WO2009084259A1 - 歯車回転伝達装置 - Google Patents

歯車回転伝達装置 Download PDF

Info

Publication number
WO2009084259A1
WO2009084259A1 PCT/JP2008/062593 JP2008062593W WO2009084259A1 WO 2009084259 A1 WO2009084259 A1 WO 2009084259A1 JP 2008062593 W JP2008062593 W JP 2008062593W WO 2009084259 A1 WO2009084259 A1 WO 2009084259A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
helical gear
small
lubricating oil
diameter
Prior art date
Application number
PCT/JP2008/062593
Other languages
English (en)
French (fr)
Inventor
Takahiro Yasuda
Tatsuo Kubota
Original Assignee
Aisin Aw Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Aw Co., Ltd. filed Critical Aisin Aw Co., Ltd.
Priority to CN200880104777A priority Critical patent/CN101790652A/zh
Priority to DE112008002342T priority patent/DE112008002342T5/de
Publication of WO2009084259A1 publication Critical patent/WO2009084259A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0456Lubrication by injection; Injection nozzles or tubes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0493Gearings with spur or bevel gears
    • F16H57/0495Gearings with spur or bevel gears with fixed gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19991Lubrication

Definitions

  • the present invention relates to a gear rotation transmission device that transmits the rotation of a mutual gear, and more particularly to a gear rotation transmission device that supplies lubricating oil between helical gears.
  • Conventional gear rotation transmission devices include those described in Patent Documents 1 to 3.
  • the lubricating oil is supplied to the latter half from the central portion of the tooth width on the biting side, in addition to the lubricating oil supply pipe provided on the counter biting side of the gear.
  • Lubricating oil supply pipe is provided, and heat generation due to oil agitation loss is not increased so much.
  • the seizure limit and wear limit are improved.
  • the invention of Patent Document 2 directly measures the temperature of the lubricating oil discharged from the meshing portion by arranging the temperature measuring means on the counter-engagement side of the gear pair, and shows signs of seizure damage on the tooth surface. By detecting and taking appropriate measures such as reducing the load, increasing the amount of oil supply, adjusting the oil supply temperature, etc., the expansion of the damage is prevented and the operation of the gear unit is continued.
  • Patent Documents 1 to 3 for example, in the case of a gear having a variation in gear ratio, such as a final gear of an automobile transmission, the nozzle for supplying the lubricating oil is moved accordingly to move the meshing position. It was necessary to move or replace it depending on the situation.
  • the efficiency may decrease due to agitation loss of the gear, etc. If supplied from the counter biting side, it will be blown away by centrifugal force, resulting in insufficient lubricating oil, There is a possibility of causing gear damage such as seizure of the gear and accompanying pitching.
  • Patent Document 1 and Patent Document 3 in which lubricating oil is supplied from both sides of the biting side and the counter biting side, but the work amount of the pump action due to the meshing is increased. Moreover, the supply of lubricating oil more than necessary also increases the stirring loss as described above. Especially for gears that rotate at high speed, when lubricating oil is supplied from the tooth biting side, the work of pumping to confine the oil in the tooth crest and back gap and the acceleration of lubricating oil to accelerate the lubricating oil to the peripheral speed Stirring loss due to an increase in the amount of heat, etc. not only decreases the efficiency of the gear device, but also causes problems such as a decrease in the durability limit due to an increase in the amount of heat generated.
  • the present invention has been made to solve such a problem, and even in a gear rotating at high speed, sufficient lubricating oil is supplied to the meshing tooth surface, and gear rotation transmission capable of preventing occurrence of tooth surface damage such as wear.
  • the purpose is to provide a device. It is another object of the present invention to provide a gear rotation transmission device that does not need to move the nozzle position even if the gear ratio is changed.
  • the gear rotation transmission device is a gear rotation transmission mechanism in which a small-diameter helical gear and a large-diameter helical gear mesh with each other to transmit rotation.
  • the tooth end at the beginning of meshing is wider than the tooth width of the helical gear, and the small diameter starts meshing with the helically formed teeth of the helical gear (the teeth having an inclined torsion direction and torsion angle).
  • the lubricating oil is injected and supplied immediately before the meshing is started.
  • the small diameter helical gear and the large diameter helical gear do not ask the gear ratio, the large diameter helical gear has a wider tooth width than the helical gear. I just need it.
  • Any oil may be used as long as it is supplied by injecting lubricating oil to the tooth end at the beginning of meshing where meshing starts at the forefront of the tooth surface before meshing is started.
  • the position of the small-diameter helical gear to which the lubricating oil is injected and supplied is at the tooth end side where the small-diameter helical gear starts to engage, and the position to receive the injection supply is at least
  • the large diameter can be set so that the large diameter is located outside the tooth width of the helical gear, or the large diameter can be the meshing position of the tooth width of the helical gear.
  • the supply of the lubricating oil to the teeth of the small-diameter helical gear of the gear rotation transmission device is carried out from a nozzle provided on the end face side of the large-diameter helical gear.
  • the end face side of the gear which arranges the nozzle for injecting and supplying the lubricating oil is a position where it can be arranged substantially horizontally at the tooth end at the start of meshing at the foremost end of the tooth surface before meshing is started. I just need it.
  • the small-diameter helical gear teeth of the gear rotation transmission device are supplied with lubricating oil supplied from an oil pump by a pipe disposed along the end face of the large-diameter helical gear.
  • the oil is guided and the guided lubricating oil is injected and supplied from the pipe in a substantially right angle direction.
  • the pipe having a large diameter along the end face of the helical gear means that the large diameter is parallel to the end face of the helical gear, and the small diameter is injected to the helical gear side. And it is made to inject in a substantially right angle direction at the tooth
  • the small-diameter helical gear and the large-diameter helical gear of the gear rotation transmission device have the small-diameter helical gear on the driving side and the large-diameter helical gear on the driven side.
  • the lubricating oil to be supplied supplies the lubricating oil to the upper surface side of the tooth where meshing is started, and the large-diameter on the driven side has the large diameter of the helical gear.
  • Lubricating oil is supplied by pressing against the upper surface side of the gear.
  • the gear rotation transmission device wherein the small-diameter helical gear and the large-diameter helical gear are engaged with a straight line between the two axes connecting the shafts of the gears to the tooth ends of the meshing gears.
  • Lubricating oil is injected in a direction substantially parallel to the straight line.
  • injecting the lubricating oil from a direction substantially parallel to the straight line connecting the two axes of both gears means that the straight line parallel to the straight line is parallel to the straight line in the perpendicular direction that satisfies the shafts of both gears simultaneously.
  • the lubricating oil is injected from the direction or the substantially parallel linear direction, the lubricating oil is injected from the position overlapping the straight line connecting the two axes of both gears, and the straight line between the two axes of both gears is translated. This can be handled by injecting the lubricating oil from a linear position and having a slight angle with respect to the straight line between the two axes of both gears.
  • the position of the small-diameter helical gear to which the lubricating oil of the gear rotation transmission device is injected is supplied on the tooth end side where the small-diameter helical gear starts to mesh,
  • the position where the supply is received is at least partly or entirely located outside the tooth width of the helical gear having the large diameter.
  • the position of the small-diameter helical gear to which the lubricating oil is injected and supplied is at least partially or entirely at a position where the small-diameter helical gear meshes with the large-diameter helical gear. It is what is located.
  • the gear rotation transmission device is configured such that the tooth width of the small-diameter helical gear is wider than the tooth width of the large-diameter helical gear, and the small-diameter helical gear has a helical gear shape. Then, the lubricating oil is injected and supplied to the tooth ends at the start of meshing immediately before the meshing is started. Therefore, since the lubricating oil is injected immediately before the meshing is started, the injected lubricating oil is captured between the small-diameter helical gear and the large-diameter helical gear, and the teeth are sequentially meshed with each other.
  • the lubricating oil can flow along, the tooth surface can be lubricated and the tooth surface can be simultaneously lubricated, the tooth surface can be worn down, and the durability of the gear can be improved.
  • an oil film of lubricating oil can be formed on the tooth surface, direct contact between the tooth surfaces of the gears is prevented, and since there is a tooth surface covering effect, occurrence of pitching and scoring can be prevented.
  • by injecting lubricating oil directly into the helical gear with a small heat capacity the temperature rise of the small gear is suppressed by the cooling effect, and the occurrence of damage to the pitching and scoring teeth due to the temperature rise is prevented. It can be greatly suppressed.
  • the supply of the lubricating oil to the teeth of the small-diameter helical gear is made to inject from the nozzle disposed on the end face side of the helical gear.
  • the small diameter since the small diameter directly collides with the helical gear, the small diameter is a lubricating oil that is not trapped between the helical gear and the large diameter helical gear.
  • the small diameter having a small heat capacity can be used for cooling the helical gear, and the lubricating oil can be used efficiently.
  • the small-diameter helical gear teeth of the gear rotation transmission device are supplied with lubricating oil from an oil pump through a pipe disposed along an end surface of the large-diameter helical gear.
  • the small diameter meshes with the helically formed teeth of the helical gear because the lubricating oil is guided and the lubricating oil is injected and supplied in a substantially right angle direction from the pipe.
