WO2009084397A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2009084397A1
WO2009084397A1 PCT/JP2008/072517 JP2008072517W WO2009084397A1 WO 2009084397 A1 WO2009084397 A1 WO 2009084397A1 JP 2008072517 W JP2008072517 W JP 2008072517W WO 2009084397 A1 WO2009084397 A1 WO 2009084397A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
light emitting
substrate
emitting device
Prior art date
Application number
PCT/JP2008/072517
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Kadowaki
Yoshikazu Ooshika
Tatsunori Toyota
Original Assignee
Dowa Electronics Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co., Ltd. filed Critical Dowa Electronics Materials Co., Ltd.
Publication of WO2009084397A1 publication Critical patent/WO2009084397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to a semiconductor light emitting device such as a light emitting diode (LED), and more particularly to a semiconductor light emitting device that can be used without forming a reflective layer for light having a wavelength of 200 to 350 nm. It is.
  • LED light emitting diode
  • a sapphire substrate is generally used as a substrate used in the semiconductor light emitting device.
  • the sapphire substrate has a low thermal conductivity, and the heat dissipation of the semiconductor light emitting device deteriorates. Therefore, the LED itself cannot efficiently escape the self-heating, and there is a problem that the light emission efficiency is lowered due to heat.
  • sapphire is an insulator, and since electricity cannot flow from the substrate side, it becomes complicated as an electric circuit so that the light emission efficiency is reduced due to current efficiency reduction, and the semiconductor layer formed on the sapphire substrate is exposed. There are problems that the manufacturing process becomes complicated due to etching, and that the substrate is hard, so that dicing cannot be performed when forming a chip, and scribe with low productivity must be performed. It was.
  • examples of the substrate used for the semiconductor light emitting device different from the sapphire substrate include a conductive GaN substrate and a SiC substrate. Since these substrates are conductive and allow current to flow from the substrate side, the resistance value of the current path is lowered, the operating voltage can be lowered, and the heat dissipation is higher than sapphire, and due to heat There is an effect that the decrease in luminous efficiency is small.
  • GaN and SiC are very expensive, there is a problem that the manufacturing cost of the light emitting element is increased.
  • the GaN substrate and the SiC substrate have a smaller band gap than the sapphire substrate.
  • a GaN substrate absorbs light with a wavelength of 365 nm or less
  • a SiC substrate absorbs light with a wavelength of 375 nm or less.
  • a Si substrate As a substrate used for a semiconductor light emitting element different from the above substrate, a Si substrate can be mentioned.
  • a semiconductor light emitting device using a Si substrate for example, as disclosed in Patent Document 1, a gallium nitride compound semiconductor layer having a pn junction, and a Si located on the p side or the n side of the semiconductor layer are disclosed.
  • a semiconductor light emitting device including a substrate and a reflective layer positioned between the semiconductor layer and the Si substrate can be used.
  • the Si substrate includes a light emitting portion of a pn junction type double heterojunction structure composed of a Group III nitride layer, and includes the Si substrate and the light emitting portion.
  • each of the semiconductor light emitting devices of Patent Document 1 and Patent Document 2 uses a substrate made of Si, and Si can be manufactured at a low cost and a device having a desired area from a large-diameter wafer. Excellent heat dissipation and easy dicing, resulting in high production efficiency.
  • both of the semiconductor light emitting devices described in Patent Documents 1 and 2 have a high absorption rate for visible light because the band gap of the Si substrate is about 1.1 eV, and the Si substrate and the semiconductor layer ( A layer structure in which a reflective layer is provided between the light emitting portion and the light emitting portion is essential. Furthermore, when the reflective layer is formed, the manufacturing process becomes complicated, and thus there is a problem that the manufacturing cost increases, and the light emitting efficiency may decrease due to increase in element resistance. Also, according to Patent Document 1, the reflectance of the reflective layer using a multilayer laminated structure is close to 100% in the visible light range of 500 to 650 nm, but the reflectance is reduced on the short wavelength side.
  • the reflection layer for short-wavelength light has a reflectivity of 60 to 80% at a wavelength of 360 nm or less, but has the above-mentioned problems.
  • the reflection of light it is assumed that a multilayer laminated structure or a metal reflection layer is provided, and the main focus has been on solving the accompanying problems.
  • the reflective layer when the reflective layer is provided, the substrate needs to be flat, and the improvement in directivity is left to the structure of the lamp device other than the light emitting element, for example.
  • An object of the present invention is to form a buffer layer as necessary on a semiconductor substrate having predetermined physical properties, and in a semiconductor light emitting device in which a semiconductor layer is formed without providing a reflective layer, the luminous efficiency is high, an object of the present invention is to provide a semiconductor light emitting device having a strong directivity in the light extraction direction.
  • An object of the present invention is to form a predetermined buffer layer between a Si substrate or an intermediate layer formed on the Si substrate and a nitride semiconductor layer, thereby generating less cracks and pits and having excellent crystallinity.
  • An object of the present invention is to provide a semiconductor material having a nitride semiconductor layer, a manufacturing method thereof, and a nitride semiconductor element.
  • the gist of the present invention is as follows. (1) Laminating an n-type or p-type lower semiconductor layer, a light emitting layer, and a p-type or n-type upper semiconductor layer directly or as necessary through a buffer layer on a semiconductor substrate.
  • the peak wavelength of the light emitting element is 200 to 350 nm
  • the semiconductor substrate has physical properties such that the reflectance at the peak wavelength of the light emitting element is 60% or more, and also functions as a reflective layer.
  • a semiconductor light emitting device having high light emission efficiency and directivity can be obtained without forming the reflective layer by targeting light with a wavelength of 200 to 350 nm where the semiconductor substrate exhibits high reflectance.
  • FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 2 is a graph showing the reflectance (%) with respect to the wavelength (nm) of light for each semiconductor material (Si, GaAs, SiC, sapphire) used for the substrate of the semiconductor light emitting device.
