実施例の画像表示装置100を組み込んだ第1実施例の変形例について説明する。 A-3. Modification of the first embodiment:
The case where the
図3は、ペンダントトップ20に組み込まれた第1実施例の変形例の画像表示装置100を示した説明図である。図3(a)には、ペンダントトップ20の外観形状が示されている。図示されているペンダントトップ20は、アクリル樹脂やガラスなどの透明材料で形成されており、表示板110を兼ねる本体部と、本体部に組み付けられて、首に掛けるためのチェーンが通されるベース部120とから構成されている。また、ベース部120には、操作ボタン122が設けられており、操作ボタン122を押すと、本体部に画像が光って表示されるようになっている。図3(b)には、操作ボタン122を押すことで、本体部に画像112が光って表示されている様子が示されている。
FIG. 3 is an explanatory view showing an image display device 100 according to a modification of the first embodiment incorporated in the pendant top 20. FIG. 3A shows the external shape of the pendant top 20. The illustrated pendant top 20 is formed of a transparent material such as acrylic resin or glass, and a base part that also serves as the display board 110 and a base that is assembled to the main body part and through which a chain for hanging on the neck is passed. Part 120. In addition, an operation button 122 is provided on the base unit 120, and when the operation button 122 is pressed, an image is displayed on the main body unit in a shining manner. FIG. 3B shows a state in which the image 112 is shined and displayed on the main body by pressing the operation button 122.
図3(c)には、ペンダントトップ20の断面を取ることによって、第1実施例の変形例の画像表示装置100の構造が示されている。図示されているように、ペンダントトップ20の本体部は、2つの透明な部材を合わせて形成されており、一方の透明な部材が表示板110となっている。そして、一方の透明部材と合わさる側の表示板110の表面には、微粒子を含んだ透明インクによる画像112が形成されている。また、ベース部120の内部には、表示板110を兼ねる透明部材の端面と向き合う位置に、LED126が設けられている。従って、操作ボタン122を押してLED126を点灯させると、表示板110の端面から光を入射して、上述したメカニズムによって、透明インクによる画像112を光らせて表示することが可能となっている。
FIG. 3C shows the structure of the image display device 100 according to a modification of the first embodiment by taking a cross section of the pendant top 20. As shown in the figure, the main body of the pendant top 20 is formed by combining two transparent members, and one transparent member is the display board 110. An image 112 made of transparent ink containing fine particles is formed on the surface of the display panel 110 on the side that is combined with one transparent member. In addition, an LED 126 is provided inside the base portion 120 at a position facing the end face of the transparent member that also serves as the display plate 110. Therefore, when the operation button 122 is pressed to turn on the LED 126, light is incident from the end face of the display plate 110, and the image 112 made of transparent ink can be illuminated and displayed by the mechanism described above.
このような第1実施例の変形例の画像表示装置100においては、表示板110として用いられている透明部材は、純粋な意味での平板ではない。しかし、透明部材全体として、大まかに完全反射の条件が成り立てば、透明インクによる画像を表面に形成することで表示板110として用いることができる。このようにして構成された第1実施例の変形例の画像表示装置100においても、表示しようとする画像は透明インクで形成しておけばよいので、簡単に画像を表示することができる。しかも、画像は透明な部材の表面に透明インクで形成されていることから、一見した限りでは画像が形成されていることには気付かない。その結果、何もなかったところから光とともに画像が浮き上がってきたかのような、非常に印象的な態様で画像を表示することが可能となる。
In the image display device 100 according to the modification of the first embodiment, the transparent member used as the display plate 110 is not a flat plate in a pure sense. However, if the condition of complete reflection is generally satisfied for the entire transparent member, it can be used as the display board 110 by forming an image with transparent ink on the surface. Also in the image display device 100 according to the modification of the first embodiment configured as described above, an image to be displayed may be formed with transparent ink, so that the image can be easily displayed. Moreover, since the image is formed with transparent ink on the surface of the transparent member, at first glance, it is not noticed that the image is formed. As a result, it is possible to display the image in a very impressive manner as if the image had been lifted with light from the place where there was nothing.
もちろん、図3(d)に例示したように、透明な平板の表面に透明インクによる画像112を形成して表示板110を構成し、この表示板110の両側を透明なカバー部材で覆うことによって、ペンダントトップ20を構成しても良い。このような構成では、LED126からの光は、カバー部材の内部に進入しても完全反射の条件を満たさないので直ちに減衰してしまい、カバー部材の内部にはほとんど光が伝播することはない。従って、たとえカバー部材の表面に細かな傷が付いた場合でも、その傷が光って目立ってしまうことを回避することができる。
Of course, as illustrated in FIG. 3D, an image 112 made of transparent ink is formed on the surface of a transparent flat plate to form the display plate 110, and both sides of the display plate 110 are covered with a transparent cover member. The pendant top 20 may be configured. In such a configuration, even if the light from the LED 126 enters the inside of the cover member, the light does not satisfy the condition of complete reflection, so that the light is attenuated immediately, and almost no light propagates inside the cover member. Therefore, even if a fine flaw is attached to the surface of the cover member, it can be avoided that the flaw is shining and becomes conspicuous.
また、平板な表示板110を用いた場合には、複数枚の表示板110を積層して、それぞれの表示板110の端面から光を入射してもよい。例えば図3(e)に例示するように、赤色の光を発光するLED126Rと、緑色の光を発光するLED126Gと、青色の光を発光するLED126Bとを設けておき、LED126Rの光は、赤色用の表示板110Rの端面から入射し、LED126Gの光は、緑色用の表示板110Gの端面から入射し、LED126Bの光は、青色用の表示板110Bの端面から入射するようにしても良い。表示板110R、表示板110G、表示板110Bの表面同士が直接接触しないようにしておけば、それぞれの端面から入射された光は、その表示板110の内部のみを伝播し、他の表示板110に伝播することはない。
Further, when the flat display plate 110 is used, a plurality of display plates 110 may be stacked and light may be incident from the end face of each display plate 110. For example, as illustrated in FIG. 3E, an LED 126R that emits red light, an LED 126G that emits green light, and an LED 126B that emits blue light are provided, and the light of the LED 126R is for red. The LED 126G may enter from the end face of the display panel 110R, and the light of the LED 126G may enter from the end face of the green display board 110G, and the light of the LED 126B may enter from the end face of the blue display board 110B. If the surfaces of the display board 110R, the display board 110G, and the display board 110B are not in direct contact with each other, the light incident from the respective end faces propagates only inside the display board 110, and the other display boards 110 Will not propagate to.
そして、表示板110Rの表示板の表面には赤色用の画像112Rを形成し、表示板110Gの表示板の表面には緑色用の画像112Gを、表示板110Bの表示板の表面には青色用の画像112Bを形成しておけば、それぞれの表示板110の画像を、それぞれの色で表示することが可能となる。また、異なる色の画像が重なって表示される部分では、入射された光の色とは異なる色を表示することも可能となる。例えば、赤色の画像と緑色の画像とが重なって表示される部分では、黄色の画像を表示することが可能となる。
Then, a red image 112R is formed on the surface of the display plate of the display plate 110R, a green image 112G is formed on the surface of the display plate of the display plate 110G, and a blue image is formed on the surface of the display plate of the display plate 110B. If the image 112B is formed, the image on each display board 110 can be displayed in each color. In addition, it is possible to display a color different from the color of incident light in a portion where images of different colors are displayed in an overlapping manner. For example, a yellow image can be displayed in a portion where a red image and a green image are displayed overlapping each other.
もちろん、各表示板110の表面に入射する光の色を異ならせずとも、形成する画像112を異ならせておけば、光を入射する表示板110を切り換えることで、表示される画像112を切り換えることも可能となる。
Of course, if the image 112 to be formed is made different without changing the color of light incident on the surface of each display plate 110, the displayed image 112 is switched by switching the display plate 110 on which light is incident. It is also possible.
また、図3に例示したようなペンダントトップやキーホルダーのような小さな透明部材に画像表示装置100を組み込む場合は、表示板110に相当する部材の周囲に、反射部材を設けるようにしても良い。表示板110が小さい場合には、端面から入射した光が直ぐに反対側の端面に到達するので、入射した光の多くは表示板110を通り抜けてしまうと考えられる。そこで、表示板110の周囲に、光を反射する反射部材を設けておけば、表示板110を通り抜ける光を反射して、再び表示板110の内部に戻してやることができる。そのため、LED126からの光を有効に活用して、画像112を明るく光らせることが可能となる。
Further, when the image display device 100 is incorporated into a small transparent member such as a pendant top or a key chain as illustrated in FIG. 3, a reflective member may be provided around a member corresponding to the display plate 110. When the display panel 110 is small, light incident from the end face immediately reaches the opposite end face, so that it is considered that most of the incident light passes through the display panel 110. Therefore, if a reflecting member that reflects light is provided around the display panel 110, the light passing through the display panel 110 can be reflected and returned to the inside of the display panel 110 again. Therefore, the image 112 can be brightly illuminated by effectively using the light from the LED 126.
B.第2実施例 :
上述した第1実施例では、小さな表示板110に、文字や線画の図形など、比較的単純な画像を表示するものとして説明した。しかし、より大きな表示板110に、写真のような複雑な画像を表示することも可能である。以下では、このような第2実施例の画像表示装置100について説明する。 B. Second embodiment:
In the first embodiment described above, it has been described that a relatively simple image such as a character or a line drawing figure is displayed on thesmall display board 110. However, it is also possible to display a complicated image such as a photograph on the larger display board 110. Below, the image display apparatus 100 of such 2nd Example is demonstrated.
上述した第1実施例では、小さな表示板110に、文字や線画の図形など、比較的単純な画像を表示するものとして説明した。しかし、より大きな表示板110に、写真のような複雑な画像を表示することも可能である。以下では、このような第2実施例の画像表示装置100について説明する。 B. Second embodiment:
In the first embodiment described above, it has been described that a relatively simple image such as a character or a line drawing figure is displayed on the
B-1.第2実施例の装置構成 :
図4は、第2実施例の画像表示装置100の大まかな構成を示した説明図である。図示されているように、第2実施例の画像表示装置100は、画像が表示される大きな表示板110と、表示板110が立設されるベース部120とから構成されている。表示板110は、アクリル板やガラス板などの透明な板状部材によって形成されており、表示板110の表面には、表示しようとする画像112が、光散乱微粒子を含んだ透明インクによって印刷されている。従って、前述した第1実施例と同様に、第2実施例の画像表示装置100においても、一見した限りでは、表示板110の表面に画像112が印刷されていることには気が付き難くなっている。第2実施例の画像表示装置100では、このような表示板110をベース部120の上面に設けられた溝に装着する。 B-1. Apparatus configuration of the second embodiment:
FIG. 4 is an explanatory diagram showing a rough configuration of theimage display apparatus 100 according to the second embodiment. As shown in the figure, the image display device 100 according to the second embodiment includes a large display board 110 on which an image is displayed, and a base portion 120 on which the display board 110 is erected. The display board 110 is formed of a transparent plate member such as an acrylic board or a glass board, and an image 112 to be displayed is printed on the surface of the display board 110 with a transparent ink containing light scattering fine particles. ing. Therefore, similarly to the first embodiment described above, in the image display device 100 of the second embodiment, it is difficult to notice that the image 112 is printed on the surface of the display board 110 at first glance. . In the image display device 100 according to the second embodiment, such a display plate 110 is mounted in a groove provided on the upper surface of the base portion 120.
図4は、第2実施例の画像表示装置100の大まかな構成を示した説明図である。図示されているように、第2実施例の画像表示装置100は、画像が表示される大きな表示板110と、表示板110が立設されるベース部120とから構成されている。表示板110は、アクリル板やガラス板などの透明な板状部材によって形成されており、表示板110の表面には、表示しようとする画像112が、光散乱微粒子を含んだ透明インクによって印刷されている。従って、前述した第1実施例と同様に、第2実施例の画像表示装置100においても、一見した限りでは、表示板110の表面に画像112が印刷されていることには気が付き難くなっている。第2実施例の画像表示装置100では、このような表示板110をベース部120の上面に設けられた溝に装着する。 B-1. Apparatus configuration of the second embodiment:
FIG. 4 is an explanatory diagram showing a rough configuration of the
図5は、第2実施例の表示板110をベース部120に装着する様子を示した説明図である。尚、図5では、ベース部120の大まかな構造も示すために、ベース部120の一部を破った状態で表示されている。図示されているように、ベース部120の頂面のほぼ中央には、表示板110が装着される溝124が形成されており、溝124の底部には、複数の発光ダイオード(以下、LED126)が一列に設けられている。表示板110は、図中に矢印で示したように、ベース部120の上方から溝124に装着される。
FIG. 5 is an explanatory view showing a state where the display board 110 of the second embodiment is mounted on the base part 120. In FIG. 5, in order to show the rough structure of the base portion 120, the base portion 120 is shown in a state where it is broken. As shown in the figure, a groove 124 in which the display panel 110 is mounted is formed in the approximate center of the top surface of the base portion 120, and a plurality of light emitting diodes (hereinafter referred to as LEDs 126) are formed at the bottom of the groove 124. Are provided in a row. The display board 110 is mounted in the groove 124 from above the base portion 120 as indicated by an arrow in the drawing.
尚、ここでは、LED126は、白色の光を放射する白色LEDであるものとして説明するが、これに限らずどのようなLEDを用いても良い。あるいは、異なる色の光を放射する種々のLEDを混在させて用いることもできる。更には、LEDに限らず、豆電球など、他の発光体を用いてもよい。
In addition, although LED126 demonstrates as what is white LED which radiates | emits white light here, not only this but what kind of LED may be used. Or various LED which radiates | emits the light of a different color can also be mixed and used. Furthermore, you may use not only LED but other light-emitting bodies, such as a miniature light bulb.
図6は、ベース部120の溝124に装着された表示板110と、溝124内に一列に設けられたLED126との位置関係を概念的に示した断面図である。図示されるように、ベース部120の溝124に表示板110を装着すると、表示板110の端面が、一列に配列されたLED126と向かい合うようになっている。このため、表示板110をベース部120に装着した後、操作ボタン122を操作してLED126を点灯させると、LED126から放射された光が、端面から表示板110の内部に入射される。そして、図2を用いて前述したメカニズムによって表示板110の中を伝播した後、透明インクで印刷された画像112を光らせる。その結果、LED126の点灯前には、単なる透明な板のように見えていた表示板110に、画像112が浮かび上がるようにして表示されることになる。図4には、LED126の点灯前の状態(図4(a)参照)と、LED126を点灯して画像を表示した状態(図4(b)参照)とが例示されている。
FIG. 6 is a cross-sectional view conceptually showing the positional relationship between the display board 110 mounted in the groove 124 of the base portion 120 and the LEDs 126 provided in a row in the groove 124. As shown in the figure, when the display board 110 is mounted in the groove 124 of the base portion 120, the end face of the display board 110 faces the LEDs 126 arranged in a line. For this reason, when the LED 126 is turned on by operating the operation button 122 after the display board 110 is mounted on the base portion 120, the light emitted from the LED 126 enters the inside of the display board 110 from the end face. Then, after propagating through the display panel 110 by the mechanism described above with reference to FIG. 2, the image 112 printed with transparent ink is illuminated. As a result, before the LED 126 is turned on, the image 112 is displayed on the display board 110 that has been seen as a simple transparent board. FIG. 4 illustrates a state before the LED 126 is turned on (see FIG. 4A) and a state where the LED 126 is turned on and an image is displayed (see FIG. 4B).
尚、図2を用いて前述したように、第2実施例の画像表示装置100においても、表示板110の端面から入射した光のうち、完全反射の条件を満たさない光が消滅するまでの範囲では、光の一部が外部に透過してくるので、表示板110が淡く光って見えることになる。そこで、第2実施例の画像表示装置100では、ベース部120の溝124の深さは、表示板110の端面付近に現れるこのような部分を隠すことができる深さに設定されている。このため、表示板110に印刷された画像112を光らせて表示したときに、その光が供給されている箇所を隠すことができるので、透明な板の中から画像が浮き上がってきたかのような印象を、より強く与えることが可能となる。
As described above with reference to FIG. 2, in the image display device 100 of the second embodiment, the range from the incident light from the end face of the display plate 110 until the light that does not satisfy the complete reflection condition disappears. Then, since a part of the light is transmitted to the outside, the display board 110 appears to shine lightly. Therefore, in the image display device 100 according to the second embodiment, the depth of the groove 124 of the base portion 120 is set to a depth at which such a portion appearing near the end face of the display plate 110 can be hidden. For this reason, when the image 112 printed on the display board 110 is illuminated and displayed, the portion to which the light is supplied can be hidden, so that the image appears as if it has been lifted from the transparent board. It becomes possible to give stronger.
ここで、図1あるいは図3に例示した第1実施例の画像表示装置100と、図4に例示した第2実施例の画像表示装置100とを比較すれば明らかなように、第2実施例の画像表示装置100では、比較的大きな表示板110に画像112を表示する。また、それに伴って、表示される画像も、文字のような単純な図形ではなく、より複雑な画像となっている。このような画像を適切に表示するためには、透明インクで印刷する画像112に特別な工夫が必要となる。以下では、この点について詳しく説明する。
Here, as apparent from a comparison between the image display device 100 of the first embodiment illustrated in FIG. 1 or FIG. 3 and the image display device 100 of the second embodiment illustrated in FIG. 4, the second embodiment. The image display device 100 displays an image 112 on a relatively large display board 110. Along with this, the displayed image is not a simple figure such as a character but a more complicated image. In order to appropriately display such an image, a special device is required for the image 112 printed with the transparent ink. Hereinafter, this point will be described in detail.
B-2.画像の印刷方法 :
前述したように、微粒子を含んだ透明インクによるインク層114を、透明な表示板110の表面に形成しておき、表示板110の端面から光を入射すれば、インク層114が形成された部分を光らせることが可能である。ここで、文字や図形などのような単純な画像ではなく、写真や自然画などのような複雑な画像を表示するためには、中間的な明るさも表示可能とするとともに、画像の場所に応じて、所望の明るさで光らせる技術が必要となる。そこで、先ず初めに、表示板110の表面に透明インクで印刷された画像を、所望の明るさで光らせる技術について説明する。尚、透明インクによる画像を所望の明るさで光らせるためには、大きく2つの方法が存在する。先ず1つめの方法は、表示板110の表面に微細なインク層114を形成することとして、光らせたい明るさに応じてインク層114の密度を制御する方法である。いわゆるインクジェットプリンタを用いれば、表示板110の表面に微細なインク層114を形成することができる。2つめの方法としては、光らせたい明るさに応じてインク層114の面積を制御する方法である。面積変調を利用した2つめの方法は、微細なインク層114を形成する必要はないので、スクリーン印刷などにも適用可能であり、より汎用性の高い方法ということができる。そこで、以下では、面積変調を利用して、透明インクによる画像を中間的な明るさで光らせる方法について説明する。 B-2. How to print an image:
As described above, if theink layer 114 made of transparent ink containing fine particles is formed on the surface of the transparent display plate 110 and light is incident from the end face of the display plate 110, the portion where the ink layer 114 is formed. It is possible to shine. Here, in order to display complex images such as photographs and natural images instead of simple images such as characters and figures, intermediate brightness can be displayed and the image can be displayed according to the location of the image. Therefore, a technique for shining with a desired brightness is required. First, a technique for shining an image printed with transparent ink on the surface of the display panel 110 with a desired brightness will be described. There are roughly two methods for shining an image of transparent ink with a desired brightness. The first method is to form a fine ink layer 114 on the surface of the display panel 110 and control the density of the ink layer 114 according to the brightness desired to be shined. If a so-called ink jet printer is used, a fine ink layer 114 can be formed on the surface of the display panel 110. The second method is a method of controlling the area of the ink layer 114 according to the brightness desired to shine. The second method using area modulation does not need to form a fine ink layer 114, and thus can be applied to screen printing and the like, and can be said to be a more versatile method. Therefore, in the following, a method of making an image of transparent ink shine with intermediate brightness using area modulation will be described.
前述したように、微粒子を含んだ透明インクによるインク層114を、透明な表示板110の表面に形成しておき、表示板110の端面から光を入射すれば、インク層114が形成された部分を光らせることが可能である。ここで、文字や図形などのような単純な画像ではなく、写真や自然画などのような複雑な画像を表示するためには、中間的な明るさも表示可能とするとともに、画像の場所に応じて、所望の明るさで光らせる技術が必要となる。そこで、先ず初めに、表示板110の表面に透明インクで印刷された画像を、所望の明るさで光らせる技術について説明する。尚、透明インクによる画像を所望の明るさで光らせるためには、大きく2つの方法が存在する。先ず1つめの方法は、表示板110の表面に微細なインク層114を形成することとして、光らせたい明るさに応じてインク層114の密度を制御する方法である。いわゆるインクジェットプリンタを用いれば、表示板110の表面に微細なインク層114を形成することができる。2つめの方法としては、光らせたい明るさに応じてインク層114の面積を制御する方法である。面積変調を利用した2つめの方法は、微細なインク層114を形成する必要はないので、スクリーン印刷などにも適用可能であり、より汎用性の高い方法ということができる。そこで、以下では、面積変調を利用して、透明インクによる画像を中間的な明るさで光らせる方法について説明する。 B-2. How to print an image:
As described above, if the
面積変調を利用することによって、透明インクで印刷された画像を所望の明るさで光らせる原理は、次のようなものである。先ず、表示板110の表面を格子状の小さなマス目に分割する。そして、ある領域内の各マス目には、マス目の1/4の面積に相当するインク層114を形成し、別の領域内の各マス目には、マス目の1/2の面積のインク層114を形成したとする。すると、マス目の1/2の面積のインク層114が形成された領域は、マス目の1/4の面積のインク層114が形成された領域に比べて、約2倍の明るさに光らせることができる。従って、表示しようとする画像を小さなマス目に分割し、各マス目を光らせたい明るさに応じて、そのマス目に形成するインク層114の面積を制御してやれば、それぞれのマス目を所望の明るさで光らせることが可能である。画像データは、通常、画素毎の輝度を表す輝度データによって記述されているから、輝度データに応じた面積となるようにインク層114を形成すればよいと考えられる。
The principle of shining an image printed with transparent ink with a desired brightness by using area modulation is as follows. First, the surface of the display panel 110 is divided into small grids. Then, an ink layer 114 corresponding to an area of 1/4 of the cell is formed on each cell in a certain area, and an area of 1/2 of the cell is formed on each cell in another area. Assume that the ink layer 114 is formed. Then, the area where the ink layer 114 having a half area of the square is formed is made to shine about twice as bright as the area where the ink layer 114 having a quarter area of the square is formed. be able to. Therefore, if the image to be displayed is divided into small squares and the area of the ink layer 114 formed on the squares is controlled according to the brightness at which the squares are desired to be illuminated, each square is desired. It is possible to shine with brightness. Since the image data is normally described by luminance data representing the luminance of each pixel, it is considered that the ink layer 114 may be formed so as to have an area corresponding to the luminance data.
図7は、画素毎の輝度データに応じた面積で、画素内にインク層114を形成する様子を示した説明図である。尚、第2実施例では、1つの画素を縦横2つずつの4つの小領域に分割して、輝度データに応じた数の小領域にインク層114を形成する。もちろん、このような方法に限らず、例えば縦横4つずつ、合計で16個の小領域に画素を分割して、輝度データに応じた数の小領域にインク層114を形成しても良いし、更には、より多くの小領域に分割しても良い。また、1つの画素の大きさは、画像データの縦方向および横方向の画素数(すなわち、解像度)と、画像を印刷する大きさとによって決定されるが、画像データの解像度が高すぎるため、あるいは印刷する大きさが小さすぎるために、1つの画素の大きさが小さくなってしまう場合には、複数の画素をまとめて大きな画素を形成した後、その大きな画素を複数の小領域に分割して、同様の処理を行えばよい。
FIG. 7 is an explanatory diagram showing a state in which the ink layer 114 is formed in the pixel with an area corresponding to the luminance data for each pixel. In the second embodiment, one pixel is divided into four small areas, two vertically and horizontally, and the ink layer 114 is formed in the number of small areas corresponding to the luminance data. Of course, the method is not limited to this, and the ink layer 114 may be formed in a number of small areas corresponding to the luminance data by dividing the pixels into a total of 16 small areas, for example, four vertically and horizontally. Furthermore, it may be divided into more small areas. The size of one pixel is determined by the number of pixels in the vertical and horizontal directions (that is, resolution) of the image data and the size of printing the image, but the resolution of the image data is too high, or If the size of one pixel becomes small because the size to be printed is too small, a large pixel is formed by combining a plurality of pixels, and then the large pixel is divided into a plurality of small regions. A similar process may be performed.
1つの画素を4つの小領域に分割する場合について考えると、1つの画素では次の5つの状態、すなわち「画素内にインク層114を全く形成しない状態」、「1つの小領域にだけインク層114を形成する状態」、「2つの小領域にインク層114を形成する状態」、「3つの小領域にインク層114を形成する状態」、「全ての小領域にインク層114を形成する状態」の、5つの状態をとることができる。当然ながら、画素内の全ての小領域にインク層114を形成した状態が最も明るい状態となり、画素内には全くインク層114を形成しない状態が、最も暗い状態となる。また、画素内の半分の小領域にインク層114を形成すれば、ちょうど中間の明るさとなる。
Considering the case where one pixel is divided into four small regions, one pixel has the following five states: “a state where no ink layer 114 is formed in the pixel”, “an ink layer only in one small region” "State to form 114", "State to form ink layer 114 in two small areas", "State to form ink layer 114 in three small areas", "State to form ink layer 114 in all small areas Can be in five states. Naturally, the state where the ink layer 114 is formed in all the small regions in the pixel is the brightest state, and the state where no ink layer 114 is formed in the pixel is the darkest state. Further, if the ink layer 114 is formed in half of the small area in the pixel, the brightness is just intermediate.
このことから、輝度データの階調値が0~255の範囲を取り得るとすると、図7(a)に示すように、輝度データの階調値が0~63の画素については、画素内にインク層114を形成せず、輝度データの階調値が64~127の画素については、1つの小領域にだけインク層114を形成すればよい。図中では、インク層114が形成された小領域には、斜線を付して表示されている。また、輝度データの階調値が128~191の画素については、2つの小領域にインク層114を形成し、輝度データの階調値が192~254の画素については、3つの小領域にインク層114を形成すればよい。そして、輝度データの階調値が255の画素については、画素内の全ての小領域にインク層114を形成すればよい。こうすれば、輝度データの階調値が大きくなるに従って、画素を明るく光らせるようにすることが可能となる。
Therefore, assuming that the gradation value of the luminance data can be in the range of 0 to 255, as shown in FIG. 7A, the pixels with the gradation value of the luminance data of 0 to 63 are included in the pixel. Without forming the ink layer 114, the ink layer 114 may be formed only in one small region for pixels with luminance data gradation values of 64 to 127. In the drawing, the small area where the ink layer 114 is formed is displayed with hatching. In addition, the ink layer 114 is formed in two small areas for pixels with luminance data gradation values of 128 to 191 and the ink is formed in three small areas for pixels with luminance data gradation values of 192 to 254. The layer 114 may be formed. Then, for a pixel with a luminance data gradation value of 255, the ink layer 114 may be formed in all small regions within the pixel. In this way, it becomes possible to make the pixel shine brighter as the gradation value of the luminance data increases.
もっとも、図7(a)に示した方法では、輝度データは階調値0~階調値255の256段階に変化するのに対して、画素の明るさは、全く光らない状態を含めて5段階にしか変化させることができない。そこで、これを補うために、第2実施例では次のような方法も組み合わせて使用する。
However, in the method shown in FIG. 7A, the luminance data changes in 256 levels from gradation value 0 to gradation value 255, whereas the brightness of the pixel is 5 including the state where no light is emitted. It can only be changed in stages. Therefore, in order to compensate for this, the following method is also used in combination in the second embodiment.
例えば、図7(b)に示したように、ある画素での輝度データが階調値16であり、その画素の右の画素、下の画素、右下の画素についても、輝度データの階調値が16であったものとする。何れの画素の輝度データも階調値16であるから、図7(a)の方法に従えば、どの画素についてもインク層114は形成されない筈であり、これら4つの画素は全く光らない状態となる。しかし、実際には、輝度データの階調値は「16」であるから、いわば階調値16分だけ積み残した状態となっている。各画素で階調値16の積み残しが発生しているのであるから、4つの画素をまとめれば階調値64(=16×4)の積み残しが発生していると考えることができる。そして、階調値64の輝度データであれば、1つの小領域にインク層114を形成することで表現することが可能である。
For example, as shown in FIG. 7B, the luminance data at a certain pixel has a gradation value of 16, and the gradation of the luminance data also applies to the right pixel, the lower pixel, and the lower right pixel of the pixel. Assume that the value was 16. Since the luminance data of any pixel has a gradation value of 16, according to the method of FIG. 7A, the ink layer 114 should not be formed for any pixel, and these four pixels are not illuminated at all. Become. However, actually, since the gradation value of the luminance data is “16”, it is in a state where only the gradation value of 16 is left. Since the unregistered gradation value 16 occurs in each pixel, it can be considered that the unregistered gradation value 64 (= 16 × 4) occurs when the four pixels are combined. The luminance data having the gradation value 64 can be expressed by forming the ink layer 114 in one small area.
こうしたことを利用すれば、輝度データの階調値に応じて、より適切にインク層114を形成することが可能となる。すなわち、図7(a)に示すようにして、輝度データの階調値が「64」増える毎に、インク層114を形成する小領域を1つずつ増やすこととすると、輝度データの階調値が64の倍数にならない限り、各画素にはインク層114の面積に反映させきれない積み残しの階調値が少しずつ発生する。そこで、これら積み残した階調値をまとめて、階調値64に達したら、小領域1つ分だけ追加してインク層114を形成するのである。図7(b)には、輝度データの階調値が「16」の4つの画素について、それぞれ階調値に応じてインク層114を形成する小領域の数を決定した後、各画素で積み残した階調値をまとめて、小領域1つ分だけ、追加でインク層114を形成することとしている様子が、概念的に示されている。
If this is utilized, the ink layer 114 can be more appropriately formed according to the gradation value of the luminance data. That is, as shown in FIG. 7A, when the gradation value of the luminance data increases by “64”, if the small area forming the ink layer 114 is increased by one, the gradation value of the luminance data As long as is not a multiple of 64, the remaining gradation values that cannot be reflected in the area of the ink layer 114 are generated little by little in each pixel. Therefore, these accumulated tone values are collected and when the tone value reaches 64, only one small region is added to form the ink layer 114. In FIG. 7B, for the four pixels whose luminance data gradation value is “16”, the number of small regions for forming the ink layer 114 is determined in accordance with the gradation value, and the pixels are left unstacked at each pixel. The manner in which the ink layer 114 is additionally formed for one small region by collectively collecting the gradation values is conceptually shown.
図7(c)には、輝度データの階調値が「80」の4つの画素について、同様にして、インク層114を形成する小領域の数を画素毎に決定している様子が示されている。すなわち、階調値80の画素に対しては、図7(a)に示したように、1つの小領域にインク層114が形成される。しかし、小領域の1つ分は輝度データの階調値64に相当するから、これでは画素あたり階調値16(=80-64)の積み残しが生じる。そして、4つの画素での積み残しの階調値を合わせれば、小領域1つ分の階調値に達する。そこで、小領域1つ分だけ、追加のインク層114を形成することで、4つの画素で生じた積み残しの階調値を解消する。
FIG. 7C shows a state in which the number of small regions for forming the ink layer 114 is determined for each pixel in the same manner for four pixels whose luminance data gradation value is “80”. ing. That is, for a pixel with a gradation value of 80, the ink layer 114 is formed in one small region as shown in FIG. However, since one small area corresponds to the gradation value 64 of the luminance data, this causes an accumulation of gradation values 16 (= 80-64) per pixel. If the remaining gradation values of the four pixels are combined, the gradation value for one small area is reached. Therefore, by forming the additional ink layer 114 for only one small region, the remaining gradation value generated in the four pixels is eliminated.