  • lubricating oil is injected and supplied to the gap between the small-diameter helical gear and the large-diameter helical gear, and the gap is gradually narrowed. Therefore, the lubricating oil can be moved along the tooth surface, the amount of the lubricating oil captured between the gears is increased, and the lubricating oil is efficiently supplied.
  • the small-diameter helical gear and the large-diameter helical gear of the gear rotation transmission device according to claim 4 have the small-diameter helical gear on the driving side and the large-diameter helical gear on the driven side. Therefore, in addition to the effect of any one of claims 1 to 3, the captured lubricating oil is repeatedly applied along the tooth surface from the tooth end at the start of meshing to the end of meshing. Lubricating oil can be flowed, and the small diameter having a small heat capacity can increase the cooling efficiency of the helical gear.
  • the small-diameter helical gear and the large-diameter helical gear of the gear rotation transmission device are lubricated in a direction substantially parallel to a straight line between two axes connecting the shafts of both gears.
  • the lubricating oil is injected from a direction substantially parallel to a straight line connecting the shafts of both gears.
  • the position of the small-diameter helical gear to which the lubricating oil is injected and supplied by the gear rotation transmission device according to claim 6 is a tooth end side at the start of meshing of the small-diameter helical gear.
  • the position where the injection supply is received is at least a part or all of the position where the large diameter is located outside the tooth width of the helical gear, and according to any one of claims 1 to 4.
  • the small diameter enables the entire helical gear to be cooled, and the amount of lubricating oil can be increased, so that the amount of oil flowing on the tooth surface can be secured, and at the time of meshing Lubricating oil can cover the tooth surface and prevent wear.
  • FIG. 1 is an explanatory diagram viewed from the front of a gear rotation transmission device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram viewed from the plane of FIG. 1 in the gear rotation transmission device according to the embodiment of the present invention.
  • FIG. 3 is a perspective view of a main part of the gear rotation transmission device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an embodiment in which the gear rotation transmission device according to the embodiment of the present invention is used as an automatic transmission for an automobile.
  • FIG. 1 is an explanatory view seen from the front of the gear rotation transmission device according to the first embodiment of the present invention
  • FIG. 2 is a plan view of the gear rotation transmission device according to the first embodiment of the present invention seen from the plane of FIG.
  • FIG. 3 is a perspective view of the main part of the gear rotation transmission device according to the first embodiment of the present invention.
  • the small-diameter helical gear 10 and the large-diameter helical gear 20 constitute a gear rotation transmission mechanism that meshes the teeth of each other to transmit rotation.
  • These small-diameter helical gear 10 and large-diameter helical gear 20 are formed with helically formed teeth, that is, teeth with a predetermined twist angle and twist direction.
  • the gear ratio between the small-diameter helical gear 10 and the large-diameter helical gear 20 does not matter, and the small-diameter helical gear 10 and the large-diameter helical gear 20 have a magnitude relationship. Good.
  • the small-diameter helical gear 10 rotates in the direction of arrow A in FIG. 1, and the large-diameter helical gear 20 guides the rotation in the direction of arrow B in FIG. 1.
  • the large diameter is engaged so that the upper side of the helical gear 20 is wound, and the small diameter is transmitted from the helical gear 10 to the large gear 20.
  • the teeth of the small-diameter helical gear 10 in FIG. 2 have a torsional direction on the right (toothing line rises to the right) and a torsion angle of about 30 degrees. Indicates a twist angle of about 30 degrees.
  • the small-diameter helical gear 10 has a tooth width L1 slightly smaller than the tooth width L2 of the large-diameter helical gear 20, specifically about 1 to 10 mm. The width L1 is wide.
  • the small diameter helical gear 10 and the large diameter helical gear 20 are smaller than the tooth width L1 in which the tooth diameter of the small diameter helical gear 10 is wider than the tooth width L2 of the large diameter helical gear 20.
  • the nozzle 30 is set so as to inject the lubricating oil of the injection locus YY substantially parallel to the straight line XX of the distance K connecting the respective axes A 0 and B 0 .
  • the nozzle 30 injects lubricating oil supplied via a pipe 31 from an oil pump of an automatic transmission (not shown).
  • the injection position is set to the tooth end D at the start of meshing with the teeth formed in the helical shape of the small-diameter helical gear 10, and to the teeth of the small-diameter helical gear 10 immediately before the meshing is started.
  • Lubricating oil is injected.
  • the nozzle 30 has a guide function for specifying the injection direction of the lubricating oil and obtaining the injection locus YY.
  • the pressure of the oil pump of the automatic transmission is high, and the horizontal direction in FIG. Since injection is easy to obtain, it is possible to form a hole formed in the pipe 31. That is, depending on the pump pressure, the hole formed in the pipe 31 can be used as a nozzle.
  • the nozzle 30 is set so that the lubricating oil of the injection locus YY is injected to the lower tooth end D of the twist direction in FIG. 2 to the right (tooth streaks rising to the right). Therefore, even if the distance K connecting the axes A 0 and B 0 of the small diameter helical gear 10 and the large diameter helical gear 20 changes, that is, the straight line X ⁇ connecting the A 0 and the axis B 0.
  • the injection trajectory YY which is substantially parallel to X, indicates that the diameter of the small-diameter helical gear 10 and the large-diameter helical gear 20 are changed, and the gear ratio changes due to the change of the gear position in the automobile automatic transmission.
  • the lubricating oil can be injected to the tooth end D at the start of meshing with the small-diameter helical gear 10 whose teeth are formed in a helical shape.
  • the small-diameter helical oil supply to the teeth of the helical gear 10 is injected from the nozzle 30 disposed on the end face side of the large-diameter helical gear 20.
  • the small diameter directly collides with the helical gear 10, and the small diameter is lubricated by the collision with the helical gear 10 even if the lubricating oil is not trapped between the helical gear 10 and the large diameter helical gear 20. Since the oil takes away the heat of the helical gear 10 having a small diameter, the small diameter having a small heat capacity can contribute to the cooling of the helical gear 10 and the lubricating oil can be used efficiently.
  • the injection of the lubricating oil to the teeth of the small-diameter helical gear 10 leads the lubricating oil supplied from an oil pump (not shown) by the pipe 31 disposed along the end face of the large-diameter helical gear 20. Since the lubricating oil is injected and supplied from the nozzle 30 of the pipe 31 in a substantially right angle direction, the small diameter has a tooth end D at the start of meshing with the tooth formed in the helical shape of the helical gear 10, Immediately before the meshing is started, lubricating oil is injected and supplied to the gap between the small-diameter helical gear 10 and the large-diameter helical gear 20, and the gap contacts the upper side sequentially from the lower side in FIG.
  • the small diameter helical gear 10 and the large diameter helical gear 20 were repeatedly captured because the small diameter helical gear 10 is on the driving side and the large diameter helical gear 20 is on the driven side.
  • the lubricating oil can be moved along the tooth surface from the tooth end D at the start of meshing to the end of meshing, and the small diameter of the heat capacity can increase the cooling efficiency of the helical gear 10.
  • the oil film of the lubricating oil formed on the teeth can avoid contact of the metal surface of the small diameter helical gear 10 and the large diameter helical gear 20 and reduce gear wear.
  • the small-diameter helical gear 10 and the large-diameter helical gear 20 are configured to inject lubricating oil with an injection locus YY substantially parallel to the straight line XX between the two axes of both gears. Therefore, the nozzle 30 can be changed or moved by setting the injection trajectory YY substantially parallel to the straight line XX between the two axes of both gears, that is, between the axes A 0 and B 0 . There is no need, and one type of nozzle 30 (or a hole in the pipe 31) can cope with various gear ratios.
  • the injection direction of the nozzle 30 is such that the gear ratio between the small diameter helical gear 10 and the large diameter helical gear 20 is [small diameter helical gear 10] / [large diameter helical gear 20].
  • the nozzle 30 may be corrected downward by several degrees or not.
  • the influence is slight. That is, since the injection trajectory YY draws a parabola rather than a straight line due to the pump pressure, the influence is small.
  • the lubricating oil is supplied to the teeth of the small-diameter helical gear 10 by supplying the lubricating oil supplied from an oil pump (not shown) by the pipe 31 arranged along the end face of the large-diameter helical gear 20.
  • the lubricating oil is guided and supplied from the nozzle 30 disposed in the pipe 31 in a substantially right angle direction.
  • the small diameter helical gear 10 and the large diameter helical gear 20 have a small diameter helical gear 10 because the small diameter helical gear 10 is on the driving side and the large diameter helical gear 20 is on the driven side.
  • the teeth of the small-diameter helical gear 10 and the large-diameter helical gear 20 are immediately connected to the tooth end D, which starts meshing with the teeth formed in the ten helical gears, just before the meshing is started. Since the lubricating oil is injected and supplied to the gap, when the gaps are sequentially meshed, the small diameter helical gear 10 and the large diameter helical gear 20 are formed on the tooth surfaces of the helical gear 20. Along the surface of the meshing end.
  • the tooth surface of the small-diameter helical gear 10 on the driving side applies a pressing force to the driven side with the large-diameter helical gear 20, and the lubricating oil trapped between the gears is sucked from the biting side. It flows reliably in the width direction of the tooth, and the amount of lubricating oil increases, providing an efficient supply of lubricating oil, and since the lubricating oil can move along the tooth surface, cooling efficiency is also improved. .