  • FIG. 3 is a cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention.
  • FIG. 6 is a diagram showing a light distribution for the semiconductor light emitting devices of Example 1 and Example 5.
  • FIG. 1 is a diagram schematically showing a cross section of a semiconductor light emitting device 1 according to the present invention.
  • a semiconductor light emitting device 1 includes an n-type or p-type lower semiconductor layer 40 directly on a semiconductor substrate 10 or a buffer layer 20 as necessary, and a light emitting layer. 50 and a semiconductor light emitting device in which a semiconductor layer 30 is formed by stacking a p-type or n-type upper semiconductor layer 60.
  • the semiconductor light emitting device 1 does not require a reflective layer to be formed in a normal semiconductor light emitting device, has a physical property that the reflectivity with respect to a wavelength of 200 to 350 nm is 60% or more, and the semiconductor substrate 10
  • the main feature is that it also functions as a reflective layer, and by adopting such a configuration, the step of laminating the reflective layer having a complicated structure can be omitted, so that it is easy to manufacture and has high luminous efficiency.
  • a light-emitting element can be provided.
  • the semiconductor substrate 10 of the present invention has a physical property that the reflectivity with respect to a wavelength of 200 to 350 nm is 60% or more so as to function as a reflection layer in addition to a function as a substrate of a normal semiconductor light emitting element.
  • the semiconductor used for the semiconductor substrate 10 is not particularly limited as long as it has the above physical properties. For example, Si, GaAs, or the like is used.
  • the reflectivity of 60% or more is the reflectivity necessary for realizing the luminous efficiency required for use as a product when incorporated in a semiconductor light emitting device, and less than 60% This is because, for example, the reflection effect is small as compared with the reflection layer using the laminated structure described in Non-Patent Document 1, and the advantage of direct reflection on the substrate cannot be obtained.
  • the semiconductor substrate 10 is preferably made of Si or GaAs. This is because, if these materials are used, it is possible to have a physical property with a reflectance of 60% or more with respect to light having a predetermined wavelength.
  • FIG. 2 shows the reflectance (%) with respect to the wavelength (nm) of light for each semiconductor material (Si, GaAs, SiC, sapphire) used for the substrate of the semiconductor light emitting device.
  • the reflectance was calculated as a relative value using a UV-visible spectrophotometer as a reference (100%) based on reflection by an Al reflecting mirror, and the incident angle of light was 5 °. As shown in FIG.
  • Si has a reflectance of 60% or more for light with a wavelength of 200 to 350 nm
  • GaAs has a reflectance of 60% or more for light with a wavelength of 200 to 265 nm.
  • an arbitrary dopant is selected for the semiconductor substrate 10 made of Si, and various selections can be made depending on the shape of the light emitting element and the magnitude of electrical conduction.
  • an n-type Si substrate having a high conductivity can be used.
  • a buffer layer 20 can be formed on the semiconductor substrate 10 as necessary.
  • the buffer layer 20 has an effect of reducing stress on the semiconductor layer 30 and suppressing dislocation.
  • the composition thereof is not particularly limited, and AlN, GaN, AlGaN, or the like can be used. However, the band gap is large (6.2 eV), and incident light to the semiconductor substrate 10 and reflected light from the substrate 10 can be used.
  • the buffer layer 20 is preferably made of AlN in that it can be transmitted without being absorbed.
  • the semiconductor layer 30 of the present invention is a layer formed on the semiconductor substrate 10 or the buffer layer 20 and has a structure called a pn junction inside, and a voltage is applied from the electrodes 70 and 80 to the semiconductor layer 30. When added, it is possible to emit light by directly converting the energy of electrons into light energy. Examples of the material used for the semiconductor layer 30 include GaN, AlGaN, InGaN, and InAlGaN.
  • the surface of the semiconductor substrate or the surface of the buffer layer when the buffer layer is present has a shape that directly reflects light from the light emitting layer upward (in the direction of arrow A). It is preferable to have. This is because, if it has the above shape, the light reflected upward can be extracted more effectively.
  • FIGS. 3A and 3B schematically show a cross section of the semiconductor light emitting device 1 of another embodiment according to the present invention.
  • the surface 11a of the semiconductor substrate 11 is shown in FIG. 3 (a) and 3 (b), it is preferable to form a concave shape (hole shape) corresponding to the light emitting surface size of the upper semiconductor layer 60. This is because, with this shape, light can be efficiently collected and reflected in the upward direction A.
  • the semiconductor substrate 11 is preferably made of Si or GaAs from the viewpoint that it is easily available and has developed surface processing techniques such as photolithography and etching.
  • the semiconductor substrate 11 in order to improve the reflectivity of the semiconductor substrate 11, it is possible to have irregularities (holes, protrusions, and bumps) having a size of 10 to 100 ⁇ m on the substrate surface. Moreover, you may have a photonic crystal. If the semiconductor substrate 11 has a function as a reflector and uses at least the reflectance of the substrate, the substrate may be processed, for example, a layer or a crystal for improving the reflectance on a part of the substrate. Is also included.
  • the buffer layer 20 made of AlN is formed on the semiconductor substrate 11 made of Si, a (111) -plane Si substrate is used, corresponding to the light emitting surface size of the upper semiconductor layer 60. It is more preferable that the slope 11a-1 at the time of processing into a concave shape (hole shape) is a (100) plane. This is because with this configuration, the AlN layer grows laterally from (100) on the slope 11a-1 in the initial stage of growth, and a crystal with few dislocations can be obtained by the ELO method using lateral growth.
  • FIG. 4A and 4B schematically show a cross section of a semiconductor light emitting device 1 according to another embodiment according to the present invention.
  • the surface 12a of the semiconductor substrate 12 is shown in FIG.
