WO2009081918A1 - Organic/inorganic hybrid electroluminescent element - Google Patents

Organic/inorganic hybrid electroluminescent element Download PDF

Info

Publication number
WO2009081918A1
WO2009081918A1 PCT/JP2008/073360 JP2008073360W WO2009081918A1 WO 2009081918 A1 WO2009081918 A1 WO 2009081918A1 JP 2008073360 W JP2008073360 W JP 2008073360W WO 2009081918 A1 WO2009081918 A1 WO 2009081918A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic
substituted
hole transport
Prior art date
Application number
PCT/JP2008/073360
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sekiya
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2009081918A1 publication Critical patent/WO2009081918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to an organic / inorganic hybrid electroluminescent element (QD-LED) element comprising a combination of a laminated structure of organic electroluminescent elements (organic EL elements) and an inorganic nanocrystal luminescent material.
  • QD-LED organic / inorganic hybrid electroluminescent element
  • An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • the emission spectrum is relatively wide and it is difficult to improve color purity.
  • an organic / inorganic hybrid electroluminescent device (hereinafter referred to as “QD-LED”) in which a laminated structure of an organic EL device and an inorganic nanocrystal phosphor are combined has been studied.
  • QD-LED a semiconductor nanocrystal using a crystal
  • QD-LED a semiconductor nanocrystal using a crystal
  • a wide variety of inorganic nanocrystals are included in the QD-LED.
  • An inorganic nanocrystal luminescent material is characterized in that the luminescent color can be arbitrarily controlled by changing the composition and particle size of the nanocrystal.
  • monodisperse nanocrystals are characterized by a small half-value width of the emission spectrum, good color purity of light emission, and, since they are inorganic materials, they are resistant to deterioration and have high reliability.
  • Non-Patent Document 1 discloses an element having a film formed by dispersing polyvinyl carbazole (PVK) or an oxadiazole derivative as an organic material and dispersing CdSe nanocrystals in a mixture thereof. It has been reported.
  • Non-Patent Document 2 discloses N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) as a hole transport layer and a metal complex (TPD) as a light-emitting layer.
  • TPD N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine
  • TPD metal complex
  • QD-LED element using Alq3 and having quantum dots (QD) made of semiconductor nanocrystals arranged at the interface.
  • Non-Patent Documents 3 and 4 disclose QD-LED elements in which TPD is used as a hole transport layer, triazole derivative (TAZ) is used as a light emitting layer, and quantum dots made of semiconductor nanocrystals are arranged at the interface.
  • TPD triazole derivative
  • quantum dots made of semiconductor nanocrystals are arranged at the interface.
  • a chloroform mixed solution of quantum dots and TPD is spin-coated in a nitrogen atmosphere, the solvent is dried to separate the organic substance and the quantum dots, and a monolayer film of nanocrystal luminescent particles on the TPD surface (monolayer) Is forming.
  • Non-Patent Document 5 discloses a QD-LED element in which poly-TPD is used as a hole transport layer, Alq3 is used as a light emitting layer, and a cadmium semiconductor nanocrystal is arranged at the interface.
  • the semiconductor nanocrystal layer is a plurality of monolayers.
  • Patent Document 1 discloses an electroluminescent device in which a light emitting layer is sandwiched between opposing electrodes, and the light emitting layer is made of a polymer compound in which semiconductor ultrafine particles are dispersed.
  • This element has an electron transport layer between the cathode and the light-emitting layer, a hole blocking layer between the light-emitting layer and the electron transport layer, and an electron between the light-emitting layer and the hole transport layer. It has a blocking layer.
  • Patent Document 2 discloses an electroluminescent device using semiconductor ultrafine particles composed of a semiconductor crystal and a ligand coordinated on the surface thereof.
  • Patent Document 3 discloses an electroluminescent device including an independent nanocrystalline light emitting layer in contact with the polymer hole transport layer between the polymer hole transport layer and the organic electron transport layer.
  • Patent Document 4 discloses a current injection type light emitting element in which a light emitting layer is made of a medium in which inorganic fluorescent matrix nanoparticles doped with one or more kinds of elements as light emission centers are dispersed. In this element, multi-wavelength light emission using a plurality of dopants is realized.
  • Patent Document 5 discloses a QD-LED element in which a matrix layer is sandwiched between opposing electrodes, and a semiconductor nanocrystal is contained in the matrix layer. It is described that this element can have a hole blocking layer or an electron blocking layer in addition to an electrode, a hole transport layer, an electron transport layer and a semiconductor nanocrystal.
  • the elements described in the non-patent document or the patent document described above have the following problems, for example.
  • the element of Non-Patent Document 1 has low efficiency because it does not employ an organic laminated structure that is functionally separated.
  • the light emission of the organic EL element not containing QD is green (derived from Alq3, and the emission peak wavelength is 530 nm). Therefore, the energy transfer from the light emitting layer to the QD was inefficient, and the external quantum efficiency was as low as 0.5%.
  • the elements of Non-Patent Documents 3 and 4 also have a low external quantum efficiency of 1%.
  • Non-Patent Document 5 has a high operating voltage. This is considered to be because nanocrystal light-emitting fine particles are used as a plurality of monolayers.
  • Patent Document 4 realizes multi-wavelength light emission using a plurality of dopants, but the light emission start voltage is 7 V, the luminance at 10 V is 100 cd / m 2, and a high voltage is necessary for light emission. It was.
  • Patent Document 5 reports device performance of 1% external quantum efficiency, 1.5 cd / A luminous efficiency, and about 6V turn-on voltage, but the efficiency is still low. This is probably because the energy levels of the materials forming the hole transport layer and the electron transport layer are not properly matched.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a QD-LED element that can be driven at a low voltage and has high efficiency.
  • the following QD-LED elements are provided.
  • It includes at least an anode, a hole transport zone, a light emission zone, and a cathode in this order.
  • the hole transport zone and the light emission zone are adjacent to each other, and there are nanocrystal light emitting fine particles near the interface between the hole transport zone and the light emission zone.
  • An organic / inorganic hybrid electroluminescent device An organic / inorganic hybrid electroluminescent device that emits blue light having an emission peak wavelength in a light emission band of 490 nm or less of an organic electroluminescent device having the same configuration as the electroluminescent device except that the nanocrystal luminescent fine particles are not present.
  • FIG. 1 It is a schematic sectional drawing which shows one Embodiment of the QD-LED element of this invention.
  • 2 is an energy diagram of a QD-LED element 1. It is an example of the energy diagram of a QD-LED element, (a) is an example of the conventional element, (b) is an example of the element of this invention. It is a schematic sectional drawing which shows other embodiment of the QD-LED element of this invention. 2 is a transmission electron micrograph of the hole transport layer and QD formed in Example 1. FIG.
  • the QD-LED element of the present invention includes at least an anode, a hole transport zone, a light emission zone, and a cathode in this order.
  • the hole transport zone and the light emission zone are adjacent to each other, and there are nanocrystal light emitting fine particles in the vicinity of the interface between the hole transport zone and the light emission zone.
  • the vicinity of the interface means the interface between the hole transport zone and the light emission zone and its peripheral part.
  • FIG. 1 is a schematic sectional view showing a first embodiment of the QD-LED element of the present invention.
  • an anode 10 a hole transport zone 11, a light emission zone 13, an electron injection zone 14, and a cathode 15 are laminated in this order on a substrate (not shown).
  • the hole transport zone 11 and the emission zone 13 are adjacent to each other, and a nanocrystal emission fine particle 12 (hereinafter referred to as “QD” as a nanocrystal emission fine particle, and a state in which it forms a layer is referred to as a “QD layer”). Is inserted).
  • QD nanocrystal emission fine particle 12
  • holes supplied from the hole transport zone 11 and electrons supplied from the electron transport zone 14 are combined in the light emission zone 13, and the QD 12 existing in the vicinity emits light.
  • the mechanism by which QD12 emits light is not fully understood, an electron-hole pair is generated as an excited state of an organic molecule in the emission band, and excitation energy is transferred from the excited state to QD, so that QD's electronic excitation is achieved. It is believed that light is emitted when a state is generated and the excited state of the QD is deactivated.
  • the “hole transport zone” refers to a thin film-like component mainly responsible for hole transport as a function, and if it has that function, it may be a layer that may not be clearly distinguished as a layer.
  • the hole transport zone is mainly composed of a material responsible for hole transport, but may contain components having other functions or may have mixed boundaries as necessary.
  • the “hole transport zone” may be referred to as a “hole transport layer”.
  • “hole injection zone, light emission zone, electron transport zone, electron injection zone” may also be referred to as “hole injection layer, light emitting layer, electron transport layer, electron injection layer” in a broad sense.
  • the hole transport layer 11 and the light emitting layer 13 are adjacent to each other, and the QD layer 12 is disposed in the vicinity of the interface.
  • the QD layer 12 is disposed in the vicinity of the interface.
  • QD is in the form of particles having a diameter of several nanometers to several tens of nanometers, the hole transport layer 11 and the light emitting layer 13 are completely separated as a complete thin film even if they are arranged in layers. is not. In that sense, the hole transport layer 11 and the light emitting layer 13 are adjacent to each other.
  • QD12 is an inorganic substance as will be described later, it has an advantage that it is less likely to deteriorate than an organic substance.
  • QD has an advantage that the degree of freedom in designing the emission color is large because the emission wavelength can be selected depending on the material used and its size.
  • the light emitted from the light emitting layer 13 is blue light having an emission peak wavelength of 490 nm or less.
  • the absorption coefficient of QD has a feature that becomes larger as light of a shorter wavelength is used.
  • the material forming the light emitting layer is a highly efficient blue light emitting material. Therefore, the emission peak wavelength of the light emitted from the light emitting layer 13 is preferably blue light having a wavelength of 470 nm or less.
  • the lower limit wavelength of blue light is preferably 390 nm or more.
  • Non-Patent Document 2 discloses a configuration in which Alq3 that is a light emitting layer is adjacent to a hole transport layer (TPD), and the light emitting layer Alq3 is a green EL light emitting material.
  • TPD hole transport layer
  • the light emitting layer Alq3 is a green EL light emitting material.
  • green emission is observed at an emission peak of 520 to 530 nm.
  • the overlap between the emission wavelength region of the light emitting layer and the light absorption wavelength region of the QD becomes small, and the efficiency of energy transfer from the organic excited state to the QD is poor.
  • light emitted from the light emitting layer is different from light emitted from the QD-LED element.
  • the light emitted from the light emitting layer means light generated from the material used for the light emitting layer.
  • the light emitted by the QD-LED element means the sum of the light emitted by the QD and the light emitted by the constituent members such as the light emitting layer.
  • the light emitted from the light emitting layer can be measured by preparing an element (specific EL element) having a configuration excluding QD from the configuration of the QD-LED element and examining the emission spectrum.
  • the light emission of the intrinsic EL element is preferably mainly derived from the emission band (light emitting layer).
  • the light emitting layer emits light can be judged from a comparison between the light emission spectrum of the element and the PL spectrum of the thin film of each material. Specifically, the emission spectrum of the element and the thin film PL spectrum of each material are plotted with the peak value of the emission intensity, the difference in wavelength of the emission peak is ⁇ 10 mm or less, and the difference in emission half width is Based on the coincident peak at ⁇ 50 mm or less, it is determined which layer the light emission of the element is due to.
  • the difference between the highest occupied molecular orbital (HOMO) energy level of the main material of the hole transport layer 11 and the HOMO energy level of the main material of the light-emitting layer is preferably less than 1 eV, particularly It is preferably less than 0.5 eV.
  • FIG. 2 is an energy diagram of the QD-LED element 1.
  • the difference ( ⁇ E H ) between the HOMO level of the hole transport layer 11 and the HOMO level of the light emitting layer 13 is preferably less than 1 eV. With such a configuration, holes reach the light emitting layer 13 without feeling a barrier, and excitons can be efficiently generated there.
  • the HOMO and LUMO levels of the QD are not particularly defined and can be applied to various QDs.
  • the “main material” of the light emitting layer and the hole transport layer means a material contained in each layer in the highest weight ratio.
  • FIG. 3 is an example of an energy diagram of a QD-LED element.
  • A shows an example of a conventional QD-LED element
  • (b) shows an example of the element of the present invention.
  • the configuration of the conventional element is the configuration disclosed in Non-Patent Documents 2 to 4 and Patent Document 5 described above.
  • N, N′-diphenyl-N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) as the hole transport layer and 3- ( 4-biphenylyl) -4-phenyl-5-terbutylphenyl-1,2,4-triazole (TAZ) is used, and a QD layer exists at the interface.
  • ITO is an anode
  • Alq3 is an electron injection layer
  • MgAg alloy is a cathode.
  • QD is a core-shell type semiconductor nanocrystal having CdSe as a core and ZnS as a shell. The HOMO and LUMO levels of QD are examples and are cited from Non-Patent Document 3.
  • the HOMO level of the hole transport layer is 5.4 eV
  • the HOMO level of the light emitting layer is 6.5 eV
  • the difference is as large as 1.1 eV.
  • FIG. 3B shows an energy diagram of the element of Example 1 described later.
  • the HOMO level of the material HT1 forming the hole transport layer of this element is 5.5 eV
  • the HOMO level of the material EM1 forming the light emitting layer is 5.7 eV
  • the difference is as small as 0.2 eV.
  • the material EM1 for forming the light emitting layer is a blue light emitting material having a sufficient energy band gap of 3.0 eV.
  • an organic EL element having a configuration in which QD is omitted from this configuration emits blue light derived from EM1.
  • PEDOT PSS forms a hole injection zone (layer).
  • FIG. 1 is an example of the element of the present invention, and the present invention is not limited to this.
  • the element configuration shown in FIG. 4 may be used.
  • FIG. 4 is a schematic sectional view showing a second embodiment of the QD-LED element of the present invention.
  • This QD-LED element 2 is the same as the element configuration of FIG. 1 except that a hole injection zone 21 is formed between the anode 10 and the hole transport zone 11.
  • an electron injection layer may be inserted between the electron transport layer and the cathode, or the electron transport layer may be omitted.
  • the configuration of the hole transport layer / light-emitting layer is essential, but a hole block layer or an electron block layer may be provided outside the hole transport layer as necessary.
  • the QD is arranged near the interface between the hole transport layer and the light emitting layer. As can be seen from the above light emission mechanism, the QD does not have to be strictly layered at the boundary, and has a distribution in the light emitting layer. It may be distributed.
  • the light emitting device of the present invention may have, for example, the following structures (1) to (10) or a partial structure having the following structure.
  • Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (3) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (4) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode ( 5) Anode / insulating layer / hole transporting layer / light emitting layer / electron transporting layer / cathode (6) Anode / hole transporting layer / light emitting layer / electron transporting layer / insulating layer / cathode (7) Anode / insulating layer / positive Hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode (8) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode (9) anode
  • the element of the present invention may be a top emission type or a bottom emission type. Either type can be realized by making the electrode on the light extraction side light-transmissive.
  • the hole injection layer and the hole transport layer are layers that assist hole injection into the light emitting layer and transport to the light emitting region, and have a hole mobility. Large and ionization energy is usually as small as 5.5 eV or less.
  • a hole injecting / transporting layer a material that transports holes to the light emitting medium layer with a lower electric field strength is preferable, and an electric field application with a hole mobility of, for example, 10 4 to 10 6 V / cm is preferable. Sometimes it is preferably at least 10 ⁇ 4 cm 2 / V ⁇ sec.
  • the material for forming the hole injecting / transporting layer is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a charge transporting material for holes in an optical transmission material or organic EL. Any known material used for the hole injection / transport layer of the device can be selected and used.
  • Examples include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, Examples include hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilanes, aniline copolymers, and conductive polymer oligomers (particularly thiophene oligomers).
  • the above-mentioned materials can be used, but it is preferable to use porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds.
  • an aromatic amine derivative represented by the following formula (1) is particularly desirable.
  • L 1 is a divalent group consisting of a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms
  • Ar 101 to Ar 104 are each a substituted or unsubstituted nuclear atom number of 5 to 50 substituents or substituents represented by the following formula.
