WO2009082862A1 - Batterie à haute énergie et son procédé de fabrication - Google Patents
Batterie à haute énergie et son procédé de fabrication Download PDFInfo
- Publication number
- WO2009082862A1 WO2009082862A1 PCT/CN2008/000030 CN2008000030W WO2009082862A1 WO 2009082862 A1 WO2009082862 A1 WO 2009082862A1 CN 2008000030 W CN2008000030 W CN 2008000030W WO 2009082862 A1 WO2009082862 A1 WO 2009082862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- pyrite
- battery
- positive electrode
- energy battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/463—Aluminium based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/166—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/4911—Electric battery cell making including sealing
Definitions
- the invention belongs to the battery manufacturing technology, and mainly relates to a high-energy battery and a preparation method thereof.
- the battery is rated at 1. 5V and can be used interchangeably with carbon batteries, alkaline manganese batteries, nickel metal hydride batteries, nickel cadmium batteries, zinc nickel batteries, and zinc air batteries. Background technique
- a digital camera uses an alkaline zinc-manganese battery for continuous shooting only 70 times. If you adjust the LCD display, you only need to change the battery after a while. You can shoot 788 times continuously with a lithium-iron battery. 11 times the manganese battery, if the gap is used more times, the weight is one-half.
- the zinc-nickel battery has a new power of about 500 times, but it has a poor shelf life and a heavy weight. Comprehensive performance lithium iron battery is good. Although secondary batteries are favored for charging, they cannot be replaced by primary batteries due to need for charging, poor shelf life, low primary capacity, poor safety performance, and inconvenient use.
- the primary battery still has a dominant position in the small civilian battery market in the 21st century due to its long life, high capacity, small size, and ease of use. In the past few years, the battery itself has been rapidly developed due to market demand, especially the 1. 5V battery is the main force in the market development. Summary of the invention
- the object of the present invention is to provide a high-energy battery and a preparation method thereof.
- the energy density of the battery is more than twice that of the ordinary alkaline battery under a certain discharge system.
- the technical solution for realizing the present invention is:
- the high-energy battery includes a positive electrode, a negative electrode, an electrolyte, and a separator, wherein the positive electrode includes the following components and ratios,
- the purity of pyrite (FeS2) is above 90%, the particle size is less than 44 ⁇ ⁇ ; the average particle of graphite is 5.0 .
- BET specific surface area 11. 0 - 14. 0 m2 / g, ash content less than 0.1%; oxide or lithium oxide including Mn02, Ti02, LiCo02, LiMn02, LiNi02, Li2Ti03, Li4Ti5012 or a mixture of several species; a negative electrode comprising lithium metal or a lithium alloy, wherein the aluminum content 0.05% - 0.10%, a thickness of 0. 10- 0. 20mm;
- the electrolyte includes a mixture of an organic solvent and an inorganic lithium salt solute, wherein: the organic solvent includes N-methylpyrrolidone (P), 1, 2-propanediol carbonate (PC), ethylene glycol dimethyl ether, 1, 3 - Dioxolane (D0L), three or more mixtures of isoxazoles (such as DMI), tetrahydrofuran (THF), dimethyl sulfoxide (DMS0), sulfolane (SFL); inorganic lithium salt solute Including lithium perchlorate (LiC104), lithium trifluoromethanesulfonate (LiCF3S03), lithium iodide (Lil), lithium hexafluoroarsenate (LiAsF6), lithium tetrafluoroborate (LiBF4) or a mixture of several ;
- the separator comprises a polyethylene resin of PP/PE/PP.
- Conductive carbon black, graphite, and lithium oxide in the positive electrode component may be selected from any two of them.
- the binder of the positive electrode includes polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber emulsion (SBR), One or two mixtures of N-methylpyrrolidone (NMP), wherein (CMC), (SBR), (PVDF), (NMP) account for 1-4% by weight of pyrite, respectively.
- PVA polyvinyl alcohol
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- CMC carboxymethyl cellulose
- SBR styrene-butadiene rubber emulsion
- NMP N-methylpyrrolidone
- the optimum ratio of the organic solvent is (PC).- (DME): (DOL): (NMP): (DMI) is equal to (0-10): (15 -30): (15-80): (0 -5): (0-5).
- the molar ratio of the inorganic lithium salt solute is one of lithium perchlorate (UC104) or lithium iodide (Lil), and the molar concentration thereof is 0.8-2. 2raol/L.
- the separator has a maximum effective pore diameter of 0.08 - 0.12 ⁇ m, a porosity of 40 - 50%, and an impedance of 30 - 50 m ⁇ / ⁇ 2.
- the battery is provided with an explosion-proof anti-overflow cap, and the cap is internally provided with a four-layer composite film composed of PE/A1/PE/silica gel and a three-layer structure thermistor composed of copper foil/conductive carbon black/copper foil. _ 03. 05.
- the total thickness of the composite film is 0. 14- 0. 22 mm, the thickness of each single layer is 0. 03 - 0. 05 mm / 0. 03 - 0. 05 leg / 0. 03 - 0. 05 mm / 0 05— 0. 07 mm;
- the thermal resistance of the monolithic unit is less than 32m ⁇ . 3. When the current is 5 ⁇ , the operation time is less than 10 seconds. When the current is 8 ⁇ , the action time is less than 2 seconds.
- the method for realizing the invention is as follows:
- the preparation of the positive electrode comprises mixing pyrite, graphite, acetylene black and lithium oxide according to a ratio, then adding water, a binder, uniformly mixing into a slurry, coating on the current collector, and drying. After rolling to a certain thickness, cut into a suitable size, spot welding the positive electrode ear, wherein the added water accounts for 50-150% of the weight of the pyrite.
- the method also includes:
- the drying temperature of the positive electrode is 50-130 ° C, the thickness is 0. 10 - 0. 25 mm, and the porosity is 30 - 45%.
- the preparation of the pyrite comprises heat treatment or chemical treatment, wherein the heat treatment comprises laying pyrite in a stainless steel tray and placing it in an oven, the heat treatment temperature is in the range of 100-700 ° C, and the heat treatment time is 1 to 24 hours.