以上に説明した例では、4つの画素に対して1つの小領域にインク層114を形成しているから、1つの画素に換算すれば、1/4の小領域にインク層114を形成したことに対応する。従って、図7(a)に示した方法では、画素あたりのインク層114の面積を5段階にしか変化させることができないのに対して、図7(b)および図7(c)に示した方法を用いれば、13(=4×3+1)段階に変化させることが可能となる。更に、4つの画素をまとめるのではなく、縦横3つずつの9つの画素、あるいは縦横4つずつの16個の画素と、まとめる画素数を増やしていけば、より多段階に変化させることも可能である。
In the example described above, since the ink layer 114 is formed in one small region for four pixels, the ink layer 114 is formed in one-fourth small region when converted to one pixel. Corresponding to Therefore, in the method shown in FIG. 7A, the area of the ink layer 114 per pixel can be changed only in five steps, whereas the method shown in FIGS. 7B and 7C is used. If the method is used, it is possible to change to 13 (= 4 × 3 + 1) stages. Furthermore, instead of grouping four pixels, it is possible to change in more stages by increasing the number of pixels to be grouped with 9 pixels each in vertical and horizontal directions or 16 pixels in vertical and horizontal directions. It is.
尚、図7(b)および図7(c)では、4つの画素で発生した積み残しの階調値をまとめても、階調値が64に達しなかった場合は、積み残した階調値は一旦、キャンセルしてしまい、小領域の数には反映させないものとしている。しかし、積み残した階調値の合計が階調値64に達しなかった場合には、更に隣の画素に繰り越して、合計値が階調値64に達するまで、どんどん積み増していくようにしても良い。こうすれば、原理的には、1画素あたりのインク層114の面積を、輝度データと同じく256段階に変化させることも可能となる。
In FIG. 7B and FIG. 7C, even if the remaining gradation values generated in the four pixels are collected, if the gradation value does not reach 64, the remaining gradation value is temporarily stored. It will be canceled and not reflected in the number of small areas. However, if the sum of the remaining gradation values does not reach the gradation value 64, the accumulated value may be carried over to the next adjacent pixel until the total value reaches the gradation value 64. . In this way, in principle, the area of the ink layer 114 per pixel can be changed in 256 steps as in the luminance data.
従って、表示板110に表示しようとする画像データを取得して、画素毎の輝度データに基づいて、上述した方法によってインク層114の面積に置き換えて画像を印刷してやれば、画像データの画像を、そのまま表示板110に光らせて表示することが可能となる筈である。しかし実際に試してみると、各画素に形成するインク層114の面積を、各画素の輝度データを変換した面積に設定したのでは、適切に画像を光らせることはできないことが判明した。画像データに応じて適切に画像を表示するためには、以下に説明するような、更なる工夫が必要となる。以下では、この点について詳しく説明する。
Therefore, if the image data to be displayed on the display board 110 is acquired and the image is printed by replacing the area of the ink layer 114 by the above-described method based on the luminance data for each pixel, the image of the image data is It should be possible to display on the display board 110 as it is. However, when actually tested, it has been found that if the area of the ink layer 114 formed on each pixel is set to the area obtained by converting the luminance data of each pixel, the image cannot be properly illuminated. In order to display an image appropriately according to the image data, further devices as described below are required. Hereinafter, this point will be described in detail.
図8は、表示しようとする画像の画像データを例示した説明図である。図中に示した小さなマス目は画素を表しており、画素内に表示された数値は、その画素についての輝度データの階調値を表している。いわゆる白黒画像の画像データであれば、各画素(すなわち、マス目)に1つずつ輝度データが設定されている。これに対してカラー画像の画像データでは、それぞれの画素について、R成分、G成分、B成分の各色成分の輝度データが設定されている。以下では、説明を単純にするために、白黒画像の画像データを用いて説明するが、カラー画像の画像データに対しても、ほぼ同様な説明が成立する。また、輝度データは、いわゆる8ビットのデータであり、0~255の階調値を取り得る256階調のデータとして表現されているものとする。
FIG. 8 is an explanatory diagram illustrating image data of an image to be displayed. The small squares shown in the figure represent pixels, and the numerical values displayed in the pixels represent the gradation values of the luminance data for the pixels. In the case of so-called black-and-white image data, luminance data is set for each pixel (that is, each cell). On the other hand, in the image data of a color image, luminance data of each color component of R component, G component, and B component is set for each pixel. In the following, in order to simplify the description, description will be made using image data of a black and white image, but substantially the same description holds for image data of a color image. The luminance data is so-called 8-bit data, and is expressed as data of 256 gradations that can take gradation values of 0 to 255.
図9には、画像データの画素一列分の輝度データを、画素内に形成するインク層114の面積に変換した様子が示されている。図9では、図8に示した画像の中から、破線で囲って示した画素1列分の画像データについて、図7を用いて前述した方法に従って、輝度データをインク層114の面積に変換した結果を表示している。図中で斜線を付して示した部分がインク層114を形成する領域である。このような画素1列分の画像に対して、図9の紙面上で左方向から光が伝播してくるものとする。図2を用いて前述したように、表示板110の内部を伝播してきた光はインク層114の部分に達すると、インク層114内に含まれる光散乱微粒子114pに衝突して散乱される結果、図9で斜線を付したインク層114の部分が明るく光って表示されることになる。
FIG. 9 shows a state in which the luminance data for one column of image data is converted into the area of the ink layer 114 formed in the pixel. In FIG. 9, luminance data is converted into the area of the ink layer 114 for the image data for one column of pixels surrounded by a broken line in the image shown in FIG. 8 according to the method described above with reference to FIG. The result is displayed. The hatched portion in the drawing is a region where the ink layer 114 is formed. It is assumed that light propagates from the left side on the paper surface of FIG. 9 with respect to such an image for one column of pixels. As described above with reference to FIG. 2, when the light propagating through the display panel 110 reaches the ink layer 114, the light collides with the light scattering fine particles 114p included in the ink layer 114 and is scattered. In FIG. 9, the hatched portion of the ink layer 114 is brightly displayed.
ところが、実際にこのようなインク層114を表示板110の表面に形成して、端面から光を入射して画像を光らせてみると、光の進行方向に沿って下流側になるほど、暗い画像になってしまうことが判明した。このようなことが生じる理由としては、上流側のインク層114で光散乱微粒子114pに衝突した光が散乱する結果、下流側のインク層114になるほど、供給される光の絶対量が足りなくなるためと考えられる。従って、図7に示した方法で、画像データの各画素の輝度データを、単純にインク層114の面積に変換したのでは、画像を適切に光らせることはできない。そこで、第2実施例の画像表示装置100では、上流側のインク層114で光が散乱によって失われてしまうことも考慮して、各画素のインク層114の面積を適切に設定することが可能な、次のような方法を開発した。
However, when such an ink layer 114 is actually formed on the surface of the display panel 110 and light is incident from the end face to make the image shine, the darker the image becomes, the more downstream the light travels. Turned out to be. This is because the upstream ink layer 114 scatters the light that collides with the light scattering particles 114p, and as the ink layer 114 on the downstream side becomes smaller, the absolute amount of the supplied light becomes insufficient. it is conceivable that. Therefore, if the luminance data of each pixel of the image data is simply converted into the area of the ink layer 114 by the method shown in FIG. 7, the image cannot be illuminated appropriately. Therefore, in the image display apparatus 100 according to the second embodiment, it is possible to appropriately set the area of the ink layer 114 of each pixel in consideration of light being lost due to scattering in the upstream ink layer 114. The following method was developed.
図10は、第2実施例の画像表示装置100において、画像データをインク層114の面積に変換する際の、基本的な考え方を示した説明図である。図10(a)には、ある画素(光の進行方向に沿って上流側からn番目の画素)に着目して、その画素位置に上流側から伝播してくる光の光量I(n)と、その画素内に形成されるインク層114の面積S(n)と、画素内のインク層114を光らせるために使用される光量R(n)と、その画素位置から下流側に伝播していく光の光量I(n+1)との関係が示されている。尚、インク層114が形成されている表示板110には厚みがあるから、「ある画素位置」と言ったときには、表示板110の厚みに相当する深さも考慮しておく必要がある。従って、上流側から画素位置に伝播してくる光の量としては、表示板110の深さ方向も含めて、その画素位置に入射する全ての光の量を表している。
FIG. 10 is an explanatory diagram showing a basic concept when the image data is converted into the area of the ink layer 114 in the image display apparatus 100 of the second embodiment. FIG. 10 (a) focuses on a certain pixel (the nth pixel from the upstream side along the light traveling direction), and the light amount I (n) of light propagating from the upstream side to the pixel position. , The area S (n) of the ink layer 114 formed in the pixel, the amount of light R (n) used to illuminate the ink layer 114 in the pixel, and the downstream from the pixel position. The relationship with the amount of light I (n + 1) is shown. Note that since the display board 110 on which the ink layer 114 is formed has a thickness, when referring to “a certain pixel position”, it is necessary to consider a depth corresponding to the thickness of the display board 110. Accordingly, the amount of light propagating from the upstream side to the pixel position represents the amount of all light incident on the pixel position, including the depth direction of the display panel 110.
また、図10(b)には、着目している画素に入射する光の光量I(n)と、その画素に形成されるインク層114の面積S(n)と、インク層114を光らせるために使われる光量R(n)と、隣の画素に伝播していく光量I(n+1)との間に成り立つ関係が示されている。図10(b)の一番上の式に示されるように、インク層114を光らせるために使われる光量R(n)は、上流側から伝播してくる光量I(n)に比例すると考えられる。また、画素内に形成されるインク層114の面積S(n)は、上流側から伝播してくる光量I(n)と、インク層114を光らせるための光量R(n)との比例係数を決めていると考えられる。このことと対応して、図10(b)の一番上の式では、光量I(n)と光量R(n)との比例係数を、面積S(n)の関数として、f(S(n))と表している。
In FIG. 10B, the light amount I (n) of light incident on the pixel of interest, the area S (n) of the ink layer 114 formed on the pixel, and the ink layer 114 are illuminated. A relationship is established between the amount of light R (n) used in the above and the amount of light I (n + 1) propagating to the adjacent pixel. As shown in the uppermost equation in FIG. 10B, the amount of light R (n) used to shine the ink layer 114 is considered to be proportional to the amount of light I (n) propagating from the upstream side. . The area S (n) of the ink layer 114 formed in the pixel is a proportional coefficient between the light amount I (n) propagating from the upstream side and the light amount R (n) for causing the ink layer 114 to shine. It is thought that it has decided. Correspondingly, in the uppermost expression in FIG. 10B, the proportionality coefficient between the light quantity I (n) and the light quantity R (n) is expressed as f (S ( n)).
ここで、インク層114の面積S(n)が2倍になれば、明るさも2倍(すなわち、光らせるために使われた光量も2倍)になるから、光量I(n)と光量R(n)との比例係数f(S(n))は、もっとも単純には、インク層114の面積S(n)に比例していると考えることができる。すなわち、図10(c)に示したように、f(S(n))=k・S(n)とすることができる。あるいは、人間の視覚の特性は、面積S(n)が大きくなると認識する明るさが次第に飽和する傾向にあることを考慮して、図10(d)に示した関数形を用いることも可能である。
Here, if the area S (n) of the ink layer 114 is doubled, the brightness is also doubled (that is, the amount of light used for making the light is doubled), so the light amount I (n) and the light amount R ( The proportional coefficient f (S (n)) with n) can be considered to be proportional to the area S (n) of the ink layer 114 in the simplest case. That is, as shown in FIG. 10C, f (S (n)) = k · S (n) can be obtained. Alternatively, as a human visual characteristic, the function form shown in FIG. 10D can be used in consideration of the fact that the brightness recognized as the area S (n) increases tends to be saturated. is there.
着目している画素では、上流側から伝播してきた光量I(n)の中から、インク層114を光らせるために光量R(n)だけ使用された後、残りの光量T(n)が、次の画素に伝播する。図10(b)の上から2番目の式には、このような関係が示されている。しかし、表示板110の内部を伝播する際にも光は減衰する。そこで、この光の減衰を考慮すると、隣の画素に伝播する光量I(n+1)は、残りの光量T(n)に、exp(-μL)を乗算した値となる。ここで、μは光の減衰係数であり、表示板110の材質によって決まる物性値である。また、Lは画素1つ分の大きさであり、前述したように、画像データの解像度と、画像を印刷しようとする大きさによって決まる値である。従って、図9に示すような画素一列分の画像データが与えられたときに、一番上流側の画素から、図10に示した関係を用いて、表示板110内を伝播する光量I(n)を順番に計算しながら、インク層114の面積S(n)を決定していけば、各画素の輝度データに応じた明るさが得られるように、画素毎のインク層114の面積を決定することが可能となる。
In the pixel of interest, after the light amount R (n) is used to shine the ink layer 114 out of the light amount I (n) propagated from the upstream side, the remaining light amount T (n) It propagates to the pixels. Such a relationship is shown in the second equation from the top in FIG. However, light also attenuates when propagating through the display panel 110. Therefore, taking this light attenuation into consideration, the light amount I (n + 1) propagating to the adjacent pixel is a value obtained by multiplying the remaining light amount T (n) by exp (−μL). Here, μ is a light attenuation coefficient and is a physical property value determined by the material of the display panel 110. L is the size of one pixel, and is a value determined by the resolution of the image data and the size of the image to be printed as described above. Accordingly, when image data for one column of pixels as shown in FIG. 9 is given, the amount of light I (n) propagating in the display panel 110 from the most upstream pixel using the relationship shown in FIG. ) In order, the area S (n) of the ink layer 114 is determined, and the area of the ink layer 114 for each pixel is determined so that brightness corresponding to the luminance data of each pixel can be obtained. It becomes possible to do.
図11は、表示板110の内部での光の減衰や、表示板110の表面でインク層114を光らせることによる光の損失や考慮しながら、画素毎にインク層114の面積を決定する様子を示した説明図である。図示した例では、着目している画素に入射した光量I(n)と、その画素を光らせるために光量R(n)との係数を表すf(S)として、人間の視覚の特性を考慮した図10(d)の関数形を使用し、関数中に現れる定数Kの値は、4.5を使用した。また、画素の大きさに対応する値Lは、実際の画素の大きさではなく、1画素あたりで考えることにして、Lの値は1を使用した。これは、実際の画素の大きさは、表示する画像の大きさなどによって種々に代わり得ることを考慮したためである。更に、光の減衰係数μとしては、0.004を使用した。
FIG. 11 shows how the area of the ink layer 114 is determined for each pixel while considering the attenuation of light inside the display plate 110 and the loss of light caused by causing the ink layer 114 to shine on the surface of the display plate 110. It is explanatory drawing shown. In the illustrated example, human visual characteristics are considered as f (S) representing a coefficient between the amount of light I (n) incident on the pixel of interest and the amount of light R (n) for causing the pixel to shine. The function form of FIG. 10D was used, and the value of the constant K appearing in the function was 4.5. The value L corresponding to the pixel size is not the actual pixel size, but is considered per pixel, and the value of L is 1. This is because the actual pixel size can be changed in various ways depending on the size of the image to be displayed. Further, 0.004 was used as the light attenuation coefficient μ.
尚、厳密には、f(S)中の定数Kは、インク層114の表面状態などの種々の要因によって決定される値である。しかし、ここではこれらの要因について解析することはせずに、経験上から得られた値を用いている。また、光の減衰係数μについても、本来であれば表示板110の材質によって決まる物性値であるが、ここでは、経験上から得られた値を使用している。これは次のような理由によるものである。実際の画像表示装置100では、表示板110の内部を伝播する光は、光源であるLED126から離れるほど広がって光の強さが弱くなる。そこで図10を用いて前述した計算式では、計算が複雑になることを避けるために、このような光の拡散によって光が弱くなる現象も一種の光の減衰と扱うことにして、光の拡散による影響と本来の光の減衰による影響とをまとめて、1つの減衰係数μとして考慮している。また、画素の大きさに対応する値Lを、実際の長さではなく、1画素あたりで考えることとしているので、厳密な値を決定することには、あまり意味がない。これらの理由から、図11に示した計算では、表示板110の物性によって決まる減衰係数μではなく、経験上から得られた値を使用している。
Strictly speaking, the constant K in f (S) is a value determined by various factors such as the surface state of the ink layer 114. However, these factors are not analyzed here, but values obtained from experience are used. Further, the light attenuation coefficient μ is a physical property value originally determined by the material of the display plate 110, but here, a value obtained from experience is used. This is due to the following reason. In the actual image display device 100, the light propagating through the inside of the display board 110 spreads away from the LED 126 as the light source, and the intensity of the light becomes weaker. Therefore, in the calculation formula described above with reference to FIG. 10, in order to avoid the complexity of the calculation, the phenomenon in which the light is weakened by the diffusion of the light is also treated as a kind of light attenuation. The influence of the above and the influence of the original light attenuation are collectively considered as one attenuation coefficient μ. Further, since the value L corresponding to the size of the pixel is considered per pixel, not the actual length, it is not very meaningful to determine an exact value. For these reasons, the calculation shown in FIG. 11 uses a value obtained from experience, not the attenuation coefficient μ determined by the physical properties of the display panel 110.
先ず初めに、図11(a)について説明する。図11(a)には、上段、中段、下段と三段に分けて数表が示されているが、上段の数表は、計算する際の入力値を表している。また、中段の数表は、上段の入力に基づいて行われる計算の途中経過を示しており、下段の数表は、最終的に得られた計算結果を示している。以下では、各段について詳しく説明する。
First, FIG. 11 (a) will be described. FIG. 11A shows a numerical table divided into an upper stage, a middle stage, a lower stage, and a third stage, but the upper number table represents input values for calculation. The number table in the middle row shows the progress of the calculation performed based on the input in the upper row, and the number table in the lower row shows the finally obtained calculation result. Hereinafter, each stage will be described in detail.
図11(a)の上段には、画素位置と、その画素についての画像データ(すなわち、その画素の目標輝度)が示されている。尚、図11(a)に示した例では、画像の端から2つの画素を除いて、1画素毎に画像データの階調値が大きく変化している。しかし、実際に用いた画素の大きさは一辺の長さが約0.1mm程度であるから、隣り合う画素間でこのように大きく階調値が変化することはない。実際の画像データでは、もっとゆっくりと階調値が変化するが、実際の画像データを用いたのでは、全体的な動きを示すことが困難なので、図11では、仮想的に作成したデータが用いられている。
11A shows the pixel position and the image data (that is, the target luminance of the pixel) for the pixel. In the example shown in FIG. 11A, the gradation value of the image data changes greatly for each pixel except for two pixels from the edge of the image. However, since the actually used pixel has a side length of about 0.1 mm, the gradation value does not change so much between adjacent pixels. In the actual image data, the gradation value changes more slowly. However, since it is difficult to show the overall movement if the actual image data is used, virtually generated data is used in FIG. It has been.
図11(a)に示されるように、左端にある1番の画素位置の画素については、光らせる目標輝度は、階調値0となっている。すなわち、この画素については光らせなくて良いのであるから、画素内に形成するインク層114の面積S(1)は0でよい。また、この画素では、画素を光らせるために使われる反射光量R(1)は階調値0だから、入射光量I(1)がそのまま透過することとなる。入射光量I(1)は、LED126の設定によって比較的自由に設定することができるので、ここでは十分な光量の光を入射するものとして、入射光量I(1)を階調値1000とすれば、この画素の透過光量T(1)は階調値1000となる。
As shown in FIG. 11A, for the pixel at the first pixel position at the left end, the target luminance to be lit is a gradation value of zero. That is, since it is not necessary to shine this pixel, the area S (1) of the ink layer 114 formed in the pixel may be zero. Further, in this pixel, the reflected light amount R (1) used to illuminate the pixel has a gradation value of 0, so the incident light amount I (1) is transmitted as it is. Since the incident light amount I (1) can be set relatively freely by setting the LED 126, it is assumed here that the incident light amount I (1) has a gradation value of 1000, assuming that a sufficient amount of light is incident. The transmitted light amount T (1) of this pixel has a gradation value of 1000.
もっとも、透過光量T(1)が、そのまま次の画素への入射光量I(2)となるわけではない。図10(b)を用いて前述したように、透過光量T(1)に1画素分だけの光の減衰が作用して、その結果が、次の画素の入射光量I(2)となる。図11(a)には、画素位置1での透過光量T(1)は階調値1000であるが、この光が隣の画素に入射するまでの間に減衰し、その結果、隣の画素(画素位置2)の入射光I(2)は、階調値996に減少している様子が示されている。
However, the transmitted light amount T (1) does not directly become the incident light amount I (2) to the next pixel. As described above with reference to FIG. 10B, light attenuation by one pixel acts on the transmitted light amount T (1), and the result is the incident light amount I (2) of the next pixel. In FIG. 11A, the transmitted light amount T (1) at the pixel position 1 has a gradation value of 1000, but the light is attenuated before entering the adjacent pixel, and as a result, the adjacent pixel. It is shown that the incident light I (2) at (pixel position 2) decreases to a gradation value 996.
画素位置2の画素についても目標輝度は階調値2であるから、画素位置1の画素の場合と同様に、画素内に形成するインク層114の面積S(2)は0となり、また、入射光量I(2)がそのまま透過光量T(2)となって、透過光量T(2)の階調値996となる。そして、この透過光量T(2)の光が、次の画素に入射する間に1画素分だけ光が減衰し、その結果、次の画素への入射光量I(3)は階調値992に減少する。
Since the target brightness of the pixel at the pixel position 2 is also the gradation value 2, the area S (2) of the ink layer 114 formed in the pixel is 0 as in the case of the pixel at the pixel position 1, and the incident light is incident. The light amount I (2) becomes the transmitted light amount T (2) as it is, and becomes the gradation value 996 of the transmitted light amount T (2). The light is attenuated by one pixel while the transmitted light T (2) is incident on the next pixel. As a result, the incident light I (3) to the next pixel has a gradation value 992. Decrease.
画素位置3の画素については、目標輝度は階調値65に設定されている。また、上述した計算から、この画素への入射光量I(3)は階調値992である。従って、この画素については、階調値992の入射光量I(3)で、階調値65に相当する明るさで画素を光らせなければならない(換言すれば、その画素の反射光量R(3)が階調値65)。ここで、図10(b)に示したように、画素を光らせるために使われる光量(反射光量R)と、その画素への入射光量Iとの間には、R(3)=f(S)・I(3)の関係が成り立つ。そして、R(3)=65であり、I(3)=992であるから、f(S)=65/992となるので、f(S)の関数形が分かれば、面積S(3)を決定することが可能となる。図11に示した例では、f(S)の関数形として図10(d)に示す関数形を使用している。また、関数の中に現れる定数Kの値は、経験的に4.5とすればよいことが分かっているから、S(3)を求めることができる。
For the pixel at pixel position 3, the target luminance is set to a gradation value of 65. In addition, from the above-described calculation, the incident light amount I (3) to this pixel is the gradation value 992. Therefore, for this pixel, the pixel has to be illuminated with the brightness equivalent to the gradation value 65 with the incident light amount I (3) having the gradation value 992 (in other words, the reflected light amount R (3) of the pixel). Is the gradation value 65). Here, as shown in FIG. 10 (b), R (3) = f (S) between the light amount used to illuminate the pixel (reflected light amount R) and the incident light amount I to the pixel. ) · I (3). Since R (3) = 65 and I (3) = 992, f (S) = 65/992, so if the function form of f (S) is known, the area S (3) can be calculated. It becomes possible to decide. In the example shown in FIG. 11, the function form shown in FIG. 10D is used as the function form of f (S). Further, since the value of the constant K appearing in the function is empirically known to be 4.5, S (3) can be obtained.
図11(a)中の画素位置3の箇所に示された面積S(3)の値は、このようにして決定された値である。換言すれば、画素位置3の面積S(3)をこのような値に設定しておけば、階調値992の入射光量I(3)に対しても、階調値65の光量で画素を光らせることが可能となる。その結果、画素位置3での透過光量T(3)は、入射光量I(3)から反射光量R(3)を減算した階調値927となる。尚、面積S(3)の値が意味するところについては、後述する。
The value of the area S (3) shown at the pixel position 3 in FIG. 11A is a value determined in this way. In other words, if the area S (3) of the pixel position 3 is set to such a value, the pixel is detected with the light amount of the gradation value 65 for the incident light amount I (3) of the gradation value 992. It is possible to shine. As a result, the transmitted light amount T (3) at the pixel position 3 becomes a gradation value 927 obtained by subtracting the reflected light amount R (3) from the incident light amount I (3). The meaning of the value of area S (3) will be described later.
画素位置4の画素については、目標輝度は階調値75に設定されている。また、この画素への入射光量I(4)は、上述した画素位置3での透過光量T(3)に減衰が作用して、階調値923となっている。従って、この画素についても、入射光量I(4)と、反射光量R(4)が分かるので、画素位置3の場合と同様にして、その画素での面積S(4)を決定することができる。以降は、全く同様にして、画素位置5の画素については、入射光量I(5)は階調値845で、反射光量R(5)は階調値130となるので、面積S(5)は818.2となる。更に、画素位置6の画素については、入射光量I(6)は階調値712で、反射光量R(6)は階調値95となるので、面積S(6)は692.8となる。このように、全ての画素について、順番に面積Sを算出していく。
For the pixel at pixel position 4, the target luminance is set to a gradation value of 75. Further, the incident light amount I (4) to the pixel has a gradation value 923 due to the attenuation acting on the transmitted light amount T (3) at the pixel position 3 described above. Therefore, since the incident light quantity I (4) and the reflected light quantity R (4) can also be known for this pixel, the area S (4) at that pixel can be determined in the same manner as in the case of the pixel position 3. . Thereafter, in exactly the same manner, for the pixel at the pixel position 5, the incident light amount I (5) has the gradation value 845 and the reflected light amount R (5) has the gradation value 130, so the area S (5) is 818.2. Further, for the pixel at pixel position 6, the incident light quantity I (6) has a gradation value 712 and the reflected light quantity R (6) has a gradation value 95, so the area S (6) is 692.8. Thus, the area S is calculated in order for all the pixels.
以上のようにして各画素について得られた面積Sの値は、実際には、個々の画素の値に意味があるのではなく、画素間での相対的な大きさに意味がある値となっている。例えば、画素位置3の画素については、目標輝度の階調値65に対して面積S(3)=315.5という値が得られている。しかし、LED126の設定によって、入射光量は幾らでも変更することができ、入射光量が変われば、目標輝度を実現するための面積Sも変化する。従って、面積Sの値は、ある架空の入射光量の下で、目標輝度を実現するための面積に過ぎず、入射光量の値が架空の値である以上、面積Sの値自体には大した意味はない。すなわち、図11(a)の中段の数表に得られた面積Sの値は、画素間での比率にのみ意味のある値となっている。
The value of the area S obtained for each pixel as described above is not actually meaningful for the value of each pixel, but is a value that is meaningful for the relative size between pixels. ing. For example, for the pixel at pixel position 3, a value of area S (3) = 315.5 is obtained with respect to the gradation value 65 of the target luminance. However, the amount of incident light can be changed by the setting of the LED 126. If the amount of incident light changes, the area S for realizing the target luminance also changes. Therefore, the value of the area S is merely an area for realizing the target luminance under a certain fictitious incident light quantity, and the value of the area S is large as long as the incident light quantity value is a fictitious value. There is no meaning. That is, the value of the area S obtained in the middle number table in FIG. 11A is meaningful only in the ratio between pixels.
そこで一例として、得られた面積Sの値を、次のように解釈する。そもそも、図11に示した計算を行ったのは、画像の輝度データをインク層114の面積に置き換える際に、図7に示したような単純な方法で置き換えたのでは、光の進行方向に沿って下流側に行くに従って、暗い画像になってしまう問題を解決するためであった。そこで、取り敢えず、上流側にある画素位置3の画素に着目して、この画素については、図7に示した方法で、単純に目標輝度をインク層114の面積に置き換えても問題ないと考える。すなわち、図11(a)で得られた面積S(3)=315.5を、階調値65と読み替えるのである。その上で、画素位置3の面積S(3)と、画素位置4について得られた面積S(4)との相対的な比率が保たれるように、面積S(4)=397.8を変換する。その結果、面積S(4)=397.8は、階調値82に変換される。以下の画素についても同様にして、画素位置5についての面積S(5)は、階調値168に変換され、画素位置6についての面積S(6)は、階調値143に変換される。
Therefore, as an example, the value of the obtained area S is interpreted as follows. In the first place, the calculation shown in FIG. 11 was performed because the luminance data of the image was replaced with the area of the ink layer 114 by the simple method as shown in FIG. This is in order to solve the problem of dark images as it goes downstream. Therefore, for the time being, paying attention to the pixel at the pixel position 3 on the upstream side, regarding this pixel, it is considered that there is no problem even if the target luminance is simply replaced with the area of the ink layer 114 by the method shown in FIG. That is, the area S (3) = 315.5 obtained in FIG. In addition, the area S (4) = 397.8 is set so that the relative ratio between the area S (3) of the pixel position 3 and the area S (4) obtained for the pixel position 4 is maintained. Convert. As a result, the area S (4) = 397.8 is converted into the gradation value 82. Similarly for the following pixels, the area S (5) for the pixel position 5 is converted to a gradation value 168, and the area S (6) for the pixel position 6 is converted to a gradation value 143.
図11(a)の下段の数表には、このようにして面積Sを読み替えて得られた階調値(修正面積)が示されている。図中に破線で囲って示した画素位置3と、画素位置5とを比較すれば明らかなように、画素位置5の目標輝度は画素位置3のちょうど2倍となっているが、画素内に形成するインク層114の面積は、2倍以上の面積となっている。これは、画素位置5よりも上流側で、画素を光らせるために使われたため、あるいは減衰によって、入射光量Iが減少した影響を考慮して面積が修正されたことによる。そして、このようにして得られた階調値(修正面積)に対して、図7に示した方法を適用してインク層114の面積を決定していけば、光の進行方向の下流側になっても暗い画像になることが無い、良好な画像を浮き上がらせて表示させることが可能となるのである。
The numerical table in the lower part of FIG. 11A shows the gradation values (corrected areas) obtained by rereading the area S in this way. As is clear from comparison between the pixel position 3 surrounded by a broken line in the figure and the pixel position 5, the target luminance at the pixel position 5 is exactly twice that of the pixel position 3, The area of the ink layer 114 to be formed is twice or more. This is because the area was corrected in consideration of the effect of decreasing the amount of incident light I because it was used to illuminate the pixel upstream of the pixel position 5 or due to attenuation. Then, if the area of the ink layer 114 is determined by applying the method shown in FIG. 7 to the gradation value (corrected area) obtained in this way, it will be located downstream in the light traveling direction. Even if it becomes, it becomes possible to display a good image that does not become a dark image.