  • the light can be efficiently collected and reflected in the upward direction A, and the light in the lateral direction B that could not be reflected by the normal reflective layer is also reflected in the upward direction A by the inclined surface 12a-1. This is because the light can be reflected and the light collection efficiency in the upward direction A can be further improved.
  • the semiconductor substrate 12 is Si or GaAs, it can be easily combined with a circuit board using the same type of semiconductor.
  • the semiconductor layer 30 may be once formed on a growth substrate such as sapphire, and then the growth substrate may be removed and bonded to the actual semiconductor substrate 10.
  • 5 (a) and 5 (b) schematically show a cross section of the semiconductor light emitting device 1 of another embodiment according to the present invention.
  • the semiconductor is once formed on another substrate.
  • the layer 30 can be bonded onto a substrate such as Si or GaAs.
  • the area of the bonding layer 100 is preferably in the range of 0.2 to 0.8 with respect to the area of the bonding surface.
  • Example 1 In Example 1, as shown in FIG. 1, a semiconductor substrate 10 made of Si having a diameter of 2 inches, a crystal plane of (111), and a substrate thickness of 300 ⁇ m is prepared, and a film is formed on the Si substrate 10 by MOCVD. An AlN layer 20 which is a buffer layer 20 having a thickness of 1000 nm is formed, and an n-type contact layer (not shown) made of Si-doped AlGaN and an n-type are formed on the AlN layer 20 as a lower semiconductor layer 40.
  • a semiconductor substrate 10 made of Si having a diameter of 2 inches, a crystal plane of (111), and a substrate thickness of 300 ⁇ m is prepared, and a film is formed on the Si substrate 10 by MOCVD.
  • An AlN layer 20 which is a buffer layer 20 having a thickness of 1000 nm is formed, and an n-type contact layer (not shown) made of Si-doped AlGaN and an n-type are formed on the AlN layer 20 as a
  • a clad layer (not shown) is sequentially laminated to form an n-type nitride semiconductor layer having a thickness of 2 ⁇ m, and a quantum well structure is formed as a light emitting layer 50 on the n-type nitride semiconductor layer 40.
  • An InAlGaN layer 50 having a thickness of 100 nm is formed, and a p-type block layer (not shown) and a p-type cladding layer (not shown) made of AlGaN doped with Mg as an upper semiconductor layer 60 on the InAlGaN layer 50.
  • a p-type contact layer (not shown) made of GaN doped with Mg.
  • a Shimese not By forming a Shimese not) to form a p-type nitride semiconductor layer 60 having a thickness of 1 [mu] m. Thereafter, the n-type contact layer was exposed by etching, an N electrode 70 was provided thereon, and then a P electrode 80 was provided on the p contact layer, thereby producing a semiconductor light emitting device as a sample. The emission wavelength was adjusted to be 280 nm.
  • Example 2 In Example 2, as shown in FIG. 3A, a semiconductor substrate 10 made of Si having a diameter of 2 inches, a crystal plane of (111), and a substrate thickness of 300 ⁇ m is processed by etching, so that the surface is the upper semiconductor. A concave Si substrate 11 corresponding to the light emitting surface size of the layer 40 was obtained. The inclined surface of the Si substrate 11 is (100). Thereafter, the AlN layer 20, the n-type nitride semiconductor layer 40, the InAlGaN layer 50, and the p-type nitride semiconductor layer 60 are sequentially formed in the same manner as in Example 1, and the electrodes 70 and 80 are provided. A semiconductor light emitting device was produced. The emission wavelength was adjusted to be 280 nm.
  • Example 3 In Example 3, as shown in FIG. 3B, the bypass electrode 90 is formed so that the Si substrate 11 and the n-type contact layer (not shown) are electrically connected, and the Si substrate A semiconductor light emitting device as a sample was manufactured in the same manner as in Example 2 except that the N electrode 70 was formed on the back surface of the electrode 11. The emission wavelength was adjusted to be 280 nm.
  • Example 4 In Example 4, as shown in FIG. 4A, a semiconductor substrate 12 made of Si having a diameter of 2 inches, a crystal plane of (111), and a substrate thickness of 300 ⁇ m is processed by etching to surround the semiconductor layer 30. A Si substrate 12 having an inclined surface 12a was obtained. The inclined surface is (100). Thereafter, the AlN layer 20, the n-type nitride semiconductor layer 40, the InAlGaN layer 50, and the p-type nitride semiconductor layer 60 are sequentially formed in the same manner as in Example 1, and the electrodes 70 and 80 are provided. A semiconductor light emitting device was produced. The emission wavelength was adjusted to be 280 nm.
  • Example 5 In Example 5, as shown in FIG. 4B, the bypass electrode 90 is formed so that the Si substrate 12 and the n-type contact layer (not shown) are electrically connected, and the Si substrate A semiconductor light emitting device as a sample was manufactured by the same method as in Example 4 except that the N electrode 70 was formed on the back surface of the semiconductor layer 12. The emission wavelength was adjusted to be 280 nm.
  • Example 6 In Example 6, as shown in FIG. 5A, on the sapphire substrate (not shown) having a diameter of 2 inches, the AlN layer 20, the n-type nitride semiconductor layer 40, An InAlGaN layer 50 and a p-type nitride semiconductor layer 60 are sequentially formed, and a support substrate (not shown) made of a Cu alloy is bonded onto the p-type contact layer (not shown) of the p-type nitride semiconductor layer 60. After pasting with the wax, the n-contact layer (not shown) of the n-type nitride semiconductor layer 40 was exposed by lifting off the sapphire substrate.
  • a bonding layer 100 made of AuSn is partially formed on an n-type contact layer (not shown) and bonded to the Si substrate 10 (diameter 2 inches, crystal plane (111), film thickness 300 ⁇ m). Thereafter, the bonding wax is dissolved to remove the growth substrate, the N electrode 70 is provided on the back surface of the Si substrate 10, and the P electrode 80 is provided on the p contact layer, whereby a sample semiconductor light emitting device is obtained. Produced.