  • the number of nuclear atoms is the number of atoms that form a ring.
  • L 2 is a substituted or unsubstituted divalent group having 5 to 60 carbon atoms, an arylene group or a heterocyclic group, and Ar 105 to Ar 106 are each a substituted or unsubstituted nuclear atom having 5 to 5 carbon atoms. 50 substituents.
  • L 1 and L 2 examples include biphenylene, terphenylene, phenanthrene, and fluorenylene, preferably biphenylene and terphenylene, and more preferably biphenylene.
  • Ar 101 to Ar 106 examples include a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, and a phenyl group, preferably a biphenyl group, a terphenyl group, a 1-naphthyl group, or It is a phenyl group.
  • Ar 101 to Ar 104 are preferably the same substituent.
  • Ar 101 to Ar 104 are preferably a biphenyl group or a terphenyl group, and more preferably a biphenyl group.
  • the compound represented by formula (1) is preferably Ar 102 ⁇ Ar 104 of the substituents of Ar 101 ⁇ Ar 104 are the same substituents.
  • Ar 102 to Ar 104 are preferably a biphenyl group or a terphenyl group, more preferably a biphenyl group
  • Ar 101 is preferably a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, or a 1-naphthyl group.
  • Ar 102 to Ar 104 are biphenyl
  • Ar 101 is a terphenyl group or a 1-naphthyl group.
  • Ar 101 to Ar 106 are preferably a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, or a phenyl group, and more preferably a biphenyl group, a terphenyl group, or a 1-naphthyl group. Group or phenyl group.
  • Ar 103 to Ar 104 are biphenyl
  • Ar 101 is a terphenyl group and 1-naphthyl group
  • Ar 102 is a phenyl group.
  • a compound in which Ar 101 and Ar 106 are 1-naphthyl groups and Ar 102 , Ar 103 and Ar 105 are phenyl groups is also preferable.
  • R 101 to R 106 each represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group.
  • R 101 to R 106 may be the same or different, and R 101 and R 102 , R 103 and R 104 , R 105 and R 106 , R 101 and R 106 , R 102 and R 103 , R 104 And R 105 may form a condensed ring.
  • R 131 to R 136 are substituents, preferably an electron-withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, or a halogen.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection / transport layer.
  • An acceptor material is also suitable as the hole injection material for forming the hole injection / transport layer.
  • the acceptor is an easily reducible organic compound.
  • the ease of reduction of a compound can be measured by a reduction potential.
  • the reduction potential of the acceptor is preferably ⁇ 0.3 V or more, more preferably ⁇ 0.8 V or more, and particularly preferably tetracyanoquinodimethane ( A compound having a value larger than the reduction potential (about 0 V) of TCNQ) is preferred.
  • the acceptor is preferably an organic compound having an electron-withdrawing substituent or an electron-deficient ring.
  • the electron-withdrawing substituent include halogen, CN-, carbonyl group, arylboron group and the like.
  • electron-deficient rings include 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 2-imidazole, 4-imidazole, 3-pyrazole, 4-pyrazole, pyridazine, and pyrimidine , Pyrazine, cinnoline, phthalazine, quinazoline, quinoxaline, 3- (1,2,4-N) -triazolyl, 5- (1,2,4-N) -triazolyl, 5-tetrazolyl, 4- (1-O, 3-N) -oxazole, 5- (1-O, 3-N) -oxazole, 4- (1-S, 3-N) -thiazole, 5- (1-
  • the acceptor is preferably an imide derivative such as a quinoid derivative, an arylborane derivative, a thiopyran dioxide derivative, or a naphthalimide derivative.
  • R 1 to R 48 are each hydrogen, halogen, fluoroalkyl group, cyano group, alkoxy group, alkyl group or aryl group, provided that R 1 to R 48 are all hydrogen or Except for fluorine, X is an electron-withdrawing group, and has one of the structures of the following formulas (j) to (p), preferably the structures of (j), (k), and (l). .
  • R 49 to R 52 are each a hydrogen atom, a fluoroalkyl group, an alkyl group, an aryl group or a heterocyclic group, and R 50 and R 51 may form a ring.
  • Y is —N ⁇ or —CH ⁇ .
  • quinoid derivative examples include the following compounds.
  • arylborane derivative a compound having the following structure is preferable.
  • Ar 1 to Ar 7 are each an aryl group having an electron withdrawing group (including a heterocycle)
  • Ar 8 is an arylene group having an electron withdrawing group
  • S is 1 or 2.
  • arylborane derivative examples include the following compounds.
  • a compound having at least one fluorine as a substituent for aryl is particularly preferred, and examples thereof include tris ⁇ - (pentafluoronaphthyl) borane (PNB).
  • PNB tris ⁇ - (pentafluoronaphthyl) borane
  • naphthalenetetracarboxylic acid diimide compound and pyromellitic acid diimide compound are preferable.
  • Examples of the thiopyran dioxide derivative include a compound represented by the following formula (3a), and examples of the thioxanthene dioxide derivative include a compound represented by the following formula (3b).
  • R 53 to R 64 are each hydrogen, halogen, a fluoroalkyl group, a cyano group, an alkyl group, or an aryl group. Preferably, they are hydrogen and a cyano group.
  • X represents an electron withdrawing group and is the same as X in the formulas (1a) to (1i).
  • a structure of (j), (k), (l) is preferable.
  • the halogen, fluoroalkyl group, alkyl group and aryl group represented by R 53 to R 64 are the same as R 1 to R 48 .
  • thiopyran dioxide derivative represented by the formula (3a) and the thioxanthene dioxide derivative represented by the formula (3b) are shown below.
  • tBu is a t-butyl group.
  • the electron withdrawing group X may be a substituent (x) or (y) represented by the following formula.
  • Ar 9 and Ar 10 are a substituted or unsubstituted heterocyclic ring, a substituted or unsubstituted aryloxycarbonyl or an aldehyde, preferably pyridine, pyrazine, or quinoxaline.
  • Ar 9 and Ar 10 may be linked to each other to form a 5-membered or 6-membered cyclic structure.
  • the content of the acceptor contained in the hole injecting / transporting layer is preferably 1 to 100 mol%, more preferably 50 to 100 mol%, based on the entire layer.
  • the hole injecting / transporting layer can contain a hole transporting and light transmitting material, but is not necessarily limited thereto.
  • the hole injection / transport layer can be formed by thinning the above compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 1 nm to 100 nm.
  • the hole injection / transport layer may be composed of one or more of the above-described materials. May be a laminate of hole injection / transport layers made of different types of compounds.
  • the hole injection layer and the hole transport layer may be provided separately, or the hole injection layer may be omitted and only the hole transport layer may be used.
  • the difference between the HOMO energy level of the material mainly forming the hole transport layer and the HOMO energy level of the material mainly forming the light emitting layer is preferably less than 1 eV.
  • a combination satisfying this relationship can be selected from the light emitting layer materials exemplified later.
  • the nanocrystal light-emitting fine particles used for the QD layer are composed of inorganic nanocrystals in which inorganic crystals are made ultrafine to the nanometer order.
  • inorganic nanocrystal one that absorbs visible and / or near-ultraviolet light and emits visible fluorescence is used. Since the transparency is high and the scattering loss is small, an inorganic nanocrystal having an ultrafine particle size of preferably 20 nm or less, more preferably 10 nm or less is used.
  • the surface of the inorganic nanocrystal is preferably subjected to a compatibilizing treatment.
  • a compatibilizing treatment include treatment such as modifying or coating the surface with a long-chain alkyl group, phosphoric acid, resin, or the like.
  • Nanocrystal phosphors in which metal oxide is doped with transition metal ions include Y 2 O 3 , Gd 2 O 3 , ZnO, Y 3 Examples include a metal oxide such as Al 5 O 12 and Zn 2 SiO 4 doped with transition metal ions that absorb visible light, such as Eu 2+ , Eu 3+ , Ce 3+ , and Tb 3+ .
  • Nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions includes metal chalcogenides such as ZnS, CdS, and CdSe, Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+ and the like doped with transition metal ions that absorb visible light.
  • the surface may be modified with a metal oxide such as silica, an organic substance, or the like.
  • Nanocrystal phosphor that absorbs and emits visible light using semiconductor band gap (semiconductor nanocrystal)
  • semiconductor band gap semiconductor nanocrystal
  • crystallization consisting of can be mentioned.
  • Si, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnSe, ZnTe, CdS, CdSe, CdTe, CuGaSe 2 , CuGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 are direct transition type semiconductors.
  • ZnSe, ZnTe, GaAs, CdS, CdTe, InP, CuInS 2 , and CuInSe 2 are more preferable in terms of high luminous efficiency.
  • the emission wavelength can be easily controlled by the particle size, it has a large absorption in the blue wavelength range and the near ultraviolet wavelength range, and the degree of overlap between the absorption and emission in the emission range is large, and therefore preferably a semiconductor Use nanocrystals.
  • these semiconductor materials have a band gap of about 0.5 to 4.0 eV at room temperature in bulk materials (meaning non-particulate materials).
  • these materials have a band gap of about 0.5 to 4.0 eV at room temperature in bulk materials (meaning non-particulate materials).
  • the width of the band gap is known to be inversely proportional to the square of the particle diameter of the semiconductor fine particles. Therefore, the band gap can be controlled by controlling the particle size of the semiconductor particles. These semiconductors absorb light having a wavelength smaller than the wavelength corresponding to the band gap, and emit fluorescence having a wavelength corresponding to the band gap.
  • the band gap of the bulk semiconductor is preferably 1.0 eV to 3.0 eV at 20 ° C. Below 1.0 eV, when nanocrystallized, the fluorescence wavelength is too sensitively shifted with respect to the change in particle size, which is not preferable in terms of difficulty in production management. On the other hand, if it exceeds 3.0 eV, only fluorescence having a shorter wavelength than the near-ultraviolet region is emitted, which is not preferable in that it is difficult to apply as a light emitting element.
  • the semiconductor nanocrystal can be produced by a known method, for example, a method described in US Pat. No. 6,501,091.
  • a precursor solution in which trioctylphosphine (TOP) is mixed with trioctylphosphine selenide and dimethylcadmium is added to trioctylphosphine oxide (TOPO) heated to 350 ° C. There is a way to do it.
  • the semiconductor nanocrystal is preferably a core-shell type semiconductor nanoparticle comprising core particles made of semiconductor nanocrystals and at least one shell layer made of a semiconductor material having a larger band gap than the semiconductor material used for the core particles. It is a crystal.
  • This has a structure in which the surface of a core fine particle made of, for example, CdSe (band gap: 1.74 eV) is covered with a shell of a semiconductor material having a large band gap, such as ZnS (band gap: 3.8 eV). Thereby, it becomes easy to express the confinement effect of excitons generated in the core fine particles.
  • the surface may be modified with a metal oxide such as silica or an organic substance.
  • the core-shell type semiconductor nanocrystal can be produced by a known method, for example, the method described in US Pat. No. 6,501,091.
  • a CdSe core / ZnS shell structure it can be produced by introducing a precursor solution in which diethyl zinc and trimethylsilyl sulfide are mixed with TOP into a TOPO liquid in which CdSe core particles are dispersed and heated to 140 ° C.
  • Type II nanocrystal J. Am. Chem. Soc., Vol. 125, No. 38, 2003, p11466-11467) in which carriers forming excitons are separated between a core and a shell is used. It can also be used.
  • nanocrystals Angewandte Chemie, Vol. 115, 2003, p5189-5193, etc., in which two or more layer structures are laminated on the core to form a multi-shell structure and stability, emission efficiency, and emission wavelength adjustment are improved. May be used.
  • the said light emission fine particle may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the nanocrystal light emitting fine particles are preferably semiconductor nanocrystals, and more preferably a semiconductor containing at least one compound selected from the group consisting of CdSe, CdTe, CdS, InP, GaAs, ZnSe and ZnTe. Nanocrystal.
  • the QD layer of the light-emitting device of the present invention is prepared by spin-coating a liquid mixture prepared by dispersing a hole injection material, a hole transport material, or an electron transport material and nanocrystal light-emitting fine particles in a solvent, and then drying to obtain a phase. It can be manufactured by separating. Alternatively, the nanocrystal light-emitting fine particles can be directly dispersed in a solvent, and the dispersion can be coated by a known method such as spin coating, casting, dipping, or spray coating.
  • the light emitting layer combines the holes injected from the hole transport layer with the electrons injected from the cathode side through the electron transport layer and the like, thereby generating an excited state and transferring energy to the QD layer.
  • a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like.
  • a light emitting layer can be formed.
  • one type of material may be used from among the light emitting materials exemplified below, and a plurality of types may be mixed and used as long as the purpose is not impaired, or other known light emitting materials may be contained. Alternatively, a plurality of types of light emitting layers may be stacked and used.
  • Light emitting materials that can be used for the light emitting layer include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, and oxadiene.
  • Azole aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole Chelating oxinoid compounds, quinacridone, rubrene, and fluorescent dyes, but are not limited to these. Not intended to be.
  • Ar 001 is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar 002 is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X 001 to X 003 independently represents a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl groups having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 carbon atoms, substituted Or an unsubstituted arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxy
  • R 001 to R 010 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group, a
  • Ar 005 and Ar 006 are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L 001 and L 002 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • m is an integer from 0 to 2
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L 001 or Ar 005 binds to any of the 1-5 positions of pyrene
  • L 002 or Ar 006 binds to any of the 6-10 positions of pyrene.
  • n + t is an even number
  • Ar 005 , Ar 006 , L 001 , and L 002 satisfy the following (1) or (2).
  • a 001 and A 002 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 007 and Ar 008 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R 011 to R 020 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted group Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group
  • Ar 007 , Ar 008 , R 019 and R 020 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
  • a symmetric group with respect to the XY axis shown on the anthracene is not bonded to the 9th and 10th positions of the central anthracene.
  • R 021 to R 030 are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, arylamino group, or substituted.
  • a and b each represent an integer of 1 to 5, and when they are 2 or more, R 021s or R 022s may be the same or different from each other In addition, R 021 or R 022 may be bonded to each other to form a ring, or R 023 and R 024 , R 025 and R 026 , R 027 and R 028 , R 029 and R 030 are L 003 may be a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an optionally substituted aryl group). Represents an alkylene group or an arylene group.)
  • R 031 to R 040 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or an optionally substituted multicyclic group
  • C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 031s , R 032s , R 036s or R 037s may be the same.
  • R 031 may be different from each other, R 032 may be bonded to each other, R 033 may be bonded to each other, or R 037 may be bonded to each other to form a ring, and R 033 and R 034 , R 039 and R 040 are based on each other.
  • bonded to ring the optionally formed .L 004 is a single bond, -O -, - S -, - N (R) - (R is an aryl group which may be alkyl or substituted), Al Shows the alkylene group or an arylene group.)
  • a 005 to A 008 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.
  • a 011 to A 013 represent a divalent group similar to L 1 in the above formula (1)
  • a 014 to A 016 are a hydrogen atom or an aryl group having 6 to 50 nuclear carbon atoms, respectively.
  • R 041 to R 043 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, or an aryl having 5 to 18 carbon atoms.
  • An oxy group, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 5 to 16 carbon atoms, a nitro group, a cyano group, an ester group having 1 to 6 carbon atoms, or a halogen atom, of A 011 to A 016 At least one is a group having three or more condensed aromatic rings.
  • Fluorene compound represented by the following formula (ix) is represented by the following formula (ix).
  • R 051 and R 052 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, or a substituted amino group.
  • R 053 and R 054 may be a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic ring.
  • R 053 and R 054 representing a group and bonded to different fluorene groups may be the same or different.
  • R 053 and R 054 bonded to the same fluorene group may be the same or different, and Ar 011 and Ar 012 are substituted or unsubstituted condensed polycyclic aromatics having a total of 3 or more benzene rings.
  • N represents an integer of 1 to 10.