- the chemical treatment includes treating the pyrite with acid, alkali or deionized water, wherein the acid includes sulfuric acid or hydrochloric acid or phosphoric acid or acetic acid; the alkali includes hydroxide Sodium or potassium hydroxide or ammonia.
- the invention has the beneficial effects that the manufacturing process is simple and the cost is low, and the product has the characteristics of high capacity, small volume, safety, environmental protection and long service life.
- Figure 1 is a schematic view of the coating of the present invention.
- Figure 2 is a schematic view of the cap of the present invention.
- Figure 3 is a schematic view of the structure of the present invention.
- Figure 4 is a comparison chart of discharge data of the AA model high energy 1. 5V battery of the present invention and other 1. 5V batteries (discharge system lOOOmA-cont to O. 8V).
- Figure 5 is a comparison chart of discharge data of AA model high energy 1. 5V battery and other 1. 5V battery of the present invention (discharge system 2000mA-cont toO. 8V) 0
- Table 1 is a typical comparative data of the 1000 mA constant current discharge of the present invention.
- Table 2 is a battery safety performance test chart of the present invention.
- the battery is mainly composed of a positive electrode, a negative electrode and an electrolyte, wherein pyrite is used as a positive electrode active material, a lithium aluminum alloy is used as a negative electrode, and a mixture of an organic solvent and an inorganic salt solute is used as an electrolyte.
- the positive active material of the battery is pyrite (chemical formula: FeS2), and pyrite is selected for a certain treatment. The pyrite is crushed and sieved, 90% over 325 mesh (particle size not greater than 0. 044 mm).
- the treatment of pyrite may be carried out in combination or in combination with two different treatment methods: one of which is a heat treatment method, in which pyrite is laid flat in a stainless steel tray and placed in an oven at a heat treatment temperature of 100-700 ° C.
- the heat treatment time range is 1 to 24 hours.
- the storage method is to store the heat treated pyrite in a bag and store it in a cool and dry place.
- the other is a chemical treatment method, that is, the pyrite is subjected to acid and alkali.
- Deionized water treatment the acid used is sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, etc.; the base used is sodium hydroxide, potassium hydroxide, ammonia water and the like.
- the positive electrode conductive agent of the battery is two or more of graphite, acetylene black, metal powder, oxide, and lithium oxide.
- the positive electrode binder of the battery is one or both of polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and sodium carboxymethyl cellulose (CMC).
- PVA polyvinyl alcohol
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- CMC sodium carboxymethyl cellulose
- the first electrode of the battery is an aluminum foil
- the ear is a stainless steel strip, a nickel-plated steel strip or a nickel strip
- the thickness of the aluminum foil is 16-25 m
- the thickness of the tab is 0.05-0.11.
- the positive electrode of the battery is prepared by uniformly mixing the positive electrode active material and the conductive agent, and then coating the positive electrode current collector with a binder, and then rolling, striping, and molding, as shown in FIG.
- the content of the aluminum is between 0. 05-0. 10%.
- the battery is composed of a mixture of an organic solvent and an inorganic phosphonium salt solute, wherein the inorganic salt solute may be lithium perchlorate (LiC104), lithium trifluoromethanesulfonate (LiCF3S03), lithium iodide (Lil), and six.
- the organic solvent may be N-methylpyrrolidone (Li P), 1,2-propylene glycol carbonate (PC), ethylene glycol a mixture of three or more of dimethyl ether (DME), 1, 3-dioxolane (D0L), isoxazole, tetrahydrofuran (THF), dimethyl sulfoxide (DMS0).
- the cap of the battery is equipped with an explosion-proof and over-current-proof device.
- the structure is shown in Figure 2
- the assembly process of the battery is that after the positive electrode piece is dried, the negative electrode and the separator are rolled up in an environment with a relative humidity of less than 1%, and then the steel case is placed, and after the electrolyte is added, the groove and the sealing are performed.
- the discharge reaction of the battery was: FeS2 + 4Li-Fe + 2Li2S.
- the discharge reaction mechanism of the battery is: FeS2 + 4Li - 2Li + Li2FeS2 ⁇ Fe + 2Li2S.
- UC104 electrolyte is a very mature electrolyte in lithium primary batteries, but iron disulfide may be oxidized to produce harmful gases in the battery, causing gas rise.
- a new type of electrolyte solution was added, and an appropriate amount of electrolyte additive was added to solve the problem, and the discharge platform of the battery was improved, and the discharge performance of the battery was improved. See Table 1 for specific comparison data with common electrolytes.
- Safety performance is a critical issue for lithium batteries and is especially important for cylindrical lithium/iron disulfide batteries.
- the safety device such as explosion-proof membrane and PTC is used to ensure the safety performance of the battery.
- the specific test results are shown in Table 2.
- the pyrite selected for use in this embodiment is subjected to crushing and sieving, 75% over 200 mesh sieve (particle size not greater than 0.076 mm), and 25% over 325 mesh sieve (particle diameter not greater than 0. 044 legs) .
- the purity is 99. 44 ° /.
- the sulphur content is 53.15%, and the iron content is 46.50%.
- the content of the impurity is less than 0.1, the content of MgO is not more than 0.1%, the content of A1203 is less than 0.15%, the content of CaO is not more than 0.1%, and the content of acid-soluble iron is 0.38%.
- the treatment method is chemical treatment, and the treatment process is as follows:
- PVDF polyvinylidene fluoride
- NMP N-methylpyrrolidone
- the molar concentration of the electrolyte is 1. Omol / L;
- the organic solvent is propylene carbonate (PC), ethylene glycol dimethyl ether (DME), 1, 3-dioxolane (D0L), N-methylpyrrolidone ( ⁇ P), isoxazole (DMI), ratio For 5: 20: 70: 3: 2.
- a lithium-iron disulfide battery is prepared by coiling, bottoming, rolling, filling, capping, and sealing.
- a cap with an explosion-proof over-current device is used, and the structure is shown in Fig. 2.
- the discharge capacity of the AA type can reach 2900 mAh or more (discharge system: 1000 mA constant current discharge, cut-off voltage is 0.8 V).
- the prepared battery is compared with other 1. 5V type batteries.
- the discharge data comparison is shown in Figures 4 and 5 (discharge system: 1 1000mA constant current discharge, cutoff voltage is 0. 8V; 2 2000mA constant current discharge, cutoff voltage is 0 . 8V).
