WO2009082260A1 - Installation destinée à la synthèse d'isoprène en phase liquide à partir d'isobutylène et de formaldéhyde - Google Patents

Installation destinée à la synthèse d'isoprène en phase liquide à partir d'isobutylène et de formaldéhyde Download PDF

Info

Publication number
WO2009082260A1
WO2009082260A1 PCT/RU2008/000367 RU2008000367W WO2009082260A1 WO 2009082260 A1 WO2009082260 A1 WO 2009082260A1 RU 2008000367 W RU2008000367 W RU 2008000367W WO 2009082260 A1 WO2009082260 A1 WO 2009082260A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis
unit
products
isoprene
decomposition
Prior art date
Application number
PCT/RU2008/000367
Other languages
English (en)
French (fr)
Inventor
Vladimir Mikhailovich Busygin
Arkadiy Samuilovich Dykman
Khamit Khamisovich Gilmanov
Sergey Aleksandrovich Polyakov
Aleksey Michaylovich Flegontov
Elena Vladimirovna Fedorcova
Original Assignee
Obshestvo O Ogranichennoi Otvetstvennoctiu 'eurochim Spb-Treiding'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obshestvo O Ogranichennoi Otvetstvennoctiu 'eurochim Spb-Treiding' filed Critical Obshestvo O Ogranichennoi Otvetstvennoctiu 'eurochim Spb-Treiding'
Priority to CN2008801272383A priority Critical patent/CN101970387A/zh
Priority to EP08794018A priority patent/EP2236484A4/en
Publication of WO2009082260A1 publication Critical patent/WO2009082260A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/867Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an aldehyde or a ketone