  • the cooling by the lubricating oil that contacts the tooth surface is not limited. That is, in the conventional lubrication from the counter biting side, the amount of lubricating oil on the tooth surface is only the lubricating oil adhering to the teeth and the oil mist sucked from the biting side. The amount of lubricating oil increases, providing an efficient supply of lubricating oil, and since the lubricating oil can move along the tooth surface, the cooling efficiency is also improved. Of course, there is no shortage of lubricating oil for tooth surface lubrication, resulting in high temperature, and tooth surface damage such as seizure or wear. [Embodiment 2]
  • the gear rotation transmission device according to the embodiment of the present invention configured as described above is used as follows as a drive device for an automobile automatic transmission or the like.
  • FIG. 4 shows an embodiment in which the gear rotation transmission device according to the embodiment of the present invention is used as a drive device for an automatic transmission for automobiles.
  • a drive device such as an automatic transmission according to a second embodiment of the present invention is suitably used for an FF (front engine / front drive) type vehicle that is placed horizontally in a vehicle, and is a driving force for traveling.
  • FF front engine / front drive
  • power is supplied to a drive wheel (front wheels) (not shown) via a differential (differential gear unit) 40 and a pair of axles 43a and 43b.
  • This differential device 40 uses an engine as a drive source and inputs rotation from a torque converter in order to evenly distribute torque while allowing a rotational difference between a pair of drive wheels (front wheels).
  • a pair of differential small gears 45 rotatably supported about an axis perpendicular to the axis of the pair of axles 43a and 43b, and a difference between the differential small gears 45 supported by the axles 43a and 43b and meshing with the differential small gear 45 Dynamic large gears 46a and 46b are provided.
  • the differential case 43 is rotatably supported by a case (not shown) via a required number of bearings 47.
  • the differential ring gear 42 is integrally fixed to the differential case 43 by a predetermined number of bolts 48.
  • a differential drive pinion gear 41 formed of a small-diameter helical gear meshes with a differential ring gear 42 supported by an input shaft 50 to which rotation from a torque converter is input. That is, the differential drive pinion gear 41 of the second embodiment corresponds to the helical gear 10 with the small diameter of the first embodiment, and similarly, the differential ring gear 42 corresponds to the helical gear 20 with the large diameter.
  • the distance between the axes of the differential drive pinion gear 41 and the differential ring gear 42 is a straight line X shown in FIG.
  • the nozzle 60 composed of a pipe hole is set so as to inject the lubricating oil of the injection locus YY substantially parallel to ⁇ X.
  • This nozzle 60 injects lubricating oil supplied via a pipe 61 from an oil pump of an automatic transmission (not shown).
  • the injection position is such that the lubricating oil is injected onto the teeth of the differential drive pinion gear 41 immediately before the meshing is started at the tooth end at the meshing start of the meshing of the teeth formed in the helical shape of the differential drive pinion gear 41. Is.
  • the nozzle 60 formed of a pipe hole is a hole formed in the pipe 61 because the pressure of the oil pump of the automatic transmission is high.
  • the lubricating oil supplied from the oil pump of the automatic transmission is also supplied to the vertical shaft 44 fixed to the differential case 43 of the differential device 40 via the pipe 61.
  • the gear rotation transmission device As described above, in the case where the gear rotation transmission device according to the second embodiment is used as a drive device for an automatic transmission for automobiles, a gear that meshes the diffring gear 42 and the diffring gear 42 to transmit rotation.
  • the tooth width L1 of the differential drive pinion gear 41 is wider than the tooth width L2 of the differential ring gear 42, and the tooth end at the start of meshing starts to mesh with the teeth formed in the helical shape of the differential drive pinion gear 41.
  • the lubricating oil is injected and supplied to the teeth of the differential drive pinion gear 41 immediately before the meshing is started.
  • the tooth width L1 of the differential drive pinion gear 41 is made wider than the tooth width L2 of the differential ring gear 42, and the meshing is at the first tooth end of the meshing which starts meshing with the helically formed teeth of the differential drive pinion gear 41. Since the lubricating oil is injected onto the teeth of the differential drive pinion gear 41 just before the start, the injected lubricating oil is captured between the differential drive pinion gear 41 and the differential ring gear 42 and sequentially along the tooth surfaces that mesh with each other. Since the lubricating oil can be flowed, the tooth surface can be lubricated and the tooth surface can be simultaneously lubricated, the tooth surface can be worn down, and the life of the gear can be extended.
  • the lubricating oil is injected substantially in parallel with the straight line XX between the two shafts of the differential drive pinion gear 41 and the differential ring gear 42, there is no need to change or move the nozzle 60.
  • a variety of gear ratios can be accommodated by one type of nozzle 30 shown in FIG. Therefore, even in a gear that rotates at high speed, sufficient lubricating oil can be supplied to the meshing tooth surfaces, and tooth surface damage such as seizure and wear can be prevented, and the nozzle position can be moved even if the gear ratio is changed. There is no need.
  • the first embodiment is a gear rotation transmission mechanism in which a small-diameter helical gear 10 and a large-diameter helical gear 20 mesh with each other to transmit rotation.
  • the tooth diameter L1 of the large diameter is wider than the tooth width L2 of the helical gear 20, and the small diameter of the small gear is at the tooth end at the start of meshing with the helically formed teeth of the helical gear 10.
  • the configuration of the invention in which the lubricating oil is injected and supplied to the teeth of the small-diameter helical gear 10 immediately before the meshing is started can be employed.
  • the small-diameter helical gear is injected onto the teeth of the helical gear 10, and therefore the injected lubricating oil is injected into the small-diameter helical gear 10 and the large-diameter helical gear 20. Since the lubricating oil can be flowed along the tooth surfaces that are captured and meshed with each other, the appropriate amount of lubricating oil can simultaneously lubricate the tooth surface and cool the tooth surface, reduce tooth surface wear, Long life can be achieved.
  • the nozzle 30 needs to be changed or moved by injecting the lubricating oil between the two shafts of the two gears, that is, substantially parallel to the straight line XX between the shafts A 0 and B 0. It is possible to cope with various gear ratios by using one kind of nozzle 30 or a pipe having a hole.
  • the supply of lubricant oil to the teeth of the small-diameter helical gear 10 or the differential drive pinion gear 41 is applied to the end face side of the large-diameter helical gear 20 or the differential ring gear 42. It is ejected from the nozzles 30 and 60 provided.
  • the lubricant directly collides with the small-diameter helical gear 10 or the differential drive pinion gear 41, the small-diameter helical gear 10 or the differential drive pinion gear 41 and the large-diameter helical gear 20 or the differential ring gear 42 Even if the lubricating oil is not trapped in between, the small diameter having a small heat capacity can be used for cooling the helical gear 10 or the diff ring gear 42, and the lubricating oil can be used efficiently.
  • the supply of the lubricating oil to the teeth of the small-diameter helical gear 10 or the differential drive pinion gear 41 is performed along the end face of the large-diameter helical gear 20 or the differential ring gear 42. Since the lubricating oil supplied from the oil pump is guided by the pipes 30 and 60 arranged in this manner and the lubricating oil is injected and supplied from the pipes 30 and 60 in a substantially right angle direction, the small diameter helical gear 10 or the differential drive is provided.
  • 20 or the differential ring gear 42 is supplied with lubricating oil, and the gap is gradually narrowed. Along move it freely, the amount of lubricating oil to be trapped between gears mutual increases, the efficient supply of lubricating oil.
  • the small-diameter helical gear 10 or the differential drive pinion gear 41 and the large-diameter helical gear 20 or the differential ring gear 42 have the small-diameter helical gear 10 or the differential drive pinion gear 41.
  • the large-diameter helical gear 20 or the diffring gear 42 is the driven side. Therefore, the captured lubricating oil is repeatedly applied to the tooth surface from the tooth end at the start of meshing to the end of meshing. Lubricating oil can be flowed along, and the small diameter with a small heat capacity can raise the cooling efficiency of the helical gear 10 or the differential drive pinion gear 41.
  • the small-diameter helical gear 10 or the differential drive pinion gear 41 and the large-diameter helical gear 20 or the differential ring gear 42 are linear X ⁇ between the two axes of both gears. Since the lubricating oil is injected substantially in parallel with X, the small-diameter helical gear 10 or the differential drive pinion gear 41 and the large-diameter helical gear 20 or the differential ring gear 42 are arranged between the two shafts. By injecting the lubricating oil substantially parallel to the straight line XX, there is no need to change or move the nozzles 30 and 60, and various gear ratios can be achieved with one type of nozzle 30 or a pipe 60 with a hole. It can correspond to.
  • the position of the small diameter helical gear 10 or the differential drive pinion gear 41 to which the lubricating oil is injected and supplied is the same as the position of the small diameter helical gear 10 or the differential drive pinion gear 41.
  • the position where the injection supply is received on the tooth end side at the start of meshing is at least partly or entirely located outside the tooth width L2 of the large-diameter helical gear 20 or the differential ring gear 42. Therefore, the small diameter helical gear 10 or the differential drive pinion gear 41 can be cooled as a whole, and the amount of lubricating oil can be increased, so that the amount of oil flowing on the tooth surface can be secured.
  • the lubricating oil can cover the tooth surface during meshing, and wear can be prevented.
  • the helical gear is used as the small-diameter helical gear 10 or the differential drive pinion gear 41 and the large-diameter helical gear 20 or the differential ring gear 42.
  • the tooth width L1 of the small-diameter helical gear 10 is made wider than the tooth width L2 of the large-diameter helical gear 20, and the small-diameter helical gear 10 starts to mesh with the helically formed teeth.
  • the small-diameter helical gear 10 and the large-diameter helical gear 20 are supplied to the teeth of the small-diameter helical gear 10 immediately before the meshing is started.