  • an anthracene derivative is preferable, a monoanthracene derivative or a bianthracene derivative is more preferable, an asymmetric anthracene is particularly preferable, or an anthracene compound used in Examples described later.
  • the thickness of the light emitting layer of the element of the present invention is, for example, 1 to 100 nm, preferably 5 to 60 nm.
  • the thickness of the light emitting layer is more than 100 nm, the voltage necessary for operating the light emitting element is increased, which may increase power consumption.
  • the thickness of the light emitting layer is less than 1 nm, it is difficult to increase the density of excitons generated in the layer, and there is a possibility that the light emitting layer does not function sufficiently.
  • An electron injection layer and an electron transport layer are layers that assist injection of electrons into the light emitting layer and transport them to the light emitting region, and have a high electron mobility.
  • the adhesion improving layer is a layer made of a material that has a particularly good adhesion to the cathode in the electron injection layer.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several ⁇ m, but when the film thickness is particularly large, the electron mobility is at least 10 when an electric field of 10 4 to 10 6 V / cm is applied in order to avoid an increase in voltage. It is preferably ⁇ 5 cm 2 / Vs or higher.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum. it can.
  • Examples of the oxadiazole derivatives include electron transfer compounds represented by the following formula.
  • Ar 301 , Ar 302 , Ar 303 , Ar 305 , Ar 306 , and Ar 309 each represent a substituted or unsubstituted aryl group.
  • Ar 304 , Ar 307 , and Ar 308 are each substituted or unsubstituted. Represents an arylene group.
  • examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • This electron transfer compound is preferably a thin film-forming compound.
  • the electron transfer compound examples include the following. (Me represents a methyl group, and tBu represents a tbutyl group.)
  • materials represented by the following formulas (A) to (F) can also be used as materials used for the electron injection layer and the electron transport layer.
  • a 311 to A 313 each represent a nitrogen atom or a carbon atom.
  • Ar 311 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms
  • Ar 311 ′ is a substituted or unsubstituted nuclear carbon atom.
  • Ar 312 represents a hydrogen atom, a substituted or unsubstituted aryl group of 6 to 60 nuclear carbon atoms, a substituted or unsubstituted An unsubstituted heteroaryl group having 3 to 60 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • any one of Ar 311 and Ar 312 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nucleus atoms.
  • L 311 , L 312 and L 313 are each a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear atoms, or a substituted or unsubstituted group. Substituted fluorenylene group.
  • R and R 311 are each a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkyl groups, or substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different.
  • adjacent R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr-L 314 -Ar 321 -Ar 322 (In the formula, HAr is a nitrogen-containing heterocyclic ring having 3 to 40 carbon atoms which may have a substituent, and L 314 has a carbon number of 6 to 60 optionally having a single bond or a substituent.
  • X 301 and Y 301 are each a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted group Or an unsubstituted heterocycle or a structure in which X and Y are combined to form a saturated or unsaturated ring
  • R 301 to R 304 are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group Perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryl Oxycarbonyloxy group,
  • R 321 to R 328 and Z 322 are each a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryl group.
  • X 302 , Y 302 and Z 321 each represents a saturated or unsaturated hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group; 321 and Z 322 may be bonded to each other to form a condensed ring.
  • N represents an integer of 1 to 3, and when n or (3-n) is 2 or more, R 321 to R 328 , X 302 , Y 302 , Z 322 and Z 321 may be the same or different, provided that n is 1, X, Y and R 322 are methyl groups and R 328 is a hydrogen atom or a substituted boryl group, and n is 3.
  • Z 321 does not include a compound having a methyl group.
  • Q 301 and Q 302 each represent a ligand represented by the following formula (K), and L 315 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group , Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, —OR (where R is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl Group, a substituted or unsubstituted heterocyclic group) or a ligand represented by —O—Ga—Q 303 (Q 304 ) (Q 303 and Q 304 are the same as Q 301 and Q 302 ). . ] The gallium complex represented by this.
  • ring A 301 and A 302 are each a 6-membered aryl ring structure condensed with each other, which may have a substituent. ]
  • This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bondability between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is large.
  • substituents of the rings A 301 and A 302 that form the ligand of the formula (K) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, butyl Group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group and other substituted or unsubstituted alkyl groups, phenyl group, naphthyl group, biphenyl group, anthranyl Group, phenanthryl group, fluorenyl group, pyrenyl group, 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, etc.
  • Substituted or unsubstituted aryl group methoxy group, n-butoxy group, t-butoxy group, trichloromethoxy group Trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl)
  • Substituted or unsubstituted alkoxy group such as hexyloxy group, phenoxy group, p-nitrophenoxy group, pt-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group, 3-trifluoromethylphenoxy group, etc.
  • acylamino group hydroxyl group, siloxy group, acyl group, carbamoyl group, methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, diethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, phenylcarbamoyl group, etc.
  • Mosquito Cycloalkyl groups such as vamoyl group, carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cyclohexyl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, acridinyl group, Pyrrolidinyl, dioxanyl, piperidinyl, morpholinyl, piperazinyl, carbazolyl, furanyl, thiophenyl, oxazolyl, oxadiazolyl, benzoxazolyl, thiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, imidazolyl And heterocyclic groups such as benzimidazolyl group.
  • the above substituents may combine to form a further 6-membered aryl
  • a reducing dopant is contained in a region for transporting electrons or an interface region between the cathode and the organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Li (work function: 2.9 eV), Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2). .16 eV) and Cs (work function: 1.95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV) , And at least one alkaline earth metal selected from the group consisting of Ba (work function: 2.52 eV), and those having a work function of 2.9 eV or less are particularly preferred.
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, LiO, Na 2 S, Na 2 Se, and NaO
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, and BeO. , BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound which comprises an electron carrying layer is a microcrystal or an amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the light emitting element of the present invention is manufactured on a substrate.
  • the substrate here is a substrate that supports the light-emitting element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • translucency is unnecessary when a support substrate is located on the opposite side to the light extraction direction.
  • the anode of the light emitting element plays a role of injecting holes into the hole transport layer or the light emitting layer.
  • ITO indium tin oxide alloy
  • NESA tin oxide
  • Indium zinc oxide alloy gold, silver, platinum, copper and the like
  • a metal or an alloy such as aluminum, molybdenum, chromium, or nickel can be used in addition to these metals. These materials can be used alone, but an alloy of these materials or a material to which other elements are added can be appropriately selected and used.
  • the transmittance of the anode for light emission is preferably greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a low work function (4 eV or less) can be used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, cesium fluoride, cesium carbonate, aluminum nitride, titanium oxide, and oxide.
  • Examples thereof include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. A mixture or laminate of these may be used.
  • each layer is not particularly described, and is a vacuum evaporation method, an LB method, a resistance heating evaporation method, an electron beam method, a sputtering method, a molecular lamination method, a coating method (spin coating method, Various methods such as a casting method, a dip coating method, an ink jet method, and a printing method can be used.
  • the film thickness of each layer of the light emitting device of the present invention unless otherwise specified, generally, if the film thickness is too thin, defects such as pinholes are likely to occur. In general, the range of several nm to 1 ⁇ m is preferable. [Example]
  • the HOMO level is a value measured for the deposited film of each raw material using a work function measuring apparatus AC3 (manufactured by Riken Keiki Co., Ltd.).
  • the LUMO level was calculated by estimating the energy gap Eg from the absorption edge of the deposited film and taking into account the actual value of the HOMO level.
  • Example 1 A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • poly (ethylenedioxy) thiophene: polystyrene sulfonic acid hereinafter referred to as PEDOT: PSS) used as a hole injection layer by spin coating (1500 rpm, 30 seconds) was formed to a thickness of 40 nm, Drying was performed at 200 ° C. for 30 minutes.
  • PEDOT polystyrene sulfonic acid
  • FIG. 5 the cross-sectional photograph which observed the layer structure with the transmission electron microscope (TEM) is shown. From this photograph, it was observed that the entire surface of the hole transport layer (HT1 layer) having a film thickness of about 40 nm was covered with the QD single particle film in the form of a layer.
  • TEM transmission electron microscope
  • This substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • a light emitting material EM1 is deposited as a light emitting layer
  • an electron injection material Alq3 is deposited as an electron injection layer to a thickness of 40 nm and 20 nm, respectively
  • LiF and Al are deposited as a cathode at 1 nm and 150 nm, respectively. It evaporated until it became the thickness of. Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus.
  • the blue light emission derived from the light emitting layer (EM1) was obtained from the element produced similarly to Example 1 except not using QD, and the light emission peak wavelength at that time was 442 nm.
  • Table 2 shows the materials used and the evaluation results of the devices manufactured in Example 1 and Examples and Comparative Examples described later.
  • Example 2 A device was prepared in the same manner as in Example 1 except that a toluene dispersion of CdSe / ZnS core-shell quantum dots (ED-C11-TOL-0520 manufactured by Evident Technology, Inc., concentration 10 mg / ml) was used as the nanocrystal. Preparation and evaluation. As a result, with an applied voltage of 6.5 V, good device characteristics were obtained, such as emission luminance of 192 cd / m 2 , efficiency of 4.9 cd / A, and external quantum efficiency of 2.3%. The chromaticity was (0.193, 0.693), and good green light emission derived from QD was obtained.
  • ED-C11-TOL-0520 manufactured by Evident Technology, Inc.
  • the HOMO level of HT1 was 5.5 eV
  • that of EM1 was 5.7 eV
  • the difference was 0.2 eV (see Table 2).
  • blue light emission derived from EM1 was obtained, and the emission peak wavelength at that time was 442 nm.
  • Comparative Example 1 A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • a DC voltage was applied to the obtained device, and the light emission characteristics were evaluated using a spectral radiance meter (Minolta CS1000).
  • the applied voltage was 30 V
  • the emission luminance was 5.4 cd / m 2
  • the efficiency was 0.043 cd / A
  • the external quantum efficiency was 0.016%, which was extremely low efficiency.
  • the chromaticity was (0.474, 0.462), and in addition to light emission derived from QD, green light emission (emission peak wavelength 520 nm) derived from Alq3 was superimposed.
  • the HOMO level of TPD constituting the hole transport layer was 5.4 eV
  • that of TAZ constituting the light emitting layer was 6.5 eV
  • the difference was 1.1 eV.
  • the light emission of the device excluding QD from this device is not derived from the light emitting layer, but is derived from green light emitted from Alq3 that forms the electron injection layer (emission peak wavelength 520 nm) and blue light emitted from TPD (peak wavelength is 425 nm).
  • the main light emission was green light emission derived from Alq3. Note that which layer emits light was determined by comparison with the PL spectrum of the thin film of each material.
  • Comparative Example 2 A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • poly (ethylenedioxy) thiophene: polystyrene sulfonic acid hereinafter referred to as PEDOT: PSS) used as a hole injection layer by spin coating (1500 rpm, 30 seconds) was formed to a thickness of 40 nm, Drying was performed at 200 ° C. for 30 minutes.
  • PEDOT polystyrene sulfonic acid
  • This substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • a light emitting material TAZ is deposited as a light emitting layer
  • an electron injection material Alq3 is deposited as an electron injection layer to a thickness of 40 nm and 20 nm, respectively
  • LiF and Al are respectively deposited as a cathode at 1 nm and 150 nm. It evaporated until it became the thickness of. Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus.
  • a DC voltage was applied to the obtained device, and the light emission characteristics were evaluated using a spectral radiance meter (Minolta CS1000).
  • the emission luminance was 172 cd / m 2
  • the efficiency was 0.13 cd / A
  • the external quantum efficiency was 0.043%.
  • the chromaticity was (0.447, 0.424), and in addition to the light emission derived from QD, green light emission derived from Alq3 (emission peak wavelength 520 nm) and blue light emission derived from HT1 (peak wavelength 420 nm) were superimposed. .
  • the HOMO level of HT1 was 5.5 eV, that of TAZ was 6.5 eV, and the difference was 1.0 eV.
  • Blue light emission derived from the hole transport layer (HT1) was obtained from the device excluding QD from this device, and the emission peak wavelength at that time was 420 nm.
  • the QD-LED element of the present invention can be suitably used for a flat display for TV or the like. Further, it can be suitably used for light sources such as flat light emitters and display backlights, display units such as mobile phones, PDAs, car navigation systems, vehicle instrument panels, and lighting.
  • light sources such as flat light emitters and display backlights
  • display units such as mobile phones, PDAs, car navigation systems, vehicle instrument panels, and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic/inorganic hybrid electroluminescent element (1) that includes at least an anode (10), a hole transport zone (11), a luminescent zone (13), and a cathode (15), in that order, wherein the hole transport zone and the luminescent zone are adjacent, and there are nanocrystalline luminescent microparticles (12) in the vicinity of the interface between the hole transport zone and the luminescent zone, and an organic/inorganic hybrid electroluminescent element wherein the luminescence band frequency of an organic electroluminescent element with the same structure as the aforementioned electroluminescent element, except for having no nanocrystalline luminescent microparticles, is blue light with a peak luminescence wavelength of 490 nm or less.

Description

有機・無機ハイブリッド型電界発光素子Organic / inorganic hybrid electroluminescent device
 本発明は、有機電界発光素子(有機EL素子)の積層構造と無機ナノクリスタル発光体を組み合わせてなる、有機・無機ハイブリッド型電界発光素子(QD-LED)素子に関する。 The present invention relates to an organic / inorganic hybrid electroluminescent element (QD-LED) element comprising a combination of a laminated structure of organic electroluminescent elements (organic EL elements) and an inorganic nanocrystal luminescent material.
 有機EL素子は、電界を印加することにより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。
 従来の有機EL素子では、新しい発光色の素子を得るためには、新しい発光材料分子の開発が必要であった。また、発光スペクトルが比較的幅広く、色純度を向上させるのが難しいという課題があった。
An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
In the conventional organic EL device, it was necessary to develop new light emitting material molecules in order to obtain a device having a new emission color. In addition, there is a problem that the emission spectrum is relatively wide and it is difficult to improve color purity.
 ところで、有機EL素子の積層構造と、無機ナノクリスタル蛍光体とを組み合わせた、有機・無機ハイブリッド型電界発光素子(以下、「QD-LED」と呼ぶ。)が検討されている。尚、狭義には、半導体ナノクリスタルを用いたものを、「QD-LED」と呼ぶが、本願では、広く無機ナノクリスタルを用いたものをQD-LEDに含めるものとする。
 無機ナノクリスタル発光体は、ナノクリスタルの組成や粒径を変えることで、発光色を任意に制御できるという特徴がある。また、単分散のナノクリスタルは、発光スペクトルの半値幅が小さく、発光の色純度がよく、さらに、無機材料であるので劣化しにくく信頼性が高いという特徴を有する。
By the way, an organic / inorganic hybrid electroluminescent device (hereinafter referred to as “QD-LED”) in which a laminated structure of an organic EL device and an inorganic nanocrystal phosphor are combined has been studied. In a narrow sense, a semiconductor nanocrystal using a crystal is referred to as “QD-LED”. In the present application, a wide variety of inorganic nanocrystals are included in the QD-LED.
An inorganic nanocrystal luminescent material is characterized in that the luminescent color can be arbitrarily controlled by changing the composition and particle size of the nanocrystal. In addition, monodisperse nanocrystals are characterized by a small half-value width of the emission spectrum, good color purity of light emission, and, since they are inorganic materials, they are resistant to deterioration and have high reliability.
 QD-LEDについて、例えば、非特許文献1には、有機材料として、ポリビニルカルバゾール(PVK)、オキサジアゾール誘導体を用い、それらの混合物にCdSeナノクリスタルを分散させて製膜した膜を有する素子が報告されている。 Regarding QD-LED, for example, Non-Patent Document 1 discloses an element having a film formed by dispersing polyvinyl carbazole (PVK) or an oxadiazole derivative as an organic material and dispersing CdSe nanocrystals in a mixture thereof. It has been reported.