  • the bonding layer 100 partially made of AuSn the light applied to the portion without AuSn can be reflected and extracted by the substrate.
  • the lattice-like bonding layer 100 is formed so that the area of the bonding layer 100 is 40% of the total area of the bonding surface.
  • the emission wavelength was adjusted to be 280 nm.
  • Example 7 is the same as Example 6 except that the shape of the Si substrate 13 is processed so as to have a plurality of recesses (recess size: 30 ⁇ m square) by etching as shown in FIG.
  • a semiconductor light emitting device as a sample was manufactured by the same method as described above. The emission wavelength was adjusted to be 280 nm.
  • Comparative Example 1 a semiconductor light emitting device as a sample was manufactured by the same method as Example 1 except that a sapphire substrate having a diameter of 2 inches, a crystal plane of (0001), and a film thickness of 300 ⁇ m was used as the semiconductor substrate 10. did. The emission wavelength was adjusted to be 280 nm.
  • Comparative Example 2 a semiconductor light emitting device as a sample was manufactured by the same method as Comparative Example 1 except that a reflective layer (not shown) made of a nitride multilayer film was formed on the buffer layer 20. .
  • the emission wavelength was adjusted to be 280 nm.
  • On-axis intensity luminous efficiency is performed by passing a current of 20 mA to the semiconductor light emitting devices fabricated in the above examples and comparative examples, and measuring the on-axis intensity on the chip upper surface side using a spectrophotometer. Evaluation was made according to the following criteria. The distance between the chip and the spectrophotometer was 50 cm, and the solid angle was 1 ⁇ 10 ⁇ 6 steradians. Table 1 shows the evaluation results with Comparative Example 1 as a reference (100). ⁇ : Over 130 ⁇ : Over 100, 130 or less ⁇ : 100 or less
  • FIG. 6 shows the light distribution for the semiconductor light emitting devices of Example 1 and Example 5. From this result, by processing the semiconductor substrate of the present invention into an appropriate shape, the light in the upper surface direction, which is the light extraction direction, can be increased, the axial strength can be increased, and the light directivity can be increased. I understood. This is also clear from the fact that the on-axis strength is improved in Examples 2 to 5 and 7 in which the substrate was processed in Examples compared to Examples 1 and 6 in which the substrate was not processed.
  • a semiconductor light-emitting element having high luminous efficiency and directivity can be obtained without forming the reflective layer by targeting light with a wavelength of 200 to 350 nm where the semiconductor substrate exhibits high reflectivity. Furthermore, compared to conventional semiconductor light emitting devices, it can be manufactured at a low cost without requiring a complicated manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 半導体基板上に、必要に応じて緩衝層を形成し、n型又はp型の下側半導体層と、発光層と、p型又はn型の上側半導体層とを積層してなる半導体層を持つ半導体発光素子において、特定の波長に対して高い発光効率を有する半導体発光素子を提供することにあり、半導体基板10上に、直接又は必要に応じて緩衝層20を介して、半導体層30を形成してなる半導体発光素子であって、通常の半導体発光素子には形成される反射層を必要とせず、波長200~350nmに対する反射率が60%以上である物性を有し、前記半導体基板10が反射層としての機能を兼ねることを特徴とする。

Description

半導体発光素子
 本発明は、例えば、発光ダイオード(LED)等の半導体発光素子であって、特に、200~350nmの波長の光に対して、反射層を形成することなく使用することができる半導体発光素子に関するものである。