Abstract

 高速回転する歯車においても、噛み合い歯面に十分な潤滑油が供給され、歯面損傷の発生を防止でき、ギヤ比が変更されてもノズル位置を移動する必要がないこと。  噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射するものであるから、噴射された潤滑油を小径はすば歯車10と大径はすば歯車20との間で捕捉し、順次噛み合う歯面に沿って潤滑油を流すことができるので、適量の潤滑油により、歯面の潤滑と歯面の冷却が同時に行え、歯面の磨耗が低減でき、歯車の長寿命化が図れる。また、歯面に潤滑油による油膜が形成できることから、小径はすば歯車10と大径はすば歯車20の歯車同士の歯面の直接接触が防止され、歯面被覆効果もあることから、ピッチング、スコアリングの発生を防ぐことができる。特に、熱容量の小さい小径はすば歯車10に対して直接潤滑油を噴射することで、冷却効果により小歯車の温度上昇を抑制し、温度上昇に起因するピッチング、スコーリングの歯の損傷の発生を大幅に抑制することができる。

Description

歯車回転伝達装置
 本発明は、相互の歯車の回転を伝達する歯車回転伝達装置に関し、特に、はすば歯車相互間に潤滑油の供給を行う歯車回転伝達装置に関するものである。
 従来の歯車回転伝達装置としては特許文献1乃至特許文献3に記載のものがある。
 特許文献1の発明は、少なくとも一対の歯車を有する歯車装置において、前記歯車の反噛み込み側に設けた潤滑油供給管以外に、噛み込み側の歯幅中央部から後半に潤滑油を供給する潤滑油供給管を設け、油の撹拌損失による発熱をあまり増加させずに、特に、高温となる歯幅中央部から後半の噛み合い終わり部の歯面を、よく潤滑して冷却し、歯面の焼き付き限界及び摩耗限界を向上させている。
 また、特許文献2の発明は、温度計測手段を歯車対の反噛み込み側に配置することにより、噛み合い部から排出されてくる潤滑油の温度を直接計測し、歯面の焼き付き損傷の兆候を検出し、負荷の軽減や給油量の増大、給油温度の調整等の適切な処置を講ずることにより、損害の拡大を食い止め、歯車装置の運転を継続するものである。
 そして、特許文献3の発明は、歯車の回転数が低いほど、歯車の噛み込み側の噛み合い部に向けて潤滑油を供給する第1潤滑油供給ノズルからの潤滑油供給量は多く、歯車の反噛み込み側の噛み合い部に向けて潤滑油を供給する第2潤滑油供給ノズルからの潤滑油供給量は少なくし、噛み込み側からの潤滑油の供給で歯車の潤滑をしながら、反噛み込み側からの余分な供給がなくなり、ポンプ効率の向上及びポンプの小型化を図ることができるものである。
特開平10-122310公報 特開平11-337449公報 特開2002-340152公報
 しかし、上記特許文献1乃至特許文献3は、例えば、自動車用トランスミッションのファイナルギヤのように、ギヤ比にバリエーションのある歯車の場合には、それに応じて潤滑油を供給するノズルを噛み合い位置の移動に応じて移動させるか、或いは取り替えて使用する必要があった。
 また、歯車の噛み込み側から潤滑油を供給する場合には、歯車の攪拌損失等で効率が低下する恐れがあり、反噛み込み側から供給すると遠心力で飛ばされて潤滑油不足になり、歯車の焼き付きやそれに伴うピッチング等の歯車の損傷を引き起こす可能性がある。
 これらを解消すべく、噛み込み側と反噛み込み側の両側より潤滑油を供給する上記特許文献1及び特許文献3の方法もあるが、噛み合いによるポンプ作用の仕事量を増大させることになり、また、潤滑油の必要以上の供給により、上述の通り攪拌損失を増加させるということにもなる。
 特に、高速回転する歯車においては、歯の噛み込み側から潤滑油を供給すると、歯の頂、背隙に油を閉じ込めるポンプ作用や、潤滑油を周速にまで加速する潤滑油加速という仕事量の増加等による撹拌損失が大きくなり、歯車装置の効率が低下するばかりでなく、発熱量の増加による耐久性限界の低下等の問題が生じることがある。
 殊に、高速回転する歯車装置においては、上述したように、反噛み込み側からの給油が一般的であった。この場合、反噛み込み側からの給油によって歯面を冷却しようとするものであるが、歯面の潤滑は歯に付着した潤滑油、噛み込み側に吸入される油霧のみで行なわれるに過ぎない。このような方法では、噛み合い歯面に十分な潤滑油が供給されず、特に、歯幅中央部から後半の噛み合い終わり部の近傍では、歯面潤滑のための油が不足して高温となり、例えば、高速回転する歯車においては、焼き付きや摩耗等といった歯面損傷を引き起こす可能性が高かった。このような焼き付きや摩耗等といった歯面損傷の対策として、噛み込み側と反噛み込み側の両側から潤滑油を供給する方法を採用すると、前述したように、ポンプ作用の仕事量を増大させ、損失の増大につながり、また、潤滑油の必要以上の供給により撹拌損失を引き起こすという問題も発生する。特に、自動車用トランスミッションにおいては、ギヤ比毎に変化する噛み合い位置に応じて潤滑油を供給するには、ギヤ比毎に変化する噛み合い位置に応じてノズル位置を移動させるか、ノズルの設定を変更しなくてはならないという問題もあった。
 そこで、この発明はかかる不具合を解決するためになされたもので、高速回転する歯車においても、噛み合い歯面に十分な潤滑油が供給され、摩耗等の歯面損傷の発生を防止できる歯車回転伝達装置の提供を目的とするものである。また、更に、ギヤ比が変更されてもノズル位置を移動する必要がない歯車回転伝達装置の提供を目的とするものである。
 請求項1に歯車回転伝達装置は、小径はすば歯車と大径はすば歯車とを噛み合わせて回転を伝達する歯車回転伝達機構において、前記小径はすば歯車の歯幅を前記大径はすば歯車の歯幅よりも幅広とし、前記小径はすば歯車のつるまき状に形成した歯(傾斜したネジレ方向及びネジレ角を有する歯)に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に、潤滑油を噴射供給するものである。
 ここで、小径はすば歯車と大径はすば歯車とはそのギヤ比を問うものではないものの、大径はすば歯車よりも小径はすば歯車の方が、歯幅が広いものであればよい。
 そして、前記小径はすば歯車のつるまき状に形成した歯に対して最先に噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に潤滑油を噴射供給するものであり、噛み合いが開始される前の歯面の最先に噛み合いを開始する噛み合い始めの歯端に、潤滑油を噴射して供給するものであればよい。
 更に、前記潤滑油を噴射供給される前記小径はすば歯車の歯に対する位置は、前記小径はすば歯車の噛み合いを開始する噛み合い始めの歯端側で、その噴射供給を受ける位置が、少なくとも、その一部または全部が前記大径はすば歯車の歯幅よりも外側に位置するように設定したり、前記大径はすば歯車の歯幅の噛み合い位置とすることができる。
 請求項2に歯車回転伝達装置の前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面側に配設したノズルから噴射させるものである。
 ここで、潤滑油を噴射供給するノズルを配設する歯車の端面側は、噛み合いが開始される前の歯面の最先に噛み合いを開始する噛み合い始めの歯端に略水平に配置できる位置であればよい。
 請求項3に歯車回転伝達装置の前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面に沿って配設したパイプによって、オイルポンプから供給された潤滑油を導き、導いた潤滑油を前記パイプから略直角方向に噴射供給するものである。
 ここで、前記大径はすば歯車の端面に沿って配設したパイプとは、前記大径はすば歯車の端面に平行するものであり、また、前記小径はすば歯車側に噴射し、かつ、噛み合いが開始される前の歯面の最先に噛み合いを開始する噛み合い始めの歯端に略直角方向に噴射させるものである。
 請求項4に歯車回転伝達装置の前記小径はすば歯車と前記大径はすば歯車は、前記小径はすば歯車が駆動側であり、前記大径はすば歯車が被駆動側である。ここで、前記小径はすば歯車が駆動側であると、供給する潤滑油は、噛み合いが開始される歯の上面側に潤滑油を供給し、それを被駆動側の前記大径はすば歯車の上面側に押し付けて潤滑油を供給することになる。