- each test battery should fall six times, on three axes.
- the rear battery should be free of bleed, no explosion, no fire.
- the long axis of the battery should be parallel to the extrusion plane of the vise. Squeeze force
- the extrusion test meets the requirements and is qualified to be about 13kN. Once the maximum pressure is reached, the extrusion is released. Real
- the battery should be free of explosions and fire.
- the 5PCS test cell is subjected to an amplitude of 0.8 mm (maximum displacement)
- the vibration rate varies from 10 Hz to 55 Hz, and meets the requirements.
- the battery should be free from deformation and leakage.
- the altitude simulation is at least 6h in an environment of (20 ⁇ 2) °C.
- the battery should meet the requirements. Qualified No deformation, no leakage, no venting, no explosion, no fire.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Description
高能电池及其制备方法
技术领域
本发明属于电池制作技术, 主要是指一种高能电池及其制备方法。这种电池的额定 电压为 1. 5V, 可以与碳性电池、 碱锰电池、 镍氢电池、 镍镉电池、 锌镍电池、 锌空气电 池互换使用。 背景技术
探讨 100多年来锌锰电池之所以一直能在电池市场中占有一定地位, 一时还难以被 其他种类电池完全取代的主要原因, 在于产制锌锰电池所需要的主要原材料, 资源丰富 且价格低廉, 然而普通锌锰电池性能再提升的空间已很小, 且受制于材料等因素, 成本 /价格下降的空间已不大, 加之利润低, 故市场竞争力越来越弱, 反之, 碱锰电池发展 至今, 电池性能仍然不断的在提升, 且成本降低等方面亦依然有较大空间, 故未来市场 前景仍有可为, 唯现阶段碱性锌锰电池产品 /技术 /产业已趋成熟, 价格竞争已是必然。 但是锂一次电池在重负载下的应用也将逐渐增大。
目前电子器具的多样化、 小型化的飞速更新换代, 促使了电池的进步, 要求电池比 能量、 比功率高、 寿命长、 价格适宜、 使用方便。 小型电器的飞速发展使小型民用电池 市场不单数量要求成倍增加,而且要求品种多、 搁置寿命长、 一次容量高、 体积小。 可 是目前市场的状况是低档次电池占主导, 远远不能满足市场电器重负载工作的需要。此 类电池国内外正在研制和改进。主要使: 碱锰电池的改进、锂一次电池的开发、 锌镍电 池的研制。碱性锌锰电池也在努力提高自身的重负载性能, 但与市场要求差距太远。例 如, 数码相机(Canon Power Shot A100)用碱性锌锰电池连续拍摄仅 70次, 如调整液 晶显示, 只过一会就要换电池, 用锂铁电池可连续拍摄 788次, 为碱性锌锰电池的 11倍, 如果间隙使用倍数更大, 重量为其二分之一。 锌镍电池新电约 500次, 但搁置寿命差, 重量重。 综合性能锂铁电池好。
虽然二次电池因能充电而受到青睐, 但因需充电、搁置寿命差、 一次容量低、 安全 性能差、使用不便等等原因无法代替一次电池。一次电池因搁置寿命可几年、一次容量 高、 体积小、 使用方便等自身的优点, 21世纪在小型民用电池市场中仍占有主导地位。 一次电池自身在近几年因市场需要得到了飞速发展,尤其是 1. 5V电池更是市场发展的主 力军 。 发明内容
本发明的目的是提供一种高能电池及其制备方法,通过对电池的成份及制备方法的 改进, 实现了在一定放电制度下, 电池能量密度是普通碱性电池的 2倍以上。
实现本发明的技术方案是: 这种高能电池包括正极、 负极、 电解液和隔膜, 其中正 极包括下述成份和配比,
成份: 黄铁矿、 导电碳黑、 石墨、 氧化物或锂氧化物;
配比(按重量比):黄铁矿:导电碳黑:石墨:氧化物或锂氧化物等于 (80— 90) : (1 -4) : (1 -4) : (2-4); ·
其中: 黄铁矿 (FeS2)纯度在 90%以上, 粒径小于 44 μ πι; 石墨的平均颗粒 5. 0—
18. 0 m, BET比表面积 11. 0— 14. 0 m2/g, 灰分小于 0. 1%; 氧化物或锂氧化物包括 Mn02、 Ti02、 LiCo02、 LiMn02、 LiNi02、 Li2Ti03、 Li4Ti5012中的任意一种或几种混合物; 负极包括金属锂或锂铝合金, 其中铝的含量在 0. 05%— 0. 10%,其厚度为 0. 10- 0. 20mm;
电解液包括有机溶剂和无机锂盐溶质的混合物, 其中: 有机溶剂包括 N-甲基吡咯烷 酮 (匿 P)、 1, 2-丙二醇碳酸酯 (PC), 乙二醇二甲醚 闺、 1, 3-二氧戊环 (D0L), 异 唑类物质 (如 DMI)、 四氢呋喃(THF)、 二甲基亚砜(DMS0)、 环丁砜(SFL) 中的三种或 三种以上混合物;无机锂盐溶质包括髙氯酸锂(LiC104)、三氟甲基磺酸锂(LiCF3S03)、 碘化锂(Lil)、 六氟砷酸锂(LiAsF6)、 四氟硼酸锂 (LiBF4) 中一种或几种混合物;
隔膜包括 PP/PE/PP的聚乙烯树脂。
该技术方案还包括:
所述正极成份中的导电碳黑、 石墨、 锂氧化物可选用其中的任意两种混合物。 所述正极的粘接剂包括聚乙烯醇(PVA)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、 羧甲基纤维素钠 (CMC)、 丁苯橡胶乳液(SBR)、 N-甲基吡咯烷酮 (NMP) 中的一种或两 种混合物, 其中 (CMC)、 (SBR)、 (PVDF)、 (NMP)分别占黄铁矿重量的 1一 4%。
所述有机溶剂最佳配比为 (PC).- (DME): (DOL): (NMP): (DMI)等于(0—10): (15 -30): (15-80): (0-5): (0—5)。
所述无机锂盐溶质最佳配比为高氯酸锂(UC104)或碘化锂 (Lil) 中的一种, 其 摩尔浓度为 0. 8— 1. 2raol/L。
所述隔膜的最大有效孔径为 0. 08— 0. 12 μ ιη、 孔隙率为 40— 50%、 阻抗为 30— 50m Ω /πιπι2。
所述电池设有防爆防过流盖帽, 该盖帽内部设有由 PE/A1/PE/硅胶组成的四层结构 复合膜和由铜箔 /导电碳黑 /铜箔组成的三层结构热敏电阻,其中复合膜总厚度为 0. 14- 0. 22 mm, 各单层厚度分别为 0. 03— 0. 05 mm/0. 03—0. 05腿/0. 03— 0. 05 mm/0. 05— 0. 07 mm; 热敏电组单片内阻小于 32m Ω, 3. 5Α电流通过时, 动作时间为 10秒以内, 8Α电流通 过时, 动作时间为 2秒以内。
实现本发明的方法是: 正极的制备包括将黄铁矿、 石墨、 乙炔黑、 锂氧化物按配比 混合, 然后加入水、 粘接剂混合均匀成浆料后涂覆在集流体上, 烘干、 碾压到一定厚度 后裁切成合适尺寸, 点焊正极极耳, 其中加入的水占黄铁矿重量的 50— 150%。
该方法还包括:
所述正极的烘干温度为 50— 130°C、 厚度为 0. 10— 0. 25mm、 孔隙率为 30— 45%。 所述黄铁矿的制备包括热处理或化学处理,其中热处理包括将黄铁矿平铺在不锈钢 托盘内放入烘箱中, 其热处理温度范围 100— 700°C, 热处理时间 1一 24小时, 经过热处
理的黄铁矿密封装入袋中后, 储存在阴凉干燥处; 化学处理包括将黄铁矿经过酸、 碱、 去离子水处理, 其中酸包括硫酸或盐酸或磷酸或醋酸; 碱包括氢氧化钠或氢氧化钾或氨 水。
本发明具有的有益效果:制作工艺简单, 成本低, 产品具有容量高、体积小、安全、 环保、 使用寿命长等特点。 附图说明
图 1是本发明的涂覆示意图。
图 2是本发明的盖帽示意图。
图 3是本发明的结构示意图。
图 4是本发明的 AA型号高能 1. 5V电池与其它 1. 5V电池放电数据对比图 (放电制度 lOOOmA-cont toO. 8V)。
图 5是本发明的 AA型号高能 1. 5V电池与其它 1. 5V电池放电数据对比图 (放电制度 2000mA-cont toO. 8V)0
表 1是本发明的 1000mA恒流放电典型对比数据。
表 2本发明的电池安全性能测试表。
图中: 1浆料、 2铝箔、 3刮刀、 4导辊、 5热敏电组、 6不锈铁片、 7防爆膜、 8上面垫、 9组合下盖、 10密封圈、 11钢壳、 12组合上盖、 13正极耳、 14正极、 15隔膜、 16负极、 17负极耳, a碱锰电池、 b锌镍电池、 c镍氢电池、 d高能 1. 5V电池。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明:
本电池主要由正极、 负极和电解液组成, 其中黄铁矿作为正极活性物质, 以锂铝合 金作为负极, 以有机溶剂和无机盐溶质组成的混合物作为电解液。
该电池的正极活性物质为黄铁矿(化学式为 FeS2), 所选用黄铁矿, 需经过一定的 处理。 黄铁矿是进行了破碎、 筛分, 90%过 325 目筛 (粒径不大于 0. 044mm)。 黄铁矿的 处理方式可以分别采用或结合采用两种不同的处理方式: 其中一种是热处理方式, 即将 黄铁矿平铺在不锈钢托盘内放入烘箱中, 热处理温度范围是 100— 700°C, 热处理时间范 围是 1一 24小时, 保存方式为将经过热处理的黄铁矿密封装入袋中后, 储存在阴凉干燥 处; 另一种是化学处理方式, 即将黄铁矿经过酸、 碱、 去离子水处理, 其使用的酸为硫 酸、 盐酸、 磷酸、 醋酸等; 使用的碱为氢氧化钠、 氢氧化钾、 氨水等。
该电池的正极导电剂为石墨、 乙炔黑、 金属粉、 氧化物、 锂氧化物中的两种或两种 以上。
该电池的正极粘接剂为聚乙烯醇(PVA)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、 羧甲基纤维素钠 (CMC) 中的一种或两种。
该电池的正极集流体为铝箔, 极耳为不锈钢带、 镀镍钢带或镍带, 铝箔厚度为 16— 25 m, 极耳厚度为 0. 05— 0. 1
该电池的正极制作方法为是将正极活性物质、导电剂混合均匀后,通过使用粘接剂, 将其涂覆在正极集流体上, 然后将碾压、 分条、 成型, 见图 1
该电池的负极活性物质为箔状的锂铝合金, 其中铝的含量在 0. 05-0. 10%之间。 该电池以有机溶剂和无机娌盐溶质组成的混合物作为电解液,其中无机盐溶质可以 是高氯酸锂(LiC104)、三氟甲基磺酸锂(LiCF3S03)、碘化锂(Lil )、六氟砷酸锂(LiAsF6)、 四氟硼酸锂 (LiBF4) 中一种或几种; 有机溶剂可以是 N-甲基吡咯烷酮 (丽 P)、 1, 2 -丙 二醇碳酸酯 (PC)、 乙二醇二甲醚 (DME)、 1, 3-二氧戊环 (D0L)、 异唑类物质、 四氢呋 喃 (THF)、 二甲基亚砜(DMS0) 中的三种或三种以上的混合物。
该电池的盖帽釆用具有防爆防过流的装置, 结构见附图 2
该电池的装配工艺是正极极片烘干后, 在相对湿度低于 1%的环境下, 将电池负极、 隔膜卷饶后, 装入钢壳, 加入电解液后, 滚槽、 封口。
该电池的的放电反应为: FeS2 +4Li- Fe +2Li2S。
电池的放电反应机理为: FeS2 + 4Li— 2Li + Li2FeS2→ Fe +2Li2S。
该电池的结构见附图 3。
技术特点
1.独特的正极处理工艺: 二硫化铁材料中含有其它物质, 则开路电压会大于 2V, 而 制备高纯的二硫化铁成本又高。采取独特的正极处理工艺, 通过添加、搀杂等工序, 解 决了电池开路电压高的问题。而且使电池的放电性能有了提高,尤其是大电流放电能力, 具体对比数据见表 1。
2. 独特的电解液体系: UC104电解液是锂一次电池中很成熟的电解质, 但二硫化 铁有可能被其氧化而在电池中产生有害的气体, 导致气涨的问题。釆用了一种新型的电 解液体系, 并且添加了适量的电解液添加剂, 较好的解决了这一问题, 并且提高了电池 的放电平台, 改善了电池的放电性能。 与普通电解液, 具体对比数据见表 1。
3. 良好的安全性能: 安全性能是锂电池至关重要的一个问题, 对圆柱形锂 /二硫化 铁电池尤为重要。 采用了防爆膜和 PTC等安全装置, 很好保证了电池的安全性能, 具体 试验结果见表 2。
实施例, 制作高能 1. 5V电池
本实施例中所选用的黄铁矿, 要经过破碎、 筛分, 75%过 200 目筛(粒径不大于 0. 076mm), 25%过 325目筛(粒径不大于 0. 044腿)。 纯度为 99. 44°/。, 含硫量为 53. 15%, 含 铁量为 46. 50%。 其杂质含量为 Si02含量小于 0. 1, MgO含量不大于 0. 1%, A1203含量小 于 0. 15%, CaO含量不大于 0. 1%, 酸溶铁含量 0. 38%。
其处理方式为化学处理方式, 处理过程如下:
1、 将称量好的黄铁矿粉装入塑胶桶内, 按每公斤矿粉使用 100mL浓度 1一 2%的稀 盐酸, 搅拌 30min, 使酸液充分浸润矿粉;
2、 搅拌后静置矿粉, 待塑胶桶中的矿粉沉淀后, 加入自来水, 搅拌清洗矿粉, 再
滤出, 如此反复。 以 pH试纸测试每次滤出的自来水洗液, 当 pH值接近中性时可不用再 清洗;
3、 将洗净并 pH值接近中性的黄铁矿粉, 按每公斤矿粉使用 400mL浓度 10%的 NaOH 溶液, 浸泡矿粉 12h— 15h;
4、将浸泡的矿粉连浓度 10%的 NaOH溶液转入铁桶中,置于电热炉上边搅拌边加热, lh后停止加热, 静置沉淀、 冷却;
5、 待桶中的矿粉沉淀后, 加入自来水, 搅拌清洗矿粉, 再滤出清洗液, 如此反复。 以 pH试纸测试每次滤出的水洗液, 当 pH值接近中性时, 再以去离子水清洗矿粉两遍; 正极制作工艺为- 将上述处理方法得到的黄铁矿, 与石墨、 乙炔黑、 锌粉球磨 2小时后, 比例分别为
90%, 4%, 4%, 2%; 使用聚偏二氟乙烯(PVDF)做为粘接剂、 N-甲基吡咯烷酮 (NMP)作 为溶剂打浆; 然后涂覆在铝箔表面, 过隧道炉以 100Ό烘干后碾压成型至 0. 18mm厚度, 分切点极耳 (厚度为 O. lOmm, 镍带), 进烘箱保存。
该电池的负极活性物质为箔状的锂铝合金, 其中铝的含量为 0. 3%。
该电池的电解液采用碘化锂 (Lil) 为电解质, 摩尔浓度为 l. Omol/L;
有机溶剂采用碳酸丙烯酯 (PC)、 乙二醇二甲醚 (DME)、 1, 3-二氧戊环 (D0L)、 N- 甲基吡咯烷酮 (匪 P)、 异唑 (DMI ), 配比为 5: 20: 70: 3: 2。
经卷饶、 点底、 滚槽、 注液、 点盖、 封口后制备成锂-二硫化铁电池。
采用具有防爆防过流的装置的盖帽, 结构见附图 2。
经过放电实验证明, AA型的放电容量可以达到 2900mAh 以上(放电制度: 1000mA 恒流放电, 截止电压为 0. 8V)。
制备的电池与其它 1. 5V类型的电池进行比较, 放电数据比较见附图 4、 5 (放电制 度: ① 1000mA恒流放电, 截止电压为 0. 8V; ② 2000mA恒流放电, 截止电压为 0. 8V)。