Definitions

  • This utility model relates to devices used in the production of monomers for synthetic rubber, in particular, to the arrangement and interconnection of apparatus for the synthesis of isoprene in the liquid phase from isobutylene and formaldehyde or substances that are sources of isobutylene and formaldehyde, for example, trimethylcarbinol (TMK) or dimethyldioxane (DMD), in the presence of an aqueous solution of an acid catalyst.
  • TMK trimethylcarbinol
  • DMD dimethyldioxane
  • the known design of the reactor block which includes two series-connected apparatus - an airlift column and a shell-and-tube column with an external circulation loop connecting the upper separation and lower reaction zones, with distribution devices located in the lower part of the columns and equipped with ring rings installed on the inner surface of the reactor pipes at the same height restrictions intended to increase the actual residence time of the reactants in the reaction volume (RF patent 2096076, publ. 199 four).
  • a similar switchgear is installed at the bottom the heat exchanger (under the tube sheet) on the same axis as the pipe axis connecting this apparatus to the reactor (above the upper tube sheet). From the lowest point of the spherical part of the reactor, a second pipe leaves, connecting the reactor with the lower zone of the heat exchanger located below the tube sheet, and from the highest point of the reactor leaves a pipe designed to divert contact gas to the separator (RF patent Nb 32706, publ. 2003, )
  • This design provides good mixing of the reaction mass and, no less important, the effective removal of isoprene in the isobutylene stream from the reaction zone, however, its principal drawback is the presence of an external heat exchanger in its composition, which leads to an increase in the metal consumption of the installation (the cost of manufacturing heavy flanges and the body shell-and-tube heat exchanger), and most importantly - is associated with the inevitable heat loss.
  • a simplified design of a liquid-phase synthesis plant for isoprene from isobutylene and formaldehyde is known, which allows for synthesis in one reaction zone (in one step), consisting of a vertically mounted hollow reactor, in which a shell-and-tube heat exchanger is designed to supply the heat necessary for the reaction and one or two circulation pipes connecting the upper and lower parts of the reactor, the diameter of which is not less than five times the diameter of the tubes of the heat exchanger.
  • the hollow reactor vessel is at the same time a heat exchanger shell.
  • the ratio of the volumes of the upper and lower parts of the hollow reactor, separated by an integrated heat exchanger, is at least 2-2.5.
  • the reaction mass is circulated in the tubes of the heat exchanger due to the difference in the densities of gas and liquid. For intensification of mixing can be used forced circulation using a pump.
  • Both parts of the reactor contain switchgears designed for supplying raw materials.
  • Switchgears are a system of tubes with holes with a diameter of 2-5 mm parallel to the central (feed) pipe.
  • the area of the distribution devices, calculated according to their overall dimensions, is not more than 25% of the cross section of the vessels in which they are installed (RF Patent N °
  • the installation includes 2-4 series-connected reactors for the interaction of an acidic aqueous solution of formaldehyde with isobutylene and / or trimethylcarbinol at a temperature of 150-220 0 C and a pressure 1-2-5 times higher than the vapor pressure of the reaction mixture at these temperatures.
  • Isobutylene and / or trimethylcarbinol is fed only to the first reactor, and formalin to each reactor.
  • Isoprene, water, unconverted starting products are distilled off from each reaction zone and introduced into the next one with distillation from the last reaction zone.
  • the yield of isoprene on converted formaldehyde and isobutylene is insufficient and is 52 and 74%, respectively.
  • the installation consists of several connected reactors (blocks) for the synthesis of isoprene precursors and a decomposition unit for the resulting products. Between the synthesis units and the decomposition unit, one or two distillation columns are installed. The installation includes a unit for separation of products formed in the decomposition reactor.
  • the disadvantage of the described installation is the formation of a large number of high boiling point by-products and their accumulation in the system, which leads to the formation of non-stratifying emulsions and solid deposits on the equipment and its clogging, especially when the installation is operated in an industrial environment.
  • This is due to the ingestion of high boiling point by-products (BCHI) in the specifics of their heavy part are formal dioxane alcohols formed during the synthesis of isoprene precursors, in particular DMD, into a decomposition unit that operates at high operating temperatures (130-170 0 C) and a high concentration of acid catalyst.