 請求項5に歯車回転伝達装置の前記小径はすば歯車と前記大径はすば歯車の噛み合い始めの歯端に、前記歯車の軸と軸とを結ぶ2軸間の直線に対して、その直線に略並行する方向に潤滑油を噴射するものである。ここで、両歯車の2軸間を結ぶ直線に対して略並行する方向から潤滑油を噴射するとは、両歯車の軸に対して同時に満たす直角方向の直線に対して、その直線と並行する直線方向または略並行する直線方向から潤滑油を噴射するものであり、両歯車の2軸間を結ぶ直線に重なる位置から潤滑油を噴射すること及び両歯車の2軸間の直線を平行移動させた直線状の位置から潤滑油を噴射すること、及び両歯車の2軸間の直線に対して若干の角度を持たせたものとして対応できる。
 請求項6に歯車回転伝達装置の前記潤滑油を噴射供給される前記小径はすば歯車の歯に対する位置は、前記小径はすば歯車の噛み合いを開始する噛み合い始めの歯端側で、その噴射供給を受ける位置が、少なくとも、その一部または全部が前記大径はすば歯車の歯幅よりも外側に位置するものである。
 ここで、前記潤滑油を噴射供給される前記小径はすば歯車の歯に対する位置は、前記小径はすば歯車において、前記大径はすば歯車と噛み合う位置に少なくとも、その一部または全部が位置するものである。
 請求項1にかかる歯車回転伝達装置は、小径はすば歯車の歯幅を大径はすば歯車の歯幅よりも幅広とし、前記小径はすば歯車のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に、潤滑油を噴射供給するものである。
 したがって、噛み合いが開始される直前に、潤滑油を噴射するものであるから、噴射された潤滑油を小径はすば歯車と大径はすば歯車との間で捕捉し、順次噛み合う歯面に沿って潤滑油を流すことができるので、適量の潤滑油により、歯面の潤滑と歯面の冷却が同時に行え、歯面の磨耗が低減でき、歯車の耐久性向上が図れる。
 また、歯面に潤滑油による油膜が形成できることから、歯車同士の歯面の直接接触が防止され、かつ、歯面被覆効果もあることから、ピッチング、スコアリングの発生を防ぐことができる。特に、熱容量の小さい小径はすば歯車に対して直接潤滑油を噴射することで、冷却効果により小歯車の温度上昇を抑制し、温度上昇に起因するピッチング、スコーリングの歯の損傷の発生を大幅に抑制することができる。
 そして、両歯車の2軸間の直線に対して略並行する潤滑油の噴射とすることにより、ノズルの変更や移動の必要性がなくなり、1種類のノズルまたは孔の開いたパイプでさまざまなギヤ比に対応することができる。
 よって、高速回転する歯車においても、噛み合い歯面に十分な潤滑油が供給でき、摩耗等の歯面損傷の発生を防止できると共に、仮に、ギヤ比が変更されてもノズル位置を移動する必要がない。
 請求項2にかかる歯車回転伝達装置の前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面側に配設したノズルから噴射させるものであるから、請求項1の効果に加えて、その潤滑油は、直接、前記小径はすば歯車に衝突するから、前記小径はすば歯車と前記大径はすば歯車との間で捕捉されない潤滑油であっても、熱容量の小さい前記小径はすば歯車の冷却には供することができ、潤滑油の効率的な使用が可能である。
 請求項3にかかる歯車回転伝達装置の前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面に沿って配設したパイプによって、オイルポンプから供給された潤滑油を導き、前記パイプから略直角方向に潤滑油を噴射供給させるものであるから、請求項1の効果に加えて、前記小径はすば歯車のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に前記小径はすば歯車と前記大径はすば歯車との間隙に潤滑油が噴射供給され、当該、間隙は順次狭められるものであるから、潤滑油を歯面に沿って移動自在となり、歯車相互間で捕捉される潤滑油の量が多くなり、効率の良い潤滑油の供給となる。
 請求項4にかかる歯車回転伝達装置の前記小径はすば歯車と前記大径はすば歯車は、前記小径はすば歯車が駆動側であり、前記大径はすば歯車が被駆動側であるから、請求項1乃至請求項3の何れか1つに記載の効果に加えて、繰り返し、捕捉された潤滑油を噛み合いが開始される噛み合い始めの歯端から噛み合い終わりまで歯面に沿って潤滑油を流すことができ、熱容量の小さい前記小径はすば歯車の冷却効率を上げることができる。
 請求項5にかかる歯車回転伝達装置の前記小径はすば歯車と前記大径はすば歯車は、両歯車の軸と軸とを結ぶ2軸間の直線に対して略並行する方向に潤滑油を噴射するものであるから、請求項1乃至請求項4の何れか1つに記載の効果に加えて、両歯車の軸と軸とを結ぶ直線に対して略並行する方向から潤滑油を噴射することにより、ノズルの変更や移動の必要性がなくなり、1種類のノズルまたは孔の開いたパイプでさまざまなギヤ比に対応することができる。よって、ギヤ比が変更されてもノズル位置を移動する必要がない。
 請求項6にかかる歯車回転伝達装置の前記潤滑油を噴射供給される前記小径はすば歯車の歯に対する位置は、前記小径はすば歯車の噛み合いを開始する噛み合い始めの歯端側で、その噴射供給を受ける位置が、少なくとも、その一部または全部が前記大径はすば歯車の歯幅よりも外側に位置するものであるから、請求項1乃至請求項4の何れか1つに記載の効果に加えて、前記小径はすば歯車の全体の冷却が可能となり、かつ、潤滑油の油量を多くすることができるから、歯面に流れる油量を確保することができ、噛み合い時に潤滑油が歯面を覆うことができ、磨耗を防止できる。
図1は本発明の実施の形態にかかる歯車回転伝達装置の正面からみた説明図である。 図2は本発明の実施の形態にかかる歯車回転伝達装置における図1の平面からみた説明図である。 図3は本発明の実施の形態にかかる歯車回転伝達装置における要部斜視図を示すものである。 図4は本発明の実施の形態にかかる歯車回転伝達装置を自動車用の自動変速機として使用した実施の形態の断面図である。
符号の説明
10  小径はすば歯車
20  大径はすば歯車
30,60  ノズル
31,61  パイプ
41  デフドライブピニオンギヤ
42  デフリングギヤ
 以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図中、同一記号及び同一符号は、同一または相当する機能部分であるから、ここでは重複する説明を省略する。
[実施の形態1]
 図1は本発明の実施の形態1にかかる歯車回転伝達装置の正面からみた説明図であり、また、図2は本発明の実施の形態1にかかる歯車回転伝達装置における図1の平面からみた説明図、図3は本発明の実施の形態1にかかる歯車回転伝達装置における要部斜視図を示すものである。
 図1乃至図3において、小径はすば歯車10と大径はすば歯車20は、互いの歯を噛み合わせて回転を伝達する歯車回転伝達機構を構成している。これらの小径はすば歯車10と大径はすば歯車20には、つるまき状に形成した歯、即ち、所定のネジレ角及びネジレ方向の歯が形成されている。本発明においては、小径はすば歯車10と大径はすば歯車20とのギヤ比を問うものではなく、小径はすば歯車10と大径はすば歯車20との大小関係があればよい。勿論、はすば歯車10とはすば歯車20が同一径であるときに、本発明が実施できないことを意味するものではなく、特に、小径はすば歯車10と大径はすば歯車20が同一径でないときが効果を奏するとの趣旨である。
 小径はすば歯車10は図1の矢印A方向の回転をし、大径はすば歯車20の図1の矢印B方向の回転を導き、互いの歯を噛み合わせて小径はすば歯車10と大径はすば歯車20の上側が巻き込むように噛み込み、小径はすば歯車10から大径はすば歯車20に回転を伝達している。
 図2の小径はすば歯車10の歯は、ネジレ方向が右(歯すじが右上がり)で、ネジレ角約30度、大径はすば歯車20の歯は、ネジレ方向が左(歯すじが左上がり)で、ネジレ角約30度を示している。そして、小径はすば歯車10は、その歯幅L1が大径はすば歯車20の歯幅L2に比較して、若干、具体的には1~10mm程度、小径はすば歯車10の歯幅L1が幅広となっている。
 また、小径はすば歯車10の歯幅を、大径はすば歯車20の歯幅L2よりも幅広とした歯幅L1に対して、小径はすば歯車10と大径はすば歯車20の各々の軸A0、軸B0間を結ぶ距離Kの直線X-Xに対して略並行する噴射軌跡Y-Yの潤滑油を噴射するようにノズル30を設定している。このノズル30は図示しない自動変速機のオイルポンプからパイプ31を経て供給されている潤滑油を噴射する。噴射位置は、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端Dに、その噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射するものである。