本发明所涉及的材料及设备均为公知技术。
以上所述, 为本发明的较佳实施方式, 仅是对本发明进行阐述和说明, 并不局限于 所公开的任何具体形式, 对本发明的技术方案进行润饰或等同替换及在其它领域的应 用, 也应视为本发明的保护范围。 表 1
表 2
过放电性能 符合要求 合格 阻串联, 放电 24h。 实验结束后电池应无爆炸、
无着火。
5PCS未放过电的电池从 1 m高度跌落在混凝土
表面上, 每个被试电池应跌落六次, 在三个轴
自由跌落试验 符合要求 合格 线各两次, 然后将被试电池放置 1 h。 实验结束
后电池应无泄放、 无爆炸、 无着火。
将 5PCS被试电池在台钳的两个平面之间挤压,
电池的长轴应与台钳的挤压平面平行。 挤压力
挤压试验 符合要求 合格 约 13kN, 一旦达到最大压力, 就解除挤压。 实
验结束后电池应无爆炸、 无着火。
将被试电池至于烘箱内, 以 5°C/min 的速度升
热滥用 温至(130±2) V , 并在此温度下保持 10min。 符合要求 合格 实验结束后电池应无爆炸、 无着火。
取 5PCS电池在高温 10CTC的环境下搁置 5小
高温性能 时, 室温下放置 8h,实验结束后电池应无泄放、 符合要求 合格 无爆炸、 无着火。
5PCS被试电池经受振幅为 0.8mm (最大位移
为 1.6mm) 的简单谐振。 频率以 1 Hz / min的
振动 速率在 10Hz 至 55Hz 范围内变化, 经过 符合要求 合格
90min--100min后复原。 电池应无变形、 无漏
液、 无泄放、 无爆炸、 无着火。
5PCS被试电池在压力为 11.6Pa或更低、温度
高空模拟 为 (20±2) °C的环境中下至少放置 6h。 电池应 符合要求 合格 无变形、 无漏液、 无泄放、 无爆炸、 无着火。
Claims
1. 一种高能电池, 包括正极、 负极、 电解液和隔膜, 其特征是所述
正极包括下述成份和配比,
A. 成份
黄铁矿、 导电碳黑、 石墨、 氧化物或锂氧化物;
B. 配比, 按重量比
黄铁矿:导电碳黑:石墨:氧化物或锂氧化物等于 80— 90: 1-4: 1-4: 2-4;其 中: 黄铁矿 (FeS2) 纯度在 90%以上, 粒径小于 44 μ πι; 石墨的平均颗粒 5. 0— 18. 0 μ m, BET比表面积 11. 0- 14. 0 m2/g,灰分小于 0. 1%;锂氧化物包括 Mn02、Ti02、LiCo02、LiMn02、 LiNi02、 Li2Ti03、 Li4Ti5012中的任意一种或几种混合物;
负极包括金属锂或锂铝合金, 其中铝的含量在 0. 05%— 0. 10%, 其厚度为 0. 10- 0. 20mm;
电解液包括有机溶剂和无机锂盐溶质的混合物, 其中: 有机溶剂包括 N-甲基吡咯垸 酮 (NMP)、 1, 2-丙二醇碳酸酯 (PC)、 乙二醇二甲醚 (DME)、 1, 3-二氧戊环 (D0L)、 异 唑类物质(如 DMI)、 四氢呋喃 (THF)、 二甲基亚砜(DMS0)、 环丁砜(SFL) 中的三种或 三种以上混合物;无机锂盐溶质包括高氯酸锂(LiC104)、三氟甲基磺酸锂(LiCF3S03)、 碘化锂 (Lil)、 六氟砷酸锂(LiAsF6)、 四氟硼酸锂 (LiBF4) 中一种或几种混合物; 隔膜包括 PP/PE/PP的聚乙烯树脂。
2. 如权利要求 1所述的高能电池, 其特征是所述正极成份中的导电碳黑、 石墨、 锂 氧化物可选用其中的任意两种混合物。
3.如权利要求 1所述的高能电池,其特征是所述正极的粘接剂包括聚乙烯醇(PVA)、 聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、羧甲基纤维素钠(CMC)、丁苯橡胶乳液(SBR)、 N -甲基吡咯烷酮 (讀 P) 中的一种或两种混合物, 其中 (CMC), (SBR)、 (PVDF), (醒 P)
分别占黄铁矿重量的 1一 4%。
4.如权利要求 1所述的高能电池,其特征是所述有机溶剂最佳配比为(PC): (DME): (DOL): (NMP): (DMI ) 为(0—10) : (15—30) : (15—80) : (0—5) : (0—5)。
5. 如权利要求 1所述的高能电池, 其特征是所述无机锂盐溶质最佳配比为高氯酸锂 (LiC104)或碘化锂 (Lil ) 中的一种, 其摩尔浓度为0. 8〜1. 211101 。
6. 如权利要求 1所述的高能电池, 其特征是所述隔膜的最大有效孔径为 0. 08— 0. 12 u rn, 孔隙率为 40— 50%、 阻抗为 30—50m Ω /匪 2。
7. 如权利要求 1所述的高能电池, 其特征是所述电池设有防爆防过流盖帽, 该盖帽 内部设有由 PE/A1/PE/硅胶组成的四层结构复合膜和由铜箔 /导电碳黑 /铜箔组成的三层 结构热敏电阻, 其中复合膜总厚度为 0. 14— 0. 22 mm, 各单层厚度分别为 0. 03—0. 05 ■/0. 03—0. 05 ram/0. 03— 0. 05腿 /0. 05—0. 07 mm; 热敏电组单片内阻小于 32m Ω , 3. 5A 电流通过时, 动作时间为 10秒以内, 8A电流通过时, 动作时间为 2秒以内。
8.实现权利要求 1的髙能电池的制备方法,其特征是所述正极的制备包括将黄铁矿、 石墨、 乙炔黑、 锂氧化物按配比混合, 然后加入水、 粘接剂混合均匀成浆料后涂覆在集 流体上, 烘干、 碾压到一定厚度后裁切成合适尺寸,
点焊正极极耳, 其中加入的水占黄铁矿重量的 50— 150°/。。
9. 如权利要求 8所述的高能电池的制备方法, 其特征是所述正极的烘干温度为 50— 130°C、 厚度为 0. 10— 0. 25mm、 孔隙率为 30—45%。
10. 如权利要求 8所述的高能电池的制备方法, 其特征是所述黄铁矿的制备包括热 处理或化学处理, 其中热处理包括将黄铁矿平铺在不锈钢托盘内放入烘箱中, 其热处理 温度范围 100— 700°C, 热处理时间 1一 24小时, 经过热处理的黄铁矿密封装入袋中后, 储存在阴凉干燥处; 化学处理包括将黄铁矿经过酸、碱、 去离子水处理, 其中酸包括硫 酸或盐酸或磷酸或醋酸; 碱包括氢氧化钠或氢氧化钾或氨水。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/000030 WO2009082862A1 (fr) | 2008-01-03 | 2008-01-03 | Batterie à haute énergie et son procédé de fabrication |
US12/865,120 US20130196212A1 (en) | 2008-01-03 | 2008-01-03 | High Energy Battery And The Manufacture Method Thereof |
CN200880123700.2A CN102272993B (zh) | 2008-01-03 | 2008-01-03 | 高能电池及其制备方法 |
EP08700590A EP2270908A4 (en) | 2008-01-03 | 2008-01-03 | HIGH-ENERGY BATTERY AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/000030 WO2009082862A1 (fr) | 2008-01-03 | 2008-01-03 | Batterie à haute énergie et son procédé de fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009082862A1 true WO2009082862A1 (fr) | 2009-07-09 |
Family