 非特許文献2には、正孔輸送層としてN,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、発光層として金属錯体(Alq3)を用い、その界面に半導体ナノクリスタルからなる量子ドット(QD)を配置した、QD-LED素子が開示されている。 Non-Patent Document 2 discloses N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) as a hole transport layer and a metal complex (TPD) as a light-emitting layer. There is disclosed a QD-LED element using Alq3) and having quantum dots (QD) made of semiconductor nanocrystals arranged at the interface.
 非特許文献3,4には、正孔輸送層としてTPD、発光層としてトリアゾール誘導体(TAZ)を用い、その界面に半導体ナノクリスタルからなる量子ドットを配置したQD-LED素子が開示されている。この素子では、量子ドット及びTPDのクロロホルム混合液を窒素雰囲気下でスピンコートし、溶媒を乾燥させて有機物と量子ドットを相分離させ、TPD表面にナノクリスタル発光微粒子の単層膜(モノレイヤー)を形成している。
 非特許文献5には、正孔輸送層としてpoly-TPDを、発光層としてAlq3を用い、その界面にカドミウム系半導体ナノクリスタルを配置したQD-LED素子が開示されている。この素子では、半導体ナノクリスタル層を複数モノレイヤーとしている。
Non-Patent Documents 3 and 4 disclose QD-LED elements in which TPD is used as a hole transport layer, triazole derivative (TAZ) is used as a light emitting layer, and quantum dots made of semiconductor nanocrystals are arranged at the interface. In this device, a chloroform mixed solution of quantum dots and TPD is spin-coated in a nitrogen atmosphere, the solvent is dried to separate the organic substance and the quantum dots, and a monolayer film of nanocrystal luminescent particles on the TPD surface (monolayer) Is forming.
Non-Patent Document 5 discloses a QD-LED element in which poly-TPD is used as a hole transport layer, Alq3 is used as a light emitting layer, and a cadmium semiconductor nanocrystal is arranged at the interface. In this element, the semiconductor nanocrystal layer is a plurality of monolayers.
 特許文献1には、対向する電極間に発光層が挟持されており、発光層が、半導体超微粒子が分散した高分子化合物からなる電界発光素子が開示されている。この素子は、陰極と発光層との間に電子輸送層を有し、発光層と電子輸送層との間に正孔ブロッキング層を有し、かつ発光層と正孔輸送層との間に電子ブロッキング層を有する。 Patent Document 1 discloses an electroluminescent device in which a light emitting layer is sandwiched between opposing electrodes, and the light emitting layer is made of a polymer compound in which semiconductor ultrafine particles are dispersed. This element has an electron transport layer between the cathode and the light-emitting layer, a hole blocking layer between the light-emitting layer and the electron transport layer, and an electron between the light-emitting layer and the hole transport layer. It has a blocking layer.
 特許文献2には、半導体結晶及びその表面に配位した配位子からなる半導体超微粒子を用いた、電界発光素子が開示されている。
 特許文献3には、高分子正孔輸送層及び有機物電子輸送層との間に、高分子正孔輸送層に接触した独立のナノ結晶発光層を含む電界発光素子が開示されている。
Patent Document 2 discloses an electroluminescent device using semiconductor ultrafine particles composed of a semiconductor crystal and a ligand coordinated on the surface thereof.
Patent Document 3 discloses an electroluminescent device including an independent nanocrystalline light emitting layer in contact with the polymer hole transport layer between the polymer hole transport layer and the organic electron transport layer.
 特許文献4には、発光層が、1種又は複数種の元素を発光中心としてドープした無機蛍光母体ナノ粒子が分散された媒体からなる、電流注入型発光素子が開示されている。この素子では、複数のドーパントを用いた多波長発光を実現している。 Patent Document 4 discloses a current injection type light emitting element in which a light emitting layer is made of a medium in which inorganic fluorescent matrix nanoparticles doped with one or more kinds of elements as light emission centers are dispersed. In this element, multi-wavelength light emission using a plurality of dopants is realized.
 特許文献5には、対向する電極間にマトリックス層が挟持されており、マトリックス層内に半導体ナノクリスタルを含むQD-LED素子が開示されている。この素子は、電極、正孔輸送層、電子輸送層及び半導体ナノクリスタルに加え、正孔ブロッキング層又は電子ブロッキング層を有することができると記載されている。
特開2004-172102号公報 特開2004-315661号公報 特開2005-353595号公報 特開2005-38634号公報 国際公開第2003/084292号パンフレット B.O.Dabbousi and M.G.Bawendi,Appl.Phys.Lett.66(1995)1316-1318頁 S.Coe et al.,Nature,420(2002)800-803頁 S.Coe-Sullivan et al,Organic Electronics,4(2003)123-130頁 V.Bulovic and M.Bawendi,SID 06 Digest 35.1(2006)1368-1371頁 Q.Sun et al.,Nature Photonics,18 November 2007;doi:10.1038;nphoton.2007.226
Patent Document 5 discloses a QD-LED element in which a matrix layer is sandwiched between opposing electrodes, and a semiconductor nanocrystal is contained in the matrix layer. It is described that this element can have a hole blocking layer or an electron blocking layer in addition to an electrode, a hole transport layer, an electron transport layer and a semiconductor nanocrystal.
JP 2004-172102 A JP 2004-315661 A JP 2005-353595 A JP 2005-38634 A International Publication No. 2003/084292 Pamphlet B. O. Dabbousi and M.D. G. Bawendi, Appl. Phys. Lett. 66 (1995) 1316-1318 S. Coe et al. , Nature, 420 (2002) 800-803. S. Coe-Sullivan et al, Organic Electronics, 4 (2003) pp. 123-130. V. Bullovic and M.M. Bawendi, SID 06 Digest 35.1 (2006) 1368-1371 Q. Sun et al. , Nature Photonics, 18 November 2007; doi: 10.1038; nphoton. 2007.226
 上述した非特許文献又は特許文献に記載された素子では、例えば、以下のような課題があった。
 非特許文献1の素子では、機能分離された有機積層構造を採用していないため低効率であった。
 非特許文献2の素子の構成では、QDを含まない有機EL素子の発光は緑色(Alq3由来であって、発光ピーク波長は530nm)である。従って、発光層からQDへのエネルギー移動が非効率であり、外部量子効率は0.5%と低かった。
 非特許文献3,4の素子も、外部量子効率は1%と低い。この理由は、正孔輸送層(TPD)のHOMOレベルが5.4eV、発光層(TAZ)のHOMOレベルが6.5eVであり、その差が1.1eVと大きく、正孔が発光層に有効に注入されず、十分な発光効率が得られていないためと考えられる。
 非特許文献5の素子は、動作電圧が高い。これは、ナノクリスタル発光微粒子を複数モノレイヤーとして用いているためであると考えられる。
The elements described in the non-patent document or the patent document described above have the following problems, for example.
The element of Non-Patent Document 1 has low efficiency because it does not employ an organic laminated structure that is functionally separated.
In the structure of the element of Non-Patent Document 2, the light emission of the organic EL element not containing QD is green (derived from Alq3, and the emission peak wavelength is 530 nm). Therefore, the energy transfer from the light emitting layer to the QD was inefficient, and the external quantum efficiency was as low as 0.5%.
The elements of Non-Patent Documents 3 and 4 also have a low external quantum efficiency of 1%. This is because the hole transport layer (TPD) has a HOMO level of 5.4 eV and the light-emitting layer (TAZ) has a HOMO level of 6.5 eV, a large difference of 1.1 eV, and holes are effective in the light-emitting layer. This is probably because sufficient light emission efficiency was not obtained.
The element of Non-Patent Document 5 has a high operating voltage. This is considered to be because nanocrystal light-emitting fine particles are used as a plurality of monolayers.
 特許文献4の素子では、複数のドーパントを用いた多波長発光を実現しているが、発光開始電圧が7Vであり、10Vでの輝度が100cd/mと、発光に高電圧が必要であった。 The element of Patent Document 4 realizes multi-wavelength light emission using a plurality of dopants, but the light emission start voltage is 7 V, the luminance at 10 V is 100 cd / m 2, and a high voltage is necessary for light emission. It was.
 特許文献5では、素子の性能を外部量子効率1%、発光効率1.5cd/A、ターンオン電圧約6Vと報告しているが、効率がまだ低い。この原因は、正孔輸送層、電子輸送層を形成する材料のエネルギー準位の整合が、適切でないためであると考えられる。 Patent Document 5 reports device performance of 1% external quantum efficiency, 1.5 cd / A luminous efficiency, and about 6V turn-on voltage, but the efficiency is still low. This is probably because the energy levels of the materials forming the hole transport layer and the electron transport layer are not properly matched.
 本発明は上記の課題に鑑みなされたものであって、低電圧で駆動でき、高効率のQD-LED素子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a QD-LED element that can be driven at a low voltage and has high efficiency.
 本発明によれば、以下のQD-LED素子が提供される。
1.少なくとも陽極、正孔輸送帯域、発光帯域及び陰極を、この順に含み、前記正孔輸送帯域と発光帯域は隣接してあり、前記正孔輸送帯域と発光帯域の界面付近にナノクリスタル発光微粒子がある有機・無機ハイブリッド型電界発光素子であり、
 ナノクリスタル発光微粒子がない他は前記電界発光素子と同様の構成を有する有機電界発光素子の発光帯域の発光ピーク波長が490nm以下の青色光である、有機・無機ハイブリッド型電界発光素子。
2.前記ナノクリスタル発光微粒子が半導体ナノクリスタルである、1記載の有機・無機ハイブリッド型電界発光素子。
3.前記正孔輸送帯域の主材料のHOMOエネルギー準位と、前記発光帯域の主材料のHOMOエネルギー準位との差が1eV未満である、1又は2に記載の有機・無機ハイブリッド型電界発光素子。
4.前記正孔輸送帯域の主材料のHOMOエネルギー準位と、前記発光帯域の主材料のHOMOエネルギー準位との差が0.5eV未満である、1又は2に記載の有機・無機ハイブリッド型電界発光素子。
5.前記発光帯域の発する光の発光ピーク波長が470nm以下である3又は4に記載の有機・無機ハイブリッド型電界発光素子。
6.前記発光帯域の主材料がアントラセン骨格を有する材料である、5に記載の有機・無機ハイブリッド型電界発光素子。
7.前記正孔輸送帯域の主材料が芳香族アミン誘導体である、5又は6に記載の有機・無機ハイブリッド型電界発光素子。
According to the present invention, the following QD-LED elements are provided.
1. It includes at least an anode, a hole transport zone, a light emission zone, and a cathode in this order. The hole transport zone and the light emission zone are adjacent to each other, and there are nanocrystal light emitting fine particles near the interface between the hole transport zone and the light emission zone. An organic / inorganic hybrid electroluminescent device,
An organic / inorganic hybrid electroluminescent device that emits blue light having an emission peak wavelength in a light emission band of 490 nm or less of an organic electroluminescent device having the same configuration as the electroluminescent device except that the nanocrystal luminescent fine particles are not present.
2. 2. The organic / inorganic hybrid electroluminescent device according to 1, wherein the nanocrystal luminescent fine particles are semiconductor nanocrystals.
3. 3. The organic / inorganic hybrid electroluminescent device according to 1 or 2, wherein a difference between a HOMO energy level of the main material in the hole transport band and a HOMO energy level of the main material in the emission band is less than 1 eV.
4). The organic / inorganic hybrid electroluminescence according to 1 or 2, wherein a difference between a HOMO energy level of the main material in the hole transport band and a HOMO energy level of the main material in the emission band is less than 0.5 eV. element.
5). 5. The organic / inorganic hybrid electroluminescent device according to 3 or 4, wherein an emission peak wavelength of light emitted from the emission band is 470 nm or less.
6). 6. The organic / inorganic hybrid electroluminescent device according to 5, wherein a main material of the light emission band is a material having an anthracene skeleton.
7). 7. The organic / inorganic hybrid electroluminescent device according to 5 or 6, wherein the main material of the hole transport zone is an aromatic amine derivative.
 本発明によれば、低電圧駆動で高効率のQD-LED素子が提供できる。
 この素子は、照明や情報表示ディスプレイに適する。
According to the present invention, it is possible to provide a high-efficiency QD-LED element driven at a low voltage.
This element is suitable for illumination and information display.
本発明のQD-LED素子の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the QD-LED element of this invention. QD-LED素子1のエネルギーダイアグラムである。2 is an energy diagram of a QD-LED element 1. QD-LED素子のエネルギーダイアグラムの例であり、(a)は従来の素子の例、(b)は本発明の素子の例である。It is an example of the energy diagram of a QD-LED element, (a) is an example of the conventional element, (b) is an example of the element of this invention. 本発明のQD-LED素子の他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of the QD-LED element of this invention. 実施例1で形成した正孔輸送層及びQDの透過型電子顕微鏡写真である。2 is a transmission electron micrograph of the hole transport layer and QD formed in Example 1. FIG.
 本発明のQD-LED素子は、少なくとも陽極、正孔輸送帯域、発光帯域及び陰極を、この順に含む。そして、正孔輸送帯域と発光帯域は隣接してあり、前記正孔輸送帯域と発光帯域の界面付近にナノクリスタル発光微粒子がある。尚、界面付近とは正孔輸送帯域と発光帯域の界面及びその周辺部を意味する。このQD-LED素子について図面を参照しながら説明する。 The QD-LED element of the present invention includes at least an anode, a hole transport zone, a light emission zone, and a cathode in this order. The hole transport zone and the light emission zone are adjacent to each other, and there are nanocrystal light emitting fine particles in the vicinity of the interface between the hole transport zone and the light emission zone. Incidentally, the vicinity of the interface means the interface between the hole transport zone and the light emission zone and its peripheral part. The QD-LED element will be described with reference to the drawings.
 図1は本発明のQD-LED素子の第1の実施形態を示す概略断面図である。
 QD-LED素子1では、基板(図示せず)上に陽極10、正孔輸送帯域11、発光帯域13、電子注入帯域14、及び陰極15がこの順に積層されている。正孔輸送帯域11と発光帯域13は隣接しており、その境界にナノクリスタル発光微粒子12(以下、ナノクリスタル発光微粒子を「QD」、それが層状を成している状態を「QD層」と呼ぶことがある)が挿入されている。
FIG. 1 is a schematic sectional view showing a first embodiment of the QD-LED element of the present invention.
In the QD-LED element 1, an anode 10, a hole transport zone 11, a light emission zone 13, an electron injection zone 14, and a cathode 15 are laminated in this order on a substrate (not shown). The hole transport zone 11 and the emission zone 13 are adjacent to each other, and a nanocrystal emission fine particle 12 (hereinafter referred to as “QD” as a nanocrystal emission fine particle, and a state in which it forms a layer is referred to as a “QD layer”). Is inserted).
 素子1は、正孔輸送帯域11から供給される正孔と、電子輸送帯域14から供給される電子とが発光帯域13で結合し、その近傍に存在するQD12が発光する。QD12が発光する機構は必ずしも十分理解されてはいないが、発光帯域内の有機分子の励起状態として電子-正孔対が生成し、その励起状態からQDへ励起エネルギーが移動してQDの電子励起状態が生成し、QDの励起状態が失活する時に発光すると考えられている。 In the device 1, holes supplied from the hole transport zone 11 and electrons supplied from the electron transport zone 14 are combined in the light emission zone 13, and the QD 12 existing in the vicinity emits light. Although the mechanism by which QD12 emits light is not fully understood, an electron-hole pair is generated as an excited state of an organic molecule in the emission band, and excitation energy is transferred from the excited state to QD, so that QD's electronic excitation is achieved. It is believed that light is emitted when a state is generated and the excited state of the QD is deactivated.