 なお、ノズル30は、潤滑油の噴射方向を特定し、噴射軌跡Y-Yを得る案内機能を持たせたものであるが、自動変速機のオイルポンプの圧力が高く、図1の水平方向の噴射が得られやすいので、パイプ31に穿設した孔とすることもできる。即ち、ポンプ圧によっては、パイプ31に穿設した孔をノズルとすることができる。
 即ち、図2のネジレ方向が右(歯すじが右上がり)の下側の歯端Dに対して噴射軌跡Y-Yの潤滑油を噴射するようにノズル30を設定している。したがって、小径はすば歯車10と大径はすば歯車20の各軸A0、軸B0間を結ぶ距離Kが変化しても、即ち、A0、軸B0間を結ぶ直線X-Xに対して略並行する噴射軌跡Y-Yは、小径はすば歯車10と大径はすば歯車20の径、自動車用自動変速機内で変速段の変更のためにギヤ比が変化しても、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端Dに、潤滑油を噴射することができる。
 本実施の形態の小径はすば歯車10の歯に対する潤滑油の噴射供給は、大径はすば歯車20の端面側に配設したノズル30から噴射させるものであるから、その潤滑油は、直接、小径はすば歯車10に衝突し、小径はすば歯車10と大径はすば歯車20との間で捕捉されない潤滑油であっても、小径はすば歯車10との衝突によって潤滑油が小径はすば歯車10の熱を奪うから、熱容量の小さい小径はすば歯車10の冷却に寄与することができ、潤滑油の効率的な使用が可能となる。
 また、小径はすば歯車10の歯に対する潤滑油の噴射供給は、大径はすば歯車20の端面に沿って配設したパイプ31によって、図示しないオイルポンプから供給された潤滑油を導き、パイプ31のノズル30から略直角方向に潤滑油を噴射供給させるものであるから、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端Dに、その噛み合いが開始される直前に小径はすば歯車10と大径はすば歯車20との間隙に潤滑油が噴射供給され、当該、間隙は回転に伴い図2の下側から順次上側に接触位置が変化し、順次歯幅の方向に接触点が移行するものであるから、潤滑油がつるまき状に形成した歯面に沿って移動自在となり、歯車相互間で捕捉される潤滑油の量が多くなり、効率の良い潤滑油の供給となり、また、歯面に沿って潤滑油が移動自在となるから、冷却効率もよくなる。
 特に、小径はすば歯車10と大径はすば歯車20は、小径はすば歯車10が駆動側であり、大径はすば歯車20が被駆動側であるから、繰り返し、捕捉された潤滑油を噛み合いが開始される噛み合い始めの歯端Dから噛み合い終わりまで歯面に沿って潤滑油を移動させることができ、熱容量の小さい小径はすば歯車10の冷却効率を上げることができる。また、歯に形成される潤滑油の油膜によって、小径はすば歯車10と大径はすば歯車20との金属面の接触を回避することができ、歯車の磨耗が低減できる。
 更に、小径はすば歯車10と大径はすば歯車20は、両歯車の2軸間の直線X-Xに対して略並行する噴射軌跡Y-Yの潤滑油の噴射とするものであるから、両歯車の2軸間、即ち、各軸A0、軸B0間の直線X-Xに対して略並行する噴射軌跡Y-Yの噴射とすることにより、ノズル30の変更や移動の必要性がなくなり、1種類のノズル30(またはパイプ31の孔)によってさまざまなギヤ比に対応することができる。
 特に、ノズル30の噴射方向は、小径はすば歯車10と大径はすば歯車20とのギヤ比が、[小径はすば歯車10]/[大径はすば歯車20]の値が大きくなればなるほど、両者の噛み合い位置が上に若干移動するが、ノズル30の噴射方向の位置設定を、両歯車の2軸間、即ち、各軸A0、軸B0間の直線X-Xに対して略並行する噴射軌跡Y-Yの噴射を2軸間の直線X-Xよりも上部に、また必要に応じて数度程度下方に向けて設定することによって、それを補正することができる。ただし、噴射軌跡Y-Yの噴射方向を2軸間の直線X-Xよりも上部に、設定してあれば、数度程度下方に向けてノズル30を補正しても、補正しなくても、その影響力は僅かである。即ち、ポンプ圧によって噴射軌跡Y-Yが直線ではなく、放物線を描くから、その影響は僅少となる。
 このように、小径はすば歯車10の歯に対する潤滑油の噴射供給は、大径はすば歯車20の端面に沿って配設したパイプ31によって、図示しないオイルポンプから供給された潤滑油を導き、パイプ31に配設したノズル30からその略直角方向に潤滑油を噴射供給させるものである。
 また、小径はすば歯車10と大径はすば歯車20は、小径はすば歯車10が駆動側であり、大径はすば歯車20が被駆動側であるから、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端Dに、その噛み合いが開始される直前に小径はすば歯車10と大径はすば歯車20との歯の間隙に潤滑油が噴射供給されているから、当該間隙が順次噛み合うと、それに伴って潤滑油がつるまき状に形成した小径はすば歯車10と大径はすば歯車20との歯面に沿って噛み合い終わりの面方向に移動させられる。特に、駆動側の小径はすば歯車10の歯面が大径はすば歯車20との間で被駆動側に押圧力を与え、歯車相互間で捕捉される潤滑油が噛み込み側から吸入される確実に歯幅方向に流れ、しかも、その潤滑油の量が多くなり、効率の良い潤滑油の供給となり、また、歯面に沿って潤滑油が移動自在となるから、冷却効率もよくなる。
 本実施の形態では、反噛み込み側からの給油でないので、歯面に接触する潤滑油による冷却に留まることがない。即ち、従来の反噛み込み側からの給油は、歯面の潤滑油の量は、歯に付着した潤滑油及び噛み込み側から吸入される油霧のみであるが、本実施の形態では、その潤滑油の量が多くなり、効率の良い潤滑油の供給となり、また、歯面に沿って潤滑油が移動自在となるから、冷却効率もよくなる。勿論、歯面潤滑のための潤滑油が不足して高温となったり、焼き付きや摩耗等といった歯面損傷を引き起こすことがない。
[実施の形態2]
 このように構成される本発明の実施の形態にかかる歯車回転伝達装置は、自動車用の自動変速機等の駆動装置として、次のように使用される。
 図4は本発明の実施の形態にかかる歯車回転伝達装置を自動車用の自動変速機等の駆動装置として使用した実施の形態である。
 図において、本発明の実施の形態2にかかる自動変速機等の駆動装置は、車両において横置きされるFF(フロントエンジン・フロントドライブ)型車両に好適に用いられるもので、走行用の駆動力源としてのエンジンと一対の駆動輪(前輪)との間に設けられて、動力を差動装置(デファレンシャルギヤユニット)40及び一対の車軸43a、43b等を介して図示しない駆動輪(前輪)に伝達するものである。
 この差動装置40は、一対の駆動輪(前輪)の回転差を許容しながら、トルクを均等に分配するために、エンジンを駆動源とし、トルクコンバ-タからの回転が入力される入力軸50の軸心に平行な軸心上に、回転可能に配設された大径はすば歯車からなるデフリングギヤ42、デフリングギヤ42と共に回転するデフケース43、そのデフケース43に固定された垂直軸44によって、一対の車軸43a、43bの軸心に直交する軸心まわりに回転可能に支持された一対の差動小歯車45と、車軸43a、43bに軸支されてその差動小歯車45と噛み合う差動大歯車46a、46bとを有している。
 デフケース43は必要数のベアリング47を介して図示しないケースにより回転自在に支持されている。デフリングギヤ42はデフケース43に所定数のボルト48によって一体に固着されている。
 小径はすば歯車からなるデフドライブピニオンギヤ41は、トルクコンバ-タからの回転が入力される入力軸50に軸支されたデフリングギヤ42と噛み合っている。即ち、本実施の形態2のデフドライブピニオンギヤ41は、前記実施の形態1の小径はすば歯車10に相当し、同様に、デフリングギヤ42は大径はすば歯車20に相当する。
 また、デフドライブピニオンギヤ41の歯幅L1をデフリングギヤ42の歯幅L2よりも幅広とした歯幅L1に対して、デフドライブピニオンギヤ41とデフリングギヤ42の各々の軸間を図3に示す直線X-Xに対して略並行する噴射軌跡Y-Yの潤滑油を噴射するようにパイプ孔からなるノズル60を設定している。このノズル60は図示しない自動変速機のオイルポンプからパイプ61を経て供給されている潤滑油を噴射する。噴射位置は、デフドライブピニオンギヤ41のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前にデフドライブピニオンギヤ41の歯に潤滑油を噴射するものである。