ID=40823764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/000030 WO2009082862A1 (fr) | 2008-01-03 | 2008-01-03 | Batterie à haute énergie et son procédé de fabrication |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130196212A1 (zh) |
EP (1) | EP2270908A4 (zh) |
CN (1) | CN102272993B (zh) |
WO (1) | WO2009082862A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2504875A1 (en) * | 2009-11-24 | 2012-10-03 | The Gillette Company | Electrochemical cells with improved separator and electrolyte |
US8298706B2 (en) | 2010-03-12 | 2012-10-30 | The Gillette Company | Primary alkaline battery |
US8303840B2 (en) | 2010-03-12 | 2012-11-06 | The Gillette Company | Acid-treated manganese dioxide and methods of making thereof |
US20140255776A1 (en) * | 2013-03-08 | 2014-09-11 | Korea Institute Of Science And Technology | Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode |
US9028564B2 (en) | 2012-03-21 | 2015-05-12 | The Gillette Company | Methods of making metal-doped nickel oxide active materials |
CN106329000A (zh) * | 2016-09-30 | 2017-01-11 | 广州鹏辉能源科技股份有限公司 | 一种锂二硫化铁电池的电解液及其电池 |
US9570741B2 (en) | 2012-03-21 | 2017-02-14 | Duracell U.S. Operations, Inc. | Metal-doped nickel oxide active materials |
US9793543B2 (en) | 2014-03-28 | 2017-10-17 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
CN107706388A (zh) * | 2017-10-09 | 2018-02-16 | 北京军秀咨询有限公司 | 一种锂离子动力电池及锂离子动力电池的制备方法 |
CN110993934A (zh) * | 2019-11-08 | 2020-04-10 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种钛酸锂正极金属锂负极锂原电池及其制备方法 |
US10910647B2 (en) | 2017-05-09 | 2021-02-02 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9093710B2 (en) * | 2012-01-18 | 2015-07-28 | E I Du Pont De Nemours And Company | Compositions, layerings, electrodes and methods for making |
CN110137426B (zh) * | 2019-05-25 | 2022-02-15 | 珠海冠宇电池股份有限公司 | 一种含有ptc涂层极片的制备方法及锂离子电池 |
CA3154857C (fr) * | 2020-08-05 | 2022-07-19 | Airbus Defence And Space Sas | Dispositif d'echappement anti propagation de batteries lithium-ion d'aeronef |
CN112246834B (zh) * | 2020-10-04 | 2022-04-15 | 湖南金源新材料股份有限公司 | 废旧锂电池拆解后各组分的跳汰分离方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4379815A (en) * | 1981-06-29 | 1983-04-12 | Union Carbide Corporation | Cell having mixed solid cathode materials for controlling cell expansion on discharge |
CN1877887A (zh) * | 2006-06-23 | 2006-12-13 | 清华大学 | 一种锂-二硫化铁电池正极材料及其制备方法 |
CN1883065A (zh) * | 2003-11-21 | 2006-12-20 | 永备电池有限公司 | 高放电容量锂电池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678725A (en) * | 1983-05-11 | 1987-07-07 | Matsushita Electric Industrial Co., Inc. | Hermetically sealed storage battery |
US6063526A (en) * | 1998-04-16 | 2000-05-16 | Wilson Greatbatch Ltd. | Dicarbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells |
KR100388797B1 (ko) * | 2001-03-29 | 2003-06-25 | 신화인터텍 주식회사 | 도전성 고분자 조성물 및 이를 이용한 ptc소자 |
US7195840B2 (en) * | 2001-07-13 | 2007-03-27 | Kaun Thomas D | Cell structure for electrochemical devices and method of making same |
US6730136B2 (en) * | 2001-10-01 | 2004-05-04 | Eveready Battery Company, Inc. | Direct addition of beta-aminoenones in organic electrolytes of nonaqueous cells employing solid cathodes |
US6849360B2 (en) * | 2002-06-05 | 2005-02-01 | Eveready Battery Company, Inc. | Nonaqueous electrochemical cell with improved energy density |
JP2005141998A (ja) * | 2003-11-05 | 2005-06-02 | Sony Corp | リチウム/二硫化鉄一次電池 |
US20050233214A1 (en) * | 2003-11-21 | 2005-10-20 | Marple Jack W | High discharge capacity lithium battery |