 近年、窒化物半導体等を使用した半導体素子は、可視光領域から紫外光領域の短波長帯における発光デバイス等の用途で、盛んに研究および技術開発が行われている。なお、現在、実用化されている紫外LEDの中心波長は、約365nmであり、さらに短波長(特に、200~300nm)を対象とした紫外LEDは、未だ実用化されていない。例えば、殺菌灯は、水銀ランプの250nmの紫外光を利用しているが、水銀フリーの窒化物半導体への置き換えの要望がある。
 従来、前記半導体発光素子に用いられる基板としては、サファイア基板が一般的であった。しかし、サファイア基板は、熱伝導率が低く、半導体発光素子の放熱性が悪化するため、LED自身の自己発熱を効率よく逃がすことが出来ず、熱による発光効率の低下を引き起こすという問題があった。また、サファイアは絶縁体であり、基板側から電気を流すことができないため、電気的な回路として複雑となり、電流効率低下による発光効率の低下、サファイア基板上に形成した半導体層が露出するようにエッチングしなければならず、製造工程が複雑になるという問題や、基板が硬いため、チップ化の際に、ダイシングを行うことができず、生産性の低いスクライブを行わなければならないという問題があった。
 また、サファイア基板とは別の半導体発光素子に用いられる基板としては、導電性のGaN基板や、SiC基板が挙げられる。これらの基板は導電性があり、基板側から電流を流すことができるため、電流経路の抵抗値が下がり、動作電圧を低くすることができる効果や、サファイアに比べて放熱性が高く、熱による発光効率の低下が少ないという効果がある。しかし、GaN及びSiCは、非常に高価であるため、発光素子の作製コストが高くなるという問題がある。また、前記GaN基板及びSiC基板は、前記サファイア基板に比べて、バンドギャップが小さく、例えばGaN基板では365nm以下の波長の光を吸収し、SiC基板では375nm以下の光を吸収してしまうため、短波長の紫外LEDに対しては光の取り出し効率が低下するという問題を生ずる。
 さらに、上記の基板とは別の半導体発光素子に用いられる基板としては、Si基板が挙げられる。そして、Si基板を用いた半導体発光素子としては、例えば特許文献1に開示されているように、pn接合を有する窒化ガリウム系化合物半導体層と、前記半導体層のp側もしくはn側に位置するSi基板と、前記半導体層とSi基板との間に位置する反射層とを具えた半導体発光素子が挙げられる。さらに、特許文献2に開示されているように、Si基板上に、III属窒化物層から構成されたpn接合型のダブルへテロ接合構造の発光部を具え、前記Si基板と発光部との間に、リン化ホウ素結晶層と窒化リン化ガリウム結晶層とを交互に積層した多層積層構造の反射層を形成した半導体発光素子が挙げられる。特許文献1及び特許文献2の半導体発光素子は、いずれもSiからなる基板を用いており、Siはコストが安く大口径のウェーハから所望の面積の素子を作製することができるとともに、結晶性及び放熱性に優れ、さらに、ダイシングも容易であるため生産効率が高いという効果を奏する。
 しかしながら、特許文献1及び2に記載の半導体発光素子は、いずれも、Si基板のバンドギャップが約1.1eVであるため、可視光に対しての吸収率が高く、前記Si基板と前記半導体層(前記発光部)との間に反射層を設ける層構造を必須としていた。さらに、前記反射層を形成する場合、製造工程が複雑になるため、製造コストが高騰するという問題や、素子抵抗が大きくなることにより発光効率が低下する恐れがあった。
 また、多層積層構造を用いた反射層については特許文献1によれば500~650nmの可視光の範囲では反射率が100%に近いものの短波長側では反射率が落ちている。短波長の光に対しての反射層については非特許文献1に示すように360nm以下の波長で60~80%の反射率が得られているが、上記の問題がある。いずれにしても、光の反射に対しては、多層積層構造または金属による反射層を設けることが前提としてあり、付随する問題を解決することに主眼が置かれていた。さらには、反射層を設ける場合、基板は平坦であることが必要であり、指向性の向上は発光素子以外の例えばランプ装置の構造に委ねられていた。
特開2005-311072号公報 特開2002-198562号公報 Japanese Journal of Applied Physics vol.46, No.32, 2007, pp.L767-L769
 本発明の目的は、所定の物性をもつ半導体基板上に、必要に応じて緩衝層を形成し、反射層を設けることなく、半導体層を形成してなる半導体発光素子において、発光効率が高く、光の取り出し方向の指向性の強い半導体発光素子を提供することにある。
 本発明の目的は、Si基板又はこの上に形成した中間層と窒化物半導体層との間に、所定のバッファ層を形成することにより、クラック及びピットの発生が共に少なく、結晶性に優れた窒化物半導体層を有する半導体材料及びその製造方法、並びに窒化物半導体素子を提供することにある。
 上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)半導体基板上に、直接又は必要に応じて緩衝層を介して、n型又はp型の下側半導体層と、発光層と、p型又はn型の上側半導体層とを積層してなる半導体層を持つ半導体発光素子において、
 前記発光素子のピーク波長は200~350nmであり、前記半導体基板は、前記発光素子のピーク波長における反射率が60%以上である物性を有し、反射層としての機能を兼ねることを特徴とする半導体発光素子。
(2)前記半導体基板は、Si又はGaAsからなることを特徴とする上記(1)記載の半導体発光素子。
(3)前記半導体基板の表面又は前記緩衝層がある場合の緩衝層の表面は、発光層からの光を上方へ直接反射する形状を有することを特徴とする上記(1)又は(2)記載の半導体発光素子。
(4)前記半導体基板の表面は、前記上側半導体層の発光面サイズに対応して凹状をなすことを特徴とする上記(3)記載の半導体発光素子。
(5)前記半導体基板の表面は、前記半導体層を取り囲む傾斜面を有することを特徴とする上記(3)記載の半導体発光素子。
(6)前記緩衝層は、AlNからなることを特徴とする上記(1)~(5)のいずれか1項記載の半導体発光素子。
(7)前記半導体基板と前記半導体層との間に、金属からなる接合層をさらに形成することを特徴とする上記(6)記載の半導体発光素子。
 この発明によれば、半導体基板が高い反射率を発揮する200~350nmの波長の光を対象とすることで、前記反射層を形成することなく、高い発光効率と指向性を有する半導体発光素子を提供することが可能となり、さらに、従来の半導体発光素子に比べて、複雑な製造工程を必要とせず、低コストで作製できるという効果を有する。
(図1)本発明の別の形態の半導体発光素子の断面図である。
(図2)半導体発光素子の基板に用いられる各半導体材料(Si、GaAs、SiC、サファイア)について、光の波長(nm)に対する反射率(%)を示したグラフである。
(図3)本発明の別の形態の半導体発光素子の断面図である。
(図4)本発明の別の形態の半導体発光素子の断面図である。
(図5)本発明の別の形態の半導体発光素子の断面図である。
(図6)実施例1と実施例5の半導体発光素子についての配光分布を示す図である。
 次に、本発明の実施形態について図面を参照しながら説明する。図1は、本発明に従う半導体発光素子1の断面を模式的に示した図である。
 本発明による半導体発光素子1は、図1に示すように、半導体基板10上に、直接又は必要に応じて緩衝層20を介して、n型又はp型の下側半導体層40と、発光層50と、p型又はn型の上側半導体層60とを積層してなる半導体層30を形成した半導体発光素子である。
 そして、本発明による半導体発光素子1は、通常の半導体発光素子には形成される反射層を必要とせず、波長200~350nmに対する反射率が60%以上である物性を有し、前記半導体基板10が反射層としての機能を兼ねることを主な特徴とし、かかる構成を採用することによって、複雑な構造の前記反射層の積層工程を省略できるため、製造が容易であり、しかも、発光効率の高い発光素子を提供することができる。