 なお、パイプ孔からなるノズル60は、自動変速機のオイルポンプの圧力が高いので、パイプ61に穿設した孔としたものである。また、自動変速機のオイルポンプから供給された潤滑油は、パイプ61を介して、差動装置40のデフケース43に固定された垂直軸44にも供給している。
 上記のように、本実施の形態2にかかる歯車回転伝達装置を自動車用の自動変速機等の駆動装置として使用したものでは、デフリングギヤ42とデフリングギヤ42とを噛み合わせて回転を伝達する歯車回転伝達機構において、デフドライブピニオンギヤ41の歯幅L1をデフリングギヤ42の歯幅L2よりも幅広とし、デフドライブピニオンギヤ41のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前にデフドライブピニオンギヤ41の歯に潤滑油を噴射供給するものである。
 デフドライブピニオンギヤ41の歯幅L1をデフリングギヤ42の歯幅L2よりも幅広とし、デフドライブピニオンギヤ41のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前にデフドライブピニオンギヤ41の歯に潤滑油を噴射するものであるから、噴射された潤滑油をデフドライブピニオンギヤ41とデフリングギヤ42との間で捕捉し、順次噛み合う歯面に沿って潤滑油を流すことができるので、適量の潤滑油により、歯面の潤滑と歯面の冷却が同時に行え、歯面の磨耗が低減でき、歯車の長寿命化が図れる。
 また、デフドライブピニオンギヤ41及びデフリングギヤ42の歯面に潤滑油による油膜が形成できることから、歯車同士の歯面の直接接触が防止され、かつ、歯面被覆効果もあることから、ピッチング、スコアリングの発生を防ぐことができる。特に、熱容量の小さいデフドライブピニオンギヤ41に対して直接潤滑油を噴射することで、冷却効果により小歯車の温度上昇を抑制し、温度上昇に起因するピッチング、スコーリングの歯の損傷の発生を大幅に抑制することができる。
 そして、デフドライブピニオンギヤ41及びデフリングギヤ42の両歯車の2軸間の直線X-Xに対して略並行する潤滑油の噴射とすることにより、ノズル60の変更や移動の必要性がなくなり、図1に示す1種類のノズル30または孔の開いたパイプのノズル60でさまざまなギヤ比に対応することができる。したがって、高速回転する歯車においても、噛み合い歯面に十分な潤滑油が供給でき、焼き付き、摩耗等の歯面損傷の発生を防止できると共に、仮に、ギヤ比が変更されてもノズル位置を移動する必要がない。
 即ち、実施の形態2と同様、実施の形態1は、小径はすば歯車10と大径はすば歯車20とを噛み合わせて回転を伝達する歯車回転伝達機構において、小径はすば歯車10の歯幅L1を大径はすば歯車20の歯幅L2よりも幅広とし、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射供給する発明の構成とすることができる。
 したがって、噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射するものであるから、噴射された潤滑油を小径はすば歯車10と大径はすば歯車20との間で捕捉し、順次噛み合う歯面に沿って潤滑油を流すことができるので、適量の潤滑油により、歯面の潤滑と歯面の冷却が同時に行え、歯面の磨耗が低減でき、歯車の長寿命化が図れる。また、歯面に潤滑油による油膜が形成できることから、小径はすば歯車10と大径はすば歯車20の歯車同士の歯面の直接接触が防止され、かつ、歯面被覆効果もあることから、ピッチング、スコアリングの発生を防ぐことができる。
 特に、熱容量の小さい小径はすば歯車10に対して直接潤滑油を噴射することで、冷却効果により小歯車の温度上昇を抑制し、温度上昇に起因するピッチング、スコーリングの歯の損傷の発生を大幅に抑制することができる。そして、両歯車の2軸間、即ち、各軸A0、軸B0間の直線X-Xに対して略並行する潤滑油の噴射とすることにより、ノズル30の変更や移動の必要性がなくなり、1種類のノズル30または孔の開いたパイプでさまざまなギヤ比に対応することができる。更に、高速回転する歯車においても、噛み合い歯面に十分な潤滑油が供給でき、摩耗等の歯面損傷の発生を防止できると共に、仮に、ギヤ比が変更されてもノズル30の位置を移動する必要がない。
 また、上記実施の形態1及び実施の形態2は、小径はすば歯車10またはデフドライブピニオンギヤ41の歯に対する潤滑油の噴射供給は、大径はすば歯車20またはデフリングギヤ42の端面側に配設したノズル30,60から噴射させるものである。したがって、その潤滑油は、直接、小径はすば歯車10またはデフドライブピニオンギヤ41に衝突するから、小径はすば歯車10またはデフドライブピニオンギヤ41と大径はすば歯車20またはデフリングギヤ42との間で捕捉されない潤滑油であっても、熱容量の小さい小径はすば歯車10またはデフリングギヤ42の冷却に供することができ、潤滑油の効率的な使用が可能である。
 そして、上記実施の形態1及び実施の形態2は、小径はすば歯車10またはデフドライブピニオンギヤ41の歯に対する潤滑油の噴射供給は、大径はすば歯車20またはデフリングギヤ42の端面に沿って配設したパイプ30,60によって、オイルポンプから供給された潤滑油を導き、パイプ30,60から略直角方向に潤滑油を噴射供給させるものであるから、小径はすば歯車10またはデフドライブピニオンギヤ41のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に小径はすば歯車10またはデフドライブピニオンギヤ41と大径はすば歯車20またはデフリングギヤ42との間隙に潤滑油が噴射供給され、当該、間隙は順次狭められるものであるから、潤滑油を歯面に沿って移動自在となり、歯車相互間で捕捉される潤滑油の量が多くなり、効率の良い潤滑油の供給となる。
 更に、上記実施の形態1及び実施の形態2は、小径はすば歯車10またはデフドライブピニオンギヤ41と大径はすば歯車20またはデフリングギヤ42は、小径はすば歯車10またはデフドライブピニオンギヤ41が駆動側であり、大径はすば歯車20またはデフリングギヤ42が被駆動側であるから、繰り返し、捕捉された潤滑油を噛み合いが開始される噛み合い始めの歯端から噛み合い終わりまで歯面に沿って潤滑油を流すことができ、熱容量の小さい小径はすば歯車10またはデフドライブピニオンギヤ41の冷却効率を上げることができる。
 更にまた、上記実施の形態1及び実施の形態2は、小径はすば歯車10またはデフドライブピニオンギヤ41と大径はすば歯車20またはデフリングギヤ42は、両歯車の2軸間の直線X-Xに対して略並行する潤滑油の噴射とするものであるから、小径はすば歯車10またはデフドライブピニオンギヤ41と大径はすば歯車20またはデフリングギヤ42との両歯車の2軸間の直線X-Xに対して略並行する潤滑油の噴射とすることにより、ノズル30,60の変更や移動の必要性がなくなり、1種類のノズル30または孔の開いたパイプ60でさまざまなギヤ比に対応することができる。
 加えて、上記実施の形態1及び実施の形態2は、潤滑油を噴射供給される小径はすば歯車10またはデフドライブピニオンギヤ41の歯に対する位置は、小径はすば歯車10またはデフドライブピニオンギヤ41の噛み合いを開始する噛み合い始めの歯端側で、その噴射供給を受ける位置が、少なくとも、その一部または全部が大径はすば歯車20またはデフリングギヤ42の歯幅L2よりも外側に位置するものであるから、小径はすば歯車10またはデフドライブピニオンギヤ41の全体の冷却が可能となり、かつ、潤滑油の油量を多くすることができるから、歯面に流れる油量を確保することができ、噛み合い時に潤滑油が歯面を覆うことができ、磨耗を防止できる。
 上記実施の形態1及び実施の形態2は、小径はすば歯車10またはデフドライブピニオンギヤ41及び大径はすば歯車20またはデフリングギヤ42として、はすば歯車を使用した事例で説明したが、本発明は小径はすば歯車10の歯幅L1を大径はすば歯車20の歯幅L2よりも幅広とし、小径はすば歯車10のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射供給するものであるから、小径はすば歯車10と大径はすば歯車20を、はすば歯車のネジレ方向を互いに逆とした対からなるやまば歯車とし、その両側から噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に小径はすば歯車10の歯に潤滑油を噴射供給することによって、やまば歯車にも適用されることは明らかである。