US8124274B2 (en) * | 2003-11-21 | 2012-02-28 | Eveready Battery Company, Inc. | High discharge capacity lithium battery |
US7459234B2 (en) * | 2003-11-24 | 2008-12-02 | The Gillette Company | Battery including aluminum components |
US7413592B2 (en) * | 2004-03-31 | 2008-08-19 | Nu-Iron Technology, Llc | Linear hearth furnace system and methods regarding same |
US7833647B2 (en) * | 2004-04-28 | 2010-11-16 | Eveready Battery Company, Inc. | Closure vent seal and assembly |
US20070099080A1 (en) * | 2005-10-28 | 2007-05-03 | Pickett David F Jr | Thermal battery with reduced operational temperature |
JP4539584B2 (ja) * | 2006-02-24 | 2010-09-08 | ソニー株式会社 | リチウム/二硫化鉄一次電池 |
CN101808944A (zh) * | 2007-09-28 | 2010-08-18 | 永备电池有限公司 | 合成黄铁矿的制备方法 |
-
2008
- 2008-01-03 CN CN200880123700.2A patent/CN102272993B/zh not_active Expired - Fee Related
- 2008-01-03 WO PCT/CN2008/000030 patent/WO2009082862A1/zh active Application Filing
- 2008-01-03 US US12/865,120 patent/US20130196212A1/en not_active Abandoned
- 2008-01-03 EP EP08700590A patent/EP2270908A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4379815A (en) * | 1981-06-29 | 1983-04-12 | Union Carbide Corporation | Cell having mixed solid cathode materials for controlling cell expansion on discharge |
CN1883065A (zh) * | 2003-11-21 | 2006-12-20 | 永备电池有限公司 | 高放电容量锂电池 |
CN1877887A (zh) * | 2006-06-23 | 2006-12-13 | 清华大学 | 一种锂-二硫化铁电池正极材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2270908A4 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2504875B1 (en) * | 2009-11-24 | 2018-03-07 | Duracell U.S. Operations, Inc. | Electrochemical cells with improved separator and electrolyte |
EP2504875A1 (en) * | 2009-11-24 | 2012-10-03 | The Gillette Company | Electrochemical cells with improved separator and electrolyte |
US10826062B2 (en) | 2010-03-12 | 2020-11-03 | Duracell U.S. Operations, Inc. | Primary alkaline battery |
US8298706B2 (en) | 2010-03-12 | 2012-10-30 | The Gillette Company | Primary alkaline battery |
US8303840B2 (en) | 2010-03-12 | 2012-11-06 | The Gillette Company | Acid-treated manganese dioxide and methods of making thereof |
US11876221B2 (en) | 2010-03-12 | 2024-01-16 | Duracell U.S. Operations, Inc. | Primary alkaline battery |
US9498890B2 (en) | 2010-03-12 | 2016-11-22 | Duracell U.S. Operations, Inc. | Primary alkaline battery |
US10232520B2 (en) | 2010-03-12 | 2019-03-19 | Duracell U.S. Operations, Inc. | Primary alkaline battery |
US11811058B2 (en) | 2010-03-12 | 2023-11-07 | Duracell U.S. Operations, Inc. | Primary alkaline battery |
US9543576B2 (en) | 2012-03-21 | 2017-01-10 | Duracell U.S. Operations, Inc. | Methods of making metal-doped nickel oxide active materials |
US9570741B2 (en) | 2012-03-21 | 2017-02-14 | Duracell U.S. Operations, Inc. | Metal-doped nickel oxide active materials |
US9819012B2 (en) | 2012-03-21 | 2017-11-14 | Duracell U.S. Operations, Inc. | Methods of making metal-doped nickel oxide active materials |
US9859558B2 (en) | 2012-03-21 | 2018-01-02 | Duracell U.S. Operations, Inc. | Metal-doped nickel oxide active materials |
US9028564B2 (en) | 2012-03-21 | 2015-05-12 | The Gillette Company | Methods of making metal-doped nickel oxide active materials |
US20140255776A1 (en) * | 2013-03-08 | 2014-09-11 | Korea Institute Of Science And Technology | Method for manufacturing electrode, electrode manufactured according to the method, supercapacitor including the electrode, and rechargable lithium battery including the electrode |