 尚、「正孔輸送帯域」とは、機能として主に正孔輸送を担う薄膜状の構成要素を指し、その機能を有するなら、明確に層として区別できなくてもよいものを指す。正孔輸送帯域は、主に正孔輸送を担う材料で構成されるが、必要に応じて他の機能を持つ成分を含んでいたり、境界が混じり合っていてもよい。以下、この広義の意味で、「正孔輸送帯域」を「正孔輸送層」と呼ぶ場合がある。「正孔注入帯域、発光帯域、電子輸送帯域、電子注入帯域」も同様に、広義の意味で「正孔注入層、発光層、電子輸送層、電子注入層」と呼ぶ場合がある。 The “hole transport zone” refers to a thin film-like component mainly responsible for hole transport as a function, and if it has that function, it may be a layer that may not be clearly distinguished as a layer. The hole transport zone is mainly composed of a material responsible for hole transport, but may contain components having other functions or may have mixed boundaries as necessary. Hereinafter, in this broad sense, the “hole transport zone” may be referred to as a “hole transport layer”. Similarly, “hole injection zone, light emission zone, electron transport zone, electron injection zone” may also be referred to as “hole injection layer, light emitting layer, electron transport layer, electron injection layer” in a broad sense.
 本発明において、正孔輸送層11と発光層13は隣接しており、その界面付近にQD層12を配置している。QDは、後述するように、直径数nm~数十nmの粒子状であるので、層状に配列しても、完全な薄膜として正孔輸送層11と発光層13を完全に分離しているわけではない。その意味で、正孔輸送層11と発光層13は隣接している。
 QD12は後述するように無機物であるので、有機物と比べて劣化しにくい利点を有する。また、QDは、用いる材料やその大きさにより発光波長を選ぶことができるので、発光色の設計自由度が大きいという利点を有する。
In the present invention, the hole transport layer 11 and the light emitting layer 13 are adjacent to each other, and the QD layer 12 is disposed in the vicinity of the interface. As will be described later, since QD is in the form of particles having a diameter of several nanometers to several tens of nanometers, the hole transport layer 11 and the light emitting layer 13 are completely separated as a complete thin film even if they are arranged in layers. is not. In that sense, the hole transport layer 11 and the light emitting layer 13 are adjacent to each other.
Since QD12 is an inorganic substance as will be described later, it has an advantage that it is less likely to deteriorate than an organic substance. In addition, QD has an advantage that the degree of freedom in designing the emission color is large because the emission wavelength can be selected depending on the material used and its size.
 本発明の素子では、発光層13の発する光の発光ピーク波長が490nm以下の青色光である。これにより、発光層からQDへのエネルギー移動の効率が向上するため、外部量子効率を高めることができる。QDの吸収係数は、短波長の光になるほど大きくなる特徴があり、この特徴を生かすには、発光層を形成する材料は、高効率の青色発光材料であることが望ましい。従って、発光層13の発する光の発光ピーク波長は470nm以下の青色光であることが好ましい。青色光の下限の波長は好ましくは390nm以上である。 In the element of the present invention, the light emitted from the light emitting layer 13 is blue light having an emission peak wavelength of 490 nm or less. Thereby, since the efficiency of energy transfer from the light emitting layer to the QD is improved, the external quantum efficiency can be increased. The absorption coefficient of QD has a feature that becomes larger as light of a shorter wavelength is used. To make use of this feature, it is desirable that the material forming the light emitting layer is a highly efficient blue light emitting material. Therefore, the emission peak wavelength of the light emitted from the light emitting layer 13 is preferably blue light having a wavelength of 470 nm or less. The lower limit wavelength of blue light is preferably 390 nm or more.
 例えば、非特許文献2では発光層たるAlq3が正孔輸送層(TPD)と隣接する構成が開示されているが、発光層Alq3は、緑色のEL発光材料である。この素子でQDのない構成では、発光ピークは520~530nmで緑色発光が観測される。この場合、発光層の発光波長域と、QDの光吸波長域の重なりが小さくなり、有機励起状態からQDへのエネルギー移動の効率が悪い。 For example, Non-Patent Document 2 discloses a configuration in which Alq3 that is a light emitting layer is adjacent to a hole transport layer (TPD), and the light emitting layer Alq3 is a green EL light emitting material. With this element without QD, green emission is observed at an emission peak of 520 to 530 nm. In this case, the overlap between the emission wavelength region of the light emitting layer and the light absorption wavelength region of the QD becomes small, and the efficiency of energy transfer from the organic excited state to the QD is poor.
 ここで、「発光層の発する光」は、QD-LED素子の発する光とは異なる。発光層の発する光とは、発光層に使用した材料に由来して発生する光を意味する。一方、QD-LED素子の発する光とは、QDが発する光と、発光層等の構成部材が発する光の総和を意味する。
 発光層の発する光は、QD-LED素子の構成から、QDを除いた構成の素子(固有EL素子)を作製し、その発光のスペクトルを調べることで測定できる。本発明のQD-LED素子は、固有EL素子の発光が、主に発光帯域(発光層)に由来していることが好ましい。発光層が主に発光しているかは、素子の発光スペクトルと各材料の薄膜のPLスペクトルとの比較から判断できる。具体的には、素子の発光スペクトルと、各材料の薄膜PLスペクトルを、それぞれ発光強度のピーク値で現格化してプロットし、発光ピークの波長の差が±10mm以下、発光半値幅の差が±50mm以下で一致するピークをもとに素子の発光がどの層によるものであるかを判定する。
Here, “light emitted from the light emitting layer” is different from light emitted from the QD-LED element. The light emitted from the light emitting layer means light generated from the material used for the light emitting layer. On the other hand, the light emitted by the QD-LED element means the sum of the light emitted by the QD and the light emitted by the constituent members such as the light emitting layer.
The light emitted from the light emitting layer can be measured by preparing an element (specific EL element) having a configuration excluding QD from the configuration of the QD-LED element and examining the emission spectrum. In the QD-LED element of the present invention, the light emission of the intrinsic EL element is preferably mainly derived from the emission band (light emitting layer). Whether or not the light emitting layer emits light can be judged from a comparison between the light emission spectrum of the element and the PL spectrum of the thin film of each material. Specifically, the emission spectrum of the element and the thin film PL spectrum of each material are plotted with the peak value of the emission intensity, the difference in wavelength of the emission peak is ± 10 mm or less, and the difference in emission half width is Based on the coincident peak at ± 50 mm or less, it is determined which layer the light emission of the element is due to.
 本発明の素子では、正孔輸送層11の主材料の最高占有分子軌道(HOMO)エネルギー準位と、発光層の主材料のHOMOエネルギー準位との差が1eV未満であることが好ましく、特に0.5eV未満であることが好ましい。これについて、図2を参照して説明する。
 図2は、QD-LED素子1のエネルギーダイアグラムである。
 本発明では、正孔輸送層11のHOMO準位と発光層13のHOMO準位の差(ΔE)を1eV未満とすることが好ましい。このような構成とすることにより、正孔は障壁を感じることなく発光層13に到達し、そこで効率よく励起子を生成することができる。
 尚、本発明においては、QDのHOMO、LUMO準位は特に規定されず、様々なQDに適用することができる。
 また、発光層及び正孔輸送層の「主材料」とは、それぞれの層に最も高い重量比で含まれている材料を意味する。
In the element of the present invention, the difference between the highest occupied molecular orbital (HOMO) energy level of the main material of the hole transport layer 11 and the HOMO energy level of the main material of the light-emitting layer is preferably less than 1 eV, particularly It is preferably less than 0.5 eV. This will be described with reference to FIG.
FIG. 2 is an energy diagram of the QD-LED element 1.
In the present invention, the difference (ΔE H ) between the HOMO level of the hole transport layer 11 and the HOMO level of the light emitting layer 13 is preferably less than 1 eV. With such a configuration, holes reach the light emitting layer 13 without feeling a barrier, and excitons can be efficiently generated there.
In the present invention, the HOMO and LUMO levels of the QD are not particularly defined and can be applied to various QDs.
Further, the “main material” of the light emitting layer and the hole transport layer means a material contained in each layer in the highest weight ratio.
 図3は、QD-LED素子のエネルギーダイアグラムの例であり、(a)は従来の素子のQD-LED素子の例を示し、(b)は本発明の素子の例を示す。
 従来の素子の構成は、上述した非特許文献2~4や特許文献5等が開示した構成である。正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、発光層として3-(4-ビフェニルイル)-4-フェニル-5-ターブチルフェニル-1,2,4-トリアゾール(TAZ)が用いられており、その界面にQD層が存在する。尚、ITOは陽極、Alq3は電子注入層、MgAg合金は陰極である。
 QDは、CdSeをコア、ZnSをシェルとする、コアシェル型半導体ナノクリスタルである。QDのHOMO、LUMO準位は例示であり、非特許文献3より引用した。
FIG. 3 is an example of an energy diagram of a QD-LED element. (A) shows an example of a conventional QD-LED element, and (b) shows an example of the element of the present invention.
The configuration of the conventional element is the configuration disclosed in Non-Patent Documents 2 to 4 and Patent Document 5 described above. N, N′-diphenyl-N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) as the hole transport layer and 3- ( 4-biphenylyl) -4-phenyl-5-terbutylphenyl-1,2,4-triazole (TAZ) is used, and a QD layer exists at the interface. In addition, ITO is an anode, Alq3 is an electron injection layer, and MgAg alloy is a cathode.
QD is a core-shell type semiconductor nanocrystal having CdSe as a core and ZnS as a shell. The HOMO and LUMO levels of QD are examples and are cited from Non-Patent Document 3.
 従来の素子構成では、正孔輸送層のHOMO準位は5.4eV、発光層のHOMO準位は6.5eVであり、その差は1.1eVと大きい。このため、陽極(ITO)から注入された正孔は、このギャップを超えられない。そのため、励起状態は正孔輸送層内に生じる。実際、この素子において、QDを省略した有機EL素子では、電子輸送層であるAlq3由来の発光に加え、正孔輸送層であるTPD由来の発光が並存して観測される。 In the conventional device configuration, the HOMO level of the hole transport layer is 5.4 eV, the HOMO level of the light emitting layer is 6.5 eV, and the difference is as large as 1.1 eV. For this reason, holes injected from the anode (ITO) cannot exceed this gap. Therefore, an excited state is generated in the hole transport layer. In fact, in this element, in the organic EL element in which QD is omitted, light emission derived from TPD as the hole transport layer is observed in addition to light emission derived from Alq3 as the electron transport layer.
 一方、図3(b)は、後述する実施例1の素子のエネルギーダイアグラムを表している。この素子の正孔輸送層を形成する材料HT1のHOMO準位は5.5eV、発光層を形成する材料EM1のHOMO準位は5.7eV、その差は0.2eVと非常に小さい。これにより、正孔は障壁を感じることなく発光層に到達し、そこで効率よく励起子を生成することができる。発光層を形成する材料EM1は、十分なエネルギーバンドギャップ3.0eVを有する青色発光材料である。実際、この構成からQDを省いた構成の有機EL素子は、EM1由来の青色光を発する。このことは、QDの短波長域の大きな吸収と、EM1の発光波長域がよく重なっていることを意味し、これにより発光層内の励起子から、効率よくQDへ、エネルギー移動が起こり、高効率な電界発光を達成することができる。また、正孔輸送層と発光層のHOMO準位が近いことは、素子の低電圧化をもたらし、省電力素子を実現する。尚、PEDOT:PSSは正孔注入帯域(層)を形成している。 On the other hand, FIG. 3B shows an energy diagram of the element of Example 1 described later. The HOMO level of the material HT1 forming the hole transport layer of this element is 5.5 eV, the HOMO level of the material EM1 forming the light emitting layer is 5.7 eV, and the difference is as small as 0.2 eV. Thereby, the holes reach the light emitting layer without feeling a barrier, and excitons can be efficiently generated there. The material EM1 for forming the light emitting layer is a blue light emitting material having a sufficient energy band gap of 3.0 eV. In fact, an organic EL element having a configuration in which QD is omitted from this configuration emits blue light derived from EM1. This means that the large absorption in the short wavelength region of QD and the emission wavelength region of EM1 are well overlapped, thereby causing energy transfer from the excitons in the light emitting layer to QD efficiently. Efficient electroluminescence can be achieved. In addition, the close proximity of the HOMO levels of the hole transport layer and the light emitting layer leads to a reduction in the voltage of the device, thereby realizing a power saving device. PEDOT: PSS forms a hole injection zone (layer).
 図1に示した素子は本発明の素子の一例であり、本発明はこれに限定されない。例えば、図4に示す素子構成でもよい。
 図4は、本発明のQD-LED素子の第2の実施形態を示す概略断面図である。このQD-LED素子2は、陽極10及び正孔輸送帯域11の間に正孔注入帯域21を形成した他は、図1の素子構成と同様である。
 その他、本発明の効果を損なわない限りにおいて、電子輸送層と陰極の間に電子注入層を挿入したり、電子輸送層を省略してもよい。本発明では、正孔輸送層/発光層の構成は必須であるが、その外側に、必要に応じて、正孔ブロック層や、電子ブロック層を設けてもよい。QDは、正孔輸送層と発光層の界面付近に配置されるが、上記の発光メカニズムからわかるように、厳密に境界に層状を成している必要はなく、発光層内に分布を持って分散されていてもよい。
The element shown in FIG. 1 is an example of the element of the present invention, and the present invention is not limited to this. For example, the element configuration shown in FIG. 4 may be used.
FIG. 4 is a schematic sectional view showing a second embodiment of the QD-LED element of the present invention. This QD-LED element 2 is the same as the element configuration of FIG. 1 except that a hole injection zone 21 is formed between the anode 10 and the hole transport zone 11.
In addition, as long as the effects of the present invention are not impaired, an electron injection layer may be inserted between the electron transport layer and the cathode, or the electron transport layer may be omitted. In the present invention, the configuration of the hole transport layer / light-emitting layer is essential, but a hole block layer or an electron block layer may be provided outside the hole transport layer as necessary. The QD is arranged near the interface between the hole transport layer and the light emitting layer. As can be seen from the above light emission mechanism, the QD does not have to be strictly layered at the boundary, and has a distribution in the light emitting layer. It may be distributed.
 本発明の発光素子は、例えば、以下に示す(1)~(10)の構成、又は下記構成の部分構造を有していてもよい。
(1)陽極/正孔輸送層/発光層/電子輸送層/陰極(図1)
(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極(図4)
(3)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(4)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(5)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
(6)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(7)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(8)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(9)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(10)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/絶縁層/陰極
The light emitting device of the present invention may have, for example, the following structures (1) to (10) or a partial structure having the following structure.
(1) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (FIG. 1)
(2) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode (FIG. 4)
(3) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (4) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode ( 5) Anode / insulating layer / hole transporting layer / light emitting layer / electron transporting layer / cathode (6) Anode / hole transporting layer / light emitting layer / electron transporting layer / insulating layer / cathode (7) Anode / insulating layer / positive Hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode (8) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / insulating layer / cathode (9) anode / insulating layer / positive Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (10) anode / insulating layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / Insulating layer / cathode
 これらの中で、通常(1)、(2)、(3)、(4)、(7)、(8)及び(10)の構成が好ましく用いられる。
 尚、本発明の素子はトップエミッションタイプでもボトムエミッションタイプでもよい。いずれのタイプでも、光を取り出す側の電極を光透過性とすることで実現できる。
 以下、本発明の発光素子の各構成部材及びそれに使用する材料について説明する。
Of these, the configurations of (1), (2), (3), (4), (7), (8) and (10) are preferably used.
The element of the present invention may be a top emission type or a bottom emission type. Either type can be realized by making the electrode on the light extraction side light-transmissive.
Hereinafter, each component of the light emitting device of the present invention and materials used therefor will be described.
[正孔注入層及び正孔輸送層]
 正孔注入層及び正孔輸送層(以下、纏めて正孔注入・輸送層という。)は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔注入・輸送層としては、より低い電界強度で正孔を発光媒体層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であれば好ましい。
 正孔注入・輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入・輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
[Hole injection layer and hole transport layer]
The hole injection layer and the hole transport layer (hereinafter collectively referred to as a hole injection / transport layer) are layers that assist hole injection into the light emitting layer and transport to the light emitting region, and have a hole mobility. Large and ionization energy is usually as small as 5.5 eV or less. As such a hole injecting / transporting layer, a material that transports holes to the light emitting medium layer with a lower electric field strength is preferable, and an electric field application with a hole mobility of, for example, 10 4 to 10 6 V / cm is preferable. Sometimes it is preferably at least 10 −4 cm 2 / V · sec.