  • BCHI high boiling point by-products
  • runways which are a mixture of dioxane alcohols and their derivatives, turn into the so-called “green oil”, which can only be used as low-calorie fuel, while runways are widely used in the national economy and their price is much higher than the cost raw materials.
  • the installation according to the closest analogue does not provide for heterogeneous catalytic decomposition of the pyran fraction, which also affects the technical and economic performance of the process.
  • TMK in block 1 serves IIF and water.
  • the synthesis of TMK is carried out in shelf reactors filled with cation exchanger.
  • the returning fraction IIF from block 1 is sent to the warehouse.
  • the resulting TMK after separation from the return IIP is fed to isoprene synthesis unit 4, where DMD is simultaneously supplied from block 3.
  • the required amount of DMD is synthesized in block 3, for which IIF, formaldehyde and the water layer from block 4 are fed there.
  • the return fraction of IIF from block 3 is sent to the warehouse.
  • the isoprene-containing fraction formed in block 4 is fed to the separation of synthesis products and the separation of the isoprene monomer into block 7, and concentrated isobutylene distilled in block 4 and block 7 is returned to TMK synthesis block 2 from concentrated isobutylene. At the same time, water is supplied to the synthesis unit 2.
  • High-boiling by-products formed in the synthesis of DMD from block 3 are fed to the rectification unit 5 of high-boiling by-products of the synthesis of DMD, in which there is a separation into light by-products and heavy by-products, which are then sent for sale. All or part of the light high boiling point by-products may be sent to the by-product decomposition unit 6.
  • By-products (4-methyl-5,6-dihydro- ⁇ -pyran (MDHP) fraction) from block 7, which are formed during the synthesis of isoprene, are simultaneously fed to block 6.
  • the isoprene-containing fraction from block 6 is fed to the separation of synthesis products and the separation of isoprene monomer in block 7, in which the isolation of commercial isoprene rectified and separation of by-products occurs.
  • the utility model contains technical solutions to reduce the specific metal consumption of the process, increase productivity, ensure uninterrupted operation of industrial equipment of the technological unit for one year, and also use the resulting by-products in a qualified manner.
  • TMK-based process without using pure isobutylene in block 4 allows the process to be carried out at lower reagent ratios (isobutylene source / formaldehyde source), due to the fact that TMK dehydration proceeds in the volume of the aqueous phase in which formaldehyde and acid catalyst are located, due to which the likelihood of a “conversion” of isobutylene with formaldehyde increases sharply and, accordingly, the rate of their interaction increases.
  • the industrial use of the proposed installation achieved the following indicators:
  • block 6 decomposition of by-products (in particular 1 ton of technical pyranic fraction) allows you to get an additional -490 kg of isoprene and -220 kg of formaldehyde, which significantly (-5%) reduces the consumption ratios for raw materials.
  • the implementation of the heavy runway fraction at the rate of -140 kg per lt of isoprene obtained in block 5 allows to reduce the cost of the target product by 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Установка для жидкофазного синтеза изопрена.
Настоящая полезная модель относится к устройствам, используемым в области производства мономеров для синтетического каучука, в частности, касается расположения и взаимосвязи аппаратов для проведения синтеза изопрена в жидкой фазе из изобутилена и формальдегида или веществ, являющихся источниками изобутилена и формальдегида, например, триметилкарбинола (TMK) или диметилдиоксана (ДМД), в присутствии водного раствора кислоты-катализатора.
Известна конструкция реакторного блока, включающего два последовательно соединенных аппарата - эрлифтную колонну и кожухотрубную колонну с наружным циркуляционным контуром, соединяющим верхнюю сепарационную и нижнюю реакционную зоны, с размещенными в нижней части колонн распределительными устройствами, и снабженную установленными на внутренней поверхности труб реактора на одинаковой высоте кольцевыми сужениями, предназначенными для увеличения фактического времени пребывания реагентов в реакционном объеме (патент РФ 2096076, опубл. 1994).
Эта конструкция частично устраняет общий недостаток трубчатых реакторов - резкое изменение соотношения газовой и жидких фаз по высоте трубки.
Достигнутый эффект основан на том, что на участках трубы, расположенных выше сужения, несколько возрастает плотность движущейся смеси. Однако установка кольцевых сужений не может устранить других недостатков этой конструкции, таких как значительная металлоемкость, сложность управления процессом, неизбежные потери изопрена вследствие неэффективности вывода его из реакционной среды и т.д.