尚、ここでは、1列の画素のみについて説明したが、実際の画像では、画素が二次元的に配列されており、これら全ての画素について同様な操作を行って、修正面積を決定することは言うまでもない。すなわち、各画素について、目標輝度に対応する面積Sを算出し、そして、算出した面積Sの値を、ある比率で読み替えることによって修正面積に変換する。また、各画素について得られた面積Sを読み替えるときの比率は、画像を構成する全画素について同じ比率で読み替えてやればよい。
Although only one column of pixels has been described here, the pixels are two-dimensionally arranged in an actual image, and it is possible to determine the correction area by performing the same operation for all these pixels. Needless to say. That is, for each pixel, an area S corresponding to the target luminance is calculated, and the calculated area S value is converted into a corrected area by reading it at a certain ratio. Moreover, the ratio when the area S obtained for each pixel is read may be read at the same ratio for all the pixels constituting the image.
上述した手順で面積Sを修正面積の階調値に読み替える方法、すなわち、上流側の画素で得られた面積Sの値を、その画素での目標輝度と読み替える方法では、図11(a)の下段の数表から明らかなように、下流側に行くほど、読み替えられた修正面積が大きくなる。従って、目標輝度はそれほど大きな階調値ではない画素(例えば、目標輝度が階調値150程度の画素)であっても、修正面積が階調値255に貼り付いてしまう可能性がある。そこで、中段の数表で得られた最も大きな値の面積Sが、階調値255となるような比率で、面積Sを修正面積に読み替えることが望ましい。
In the method of replacing the area S with the gradation value of the corrected area in the above-described procedure, that is, the method of replacing the value of the area S obtained in the upstream pixel with the target luminance in that pixel, FIG. As is clear from the lower number table, the corrected area that has been read out increases as it goes downstream. Therefore, there is a possibility that the correction area is pasted on the gradation value 255 even if the target luminance is a pixel that does not have a very large gradation value (for example, a pixel whose target luminance is about the gradation value 150). Therefore, it is desirable to replace the area S with the corrected area at a ratio such that the area S having the largest value obtained in the middle number table becomes the gradation value 255.
図11(b)には、このようにして、算出された面積Sの中で最も大きな値が階調値255となるように、面積Sを修正面積に読み替えた結果が示されている。尚、図11(b)の上段の数表には、参考として、各画素についての目標輝度(反射光量R)と、その目標輝度に対して算出された面積Sとがまとめて表示されている。また、面積Sを読み替えて得られた修正面積は、下段の数表に示されている。図11(b)の上段の数表に示されているように、目標輝度に対して算出された面積Sが最も大きな値となるのは、画素位置5について得られた値818.2である。そこで、この値818.2が階調値255となるように、上段の数表の面積Sを読み替えると、下段の数表に示した修正面積を得ることができる。
FIG. 11B shows the result of replacing the area S with the corrected area so that the largest value in the calculated area S is the gradation value 255 in this way. In the upper table of FIG. 11B, the target luminance (the amount of reflected light R) for each pixel and the area S calculated for the target luminance are collectively displayed for reference. . The corrected area obtained by rereading the area S is shown in the lower number table. As shown in the upper table of FIG. 11B, the value 818.2 obtained for the pixel position 5 has the largest area S calculated for the target luminance. . Therefore, when the area S in the upper number table is read so that the value 818.2 becomes the gradation value 255, the corrected area shown in the lower number table can be obtained.
尚、図11では、1列の画素のみが示されているが、実際の画像は画素が二次元的に配列されている。従って、実際の画像では、二次元的に配列された全ての画素について得られた面積Sの中から、最も大きな値を選択して、この値が階調値255となるように、面積Sを読み替えてやればよい。このようにして得られた修正面積に対して、図7に示した方法を適用してインク層114の面積を決定していけば、光の進行方向の下流側になると暗い画像になってしまうことを回避して、良好な画像を表示させることが可能となる。
In FIG. 11, only one column of pixels is shown, but the actual image has pixels arranged two-dimensionally. Therefore, in the actual image, the largest value is selected from the areas S obtained for all the pixels arranged two-dimensionally, and the area S is set so that this value becomes the gradation value 255. You just have to replace it. If the area of the ink layer 114 is determined by applying the method shown in FIG. 7 to the corrected area obtained in this way, a dark image will be obtained when it is downstream in the light traveling direction. Thus, it is possible to display a good image.
また、面積Sの最大値が階調値255となるように読み替えれば、面積Sが最大値となる画素がちょうどベタ塗り状態(画素内の4つの小領域に全てインク層114を形成した状態)となるように、修正面積を設定することができる。このため、画素内に形成するインク層114の面積を用いて表現可能な階調範囲を最大限に活用して、効率よく画像を表示させることが可能となり、表示板110の上にコントラストの良好な画像を表示することが可能となる。
If the maximum value of the area S is read so as to be the gradation value 255, the pixel having the maximum area S is in a solid state (a state in which the ink layer 114 is formed in all four small regions in the pixel). ) So that the correction area can be set. Therefore, it is possible to display an image efficiently by making the most of the gradation range that can be expressed using the area of the ink layer 114 formed in the pixel, and the display panel 110 has good contrast. It is possible to display a simple image.
尚、上述した説明では、面積Sの最も大きな画素が、ちょうどベタ塗り状態となるように、修正面積を設定するものとした。しかし、例えば、ある1つの画素だけが大きな面積Sを有していた場合などには、この画素の影響で、他の画素の修正面積が小さくなってしまう可能性がある。このような場合には、最も大きな面積Sではなく、各画素で得られた面積Sの平均値(あるいは中間値、メジアン値など)が、適切な修正面積となるように読み替えることとしてもよい。こうすれば、たとえ、ごく僅かの画素が大きな面積Sを有する場合でも、大部分の画素については適切な修正面積に読み替えることが可能となる。
In the above description, the corrected area is set so that the pixel having the largest area S is in a solid state. However, for example, when only one pixel has a large area S, the correction area of other pixels may be reduced due to the influence of this pixel. In such a case, instead of the largest area S, the average value (or intermediate value, median value, etc.) of the area S obtained in each pixel may be read so as to be an appropriate correction area. In this way, even if very few pixels have a large area S, most of the pixels can be read as appropriate correction areas.
また、目標輝度から算出した面積Sは、個々の画素についての絶対的な大きさではなく、画素間の相対的な大きさに意味のある値であり、この相対的な大きさに意味のある面積Sに基づいて、絶対的な大きさに意味のある修正面積を決定している。また、前述したように、面積Sを算出するために用いた減衰係数μや、定数Kなどの各パラメータは、物性や形状などによって一意的に決定される数値ではなく、半ば経験的に求められた値を使用している。更に、画素の大きさLについても、図10に示した計算式からすれば長さの次元を持つ値でなければならないが、前述したように面積Sの算出に際しては、「1画素あたり」という長さの次元を持たない値を用いて算出している。こうしたことが可能となるのは、面積Sが、個々の画素についての絶対的な大きさではなく、画素間の相対的な大きさに意味のある値であることによるものである。
Further, the area S calculated from the target luminance is a value that is meaningful for the relative size between the pixels, not the absolute size for each pixel, and is meaningful for this relative size. Based on the area S, a corrected area that is meaningful in absolute size is determined. Further, as described above, the parameters such as the attenuation coefficient μ and the constant K used to calculate the area S are not numerical values that are uniquely determined by physical properties, shapes, or the like, but are determined empirically. Value is used. Further, the pixel size L must be a value having a dimension of length according to the calculation formula shown in FIG. 10, but when calculating the area S as described above, it is referred to as “per pixel”. It is calculated using a value that does not have a length dimension. This is possible because the area S is a meaningful value for the relative size between the pixels, not the absolute size for individual pixels.
このように、面積Sが相対的な大きさにしか意味を持たず、そして面積Sを、絶対的な大きさに意味のある修正面積に変換していることに着目すると、面積Sを算出するための各種パラメータ(例えば、減衰係数μや、定数K、画素の大きさL)などを適切な値に調整しておくことで、面積Sを経由させずとも直接に、修正面積を算出することが可能であるように思われる。しかし後述するように、面積Sを経由せずに直接、修正面積を算出することは、実際には不可能である。このため、上述したように、相対的な大きさに意味のある面積Sを経由して、修正面積を決定することは、適切に画像を表示するためには極めて重要なことである。更には、画素内のインク層114の面積を変えるのではなく、例えばインク層114を重ね塗りして形成したり、あるいはインク層114の中の散乱粒子の濃度を変えたりすることによって、各画素を光らせる強さを変える場合にも、適切に画像を表示させるためには、面積Sを経由して修正面積を決定することが重要である。以下では、この点について、若干補足して説明しておく。
Thus, if the area S is only meaningful in relative size and the area S is converted into a corrected area that is meaningful in absolute size, the area S is calculated. By adjusting various parameters (for example, attenuation coefficient μ, constant K, pixel size L) and the like to appropriate values, the corrected area can be calculated directly without going through the area S. Seems to be possible. However, as will be described later, it is actually impossible to calculate the corrected area directly without going through the area S. For this reason, as described above, it is extremely important to determine the correction area via the area S having a meaningful relative size in order to display an image appropriately. Further, instead of changing the area of the ink layer 114 in the pixel, each pixel is formed by, for example, forming the ink layer 114 by overcoating or changing the concentration of scattering particles in the ink layer 114. Even when changing the intensity of shining, it is important to determine the correction area via the area S in order to display an image appropriately. In the following, this point will be described with some supplementation.
図11に例示した計算結果が得られた後であれば、面積Sとして示された値の代わりに、修正面積に示された値を直接、算出することは可能である。例えば、最も単純には、面積Sの算出式に新たな比例係数Aを持ち込んで、従来の面積Sの値に比例係数Aを乗算した値を、新たな面積Sとしてやればよい。図11(b)に示した例では、従来の面積Sの値818.2が、階調値255になればよいのであるから、比例係数Aの値を255/818.2としておけば、修正面積の階調値を、面積Sの値として直接算出することが可能である。
If the calculation result illustrated in FIG. 11 is obtained, it is possible to directly calculate the value shown in the corrected area instead of the value shown as the area S. For example, in the simplest case, a new proportionality coefficient A is brought into the calculation formula for the area S, and a value obtained by multiplying the value of the conventional area S by the proportionality coefficient A may be used as the new area S. In the example shown in FIG. 11B, the conventional area S value 818.2 only needs to be the gradation value 255. Therefore, if the value of the proportionality coefficient A is set to 255 / 818.2, the correction is made. It is possible to directly calculate the gradation value of the area as the value of the area S.
しかし、こうしたことが可能となるのは、同じ画像データに対してだけであり、ある画像データに対して設定した比例係数Aを、別の画像データに対して適用することはできない。例えば、図11(b)に示した例で、画素位置3の目標輝度が階調値70に変わっただけで、それに伴って画素位置5への入射光量I(5)が減ってしまうので、面積S(5)の値も818.2より増やさなくてはならない。それに伴って、比例係数Aの値も変わってしまう。あるいは、画素位置1から画素位置5までの目標輝度は同じであっても、その下流側の画素位置7に、例えば目標輝度の階調値130の画素が追加された場合を考えると、その画素についての面積S(7)の値が最大となるので、比例係数Aの値は全く異なったものとなってしまう。更には、画素位置1の上流側に画素位置1と同じ目標輝度の画素が追加されただけでも、上流側での光の減衰量が変わってしまうので、厳密には、比例係数Aの値は同じにはならない。
However, this is possible only for the same image data, and the proportionality coefficient A set for one image data cannot be applied to another image data. For example, in the example shown in FIG. 11B, the amount of incident light I (5) to the pixel position 5 is reduced along with the change in the target luminance at the pixel position 3 to the gradation value 70. The value of area S (5) must also be increased from 818.2. Along with this, the value of the proportional coefficient A also changes. Alternatively, even if the target luminance from the pixel position 1 to the pixel position 5 is the same, considering a case where, for example, a pixel having the gradation value 130 of the target luminance is added to the downstream pixel position 7, the pixel Since the value of the area S (7) with respect to is maximized, the value of the proportionality coefficient A is completely different. Furthermore, even if a pixel having the same target luminance as that of the pixel position 1 is added upstream of the pixel position 1, the amount of attenuation of light on the upstream side changes. Strictly speaking, the value of the proportional coefficient A is It will not be the same.
このように、たとえ新たな比例係数Aを導入するとしても、比例係数Aの値は画像データ毎に違うので、その値を求めるために、結局は、相対的な大きさにしか意味を持たない面積Sを、一旦は算出しなければならない。従って、適切に画像を表示させるためには、相対的な大きさに意味のある面積Sを経由して、修正面積を決定することは極めて重要と言うことができる。
In this way, even if a new proportionality coefficient A is introduced, the value of the proportionality coefficient A differs for each image data, so that in order to obtain the value, only the relative size is meaningful in the end. The area S must be calculated once. Therefore, in order to display an image appropriately, it can be said that it is extremely important to determine the correction area via the area S having a meaningful relative size.
第2実施例の画像表示装置100で用いられている表示板110には、表示しようとする画像の画像データに基づいて、以上のようにして、透明インクによるインク層114が形成されている。このため、表示板110が大きくなった場合でも、あるいは、写真画像や自然画像などのように比較的複雑な画像を表示する場合でも、適切に画像を光らせて表示することが可能となっている。
On the display board 110 used in the image display apparatus 100 of the second embodiment, an ink layer 114 of transparent ink is formed as described above based on the image data of the image to be displayed. For this reason, even when the display board 110 becomes large or when a relatively complicated image such as a photographic image or a natural image is displayed, it is possible to display the image appropriately by shining it. .
C.第3実施例 :
上述した第2実施例の画像表示装置100では、表示板110に表示される画像は、画素の明暗だけを用いて表現された単色画像であるものとして説明した。しかし、上述したように、目標輝度から面積Sを算出し、得られた面積Sに基づいて修正面積を決定する方法を採用することで、カラー画像を適切に表示することも可能となる。以下では、カラー画像を表示可能な第3実施例の画像表示装置100について説明する。 C. Third embodiment:
In theimage display apparatus 100 according to the second embodiment described above, the image displayed on the display board 110 has been described as a single-color image expressed using only the brightness of pixels. However, as described above, the color image can be appropriately displayed by calculating the area S from the target luminance and determining the correction area based on the obtained area S. Below, the image display apparatus 100 of 3rd Example which can display a color image is demonstrated.
上述した第2実施例の画像表示装置100では、表示板110に表示される画像は、画素の明暗だけを用いて表現された単色画像であるものとして説明した。しかし、上述したように、目標輝度から面積Sを算出し、得られた面積Sに基づいて修正面積を決定する方法を採用することで、カラー画像を適切に表示することも可能となる。以下では、カラー画像を表示可能な第3実施例の画像表示装置100について説明する。 C. Third embodiment:
In the
C-1.第3実施例の装置構成 :
図12は、第3実施例の画像表示装置100に装着されるカラー画像を表示可能な表示板110の構成を示す分解組立図である。周知のように、カラー画像を表示するためのカラー画像データは、RGBの各成分の輝度データによって構成されており、このことに対応して、第3実施例の画像表示装置100でカラー画像を表示するためには、R成分用の表示板110Rと、G成分用の表示板110Gと、B成分用の表示板110Bとを重ね合わせて、1枚の表示板110を構成する。また、各色成分の表示板110R,110G,110Bを重ね合わせた時に、これら表示板の表面同士が接触しないように、表示板110の表面には小さな突起118が形成されている。この突起118は、透明インクを印刷することによって形成しても良いし、表示板110の表面に小さな部材を接着することによって形成しても良い。第3実施例では、紫外線によって硬化する透明なUVインクを用いて、表示板110の表面に印刷することによって、突起118を形成している。こうすることで、正確な位置に正確な高さの突起118を簡単に形成することができる。また、透明インクによる画像についても、紫外線によって硬化する透明なUVインクを用いて印刷することとすれば、画像112と突起118とを同時に形成することも可能となる。 C-1. Apparatus configuration of the third embodiment:
FIG. 12 is an exploded view illustrating a configuration of adisplay plate 110 that can display a color image mounted on the image display apparatus 100 according to the third embodiment. As is well known, color image data for displaying a color image is composed of luminance data of each component of RGB, and in response to this, a color image is displayed by the image display device 100 of the third embodiment. In order to display, one display board 110 is configured by superimposing the display panel 110R for R component, the display board 110G for G component, and the display board 110B for B component. Further, a small protrusion 118 is formed on the surface of the display plate 110 so that the surfaces of the display plates 110R, 110G, and 110B of the respective color components are not in contact with each other. The protrusion 118 may be formed by printing transparent ink, or may be formed by adhering a small member to the surface of the display panel 110. In the third embodiment, the projections 118 are formed by printing on the surface of the display panel 110 using a transparent UV ink that is cured by ultraviolet rays. By doing so, it is possible to easily form the protrusion 118 having an accurate height at an accurate position. In addition, when an image using a transparent ink is printed using a transparent UV ink that is cured by ultraviolet rays, the image 112 and the protrusion 118 can be formed simultaneously.
図12は、第3実施例の画像表示装置100に装着されるカラー画像を表示可能な表示板110の構成を示す分解組立図である。周知のように、カラー画像を表示するためのカラー画像データは、RGBの各成分の輝度データによって構成されており、このことに対応して、第3実施例の画像表示装置100でカラー画像を表示するためには、R成分用の表示板110Rと、G成分用の表示板110Gと、B成分用の表示板110Bとを重ね合わせて、1枚の表示板110を構成する。また、各色成分の表示板110R,110G,110Bを重ね合わせた時に、これら表示板の表面同士が接触しないように、表示板110の表面には小さな突起118が形成されている。この突起118は、透明インクを印刷することによって形成しても良いし、表示板110の表面に小さな部材を接着することによって形成しても良い。第3実施例では、紫外線によって硬化する透明なUVインクを用いて、表示板110の表面に印刷することによって、突起118を形成している。こうすることで、正確な位置に正確な高さの突起118を簡単に形成することができる。また、透明インクによる画像についても、紫外線によって硬化する透明なUVインクを用いて印刷することとすれば、画像112と突起118とを同時に形成することも可能となる。 C-1. Apparatus configuration of the third embodiment:
FIG. 12 is an exploded view illustrating a configuration of a
尚、小さな突起118を形成する代わりに、簡易的には次のようにしても良い。すなわち、表示板110の表面に、細かな微粒子(代表的には、粒径が数十マイクロメートル程度)を吹き付けて、その状態の表示板110を積層しても良い。こうすれば、表面に吹き付けられた微粒子によって、表示板110の間に隙間を確保しておくことができる。しかも微粒子であれば、画像表示装置100の観察者に気付かれる虞はない。
In addition, instead of forming the small protrusion 118, the following may be simply performed. That is, fine display particles (typically having a particle size of about several tens of micrometers) may be sprayed on the surface of the display panel 110 to stack the display panel 110 in that state. By doing so, a gap can be secured between the display panels 110 by the fine particles sprayed on the surface. Moreover, if the particles are fine particles, there is no possibility that the observer of the image display apparatus 100 will notice.
こうして3つの表示板110R,110G,110Bを重ねて構成した表示板110を、ベース部120の上面に設けられた溝に装着する。図13は、第3実施例の画像表示装置100で用いられるベース部120の溝に表示板110が装着されている様子を示した説明図である。図13では、ベース部120を、側方(表示板110の表面に沿った方向)から見た様子が示されている。図示されているように、第3実施例のベース部120では、溝124の底部に、赤色の光を発する赤色LED126Rと、緑色の光を発する緑色LED126Gと、青色の光を発する青色LED126Bとが、一列に設けられている。そして、表示板110が装着された時に、赤色LED126Rには、R成分用の表示板110Rの端面が向かい合う位置となり、緑色LED126Gには、G成分用の表示板110Gの端面が向かい合い、青色LED126Bには、B成分用の表示板110Bの端面が向かい合うように構成されている。従って、赤色LED126Rを点灯すれば、赤色の光がR成分用の表示板110Rの内部に入射され、表示板110Rの表面に透明インクで印刷された画像を赤色に光らせる。同様に、緑色LED126Gを点灯すれば、G成分用の表示板110Gに印刷されたG画像が緑色に光って表示され、青色LED126Bを点灯すれば、B成分用の表示板110Bに印刷されたB画像が青色に光って表示される。その結果、これらR画像、G画像、B画像が合成されて、透明な表示板110にカラー画像が表示されることになる。
In this way, the display plate 110 configured by overlapping the three display plates 110R, 110G, and 110B is mounted in a groove provided on the upper surface of the base portion 120. FIG. 13 is an explanatory diagram showing a state in which the display plate 110 is mounted in the groove of the base portion 120 used in the image display device 100 of the third embodiment. FIG. 13 shows the base 120 viewed from the side (direction along the surface of the display plate 110). As illustrated, in the base portion 120 of the third embodiment, a red LED 126R that emits red light, a green LED 126G that emits green light, and a blue LED 126B that emits blue light are formed at the bottom of the groove 124. , Provided in a row. When the display board 110 is mounted, the end face of the R component display board 110R faces the red LED 126R, the end face of the G component display board 110G faces the green LED 126G, and the blue LED 126B. Is configured so that the end faces of the display panel 110B for the B component face each other. Therefore, if the red LED 126R is turned on, red light is incident on the inside of the R component display board 110R, and the image printed with the transparent ink on the surface of the display board 110R is made red. Similarly, if the green LED 126G is turned on, the G image printed on the G component display board 110G is displayed in green, and if the blue LED 126B is turned on, the B image printed on the B component display board 110B is displayed. The image is displayed in blue. As a result, the R image, the G image, and the B image are combined and a color image is displayed on the transparent display board 110.
ここで、カラー画像の色彩は、赤色光、緑色光、青色光の光量の比率によって決まるから、適切な色彩のカラー画像を表示するためには、R成分用の表示板110Rに印刷されたR画像と、G成分用の表示板110Gに印刷されたG画像と、B成分用の表示板110Bに印刷されたB画像とを適切な明るさで光らせることが重要となる。第3実施例の画像表示装置100では、図11を用いて前述したように、光の減衰も考慮して、各成分用の表示板110R,110G,110Bの表面に、透明インクによるインク層114を適切な面積で形成することができる。その結果、RGBの各成分の画像を適切な明るさで光らせて、カラー画像を適切な色彩で表示することが可能となっている。以下、RGBの各成分のインク層114が適切な面積となるように、透明インクによる画像を印刷する方法について説明する。
Here, since the color of the color image is determined by the ratio of the amounts of light of red light, green light, and blue light, in order to display a color image of an appropriate color, R printed on the R component display board 110R. It is important to shine the image, the G image printed on the G component display board 110G, and the B image printed on the B component display board 110B with appropriate brightness. In the image display apparatus 100 according to the third embodiment, as described above with reference to FIG. 11, the ink layer 114 made of transparent ink is formed on the surfaces of the display plates 110R, 110G, and 110B for each component in consideration of light attenuation. Can be formed in an appropriate area. As a result, it is possible to display an image of each component of RGB with appropriate brightness and display a color image with appropriate colors. Hereinafter, a method for printing an image using transparent ink so that the ink layer 114 of each component of RGB has an appropriate area will be described.
C-2.画像の印刷方法 :
図14は、RGB各成分用の表示板110R,110G,110Bの表面に適切に画像を印刷するために、RGBの各成分についてインク層114の面積を決定する様子を示した説明図である。カラー画像を表示するに際しては、先ず初めに、表示しようとするカラー画像の画像データを取得する。カラー画像データは、通常、R成分の輝度データと、G成分の輝度データと、B成分の輝度データとによって表現されている。そこで、取得したカラー画像データを、これらRGBの各成分についての輝度データに分離する。 C-2. How to print an image:
FIG. 14 is an explanatory diagram showing how the area of theink layer 114 is determined for each of the RGB components in order to appropriately print an image on the surface of the display plate 110R, 110G, 110B for each of the RGB components. When displaying a color image, first, image data of the color image to be displayed is acquired. The color image data is usually expressed by R component luminance data, G component luminance data, and B component luminance data. Therefore, the acquired color image data is separated into luminance data for these RGB components.
図14は、RGB各成分用の表示板110R,110G,110Bの表面に適切に画像を印刷するために、RGBの各成分についてインク層114の面積を決定する様子を示した説明図である。カラー画像を表示するに際しては、先ず初めに、表示しようとするカラー画像の画像データを取得する。カラー画像データは、通常、R成分の輝度データと、G成分の輝度データと、B成分の輝度データとによって表現されている。そこで、取得したカラー画像データを、これらRGBの各成分についての輝度データに分離する。 C-2. How to print an image:
FIG. 14 is an explanatory diagram showing how the area of the
次いで、R成分の輝度データに基づいて、R成分についての面積SRを算出する。ここで、面積SRは、図11を用いて前述したように、画素間での相対的な大きさに意味のある値である。面積SRは、図11(a)に示した数表で、「目標輝度」の部分を、R成分の輝度データに置き換えるだけで、あとは全く同様にして算出することができる。また、他の成分についても同様に、G成分の輝度データからはG成分についての面積SGを算出し、B成分の輝度データからはB成分についての面積SBを算出する。この結果、カラー画像を構成する全ての画素について、R成分の面積SR、G成分の面積SG、B成分の面積SBが得られることになる。そこで、これら全画素を含めた全ての面積SR,SG,SBの中で、最も値の大きな面積Smaxを抽出する。そして、抽出した最大の面積Smaxが、ある階調値(代表的には、階調値255)となるような比率で、R成分の面積SR、G成分の面積SG、B成分の面積SBを変換することにより、R成分の修正面積、G成分の修正面積、B成分の修正面積を算出する。
Next, the area SR for the R component is calculated based on the luminance data of the R component. Here, as described above with reference to FIG. 11, the area SR is a value that is meaningful for the relative size between pixels. The area SR can be calculated in the same manner by simply replacing the “target luminance” portion with the luminance data of the R component in the numerical table shown in FIG. Similarly, for other components, the area SG for the G component is calculated from the luminance data for the G component, and the area SB for the B component is calculated from the luminance data for the B component. As a result, the R component area SR, the G component area SG, and the B component area SB are obtained for all the pixels constituting the color image. Therefore, the largest area Smax is extracted from all the areas SR, SG, and SB including all the pixels. The R component area SR, the G component area SG, and the B component area SB are set so that the extracted maximum area Smax has a certain gradation value (typically, gradation value 255). By converting, the R component correction area, the G component correction area, and the B component correction area are calculated.
最大の面積Smaxを抽出して、R成分の面積SR、G成分の面積SG、B成分の面積SBを、それぞれの成分毎の修正面積に変換する操作は、図11(b)を用いて前述した操作とほぼ同様である。すなわち、図11(b)では、画像を構成する各画素について目標輝度が与えられたときに、各画素の目標輝度に基づいて面積Sを算出し、それら全ての面積Sの中で最も大きな値が階調値255となるように、面積Sを読み替えて修正面積に変換した。これに対して、カラー画像を表示する場合には、各画素について、R成分、G成分、B成分の輝度データが与えられているので、成分毎に面積SR,SG,SBを算出する。すなわち、1つの画素について、3種類の面積SR,SG,SBが算出されることになる。そして、画像を構成する全画素について3種類ずつ得られた全ての面積SR,SG,SBの中で、最も大きな値である面積Smaxを抽出し、その面積Smaxが階調値255(あるいは所定の階調値)となるように、面積SR,SG,SBを、それぞれの成分毎の修正面積に変換する。
The operation of extracting the maximum area Smax and converting the area SR of the R component, the area SG of the G component, and the area SB of the B component into a corrected area for each component is described above with reference to FIG. The operation is almost the same. That is, in FIG. 11B, when the target luminance is given for each pixel constituting the image, the area S is calculated based on the target luminance of each pixel, and the largest value among all the areas S is calculated. Is converted into a corrected area by rereading the area S so that the gradation value becomes 255. On the other hand, when displaying a color image, since luminance data of R component, G component, and B component is given for each pixel, areas SR, SG, and SB are calculated for each component. That is, three types of areas SR, SG, and SB are calculated for one pixel. Then, the area Smax that is the largest value is extracted from all the areas SR, SG, and SB obtained for each of the three pixels constituting the image, and the area Smax has a gradation value of 255 (or a predetermined value). The areas SR, SG, and SB are converted into corrected areas for the respective components so as to be (gradation value).
次いで、このようにして画素毎に得られた各成分の修正面積に基づいて、各画素内に形成するインク層114R、114G、114Bの面積を決定する。修正面積に基づいて画素内のインク層114R、114G、114Bの面積を決定する際には、図7を用いて前述した方法を適用すればよい。そして最後に、R成分用の表示板110Rの上にはR成分用のインク層114Rを形成し、G成分用の表示板110Gの上にはG成分用のインク層114Gを形成し、B成分用の表示板110Bの上にはB成分用のインク層114Bを形成する。
Next, the areas of the ink layers 114R, 114G, and 114B formed in each pixel are determined based on the correction area of each component obtained for each pixel in this way. When determining the areas of the ink layers 114R, 114G, and 114B in the pixel based on the corrected area, the method described above with reference to FIG. 7 may be applied. Finally, an R component ink layer 114R is formed on the R component display board 110R, and a G component ink layer 114G is formed on the G component display board 110G. A B component ink layer 114B is formed on the display panel 110B.
前述したように、各成分の表示板110R、110G、110Bは透明な材料で形成されており、各成分のインク層114R、114G、114Bも透明なインクで形成されている。このため、赤色LED126R、緑色LED126G、青色LED126Bを点灯させない状態では、透明インクによる画像が印刷されていることには気付かれ難い。従って、赤色LED126Rを点灯させて表示板110Rのインク層114Rを赤く光らせ、緑色LED126Gを点灯させて表示板110Gのインク層114Gを緑に光らせ、青色LED126Bを点灯させて表示板110Bのインク層114Bを青く光らせれば、透明な表示板110の中から光とともにカラー画像が浮き上がってきたかのような、たいへん印象深い態様で画像を表示することが可能となる。
As described above, the display plates 110R, 110G, and 110B for each component are formed of a transparent material, and the ink layers 114R, 114G, and 114B of each component are also formed of a transparent ink. For this reason, in a state where the red LED 126R, the green LED 126G, and the blue LED 126B are not lit, it is difficult to notice that an image with transparent ink is printed. Accordingly, the red LED 126R is turned on to cause the ink layer 114R of the display board 110R to glow red, the green LED 126G is turned on to cause the ink layer 114G of the display board 110G to glow green, and the blue LED 126B is turned on to turn on the ink layer 114B of the display board 110B. If the light is shined blue, it is possible to display an image in a very impressive manner as if a color image has floated with light from the transparent display plate 110.
また、図12に例示されているように、G成分用の表示板110Gの表面およびB成分用の表示板110Bの表面には、それぞれ小さな突起118が設けられており、表示板110R、表示板110G、表示板110Bの表面同士が接触しないようになっている。このため、ある表示板110の内部を伝播する光が隣の表示板110の内部に進入して、隣の画像を光らせることが回避されている。例えばR成分用の表示板110Rの中を伝播するR色の光が、隣のG成分用の表示板110Gの中に進入すると、本来はG色に光らせるべきG画像をR色に光らせてしまうので、本来の色彩でカラー画像を表示することができなくなってしまう。G色の光やB色の光についても同様なことがあてはまる。この点で、第3実施例の画像表示装置100では、小さな突起118によって、表示板110R、表示板110G、表示板110Bの間に隙間が確保されているので、こうした問題が発生することがない。その結果、適切にカラー画像を表示することが可能となる。図15には、第3実施例の画像表示装置100で、フルカラーのカラー画像を表示した様子が例示されている。
Further, as illustrated in FIG. 12, small protrusions 118 are provided on the surface of the display panel for G component 110G and the surface of the display panel for B component 110B, respectively. The surfaces of 110G and display board 110B are not in contact with each other. For this reason, it is avoided that the light propagating through the inside of a certain display board 110 enters the inside of the adjacent display board 110 and shines the adjacent image. For example, when R-color light propagating through the R-component display board 110R enters the adjacent G-component display board 110G, the G image that should originally be emitted in the G color is emitted in the R color. As a result, the color image cannot be displayed in the original color. The same applies to light of G color and light of B color. In this respect, in the image display device 100 of the third embodiment, since the gaps are secured among the display plate 110R, the display plate 110G, and the display plate 110B by the small protrusions 118, such a problem does not occur. . As a result, it is possible to display a color image appropriately. FIG. 15 illustrates a state in which a full-color color image is displayed on the image display device 100 of the third embodiment.