 本発明の半導体基板10は、通常の半導体発光素子の基板としての機能に加え、反射層としての機能を兼ねるべく、波長200~350nmに対する反射率が60%以上である物性を有する。前記半導体基板10に用いられる半導体としては、上記物性を具えていれば特に限定はされないが、例えば、Si、GaAs等が用いられる。ここで、反射率を60%以上としたのは、半導体発光素子に組み込んで用いた場合、製品として使用するために要求される発光効率を実現するために必要な反射率であり、60%未満では、例えば非特許文献1にある積層構造を用いた反射層と比較して反射効果が小さく、基板で直接反射することの優位性が得られないためである。
 また、前記半導体基板10は、Si又はGaAsからなることが好ましい。これらの材料を用いれば、所定の波長を有する光に対して、反射率60%以上の物性を有することができるからである。ここで、図2は、半導体発光素子の基板に用いられる各半導体材料(Si、GaAs、SiC、サファイア)について、光の波長(nm)に対する反射率(%)を示したものである。なお、前記反射率は、紫外可視分光光度計を用いてAl反射鏡による反射を基準(100%)とした相対値として算出し、光の入射角は5°とした。図2から、Siについては、波長200~350nmの光に対して60%以上の反射率を有しており、GaAsについては、波長200~265nmの光に対して60%以上の反射率を有していることがわかる。一方、SiC及びサファイアについては、どの波長の光に対しても反射率は60%未満となることがわかる。
 さらに、前記Siからなる半導体基板10は、任意のドーパントが選択され、発光素子の形状、電気伝導の大きさによって、種々の選択を行うことができる。例えば、垂直型LEDとして用いられる場合には、導電率の大きいn型Si基板を使用することができる。
 また、本発明の半導体発光素子1は、図1に示すように、必要に応じて、前記半導体基板10上に、緩衝層20を形成することができる。緩衝層20は、前記半導体層30への応力を低減させ、転位を抑制する効果がある。その組成については特に限定はされず、AlNや、GaN、AlGaN等を用いることができるが、バンドギャップが大きく(6.2eV)、前記半導体基板10への入射光及び前記基板10からの反射光を吸収せずに透過させることができる点で、前記緩衝層20は、AlNからなることが好ましい。
 本発明の半導体層30は、前記半導体基板10又は緩衝層20の上に形成される層であり、内部にpn接合と呼ばれる構造を有しており、電極70、80から半導体層30に電圧を加えた際に電子の持つエネルギーを直接、光エネルギーに変換することで発光することが可能となる。前記半導体層30に用いられる材料としては、例えば、GaN、AlGaN、InGaN又はInAlGaN等が挙げられる。
 さらにまた、本発明による半導体発光素子1は、前記半導体基板の表面又は前記緩衝層がある場合の緩衝層の表面が、発光層からの光を上方(矢印Aの方向)へ直接反射する形状を有することが好ましい。上記形状を有すれば、さらに効果的に、上方向へ反射した光を取り出すことができるからである。
 ここで、図3(a)、(b)は、本発明に従う別の実施形態の半導体発光素子1の断面を、模式的に示したものであるが、前記半導体基板11の表面11aは、図3(a)、(b)に示すように、前記上側半導体層60の発光面サイズに対応して凹状(穴状)をなすことが好ましい。この形状にすれば、効率的に光を集めて上方向Aに反射することができるからである。前記半導体基板11は、入手が容易で、フォトリソグラフとエッチング等による表面加工の技術が発達している点からも、Si又はGaAsであることが好ましい。さらに、前記半導体基板11の反射率を向上させるため、基板表面に10~100umのサイズの凹凸(穴や突起、隆起)を有することも可能である。また、フォトニック結晶を有しても良い。前記半導体基板11が反射材としての機能を持ち、基板の反射率を少なくとも利用する構成であれば、基板に処理を加えることや、たとえば基板上の一部に反射率向上のための層や結晶を加えることも含まれる。
 さらにまた、Siからなる前記半導体基板11の上に、AlNからなる緩衝層20を形成する場合には、(111)面のSi基板を用い、前記上側半導体層60の発光面サイズに対応して凹状(穴状)に加工する際の斜面11a-1を(100)面とすることがより好ましい。この構成により、AlN層は成長初期に斜面11a-1の(100)から横方向に成長し、横方向成長を用いたELO法により、転位の少ない結晶を得ることができるからである。
 また、図4(a)、(b)は、本発明に従う別の実施形態の半導体発光素子1の断面を、模式的に示したものであるが、前記半導体基板12の表面12aは、図4(a)、(b)に示すように、前記半導体層を取り囲む傾斜面12a-1を有することが好ましい。効率的に光を集めて上方向Aに反射することができる上に、通常の反射層では反射することができなかった横方向Bの光についても、前記傾斜面12a-1で上方向Aに反射することができるため、上方向Aへの集光効率をさらに向上させることが可能となるからである。また、半導体基板12がSi又はGaAsであれば、同種の半導体を使用した回路基板等との組み合わせも容易である。
 なお、前記半導体層30は、一旦、サファイア等の成長用基板上に形成させた後、前記成長用基板を取り除き、実際の半導体基板10上に接合させることも可能である。また、図5(a)、(b)は、本発明に従う別の実施形態の半導体発光素子1の断面を、模式的に示したものであるが、上記のように、一旦別の基板で半導体層30成長させた後に、Si、GaAsなどの基板の上に接合することができる。その際には、前記半導体層30と前記半導体基板10との間には、金属からなる接合層100を設けることが好ましい。また、このとき前記半導体基板10と前記下側半導体層40がオーミックコンタクトを取れる金属を接合層100として使用することが好ましい。ただし、これらの接合層100が、前記半導体基板10と半導体層30との接合面の全面に及ぶときは、前記接合層100での光の吸収により前記半導体基板10からの反射が減少してしまうので、前記接合層100の面積は、前記接合面の面積に対して0.2~0.8の範囲であることが好ましい。
 なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
 次に、本発明に従う半導体材料を試作し、性能を評価したので、以下で説明する。
(実施例1)
 実施例1は、図1に示すように、直径2インチで結晶面が(111)、基板厚300μmのSiからなる半導体基板10を用意し、MOCVD法を用い、前記Si基板10上に、膜厚1000nmの緩衝層20であるAlN層20を形成し、該AlN層20上に、下側半導体層40として、SiがドープされたAlGaNである、n型コンタクト層(図示せず)及びn型クラッド層(図示せず)を、順次積層させてなる、膜厚2μmのn型窒化物半導体層を形成し、該n型窒化物半導体層40上に、発光層50として、量子井戸構造を有する、膜厚100nmのInAlGaN層50を形成し、該InAlGaN層50の上に、上側半導体層60として、MgがドープされたAlGaNからなる、p型ブロック層(図示せず)及びp型クラッド層(図示せず)を順次形成し、その上に、MgがドープされたGaNからなるp型コンタクト層(図示せず)を形成してなる、膜厚1μmのp型窒化物半導体層60を形成した。その後、エッチングにより前記n型コンタクト層を露出させ、その上にN電極70を設けた後、pコンタクト層上にP電極80を設けることにより、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(実施例2)