The material for forming the hole injecting / transporting layer is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a charge transporting material for holes in an optical transmission material or organic EL. Any known material used for the hole injection / transport layer of the device can be selected and used.
 具体例としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
 正孔注入・輸送層の材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
Specific examples include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, Examples include hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilanes, aniline copolymers, and conductive polymer oligomers (particularly thiophene oligomers).
As the material for the hole injection / transport layer, the above-mentioned materials can be used, but it is preferable to use porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds.
 また、2個の縮合芳香族環を分子内に有する、例えば、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、またトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン(MTDATA)等を挙げることができる。 In addition, there are two condensed aromatic rings in the molecule, for example, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (NPD), and three triphenylamine units. And 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (MTDATA) linked in a starburst type.
 正孔注入・輸送層の材料としては下記式(1)で表される芳香族アミン誘導体が特に望ましい。
Figure JPOXMLDOC01-appb-C000001
[式中、Lは置換もしくは無置換の炭素数5~60のアリーレン基又は複素環基よりなる2価の基であり、Ar101~Ar104はそれぞれ置換もしくは無置換の核原子数5~50の置換基又は下記式で表される置換基である。ここで、核原子数は、環を形成する原子の数である。
As the material for the hole injection / transport layer, an aromatic amine derivative represented by the following formula (1) is particularly desirable.
Figure JPOXMLDOC01-appb-C000001
[Wherein L 1 is a divalent group consisting of a substituted or unsubstituted arylene group or heterocyclic group having 5 to 60 carbon atoms, and Ar 101 to Ar 104 are each a substituted or unsubstituted nuclear atom number of 5 to 50 substituents or substituents represented by the following formula. Here, the number of nuclear atoms is the number of atoms that form a ring.
Figure JPOXMLDOC01-appb-C000002
(式中、Lは置換もしくは無置換の炭素数5~60のアリーレン基又は複素環基よりなる2価の基であり、Ar105~Ar106はそれぞれ置換もしくは無置換の核原子数5~50の置換基である。)]
Figure JPOXMLDOC01-appb-C000002
(In the formula, L 2 is a substituted or unsubstituted divalent group having 5 to 60 carbon atoms, an arylene group or a heterocyclic group, and Ar 105 to Ar 106 are each a substituted or unsubstituted nuclear atom having 5 to 5 carbon atoms. 50 substituents.)]
 L及びLとして、ビフェニレン、ターフェニレン、フェナントレン又はフルオレニレンを例示でき、好ましくはビフェニレン、ターフェニレンであり、さらに好ましくはビフェニレンである。 Examples of L 1 and L 2 include biphenylene, terphenylene, phenanthrene, and fluorenylene, preferably biphenylene and terphenylene, and more preferably biphenylene.
 Ar101~Ar106として、ビフェニル基、ターフェニル基、フェナントレニル基、フルオレニル基、1-ナフチル基、2-ナフチル基又はフェニル基を例示でき、好ましくはビフェニル基、ターフェニル基、1-ナフチル基又はフェニル基である。 Examples of Ar 101 to Ar 106 include a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, and a phenyl group, preferably a biphenyl group, a terphenyl group, a 1-naphthyl group, or It is a phenyl group.
 前記式(1)で表される化合物は、Ar101~Ar104が同一の置換基であることが好ましい。その際、Ar101~Ar104は好ましくはビフェニル基、ターフェニル基であり、より好ましくはビフェニル基である。 In the compound represented by the formula (1), Ar 101 to Ar 104 are preferably the same substituent. In this case, Ar 101 to Ar 104 are preferably a biphenyl group or a terphenyl group, and more preferably a biphenyl group.
 また、式(1)で表される化合物は、Ar101~Ar104の置換基のうちAr102~Ar104が同一の置換基であることが好ましい。その際、Ar102~Ar104は好ましくはビフェニル基、ターフェニル基であり、より好ましくはビフェニル基であり、Ar101は好ましくはビフェニル基、ターフェニル基、フェナントレニル基、フルオレニル基、1-ナフチル基、2-ナフチル基又はフェニル基であり、より好ましくはビフェニル基、ターフェニル基、1-ナフチル基又はフェニル基である。さらに好ましくはAr102~Ar104がビフェニルであり、Ar101がターフェニル基、1-ナフチル基である。 The compound represented by formula (1) is preferably Ar 102 ~ Ar 104 of the substituents of Ar 101 ~ Ar 104 are the same substituents. In this case, Ar 102 to Ar 104 are preferably a biphenyl group or a terphenyl group, more preferably a biphenyl group, and Ar 101 is preferably a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, or a 1-naphthyl group. 2-naphthyl group or phenyl group, more preferably biphenyl group, terphenyl group, 1-naphthyl group or phenyl group. More preferably, Ar 102 to Ar 104 are biphenyl, and Ar 101 is a terphenyl group or a 1-naphthyl group.
 また、式(1)で表される化合物は、Ar101~Ar104の置換基のうち3つ以上が異なる置換基であることが好ましい。Ar101~Ar106としては好ましくはビフェニル基、ターフェニル基、フェナントレニル基、フルオレニル基、1-ナフチル基、2-ナフチル基又はフェニル基であり、より好ましくはビフェニル基、ターフェニル基、1-ナフチル基又はフェニル基である。さらに好ましくはAr103~Ar104がビフェニルであり、Ar101がターフェニル基、1-ナフチル基であり、Ar102はフェニル基である。また、Ar101,Ar106が1-ナフチル基であり、Ar102,Ar103,Ar105がフェニル基である化合物も好ましい。 In the compound represented by the formula (1), it is preferable that three or more of the substituents of Ar 101 to Ar 104 are different substituents. Ar 101 to Ar 106 are preferably a biphenyl group, a terphenyl group, a phenanthrenyl group, a fluorenyl group, a 1-naphthyl group, a 2-naphthyl group, or a phenyl group, and more preferably a biphenyl group, a terphenyl group, or a 1-naphthyl group. Group or phenyl group. More preferably, Ar 103 to Ar 104 are biphenyl, Ar 101 is a terphenyl group and 1-naphthyl group, and Ar 102 is a phenyl group. A compound in which Ar 101 and Ar 106 are 1-naphthyl groups and Ar 102 , Ar 103 and Ar 105 are phenyl groups is also preferable.
 以下に芳香族アミン誘導体の具体例を示す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Specific examples of the aromatic amine derivative are shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 この他に特許3571977号で開示されている下記式で表される含窒素複素環誘導体も用いることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、R101~R106は、それぞれ置換又は無置換のアルキル基、置換又は無置換のアリール基、置換又は無置換のアラルキル基、置換又は無置換の複素環基のいずれかを示す。但し、R101~R106は同じでも異なっていてもよい。また、R101とR102、R103とR104、R105とR106、R101とR106、R102とR103、R104とR105が縮合環を形成していてもよい。)
In addition, a nitrogen-containing heterocyclic derivative represented by the following formula disclosed in Japanese Patent No. 3571977 can also be used.
Figure JPOXMLDOC01-appb-C000007
(Wherein R 101 to R 106 each represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group. R 101 to R 106 may be the same or different, and R 101 and R 102 , R 103 and R 104 , R 105 and R 106 , R 101 and R 106 , R 102 and R 103 , R 104 And R 105 may form a condensed ring.)
 さらに、米国公開2004/0113547で記載されている下記式の化合物も用いることができる。
Figure JPOXMLDOC01-appb-C000008
(式中、R131~R136は置換基であり、好ましくはシアノ基、ニトロ基、スルホニル基、カルボニル基、トリフルオロメチル基、ハロゲン等の電子吸引基である。)
Furthermore, the compound of the following formula described in US Publication 2004/0113547 can also be used.
Figure JPOXMLDOC01-appb-C000008
(Wherein R 131 to R 136 are substituents, preferably an electron-withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, or a halogen.)
 尚、p型Si、p型SiC等の無機化合物も正孔注入・輸送層の材料として使用することができる。 It should be noted that inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection / transport layer.
 正孔注入・輸送層を形成する正孔注入材料として、アクセプター性材料も好適である。アクセプターは、易還元性の有機化合物である。
 化合物の還元しやすさは、還元電位で測定することができる。例えば、飽和カロメル(SCE)電極を参照電極とした還元電位において、アクセプターの還元電位は好ましくは-0.3V以上、より好ましくは-0.8V以上であり、特に好ましくはテトラシアノキノジメタン(TCNQ)の還元電位(約0V)より大きな値を持つ化合物が好ましい。
An acceptor material is also suitable as the hole injection material for forming the hole injection / transport layer. The acceptor is an easily reducible organic compound.
The ease of reduction of a compound can be measured by a reduction potential. For example, in the reduction potential using a saturated calomel (SCE) electrode as a reference electrode, the reduction potential of the acceptor is preferably −0.3 V or more, more preferably −0.8 V or more, and particularly preferably tetracyanoquinodimethane ( A compound having a value larger than the reduction potential (about 0 V) of TCNQ) is preferred.
 アクセプターは、好ましくは、電子吸引性の置換基又は電子欠乏環を有する有機化合物である。
 電子吸引性の置換基として、例えば、ハロゲン、CN-、カルボニル基、アリールホウ素基等が挙げられる。
 電子欠乏環として、例えば、2-ピリジル、3-ピリジル、4-ピリジル、2-キノリル、3-キノリル、4-キノリル、2-イミダゾール、4-イミダゾール、3-ピラゾール、4-ピラゾール、ピリダジン、ピリミジン、ピラジン、シンノリン、フタラジン、キナゾリン、キノキサリン、3-(1,2,4-N)-トリアゾリル、5-(1,2,4-N)-トリアゾリル、5-テトラゾリル、4-(1-O,3-N)-オキサゾール、5-(1-O,3-N)-オキサゾール、4-(1-S,3-N)-チアゾール、5-(1-S,3-N)-チアゾール、2-ベンゾキサゾール、2-ベンゾチアゾール、4-(1,2,3-N)-ベンゾトリアゾール、及びベンズイミダゾールからなる群から選択される化合物等が挙げられるが、必ずしもこれらに限定されるわけではない。
The acceptor is preferably an organic compound having an electron-withdrawing substituent or an electron-deficient ring.
Examples of the electron-withdrawing substituent include halogen, CN-, carbonyl group, arylboron group and the like.
Examples of electron-deficient rings include 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 2-imidazole, 4-imidazole, 3-pyrazole, 4-pyrazole, pyridazine, and pyrimidine , Pyrazine, cinnoline, phthalazine, quinazoline, quinoxaline, 3- (1,2,4-N) -triazolyl, 5- (1,2,4-N) -triazolyl, 5-tetrazolyl, 4- (1-O, 3-N) -oxazole, 5- (1-O, 3-N) -oxazole, 4- (1-S, 3-N) -thiazole, 5- (1-S, 3-N) -thiazole, 2 A compound selected from the group consisting of -benzoxazole, 2-benzothiazole, 4- (1,2,3-N) -benzotriazole, and benzimidazole. Not be limited to these.
 アクセプターは、好ましくはキノイド誘導体、アリールボラン誘導体、チオピランジオキシド誘導体、ナフタルイミド誘導体等のイミド誘導体、がある。 The acceptor is preferably an imide derivative such as a quinoid derivative, an arylborane derivative, a thiopyran dioxide derivative, or a naphthalimide derivative.
 キノイド誘導体としては下記に示したような化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、R~R48は、それぞれ水素、ハロゲン、フルオロアルキル基、シアノ基、アルコキシ基、アルキル基又はアリール基である。ただし、R~R48が同一分子中で全て、水素又はフッ素であるものは除く。Xは電子吸引基であり、下記式(j)~(p)の構造のいずれかからなる。好ましくは、(j)、(k)、(l)の構造である。
Figure JPOXMLDOC01-appb-C000010
(式中、R49~R52は、それぞれ水素、フルオロアルキル基、アルキル基、アリール基又は複素環基であり、R50とR51が環を形成してもよい。)
 Yは、-N=又は-CH=である。)
As the quinoid derivative, the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000009
(Wherein R 1 to R 48 are each hydrogen, halogen, fluoroalkyl group, cyano group, alkoxy group, alkyl group or aryl group, provided that R 1 to R 48 are all hydrogen or Except for fluorine, X is an electron-withdrawing group, and has one of the structures of the following formulas (j) to (p), preferably the structures of (j), (k), and (l). .
Figure JPOXMLDOC01-appb-C000010
(Wherein R 49 to R 52 are each a hydrogen atom, a fluoroalkyl group, an alkyl group, an aryl group or a heterocyclic group, and R 50 and R 51 may form a ring.)
Y is —N═ or —CH═. )
 キノイド誘導体の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Specific examples of the quinoid derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000011
 アリールボラン誘導体として、下記構造を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、Ar~Arは、それぞれ電子吸引基を有するアリール基(複素環を含む)である。Arは、電子吸引基を有するアリーレン基である。Sは1又は2である。)
As the arylborane derivative, a compound having the following structure is preferable.
Figure JPOXMLDOC01-appb-C000012
(Wherein Ar 1 to Ar 7 are each an aryl group having an electron withdrawing group (including a heterocycle), Ar 8 is an arylene group having an electron withdrawing group, and S is 1 or 2. )
 アリールボラン誘導体の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Specific examples of the arylborane derivative include the following compounds.
Figure JPOXMLDOC01-appb-C000013
 特に好ましくは、少なくとも一個のフッ素をアリールへの置換基として有する化合物であり、トリスβ-(ペンタフルオロナフチル)ボラン(PNB)等があげられる。 Particularly preferred is a compound having at least one fluorine as a substituent for aryl, and examples thereof include tris β- (pentafluoronaphthyl) borane (PNB).
 イミド誘導体として、好ましくは、ナフタレンテトラカルボン酸ジイミド化合物及びピロメリット酸ジイミド化合物である。 As the imide derivative, naphthalenetetracarboxylic acid diimide compound and pyromellitic acid diimide compound are preferable.
 チオピランジオキシド誘導体として、下記式(3a)に示される化合物が、チオキサンテンジオキシド誘導体として、下記式(3b)に示される化合物が、それぞれ挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式(3a)及び式(3b)において、R53~R64は、それぞれ水素、ハロゲン、フルオロアルキル基、シアノ基、アルキル基又はアリール基である。好ましくは、水素、シアノ基である。
 式(3a)及び式(3b)において、Xは電子吸引基を示し式(1a)~(1i)のXと同じである。好ましくは、(j)、(k)、(l)の構造である。
Examples of the thiopyran dioxide derivative include a compound represented by the following formula (3a), and examples of the thioxanthene dioxide derivative include a compound represented by the following formula (3b).
Figure JPOXMLDOC01-appb-C000014
In the formula (3a) and the formula (3b), R 53 to R 64 are each hydrogen, halogen, a fluoroalkyl group, a cyano group, an alkyl group, or an aryl group. Preferably, they are hydrogen and a cyano group.
In the formulas (3a) and (3b), X represents an electron withdrawing group and is the same as X in the formulas (1a) to (1i). A structure of (j), (k), (l) is preferable.
 R53~R64が示すハロゲン、フルオロアルキル基、アルキル基及びアリール基はR~R48と同様である。 The halogen, fluoroalkyl group, alkyl group and aryl group represented by R 53 to R 64 are the same as R 1 to R 48 .
 式(3a)に示されるチオピランジオキシド誘導体、式(3b)に示されるチオキサンテンジオキシド誘導体の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000015
(式中、tBuはt-ブチル基である。)
Specific examples of the thiopyran dioxide derivative represented by the formula (3a) and the thioxanthene dioxide derivative represented by the formula (3b) are shown below.
Figure JPOXMLDOC01-appb-C000015
(In the formula, tBu is a t-butyl group.)