加えて、適切な色彩を表示するためには、R色の光と、G色の光と、B色の光とを適切な比率で混合させる必要があるから、適切な色彩のカラー画像を表示するためには、個々の画素で、RGB各色の光の強さが適切な比率となっている必要がある。このことは、カラー画像を適切に表示するためには、次の2つのことが重要であることを意味している。先ず第1は、光の進行方向に沿って、上流側から下流側に行くに従って画像が暗くなってしまうのでは、RGBの各成分の比率が崩れてしまうので、適切な色でカラー画像を表示することは事実上、不可能である。次いで第2は、たとえ、各成分内では下流側になっても暗くならないように画像を表示できたとしても、成分間で明るさのバランスが崩れていると、適切な色でカラー画像を表示することはできない。すなわち、カラー画像を適切に表示するためには、単にRGBの3色の画像を重ねて表示しただけでは足らず、上述した2つの条件を満足させる必要がある。そして、このような観点からすると、上述した方法によってカラー画像を表示することは、極めて合理的で優れた方法となっている。以下では、この点について説明する。
In addition, in order to display an appropriate color, it is necessary to mix light of R color, light of G color, and light of B color at an appropriate ratio, so that a color image of an appropriate color is displayed. In order to do this, it is necessary that the intensity of light of each color of RGB is an appropriate ratio in each pixel. This means that the following two things are important for properly displaying a color image. First, if the image becomes darker from the upstream side to the downstream side along the light traveling direction, the ratio of each component of RGB is destroyed, so a color image is displayed with an appropriate color. It is virtually impossible to do. Second, even if the image can be displayed so that it does not become dark even if it is downstream in each component, if the balance of brightness is lost among the components, a color image is displayed with an appropriate color. I can't do it. That is, in order to display a color image appropriately, it is not necessary to simply display the RGB three-color images in a superimposed manner, and it is necessary to satisfy the two conditions described above. From this point of view, displaying a color image by the above-described method is an extremely rational and excellent method. This point will be described below.
先ず、図14を用いて前述したように、R成分、G成分、B成分の何れについても、輝度データに基づいて面積SR,SG,SBを算出している。この面積SR,SG,SBは、画素間での相対的な大きさに意味のある値であり、上流側の画素を光らせたことによる光の損失や、上流側から伝播してくる際の光の減衰などの影響を考慮して、輝度データに応じた明るさで各画素を光らせるためには、各画素をどの程度の比率で光らせれば良いかを表した値となっている。そして、このようにして得られた面積SR,SG,SBを、画素毎に形成するインク層114R、114G、114Bの修正面積に変換した後、図7を用いて前述した方法によって、R成分用のインク画像、G成分用のインク画像、B成分用のインク画像を印刷している。このため、上述した第1の条件、すなわち、光の進行方向に沿って、上流側から下流側に行くに従って画像が暗くなってしまうことがないという条件を、RGBの何れの成分の画像についても満足させることができる。
First, as described above with reference to FIG. 14, the areas SR, SG, and SB are calculated based on the luminance data for all of the R component, G component, and B component. The areas SR, SG, and SB are meaningful values for the relative sizes between the pixels, and light loss caused by illuminating the pixels on the upstream side or light when propagating from the upstream side. In consideration of the influence of attenuation of the pixel, it is a value that indicates what ratio should be used to illuminate each pixel with brightness according to the luminance data. Then, after converting the areas SR, SG, and SB obtained in this way into corrected areas of the ink layers 114R, 114G, and 114B formed for each pixel, the R component is used by the method described above with reference to FIG. Ink image, G component ink image, and B component ink image are printed. For this reason, the first condition described above, that is, the condition that the image does not become darker from the upstream side to the downstream side in the light traveling direction is the same for any RGB component image. Can be satisfied.
また、各成分の輝度データから面積SR,SG,SBを算出する操作も、面積SR,SG,SBを各成分の修正面積に変換する操作も、得られた修正面積に従ってインクによる画像を形成する操作も、基本的には成分毎に行われるのであるが、各成分の面積SR,SG,SBを修正面積に読み替える比率を決定する時だけは、RGBの各成分を一体的に扱って、読み替える比率を決定している。すなわち、図14に示したように、画像を構成する全画素について3成分ずつ得られた全面積SR,SG,SBの中で、最も大きな値である面積Smaxを抽出し、その面積Smaxが階調値255(あるいは所定の階調値)となるように、面積SR,SG,SBを、それぞれの成分毎の修正面積に変換している。このため、上述した第2の条件、すなわち、R画像、G画像、B画像の明るさのバランスが、カラー画像データに示されるRGB各成分のバランスに保たれているという条件を満足させることができる。
Further, both the operation for calculating the areas SR, SG, and SB from the luminance data of each component and the operation for converting the areas SR, SG, and SB into the corrected areas of the respective components form an image with ink according to the obtained corrected areas. The operation is basically performed for each component. However, only when determining the ratio of replacing the areas SR, SG, and SB of each component with the corrected area, the RGB components are handled as a whole and replaced. The ratio is determined. That is, as shown in FIG. 14, the area Smax, which is the largest value, is extracted from the total areas SR, SG, and SB obtained for each of the three components for all pixels constituting the image, and the area Smax is the floor. The areas SR, SG, and SB are converted into corrected areas for each component so that the tone value is 255 (or a predetermined gradation value). For this reason, the second condition described above, that is, the condition that the balance of the brightness of the R image, the G image, and the B image is maintained at the balance of the RGB components indicated in the color image data can be satisfied. it can.
結局、第3実施例の画像表示装置100では、図14に示すような方法でカラー画像を表示させることにより、上述した第1の条件および第2の条件を同時に満足させることができる。その結果、図15に例示したように、例えばクリスマスツリーの先端に取り付けられた星の飾りは金色に表示し、葉の部分は深い緑色に表示し、幹の部分は茶色といったように、適切な色彩のカラー画像を、非常に印象深い態様で表示することが可能となるのである。
Eventually, in the image display device 100 of the third embodiment, the first condition and the second condition described above can be satisfied at the same time by displaying a color image by the method shown in FIG. As a result, as illustrated in FIG. 15, for example, a star decoration attached to the tip of a Christmas tree is displayed in gold, a leaf portion is displayed in deep green, and a trunk portion is brown. It is possible to display a color image in a very impressive manner.
尚、第1実施例においても説明したように、第3実施例の画像表示装置100においても、光散乱微粒子114pの濃度を高くすれば、R画像、G画像、B画像をハッキリと光らせることができ、その結果、カラー画像をハッキリと表示することができる。しかしその一方で、光散乱微粒子114pの濃度が高くなると、インク層114が次第に白濁するので、画像を光らせていない時でも、表示板110の表面に画像が印刷されていることに気付かれ易くなる。従って、第3実施例の画像表示装置100においても、透明インクに含まれる光散乱微粒子114pの濃度は、カラー画像をハッキリと表示させる観点と、白濁を抑制する観点とを考慮して、最も印象的にカラー画像を表示することができるような濃度に設定されている。但し、第3実施例では、画像を光らせていない状態では、白濁したインク層114によるR画像、G画像、B画像が重なって見えるため、そのままでは何かが印刷されていることは分かるものの、何が印刷されているのかまでは分かり難い。従って、R画像、G画像、B画像を用いてカラー画像を表示する場合のように、複数の画像を重ねて表示する場合には、画像を重ねずに表示する場合に比べれば、光散乱微粒子114pの濃度を、より白濁が進む方向に設定しても、印象深い表示を行うことが可能となる。
As described in the first embodiment, also in the image display apparatus 100 of the third embodiment, if the concentration of the light scattering fine particles 114p is increased, the R image, the G image, and the B image can be clearly emitted. As a result, a color image can be clearly displayed. However, on the other hand, when the concentration of the light scattering fine particles 114p increases, the ink layer 114 gradually becomes cloudy, so that even when the image is not illuminated, it is easy to notice that the image is printed on the surface of the display plate 110. . Therefore, also in the image display device 100 of the third embodiment, the density of the light scattering fine particles 114p included in the transparent ink is the most impressive in consideration of the viewpoint of clearly displaying the color image and the viewpoint of suppressing the cloudiness. The density is set so that a color image can be displayed. However, in the third embodiment, when the image is not illuminated, the R image, the G image, and the B image due to the cloudy ink layer 114 appear to overlap, so that it is understood that something is printed as it is, It is difficult to understand what is printed. Therefore, when displaying a plurality of images in a superimposed manner, such as when displaying a color image using an R image, a G image, and a B image, the light scattering particles are smaller than when displaying without overlapping images. Even if the density of 114p is set in a direction in which white turbidity further advances, an impressive display can be performed.
C-3.第3実施例の変形例 :
尚、上述した第3実施例の画像表示装置100では、RGBの各成分用の表示板110R、110G、110Bを積層して1つの表示板110が構成されており、各成分用の表示板110R,110G,110Bの間には、表面に設けられた小さな突起118によって、突起118に高さに相当する隙間が設けられている。この隙間に、ゴミや水分などの異物が混入すると、画像をキレイに表示することが困難となってしまう虞がある。しかも、表示板110を薄くするため、および表示板110を斜め方向から見たときの各成分の画像の位置ずれを目立たなくするために、隙間は非常に狭く設定されることが普通であり、一旦、異物が入り込むと除去することは困難である。そこで、そこで、このような問題の発生を未然に回避するために、表示板110を次のような構成としても良い。 C-3. Modification of the third embodiment:
In theimage display device 100 according to the third embodiment described above, the display plates 110R, 110G, and 110B for each component of RGB are laminated to form one display plate 110, and the display plate 110R for each component. , 110G, 110B, a small protrusion 118 provided on the surface provides a gap corresponding to the height of the protrusion 118. If foreign matter such as dust or moisture enters the gap, it may be difficult to display an image clearly. Moreover, in order to make the display board 110 thin and to make the positional deviation of the image of each component inconspicuous when the display board 110 is viewed from an oblique direction, the gap is usually set very narrowly, Once a foreign object enters, it is difficult to remove it. Therefore, in order to avoid the occurrence of such a problem, the display panel 110 may be configured as follows.
尚、上述した第3実施例の画像表示装置100では、RGBの各成分用の表示板110R、110G、110Bを積層して1つの表示板110が構成されており、各成分用の表示板110R,110G,110Bの間には、表面に設けられた小さな突起118によって、突起118に高さに相当する隙間が設けられている。この隙間に、ゴミや水分などの異物が混入すると、画像をキレイに表示することが困難となってしまう虞がある。しかも、表示板110を薄くするため、および表示板110を斜め方向から見たときの各成分の画像の位置ずれを目立たなくするために、隙間は非常に狭く設定されることが普通であり、一旦、異物が入り込むと除去することは困難である。そこで、そこで、このような問題の発生を未然に回避するために、表示板110を次のような構成としても良い。 C-3. Modification of the third embodiment:
In the
図16は、RGBの各成分の表示板110R,110G,110Bが積層された側面を、カバー部材110Sで覆った第3実施例の変形例の表示板110を示した説明図である。このように複数枚の表示板110が積層された側面を、カバー部材110Sで覆ってしまえば、表示板110の間の狭い隙間に異物が入り込むことを回避することができる。
FIG. 16 is an explanatory view showing a display board 110 according to a modification of the third embodiment in which the side face on which the display boards 110R, 110G, and 110B of RGB components are stacked is covered with a cover member 110S. Thus, if the side surface on which the plurality of display panels 110 are stacked is covered with the cover member 110S, it is possible to avoid the entry of foreign substances into the narrow gaps between the display panels 110.
尚、カバー部材110Sは、表示板110に向かう側の表面を、光が反射するような表面にしておくことが望ましい。図2を用いて前述したように、表示板110の端面から入射された光は、表示板110の表面で完全反射を繰り返しながら内部を進行していき、やがて反対側あるいは側方の端面から外部に放射される。このように端面から放射される光は、表示板110の表面に形成された画像を光らせることがなく、いわば無駄に捨てられてしまう光である。そこで、カバー部材110Sの表面を、例えば鏡のように、光が反射する表面としておけば、表示板110の端面から外部に捨てられてしまう光を再び表示板110の内部に戻して、画像を光らせることができる。その結果、端面から入射する光をいたずらに強くしなくても、表示板110の画像を明るく光らせることが可能となる。
In addition, it is desirable that the cover member 110S has a surface on the side facing the display plate 110 so as to reflect light. As described above with reference to FIG. 2, the light incident from the end face of the display panel 110 travels through the inside while repeating the complete reflection on the surface of the display board 110, and eventually reaches the outside from the opposite or side end face. To be emitted. Thus, the light radiated from the end face does not shine the image formed on the surface of the display panel 110, and is, in other words, light that is wasted. Therefore, if the surface of the cover member 110S is a surface that reflects light, such as a mirror, for example, the light that is thrown away from the end face of the display board 110 is returned to the inside of the display board 110 again, and an image is displayed. Can shine. As a result, it is possible to brighten the image on the display panel 110 without making the light incident from the end face unnecessarily strong.
また、上述した第3実施例では、表示板110の表面に小さな突起118を設けることによって、表示板110の表面同士が接触することを回避するものとして説明した。しかし、RGBの各成分の表示板110R,110G,110Bの間に、細い枠部材110Wを挟んで積層することによって、表示板110を構成してもよい。
Further, in the third embodiment described above, it has been described that the small projections 118 are provided on the surface of the display plate 110 to avoid contact between the surfaces of the display plates 110. However, the display panel 110 may be configured by stacking the thin frame members 110W between the RGB display panels 110R, 110G, and 110B.
図17は、各成分の表示板110R,110G,110Bの間に枠部材110Wを挟んで積層した第3実施例の他の変形例の表示板110を示した説明図である。図示されているように、枠部材110Wは、画像が表示される部分がくり抜かれて、枠状の形状をしている。このため、このような枠部材110Wを間に挟みこんでRGB各成分の表示板110R,110G,110Bを積層することで、表示板110の表面同士が接触することを回避することができる。また、積層して形成された表示板110の側面には、表示板110と表示板110との間の隙間が枠部材110Wによって塞がれているので、埃などの異物が混入する虞もない。
FIG. 17 is an explanatory view showing a display board 110 of another modification of the third embodiment in which the frame member 110W is sandwiched between the display boards 110R, 110G, and 110B of each component. As illustrated, the frame member 110 </ b> W has a frame shape by cutting out a portion where an image is displayed. For this reason, it is possible to avoid contact between the surfaces of the display boards 110 by laminating the display boards 110R, 110G, and 110B of RGB components with such a frame member 110W interposed therebetween. In addition, since the gap between the display panel 110 and the display panel 110 is blocked by the frame member 110W on the side surface of the display panel 110 formed by stacking, there is no possibility that foreign matters such as dust are mixed. .
尚、枠部材110Wを透明な材料で形成しておけば、RGB各成分の表示板110R,110G,110Bを積層した表示板110全体を透明に保っておくことができる。もっとも、この場合、枠部材110Wの部分を介して隣の表示板110の光(他色の光)が進入してしまう。そこで、この影響を抑制するためには、枠部材110Wはできるだけ細い(表示板110との接触部分の幅が狭い)形状としておくことが望ましい。これに対して、枠部材110Wを不透明な材料で構成しておけば、表示板110の外周部分は透明にはできないものの、枠部材110Wの部分を介して隣の表示板110の光が進入してしまうことを回避することが可能となる。
In addition, if the frame member 110W is formed of a transparent material, the entire display board 110 in which the display boards 110R, 110G, and 110B of RGB components are laminated can be kept transparent. However, in this case, the light (light of other colors) of the adjacent display board 110 enters through the portion of the frame member 110W. Therefore, in order to suppress this influence, it is desirable that the frame member 110W has a shape as thin as possible (the width of the contact portion with the display plate 110 is narrow). On the other hand, if the frame member 110W is made of an opaque material, the outer peripheral portion of the display board 110 cannot be transparent, but the light of the adjacent display board 110 enters through the frame member 110W. Can be avoided.
D.第4実施例 :
上述した各実施例では、透明な表示板110の中から光とともに画像を浮き上がらせて表示するという極めて印象的な態様で画像を表示可能である。しかし、一旦、画像を表示した後は、表示内容に変化を付けることは難しく、従って、いつまでも人目を引き付けておくことは容易ではない。そこで、画像を表示した状態で、更に別の画像を追加して表示したり、追加した画像を消したりすることが可能としてもよい。以下では、このような第4実施例の画像表示装置100について説明する。 D. Fourth embodiment:
In each of the above-described embodiments, an image can be displayed in a very impressive manner in which an image is lifted and displayed together with light from thetransparent display plate 110. However, once the image is displayed, it is difficult to change the display contents, and therefore it is not easy to keep the eye on the eyes forever. In view of this, it is possible to add another image to be displayed or display the added image while the image is displayed. Hereinafter, the image display apparatus 100 according to the fourth embodiment will be described.
上述した各実施例では、透明な表示板110の中から光とともに画像を浮き上がらせて表示するという極めて印象的な態様で画像を表示可能である。しかし、一旦、画像を表示した後は、表示内容に変化を付けることは難しく、従って、いつまでも人目を引き付けておくことは容易ではない。そこで、画像を表示した状態で、更に別の画像を追加して表示したり、追加した画像を消したりすることが可能としてもよい。以下では、このような第4実施例の画像表示装置100について説明する。 D. Fourth embodiment:
In each of the above-described embodiments, an image can be displayed in a very impressive manner in which an image is lifted and displayed together with light from the
図18は、第4実施例の画像表示装置100で用いられる表示板110の大まかな構造を示した説明図である。図示されているように、第4実施例の表示板110は、第3実施例の表示板110(RGBの各成分の110R、110G,110Bが積層された表示板110)に、追加の表示板110Eを積層することによって構成されている。また、追加の表示板110Eと、R成分用の表示板110Rとの間も、突起118によって隙間が確保されている。そして、追加の表示板110Eの表面には、追加して表示する画像(追加画像)が透明インクによって形成されている。図18に示した例では、RGBの各成分の表示板110R,110G,110Bには、第3実施例と同様に、クリスマスツリーの画像が形成されている。また、追加の表示板110Eの表面には、「Merry!Xmas!」の文字を表す追加画像112Eが形成されている。この追加画像112Eについても、透明な表示板110の表面に、透明インクを用いて形成されているので、一見した程度では、追加画像112Eが形成されていることには気付かれ難い。
FIG. 18 is an explanatory diagram showing a rough structure of the display board 110 used in the image display device 100 of the fourth embodiment. As shown in the drawing, the display board 110 of the fourth embodiment is an additional display board on the display board 110 of the third embodiment (the display board 110 in which each of RGB components 110R, 110G, and 110B is laminated). 110E is laminated. In addition, a gap is secured by the protrusion 118 between the additional display panel 110E and the R component display panel 110R. An image to be additionally displayed (additional image) is formed on the surface of the additional display board 110E with transparent ink. In the example shown in FIG. 18, images of a Christmas tree are formed on the display plates 110R, 110G, and 110B for each of RGB components, as in the third embodiment. An additional image 112E representing the characters “Merry! Xmas!” Is formed on the surface of the additional display board 110E. Since this additional image 112E is also formed on the surface of the transparent display board 110 using transparent ink, it is difficult to notice that the additional image 112E is formed at a glance.
図19は、第4実施例の表示板110を、ベース部120の溝124に装着した様子を示した説明図である。図18を用いて前述したように、第4実施例の表示板110は4枚の表示板から構成されている。このことに対応して、第4実施例のベース部120には、図19に示されているように4列のLEDが、溝124の底部に設けられている。このうち、R成分用の表示板110Rの端面と向き合う位置には、赤色LED126Rの列が設けられている。同様に、G成分用の表示板110Gの端面と向き合う位置には、緑色LED126Gの列が設けられており、B成分用の表示板110Bの端面と向き合う位置には、青色LED126Bの列が設けられている。また、追加の表示板110Eの端面と向き合う位置には、白色光を放射する白色LED126Eの列が設けられている。尚、追加の表示板110Eと向き合う位置のLEDについては、白色光に限らず、どのような光を発するLEDを用いても良い。
FIG. 19 is an explanatory view showing a state where the display board 110 of the fourth embodiment is mounted in the groove 124 of the base portion 120. As described above with reference to FIG. 18, the display board 110 of the fourth embodiment is composed of four display boards. Corresponding to this, the base portion 120 of the fourth embodiment is provided with four rows of LEDs at the bottom of the groove 124 as shown in FIG. Among these, a row of red LEDs 126R is provided at a position facing the end face of the display panel 110R for the R component. Similarly, a row of green LEDs 126G is provided at a position facing the end face of the G component display board 110G, and a row of blue LEDs 126B is provided at a position facing the end face of the B component display board 110B. ing. A row of white LEDs 126E that emit white light is provided at a position facing the end face of the additional display board 110E. In addition, about LED of the position facing the additional display board 110E, you may use LED which emits not only white light but what kind of light.
このように、第4実施例の表示板110をベース部120に装着した状態で、赤色LED126R、緑色LED126G、青色LED126Bを点灯すれば、前述した第3実施例の画像表示装置100と全く同様にしてカラー画像を表示することができる。その状態で、白色LED126Eを点灯させれば、追加の表示板110Eに形成された追加画像112E(例えば、図19に例示したような「Merry!Xmas!」の文字の画像)を光らせて表示したり、表示を消したりすることができる。
As described above, if the red LED 126R, the green LED 126G, and the blue LED 126B are turned on in a state where the display plate 110 of the fourth embodiment is mounted on the base portion 120, it is exactly the same as the image display device 100 of the third embodiment described above. Color images can be displayed. In this state, if the white LED 126E is turned on, an additional image 112E (for example, an image of “Merry! Xmas!” As illustrated in FIG. 19) formed on the additional display board 110E is lit and displayed. Or turn off the display.
図20は、クリスマスツリーの画像112を表示した状態で、追加の表示板110Eに形成された「Merry!Xmas!」という文字の追加画像112Eを表示したり、消したりする様子を概念的に示した説明図である。図20(a)には、追加画像112Eを表示しない状態が示されている。追加画像112Eは、透明な表示板110Eの上に透明インクで形成されているので、追加画像112Eの画像を光らせない限り、一見した程度では、表示板110Eが設けられていることや、表示板110Eに追加画像112Eが形成されていることには気付かれ難い。その状態から白色LED126Eを点灯させて追加画像112Eを光らせると(図20(b)を参照)、どこからとも無く追加画像112E(図20では「Merry!Xmas!」という文字の画像)が浮かび上がってきたかのような印象を与えることができる。そして、再び白色LED126Eを消灯すると、掻き消したように追加画像112Eを消すことができる。第2実施例の画像表示装置100では、このように、単に画像(ここではクリスマスツリーの画像)を表示するだけでなく、追加画像112Eを浮かび上がらせて表示したり、掻き消したりすることができるので、非常に人目を引き易い態様で画像を表示することが可能となる。
FIG. 20 conceptually shows how the additional image 112E of the characters “Merry! Xmas!” Formed on the additional display board 110E is displayed or deleted while the Christmas tree image 112 is displayed. FIG. FIG. 20A shows a state where the additional image 112E is not displayed. Since the additional image 112E is formed of a transparent ink on the transparent display board 110E, unless the image of the additional image 112E is illuminated, the display board 110E is provided at first glance, or the display board It is difficult to notice that the additional image 112E is formed on 110E. When the white LED 126E is turned on from this state to light up the additional image 112E (see FIG. 20B), the additional image 112E (the image of “Merry! Xmas!” In FIG. 20) emerges from anywhere. Can give an impression as if Then, when the white LED 126E is turned off again, the additional image 112E can be erased as if it was erased. In this way, the image display apparatus 100 of the second embodiment can not only display an image (here, an image of a Christmas tree) but also display the additional image 112E in a floating manner or erase it. Therefore, it is possible to display an image in a manner that is very easy to catch the eye.
以上の説明では、追加画像112Eが形成された追加の表示板110Eは、1枚であるものとして説明した。しかし、複数の表示板110を追加の表示板として積層することも可能である。図21は、複数枚の表示板110を追加の表示板110Eとして積層した第4実施例の画像表示装置100を例示した説明図である。図21に例示した第4実施例の画像表示装置100では、追加の表示板110Eの1枚には、追加画像112Eとして「Merry!Xmas!」という文字の画像が透明インクで形成されており、もう1枚の追加の表示板110Eには、追加画像112Fとして雪が降る様子を示す画像が透明インクで形成されている。そして、これら追加の表示板110Eの端面に向かい合わせて、白色LED126Eおよび白色LED126F(図示は省略)を設けておき、白色LED126Eを点灯すれば、図21(b)に示すように、「Merry!Xmas!」という文字の画像をクリスマスツリーに重ねて表示することができ、白色LED126Fを点灯すれば、図21(c)に示すように、クリスマスツリーに雪が降っているような画像を表示することができる。更に、白色LED126Eおよび白色LED126Fを点灯すれば、図21(d)に示すように、クリスマスツリーに雪が降っているような画像に重ねて、「Merry!Xmas!」という文字の画像を表示することが可能となる。
In the above description, it is assumed that the additional display board 110E on which the additional image 112E is formed is one sheet. However, a plurality of display panels 110 can be stacked as additional display panels. FIG. 21 is an explanatory view illustrating the image display device 100 of the fourth embodiment in which a plurality of display plates 110 are stacked as an additional display plate 110E. In the image display device 100 according to the fourth embodiment illustrated in FIG. 21, an image of the characters “Merry! Xmas!” Is formed of transparent ink as an additional image 112E on one of the additional display plates 110E. On the other additional display board 110E, an image showing snow as an additional image 112F is formed with transparent ink. Then, a white LED 126E and a white LED 126F (not shown) are provided facing the end faces of these additional display boards 110E, and when the white LED 126E is turned on, as shown in FIG. 21B, “Merry! Xmas! "Can be displayed superimposed on the Christmas tree, and if the white LED 126F is turned on, an image as if snow is falling on the Christmas tree is displayed as shown in FIG. Can do. Further, when the white LED 126E and the white LED 126F are turned on, as shown in FIG. 21 (d), an image of the letter “Merry! Xmas!” Is displayed over the image such as snowing on the Christmas tree. Is possible.
また、上述した第4実施例の画像表示装置100では、追加画像112E(あるいは追加画像112F)を表示したり、表示を消したりするために、白色LED126E(あるいは白色LED126F)を点灯させたり消灯させたりする動作は、ベース部120に設けられた操作ボタン122を押すことによって手動で行うことができる。もちろん、ベース部120にタイマーを内蔵しておき、予め記憶しておいたプログラムに従って所定のタイミングで、あるいはランダムに、白色LED126E(白色LED126F)を点灯したり消灯したりするようにしても良い。
In the image display device 100 of the fourth embodiment described above, the white LED 126E (or the white LED 126F) is turned on or off to display the additional image 112E (or the additional image 112F) or to turn off the display. Can be performed manually by pressing an operation button 122 provided on the base 120. Of course, a timer may be built in the base unit 120, and the white LED 126E (white LED 126F) may be turned on or off at a predetermined timing or randomly according to a program stored in advance.
また、上述した第4実施例では、カラー画像を表示可能な第3実施例の表示板110に、追加画像112Eが形成された追加の表示板110Eを積層するものとして説明した。しかし、第1実施例あるいは第2実施例で説明したように、単色の画像を表示可能な表示板110に、表示板110Eを積層しても構わない。
Further, in the above-described fourth embodiment, it has been described that the additional display board 110E on which the additional image 112E is formed is laminated on the display board 110 of the third embodiment capable of displaying a color image. However, as described in the first embodiment or the second embodiment, the display plate 110E may be stacked on the display plate 110 capable of displaying a monochrome image.
E.第5実施例 :
上述した各実施例では、ベース部120は、装着された表示板110に対して、単に光を入射して、画像を光らせるだけであるものとして説明した。しかし、表示板110に記憶されている情報を読み出して、その情報に応じた態様で光を入射することによって画像を光らせるようにしても良い。以下では、このような第5実施例の画像表示装置100について説明する。 E. Fifth embodiment:
In each of the above-described embodiments, it has been described that thebase unit 120 simply allows light to enter the display panel 110 to which the base unit 120 is attached to shine an image. However, the information stored in the display board 110 may be read out, and light may be incident in a manner corresponding to the information to make the image glow. Hereinafter, the image display apparatus 100 according to the fifth embodiment will be described.
上述した各実施例では、ベース部120は、装着された表示板110に対して、単に光を入射して、画像を光らせるだけであるものとして説明した。しかし、表示板110に記憶されている情報を読み出して、その情報に応じた態様で光を入射することによって画像を光らせるようにしても良い。以下では、このような第5実施例の画像表示装置100について説明する。 E. Fifth embodiment:
In each of the above-described embodiments, it has been described that the
図22は、第5実施例の画像表示装置100におけるベース部120の構造を示した説明図である。また、図22には、ベース部120に装着される表示板110の一部も表示されている。上述した各種実施例のベース部120と同様に、第5実施例においても、ベース部120の上面には表示板110が装着される溝124が設けられており、溝の底部には、複数のLED126が一列に設けられている。図22には、複数のLED126が搭載されたLED基板127が、溝124の底部に設けられている様子が示されている。
FIG. 22 is an explanatory diagram showing the structure of the base unit 120 in the image display device 100 of the fifth embodiment. FIG. 22 also shows a part of the display board 110 attached to the base portion 120. Similar to the base portion 120 of the various embodiments described above, also in the fifth embodiment, the upper surface of the base portion 120 is provided with a groove 124 on which the display plate 110 is mounted, and a plurality of grooves are provided at the bottom of the groove. LEDs 126 are provided in a row. FIG. 22 shows a state in which the LED substrate 127 on which the plurality of LEDs 126 are mounted is provided at the bottom of the groove 124.
また、ベース部120の内部には、LED126の発光動作を制御する制御部128が設けられており、この制御部128は、溝の側壁に設けられたデータ読取部132に接続されている。また、図22に示されるように、第5実施例においては、表示板110の表面の所定位置にタグ130が貼付されており、ベース部120のデータ読取部132は、表示板110をベース部120の溝124に装着した時に、表示板110のタグ130と向き合うような位置に設けられている。詳細には後述するが、表示板110のタグ130には、表示板110の表面に印刷された画像に対応する所定のデータ(特定情報)が記憶されており、表示板110を装着すると、タグ130に記憶されている特定情報を、データ読取部132を用いて読み出すことが可能となる。
Also, a control unit 128 that controls the light emission operation of the LED 126 is provided inside the base unit 120, and this control unit 128 is connected to a data reading unit 132 provided on the side wall of the groove. Further, as shown in FIG. 22, in the fifth embodiment, a tag 130 is attached to a predetermined position on the surface of the display board 110, and the data reading unit 132 of the base unit 120 uses the display board 110 as a base part. It is provided at a position so as to face the tag 130 of the display board 110 when mounted in the 120 groove 124. As will be described in detail later, the tag 130 of the display board 110 stores predetermined data (specific information) corresponding to an image printed on the surface of the display board 110. The specific information stored in 130 can be read using the data reading unit 132.