Известна конструкция установки для жидкофазного синтеза изопрена в одну ступень, состоящая из вертикально установленного полого реактора, соединенного в едином блоке с параллельно или соосно установленным кожухотрубным теплообменником, предназначенным для нагрева реакционной массы и переработки части сырья. В межтрубное пространство теплообменника подается пар, а через трубы циркулирует реакционная масса. Внизу цилиндрической части реактора на одной оси с осью трубы, соединяющей реактор с верхней частью теплообменника, установлено распределительное устройство, предназначенное для ввода основной части сырья. Аналогичное по конструкции распределительное устройство установлено в нижней части теплообменника (под трубной решёткой) на одной оси с осью трубы, соединяющей этот аппарат с реактором (над верхней трубной решеткой). От самой нижней точки сферической части реактора отходит вторая труба, соединяющая реактор с нижней зоной теплообменника, расположенной ниже трубной решетки, а от самой верхней точки реактора отходит труба, предназначенная для отвода контактного газа в сепаратор (патент РФ Nb 32706, опубл. 2003 г.) .
Эта конструкция обеспечивает хорошее перемешивание реакционной массы и, что не менее важно, эффективный отвод изопрена в токе изобутилена из зоны реакции, однако принципиальным недостатком ее является наличие в ее составе выносного теплообменника, что приводит к увеличению металлоемкости установки (затраты на изготовление тяжелых фланцев и корпуса кожухотрубного теплообменника), а главное - связано с неизбежными теплопотерями.
Из-за наличия последних приходится предварительно нагревать сырье до температуры реакции или перегревать его на 5-70C выше этой температуры.
Поскольку сырье поступает в реактор вместе с водным раствором кислоты- катализатора, эта операция неизбежно приводит к потерям сырья на образование дополнительных количеств побочных продуктов и создает условия для смолообразования.
Известна упрощенная конструкция установки жидкофазного синтеза изопрена из изобутилена и формальдегида, позволяющая осуществить синтез в одной реакционной зоне (в одну ступень), состоящей из вертикально установленного полого реактора, в который встроен кожухотрубный теплообменник, предназначенный для подвода тепла, необходимого для протекания реакции, и одной или двух циркуляционных труб, соединяющих верхнюю и нижнюю части реактора, диаметр которых не менее, чем в пять раз превышает диаметр трубок теплообменника. Корпус полого реактора является одновременно обечайкой теплообменника. Соотношение объемов верхней и нижней частей пустотелого реактора, разделенных встроенным теплообменником, составляет величину не менее 2-2.5. Циркуляция реакционной массы осуществляется в трубках теплообменника за счет разности плотностей газа и жидкости. Для интенсификации перемешивания может быть использована принудительная циркуляция с помощью насоса. Обе части реактора содержат распределительные устройства, предназначенные для подвода сырья.
Распределительные устройства представляют собой систему трубок с отверстиями диаметром 2-5 мм, параллельно установленных на центральной (подпитывающей) трубе. Площадь распределительных устройств, рассчитанная по их габаритным размерам, составляет не более 25% сечения сосудов, в которых они установлены (Патент РФ N°
42185, опубл.2004 г. )•
Преимущества описанной установки состоят в снижении металлоемкости реакторного блока за счет упрощения конструкции - исключения фланцевых соединений и использования корпуса реактора в качестве обечайки теплообменника. Однако в течение небольшого срока работы установки образуется дополнительное количество побочных продуктов, что увеличивает смолообразование и приводит к потерям сырья.
Известна установка синтеза изопрена из изобутилена и формальдегида в жидкой фазе в присутствии гомогенного кислотного катализатора, не предусматривающая выделение промежуточных продуктов синтеза (Патент США N° 4511751, 1985 г., патент США .JTs 4593145, 1986 г.).
Установка включает 2-4 последовательно соединенных реактора взаимодействия кислого водного раствора формальдегида с изобутиленом и/или триметилкарбинолом при температуре 150-2200C и давлении в 1-2,5 раза превышающем давление паров реакционной смеси при этих температурах. Изобутилен и/или триметилкарбинол подводят только в первый реактор, а формалин - в каждый реактор. Изопрен, воду, непревращенные исходные продукты отгоняют из каждой реакционной зоны и вводят в последующую с отгонкой их из последней реакционной зоны. Выход изопрена на превращенные формальдегид и изобутилен недостаточен и составляет 52 и 74 %, соответственно.
Ближайшим аналогом предлагаемой установки жидкофазного синтеза изопрена из изобутилена и формальдегида является установка, описанная в патенте РФ N° 2280022, oпyбл.20.07.2006 г.
Установка состоит из нескольких соединенных реакторов (блоков) синтеза предшественников изопрена и блока разложения образующихся продуктов. Между блоками синтеза и блоком разложения установлены одна или две ректификационные колонны. Установка включает блок разделения продуктов, образующихся в реакторе разложения.