 さらに上記の式(1a)~(1i)、(3a)~(3b)において、電子吸引性基Xは、下記式で表される置換基(x)又は(y)でもよい。
Figure JPOXMLDOC01-appb-C000016
Further, in the above formulas (1a) to (1i) and (3a) to (3b), the electron withdrawing group X may be a substituent (x) or (y) represented by the following formula.
Figure JPOXMLDOC01-appb-C000016
 式中、Ar及びAr10は置換もしくは無置換の複素環、置換もしくは無置換のアリールオキシカルボニル又はアルデヒドであり、好ましくは、ピリジン、ピラジン、キノキサリンである。ArとAr10は互いに連結し5員又は6員の環状構造を形成してもよい。 In the formula, Ar 9 and Ar 10 are a substituted or unsubstituted heterocyclic ring, a substituted or unsubstituted aryloxycarbonyl or an aldehyde, preferably pyridine, pyrazine, or quinoxaline. Ar 9 and Ar 10 may be linked to each other to form a 5-membered or 6-membered cyclic structure.
 アクセプター性材料を用いる場合は、単独で使用してもよいし、他の材料と混合して使用してもよい。
 この場合、正孔注入・輸送層に含まれるアクセプターの含有量は、好ましくは層全体に対して1~100モル%であり、より好ましくは50~100モル%である。
 正孔注入・輸送層は、アクセプターの他に、正孔輸送性で光透過性のあるものを含有できるが、必ずしもこれに限定されるものではない。
When an acceptor material is used, it may be used alone or in combination with other materials.
In this case, the content of the acceptor contained in the hole injecting / transporting layer is preferably 1 to 100 mol%, more preferably 50 to 100 mol%, based on the entire layer.
In addition to the acceptor, the hole injecting / transporting layer can contain a hole transporting and light transmitting material, but is not necessarily limited thereto.
 正孔注入・輸送層は上記の化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入・輸送層としての膜厚は特に制限はないが、通常は1nm~100nmである。この正孔注入・輸送層は、正孔注入・輸送層に上記化合物を含有していれば、上述した材料の一種又は二種以上からなる一層で構成されてもよく、前記正孔注入層とは別種の化合物からなる正孔注入・輸送層を積層したものであってもよい。 The hole injection / transport layer can be formed by thinning the above compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the hole injection / transport layer is not particularly limited, but is usually 1 nm to 100 nm. As long as the hole injection / transport layer contains the above compound in the hole injection / transport layer, the hole injection / transport layer may be composed of one or more of the above-described materials. May be a laminate of hole injection / transport layers made of different types of compounds.
 本発明の発光素子においては、先に述べたように、正孔注入層と正孔輸送層を別々に設けても良く、正孔注入層を省略して、正孔輸送層のみを用いてもよい。ここで、正孔輸送層を主に形成する材料のHOMOエネルギー準位と、発光層を主に形成する材料のHOMOエネルギー準位との差が1eV未満であることが好ましい。後に例示する発光層材料の中から、この関係を満たすような組み合わせを選択することができる。 In the light emitting device of the present invention, as described above, the hole injection layer and the hole transport layer may be provided separately, or the hole injection layer may be omitted and only the hole transport layer may be used. Good. Here, the difference between the HOMO energy level of the material mainly forming the hole transport layer and the HOMO energy level of the material mainly forming the light emitting layer is preferably less than 1 eV. A combination satisfying this relationship can be selected from the light emitting layer materials exemplified later.
[QD層]
 QD層に用いるナノクリスタル発光微粒子は、無機結晶をナノメートルオーダーまで超微粒子化した無機ナノクリスタルから構成される。無機ナノクリスタルとしては、可視及び/又は近紫外光を吸収して可視蛍光を発するものを用いる。透明性が高く、散乱損失が小さいことから、好ましくは粒径が20nm以下、より好ましくは10nm以下まで超微粒子化した無機ナノクリスタルを用いる。
[QD layer]
The nanocrystal light-emitting fine particles used for the QD layer are composed of inorganic nanocrystals in which inorganic crystals are made ultrafine to the nanometer order. As the inorganic nanocrystal, one that absorbs visible and / or near-ultraviolet light and emits visible fluorescence is used. Since the transparency is high and the scattering loss is small, an inorganic nanocrystal having an ultrafine particle size of preferably 20 nm or less, more preferably 10 nm or less is used.
 無機ナノクリスタルの表面は、好ましくは相溶化処理される。相溶化処理としては、例えば、長鎖アルキル基、燐酸、樹脂等で表面を修飾又はコーティングする等の処理が挙げられる。 The surface of the inorganic nanocrystal is preferably subjected to a compatibilizing treatment. Examples of the compatibilization treatment include treatment such as modifying or coating the surface with a long-chain alkyl group, phosphoric acid, resin, or the like.
 本発明に用いる無機ナノクリスタルとして、具体的には以下のものが挙げられる。
(1-a)金属酸化物に遷移金属イオンをドープしたナノクリスタル蛍光体
 金属酸化物に遷移金属イオンをドープしたナノクリスタル蛍光体としては、Y、Gd、ZnO、YAl12、ZnSiO等の金属酸化物に、Eu2+、Eu3+、Ce3+、Tb3+等の、可視光を吸収する遷移金属イオンをドープしたものが挙げられる。
Specific examples of the inorganic nanocrystal used in the present invention include the following.
(1-a) Nanocrystal phosphor in which metal oxide is doped with transition metal ions Nanocrystal phosphors in which metal oxide is doped with transition metal ions include Y 2 O 3 , Gd 2 O 3 , ZnO, Y 3 Examples include a metal oxide such as Al 5 O 12 and Zn 2 SiO 4 doped with transition metal ions that absorb visible light, such as Eu 2+ , Eu 3+ , Ce 3+ , and Tb 3+ .
(1-b)金属カルコゲナイド物に遷移金属イオンをドープしたナノクリスタル蛍光体
 金属カルコゲナイド物に遷移金属イオンをドープしたナノクリスタル蛍光体としては、ZnS、CdS、CdSe等の金属カルコゲナイド化物に、Eu2+、Eu3+、Ce3+、Tb3+等の可視光を吸収する遷移金属イオンをドープしたものが挙げられる。SやSe等が、後述するマトリクス樹脂の反応成分により引き抜かれることを防止するため、シリカ等の金属酸化物や有機物等で表面修飾してもよい。
(1-b) Nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions Nanocrystal phosphor in which metal chalcogenide is doped with transition metal ions includes metal chalcogenides such as ZnS, CdS, and CdSe, Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+ and the like doped with transition metal ions that absorb visible light. In order to prevent S, Se, and the like from being pulled out by reaction components of the matrix resin described later, the surface may be modified with a metal oxide such as silica, an organic substance, or the like.
(1-c)半導体のバンドギャップを利用し、可視光を吸収、発光するナノクリスタル蛍光体(半導体ナノクリスタル)
 半導体ナノクスタルの材料としては、長周期型周期表のIV族元素、IIa族元素-VIb族元素の化合物、IIIa族元素-Vb族元素の化合物、IIIb族元素-Vb族元素の化合物、カルコパライト型化合物からなる結晶を挙げることができる。
(1-c) Nanocrystal phosphor that absorbs and emits visible light using semiconductor band gap (semiconductor nanocrystal)
As the material of the semiconductor nano-kustal, group IV element, group IIa element-VIb group element compound, group IIIa element-Vb group compound, group IIIb element-Vb group compound, chalcopyrite compound The crystal | crystallization consisting of can be mentioned.
 具体的には、Si、Ge、MgS、MgSe、ZnS、ZnSe、ZnTe、AlP、AlAs、AlSb、GaP、GaAs、GaSb、CdS、CdSe、CdTe、InP、InAs、InSb、AgAlAs、AgAlSe、AgAlTe、AgGaS、AgGaSe、AgGaTe、AgInS、AgInSe、AgInTe、ZnSiP、ZnSiAs、ZnGeP、ZnGeAs、ZnSnP、ZnSnAs、ZnSnSb、CdSiP、CdSiAs、CdGeP、CdGeAs、CdSnP、CdSnAs等の結晶、及びこれらの元素又は化合物からなる混晶結晶を挙げることができる。 Specifically, Si, Ge, MgS, MgSe, ZnS, ZnSe, ZnTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, CdS, CdSe, CdTe, InP, InAs, InSb, AgAlAs 2 , AgAlSe 2 , AgAlTe 2, AgGaS 2, AgGaSe 2, AgGaTe 2, AgInS 2, AgInSe 2, AgInTe 2, ZnSiP 2, ZnSiAs 2, ZnGeP 2, ZnGeAs 2, ZnSnP 2, ZnSnAs 2, ZnSnSb 2, CdSiP 2, CdSiAs 2, CdGeP 2, Examples thereof include crystals such as CdGeAs 2 , CdSnP 2 , and CdSnAs 2 and mixed crystal composed of these elements or compounds.
 好ましくは、Si、AlP、AlAs、AlSb、GaP、GaAs、InP、ZnSe、ZnTe、CdS、CdSe、CdTe、CuGaSe、CuGaTe、CuInS、CuInSe、CuInTeであり、直接遷移型半導体であるZnSe、ZnTe、GaAs、CdS、CdTe、InP、CuInS、CuInSeが、発光効率が高いという点でより好ましい。 Preferably, Si, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnSe, ZnTe, CdS, CdSe, CdTe, CuGaSe 2 , CuGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 are direct transition type semiconductors. ZnSe, ZnTe, GaAs, CdS, CdTe, InP, CuInS 2 , and CuInSe 2 are more preferable in terms of high luminous efficiency.
 上記無機ナノクリスタルの中でも、粒径によって発光波長を容易に制御でき、青色波長域及び近紫外波長域において大きな吸収を持ち、かつ発光域における吸収と発光の重なり度が大きいことから、好ましくは半導体ナノクリスタルを用いる。 Among the above-mentioned inorganic nanocrystals, the emission wavelength can be easily controlled by the particle size, it has a large absorption in the blue wavelength range and the near ultraviolet wavelength range, and the degree of overlap between the absorption and emission in the emission range is large, and therefore preferably a semiconductor Use nanocrystals.
 以下、半導体ナノクリスタルの機能について説明する。
 特表2002-510866号公報等の文献で知られているように、これらの半導体材料は、バルク材料(微粒子化していない材料を意味する)では室温で0.5~4.0eV程度のバンドギャップを有する。これらの材料で微粒子を形成し、その粒径をナノサイズ化することにより、半導体中の電子がナノクリスタル中に閉じ込められる。その結果、ナノクリスタルでのバンドギャップが大きくなる。
Hereinafter, the function of the semiconductor nanocrystal will be described.
As known in the literature such as JP-T-2002-510866, these semiconductor materials have a band gap of about 0.5 to 4.0 eV at room temperature in bulk materials (meaning non-particulate materials). Have By forming microparticles with these materials and making the particle size nanosized, electrons in the semiconductor are confined in the nanocrystal. As a result, the band gap in the nanocrystal increases.
 バンドギャップの大きくなる幅は、理論的には、半導体微粒子の粒径の二乗に反比例することが知られている。そこで、半導体粒子の粒径を制御することにより、バンドギャップを制御することができる。これらの半導体は、バンドギャップに相当する波長より小さな波長の光を吸収し、バンドギャップに相当する波長の蛍光を発する。 Theoretically, the width of the band gap is known to be inversely proportional to the square of the particle diameter of the semiconductor fine particles. Therefore, the band gap can be controlled by controlling the particle size of the semiconductor particles. These semiconductors absorb light having a wavelength smaller than the wavelength corresponding to the band gap, and emit fluorescence having a wavelength corresponding to the band gap.
 バルク半導体のバンドギャップとしては、好ましくは20℃で1.0eV~3.0eVである。1.0eVを下回ると、ナノクリスタル化したときに、粒径の変化に対して蛍光波長が敏感にシフトしすぎるため、製造管理が難しいという点で好ましくない。また、3.0eVを上回ると、近紫外領域より短い波長の蛍光しか発せず、発光素子として応用しにくいという点で好ましくない。 The band gap of the bulk semiconductor is preferably 1.0 eV to 3.0 eV at 20 ° C. Below 1.0 eV, when nanocrystallized, the fluorescence wavelength is too sensitively shifted with respect to the change in particle size, which is not preferable in terms of difficulty in production management. On the other hand, if it exceeds 3.0 eV, only fluorescence having a shorter wavelength than the near-ultraviolet region is emitted, which is not preferable in that it is difficult to apply as a light emitting element.
 半導体ナノクリスタルは、公知の方法、例えば、米国特許6,501,091号公報記載の方法により製造できる。この公報に記載されている製造例として、トリオクチルフォスフィン(TOP)にセレン化トリオクチルフォスフィンとジメチルカドニウムを混合した前駆体溶液を350℃に加熱したトリオクチルフォスフィンオキサイド(TOPO)に投入する方法がある。 The semiconductor nanocrystal can be produced by a known method, for example, a method described in US Pat. No. 6,501,091. As a production example described in this publication, a precursor solution in which trioctylphosphine (TOP) is mixed with trioctylphosphine selenide and dimethylcadmium is added to trioctylphosphine oxide (TOPO) heated to 350 ° C. There is a way to do it.
 上記半導体ナノクリスタルは、好ましくは半導体ナノクリスタルからなるコア粒子と、コア粒子に用いる半導体材料よりもバンドギャップの大きな半導体材料からなる少なくとも1層以上のシェル層とからなる、コア・シェル型半導体ナノクリスタルである。これは、例えばCdSe(バンドギャップ:1.74eV)からなるコア微粒子の表面を、ZnS(バンドギャップ:3.8eV)のような、バンドギャップの大きな半導体材料のシェルで被覆した構造を有する。これにより、コア微粒子内に発生する励起子の閉じ込め効果を発現しやすくなる。上記の半導体ナノクリスタルの具体例では、SやSe等が、後述する透明媒体中の活性成分(未反応のモノマーや水分等)により引き抜かれ、ナノクリスタルの結晶構造が壊れ、蛍光性が消滅するという現象がおきやすい。そこで、これを防止するため、シリカ等の金属酸化物や有機物等で表面修飾してもよい。 The semiconductor nanocrystal is preferably a core-shell type semiconductor nanoparticle comprising core particles made of semiconductor nanocrystals and at least one shell layer made of a semiconductor material having a larger band gap than the semiconductor material used for the core particles. It is a crystal. This has a structure in which the surface of a core fine particle made of, for example, CdSe (band gap: 1.74 eV) is covered with a shell of a semiconductor material having a large band gap, such as ZnS (band gap: 3.8 eV). Thereby, it becomes easy to express the confinement effect of excitons generated in the core fine particles. In the specific example of the semiconductor nanocrystal described above, S, Se, and the like are extracted by an active component (unreacted monomer, moisture, etc.) in the transparent medium described later, the crystal structure of the nanocrystal is broken, and the fluorescence disappears. This phenomenon is easy to occur. In order to prevent this, the surface may be modified with a metal oxide such as silica or an organic substance.
 コア・シェル型半導体のナノクリスタルは、公知の方法、例えば、米国特許6,501,091号公報に記載の方法により製造できる。例えば、CdSeコア/ZnSシェル構造の場合、TOPにジエチル亜鉛とトリメチルシリルサルファイドを混合した前駆体溶液を、CdSeコア粒子を分散したTOPO液を140℃に加熱したものに投入することで製造できる。 The core-shell type semiconductor nanocrystal can be produced by a known method, for example, the method described in US Pat. No. 6,501,091. For example, in the case of a CdSe core / ZnS shell structure, it can be produced by introducing a precursor solution in which diethyl zinc and trimethylsilyl sulfide are mixed with TOP into a TOPO liquid in which CdSe core particles are dispersed and heated to 140 ° C.
 また、励起子を形成するキャリアが、コアとシェルの間で分離される、いわゆるTypeII型ナノクリスタル(J.Am.Chem.Soc.,Vol.125,No.38,2003,p11466-11467)を用いることもできる。
 さらに、コア上に2層以上の層構造を積層し、マルチシェル構造とし、安定性や発光効率、発光波長の調整を改良したナノクリスタル(Angewandte Chemie,Vol.115,2003,p5189-5193)等を用いてもよい。
In addition, a so-called Type II nanocrystal (J. Am. Chem. Soc., Vol. 125, No. 38, 2003, p11466-11467) in which carriers forming excitons are separated between a core and a shell is used. It can also be used.