Claims (6)

  1.  小径はすば歯車と大径はすば歯車とを噛み合わせて回転を伝達する歯車回転伝達機構において、
     前記小径はすば歯車の歯幅を前記大径はすば歯車の歯幅よりも幅広とし、前記小径はすば歯車のつるまき状に形成した歯に対して噛み合いを開始する噛み合い始めの歯端に、その噛み合いが開始される直前に、潤滑油を噴射供給することを特徴とする歯車回転伝達装置。
  2.  前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面側に配設したノズルから噴射させることを特徴とする請求項1に記載の歯車回転伝達装置。
  3.  前記小径はすば歯車の歯に対する潤滑油の噴射供給は、前記大径はすば歯車の端面に沿って配設したパイプによって、オイルポンプから供給された潤滑油を導き、前記パイプから略直角方向に潤滑油を噴射供給させることを特徴とする請求項1に記載の歯車回転伝達装置。
  4.  前記小径はすば歯車と前記大径はすば歯車は、前記小径はすば歯車が駆動側であり、前記大径はすば歯車が被駆動側であることを特徴とする請求項1乃至請求項3の何れか1つに記載の歯車回転伝達装置。
  5.  前記小径はすば歯車と前記大径はすば歯車の噛み合い始めの歯端に、両歯車の軸と軸とを結ぶ2軸間の直線に対して略並行する方向に潤滑油を噴射することを特徴とする請求項1乃至請求項4の何れか1つに記載の歯車回転伝達装置。
  6.  前記潤滑油を噴射供給される前記小径はすば歯車の歯に対する位置は、前記小径はすば歯車の噛み合いを開始する噛み合い始めの歯端側で、その噴射供給を受ける位置が、少なくとも、その一部または全部が前記大径はすば歯車の歯幅よりも外側に位置することを特徴とする請求項1乃至請求項5の何れか1つに記載の歯車回転伝達装置。
PCT/JP2008/062593 2007-12-27 2008-07-11 歯車回転伝達装置 WO2009084259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880104777A CN101790652A (zh) 2007-12-27 2008-07-11 齿轮旋转传送装置
DE112008002342T DE112008002342T5 (de) 2007-12-27 2008-07-11 Zahnraddrehungen übertragende Vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007336201A JP2009156368A (ja) 2007-12-27 2007-12-27 歯車回転伝達装置
JP2007-336201 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084259A1 true WO2009084259A1 (ja) 2009-07-09

Family

ID=40796514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062593 WO2009084259A1 (ja) 2007-12-27 2008-07-11 歯車回転伝達装置

Country Status (5)

Country Link
US (1) US20090165588A1 (ja)
JP (1) JP2009156368A (ja)
CN (1) CN101790652A (ja)
DE (1) DE112008002342T5 (ja)
WO (1) WO2009084259A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082846A (ja) * 2010-10-06 2012-04-26 Ricoh Co Ltd ギヤ駆動機構、ギヤ駆動機構を備えた駆動装置、ギヤ駆動機構を備えた画像形成装置
EP2730811B1 (en) * 2011-07-08 2016-08-24 Toyota Jidosha Kabushiki Kaisha Method for manufacturing multi-stage gear
CN102701075B (zh) * 2012-05-23 2014-10-29 河南省矿山起重机有限公司 齿轮传动机构及使用该传动机构的起重机端梁
CN104421411A (zh) * 2013-08-26 2015-03-18 上海意丰机电科技开发有限公司 Yf型开式齿轮啮合润滑装置
JPWO2015030024A1 (ja) * 2013-08-30 2017-03-02 アイシン・エィ・ダブリュ株式会社 動力伝達装置
JP6756214B2 (ja) * 2016-09-26 2020-09-16 セイコーエプソン株式会社 ロボット、歯車装置および歯車装置の製造方法
CN112112945A (zh) * 2020-09-11 2020-12-22 华南理工大学 一种具有复合织构的齿轮
EP3974681A1 (en) 2020-09-29 2022-03-30 Volvo Truck Corporation A gearwheel arrangement
CN117450234B (zh) * 2023-12-25 2024-05-07 南通斯派特激光科技有限公司 一种人工智能设备用传动装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529729U (ja) * 1978-08-18 1980-02-26
JPH10122310A (ja) * 1996-10-14 1998-05-15 Hitachi Ltd 歯車装置
JP2000179793A (ja) * 1998-12-15 2000-06-27 Kobe Steel Ltd 歯車装置の機械損失低減装置
JP2005325925A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 歯車機構の潤滑装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094736A (en) * 1934-12-17 1937-10-05 Whiting Corp Foundry ladle
US2176207A (en) * 1938-03-05 1939-10-17 Herbert S Simpson Unit drive mixing machine
US2511972A (en) * 1947-11-03 1950-06-20 Danly Mach Specialties Inc Circulating oil system for presses
US2535703A (en) * 1949-01-12 1950-12-26 Gen Electric Lubricating system for gear units
DE2042206A1 (de) * 1970-08-26 1972-03-02 Porsche Kg Schmiervorrichtung fuer Geschwindigkeitswechselgetriebe
NO129163B (ja) * 1971-07-15 1974-03-04 N Tharaldsen
US4414861A (en) * 1982-02-17 1983-11-15 The Falk Corporation Gear drive cooling
US5251725A (en) * 1992-07-07 1993-10-12 Castrol Limited Lubrication of power drive comprising large diameter gear
DE19525102C2 (de) * 1995-06-29 1999-06-10 Mannesmann Ag Vorrichtung zur Verringerung der Ventilationsverluste eines schnellaufenden Zahnradgetriebes
US5715912A (en) * 1996-10-01 1998-02-10 Maxwell; John P. Integrated lubrication system using solid oil and oil mist with a demister
JPH11337449A (ja) 1998-05-27 1999-12-10 Hitachi Ltd 歯車装置
JP3937754B2 (ja) 2001-05-22 2007-06-27 日産自動車株式会社 歯車の潤滑装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529729U (ja) * 1978-08-18 1980-02-26
JPH10122310A (ja) * 1996-10-14 1998-05-15 Hitachi Ltd 歯車装置
JP2000179793A (ja) * 1998-12-15 2000-06-27 Kobe Steel Ltd 歯車装置の機械損失低減装置
JP2005325925A (ja) * 2004-05-14 2005-11-24 Toyota Motor Corp 歯車機構の潤滑装置

Also Published As

Publication number Publication date
JP2009156368A (ja) 2009-07-16
US20090165588A1 (en) 2009-07-02
CN101790652A (zh) 2010-07-28
DE112008002342T5 (de) 2010-07-15

Similar Documents

Publication Publication Date Title
WO2009084259A1 (ja) 歯車回転伝達装置
JP4958889B2 (ja) 歯車列の潤滑装置
CN104251289B (zh) 用于牵引车辆的驱动轴的润滑装置
US9945471B2 (en) Lubricating apparatus for rotating shaft
JP6696857B2 (ja) 車両用歯車装置の潤滑装置
US9695928B2 (en) Transmission lubrication system
JP2005201316A (ja) 車軸駆動装置
US8739931B2 (en) Lubricating structure of differential gear unit
US9587731B2 (en) Lubricating apparatus for rotating shaft
JPH08210472A (ja) 終減速装置の潤滑機構
JPH10122310A (ja) 歯車装置
CN107735599B (zh) 具有润滑剂供给通道和限流器的机动车传动系单元外壳
CN115614457A (zh) 用于润滑齿轮的设备
US20110070996A1 (en) Conical friction wheel type continuously variable transmission device
CN106321745A (zh) 一种4档纯电动车用变速器
CN215861676U (zh) 一种减速器润滑系统
JP2013213515A (ja) 動力伝達機構の潤滑装置
CN212106889U (zh) 一种电驱动总成的电机轴与减速器轴同轴定心面润滑油槽
JP6263373B2 (ja) デフケース
EP1016808A2 (en) Forced-feed lubricating system for gears
KR100335600B1 (ko) 무단변속기및그를이용한차량용변속장치
WO2011111478A1 (ja) ハイブリッド駆動装置
JP7265337B2 (ja) 動力伝達装置の潤滑構造
CN211145309U (zh) 一种电动汽车动力总成用花键油润滑结构
CN211720418U (zh) 一种电驱动总成中的电机轴与减速器轴同轴定心结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104777.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080023425

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008002342

Country of ref document: DE

Date of ref document: 20100715

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08778108

Country of ref document: EP

Kind code of ref document: A1