図23は、第5実施例の画像表示装置100で用いられるベース部120の機能を概念的に示したブロック図である。ベース部120の制御部128には、LED基板127に接続されて個々のLED126を駆動するLEDドライバ128dや、各LED126を駆動する駆動パターンを複数種類記憶したメモリ128mなどが内蔵されている。図示した例では、パターンA1、パターンA2、パターンB1、パターンB2、パターンC、パターンDの6種類の駆動パターンが記憶されている。また、ベース部120のデータ読取部132は、ベース部120に表示板110が装着されると、表示板110の表面に貼付されたタグ130からデータを読み出して、制御部128に入力する。
FIG. 23 is a block diagram conceptually showing the function of the base unit 120 used in the image display device 100 of the fifth embodiment. The control unit 128 of the base unit 120 includes an LED driver 128d that is connected to the LED board 127 and drives each LED 126, a memory 128m that stores a plurality of types of drive patterns that drive each LED 126, and the like. In the illustrated example, six types of drive patterns of pattern A1, pattern A2, pattern B1, pattern B2, pattern C, and pattern D are stored. In addition, when the display board 110 is mounted on the base section 120, the data reading section 132 of the base section 120 reads data from the tag 130 attached to the surface of the display board 110 and inputs the data to the control section 128.
図24は、表示板110の表面に貼付されたタグ130の構造を示した説明図である。図示されるように、タグ130は、ICチップやアンテナが樹脂シート内に埋め込まれて形成されたタグシート130aと、アルミ蒸着された樹脂製の反射シート130bとが接着層によって貼り合わされた二層構造となっている。表示板110の所定位置(図中では、細い破線の矩形で囲った位置)には、このようなタグ130が接着層を介して貼り付けられている。そして、表示板110をベース部120に装着すると、表示板110に貼り付けられたタグ130と、ベース部120に設けられたデータ読取部132とが、ちょうど向き合う位置となる。その結果、ベース部120のデータ読取部132は、タグ130のICチップ内に記憶されたデータを、アンテナを介して非接触で読み出すことが可能となる。
FIG. 24 is an explanatory diagram showing the structure of the tag 130 attached to the surface of the display board 110. As shown in the figure, the tag 130 has a two-layer structure in which a tag sheet 130a formed by embedding an IC chip or an antenna in a resin sheet and a resin-made reflective sheet 130b vapor-deposited on aluminum are bonded together by an adhesive layer. It has a structure. Such a tag 130 is attached to a predetermined position of the display board 110 (a position surrounded by a thin broken-line rectangle in the drawing) via an adhesive layer. When the display board 110 is attached to the base part 120, the tag 130 attached to the display board 110 and the data reading part 132 provided on the base part 120 are in a position facing each other. As a result, the data reading unit 132 of the base unit 120 can read the data stored in the IC chip of the tag 130 in a non-contact manner via the antenna.
ここで、第5実施例の画像表示装置100において、タグシート130aの上から反射シート130bで覆った二層構造のタグ130が採用されているのは次のような理由によるものである。図2を用いて前述したように、表示板110の内部は、LED126から入射された光が表面で完全反射しながら伝播する。ここで、タグ130は接着層で貼り付けられているので、接着層の屈折率によっては、前述した完全反射の条件が成り立ち難くなる。また、タグシートを構成する樹脂シートの屈折率も表示板110の屈折率とは異なっており、樹脂シートの屈折率によっては完全反射の条件が成り立ち難くなる。更に加えて、樹脂シート内にはICチップやアンテナなどが埋め込まれているので、これらICチップやアンテナなどに衝突した光は周囲に散乱する。このような理由から、表示板110の端面から入射された光が、タグ130を貼付した箇所で減衰してしまい、それより下流側の画像が暗くなってしまうことも起こり得る。第5実施例の画像表示装置100では、この点を考慮して、タグシート130aの上から反射シート130bで覆った二層構造のタグ130を採用している。こうすることで、たとえタグ130が貼付された箇所で完全反射の条件が崩れたとしても、タグシート130aを突き抜けて表面から出ようとする光を、全て反射シート130bによって反射して、表示板110内に戻すことができる。その結果、タグ130の位置で光が減衰することを未然に防ぐことが可能となっている。
Here, in the image display apparatus 100 of the fifth embodiment, the tag 130 having a two-layer structure covered with the reflection sheet 130b from the top of the tag sheet 130a is used for the following reason. As described above with reference to FIG. 2, the light incident from the LED 126 propagates inside the display panel 110 while being completely reflected by the surface. Here, since the tag 130 is affixed with an adhesive layer, depending on the refractive index of the adhesive layer, the above-described complete reflection condition is difficult to be satisfied. Further, the refractive index of the resin sheet constituting the tag sheet is also different from the refractive index of the display plate 110, and the condition of complete reflection is difficult to be satisfied depending on the refractive index of the resin sheet. In addition, since an IC chip, an antenna, or the like is embedded in the resin sheet, light that collides with the IC chip, the antenna, or the like is scattered around. For this reason, the light incident from the end face of the display panel 110 may be attenuated at the location where the tag 130 is attached, and the downstream image may become darker. In consideration of this point, the image display apparatus 100 according to the fifth embodiment employs a tag 130 having a two-layer structure in which a tag sheet 130a is covered with a reflection sheet 130b. By doing this, even if the condition of complete reflection is lost at the place where the tag 130 is attached, all the light that penetrates the tag sheet 130a and exits from the surface is reflected by the reflective sheet 130b, 110 can be returned. As a result, it is possible to prevent light from being attenuated at the position of the tag 130.
尚、ここでは、タグ130は、ICチップとアンテナとがシール状に形成されており、ICチップに記憶されたデータを非接触で読み出し可能に構成されたタグであるものとして説明するが、タグの態様はこうした態様に限られるものではなく、種々の態様のタグを用いることができる。例えば、ICチップと電極とがシール状に形成されており、端子を接触させることでICチップ内のデータを読み出すことが可能に構成されたタグを用いることができる。あるいは、電磁気的な方法でデータを記憶するのではなく、バーコードや、小さな凹凸の組合せなどによってデータを記憶する方式のタグを用いることも可能である。
Here, the tag 130 is described as a tag in which an IC chip and an antenna are formed in a seal shape and configured to be able to read data stored in the IC chip in a non-contact manner. The embodiment of the present invention is not limited to such an embodiment, and tags of various embodiments can be used. For example, a tag configured such that an IC chip and an electrode are formed in a seal shape and data in the IC chip can be read by contacting terminals can be used. Alternatively, instead of storing data by an electromagnetic method, it is possible to use a tag that stores data by a bar code or a combination of small irregularities.
図25は、制御部128のメモリ128m内に記憶された駆動パターンを例示した説明図である。それぞれの駆動パターンにはパターン番号が付されており、パターン番号によって駆動パターンを特定することが可能である。例えば、パターン番号A1によって特定される駆動パターン(パターンA1)は、時間の経過とともにLED126の発光強度が増加し、ある光強度に達するとその光強度を暫く保った後、ゆっくりと光強度が低下して最後には消灯することを繰り返すようなパターンに設定されている。また、パターン番号A2によって特定される駆動パターン(パターンA2)は、パターンA1に較べて、全体的に光強度が弱いパターンに設定されている。あるいは、パターン番号B1によって特定される駆動パターン(パターンB1)は、時間の経過とともに光強度がゆっくりと増加し、ある光強度に達すると突然、消灯することを繰り返すようなパターンに設定されている。更には、全てのLED126が一斉に光強度を変えるのではなく、例えば一端側のLED126から少しずつタイミングをずらして点灯させ、一定時間経過した後に消灯させるようにすることで、一端側から他端側に向かって光の帯が移動するようなパターンを設定することも可能である。このように、制御部128のメモリ128m内には、複数種類の駆動パターンが記憶されており、これら駆動パターンは、パターン番号によって特定可能となっている。
FIG. 25 is an explanatory diagram illustrating drive patterns stored in the memory 128m of the control unit 128. Each drive pattern is given a pattern number, and the drive pattern can be specified by the pattern number. For example, in the driving pattern (pattern A1) specified by the pattern number A1, the light emission intensity of the LED 126 increases as time passes, and when the light intensity reaches a certain light intensity, the light intensity decreases slowly after being kept for a while. Then, the pattern is set to repeat turning off at the end. In addition, the drive pattern (pattern A2) specified by the pattern number A2 is set to a pattern whose light intensity is generally weaker than that of the pattern A1. Alternatively, the drive pattern (pattern B1) specified by the pattern number B1 is set to a pattern in which the light intensity slowly increases with time and turns off suddenly when reaching a certain light intensity. . Furthermore, the light intensity of all the LEDs 126 is not changed at the same time, but for example, by turning on the LEDs little by little from the LED 126 on one end side and turning off the light after a predetermined time has passed, It is also possible to set a pattern in which the light band moves toward the side. Thus, a plurality of types of drive patterns are stored in the memory 128m of the control unit 128, and these drive patterns can be specified by pattern numbers.
図23を用いて前述したように、タグ130のICチップ内には、駆動パターンを特定するパターン番号が記憶されている。そして、表示板110をベース部120に装着すると、タグ130のICチップ内に記憶されたパターン番号が、ベース部120のデータ読取部132によって読み出されて、制御部128に入力される。そして、制御部128内のメモリ128mに記憶されている駆動パターンの中から、パターン番号に応じた駆動パターンが特定され、特定された駆動パターンに従ってLEDドライバ128dがLED基板126を駆動することによって、各LED126から駆動パターンに応じて光が放射される。
As described above with reference to FIG. 23, a pattern number for specifying a drive pattern is stored in the IC chip of the tag 130. When the display board 110 is attached to the base unit 120, the pattern number stored in the IC chip of the tag 130 is read by the data reading unit 132 of the base unit 120 and input to the control unit 128. Then, a drive pattern corresponding to the pattern number is specified from the drive patterns stored in the memory 128m in the control unit 128, and the LED driver 128d drives the LED board 126 according to the specified drive pattern. Light is emitted from each LED 126 according to the drive pattern.
その結果、第5実施例の画像表示装置100では、表示板110に貼付されたタグ130内のパターン番号に応じた駆動パターンでLED126が駆動され、表示板110の画像を光らせることができる。従って、表示板110の表面に透明インクで印刷されている画像に応じて、適切なパターン番号をタグ130に記憶させておくことで、表示板110をベース部120に装着するだけで、適切なパターンでLED126を光らせて、表示板110に画像を浮かび上がらせて表示することが可能となる。また、異なる画像が印刷された表示板110に取り替えれば、新たに装着された表示板110のタグ130から新たなパターン番号が読み出され、読み出されたパターン番号に対応する新たな駆動パターンに従ってLED126が駆動される。このように、第5実施例の画像表示装置100では、表示板110を取り替えるだけで、LED126が発光するパターンが切り替わり、表示板110の表面に透明インクで印刷され画像を適切に表示することが可能となる。
As a result, in the image display apparatus 100 of the fifth embodiment, the LED 126 is driven with a drive pattern corresponding to the pattern number in the tag 130 attached to the display board 110, and the image on the display board 110 can be illuminated. Accordingly, by storing an appropriate pattern number in the tag 130 according to an image printed on the surface of the display board 110 with transparent ink, the display board 110 can be appropriately attached only to the base unit 120. It is possible to display the image on the display board 110 by causing the LED 126 to shine with a pattern. If the display board 110 on which a different image is printed is replaced, a new pattern number is read from the tag 130 of the newly attached display board 110, and a new drive pattern corresponding to the read pattern number. Accordingly, the LED 126 is driven. As described above, in the image display device 100 of the fifth embodiment, the pattern of the LED 126 emitting light is switched simply by replacing the display plate 110, and the image is appropriately displayed by being printed with the transparent ink on the surface of the display plate 110. It becomes possible.
尚、上述した画像表示装置100では、タグ130から読み出したパターン番号に対応する駆動パターンが、制御部128のメモリ128mに記憶されていない場合も起こり得る。そこで、メモリ128mに記憶されている複数の駆動パターンの中で標準の駆動パターンを予め決めておき、タグ130から読み出されたパターン番号に対応に対応する駆動パターンがメモリ128mに記憶されていない場合は、標準の駆動パターンを用いてLED126を発光させるようにしても良い。
In the above-described image display device 100, a drive pattern corresponding to the pattern number read from the tag 130 may not be stored in the memory 128m of the control unit 128. Therefore, a standard drive pattern is determined in advance among a plurality of drive patterns stored in the memory 128m, and a drive pattern corresponding to the pattern number read from the tag 130 is not stored in the memory 128m. In this case, the LED 126 may be caused to emit light using a standard driving pattern.
あるいは、記憶したデータを書き換え可能なメモリによってメモリ128mを構成しておき、ベース部120に設けたデータ書込部129を用いて、メモリ128mに新たな駆動パターンを記憶可能としても良い。新たな駆動パターンは、例えば、ベース部120の前面に設けられた操作スイッチ122を用いて作成しても良いし、あるいは外部のコンピュータや携帯電話などから新たな駆動パターンを取得しても良い。更には、タグ130として、外部からデータを書込可能なタグを採用しておき、タグ130内に記憶されているパターン番号を変更可能としても良い。このとき、図23中に破線の矢印で示したように、データ書込部129からデータ読取部132を介して、タグ130のICチップ内に記憶されているパターン番号を書き換えるようにしても良い。データ読取部132は、タグ130内のICチップにアクセスして、記憶されているデータを読み出すことが可能に構成されているから、タグ130内のデータを書き換える際にもデータ読取部132を介してアクセスすれば、特別な装備を追加することなく、タグ130内のデータを簡単に書き換えることが可能となる。
Alternatively, the memory 128m may be configured by a memory capable of rewriting stored data, and a new drive pattern may be stored in the memory 128m using the data writing unit 129 provided in the base unit 120. The new drive pattern may be created, for example, using the operation switch 122 provided on the front surface of the base unit 120, or a new drive pattern may be acquired from an external computer or a mobile phone. Furthermore, as the tag 130, a tag into which data can be written from the outside may be adopted so that the pattern number stored in the tag 130 can be changed. At this time, as indicated by a broken line arrow in FIG. 23, the pattern number stored in the IC chip of the tag 130 may be rewritten from the data writing unit 129 via the data reading unit 132. . Since the data reading unit 132 is configured to be able to access the IC chip in the tag 130 and read out the stored data, the data reading unit 132 also passes through the data reading unit 132 when rewriting the data in the tag 130. The data in the tag 130 can be easily rewritten without adding any special equipment.
また、上述した第5実施例では、表示板110のタグ130には、1つのパターン番号のみが記憶されているものとして説明した。しかし、タグ130内に複数のパターン番号を記憶しておき、それらのパターン番号に対応する複数の駆動パターンを順繰りに用いてLED126を発光させても良い。あるいは、それら複数の駆動パターンの中から、実際にLED126を駆動するパターンを、ベース部120の操作スイッチ122を用いて切り替えるようにしても良い。
In the fifth embodiment described above, the tag 130 of the display board 110 has been described as being stored with only one pattern number. However, a plurality of pattern numbers may be stored in the tag 130, and the LED 126 may be caused to emit light using a plurality of drive patterns corresponding to the pattern numbers in order. Or you may make it switch the pattern which actually drives LED126 among these several drive patterns using the operation switch 122 of the base part 120. FIG.
また、上述した第5実施例では、実際にLED126を駆動するための複数の駆動パターンは、ベース部120側に記憶されており、表示板110側のタグ130には、複数の駆動パターンの中から1つのパターンを特定するためのパターン番号のみが記憶されているものとして説明した。しかし、LED126を駆動するための駆動パターン自体を、表示板110のタグ130に記憶しておくこととしても良い。
In the fifth embodiment described above, a plurality of driving patterns for actually driving the LED 126 are stored on the base 120 side, and the tag 130 on the display board 110 side has a plurality of driving patterns. In the above description, only the pattern number for specifying one pattern is stored. However, the drive pattern itself for driving the LED 126 may be stored in the tag 130 of the display panel 110.
図26には、このような変形例の画像表示装置100の大まかな構成が示されている。図26(a)に示されているように、変形例の画像表示装置100では、表示板110に貼付されたタグ130内に、駆動パターン(図示した例では、パターンA1)が記憶されている。そして、このような表示板110をベース部120に装着すると、タグ130内から駆動パターンが読み出され、データ読取部132を介してベース部120に供給され、供給された駆動パターンに従って、LEDドライバ128dが各LED126を駆動する。このような構成によっても、表示板110の表面に印刷された画像に応じて、適切な駆動パターンをタグ130内に記憶しておくことで、画像に応じた適切なパターンでLED126を発光させ、適切に画像を表示することが可能となる。もちろん表示板110を差し替えてやれば、差し替えた表示板110の画像に応じた新たな駆動パターンが読み出されるので、単に表示板110を差し替えるだけで、LED126の発光パターンを画像に応じた適切な態様に変更することが可能となる。
FIG. 26 shows a rough configuration of the image display apparatus 100 according to such a modification. As shown in FIG. 26A, in the image display device 100 according to the modified example, a drive pattern (in the illustrated example, the pattern A1) is stored in the tag 130 attached to the display board 110. . When such a display panel 110 is mounted on the base unit 120, a drive pattern is read from the tag 130, supplied to the base unit 120 via the data reading unit 132, and an LED driver according to the supplied drive pattern. 128d drives each LED 126. Even with such a configuration, by storing an appropriate driving pattern in the tag 130 according to the image printed on the surface of the display board 110, the LED 126 emits light with an appropriate pattern according to the image, An image can be displayed appropriately. Of course, if the display board 110 is replaced, a new drive pattern corresponding to the image of the replaced display board 110 is read out. Therefore, the light emission pattern of the LED 126 can be appropriately changed according to the image simply by replacing the display board 110. It becomes possible to change to.
尚、このような変形例の画像表示装置100では、ベース部120内の制御部128に複数の駆動パターンを記憶しておく必要がないので、ベース部120の構成を簡素なものとすることができる。これに対して前述した第5実施例の画像表示装置100では、表示板110のタグ130には、パターン番号のみを記憶しておけばよい。従って、例えばバーコードなどのような簡単なタグ130を用いることも可能となる。
In addition, in the image display apparatus 100 of such a modification, it is not necessary to store a plurality of drive patterns in the control unit 128 in the base unit 120, and thus the configuration of the base unit 120 may be simplified. it can. On the other hand, in the image display device 100 of the fifth embodiment described above, only the pattern number needs to be stored in the tag 130 of the display board 110. Therefore, it is possible to use a simple tag 130 such as a barcode.
あるいは、タグ130を、ICチップなど、外部からデータを書き換え可能なメモリによって構成しておき、タグ130に記憶されている駆動パターンを、外部から書き換え可能としてもよい。このとき、図26(b)に示したように、ベース部120にデータ書込部129を設けておき、タグ130から駆動パターンを読み出すデータ読取部132を介して、タグ130のICチップ内に記憶されているパターン番号を書き換えるようにしても良い。図26(b)中に示した破線の矢印は、データ書込部129からデータ読取部132を介して、タグ130内の駆動パターンを書き換える様子を表している。データ読取部132は、タグ130内のICチップにアクセスして、記憶されているデータを読み出すことが可能に構成されているから、タグ130内のデータを書き換える際にもデータ読取部132を介してアクセスすれば、タグ130内のデータを簡単に書き換えることが可能となる。
Alternatively, the tag 130 may be configured by a memory that can rewrite data from the outside, such as an IC chip, and the drive pattern stored in the tag 130 may be rewritten from the outside. At this time, as shown in FIG. 26B, a data writing unit 129 is provided in the base unit 120, and the IC chip of the tag 130 is inserted through the data reading unit 132 that reads the driving pattern from the tag 130. The stored pattern number may be rewritten. A broken arrow shown in FIG. 26B represents a state in which the drive pattern in the tag 130 is rewritten from the data writing unit 129 through the data reading unit 132. Since the data reading unit 132 is configured to be able to access the IC chip in the tag 130 and read out the stored data, the data reading unit 132 also passes through the data reading unit 132 when rewriting the data in the tag 130. The data in the tag 130 can be easily rewritten.
F.第6実施例 :
また、上述した各種の実施例では、表示板110の表面に、透明インクを用いて直接画像を形成するものとして説明した。しかし、表示板110の表面に直接画像を形成するのではなく、透明インクによる画像を透明シートの表面に形成し、その透明シートを貼り付けることによって、表示板110の表面に透明インクによる画像を形成しても良い。このようにしても、表示板110の端面から光を入射することで、透明シートの表面に形成した画像を光らせて表示することが可能である。そして透明シートを、貼り替え可能な態様で表示板110に貼り付けておけば、透明シートを貼り替えることで、表示する画像を変更することが可能となる。 F. Sixth embodiment:
In the various embodiments described above, it has been described that an image is directly formed on the surface of thedisplay plate 110 using transparent ink. However, instead of directly forming an image on the surface of the display board 110, an image made of transparent ink is formed on the surface of the transparent sheet, and the transparent sheet is pasted to form an image made of transparent ink on the surface of the display board 110. It may be formed. Even in this case, it is possible to shine and display the image formed on the surface of the transparent sheet by making light incident from the end face of the display plate 110. Then, if the transparent sheet is pasted on the display board 110 in a replaceable manner, the displayed image can be changed by pasting the transparent sheet.
また、上述した各種の実施例では、表示板110の表面に、透明インクを用いて直接画像を形成するものとして説明した。しかし、表示板110の表面に直接画像を形成するのではなく、透明インクによる画像を透明シートの表面に形成し、その透明シートを貼り付けることによって、表示板110の表面に透明インクによる画像を形成しても良い。このようにしても、表示板110の端面から光を入射することで、透明シートの表面に形成した画像を光らせて表示することが可能である。そして透明シートを、貼り替え可能な態様で表示板110に貼り付けておけば、透明シートを貼り替えることで、表示する画像を変更することが可能となる。 F. Sixth embodiment:
In the various embodiments described above, it has been described that an image is directly formed on the surface of the
図27は、表示板110の端面から光を入射することで、表示板110の表面に貼り付けた透明シート111の画像を光らせて表示することが可能な原理を示した説明図である。図2を用いて前述したように、表示板110の端面から入射した光は、表示板110の表面で完全反射を繰り返しながら、表示板110の内部を進行していく。ここで、透明シート111の屈折率は、表示板110の屈折率と大きくは異ならない。このため、表示板110の内部を進行してきた光が、表面に透明シート111が貼り付けられている箇所まで到達すると、表示板110の表面で反射することなく、そのまま透明シート111の内部に進行する。そして、透明シート111の表面(空気と接する側の表面)は、透明シート111が貼り付けられている表示板110の表面とほぼ平行となっているから、透明シート111の表面で完全反射した後、再び表示板110の内部へと戻っていく。すなわち、表示板110も透明シート111も屈折率が大きくは異ならないので、表示板110の内部を進行する光にとっては、透明シート111も表示板110も大した違いはない。このため、表示板110あるいは透明シート111の表面で完全反射をくり返しながら内部を進行していく。
FIG. 27 is an explanatory diagram showing the principle that allows the image of the transparent sheet 111 attached to the surface of the display plate 110 to be displayed by shining light from the end face of the display plate 110. As described above with reference to FIG. 2, the light incident from the end face of the display panel 110 travels inside the display panel 110 while being completely reflected on the surface of the display panel 110. Here, the refractive index of the transparent sheet 111 is not significantly different from the refractive index of the display panel 110. For this reason, when the light traveling inside the display plate 110 reaches a position where the transparent sheet 111 is attached to the surface, the light travels directly into the transparent sheet 111 without being reflected by the surface of the display plate 110. To do. The surface of the transparent sheet 111 (the surface in contact with the air) is substantially parallel to the surface of the display panel 110 to which the transparent sheet 111 is attached. Then, it returns to the inside of the display board 110 again. That is, since the refractive index of the display plate 110 and the transparent sheet 111 are not significantly different, there is no significant difference between the transparent sheet 111 and the display plate 110 for the light traveling inside the display plate 110. For this reason, the inside of the display plate 110 or the transparent sheet 111 advances while being completely reflected repeatedly.
そして、このような光がインク層114に到達すると、インク層114の内部に進入し、インク層114内の光散乱微粒子114pに衝突して周囲に散乱する。その結果、インク層114が透明シート111の表面に形成されている場合でも、表示板110の表面に形成されている場合と同様に、表示板110の端面から光を入射することで光らせて表示することが可能となる。尚、第6実施例の画像表示装置100では、100ミクロン~1ミリメートル程度の厚さの透明シート111を使用している。
When such light reaches the ink layer 114, it enters the ink layer 114, collides with the light scattering fine particles 114p in the ink layer 114, and is scattered around. As a result, even when the ink layer 114 is formed on the surface of the transparent sheet 111, the light is displayed by being incident from the end face of the display plate 110, similarly to the case where it is formed on the surface of the display plate 110. It becomes possible to do. In the image display device 100 of the sixth embodiment, a transparent sheet 111 having a thickness of about 100 microns to 1 millimeter is used.
また、このような透明シート111の一方の表面には、透明シートや表示板110とほぼ同じ屈折率の樹脂材料による接着層が設けられており、その接着層によって貼り替え可能な態様で、表示板110に貼り付けられている。このため、透明シート111は簡単に貼り替えることが可能である。しかも、透明シート111の画像は透明インクによって形成されているから、異なる画像の透明シート111も簡単に作成することができる。従って、第6実施例の画像表示装置100では、透明シート111を貼り替えることで、表示する画像を簡単に変更することが可能となっている。図28には、透明インクによる画像112が形成された透明シート111を貼り替える様子が示されている。
Further, an adhesive layer made of a resin material having substantially the same refractive index as that of the transparent sheet or the display plate 110 is provided on one surface of the transparent sheet 111, and the display can be performed in a manner that can be replaced by the adhesive layer. Affixed to the plate 110. For this reason, the transparent sheet 111 can be easily replaced. In addition, since the image of the transparent sheet 111 is formed of transparent ink, the transparent sheet 111 with a different image can be easily created. Therefore, in the image display device 100 according to the sixth embodiment, it is possible to easily change the displayed image by replacing the transparent sheet 111. FIG. 28 shows how the transparent sheet 111 on which the image 112 made of transparent ink is formed is pasted.
尚、透明シート111に設ける接着層は、流動性を有する樹脂材料(例えばジェル状の材料)によって形成しておくことが望ましい。貼り付けた透明シート111と表示板110との間に空気の隙間が存在していると、その部分では表示板110の表面で光が反射してしまう。このため透明シート111には光が届かなくなり、その部分のインク層114を光らせることができなくなる。しかし、透明シート111の接着層を、流動性を有する樹脂材料によって形成しておけば、たとえ表示板110の表面に細かな凹凸が存在する場合でも、接着層によって凹凸を埋めて、隙間ができないように透明シートを表示板の表面に密着させることができる。また、透明シートを貼る際に、空気中の埃を挟み込んでしまった場合でも、小さな埃であれば接着層内に埋め込まれてしまうので、透明シートを表示板の表面に密着させることが可能となる。
Note that the adhesive layer provided on the transparent sheet 111 is preferably formed of a resin material having fluidity (for example, a gel material). If there is an air gap between the attached transparent sheet 111 and the display plate 110, light is reflected on the surface of the display plate 110 at that portion. For this reason, light does not reach the transparent sheet 111, and the ink layer 114 in that portion cannot be illuminated. However, if the adhesive layer of the transparent sheet 111 is formed of a resin material having fluidity, even if fine irregularities exist on the surface of the display plate 110, the irregularities are filled with the adhesive layer, and no gap is formed. Thus, the transparent sheet can be brought into close contact with the surface of the display board. In addition, even when dust in the air is caught when sticking the transparent sheet, if the dust is small, it will be embedded in the adhesive layer, so the transparent sheet can be brought into close contact with the surface of the display board. Become.
また、以上の説明から明らかなように、透明シート111の接着層の厚さは、表示板110の表面の凹凸に対して変形し、空気中の埃を挟み込んだときにも埃を埋め込むことができるように、数ミクロン~数十ミクロン程度の厚さとすることが望ましい。また、この接着層は、必ずしも強い粘着力は必要ではないが、細かな凹凸に対しては変形して密着できる程度の流動性を有することが望ましい。透明シート111の一方の表面(できれば画像が形成されていない側の表面)に、このような接着層を設けておくことで、透明シート111を容易に貼り替え可能でありながら、表示板110との間に空気の隙間ができないように、適切に透明シート111を貼り付けることが可能となる。その結果、透明シート111を貼り替えることで、表示する画像を手軽に変更することが可能となる。
Further, as is clear from the above description, the thickness of the adhesive layer of the transparent sheet 111 is deformed with respect to the irregularities on the surface of the display panel 110, so that dust can be embedded even when dust in the air is sandwiched. It is desirable to have a thickness of several microns to several tens of microns so that it can be achieved. In addition, the adhesive layer does not necessarily require strong adhesive force, but it is desirable that the adhesive layer has fluidity that can be deformed and adhered to fine irregularities. By providing such an adhesive layer on one surface of the transparent sheet 111 (preferably, the surface on which the image is not formed), the transparent sheet 111 can be easily replaced, The transparent sheet 111 can be appropriately pasted so that there is no air gap between them. As a result, it is possible to easily change the image to be displayed by pasting the transparent sheet 111.
G.第7実施例 :
また、上述した各種実施例では、透明インクによる画像は、単に表示板110(あるいは透明シート111)の上に形成されているだけであるものとして説明した。従って、透明インクによるインク層114が形成されている部分は、表示板110(あるいは透明シート111)の表面から多少は盛り上がった状態となっている。しかし、透明インクによる画像の上に、光を散乱させる微粒子を含まない透明樹脂によるクリア層を形成することで、インク層114を含んだ表示板110の最表面を平滑に形成することとしてもよい。以下では、このような第7実施例の画像表示装置100について説明する。 G. Seventh embodiment:
Further, in the various embodiments described above, it has been described that the image using the transparent ink is merely formed on the display board 110 (or the transparent sheet 111). Accordingly, the portion where theink layer 114 made of transparent ink is formed is in a state of being slightly raised from the surface of the display panel 110 (or the transparent sheet 111). However, the outermost surface of the display board 110 including the ink layer 114 may be formed smoothly by forming a clear layer made of a transparent resin that does not include light-scattering fine particles on an image using transparent ink. . Hereinafter, the image display apparatus 100 according to the seventh embodiment will be described.