 実施例2は、図3(a)に示すように、直径2インチで結晶面が(111)、基板厚300μmのSiからなる半導体基板10を、エッチングで加工することにより、表面が前記上側半導体層40の発光面サイズに対応して凹状をなすSi基板11を得た。なお、該Si基板11の傾斜面は(100)である。その後、実施例1と同様の方法により、AlN層20、n型窒化物半導体層40、InAlGaN層50、及びp型窒化物半導体層60を順次形成し、電極70、80を設けることにより、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(実施例3)
 実施例3は、図3(b)に示すように、Si基板11とn型コンタクト層(図示せず)とが電気的に接続されるように、迂回電極90を形成し、また、Si基板11の裏面にN電極70を形成したこと以外は、実施例2と同様の方法により、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(実施例4)
 実施例4は、図4(a)に示すように、直径2インチで結晶面が(111)、基板厚300μmのSiからなる半導体基板12を、エッチングで加工することにより、半導体層30を取り囲む傾斜面12aを有するSi基板12を得た。なお、前記傾斜面は(100)である。その後、実施例1と同様の方法により、AlN層20、n型窒化物半導体層40、InAlGaN層50、及びp型窒化物半導体層60を順次形成し、電極70、80を設けることにより、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(実施例5)
 実施例5は、図4(b)に示すように、Si基板12とn型コンタクト層(図示せず)とが電気的に接続されるように、迂回電極90を形成し、また、Si基板12の裏面にN電極70を形成したこと以外は、実施例4と同様の方法により、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(実施例6)
 実施例6は、図5(a)に示すように、直径2インチのサファイア基板(図示せず)上に、実施例1と同様の方法により、AlN層20、n型窒化物半導体層40、InAlGaN層50、及びp型窒化物半導体層60を順次形成し、p型窒化物半導体層60のp型コンタクト層(図示せず)上に、Cu合金からなる支持基板(図示せず)を接着用ワックスで貼り付けた後、前記サファイア基板をリフトオフすることにより、n型窒化物半導体層40のnコンタクト層(図示せず)を露出させた。その後、n型コンタクト層(図示せず)の上に、AuSnからなる接合層100を部分的に形成して、Si基板10(直径2インチ、結晶面 (111)、膜厚300μm)と接合させた後、接着用ワックスを溶解させて前記成長用基板を除去し、Si基板10の裏面にN電極70を設け、pコンタクト層上にP電極80を設けることにより、サンプルとなる半導体発光素子を作製した。部分的にAuSnからなる接合層100を形成することでAuSnのない部分に照射された光を基板で反射して取り出すことが出来る。本実施例では接合層100の面積が接合面全体の面積の40%となるように格子状の接合層100を形成した。なお、発光波長は280nmとなるように調整した。
(実施例7)
 実施例7は、図5(b)に示すように、エッチングにより、Si基板13の形状が複数の凹部(凹部のサイズ:30μm角)を有するように加工されていること以外は、実施例6と同様の方法によりサンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(比較例1)
 比較例1は、直径2インチで結晶面が(0001)、膜厚300μmのサファイア基板を半導体基板10として用いたこと以外は、実施例1と同様の方法により、サンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
(比較例2)
 比較例2は、前記緩衝層20の上に、窒化物多層膜からなる反射層(図示せず)を形成したこと以外は、比較例1と同様の方法によりサンプルとなる半導体発光素子を作製した。なお、発光波長は280nmとなるように調整した。
 上記実施例及び比較例で作製した各半導体材料について評価を行った。評価方法を以下に示す。
(評価方法)
(1)軸上強度
発光効率は、上記実施例及び比較例で作製した半導体発光素子に、20mAの電流を流し、分光光度計を用いてチップ上面側の軸上強度を計測することにより行い、以下の基準に従って評価した。チップと分光光度計の距離は50cm、立体角は1×10-6ステラジアンで測定を行った。比較例1を基準(100)とした評価結果を表1に示す。
◎:130超え
○:100超え、130以下
×:100以下
(2)配光性
配光性は、実施例1及び実施例5で作製した半導体発光素子に、20mAの電流を流して分光光度計を用いて測定した。チップと分光光度計の距離は50cm、立体角は1×10-6ステラジアンで測定を行った。チップを180度回転しながら測定を行い、配光特性を測定した。評価結果を図6に示す。
(表1)
Figure JPOXMLDOC01-appb-I000001
 表1の結果から、実施例1~7のサンプルは、比較例1のサンプルと比較して、発光特性に優れており、反射層を有する比較例2と比べても遜色ない結果であることがわかった。また図6に実施例1と実施例5の半導体発光素子についての配光分布を示す。この結果から、本発明の半導体基板を適正形状に加工することで、光の取り出し方向である上面方向の光を強くすることができ、軸上強度を高め、光の指向性を高めることができることがわかった。このことは実施例にて基板に加工を行った実施例2~5および7が、加工していない実施例1、6に比べて軸上強度が向上していることからも明らかである。
 本発明によれば、半導体基板が高い反射率を発揮する200~350nmの波長の光を対象とすることで、前記反射層を形成することなく、高い発光効率と指向性を有する半導体発光素子を提供することが可能となり、さらに、従来の半導体発光素子に比べて、複雑な製造工程を必要とせず、低コストで作製できるようになった。

Claims (7)

  1.  半導体基板上に、直接又は必要に応じて緩衝層を介して、n型又はp型の下側半導体層と、発光層と、p型又はn型の上側半導体層とを積層してなる半導体層を持つ半導体発光素子において、
     前記発光素子のピーク波長は200~350nmであり、前記半導体基板は、前記発光素子のピーク波長における反射率が60%以上である物性を有し、反射層としての機能を兼ねることを特徴とする半導体発光素子。
  2.  前記半導体基板は、Si又はGaAsからなることを特徴とする請求項1記載の半導体発光素子。
  3.  前記半導体基板の表面又は前記緩衝層がある場合の緩衝層の表面は、発光層からの光を上方へ直接反射する形状を有することを特徴とする請求項1又は2記載の半導体発光素子。
  4.  前記半導体基板の表面は、前記上側半導体層の発光面サイズに対応して凹状をなすことを特徴とする請求項3記載の半導体発光素子。
  5.  前記半導体基板の表面は、前記半導体層を取り囲む傾斜面を有することを特徴とする請求項3記載の半導体発光素子。
  6.  前記緩衝層は、AlNからなることを特徴とする請求項1~5のいずれか1項記載の半導体発光素子。
  7.  前記半導体基板と前記半導体層との間に、金属からなる接合層をさらに形成することを特徴とする請求項6記載の半導体発光素子。
PCT/JP2008/072517 2007-12-28 2008-12-11 半導体発光素子 WO2009084397A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007340686A JP5258285B2 (ja) 2007-12-28 2007-12-28 半導体発光素子
JP2007-340686 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084397A1 true WO2009084397A1 (ja) 2009-07-09