Недостатком работы описанной установки является образование большого количества высококипящих побочных продуктов и их накопление в системе, что приводит к образованию не расслаивающихся эмульсий и твердых отложений на оборудовании и его забивке, особенно при эксплуатации установки в промышленных условиях. Это обусловлено попаданием высококипящих побочных продуктов (ВШI), в особенности их тяжелой части - формален диоксановых спиртов, образующихся при синтезе предшественников изопрена, в частности ДМД, в блок разложения, который работает в условиях высоких температур эксплуатации (130-1700C) и большой концентрации кислотного катализатора. При этом ВПП, являющиеся смесью диоксановых спиртов и их производных, превращаются, в так называемое, «зeлeнoe мacлo», которое может быть использовано только в качестве низкокалорийного топлива, в то время как ВПП нашли широкое применение в народном хозяйстве и цена их гораздо выше стоимости сырья.
Превращение ВПП в такой побочный продукт как «зeлeнoe мacлo» резко увеличивает себестоимость процесса. Кроме того, легкая часть ВПП может быть разложена совместно с фракцией пиранов в исходное сырье и изопрен.
В работе установки по ближайшему аналогу не предусмотрено гетерогенно- каталитическое разложение пирановой фракции, что также ухудшает технико- экономические показатели процесса.
Использование в работе установки, описанной в ближайшем аналоге, в качестве источника изобутилена смеси TMK и изобутилена в блоке синтеза изопрена также снижает селективность процесса и ухудшает его расходные показатели.
С целью снижения себестоимости изопрена и улучшения технико-экономических показателей процесса синтеза изопрена из изобутилена и формальдегида предложена установка, состоящая из блоков, изображенных на прилагаемой фиг., где:
1. - блок синтеза TMK из изобутан-изобутиленовой фракции (ИИФ),
2. - блок синтеза TMK из концентрированного возвратного изобутилена,
3. - блок синтеза ДМД,
4. - блок синтеза изопрена,
5. - блок ректификации высококипящих побочных продуктов синтеза ДМД,
6. - блок разложения побочных продуктов,
7. - блок разделения продуктов синтеза и выделения изопрена-мономера. Установка работает следующим образом.
Для получения необходимого количества TMK в блок 1 подают ИИФ и воду. Синтез TMK ведется в полочных реакторах, заполненных катионитом. Возвратная фракция ИИФ из блока 1 отправляется на склад.
Образовавшийся TMK после отделения от возвратной ИИФ подается в блок 4 синтеза изопрена, куда одновременно из блока 3 поступает ДМД. Необходимое количество ДМД синтезируется в блоке 3, для чего туда подается ИИФ, формальдегид и водный слой из блока 4. Возвратная фракция ИИФ из блока 3 отправляется на склад.
Образующаяся в блоке 4 изопренсодержащая фракция подается на разделение продуктов синтеза и выделение изопрена-мономера в блок 7, а отогнанный в блоке 4 и блоке 7 концентрированный изобутилен возвращается в блок 2 синтеза TMK из концентрированного изобутилена. Одновременно в блок 2 для синтеза подают воду.
Высококипящие побочные продукты, образующиеся при синтезе ДМД, из блока 3 подают в блок 5 ректификации высококипящих побочных продуктов синтеза ДМД, в котором происходит разделение на легкие побочные продукты и тяжелые побочные продукты, которые далее направляются на реализацию. Все или часть легких высококипящих побочных продуктов может быть направлена в блок 6 разложения побочных продуктов.
В блок 6 одновременно подаются побочные продукты (фракция 4-мeтил-5,6- дигидро-α-пирана (МДГП)) из блока 7, образующиеся при синтезе изопрена. Изопренсодержащая фракция из блока 6 подается на разделение продуктов синтеза и выделение изопрена-мономера в блок 7, в котором происходит выделение товарного изопрен-ректификата и разделение побочных продуктов.
Полезная модель содержит технические решения, позволяющие снизить удельную металлоемкость процесса, увеличить производительность, обеспечить бесперебойную работу промышленного оборудования технологической установки в течение одного года, а также квалифицированно использовать образующиеся побочные продукты.
Проведение процесса на основе TMK без применения чистого изобутилена в блоке 4 позволяет осуществить процесс при меньших соотношениях реагентов (источник изобутилена / источник формальдегида), вследствие того, что дегидратация TMK протекает в объеме водной фазы, в которой находятся формальдегид и кислота- катализатор, благодаря чему резко возрастает вероятность «пepexвaтa» изобутилена формальдегидом и соответственно увеличивается скорость их взаимодействия. При промышленном использовании предлагаемой установки достигнуты следующие показатели:
Использование блока 6 разложения побочных продуктов, (в частности 1 т технической пирановой фракции) позволяет получить дополнительно -490 кг изопрена и -220 кг формальдегида, что значительно (на -5%) снижает расходные коэффициенты по сырью.
Реализация тяжелой фракции ВПП из расчета -140 кг на lт изопрена, полученных в блоке 5, позволяет снизить себестоимость целевого продукта - на 5%.