また、上述した各種実施例では、透明インクによる画像は、単に表示板110(あるいは透明シート111)の上に形成されているだけであるものとして説明した。従って、透明インクによるインク層114が形成されている部分は、表示板110(あるいは透明シート111)の表面から多少は盛り上がった状態となっている。しかし、透明インクによる画像の上に、光を散乱させる微粒子を含まない透明樹脂によるクリア層を形成することで、インク層114を含んだ表示板110の最表面を平滑に形成することとしてもよい。以下では、このような第7実施例の画像表示装置100について説明する。 G. Seventh embodiment:
Further, in the various embodiments described above, it has been described that the image using the transparent ink is merely formed on the display board 110 (or the transparent sheet 111). Accordingly, the portion where the
図29は、インク層114の上に透明樹脂によるクリア層116が設けられて最表面が平滑に形成された様子を示す説明図である。図示されているように、第7実施例の画像表示装置100では、表示板110に形成されたインク層114の上に、光散乱微粒子114pを含まない透明樹脂によるクリア層116が形成されており、表示板110の最表面(従って、クリア層116と空気との境界面)は、概ね平滑に形成されている。第7実施例の画像表示装置100では、表示板110をこのような構成とすることで、透明インクによる画像をより一層見え難くすることができるとともに、画像を光らせた時には、より一層キレイに画像を表示することが可能となる。以下では、このような効果が得られる理由について説明する。
FIG. 29 is an explanatory diagram showing a state in which a clear layer 116 made of a transparent resin is provided on the ink layer 114 and the outermost surface is formed smoothly. As shown in the figure, in the image display device 100 of the seventh embodiment, a clear layer 116 made of a transparent resin not containing the light scattering fine particles 114p is formed on the ink layer 114 formed on the display plate 110. The outermost surface of the display panel 110 (therefore, the boundary surface between the clear layer 116 and the air) is substantially smooth. In the image display device 100 according to the seventh embodiment, the display plate 110 having such a configuration makes it possible to make an image made of transparent ink more difficult to see, and when the image is shined, the image is more beautiful. Can be displayed. The reason why such an effect can be obtained will be described below.
図30は、表示板110の表面に、透明インクによって形成されたインク層114を拡大して示した説明図である。図示されるように、インク層114の部分は表示板110の表面から盛り上がった状態で形成されている。更に、透明インクが表示板110に塗布された直後は、透明インクの表面張力によって、インクの端面は曲面形状となっている。このため、透明インクが固まった後のインク層114の端部も曲面形状となる。もちろん、インク層114がよほど小さくない限り、インク層114の中央付近には、ほぼ平面とみなして良い部分も存在する。従って、図30に示すように、実際のインク層114は、ほぼ平面とみなして良い部分(頂面部)の周囲に、曲面形状の部分(端部)が形成されたような形状となっている。
FIG. 30 is an explanatory diagram showing an enlarged ink layer 114 formed of transparent ink on the surface of the display board 110. As shown in the drawing, the ink layer 114 is formed so as to rise from the surface of the display panel 110. Further, immediately after the transparent ink is applied to the display plate 110, the end surface of the ink has a curved shape due to the surface tension of the transparent ink. For this reason, the end portion of the ink layer 114 after the transparent ink is hardened also has a curved shape. Of course, as long as the ink layer 114 is not so small, there is a portion that can be regarded as a substantially flat surface near the center of the ink layer 114. Therefore, as shown in FIG. 30, the actual ink layer 114 has a shape in which a curved portion (end portion) is formed around a portion (top surface portion) that can be regarded as a substantially flat surface. .
表示板110(あるいは透明シート111)の表面に形成された画像は、このようなインク層114が集まって形成されていると考えられる。そして、表示板110(あるいは透明シート111)の画像が形成されていない部分は、ほぼ鏡面のような状態となっているのに対して、インク層114が形成された部分は(特に端部の部分で)光の反射の仕方が変わるので、そこに透明インクによる画像が形成されていることに気付かれてしまうことがある。
It is considered that the image formed on the surface of the display board 110 (or the transparent sheet 111) is formed by gathering such ink layers 114. The portion of the display board 110 (or the transparent sheet 111) where the image is not formed is substantially in a mirror-like state, whereas the portion where the ink layer 114 is formed (particularly at the end portion). Since the way the light is reflected (in part), it may be noticed that an image of transparent ink is formed there.
あるいは、表示板110の内部に光を入射してインク層114を光らせた時に、インク層114の端部では、以下の理由から、インク層114を適切に光らせることができない場合も発生し得る。先ず、実際のインク層114は、図30に示したように、ほぼ平面とみなすことができる頂面部と、曲面形状の端部とに大きく分けることができる。このため、表示板110の内部からインク層114内に進入した光は、大きく3つに分類される。すなわち、インク層114内の光散乱微粒子114pに衝突して周囲に散乱する光と、光散乱微粒子114pに衝突することなくインク層114を進行して頂面部の表面に到達する光と、同じくインク層114を進行して端部の表面に到達する光の3つに分類される。図30では、光散乱微粒子114pに衝突する光を太い実線の矢印で表し、頂面部の表面に到達する光を細い破線の矢印で表し、端部の表面に到達する光を太い一点鎖線の矢印によって表している。
Alternatively, when the light is incident on the inside of the display panel 110 to light the ink layer 114, the ink layer 114 may not be appropriately lighted at the end of the ink layer 114 for the following reason. First, as shown in FIG. 30, the actual ink layer 114 can be roughly divided into a top surface portion that can be regarded as a substantially flat surface, and an end portion having a curved shape. For this reason, light that has entered the ink layer 114 from the inside of the display panel 110 is roughly classified into three types. That is, the light that collides with the light scattering fine particles 114p in the ink layer 114 and scatters to the surroundings, the light that travels through the ink layer 114 without colliding with the light scattering fine particles 114p and reaches the surface of the top surface portion, and the same ink There are three types of light that travel through the layer 114 and reach the surface of the edge. In FIG. 30, light that collides with the light-scattering fine particles 114p is represented by a thick solid arrow, light that reaches the top surface is represented by a thin broken arrow, and light that reaches the end surface is represented by a thick dashed line arrow. Is represented by.
インク層114に到達する光は、表示板110の表面で完全反射を繰り返しながら進行してきた光であり、インク層114の頂面部は、表示板110の表面とほぼ平行と考えることができるから、頂面部ではほぼ完全反射の条件が成り立つ。従ってインク層114の頂面部では、図30中に細い破線の矢印で示したように完全反射して、インク層114の内部を進行して、再び表示板110へと戻っていく。
The light reaching the ink layer 114 is light that has traveled while being completely reflected on the surface of the display plate 110, and the top surface portion of the ink layer 114 can be considered to be substantially parallel to the surface of the display plate 110. Nearly perfect reflection conditions are met at the top surface. Accordingly, the top surface portion of the ink layer 114 is completely reflected as indicated by the thin broken arrow in FIG. 30, proceeds inside the ink layer 114, and returns to the display plate 110 again.
これに対してインク層114の端部では、表示板110の表面に対してインク層114の表面が大きく傾いているので、完全反射の条件が成り立たない。このため、インク層114の端部に到達した光の一部は反射し、残りの光は、図30中に太い一点鎖線の矢印で示したように、端部の表面で屈折して進行方向を変えた後、空気中を直進していく。このような光は、光散乱微粒子114pで周囲に散乱した光(図中に太い破線で示す光)とは異なり、端部の表面で屈折した角度で決まる一定方向に、空気中を直進するため、観察者の目に入ると眩しく感じることになる。このため、表示板110に表示された画像をある角度から観察すると、各インク層114の端部からの光が目に入って眩しく感じられ、場合によっては、画像がぎらついた感じに見えてしまうことがある。
On the other hand, at the end of the ink layer 114, the surface of the ink layer 114 is greatly inclined with respect to the surface of the display plate 110, so that the condition of complete reflection is not satisfied. Therefore, a part of the light reaching the end of the ink layer 114 is reflected, and the remaining light is refracted on the surface of the end as shown by the thick dashed line arrow in FIG. After changing, go straight in the air. Unlike the light scattered around by the light scattering fine particles 114p (light indicated by a thick broken line in the figure), such light travels straight in the air in a certain direction determined by the angle refracted at the surface of the end. , It will feel dazzling when it enters the eyes of the observer. For this reason, when the image displayed on the display board 110 is observed from a certain angle, the light from the end of each ink layer 114 enters the eyes and feels dazzling. In some cases, the images appear to be glaring. It may end up.
図31は、大きさの異なるインク層114について、頂面部に相当する部分、および端部に相当する部分を概念的に示した説明図である。図31(a)から、図31(b)、図31(c)と、次第にインク層114の面積が大きくなるに従って、インク層114全体の面積に対する端部の比率が大きくなっている。一般に高画質の画像を印刷しようとすると、画像を高解像度化することが通常であり、それに伴って、個々のインク層114の大きさは小さくなっていく。その結果、全体にインク層114の全体に占める端部の割合が高くなって、画像が形成されていることに気付かれ易くなったり、画像のぎらつきが発生し易くなったりする。特に、微細なインク滴を吐出することによって画像を印刷するプリンタ(いわゆるインクジェットプリンタ)を用いれば、写真と同じ程度に高画質な画像を印刷することが可能であるが、微細なインク滴を吐出する関係上、インク層114の面積も小さくなるので、こうした問題が生じ易い。図32は、表示板110の表面に透明インクで印刷された画像の一部を拡大した様子を概念的に示した説明図である。図中に破線で示した小さな矩形は画素を表している。これら画素の中に、透明インクによるインク層114が形成される画素を適切な分布で発生させることによって、画像が印刷されている。このように小さなインク層114を形成して印刷された画像では、図31を用いて前述したようにインク層114の端部の割合が多くなるため、上述した各種の問題が発生し易くなる。
FIG. 31 is an explanatory diagram conceptually showing a portion corresponding to the top surface portion and a portion corresponding to the end portion of the ink layers 114 having different sizes. From FIG. 31A to FIG. 31B and FIG. 31C, as the area of the ink layer 114 gradually increases, the ratio of the end portion to the entire area of the ink layer 114 increases. In general, when printing a high-quality image, it is usual to increase the resolution of the image, and the size of each ink layer 114 is reduced accordingly. As a result, the ratio of the end portion of the entire ink layer 114 to the whole becomes high, and it becomes easy to notice that an image is formed, or glare of the image is likely to occur. In particular, if a printer that prints images by ejecting fine ink droplets (a so-called inkjet printer) is used, it is possible to print an image as high in quality as a photograph, but ejecting fine ink droplets. For this reason, since the area of the ink layer 114 is also reduced, such problems are likely to occur. FIG. 32 is an explanatory diagram conceptually showing a state in which a part of an image printed with transparent ink on the surface of the display board 110 is enlarged. Small rectangles indicated by broken lines in the figure represent pixels. Among these pixels, an image is printed by generating pixels in which an ink layer 114 of transparent ink is formed with an appropriate distribution. In the image printed by forming such a small ink layer 114, the ratio of the end portions of the ink layer 114 is increased as described above with reference to FIG.
これに対して、第7実施例の画像表示装置100では、図29に示すように、インク層114の上に透明なクリア層116を設けることで、表示板110の最表面(クリア層116と空気との境界面)がほぼ平滑に形成されている。このため、このような問題の発生を回避することが可能である。以下、この理由について説明する。
On the other hand, in the image display device 100 of the seventh embodiment, as shown in FIG. 29, by providing a transparent clear layer 116 on the ink layer 114, the outermost surface of the display board 110 (clear layer 116 and The boundary surface with air is formed almost smoothly. For this reason, it is possible to avoid the occurrence of such a problem. Hereinafter, this reason will be described.
図33は、透明インクによる画像に気付かれたり、画像がぎらついた感じになったりすることを、インク層114の上からクリア層116を形成することによって回避可能な理由を示した説明図である。先ず、インク層114の上からクリア層116を設けることで、表示板110の最表面(クリア層116と空気との境界面)を、ほぼ平滑に形成することができる。このため、透明インクによる画像が形成されている部分も、画像雅兄制されていない部分と同様に、ほぼ鏡面に近い状態となるので、光の反射の違いから、画像が形成されていることに気付かれ難くすることができる。
FIG. 33 is an explanatory diagram showing the reason why it is possible to avoid the notice of the image made of the transparent ink or the feeling of the image becoming glaring by forming the clear layer 116 on the ink layer 114. is there. First, by providing the clear layer 116 from above the ink layer 114, the outermost surface of the display panel 110 (the boundary surface between the clear layer 116 and air) can be formed almost smoothly. For this reason, the portion where the image is formed with the transparent ink is also almost in the state of a mirror like the portion where the image is not elaborated, so that the image is formed due to the difference in light reflection. It can be difficult to notice.
また、表示板110の端面から光を入射したときに、画像がぎらついた感じに見えてしまうことも、次の理由から回避することが可能となる。先ず、表示板110の端面から入射されて内部を伝播してきた光は、インク層114が形成されている部分に到達すると、そのままインク層114の内部に進行する。そして、インク層114内に分散している光散乱微粒子114pに衝突すると、周囲に散乱してその部分を光らせる。図33には、表示板110の内部を伝播してきた後、インク層114内の光散乱微粒子114pによって周囲に散乱する光が、破線の矢印によって表されている。
In addition, it is possible to avoid that the image looks glaring when light is incident from the end face of the display plate 110 for the following reason. First, when the light that has entered from the end face of the display panel 110 and propagated through the inside reaches the portion where the ink layer 114 is formed, it proceeds directly into the ink layer 114. And when it collides with the light-scattering fine particles 114p dispersed in the ink layer 114, it scatters to the surroundings and makes that portion shine. In FIG. 33, light that has propagated through the inside of the display panel 110 and then is scattered around by the light scattering fine particles 114 p in the ink layer 114 is represented by dashed arrows.
一方、インク層114とクリア層116とは、さほど屈折率が違わないので、光散乱微粒子114pと衝突することなくインク層114を通過した光は、クリア層116との境界面に達すると、ほとんど反射することなく境界面を通過して、クリア層116と空気との境界面に到達する。クリア層116と空気とでは屈折率は大きく異なっており、しかもクリア層116の上面は平滑に形成されているので、ほぼ完全反射の条件が成り立つ。その結果、クリア層116の表面で完全反射して、再び表示板110へと戻っていく。図33には、表示板110の内部を伝播してきた後、インク層114を通り抜けてクリア層116の上面で反射する光が、一点鎖線の矢印によって表されている。このように、インク層114の端部から光が抜けてきても、クリア層116と空気との境界面で完全反射させることができるので、その光が観察者の目に入ることがなく、その結果、画像がぎらついた感じに見えてしまうことを回避することが可能となる。
On the other hand, since the refractive index of the ink layer 114 and the clear layer 116 is not so different, the light that has passed through the ink layer 114 without colliding with the light scattering fine particles 114p almost reaches the boundary surface with the clear layer 116. It passes through the boundary surface without being reflected, and reaches the boundary surface between the clear layer 116 and the air. The refractive index of the clear layer 116 and that of air are greatly different, and the upper surface of the clear layer 116 is formed smoothly, so that almost perfect reflection conditions are satisfied. As a result, the light is completely reflected on the surface of the clear layer 116 and returns to the display panel 110 again. In FIG. 33, light that has propagated through the display panel 110 and then passes through the ink layer 114 and is reflected by the upper surface of the clear layer 116 is represented by an alternate long and short dash line arrow. In this way, even if light escapes from the end of the ink layer 114, it can be completely reflected at the boundary surface between the clear layer 116 and air, so that the light does not enter the viewer's eyes, As a result, it can be avoided that the image looks glaring.
尚、クリア層116を形成するに際しては、インク層114を形成する透明インクと同じ材質であるが、光散乱微粒子114pを含まない透明インクを用いて形成することが望ましい。例えば、光散乱微粒子114pを含む透明インクによる画像を印刷した後に、光散乱微粒子114pを含まない透明インクを用いて印刷するか、もしくはスプレーなどで画像の上から塗布することによって、クリア層116を形成すればよい。こうすれば、屈折率の違いからインク層114とクリア層116との境界面で一部の光が反射することによる僅かな光の損失も、完全に無くすことが可能となる。
It should be noted that when forming the clear layer 116, it is desirable to use the same material as the transparent ink for forming the ink layer 114, but using a transparent ink that does not include the light scattering fine particles 114p. For example, after printing an image using a transparent ink containing the light scattering fine particles 114p, the clear layer 116 is formed by printing using a transparent ink not containing the light scattering fine particles 114p, or by applying from the top of the image by spraying or the like. What is necessary is just to form. In this way, it is possible to completely eliminate a slight light loss due to a part of light reflected at the boundary surface between the ink layer 114 and the clear layer 116 due to a difference in refractive index.
また、表示板110の表面に、透明インクによるインク層114が一定の密度以上で形成される場合には、次のような方法によって実質的にクリア層116を形成することも可能である。すなわち、紫外線などを照射することによって硬化する性質を有する透明なインク(以下、UVインクという)を、透明インクとして使用し、光散乱微粒子114pを含んだUVインクによる画像を、表示板110の表面に印刷した後、紫外線などを照射することによってインク層114を形成している場合には、UVインクによる画像を印刷した後、ある程度の時間が経過してから、紫外線などを照射するようにしてもよい。こうすれば、硬化する前のUVインクが、隣のUVインクと表面張力によって結合して、その結果、端部が減少する。そして、端部がある程度まで減少した段階で、紫外線などを照射してUVインクを硬化させる。こうすれば、インク層114の端部の割合が低い画像を印刷することができるので、光の反射具合の違いから、透明インクによる画像に気付かれてしまったり、画像を光らせた時に、ぎらついた画像に見えたりすることを回避することが可能となる。
Further, when the ink layer 114 of transparent ink is formed on the surface of the display panel 110 with a certain density or more, the clear layer 116 can be substantially formed by the following method. That is, a transparent ink (hereinafter referred to as UV ink) having a property of being cured by irradiation with ultraviolet rays or the like is used as the transparent ink, and an image of the UV ink including the light scattering fine particles 114p is displayed on the surface of the display plate 110. In the case where the ink layer 114 is formed by irradiating ultraviolet rays or the like after printing, the ultraviolet ray or the like is irradiated after a certain amount of time has elapsed after printing the image with the UV ink. Also good. In this way, the UV ink before curing is combined with the adjacent UV ink by the surface tension, and as a result, the edge is reduced. Then, when the end portion is reduced to some extent, the UV ink is cured by irradiating ultraviolet rays or the like. This makes it possible to print an image with a low proportion of the edge portion of the ink layer 114. Therefore, when the image with the transparent ink is noticed due to the difference in the reflection of light, or when the image is shining, It is possible to avoid the appearance of an image.
あるいは、溶媒が揮発することによって硬化するタイプの透明インクを用いて画像を印刷する場合には、透明インクの粘度を、隣のインクと結合し得る程度に僅かに低下させてもよい。こうすれば、表示板110の表面に塗布された透明インクが硬化する前に、隣の透明インクと結合して端部が減少するので、インク層114の端部の割合が低い画像を印刷することができる。その結果、光の反射具合の違いから、透明インクによる画像に気付かれてしまったり、画像を光らせた時に、ぎらついた画像に見えたりすることを回避することが可能となる。
Alternatively, in the case where an image is printed using a transparent ink of a type that is cured by volatilization of the solvent, the viscosity of the transparent ink may be slightly decreased to such an extent that it can be combined with the adjacent ink. By doing so, before the transparent ink applied to the surface of the display panel 110 is cured, the edge is reduced by combining with the adjacent transparent ink, so an image with a low ratio of the edge of the ink layer 114 is printed. be able to. As a result, it is possible to avoid the fact that an image made of transparent ink is noticed due to the difference in the reflection of light or that the image appears to be glaring when the image is lit.
H.第8実施例 :
また、上述した各実施例の画像表示装置100を用いれば、きわめて効率的に間接照明を行うことができる。以下では、間接照明装置として用いられる第8実施例の画像表示装置100について説明する。 H. Eighth embodiment:
Moreover, indirect illumination can be performed very efficiently by using theimage display devices 100 of the above-described embodiments. Below, the image display apparatus 100 of the 8th Example used as an indirect illumination apparatus is demonstrated.
また、上述した各実施例の画像表示装置100を用いれば、きわめて効率的に間接照明を行うことができる。以下では、間接照明装置として用いられる第8実施例の画像表示装置100について説明する。 H. Eighth embodiment:
Moreover, indirect illumination can be performed very efficiently by using the
図34は、間接照明装置として用いられる第8実施例の画像表示装置100を例示した説明図である。図示した例では、画像表示装置100を部屋内に設置した状態で、表示板110の下端側の端面から光を入射することによって、画像を表示した様子が示されている。このようにして画像を表示すると、画像を光らせることなく表示板110の上端に達した光が、天井に向かって放射されるので、画像を光らせて表示するだけでなく、間接照明も行うことが可能となる。
FIG. 34 is an explanatory diagram illustrating the image display device 100 of the eighth embodiment used as an indirect illumination device. In the illustrated example, a state in which an image is displayed by entering light from the end surface on the lower end side of the display plate 110 in a state where the image display device 100 is installed in the room is shown. When the image is displayed in this manner, the light reaching the upper end of the display board 110 without emitting the image is emitted toward the ceiling, so that not only the image can be displayed but also indirect illumination can be performed. It becomes possible.
たとえばステンドグラスなどのように、光を用いて画像を表示することのできる照明器具を用いて間接照明を行おうとすると、光の利用効率がたいへんに低くなり、よほど強い光源を用いない限り、十分な光量を確保できないことが通常である。しかし、図34に示すような第8実施例の画像表示装置100は、画像を表示しながらも、光の利用効率がきわめて高く、その結果、比較的弱い光源でも十分な光量を確保しながら間接照明を行うことが可能である。以下、この理由について説明する。
For example, if you try to perform indirect lighting using a lighting fixture that can display an image using light, such as stained glass, the light utilization efficiency will be very low, and it will be sufficient unless a very strong light source is used. Usually, a sufficient amount of light cannot be secured. However, the image display apparatus 100 of the eighth embodiment as shown in FIG. 34 has an extremely high light utilization efficiency while displaying an image, and as a result, it is indirect while ensuring a sufficient amount of light even with a relatively weak light source. Illumination can be performed. Hereinafter, this reason will be described.
ステンドグラスのように、光を用いて画像を表示しながら間接照明も行うことの可能な照明機器は、次のような原理で画像を表示するものである。すなわち、照明機器の一部を、半透明な材質で形成されたパネルまたはシートなどで構成し、そのパネルやシートなどに、画像を描いておく。そして、シートやパネルの背面を光源で照らすことにより、画像を表示すると同時に、間接照明も行うようになっている。画像が色つきの透明インクなどによって印刷されている場合には、ステンドグラスのように色つきの画像が光って表示され、不透明な材料によって印刷されている場合には、影絵のように画像が表示される。このような照明機器では、不透明な材料で形成されたパネル(あるいはシート)の裏面側から光を照射することによって画像を表示している関係上、以下の理由から、光の利用効率が低下することは避けられない。
A lighting device capable of performing indirect illumination while displaying an image using light, such as stained glass, displays an image based on the following principle. That is, a part of the lighting device is configured by a panel or sheet formed of a translucent material, and an image is drawn on the panel or sheet. Then, by illuminating the back of the sheet or panel with a light source, an image is displayed and at the same time indirect illumination is performed. If the image is printed with colored transparent ink, etc., the colored image will be displayed shining like a stained glass, and if it is printed with an opaque material, the image will be displayed like a shadow picture. The In such a lighting device, the light use efficiency is reduced for the following reasons because the image is displayed by irradiating light from the back side of the panel (or sheet) formed of an opaque material. It is inevitable.
先ず、不透明な材料(もしくは光を透過し難い材料)で画像を印刷し、影絵のようにして画像を表示した場合、画像によって遮られた光は、ほとんど照明に活用することができない。また、色つきの透明インクを用いて画像を印刷したり、あるいはステンドグラスのように色つきの透明部材をパネルに嵌め込んだりして画像を表示した場合にも、色つきの透明インクあるいは色つきの透明部材を通過する際に光の多くが吸収されてしまう。例えば、赤色の透明インク(もしくは赤色の透明部材)は、青色の光成分や緑色の光成分を吸収し、赤色の光成分を透過させる性質を有している。赤色の透明インクで描いた部分を、裏面側から白色の光で照らすと、その部分が赤く光って見えるのは、このような理由による。逆に言えば、赤色の透明インク(もしくは赤色の透明部材)を用いて画像を表示した場合、青色の光成分や緑色の光成分は吸収されてしまうので、照明に利用することができる光量は半分以下(大まかには1/3)に減少してしまうことになる。赤以外の色付きの透明インク(もしくは色付きの透明部材)についても事情は全く同じであり、ほとんどの光成分は色付きの透明インク(もしくは色付きの透明部材)で吸収されてしまい、照明に利用できる光量の比率はごく僅かとなってしまう。
First, when an image is printed with an opaque material (or a material that does not easily transmit light) and the image is displayed like a shadow picture, light blocked by the image can hardly be used for illumination. In addition, even when an image is displayed using a colored transparent ink or when a colored transparent member such as a stained glass is fitted into the panel, the colored transparent ink or the colored transparent member is displayed. Much of the light is absorbed when passing through. For example, red transparent ink (or a red transparent member) has a property of absorbing a blue light component or a green light component and transmitting a red light component. For this reason, when a portion drawn with red transparent ink is illuminated with white light from the back side, the portion appears to glow red. Conversely, when an image is displayed using red transparent ink (or a red transparent member), the blue light component and the green light component are absorbed, so the amount of light that can be used for illumination is It will decrease to less than half (roughly 1/3). The situation is the same for colored transparent inks other than red (or colored transparent members), and most of the light components are absorbed by the colored transparent ink (or colored transparent members), and the amount of light that can be used for illumination. The ratio will be negligible.
更に、画像を表示しながら間接照明も可能な従来の照明機器は、パネルやシートの裏面側から、光を照射することによって画像を表示するため、パネル(もしくはシート)は必然的に不透明な材料で形成する必要がある。何故なら、仮にパネルやシートを、アクリル樹脂やガラスのように透明な材料で形成すると、画像を表示するための光が、パネル(もしくはシート)を透過して室内を照らしてしまうので、間接照明にはならないからである。そして、パネルやシートを不透明な材料した場合、そのパネル(もしくはシート)を透過する際に、かなりの比率の光が吸収されてしまう。
Furthermore, since conventional lighting equipment that can also perform indirect illumination while displaying an image displays an image by irradiating light from the back side of the panel or sheet, the panel (or sheet) is necessarily an opaque material. It is necessary to form with. This is because if a panel or sheet is made of a transparent material such as acrylic resin or glass, the light for displaying the image will pass through the panel (or sheet) and illuminate the room, so indirect lighting It is because it does not become. When a panel or sheet is made of an opaque material, a considerable proportion of light is absorbed when passing through the panel (or sheet).
画像を表示しながら間接照明も可能な従来の照明機器では、以上に説明した種々の理由から、光の利用効率は低くならざるを得ず、十分な光量を確保することが困難となっている。
In the conventional lighting equipment that can also perform indirect illumination while displaying an image, for the various reasons described above, the light use efficiency has to be low, and it is difficult to ensure a sufficient amount of light. .
これに対して、第8実施例の画像表示装置100では、表示板110に透明インクで印刷された画像を背面側から照らすのではなく、表示板110の端面から表示板110の内部に光を入射する。入射された光は、図2を用いて前述したように、表示板110の内部で完全反射を繰り返しながら、他端側の端面に向かって伝播していく。完全反射の条件が満足されている限り、光は表示板110の表面を透過して外部に出てくることはないので、アクリル樹脂などの透明な材料を用いて表示板110を形成しても、直接照明になってしまうことがない。そして、表示板110が透明な材料で形成されていることと、完全反射では原理的に反射に伴う光の損失が生じないこととが相俟って、端面から入射された光を、たいへんに効率よく他端側の端面まで導くことが可能となる。
On the other hand, in the image display apparatus 100 of the eighth embodiment, the image printed on the display board 110 with the transparent ink is not illuminated from the back side, but light is emitted from the end face of the display board 110 to the inside of the display board 110. Incident. As described above with reference to FIG. 2, the incident light propagates toward the end face on the other end side while repeating complete reflection inside the display panel 110. As long as the condition of complete reflection is satisfied, light does not pass through the surface of the display plate 110 and exit to the outside. Therefore, even if the display plate 110 is formed using a transparent material such as acrylic resin. , It will not be directly lighting. In addition, the fact that the display panel 110 is formed of a transparent material and that light loss due to reflection does not occur in principle in the case of complete reflection, the light incident from the end face is greatly reduced. It is possible to efficiently lead to the end surface on the other end side.
尚、LED126から放射された光を、そのまま表示板110の端面に入射するのではなく、レンズなどで一旦、収束してから入射してやれば、110の端面近傍で完全反射の条件を満たさない光を減少させることができる。その結果、LED126から放射された光の利用効率を、更に高めることが可能となる。あるいは、LED126からの光を収束するのではなく、表示板110の端面近傍で外部に漏れ出す光も照明光として利用することによっても、光の利用効率を高めることが可能であることは言うまでもない。
The light emitted from the LED 126 is not incident on the end face of the display plate 110 as it is, but once it is converged by a lens or the like and then incident, light that does not satisfy the condition of complete reflection near the end face of the 110 is obtained. Can be reduced. As a result, the utilization efficiency of light emitted from the LED 126 can be further increased. Alternatively, it is needless to say that the light utilization efficiency can be improved not by converging the light from the LED 126 but also by using the light leaking outside in the vicinity of the end face of the display panel 110 as illumination light. .
また、第8実施例の画像表示装置100が画像を表示する原理は、図2を用いて前述したように、透明インクに分散させた光散乱微粒子114pによって光を散乱させ、それによって画像を光らせるものである。光散乱微粒子114pに衝突した光は、周囲に散乱して画像を明るく光らせるので、結局はこの光も一種の照明として利用されていることになり、画像を表示することによる光の損失はほとんど生じない。また、光散乱微粒子114pの間をすり抜けて、光散乱微粒子114pに衝突することなくインク層114の表面に光が達した場合でも、その光は表面で完全反射してインク層114および表示板110の内部に戻されるので、この場合にも光の損失が生じることはない。更に加えて、前述したように透明インクは、無色のインク、あるいは僅かに色を帯びたインクが用いられているので、透明インクによるインク層114の部分では、ほとんど光を吸収することはない。
Further, the principle of displaying an image by the image display apparatus 100 of the eighth embodiment is that light is scattered by the light scattering fine particles 114p dispersed in the transparent ink as described above with reference to FIG. Is. The light that collides with the light-scattering fine particles 114p scatters to the surroundings and brightens the image, so that eventually this light is also used as a kind of illumination, and almost no loss of light is caused by displaying the image. Absent. Even when light passes through the light scattering fine particles 114p and reaches the surface of the ink layer 114 without colliding with the light scattering fine particles 114p, the light is completely reflected on the surface and the ink layer 114 and the display plate 110 are reflected. In this case, no light loss occurs. In addition, as described above, as the transparent ink, a colorless ink or a slightly colored ink is used, so that the ink layer 114 of the transparent ink hardly absorbs light.
結局、第8実施例の画像表示装置100では、端面から表示板110の内部に入射された光は、ほとんど全ての光が他端側の端面から出射されて間接照明のために使用されるか、あるいは表示板110に印刷された透明インクの画像を光らせるために使用されることになるので、ほとんど光の損失が生じることがなく、極めて高い光の利用効率を実現することが可能である。このため、むやみに強力な光源ではなく、LED126や蛍光灯などの一般的な光源を用いた場合でも、十分な光量を確保して間接照明を実現することが可能となる。
Eventually, in the image display apparatus 100 of the eighth embodiment, is almost all the light incident on the inside of the display plate 110 from the end face emitted from the end face on the other end side and used for indirect illumination? Alternatively, since it is used to shine an image of transparent ink printed on the display panel 110, light loss is hardly caused and extremely high light utilization efficiency can be realized. For this reason, even when a general light source such as an LED 126 or a fluorescent lamp is used instead of an unnecessarily powerful light source, indirect illumination can be realized while securing a sufficient amount of light.