US9793542B2 (en) | 2014-03-28 | 2017-10-17 | Duracell U.S. Operations, Inc. | Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material |
US10158118B2 (en) | 2014-03-28 | 2018-12-18 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
US10276869B2 (en) | 2014-03-28 | 2019-04-30 | Duracell U.S. Operations, Inc. | Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material |
US11901553B2 (en) | 2014-03-28 | 2024-02-13 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickle oxide electrochemically active cathode material |
US11316159B2 (en) | 2014-03-28 | 2022-04-26 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickle oxide electrochemically active cathode material |
US9793543B2 (en) | 2014-03-28 | 2017-10-17 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
US11799082B2 (en) | 2014-03-28 | 2023-10-24 | Duracell U.S. Operations, Inc. | Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material |
US11081696B2 (en) | 2014-03-28 | 2021-08-03 | Duracell U.S. Operations, Inc. | Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material |
CN106329000A (zh) * | 2016-09-30 | 2017-01-11 | 广州鹏辉能源科技股份有限公司 | 一种锂二硫化铁电池的电解液及其电池 |
CN106329000B (zh) * | 2016-09-30 | 2019-06-21 | 广州鹏辉能源科技股份有限公司 | 一种锂二硫化铁电池的电解液及其电池 |
US11764357B2 (en) | 2017-05-09 | 2023-09-19 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
US10910647B2 (en) | 2017-05-09 | 2021-02-02 | Duracell U.S. Operations, Inc. | Battery including beta-delithiated layered nickel oxide electrochemically active cathode material |
CN107706388A (zh) * | 2017-10-09 | 2018-02-16 | 北京军秀咨询有限公司 | 一种锂离子动力电池及锂离子动力电池的制备方法 |
CN110993934A (zh) * | 2019-11-08 | 2020-04-10 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | 一种钛酸锂正极金属锂负极锂原电池及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130196212A1 (en) | 2013-08-01 |
CN102272993A (zh) | 2011-12-07 |
CN102272993B (zh) | 2014-12-10 |
EP2270908A4 (en) | 2013-01-30 |
EP2270908A1 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009082862A1 (fr) | Batterie à haute énergie et son procédé de fabrication | |
CN109638344B (zh) | 有机凝胶聚合物电解液、制备方法、应用、钠基双离子电池及其制备方法 | |
CN107615550B (zh) | 一种二次电池及其制备方法 | |
US6019802A (en) | Nonaqueous secondary battery and process for producing the same using a dispersion aid | |
CN104600231B (zh) | 一种有活性纳米氮化硼涂层的隔膜及其制备方法 | |
CN112349962A (zh) | 锂离子电池 | |
CN205609666U (zh) | 一种安全锂离子动力电池正极片 | |
CN103579590A (zh) | 一种锂电池的包覆正极材料的制备方法 | |
WO2023151459A1 (zh) | 补锂添加剂及其制备方法和应用 | |
CN106410170B (zh) | 复合锂离子电池正极材料及其制备方法与锂离子电池 | |
CN114665081A (zh) | 一种正极材料及其制备方法、正极片和二次电池 | |
JPH09231963A (ja) | 非水二次電池 | |
WO2020133555A1 (zh) | 一种可充电纽扣式软包锂离子电池及加工方法 | |
CN111952670A (zh) | 一种具有宽工作温度范围的锂离子电池 | |
CN103050694A (zh) | 一种正极活性材料及其制备方法、电池 | |
WO2023160307A1 (zh) | 正极补锂添加剂及其制备方法和应用 | |
CN111029566A (zh) | 一种快充软包装锂离子电池 | |
CN116093417A (zh) | 钠离子电池和储能设备 | |
WO2023087209A1 (zh) | 电化学装置及电子装置 | |
CN113690545A (zh) | 一种陶瓷隔膜及其制备方法以及二次电池 | |
WO2023184416A1 (zh) | 一种隔膜、包含该隔膜的电化学装置及电子装置 | |
CN115304104A (zh) | 锰系补锂添加剂及其制备方法和应用 | |
CN104112846A (zh) | 一种高容量电动工具用锂离子动力电池及其制造方法 | |
JPH09180703A (ja) | 非水二次電池 | |
JP7221949B2 (ja) | 正極板、正極板を含む電気化学装置及び電子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880123700.2 Country of ref document: CN |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08700590 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008700590 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12865120 Country of ref document: US |