Claims

Формула полезной модели
Установка жидкофазного синтеза изопрена из изобутилена и формальдегида, включающая блок синтеза продуктов - предшественников изопрена (триметилкарбинола, диметилдиоксана), блок разложения продуктов, образующихся при синтезе, блок выделения и очистки целевого продукта, отличающаяся тем, что она состоит из блока синтеза диметилдиоксана, отдельно стоящего от двух параллельно работающих блоков синтеза триметилкарбинола (блока синтеза из изобутан-изобутиленовой фракции и блока синтеза из возвратного концентрированного изобутилена, выделяемого как из блока синтеза изопрена, так и из блока разделения продуктов синтеза и выделения изопрена-мономера), образующиеся в указанных блоках триметилкарбинол и диметилдиоксан одновременно поступают на совместное разложение в блок синтеза изопрена, после блока синтеза диметилдиоксана установлен блок ректификации образующихся в нем высококипящих побочных продуктов, из которого выделенные легкие побочные продукты направляются либо на реализацию, либо на разложение совместно с побочными продуктами (фракция метил- дигидропирана), полученными при разделении продуктов синтеза и выделении изопрена- мономера, либо на реализацию и разложение совместно с побочными продуктами (фракция метилдигидропирана), полученными при разделении продуктов синтеза и выделении изопрена-мономера, поступают в блок разложения; блок разделения продуктов синтеза и выделения изопрена-мономера соединен непосредственно с блоком синтеза изопрена, с блоком разложения побочных продуктов и с блоком синтеза диметилдиоксана.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2008/000367 2007-12-21 2008-06-09 Installation destinée à la synthèse d'isoprène en phase liquide à partir d'isobutylène et de formaldéhyde WO2009082260A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801272383A CN101970387A (zh) 2007-12-21 2008-06-09 源自异丁烯和甲醛的异戊二烯液相合成装置
EP08794018A EP2236484A4 (en) 2007-12-21 2008-06-09 INSTALLATION FOR THE SYNTHESIS OF ISOPRENE IN LIQUID PHASE FROM ISOBUTYLENE AND FORMALDEHYDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2007147962 2007-12-21
RU2007147962 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009082260A1 true WO2009082260A1 (fr) 2009-07-02

Family

ID=40801396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000367 WO2009082260A1 (fr) 2007-12-21 2008-06-09 Installation destinée à la synthèse d'isoprène en phase liquide à partir d'isobutylène et de formaldéhyde

Country Status (3)

Country Link
EP (1) EP2236484A4 (ru)
CN (1) CN101970387A (ru)
WO (1) WO2009082260A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459790C1 (ru) * 2011-07-27 2012-08-27 Закрытое Акционерное Общество "Сибур Холдинг" Способ получения изопрена
CN103814004A (zh) * 2011-08-17 2014-05-21 史波柏·优乐庆有限公司 从异丁烯和甲醛合成异戊二烯的液相合成装置
CN103467234A (zh) * 2013-09-04 2013-12-25 山东垦利石化集团有限公司 烯醛合成异戊二烯工艺技术
CN106278790B (zh) * 2015-06-05 2018-09-11 中国科学院大连化学物理研究所 一种制备异戊二烯的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511751A (en) 1982-10-14 1985-04-16 Kuraray Company, Ltd. Process for producing isoprene
US4593145A (en) 1984-03-12 1986-06-03 Kuraray Company Limited Process for producing isoprene
RU2096076C1 (ru) 1994-10-12 1997-11-20 Акционерное общество Научно-производственное предприятие "Ярсинтез" Аппарат для жидкофазного синтеза изопрена
RU32706U1 (ru) 2003-01-20 2003-09-27 Общество с ограниченной ответственностью "Еврохим-СПб-Трейдинг" Установка для жидкофазного одностадийного синтеза изопрена (варианты)
RU42185U1 (ru) 2004-07-27 2004-11-27 Общество с ограниченной ответственностью "Еврохим-СПб-Трейдинг" Установка для одностадийного жидкофазного синтеза изопрена
RU2280022C1 (ru) 2005-04-06 2006-07-20 Олег Станиславович Павлов Способ получения изопрена из изобутена и формальдегида
RU2304135C1 (ru) * 2006-05-31 2007-08-10 Олег Станиславович Павлов Способ получения изопрена