Family

ID=40824118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072517 WO2009084397A1 (ja) 2007-12-28 2008-12-11 半導体発光素子

Country Status (2)

Country Link
JP (1) JP5258285B2 (ja)
WO (1) WO2009084397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278633A3 (en) * 2009-07-24 2015-12-02 LG Innotek Co., Ltd. Light emitting device package and method for fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164641B2 (ja) 2008-04-02 2013-03-21 Dowaエレクトロニクス株式会社 電流狭窄型半導体発光素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162033A (ja) * 1993-12-03 1995-06-23 Daido Steel Co Ltd 発光ダイオード
WO1999023693A1 (en) * 1997-10-30 1999-05-14 Sumitomo Electric Industries, Ltd. GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP2002217453A (ja) * 2001-01-17 2002-08-02 Sanken Electric Co Ltd 発光素子及びその製造方法
JP2004128120A (ja) * 2002-10-01 2004-04-22 Nichia Chem Ind Ltd 半導体発光素子
JP2004356213A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 半導体発光装置
JP2005311072A (ja) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd 発光素子および照明装置
JP2007049063A (ja) * 2005-08-12 2007-02-22 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162033A (ja) * 1993-12-03 1995-06-23 Daido Steel Co Ltd 発光ダイオード
WO1999023693A1 (en) * 1997-10-30 1999-05-14 Sumitomo Electric Industries, Ltd. GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP2002217453A (ja) * 2001-01-17 2002-08-02 Sanken Electric Co Ltd 発光素子及びその製造方法
JP2004128120A (ja) * 2002-10-01 2004-04-22 Nichia Chem Ind Ltd 半導体発光素子
JP2004356213A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 半導体発光装置
JP2005311072A (ja) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd 発光素子および照明装置
JP2007049063A (ja) * 2005-08-12 2007-02-22 Matsushita Electric Works Ltd 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278633A3 (en) * 2009-07-24 2015-12-02 LG Innotek Co., Ltd. Light emitting device package and method for fabricating the same

Also Published As

Publication number Publication date
JP2009164272A (ja) 2009-07-23
JP5258285B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
US7554122B2 (en) Nitride semiconductor light emitting device, and method of fabricating nitride semiconductor light emitting device
US7919780B2 (en) System for high efficiency solid-state light emissions and method of manufacture
US7696523B2 (en) Light emitting device having vertical structure and method for manufacturing the same
KR20120027318A (ko) 반사 구조를 갖는 반도체 발광 다이오드 및 그 제조 방법
JP2012054422A (ja) 発光ダイオード
JP2010219310A (ja) 光デバイスおよび光デバイス構造
JP5363973B2 (ja) ツェナーダイオードを備える発光素子及びその製造方法
TWI426626B (zh) 發光二極體、發光二極體燈及照明裝置
KR20090032211A (ko) 수직구조 질화갈륨계 발광다이오드 소자
JP2006525674A (ja) 発光デバイス及びその作製方法
JP5586372B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
TWI668885B (zh) 氮化物半導體元件及其製造方法與所應用之封裝結構
JP5258285B2 (ja) 半導体発光素子
KR101534846B1 (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
JP2007273590A (ja) 窒化物半導体素子及び窒化物半導体素子の製造方法
JP2013258207A (ja) 半導体発光素子及びその製造方法
JP5557648B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2012054423A (ja) 発光ダイオード
KR101648809B1 (ko) 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR20140028288A (ko) 발광 소자
JP6697020B2 (ja) 窒素及びリンを含有する発光層を有する発光ダイオード
KR101550913B1 (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
KR20090032212A (ko) 플립칩용 질화물계 반도체 발광소자
KR101330786B1 (ko) 방열 구조를 갖는 발광다이오드 소자 및 그 제조 방법
TW201310708A (zh) 半導體發光裝置與其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866593

Country of ref document: EP

Kind code of ref document: A1