もちろん、間接照明を行うと同時に表示される画像は、透明な表示板110の中から、あたかも光とともに画像が浮かび上がってきたかのような、たいへんに印象深い態様で表示することが可能である。
Of course, the image displayed simultaneously with the indirect illumination can be displayed in a very impressive manner as if the image has emerged from the transparent display board 110 with light.
尚、以上の説明では、端面から入射した光は、反対側の端面から上方に向けて出射するものとして説明した。しかし、当然ながら一部の光が、側面側の端面から外部に出射する場合もある。こうして側面側の端面から出射した光も、上端側の端面から出射した光と同様に、間接照明光として利用可能なことは言うまでもない。また、側面側の端面に反射テープなどの反射板を設けることで、側面側の端面から外部に出射しようとする光を反射して、表示板110の内部に戻してやるようにしてもよい。こうすれば、側面側の端面から外部に出ようとする光も、全く光の損失を招くことなく上端側の端面から出射させることが可能となる。
In the above description, the light incident from the end face is described as being emitted upward from the opposite end face. However, as a matter of course, some light may be emitted to the outside from the end surface on the side surface side. Needless to say, the light emitted from the end face on the side surface side can be used as indirect illumination light, similarly to the light emitted from the end face on the upper end side. Further, a reflection plate such as a reflection tape may be provided on the end surface on the side surface so that light that is about to be emitted to the outside from the end surface on the side surface side may be reflected and returned to the inside of the display plate 110. In this way, it is possible to emit light from the end face on the side surface side to the outside from the end face on the upper end side without causing any loss of light.
また、透明インクによる画像を表示板110の表面に直接形成するのではなく、図27および図28を用いて前述した第6実施例のように、透明インクによる画像112を形成した透明シート111を、表示板110の表面に貼り付けるようにしてもよい。こうすれば、たとえば季節によって透明シート111を貼り替えることで、表示する画像を変更して、より適切に間接照明を行うことも可能となる。
Further, instead of directly forming an image with transparent ink on the surface of the display plate 110, a transparent sheet 111 on which an image 112 with transparent ink is formed as in the sixth embodiment described above with reference to FIGS. Alternatively, it may be attached to the surface of the display board 110. In this way, for example, by changing the transparent sheet 111 depending on the season, it is possible to change the displayed image and perform indirect illumination more appropriately.
間接照明を行う第8実施例の画像表示装置100については、種々の変形例が存在している。以下では、これら各変形例について簡単に説明する。
There are various modifications of the image display apparatus 100 of the eighth embodiment that performs indirect illumination. Hereinafter, each of these modified examples will be briefly described.
H-1.第8実施例の第1の変形例 :
上述した第8実施例の画像表示装置100では、表示板110に光が入射される端面とは反対側の端面から、外部(図34に示した例では天井)に向けて光を出射することによって、間接照明を行うものとして説明した。しかし、光が外部に出射される端面に、光を拡散するための特別な部材を設けるようにしても良い。 H-1. First modification of the eighth embodiment:
In theimage display apparatus 100 of the eighth embodiment described above, light is emitted from the end surface opposite to the end surface on which light is incident on the display plate 110 toward the outside (the ceiling in the example shown in FIG. 34). In the above description, the indirect illumination is performed. However, a special member for diffusing light may be provided on the end face from which light is emitted to the outside.
上述した第8実施例の画像表示装置100では、表示板110に光が入射される端面とは反対側の端面から、外部(図34に示した例では天井)に向けて光を出射することによって、間接照明を行うものとして説明した。しかし、光が外部に出射される端面に、光を拡散するための特別な部材を設けるようにしても良い。 H-1. First modification of the eighth embodiment:
In the
図35は、上端側に光拡散部150を備えた第8実施例の第1の変形例の画像表示装置100を例示した説明図である。図35(a)には、表示板110の上端側(ベース部120とは反対側)に光拡散部150を装着する様子が示されている。図35に示した光拡散部150は、略直方体形状をしており、下面側には矩形形状の凹部が形成されている。そして、この凹部を表示板110の上端に嵌合させることによって、光拡散部150を装着するようになっている。また、光拡散部150は、アクリル樹脂などの透明な材料によって形成されており、内部には光散乱微粒子150pが分散されている。光拡散部150自体は、透明な材料で形成されているが、光散乱微粒子150pが高い密度で分散しているために、少し白濁した状態となっている。
FIG. 35 is an explanatory view illustrating an image display device 100 of a first modification of the eighth embodiment provided with a light diffusing unit 150 on the upper end side. FIG. 35A shows a state in which the light diffusing unit 150 is mounted on the upper end side (the side opposite to the base unit 120) of the display panel 110. FIG. The light diffusion part 150 shown in FIG. 35 has a substantially rectangular parallelepiped shape, and a rectangular recess is formed on the lower surface side. Then, the light diffusing portion 150 is mounted by fitting the concave portion to the upper end of the display plate 110. The light diffusing unit 150 is made of a transparent material such as an acrylic resin, and light scattering particles 150p are dispersed therein. The light diffusing portion 150 itself is made of a transparent material, but is slightly cloudy because the light scattering fine particles 150p are dispersed at a high density.
図35(b)には、光拡散部150を装着した状態で表示板110に光を入射した時の内部の様子が、断面図によって示されている。図中に示した細い破線、あるいは細い一点鎖線の矢印は、表示板110の内部を完全反射しながら光が伝播する様子を表している。このようにして表示板110の内部を伝播した光が端面に到達すると、端面から光拡散部150内に進入する。上述したように光拡散部150内には光散乱微粒子150pが高い密度で分散されているので、光は光散乱微粒子150pに衝突して、周囲に散乱され、光拡散部150の全体を光らせることになる。このようにして光拡散部150から放出される光は、光源(ここではLED126)から発生される光のように、方向性を持って進む光ではなく、光散乱微粒子150pで散乱された柔らかい光であるため、間接照明と同じ効果を得ることができる。
FIG. 35B shows a cross-sectional view of the internal state when light is incident on the display plate 110 with the light diffusing unit 150 attached. A thin broken line or a thin one-dot chain line arrow shown in the figure represents a state in which light propagates while completely reflecting inside the display panel 110. In this way, when the light propagating through the inside of the display panel 110 reaches the end face, the light enters the light diffusion portion 150 from the end face. As described above, since the light scattering fine particles 150p are dispersed at a high density in the light diffusing portion 150, the light collides with the light scattering fine particles 150p, is scattered to the surroundings, and the entire light diffusing portion 150 is lit. become. The light emitted from the light diffusing unit 150 in this way is not light that travels with directionality like light generated from the light source (in this case, the LED 126), but soft light that is scattered by the light scattering fine particles 150p. Therefore, the same effect as indirect illumination can be obtained.
また、光拡散部150を光らせるメカニズムは、微視的に見れば光散乱微粒子150pによる光の散乱であって、光の損失は発生しない。このため、得られる光は柔らかい光ではあるが、光をほとんど損失することなく、極めて高い光の利用効率で間接照明を実現することが可能となる。
Further, the mechanism for causing the light diffusing unit 150 to shine is light scattering by the light scattering fine particles 150p when viewed microscopically, and no light loss occurs. For this reason, although the obtained light is soft light, it is possible to realize indirect illumination with very high light utilization efficiency with almost no loss of light.
H-2.第8実施例の第2の変形例 :
上述した第8実施例あるいは第8実施例の第1の変形例では、単色画像を表示するものとして説明した。しかし、図12ないし図15を用いて前述した第3実施例と同様にして、カラー画像を表示することも可能である。この場合も、極めて高い光の利用効率を確保しながら、適切に間接照明を行うことが可能である。すなわち、前述したように、カラー画像は、R画像と、G画像と、B画像とを重ねることによって表示されるが、これらの画像は光の吸収によってそれぞれの色を呈しているわけではない。例えば、R画像は、緑色の光成分および青色の光成分を吸収することによって赤色を呈しているのではなく、入射された光が赤色で、その光を反射した結果として赤色に光っているだけである。G画像やB画像についても事情は全く同様であり、カラー画像を表示する際に、光の吸収は全く生じない。しかも、表示板110の端面から入射された光は、完全反射を繰り返しながら、インク層114の部分まで伝播するので、ほとんど光の損失無く光を導くことができる。このため、カラー画像を表示しながら、極めて高い光の利用効率で間接照明を行うことが可能となっている。 H-2. Second modification of the eighth embodiment:
In the above-described eighth embodiment or the first modification of the eighth embodiment, it has been described as displaying a monochromatic image. However, a color image can be displayed in the same manner as in the third embodiment described above with reference to FIGS. Also in this case, it is possible to appropriately perform indirect illumination while ensuring extremely high light use efficiency. That is, as described above, a color image is displayed by superimposing an R image, a G image, and a B image, but these images do not exhibit their respective colors due to light absorption. For example, the R image is not red by absorbing green light components and blue light components, but the incident light is red and only shines red as a result of reflecting that light. It is. The situation is exactly the same for the G image and B image, and no light is absorbed when a color image is displayed. In addition, since the light incident from the end face of thedisplay panel 110 propagates to the ink layer 114 while repeating complete reflection, the light can be guided with almost no light loss. For this reason, it is possible to perform indirect illumination with extremely high light utilization efficiency while displaying a color image.
上述した第8実施例あるいは第8実施例の第1の変形例では、単色画像を表示するものとして説明した。しかし、図12ないし図15を用いて前述した第3実施例と同様にして、カラー画像を表示することも可能である。この場合も、極めて高い光の利用効率を確保しながら、適切に間接照明を行うことが可能である。すなわち、前述したように、カラー画像は、R画像と、G画像と、B画像とを重ねることによって表示されるが、これらの画像は光の吸収によってそれぞれの色を呈しているわけではない。例えば、R画像は、緑色の光成分および青色の光成分を吸収することによって赤色を呈しているのではなく、入射された光が赤色で、その光を反射した結果として赤色に光っているだけである。G画像やB画像についても事情は全く同様であり、カラー画像を表示する際に、光の吸収は全く生じない。しかも、表示板110の端面から入射された光は、完全反射を繰り返しながら、インク層114の部分まで伝播するので、ほとんど光の損失無く光を導くことができる。このため、カラー画像を表示しながら、極めて高い光の利用効率で間接照明を行うことが可能となっている。 H-2. Second modification of the eighth embodiment:
In the above-described eighth embodiment or the first modification of the eighth embodiment, it has been described as displaying a monochromatic image. However, a color image can be displayed in the same manner as in the third embodiment described above with reference to FIGS. Also in this case, it is possible to appropriately perform indirect illumination while ensuring extremely high light use efficiency. That is, as described above, a color image is displayed by superimposing an R image, a G image, and a B image, but these images do not exhibit their respective colors due to light absorption. For example, the R image is not red by absorbing green light components and blue light components, but the incident light is red and only shines red as a result of reflecting that light. It is. The situation is exactly the same for the G image and B image, and no light is absorbed when a color image is displayed. In addition, since the light incident from the end face of the
尚、上述した第2の変形例の画像表示装置100では、R画像を表示する表示板110R(R成分用の表示板110R)の上端からは、赤色の光が上方に向かって放射され、G画像を表示する表示板110G(G成分用の表示板110R)の上端からは緑色の光が、B画像を表示する表示板110B(R成分用の表示板110R)の上端からは青色の光が上方に向かって放射される。このように赤、緑、青の光を別々に放射しても、それらの光はほぼ同じ部分に照射され、そこで混合されて略白色を呈するので、通常と同様に間接照明を行うことが可能である。また、光が照射される領域の端の部分では、各色の光の強さにバラツキが生じ、その結果として色を呈するようになるので、独特な照明効果を得ることも可能となる。
In the image display device 100 of the second modification described above, red light is radiated upward from the upper end of the display plate 110R (the R component display plate 110R) that displays the R image. Green light is emitted from the upper end of the display plate 110G (G component display plate 110R) for displaying an image, and blue light is emitted from the upper end of the display plate 110B (R component display plate 110R) for displaying a B image. Radiated upward. Even if red, green, and blue light are separately emitted in this way, the light is applied to almost the same part and mixed there to give almost white color, so indirect illumination can be performed as usual. It is. In addition, in the end portion of the region irradiated with light, the intensity of light of each color varies, and as a result, the color is exhibited, so that a unique lighting effect can be obtained.
しかし、カラー画像を表示する第2の変形例においても、表示板110の上端に光を拡散させる部材を設けても良い。こうすれば、この部材で光を拡散させると同時に、RGBの各成分の光を混合させて、略白色の光とすることができる。
However, also in the second modification that displays a color image, a member that diffuses light may be provided at the upper end of the display plate 110. If it carries out like this, light of each component of RGB can be mixed at the same time it diffuses light with this member, and it can be set as substantially white light.
図36は、上端に光混合拡散部160を備えた第8実施例の第2の変形例の画像表示装置100を例示した説明図である。また、図36(a)には、表示板110の上端側(ベース部120とは反対側)に光混合拡散部160を装着する様子が示されている。光混合拡散部160は、前述した光拡散部150と同様に略直方体形状をしており、下面側には凹部が形成されている。そして、この凹部を表示板110の上端に嵌合させることによって装着する。光混合拡散部160も、前述した光拡散部150と同様にアクリル樹脂などの透明な材料によって形成されており、内部には、光散乱微粒子150pと同様な光散乱微粒子160pが高い密度で分散されて、光混合拡散部160全体は少し白濁した状態となっている。
FIG. 36 is an explanatory view exemplifying an image display device 100 of a second modification of the eighth embodiment provided with the light mixing and diffusing unit 160 at the upper end. FIG. 36A shows a state where the light mixing and diffusing unit 160 is mounted on the upper end side (the side opposite to the base unit 120) of the display plate 110. FIG. The light mixing and diffusing portion 160 has a substantially rectangular parallelepiped shape, similar to the light diffusing portion 150 described above, and a recess is formed on the lower surface side. Then, the concave portion is attached by fitting the concave portion to the upper end of the display plate 110. The light mixing and diffusing unit 160 is also formed of a transparent material such as an acrylic resin similarly to the light diffusing unit 150 described above, and light scattering fine particles 160p similar to the light scattering fine particles 150p are dispersed therein at a high density. Thus, the entire light mixing and diffusing unit 160 is slightly cloudy.
図36(b)には、表示板110に光混合拡散部160を装着した状態で、R成分表示板110Rから赤色光が出射される様子が、断面図によって示されている。図示されるように、第1の変形例の光混合拡散部160は、前述した光拡散部150とは異なって、表示板110の上端と光混合拡散部160との間に隙間が設けられている。従って、R成分表示板110Rから放射された赤色光は、隙間の部分で広がって、光混合拡散部160の頂部全体を照射するようになっている。
FIG. 36B is a cross-sectional view showing a state in which red light is emitted from the R component display plate 110R in a state where the light mixing diffusion unit 160 is mounted on the display plate 110. As shown in the figure, the light mixing and diffusing unit 160 of the first modified example is different from the light diffusing unit 150 described above in that a gap is provided between the upper end of the display panel 110 and the light mixing and diffusing unit 160. Yes. Therefore, the red light emitted from the R component display panel 110R spreads in the gap and irradiates the entire top of the light mixing and diffusing unit 160.
尚、図36(b)に示されるように、表示板110の上端と光混合拡散部160との間に設けられた隙間の側面部分には、側面部から外部に光が透過することを防止する遮蔽部材162を設けるようにしても良い。こうすれば、R成分表示板110R側の光混合拡散部160の側面が、R成分表示板110Rの上端からの赤色光によって赤く光ることを回避することができる。また、遮蔽部材162としては、単なる遮蔽部材の代わりに、光を反射する反射部材を用いても良い。こうすれば、R成分表示板110Rの上端から出射された全ての赤色光を、光混合拡散部160の頂部に導くことが可能となる。
As shown in FIG. 36 (b), light is prevented from being transmitted from the side surface to the outside in the side surface portion of the gap provided between the upper end of the display panel 110 and the light mixing and diffusing portion 160. A shielding member 162 may be provided. By doing so, it is possible to avoid that the side surface of the light mixing and diffusing unit 160 on the R component display plate 110R side is lit red by red light from the upper end of the R component display plate 110R. Further, as the shielding member 162, a reflecting member that reflects light may be used instead of a simple shielding member. In this way, it is possible to guide all the red light emitted from the upper end of the R component display panel 110R to the top of the light mixing diffusion unit 160.
図36(c)には、G成分表示板110Gから出射された緑色光が、光混合拡散部160の頂部全体を照射する様子が示されている。更に図36(d)には、B成分表示板110Gからの青色光が、光混合拡散部160の頂部全体を照射する様子が示されている。尚、図36(b)に示したように、表示板110の上端と光混合拡散部160との間に遮蔽部材162を設けておけば、G成分表示板110GあるいはB成分表示板110Bから出射された緑色光や青色光が、光混合拡散部160の側面から漏れ出すことを防止することができる。
FIG. 36 (c) shows a state in which the green light emitted from the G component display plate 110G irradiates the entire top of the light mixing and diffusing unit 160. Further, FIG. 36 (d) shows a state in which the blue light from the B component display plate 110 </ b> G irradiates the entire top of the light mixing and diffusing unit 160. As shown in FIG. 36B, if a shielding member 162 is provided between the upper end of the display plate 110 and the light mixing and diffusing portion 160, the light is emitted from the G component display plate 110G or the B component display plate 110B. The emitted green light and blue light can be prevented from leaking from the side surface of the light mixing and diffusing unit 160.
第8実施例の第2の変形例の画像表示装置100では、以上のようにして、R成分表示板110Rからの赤色光と、G成分表示板110Gからの緑色光と、B成分表示板110Bからの青色光とが、光混合拡散部160の頂部全体に照射される。そして前述したように、光混合拡散部160はアクリル樹脂などの透明な材料で形成されているから、赤色光、緑色光、青色光は、それぞれに光混合拡散部160の内部に進入して、光混合拡散部160の内部に分散した光散乱微粒子160pに衝突して周囲に散乱される。その結果、赤色光と、緑色光と、青色光とが光混合拡散部160内で混合するとともに、周囲に拡散されて、白色光を用いた場合と同様な間接照明を実現することが可能となる。尚、光混合拡散部160内では、光散乱微粒子160pが高い密度で分散しているので、光混合拡散部160内を進行している間に、ほとんど全ての光が光散乱微粒子160pによって散乱される。このため、R成分表示板110R、G成分表示板110G、B成分表示板110Bから出射された全ての光を、混合および拡散させることが可能となる。
In the image display device 100 according to the second modification of the eighth embodiment, the red light from the R component display plate 110R, the green light from the G component display plate 110G, and the B component display plate 110B are processed as described above. Is irradiated on the entire top of the light mixing and diffusing unit 160. As described above, since the light mixing diffusion unit 160 is formed of a transparent material such as acrylic resin, red light, green light, and blue light respectively enter the light mixing diffusion unit 160, It collides with the light scattering fine particles 160p dispersed inside the light mixing and diffusing unit 160 and is scattered around. As a result, red light, green light, and blue light are mixed in the light mixing and diffusing unit 160 and diffused to the surroundings, so that it is possible to realize indirect illumination similar to the case where white light is used. Become. In the light mixing and diffusing unit 160, since the light scattering fine particles 160p are dispersed at a high density, almost all light is scattered by the light scattering fine particles 160p while traveling in the light mixing and diffusing unit 160. The For this reason, it becomes possible to mix and diffuse all the light emitted from the R component display board 110R, the G component display board 110G, and the B component display board 110B.
以上に説明した光混合拡散部160を備える第2の変形例の画像表示装置100においても、光混合拡散部160では単に光を散乱しているだけであって、何ら光の損失は生じていない。このため、表示板110にはカラー画像を光らせて表示させ、光混合拡散部160では柔らかな白色光による間接照明を行いながら、極めて高い光の利用効率を実現することが可能となる。
Also in the image display device 100 of the second modified example provided with the light mixing and diffusing unit 160 described above, the light mixing and diffusing unit 160 merely scatters light, and no light loss occurs. . Therefore, it is possible to realize a very high light utilization efficiency while causing the color image to be displayed on the display panel 110 and the light mixing and diffusing unit 160 to perform indirect illumination with soft white light.
尚、上述した光混合拡散部160を備える第2の変形例の画像表示装置100では、光を出射する側の端面形状は、R成分表示板110R、G成分表示板110G、B成分表示板110Bの何れも同じであるものとして説明した。しかし、図36(b)~図36(d)に示したように、各表示板110R,110G,110Bと、光混合拡散部160の頂部との位置関係によって、頂部全体に光を届かせることの容易な表示板と、頂部全体に光を届かせることが困難な表示板とが存在する。そこで、各表示板110R,110G,110B毎に、光を出射する側の端面形状を最適化しても良い。
In the image display device 100 of the second modified example including the light mixing and diffusing unit 160 described above, the end surface shapes on the light emission side are the R component display plate 110R, the G component display plate 110G, and the B component display plate 110B. Both of them are described as being the same. However, as shown in FIGS. 36 (b) to 36 (d), the light can reach the entire top portion depending on the positional relationship between the display panels 110R, 110G, and 110B and the top portion of the light mixing and diffusing portion 160. There are display panels that are easy to display and display panels that are difficult to allow light to reach the entire top. Therefore, the end face shape on the light emitting side may be optimized for each of the display plates 110R, 110G, and 110B.
図37は、R成分表示板110R、G成分表示板110G、B成分表示板110B毎に、光を出射する側の端面形状を異ならせた様子を例示した説明図である。このように、表示板毎に適切な端面形状としておけば、表示板110の上端と、光混合拡散部160の頂部との間の隙間を小さくして、頂部を表示板110の上端に近づけることができるので、光混合拡散部160をコンパクトにすることが可能となる。また、各表示板から出射される光が光混合拡散部160の頂面に均等に照射されるように、表示板ごとに、光を出射する側の端面形状を最適化すれば、それぞれの表示板の端面から出射された光を、より均一に光を混合することも可能となる。
FIG. 37 is an explanatory view exemplifying a state in which the end face shape on the light emitting side is changed for each of the R component display board 110R, the G component display board 110G, and the B component display board 110B. In this way, if the end face shape is appropriate for each display panel, the gap between the upper end of the display panel 110 and the top of the light mixing and diffusing unit 160 is reduced, and the top is brought closer to the upper end of the display panel 110. Therefore, the light mixing and diffusing unit 160 can be made compact. Further, if the end face shape on the light emitting side is optimized for each display plate so that the light emitted from each display plate is evenly applied to the top surface of the light mixing and diffusing unit 160, each display It is also possible to mix light emitted from the end face of the plate more uniformly.
H-3.第8実施例の第3の変形例 :
上述した第8実施例の第2の変形例の画像表示装置100では、赤色LED126R、緑色LED126G、青色LED126Bが放出するそれぞれの光の強度は、固定されているものとして説明した。しかし、全体の光強度を変更可能とするとともに、各色間での光強度の比率も変更可能としても良い。 H-3. Third modification of the eighth embodiment:
In theimage display device 100 according to the second modification of the eighth embodiment described above, it has been described that the intensity of each light emitted by the red LED 126R, the green LED 126G, and the blue LED 126B is fixed. However, the overall light intensity can be changed, and the ratio of the light intensity between the colors can be changed.
上述した第8実施例の第2の変形例の画像表示装置100では、赤色LED126R、緑色LED126G、青色LED126Bが放出するそれぞれの光の強度は、固定されているものとして説明した。しかし、全体の光強度を変更可能とするとともに、各色間での光強度の比率も変更可能としても良い。 H-3. Third modification of the eighth embodiment:
In the
図38は、全体の光強度および色間での光強度の比率を変更可能とした第3の変形例の画像表示装置100を例示した説明図である。図38(a)には、全体の光強度を変更するための操作スイッチ122aと、色間での光強度の比率を変更するための操作スイッチ122bとが、ベース部120に設けられている様子が示されている。操作スイッチ122aを回転させると、赤色光、緑色光、青色光の強度の比率はそのままで、全体の光強度を増減させることができる。また、操作スイッチ122aを反時計方向に一杯に回すことにより、照明を切ることも可能である。こうした機能は、ベース部120に内蔵されている電源から、赤色光を放出する赤色LED126R、緑色光を放出する緑色LED126G、青色光を放出する青色LED126Bに電力を供給する回路に、可変抵抗を挿入することによって容易に実現することが可能である。図38(b)には、操作スイッチ122aを操作することによって、全体の光強度を変更可能な様子が概念的に示されている。
FIG. 38 is an explanatory view illustrating an image display device 100 of a third modified example in which the overall light intensity and the ratio of the light intensity between colors can be changed. In FIG. 38A, an operation switch 122a for changing the overall light intensity and an operation switch 122b for changing the ratio of the light intensity between colors are provided on the base portion 120. It is shown. When the operation switch 122a is rotated, the overall light intensity can be increased or decreased without changing the intensity ratio of red light, green light, and blue light. It is also possible to turn off the illumination by turning the operation switch 122a fully counterclockwise. Such a function inserts a variable resistor into a circuit that supplies power from a power source built in the base unit 120 to a red LED 126R that emits red light, a green LED 126G that emits green light, and a blue LED 126B that emits blue light. This can be easily realized. FIG. 38B conceptually shows that the entire light intensity can be changed by operating the operation switch 122a.
また、図38(a)に示した操作スイッチ122bを回転させると、赤色光(R光)、緑色光(G光)、青色光(B光)の光強度の比率を変更することが可能である。例えば、操作スイッチ122bを「標準」と表示された位置にセットすると、赤色光(R光)、緑色光(G光)、青色光(B光)の光強度を同じ比率に設定される。また、操作スイッチ122bを反時計方向に回転させると、赤色光(R光)の比率が低下し、緑色光(G光)の比率も少し低下する。その結果、表示板110に表示されるカラー画像を、全体として青みがかった涼しげな色調に変更することができ、それと同時に、これらの光が混合されることによって、全体として青っぽい涼しげな色調の光による間接照明を行うことが可能となる。
When the operation switch 122b shown in FIG. 38A is rotated, it is possible to change the ratio of the light intensity of red light (R light), green light (G light), and blue light (B light). is there. For example, when the operation switch 122b is set at a position where “standard” is displayed, the light intensities of red light (R light), green light (G light), and blue light (B light) are set to the same ratio. Further, when the operation switch 122b is rotated counterclockwise, the ratio of red light (R light) is decreased and the ratio of green light (G light) is slightly decreased. As a result, the color image displayed on the display board 110 can be changed to a cool color tone that is bluish as a whole, and at the same time, by mixing these lights, the light of a cool color tone that is bluish as a whole is obtained. Indirect lighting can be performed.
また逆に、操作スイッチ122bを時計方向に回転させると、青色光(B光)の比率が低下し、緑色光(G光)の比率も少し低下する。その結果、表示板110に表示されるカラー画像を、全体として赤みがかった暖かな色調に変更することができ、それと同時に、これらの光が混合されることによって、全体として赤っぽい暖かな色調の光で間接照明を行うことが可能となる。図38(c)には、操作スイッチ122bの操作に伴って、赤色光(R光)、緑色光(G光)、青色光(B光)の比率が変化する様子が概念的に示されている。操作スイッチ122bの操作に応じて、赤色光(R光)、緑色光(G光)、青色光(B光)の比率をこのように変化させることは、ベース部120に内蔵されている電源と、赤色LED126R、緑色LED126G、青色LED126Bとの間に専用の制御回路を挿入することによって容易に実現することが可能である。そして、操作スイッチ122bの操作によって、このように各色の光強度の比率を変化させれば、表示板110に表示される画像や間接照明の色調を、涼しげな色調から暖かな色調までの範囲から自由に設定することが可能となる。
Conversely, when the operation switch 122b is rotated clockwise, the ratio of blue light (B light) is decreased and the ratio of green light (G light) is slightly decreased. As a result, the color image displayed on the display board 110 can be changed to a warm reddish color tone as a whole, and at the same time, by mixing these lights, an overall reddish warm color tone is obtained. Indirect illumination can be performed with light. FIG. 38C conceptually shows how the ratio of red light (R light), green light (G light), and blue light (B light) changes as the operation switch 122b is operated. Yes. Changing the ratio of red light (R light), green light (G light), and blue light (B light) in accordance with the operation of the operation switch 122b in this way is based on the power supply built in the base unit 120. This can be easily realized by inserting a dedicated control circuit between the red LED 126R, the green LED 126G, and the blue LED 126B. Then, if the ratio of the light intensity of each color is changed in this way by operating the operation switch 122b, the color of the image displayed on the display board 110 and the indirect illumination is changed from a range from a cool color tone to a warm color tone. It can be set freely.
以上に説明したように、第8実施例における第3の変形例の画像表示装置100では、操作スイッチ122aを操作することによって、画像を表示する明るさと間接照明の強さを調整することが可能であり、加えて、操作スイッチ122bを操作することによって、表示される画像や間接照明の色調を調整することができる。その結果、季節や状況などに応じて、適切な色調で画像を表示するとともに、間接照明を行うことが可能となる。
As described above, in the image display device 100 according to the third modified example of the eighth embodiment, the brightness for displaying an image and the intensity of indirect illumination can be adjusted by operating the operation switch 122a. In addition, by operating the operation switch 122b, the displayed image and the color tone of the indirect illumination can be adjusted. As a result, it is possible to display an image with an appropriate color tone and perform indirect illumination according to the season and situation.
I.変形例 :
上述した各種の画像表示装置100には、更に以下のような変形例を考えることができる。以下では、これら変形例について簡単に説明する。 I. Modified example:
The following modifications can be further considered for the variousimage display devices 100 described above. Hereinafter, these modified examples will be briefly described.
上述した各種の画像表示装置100には、更に以下のような変形例を考えることができる。以下では、これら変形例について簡単に説明する。 I. Modified example:
The following modifications can be further considered for the various
I-1.第1変形例 :
上述した各種実施例では、インク層114内に光散乱微粒子114pを分散させておき、光散乱微粒子114pで光を散乱させることでインク層114を光らせるものとして説明した。しかし、インク層114を光らせるためには必ずしも光散乱微粒子114pを分散させておく必要はなく、次のような方法を採用することも可能である。 I-1. First modification:
In the various embodiments described above, the light scatteringfine particles 114p are dispersed in the ink layer 114, and the ink layer 114 is made to shine by scattering light with the light scattering fine particles 114p. However, in order to make the ink layer 114 shine, it is not always necessary to disperse the light scattering fine particles 114p, and the following method can also be adopted.
上述した各種実施例では、インク層114内に光散乱微粒子114pを分散させておき、光散乱微粒子114pで光を散乱させることでインク層114を光らせるものとして説明した。しかし、インク層114を光らせるためには必ずしも光散乱微粒子114pを分散させておく必要はなく、次のような方法を採用することも可能である。 I-1. First modification:
In the various embodiments described above, the light scattering
図39は、第1変形例の画像表示装置100で、光散乱微粒子114pを用いることなくインク層114を光らせることが可能な理由を示す説明図である。第1変形例の画像表示装置100においても、LED126を点灯させて、端面から表示板110の内部に光を入射すると、入射した光は、図2を用いて前述した原理によって、表示板110の表面で完全反射を繰り返しながら内部を進行していく。図39では、表示板110の端面から入射された光が、表面で完全反射を繰り返しながら内部を進行していく様子が、破線あるいは一点鎖線の矢印によって表されている。そして、表示板110の内部を進行した光は、やがて、表面に透明インクによって形成されたインク層114に到達する。前述したように、インク層114の屈折率は表示板110の屈折率と比較的近いので、表示板110とインク層114との境界面に達した光は、ほとんど進行方向を曲げられることなく、そのまま境界面を通過してインク層114の内部を進行した後、インク層114と空気との境界面(インク層114の表面)に到達する。
FIG. 39 is an explanatory diagram showing the reason why the ink layer 114 can be illuminated without using the light scattering fine particles 114p in the image display device 100 according to the first modification. Also in the image display device 100 of the first modified example, when the LED 126 is turned on and light is incident on the inside of the display plate 110 from the end face, the incident light is reflected on the display plate 110 according to the principle described above with reference to FIG. It progresses inside while repeating perfect reflection on the surface. In FIG. 39, a state in which light incident from the end face of the display panel 110 travels through the inside while repeating complete reflection on the surface is represented by a broken line or a one-dot chain line arrow. Then, the light traveling inside the display panel 110 eventually reaches the ink layer 114 formed on the surface with transparent ink. As described above, since the refractive index of the ink layer 114 is relatively close to the refractive index of the display plate 110, the light reaching the boundary surface between the display plate 110 and the ink layer 114 is hardly bent in the traveling direction. After passing through the boundary surface as it is and proceeding inside the ink layer 114, the boundary surface between the ink layer 114 and air (the surface of the ink layer 114) is reached.