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972955A (en) * 1973-09-22 1976-08-03 Bayer Aktiengesellschaft Process for preparation of isoprene
SU772074A1 (ru) * 1979-01-24 1995-05-27 В.Н. Чуркин Способ выделения изопрена

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511751A (en) 1982-10-14 1985-04-16 Kuraray Company, Ltd. Process for producing isoprene
US4593145A (en) 1984-03-12 1986-06-03 Kuraray Company Limited Process for producing isoprene
RU2096076C1 (ru) 1994-10-12 1997-11-20 Акционерное общество Научно-производственное предприятие "Ярсинтез" Аппарат для жидкофазного синтеза изопрена
RU32706U1 (ru) 2003-01-20 2003-09-27 Общество с ограниченной ответственностью "Еврохим-СПб-Трейдинг" Установка для жидкофазного одностадийного синтеза изопрена (варианты)
RU42185U1 (ru) 2004-07-27 2004-11-27 Общество с ограниченной ответственностью "Еврохим-СПб-Трейдинг" Установка для одностадийного жидкофазного синтеза изопрена
RU2280022C1 (ru) 2005-04-06 2006-07-20 Олег Станиславович Павлов Способ получения изопрена из изобутена и формальдегида
RU2304135C1 (ru) * 2006-05-31 2007-08-10 Олег Станиславович Павлов Способ получения изопрена

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2236484A4 *

Also Published As

Publication number Publication date
CN101970387A (zh) 2011-02-09
EP2236484A1 (en) 2010-10-06
EP2236484A4 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US9242919B2 (en) Process to prepare olefins from aliphatic alcohols
TWI772568B (zh) 從醛獲得醇之方法
TWI784094B (zh) 自醛獲得醇之方法iii
RU2741574C1 (ru) Способ производства 2,2-диметил-1,3-пропандиола
CN100480221C (zh) α,β-不饱和高碳醇的制备
CN107108413A (zh) 制备二醇的装置及其制备方法
WO2009082260A1 (fr) Installation destinée à la synthèse d'isoprène en phase liquide à partir d'isobutylène et de formaldéhyde
RU2640578C2 (ru) Способ получения высокочистого изобутена в результате крекинга простого эфира мтбэ или этбэ и интегрированный способ получения соответствующего простого эфира
US6100435A (en) Use of catalytic distillation to produce cyclopentane or cyclopentene
RU72972U1 (ru) Установка для жидкофазного синтеза изопрена из изобутилена и формальдегида
CN113200853A (zh) 一种制备丁二酸二醇酯的工艺方法
US10377690B1 (en) Method for catalytic production of refined enal products from an aldehyde feed stream using a single enclosed unit
RU2116286C1 (ru) Способ получения изопрена
KR102627301B1 (ko) 고순도 메탄올 생성을 위한 분리 벽 기술의 사용
WO2013025122A1 (ru) Установка жидкофазного синтеза изопрена из изобутилена и формальдегида
US5714646A (en) Process for producing isopropyl alcohol
US20170266635A1 (en) Reactor and process for the dehydration of ethanol to ethylene
RU113674U1 (ru) Установка для жидкофазного синтеза изопрена из изобутилена и формальдегида
RU112844U1 (ru) Установка для жидкофазного синтеза изопрена из изобутилена и формальдегида
RU2458922C2 (ru) Способ получения 4,4-диметил-1,3-диоксана
US9914684B2 (en) Feed sources for allyl alcohol production processes
RU2686461C1 (ru) Способ и установка для производства изопрена (варианты)
RU2164909C2 (ru) Способ получения изопрена из формальдегида и изобутена
RU2458923C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
CN112569620B (zh) 一种利用隔壁反应精馏塔制备环戊基甲醚的工艺系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127238.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08794018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008794018

Country of ref document: EP