ところが、インク層114の表面は、表示板110の表面ほどには平坦でなく、表面に凹凸が形成されている。このため、インク層114の表面には、完全反射の条件が成り立たない箇所が、一定の割合で、しかもほぼ均一に発生することになり、そのような箇所からは、前述したスネルの法則に従って、一定比率の光が外部に透過する。その結果として、インク層114が光って見えるようになる。
However, the surface of the ink layer 114 is not as flat as the surface of the display panel 110, and unevenness is formed on the surface. For this reason, on the surface of the ink layer 114, a portion where the condition of complete reflection is not satisfied is generated at a constant rate and almost uniformly. From such a portion, according to the Snell's law described above, A certain ratio of light is transmitted to the outside. As a result, the ink layer 114 appears to shine.
また、このようなメカニズムは、表示板110の表面の画像112を、いわゆるインクジェットプリンタを用いて印刷した場合に、より顕著に表れる。周知のように、インクジェットプリンタでは、細かなインク滴を吐出することによって画像を印刷する。従って、インクジェットプリンタを用いて、表示板110の表面に印刷された画像112は、細かな(小さな面積の)インク層114が集まって形成されている(図32を参照のこと)。しかも、インク層114の面積が小さいと、インクの表面張力の働きで、インク層114の表面(空気との境界面)は図32に例示したように曲面状に形成される。このため、インクジェットプリンタを用いて印刷した画像112では、インク層114に到達した光の中で完全反射の条件を満たさずに、外部に透過する光の比率が大きくなるので、光散乱微粒子114pを含まない場合でも、十分に実用的な明るさで画像112を光らせることが可能となる。
Further, such a mechanism appears more prominently when the image 112 on the surface of the display board 110 is printed using a so-called inkjet printer. As is well known, an inkjet printer prints an image by ejecting fine ink droplets. Therefore, an image 112 printed on the surface of the display board 110 using an ink jet printer is formed by collecting fine (small area) ink layers 114 (see FIG. 32). In addition, when the area of the ink layer 114 is small, the surface of the ink layer 114 (boundary surface with air) is formed into a curved surface as illustrated in FIG. 32 by the action of the surface tension of the ink. For this reason, in the image 112 printed using the ink jet printer, the ratio of the light transmitted to the outside without satisfying the condition of complete reflection in the light reaching the ink layer 114 is increased. Even when it is not included, the image 112 can be illuminated with sufficiently practical brightness.
以上に説明したように、光散乱微粒子114pを含まない透明インクを用いて画像112を形成しておけば、表示板110の表面に形成した画像112を、より一層目立たないようにすることができる。その結果、LED126を点灯して画像112を光らせることで、透明な板の中から光って画像が浮き上がってきたような、たいへんに印象深い態様で画像を表示することが可能となる。尚、ここでは、インクジェットプリンタを例に用いて説明したが、インクジェットプリンタのように細かな(面積の小さな)インク層114を形成すれば、インクジェットプリンタ以外の方法で画像112を印刷した場合にも、上述した事柄は全く同様に当て嵌まる。
As described above, if the image 112 is formed using the transparent ink not including the light scattering fine particles 114p, the image 112 formed on the surface of the display panel 110 can be made more inconspicuous. . As a result, by turning on the LED 126 and causing the image 112 to shine, it is possible to display the image in a very impressive manner as if the image floated from the transparent plate. Here, an ink jet printer has been described as an example. However, if a fine (small area) ink layer 114 is formed as in an ink jet printer, the image 112 may be printed by a method other than the ink jet printer. The above-mentioned matters apply in exactly the same way.
I-2.第2変形例 :
また、上述した各種実施例および変形例では、表示板110の端面から入射した可視光を、インク層114内の光散乱微粒子114pで散乱させ、あるいはインク層114の表面を透過させることによって、画像を光らせるものとして説明した。この場合、赤色の光を入射すれば、画像は赤色に光って表示され、白色の光を入射すれば、画像は白色に光って表示されるといったように、表示板110の表面に印刷された画像112は、端面から入射した光の色で光ることになる。これに対して、蛍光材料を含有する透明インクを用いて画像112を形成しても良い。「蛍光」とは、可視光、紫外光、赤外光、電磁波などが照射されると、一時的に励起されたエネルギー状態となり、その励起状態からより安定な状態に戻る際に、照射された光とは異なる波長の光を放出する現象である。また、蛍光現象によって放出される光を、単に「蛍光」と呼ぶこともある。蛍光材料が異なれば、同じ光を照射した場合でも、異なる波長の光を放出し、異なる色に光らせることができる。従って、このような蛍光材料を用いれば、次のようにして画像を表示することも可能である。 I-2. Second modification:
In the above-described various embodiments and modifications, the visible light incident from the end face of thedisplay plate 110 is scattered by the light scattering fine particles 114p in the ink layer 114 or transmitted through the surface of the ink layer 114. It was explained as something that shines. In this case, if red light is incident, the image is displayed in red, and if white light is incident, the image is displayed in white. The image 112 shines with the color of light incident from the end face. On the other hand, the image 112 may be formed using a transparent ink containing a fluorescent material. “Fluorescence” means that when it is irradiated with visible light, ultraviolet light, infrared light, electromagnetic waves, etc., it is temporarily excited, and is irradiated when returning from the excited state to a more stable state. This is a phenomenon in which light having a wavelength different from that of light is emitted. In addition, light emitted by the fluorescence phenomenon may be simply referred to as “fluorescence”. Different fluorescent materials can emit light of different wavelengths and shine in different colors even when irradiated with the same light. Therefore, if such a fluorescent material is used, an image can be displayed as follows.
また、上述した各種実施例および変形例では、表示板110の端面から入射した可視光を、インク層114内の光散乱微粒子114pで散乱させ、あるいはインク層114の表面を透過させることによって、画像を光らせるものとして説明した。この場合、赤色の光を入射すれば、画像は赤色に光って表示され、白色の光を入射すれば、画像は白色に光って表示されるといったように、表示板110の表面に印刷された画像112は、端面から入射した光の色で光ることになる。これに対して、蛍光材料を含有する透明インクを用いて画像112を形成しても良い。「蛍光」とは、可視光、紫外光、赤外光、電磁波などが照射されると、一時的に励起されたエネルギー状態となり、その励起状態からより安定な状態に戻る際に、照射された光とは異なる波長の光を放出する現象である。また、蛍光現象によって放出される光を、単に「蛍光」と呼ぶこともある。蛍光材料が異なれば、同じ光を照射した場合でも、異なる波長の光を放出し、異なる色に光らせることができる。従って、このような蛍光材料を用いれば、次のようにして画像を表示することも可能である。 I-2. Second modification:
In the above-described various embodiments and modifications, the visible light incident from the end face of the
先ず、異なる色で光る蛍光材料を含有した複数種類の透明インクを用意する。これらの透明インクは、含有されている蛍光材料の種類に応じて、異なる色の蛍光を放出する。このような透明インクとしては、例えば、シンロイヒ株式会社から「ロイヒマーカー」あるいは「マジックルミノペイント」という商品名で、蛍光材料入りの塗料が市販されている。これらの製品は、通常の状態では透明でありながら、紫外光が照射されると蛍光を放出する特性を有しており、蛍光の色も、赤色の塗料や、緑色の塗料、青色の塗料など、種々の蛍光色の製品が市販されている。そこで、1枚の表示板110の表面に、これらの蛍光色の透明インクを用いて画像112を形成しておき、その表示板110の端面に向かい合わせて、紫外光を発生するLED126を設けておく。そして、LED126を点灯させて紫外光を端面から入射してやれば、それぞれの蛍光色で画像112を光らせて表示することが可能となる。
First, a plurality of types of transparent inks containing fluorescent materials that shine in different colors are prepared. These transparent inks emit different colors of fluorescence depending on the type of fluorescent material contained. As such a transparent ink, for example, a paint containing a fluorescent material is commercially available from Shinroihi Co., Ltd. under the trade name “Leuhi Marker” or “Magic Lumino Paint”. These products are transparent under normal conditions, but have the property of emitting fluorescence when irradiated with ultraviolet light. The fluorescent color is also red paint, green paint, blue paint, etc. Various fluorescent products are commercially available. Therefore, an image 112 is formed on the surface of one display board 110 using these fluorescent colored transparent inks, and an LED 126 that generates ultraviolet light is provided facing the end face of the display board 110. deep. If the LED 126 is turned on and ultraviolet light is incident from the end face, it is possible to display the image 112 with each fluorescent color.
このような第2変形例の画像表示装置100では、通常の光の下では透明なインクを使用して画像112を印刷することができ、しかも、光散乱微粒子114pを分散させる必要もない。このため、LED126を点灯しない状態では、表示板110に画像112が形成されていることを、より一層目立ち難くすることができる。加えて、インク層114の表面を凹凸に形成したり、あるいは細かい(面積の小さい)インク層114によって画像112を形成したりする必要がないので、光の反射の具合によって、表示板110の表面に画像112が形成されていることに気付かれてしまうことも回避することができる。その結果、透明な板の中から光って画像が浮き上がってきたような、たいへんに印象深い態様で画像を表示することが可能となる。
In the image display device 100 according to the second modified example, it is possible to print the image 112 using a transparent ink under normal light, and it is not necessary to disperse the light scattering fine particles 114p. For this reason, in a state where the LED 126 is not lit, it is possible to make the image 112 formed on the display board 110 more inconspicuous. In addition, since it is not necessary to form the surface of the ink layer 114 with unevenness or to form the image 112 with the fine (small area) ink layer 114, the surface of the display board 110 may be changed depending on how light is reflected. It is also possible to avoid the fact that the image 112 has been formed. As a result, it is possible to display the image in a very impressive manner as if the image was shining from the transparent plate.
もちろん、第2変形例の画像表示装置100においても、複数枚の表示板110の表面に画像112を形成しても良い。例えば、前述した第3実施例の画像表示装置100のように、ある表示板110の表面には蛍光色が赤色の透明インクを用いて画像112を形成し、他の表示板110には緑色の蛍光色の透明インクを用いて画像112を形成し、別の表示板110には青色の蛍光色の透明インクを用いて画像112を形成して、それらを重ね合わせて用いることとしても良い。こうすれば、複数枚の表示板110で分担して画像112を形成することができるので、1枚の表示板110に画像112を形成するよりも、より細かい画像112を形成することが可能となる。
Of course, in the image display device 100 of the second modification, the image 112 may be formed on the surface of the plurality of display plates 110. For example, as in the image display device 100 of the third embodiment described above, an image 112 is formed on the surface of a certain display board 110 using transparent ink having a red fluorescent color, and the other display board 110 has a green color. The image 112 may be formed using fluorescent transparent ink, and the image 112 may be formed on another display plate 110 using blue fluorescent transparent ink, and the images 112 may be used in a superimposed manner. In this way, since the image 112 can be formed by being shared by the plurality of display boards 110, it is possible to form a finer image 112 than when the image 112 is formed on one display board 110. Become.
以上、本発明について各種の実施の形態を説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、各請求項の記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。
While various embodiments of the present invention have been described above, the present invention is not limited thereto, and is not limited to the wording of each claim unless it departs from the scope described in each claim. Improvements based on the knowledge that a person skilled in the art normally has can also be added as appropriate to the extent that those skilled in the art can easily replace them.
透明な表示板の上に、極めて人目を引き付け易く且つ印象的な態様で画像を表示することができる。このため、宣伝や、装飾、各種情報の伝達、間接照明などを、極めて効果的に行うことが可能となる。
An image can be displayed on a transparent display board in an extremely attractive and impressive manner. For this reason, advertising, decoration, transmission of various information, indirect lighting, etc. can be performed extremely effectively.
Claims (14)
- 所定の画像を表示する画像表示装置であって、
光を散乱させる微粒子を含んだ透明インクによって、前記画像が表面に形成された透明な板状部材である表示板と、
前記表示板の端面から該表示板の内部に向けて光を入射する光入射部と
を備える画像表示装置。 An image display device for displaying a predetermined image,
A display plate, which is a transparent plate-like member having the image formed on the surface thereof, using transparent ink containing fine particles that scatter light;
An image display device comprising: a light incident portion that makes light incident from an end face of the display plate toward the inside of the display plate. - 請求項1に記載の画像表示装置であって、
複数の前記表示板と、
前記表示板毎に設けられて、該表示板の端面から光を入射する複数の光入射部と
を備え、
前記複数の表示板は、互いに異なる画像が前記透明インクで形成されているとともに、該表示板の表面間に隙間が確保された状態で積層されている画像表示装置。 The image display device according to claim 1,
A plurality of the display boards;
A plurality of light incident portions that are provided for each of the display plates and receive light from an end surface of the display plate;
The plurality of display panels are image display devices in which different images are formed of the transparent ink and are stacked in a state where a gap is secured between the surfaces of the display boards. - 請求項2に記載の画像表示装置であって、
前記複数の表示板は、第1の表示板、第2の表示板、および第3の表示板を備えており、
前記光入射部は、前記第1の表示板の端面から赤色光を入射するR光入射部と、前記第2の表示板の端面から緑色光を入射するG光入射部と、前記第3の表示板の端面から青色光を入射するB光入射部とを備えている画像表示装置。 The image display device according to claim 2,
The plurality of display boards include a first display board, a second display board, and a third display board,
The light incident portion includes an R light incident portion that receives red light from an end surface of the first display plate, a G light incident portion that receives green light from an end surface of the second display plate, and the third light incident portion. An image display device comprising: a B light incident portion that injects blue light from an end face of the display plate. - 請求項2に記載の画像表示装置であって、
前記複数の表示板の中には、他の表示板の画像に追加して表示される追加画像が表面に形成された追加画像表示板が含まれており、
前記複数の光入射部の中には、前記追加画像表示板の端面から該追加画像表示板の内部に向けて光を入射する追加光入射部が含まれており、
前記追加光入射部は、他の前記光入射部が前記表示板の内部に光を入射している間も、前記追加画像表示板に対して光を入射している状態と、光を入射していない状態とを切り換え可能に構成された入射部である画像表示装置。 The image display device according to claim 2,
Among the plurality of display boards, an additional image display board in which an additional image displayed in addition to an image of another display board is formed on the surface is included,
Among the plurality of light incident portions, an additional light incident portion that enters light from the end face of the additional image display plate toward the inside of the additional image display plate is included,
The additional light incident part is in a state in which light is incident on the additional image display plate while the other light incident part is incident on the inside of the display plate. An image display device, which is an incident portion configured to be switchable between a state where no image is present. - 請求項2に記載の画像表示装置であって、
前記複数の表示板は、互いに向き合う表面の少なくとも一方に、間隔を空けて複数の凸部が設けられており、該凸部によって該表面間に隙間が確保された状態で積層されている表示板である画像表示装置。 The image display device according to claim 2,
The plurality of display plates are provided with a plurality of convex portions provided at intervals on at least one of the surfaces facing each other, and the display plates are stacked in a state where a gap is secured between the surfaces by the convex portions. An image display device. - 請求項1に記載の画像表示装置であって、
前記画像は、該画像の各箇所で、前記表示板の内部から当該箇所に到達した光を散乱させる割合である光散乱割合が、当該箇所を光らせようとする目標輝度と、該表示板の前記端面から当該箇所までの該光散乱割合の分布とに基づいて決定された光散乱割合となるように印刷された画像である画像表示装置。 The image display device according to claim 1,
The image has a target luminance at which each part of the image scatters the light reaching the part from the inside of the display board, the target luminance to shine the part, and the display board An image display device, which is an image printed so as to have a light scattering ratio determined based on the distribution of the light scattering ratio from the end surface to the location. - 請求項6に記載の画像表示装置であって、
前記画像は、
前記表示板の表面を均等に区分して得られる複数の画素内に、前記透明インクによるインク層を形成することによって構成されているとともに、
前記画像の各画素位置での前記光散乱割合が前記所望の光散乱割合となるように、各画素内に形成される前記インク層の面積を異ならせて印刷された画像である画像表示装置。 The image display device according to claim 6,
The image is
In the plurality of pixels obtained by equally dividing the surface of the display panel, the ink layer is formed by the transparent ink, and
An image display device, which is an image printed with different areas of the ink layer formed in each pixel so that the light scattering ratio at each pixel position of the image becomes the desired light scattering ratio. - 請求項7に記載の画像表示装置であって、
前記画素内に形成される前記インク層の面積を決定するに際しては、
光が入射する方向から見て最も上流側にある前記画素については、該画素内に形成する前記インク層の面積に比例した指標値を、該画素についての前記目標輝度に応じて決定し、
前記最も上流側の画素よりも下流の画素については、当該画素についての前記目標輝度と、当該画素よりも上流側の各画素について得られた前記指標値とに基づいて当該画素の指標値を決定することにより、該下流側の各画素についての前記指標値を決定し、
各画素について得られた前記指標値の中で最も大きな最大指標値が所定の面積となるように各画素の指標値を読み替えることによって、各画素内に形成する前記インク層の面積を決定する画像表示装置。 The image display device according to claim 7,
In determining the area of the ink layer formed in the pixel,
For the pixel on the most upstream side when viewed from the direction in which light enters, an index value proportional to the area of the ink layer formed in the pixel is determined according to the target luminance for the pixel,
For the pixel downstream of the most upstream pixel, the index value of the pixel is determined based on the target luminance for the pixel and the index value obtained for each pixel upstream of the pixel. To determine the index value for each pixel on the downstream side,
An image for determining the area of the ink layer formed in each pixel by rereading the index value of each pixel so that the largest maximum index value among the index values obtained for each pixel becomes a predetermined area Display device. - 請求項8に記載の画像表示装置であって、
前記表示板は、赤色光を入射するR光入射部が端部に設けられたR成分表示板と、緑色光を入射するG光入射部が端部に設けられたG成分表示板と、青色光を入射するB光入射部が端部に設けられたB成分表示板とが、三枚合わせに重ねられているとともに、RGBの各成分表示板の表面には、それぞれに前記透明インクによる画像が印刷された表示板であり、
前記RGBの各成分表示板に形成されたぞれぞれの前記画像は、
前記RGBの成分表示板毎に前記画素の各々についての前記指標値を決定し、
前記RGBの成分表示板について得られた全ての前記指標値の中から前記最大指標値を抽出し、
前記最大指標値が所定の面積となるように、前記RGBの成分表示板の前記画素毎に得られた前記指標値を読み替えることによって、各画素内に形成する前記インク層の面積を決定し、
決定された面積の前記インク層を前記各々の画素内に形成することによって印刷された画像である画像表示装置。 The image display device according to claim 8,
The display panel includes an R component display plate provided with an R light incident portion at an end thereof that receives red light, a G component display plate provided with an G light incident portion that receives green light at an end portion thereof, and a blue color. A B-component display panel having a B-light incident portion at the end thereof, which is incident on the end, is overlapped in three pieces, and each of the RGB component display panels has an image formed by the transparent ink. Is a printed display board,
Each of the images formed on the RGB component display boards is
Determining the index value for each of the pixels for each RGB component display board;
Extracting the maximum index value from all the index values obtained for the RGB component display board,
By rereading the index value obtained for each pixel of the RGB component display board so that the maximum index value becomes a predetermined area, the area of the ink layer formed in each pixel is determined,
An image display device which is an image printed by forming the ink layer of a determined area in each of the pixels. - 請求項9に記載の画像表示装置であって、
前記表示板は、前記R成分表示板の表面と、前記G成分表示板の表面と、前記B成分表示板の表面とが向き合う少なくとも一方の表面に間隔を空けて設けられた複数の凸部によって、該R成分表示板と該G成分表示板と該B成分表示板との間に隙間が形成された状態で、積層された表示板である画像表示装置。 The image display device according to claim 9,
The display panel includes a plurality of protrusions provided at intervals on at least one surface of the surface of the R component display panel, the surface of the G component display panel, and the surface of the B component display panel. An image display device, which is a laminated display panel in a state where a gap is formed between the R component display panel, the G component display panel, and the B component display panel. - 請求項1に記載の画像表示装置であって、
前記表示板は、前記透明インクによる画像が表面に形成された透明シートが、前記表示板の表面に貼り替え可能な態様で貼り付けられることによって、該表示板の表面に該画像が形成された表示板である画像表示装置。 The image display device according to claim 1,
The image is formed on the surface of the display board by sticking a transparent sheet on the surface of which the image of the transparent ink is formed in a manner that can be pasted on the surface of the display board. An image display device which is a display board. - 請求項1に記載の画像表示装置であって、
前記表示板の表面に形成された前記画像に対応する所定の特定情報を読み出し可能に記憶しているとともに、該表示板に設けられた特定情報記憶部と、
前記表示板から前記特定情報を読み出す特定情報読出部と
を備え、
前記光入射部は、前記表示板から読み出された前記特定情報に応じた態様で、前記表示板の内部に光を入射する光入射部である画像表示装置。 The image display device according to claim 1,
Predetermined specific information corresponding to the image formed on the surface of the display board is stored in a readable manner, and a specific information storage unit provided on the display board;
A specific information reading unit that reads the specific information from the display board,
The image display device, wherein the light incident part is a light incident part that enters light into the display board in a mode corresponding to the specific information read from the display board. - 請求項1に記載の画像表示装置であって、
前記表示板は、前記透明インクによって形成された前記画像の上に、前記光を散乱させる微粒子を含まない透明樹脂によるクリア層が設けられることによって、最表面が平滑に形成された表示板である画像表示装置。 The image display device according to claim 1,
The display board is a display board in which a clear layer made of a transparent resin not containing fine particles that scatter the light is provided on the image formed by the transparent ink so that the outermost surface is formed smoothly. Image display device. - 請求項1に記載の画像表示装置であって、
前記表示板は、前記光入射部からの光が入射される端面の他端側に、該表示板の内部を伝播してきた光を外部に放射する光放射部を備える画像表示装置。 The image display device according to claim 1,
The display panel is an image display device comprising a light emitting portion that radiates light propagating through the inside of the display plate to the other end side of the end face on which light from the light incident portion is incident.
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007340040 | 2007-12-28 | ||
JP2007-340040 | 2007-12-28 | ||
JP2008035397A JP2009189669A (en) | 2008-02-16 | 2008-02-16 | Display device |
JP2008-035397 | 2008-02-16 | ||
JP2008136163A JP2009282414A (en) | 2008-05-26 | 2008-05-26 | Image display device |
JP2008-136163 | 2008-05-26 | ||
JP2008-214746 | 2008-08-24 | ||
JP2008214746A JP2010049118A (en) | 2008-08-24 | 2008-08-24 | Image display device |
JP2008-218216 | 2008-08-27 | ||
JP2008218216A JP2010054698A (en) | 2008-08-27 | 2008-08-27 | Display device |
JP2008-300199 | 2008-11-25 | ||
JP2008300199A JP2010129242A (en) | 2008-11-25 | 2008-11-25 | Indirect illuminating device |
JP2008305577A JP2010128383A (en) | 2008-11-28 | 2008-11-28 | Display apparatus |
JP2008-305577 | 2008-11-28 | ||
JP2008-312572 | 2008-12-08 | ||
JP2008312572 | 2008-12-08 | ||
JP2008-323017 | 2008-12-19 | ||
JP2008323017A JP2010160171A (en) | 2007-12-28 | 2008-12-19 | Image display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009084556A1 true WO2009084556A1 (en) | 2009-07-09 |
Family
ID=40824270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/073510 WO2009084556A1 (en) | 2007-12-28 | 2008-12-25 | Image display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009084556A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011227253A (en) * | 2010-04-19 | 2011-11-10 | Miyakawa Corp | Display device and production method thereof |
JP2011257449A (en) * | 2010-06-04 | 2011-12-22 | Mimaki Engineering Co Ltd | Display panel and method of producing display panel |
JP2013525836A (en) * | 2010-04-16 | 2013-06-20 | フレックス ライティング 2,エルエルシー | Sign with film-based light guide |
JP2016504445A (en) * | 2012-12-13 | 2016-02-12 | ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation | Method for catalytic oxidation of cellulose and method for producing cellulose product |
US9523807B2 (en) | 2009-01-26 | 2016-12-20 | Flex Lighting Ii, Llc | Device comprising a film-based lightguide and component with angled teeth |
US9557473B2 (en) | 2010-04-16 | 2017-01-31 | Flex Lighting Ii, Llc | Reflective spatial light modulator display with stacked light guides and method |
US9566751B1 (en) | 2013-03-12 | 2017-02-14 | Flex Lighting Ii, Llc | Methods of forming film-based lightguides |
US9645304B2 (en) | 2011-03-09 | 2017-05-09 | Flex Lighting Ii Llc | Directional front illuminating device comprising a film based lightguide with high optical clarity in the light emitting region |
US9651729B2 (en) | 2010-04-16 | 2017-05-16 | Flex Lighting Ii, Llc | Reflective display comprising a frontlight with extraction features and a light redirecting optical element |
US9690032B1 (en) | 2013-03-12 | 2017-06-27 | Flex Lighting Ii Llc | Lightguide including a film with one or more bends |
US11442213B2 (en) | 2013-03-12 | 2022-09-13 | Azumo, Inc. | Film-based lightguide with extended coupling lightguide region |
US11513274B2 (en) | 2019-08-01 | 2022-11-29 | Azumo, Inc. | Lightguide with a light input edge between lateral edges of a folded strip |
US11966116B2 (en) | 2019-01-03 | 2024-04-23 | Azumo, Inc. | Reflective display comprising a lightguide and light turning film creating multiple illumination peaks |
US11994698B2 (en) | 2018-08-30 | 2024-05-28 | Azumo, Inc. | Film-based frontlight with angularly varying diffusion film |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5839505Y2 (en) * | 1978-10-05 | 1983-09-06 | 富士重工業株式会社 | Automotive air conditioner display device |
JP2001005417A (en) * | 2000-06-28 | 2001-01-12 | Tomoaki Ono | Transparent display device having display patterns which emit light |
JP2001312233A (en) * | 2000-04-28 | 2001-11-09 | Hitachi Ltd | Transparent display |
JP2002251152A (en) * | 2001-02-23 | 2002-09-06 | Max Co Ltd | Signboard device |
JP2004062139A (en) * | 2002-06-07 | 2004-02-26 | Toyoda Gosei Co Ltd | Light guide |
-
2008
- 2008-12-25 WO PCT/JP2008/073510 patent/WO2009084556A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5839505Y2 (en) * | 1978-10-05 | 1983-09-06 | 富士重工業株式会社 | Automotive air conditioner display device |
JP2001312233A (en) * | 2000-04-28 | 2001-11-09 | Hitachi Ltd | Transparent display |
JP2001005417A (en) * | 2000-06-28 | 2001-01-12 | Tomoaki Ono | Transparent display device having display patterns which emit light |
JP2002251152A (en) * | 2001-02-23 | 2002-09-06 | Max Co Ltd | Signboard device |
JP2004062139A (en) * | 2002-06-07 | 2004-02-26 | Toyoda Gosei Co Ltd | Light guide |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9523807B2 (en) | 2009-01-26 | 2016-12-20 | Flex Lighting Ii, Llc | Device comprising a film-based lightguide and component with angled teeth |
US9651729B2 (en) | 2010-04-16 | 2017-05-16 | Flex Lighting Ii, Llc | Reflective display comprising a frontlight with extraction features and a light redirecting optical element |
JP2013525836A (en) * | 2010-04-16 | 2013-06-20 | フレックス ライティング 2,エルエルシー | Sign with film-based light guide |
US9557473B2 (en) | 2010-04-16 | 2017-01-31 | Flex Lighting Ii, Llc | Reflective spatial light modulator display with stacked light guides and method |
JP2011227253A (en) * | 2010-04-19 | 2011-11-10 | Miyakawa Corp | Display device and production method thereof |
JP2011257449A (en) * | 2010-06-04 | 2011-12-22 | Mimaki Engineering Co Ltd | Display panel and method of producing display panel |
US9645304B2 (en) | 2011-03-09 | 2017-05-09 | Flex Lighting Ii Llc | Directional front illuminating device comprising a film based lightguide with high optical clarity in the light emitting region |
JP2016504445A (en) * | 2012-12-13 | 2016-02-12 | ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation | Method for catalytic oxidation of cellulose and method for producing cellulose product |
US9566751B1 (en) | 2013-03-12 | 2017-02-14 | Flex Lighting Ii, Llc | Methods of forming film-based lightguides |
US9690032B1 (en) | 2013-03-12 | 2017-06-27 | Flex Lighting Ii Llc | Lightguide including a film with one or more bends |
US11442213B2 (en) | 2013-03-12 | 2022-09-13 | Azumo, Inc. | Film-based lightguide with extended coupling lightguide region |
US11994698B2 (en) | 2018-08-30 | 2024-05-28 | Azumo, Inc. | Film-based frontlight with angularly varying diffusion film |
US11966116B2 (en) | 2019-01-03 | 2024-04-23 | Azumo, Inc. | Reflective display comprising a lightguide and light turning film creating multiple illumination peaks |
US11513274B2 (en) | 2019-08-01 | 2022-11-29 | Azumo, Inc. | Lightguide with a light input edge between lateral edges of a folded strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009084556A1 (en) | Image display device | |
CN107111975B (en) | Printed matter | |
US10048538B1 (en) | Display device | |
KR100751722B1 (en) | Advertisement board | |
US5414947A (en) | Sign plate for illuminated sign | |
KR101279402B1 (en) | Advertising display device having 3d sheet | |
JP5150689B2 (en) | Liquid crystal display | |
US8529113B2 (en) | Thin edge-lit LED backlight panel and light guide | |
US8125409B2 (en) | Light emitting display device | |
JP2006291064A (en) | Phosphor film, device of illumination and displaying device having the same | |
JP2003222861A (en) | Phosphor chromaticity correction plate | |
JP2006208660A (en) | Display apparatus | |
JP2006322968A (en) | Display apparatus | |
JP2007101847A (en) | Display apparatus | |
JP2005347010A (en) | Planar lighting device | |
US9310634B2 (en) | Aesthetic layer for display panels | |
JP5305629B2 (en) | Liquid crystal display | |
JP4864069B2 (en) | Surface-emitting display device | |
JP2003330395A (en) | Display panel | |
JP3235949B2 (en) | Display device | |
JP4594282B2 (en) | Display device | |
JP2009008856A (en) | Liquid crystal display toy | |
JP2010160171A (en) | Image display device | |
CN210835573U (en) | Nano-photonic crystal photoluminescence transparent holographic high-definition imaging film | |
JP2010049118A (en) | Image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08868655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08868655 Country of ref document: EP Kind code of ref document: A1 |