Furthermore, nanocrystals (Angewandte Chemie, Vol. 115, 2003, p5189-5193), etc., in which two or more layer structures are laminated on the core to form a multi-shell structure and stability, emission efficiency, and emission wavelength adjustment are improved. May be used.
 尚、上記発光微粒子は、一種単独で使用してもよく、また、二種以上を組み合わせて使用してもよい。 In addition, the said light emission fine particle may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明の発光素子において、ナノクリスタル発光微粒子は好ましくは半導体ナノクリスタルであり、より好ましくはCdSe、CdTe、CdS、InP、GaAs、ZnSe及びZnTeからなる群から選択される少なくとも1つの化合物を含む半導体ナノクリスタルである。 In the light emitting device of the present invention, the nanocrystal light emitting fine particles are preferably semiconductor nanocrystals, and more preferably a semiconductor containing at least one compound selected from the group consisting of CdSe, CdTe, CdS, InP, GaAs, ZnSe and ZnTe. Nanocrystal.
 本発明の発光素子のQD層は、例えば、正孔注入材料、正孔輸送材料又は電子輸送材料とナノクリスタル発光微粒子を溶媒に分散させて調製した混合液をスピンコーティングした後、乾燥させて相分離させることにより製造できる。また、ナノクリスタル発光微粒子を直接溶媒に分散させ、その分散液をスピンコーティング、キャスティング、ディッピング、スプレイコーティング等の既知の方法でコーティングすることにより製造することもできる。 The QD layer of the light-emitting device of the present invention is prepared by spin-coating a liquid mixture prepared by dispersing a hole injection material, a hole transport material, or an electron transport material and nanocrystal light-emitting fine particles in a solvent, and then drying to obtain a phase. It can be manufactured by separating. Alternatively, the nanocrystal light-emitting fine particles can be directly dispersed in a solvent, and the dispersion can be coated by a known method such as spin coating, casting, dipping, or spray coating.
[発光層]
 発光層は、正孔輸送層から注入される正孔と、陰極側から電子輸送層等を介して注入される電子を結合させ、励起状態を生成し、QD層へエネルギーを移動させる役割を担う。
 この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 また、特開昭57-51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 本発明においては、以下に例示する発光材料の中から一種類の材料を用いてもよく、また目的が損なわれない範囲で複数種を混合して用いたり、他の公知の発光材料を含有させてもよく、また複数種の発光層を積層して用いても良い。
[Light emitting layer]
The light emitting layer combines the holes injected from the hole transport layer with the electrons injected from the cathode side through the electron transport layer and the like, thereby generating an excited state and transferring energy to the QD layer. .
As a method for forming the light emitting layer, for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied. The light emitting layer is particularly preferably a molecular deposited film. Here, the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state. Can be classified from a thin film (accumulated film) formed by the LB method according to a difference in an agglomerated structure and a higher-order structure and a functional difference resulting therefrom.
Further, as disclosed in JP-A-57-51781, a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like. In addition, a light emitting layer can be formed.
In the present invention, one type of material may be used from among the light emitting materials exemplified below, and a plurality of types may be mixed and used as long as the purpose is not impaired, or other known light emitting materials may be contained. Alternatively, a plurality of types of light emitting layers may be stacked and used.
 発光層に使用できる発光材料は、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。 Light emitting materials that can be used for the light emitting layer include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, and oxadiene. Azole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole Chelating oxinoid compounds, quinacridone, rubrene, and fluorescent dyes, but are not limited to these. Not intended to be.
 発光層に使用できるホスト材料の具体例としては、下記(i)~(ix)で表される化合物が挙げられる。
 下記式(i)で表される非対称アントラセン。
Specific examples of the host material that can be used for the light emitting layer include compounds represented by the following (i) to (ix).
Asymmetric anthracene represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、Ar001は置換もしくは無置換の核炭素数10~50の縮合芳香族基である。Ar002は置換もしくは無置換の核炭素数6~50の芳香族基である。X001~X003は、それぞれ独立に置換もしくは無置換の核炭素数6~50の芳香族基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。a、b及びcは、それぞれ0~4の整数である。nは1~3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。ここで核炭素数は、芳香環を形成する炭素の数である。) (In the formula, Ar 001 is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms. Ar 002 is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms. X 001 to X 003 independently represents a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl groups having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 carbon atoms, substituted Or an unsubstituted arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, a hydroxy group A, b and c are each an integer of 0 to 4. n is an integer of 1 to 3. When n is 2 or more, [] is the same or different. Good, where the number of nuclear carbons is the number of carbons forming the aromatic ring.)
 下記式(ii)で表される非対称モノアントラセン誘導体。 An asymmetric monoanthracene derivative represented by the following formula (ii).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、Ar003及びAr004は、それぞれ独立に、置換もしくは無置換の核炭素数6~50の芳香族環基であり、m及びnは、それぞれ1~4の整数である。ただし、m=n=1でかつAr003とAr004のベンゼン環への結合位置が左右対称型の場合には、Ar003とAr004は同一ではなく、m又はnが2~4の整数の場合にはmとnは異なる整数である。
 R001~R010は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50の芳香族環基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基である。)
(In the formula, Ar 003 and Ar 004 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4, provided that When m = n = 1 and the bonding position of Ar 003 and Ar 004 to the benzene ring is symmetrical, Ar 003 and Ar 004 are not the same, and m or n is an integer of 2 to 4 M and n are different integers.
R 001 to R 010 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxy group. )
 下記式(iii)で表される非対称ピレン誘導体。 An asymmetric pyrene derivative represented by the following formula (iii).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、Ar005及びAr006は、それぞれ置換もしくは無置換の核炭素数6~50の芳香族基である。L001及びL002は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
 mは0~2の整数、nは1~4の整数、sは0~2の整数、tは0~4の整数である。
 また、L001又はAr005は、ピレンの1~5位のいずれかに結合し、L002又はAr006は、ピレンの6~10位のいずれかに結合する。ただし、n+tが偶数の時、Ar005,Ar006,L001,L002は下記(1)又は(2)を満たす。
(1) Ar005≠Ar006及び/又はL001≠L002(ここで≠は、異なる構造の基であることを示す。)
(2) Ar005=Ar006かつL001=L002の時
 (2-1) m≠s及び/又はn≠t、又は
 (2-2) m=sかつn=tの時、
   (2-2-1) L001及びL002、又はピレンが、それぞれAr005及びAr006上の異なる結合位置に結合しているか、(2-2-2) L001及びL002、又はピレンが、Ar005及びAr006上の同じ結合位置で結合している場合、L001及びL002又はAr005及びAr006のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。]
[ Wherein Ar 005 and Ar 006 are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms. L 001 and L 002 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
m is an integer from 0 to 2, n is an integer from 1 to 4, s is an integer from 0 to 2, and t is an integer from 0 to 4.
L 001 or Ar 005 binds to any of the 1-5 positions of pyrene, and L 002 or Ar 006 binds to any of the 6-10 positions of pyrene. However, when n + t is an even number, Ar 005 , Ar 006 , L 001 , and L 002 satisfy the following (1) or (2).
(1) Ar 005 ≠ Ar 006 and / or L 001 ≠ L 002 (where ≠ indicates a group having a different structure)
(2) When Ar 005 = Ar 006 and L 001 = L 002 (2-1) m ≠ s and / or n ≠ t, or (2-2) When m = s and n = t,
(2-2-1) L 001 and L 002 or pyrene are bonded to different bonding positions on Ar 005 and Ar 006 , respectively (2-2-2) L 001 and L 002 , or pyrene is , Ar 005 and Ar 006 are bonded at the same bonding position, and L 001 and L 002 or Ar 005 and Ar 006 are substituted at positions 1 and 6 or 2 and 7 in pyrene There is no. ]
 下記式(iv)で表される非対称アントラセン誘導体。 An asymmetric anthracene derivative represented by the following formula (iv).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、A001及びA002は、それぞれ独立に、置換もしくは無置換の核炭素数10~20の縮合芳香族環基である。
 Ar007及びAr008は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数6~50の芳香族環基である。
 R011~R020は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~50の芳香族環基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数6~50のアラルキル基、置換もしくは無置換の核原子数5~50のアリールオキシ基、置換もしくは無置換の核原子数5~50のアリールチオ基、置換もしくは無置換の炭素数1~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシ基である。
 Ar007、Ar008、R019及びR020は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
 ただし、式(iv)において、中心のアントラセンの9位及び10位に、該アントラセン上に示すX-Y軸に対して対称型となる基が結合する場合はない。)
(In the formula, A 001 and A 002 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
Ar 007 and Ar 008 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
R 011 to R 020 are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted group Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted arylthio group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxy group.
Ar 007 , Ar 008 , R 019 and R 020 may each be plural, and adjacent ones may form a saturated or unsaturated cyclic structure.
However, in the formula (iv), a symmetric group with respect to the XY axis shown on the anthracene is not bonded to the 9th and 10th positions of the central anthracene. )
 下記式(v)で表されるアントラセン誘導体。 An anthracene derivative represented by the following formula (v).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、R021~R030は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換してもよいアリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アルケニル基,アリールアミノ基又は置換してもよい複素環式基を示し、a及びbは、それぞれ1~5の整数を示し、それらが2以上の場合、R021同士又はR022同士は、それぞれにおいて、同一でも異なっていてもよく、また、R021同士又はR022同士が結合して環を形成していてもよいし、R023とR024,R025とR026,R027とR028,R029とR030がたがいに結合して環を形成していてもよい。L003は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換してもよいアリール基である)、アルキレン基又はアリーレン基を示す。) (Wherein R 021 to R 030 are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, arylamino group, or substituted. A and b each represent an integer of 1 to 5, and when they are 2 or more, R 021s or R 022s may be the same or different from each other In addition, R 021 or R 022 may be bonded to each other to form a ring, or R 023 and R 024 , R 025 and R 026 , R 027 and R 028 , R 029 and R 030 are L 003 may be a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an optionally substituted aryl group). Represents an alkylene group or an arylene group.)
 下記式(vi)で表されるアントラセン誘導体。 An anthracene derivative represented by the following formula (vi).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、R031~R040は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,アリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アリールアミノ基又は置換してもよい複数環式基を示し、c,d,e及びfは、それぞれ1~5の整数を示し、それらが2以上の場合、R031同士,R032同士,R036同士又はR037同士は、それぞれにおいて、同一でも異なっていてもよく、またR031同士,R032同士,R033同士又はR037同士が結合して環を形成していてもよいし、R033とR034,R039とR040がたがいに結合して環を形成していてもよい。L004は単結合、-O-,-S-,-N(R)-(Rはアルキル基又は置換してもよいアリール基である)、アルキレン基又はアリーレン基を示す。) (Wherein R 031 to R 040 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or an optionally substituted multicyclic group) C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 031s , R 032s , R 036s or R 037s may be the same. R 031 may be different from each other, R 032 may be bonded to each other, R 033 may be bonded to each other, or R 037 may be bonded to each other to form a ring, and R 033 and R 034 , R 039 and R 040 are based on each other. bonded to ring the optionally formed .L 004 is a single bond, -O -, - S -, - N (R) - (R is an aryl group which may be alkyl or substituted), Al Shows the alkylene group or an arylene group.)
 下記式(vii)で表されるスピロフルオレン誘導体。 A spirofluorene derivative represented by the following formula (vii).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、A005~A008は、それぞれ独立に、置換もしくは無置換のビフェニリル基又は置換もしくは無置換のナフチル基である。) ( Wherein A 005 to A 008 are each independently a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.)
 下記式(viii)で表される縮合環含有化合物。 A condensed ring-containing compound represented by the following formula (viii).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、A011~A013は前記式(1)のLと同様な2価の基を示し、A014~A016は、それぞれ水素原子又は核炭素数6~50のアリール基である。R041~R043は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数1~6のアルコキシル基、炭素数5~18のアリールオキシ基、炭素数7~18のアラルキルオキシ基、炭素数5~16のアリールアミノ基、ニトロ基、シアノ基、炭素数1~6のエステル基又はハロゲン原子を示し、A011~A016のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。) (Wherein A 011 to A 013 represent a divalent group similar to L 1 in the above formula (1), and A 014 to A 016 are a hydrogen atom or an aryl group having 6 to 50 nuclear carbon atoms, respectively. R 041 to R 043 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, or an aryl having 5 to 18 carbon atoms. An oxy group, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 5 to 16 carbon atoms, a nitro group, a cyano group, an ester group having 1 to 6 carbon atoms, or a halogen atom, of A 011 to A 016 At least one is a group having three or more condensed aromatic rings.)
 下記式(ix)で表されるフルオレン化合物。 Fluorene compound represented by the following formula (ix).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、R051及びR052は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR051同士、R052同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR051及びR052は、同じであっても異なっていてもよい。R053及びR054は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR053同士、R054同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR053及びR054は、同じであっても異なっていてもよい。Ar011及びAr012は、ベンゼン環の合計が3個以上の置換あるいは無置換の縮合多環芳香族基またはベンゼン環と複素環の合計が3個以上の置換あるいは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar011及びAr012は、同じであっても異なっていてもよい。nは、1乃至10の整数を表す。) Wherein R 051 and R 052 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, or a substituted amino group. Represents a cyano group or a halogen atom, R 051 bonded to different fluorene groups and R 052 may be the same or different, and R 051 and R 052 bonded to the same fluorene group are the same. R 053 and R 054 may be a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic ring. R 053 and R 054 representing a group and bonded to different fluorene groups may be the same or different. R 053 and R 054 bonded to the same fluorene group may be the same or different, and Ar 011 and Ar 012 are substituted or unsubstituted condensed polycyclic aromatics having a total of 3 or more benzene rings. Represents a condensed polycyclic heterocyclic group in which the total of a group or a benzene ring and a heterocyclic ring is bonded to a fluorene group by 3 or more substituted or unsubstituted carbons, and Ar 011 and Ar 012 are the same or different N represents an integer of 1 to 10.)
 以上の材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノアントラセン誘導体またはビアントラセン誘導体、特に好ましくは非対称アントラセンまたは後記する実施例で使用したアントラセン化合物である。 Among these materials, an anthracene derivative is preferable, a monoanthracene derivative or a bianthracene derivative is more preferable, an asymmetric anthracene is particularly preferable, or an anthracene compound used in Examples described later.
 本発明の素子の発光層の厚さは、例えば1~100nmであり、好ましくは5~60nmである。発光層の厚さが100nm超の場合、発光素子を動作させるのに必要な電圧が上昇し、消費電力が増加するおそれがある。一方、発光層の厚さが1nm未満の場合、層内に生成する励起子の密度を上げることが困難であり、発光層として十分機能しないおそれがある。 The thickness of the light emitting layer of the element of the present invention is, for example, 1 to 100 nm, preferably 5 to 60 nm. When the thickness of the light emitting layer is more than 100 nm, the voltage necessary for operating the light emitting element is increased, which may increase power consumption. On the other hand, when the thickness of the light emitting layer is less than 1 nm, it is difficult to increase the density of excitons generated in the layer, and there is a possibility that the light emitting layer does not function sufficiently.
[電子注入層及び電子輸送層]
 電子注入層及び電子輸送層(以下、纏めて電子注入層・輸送層という)は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい。また、付着改善層は、電子注入層の中で特に陰極との付着が良い材料からなる層である。
 電子輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
[Electron injection layer and electron transport layer]
An electron injection layer and an electron transport layer (hereinafter collectively referred to as an electron injection layer and a transport layer) are layers that assist injection of electrons into the light emitting layer and transport them to the light emitting region, and have a high electron mobility. In addition, the adhesion improving layer is a layer made of a material that has a particularly good adhesion to the cathode in the electron injection layer.
The electron transport layer is appropriately selected with a film thickness of several nm to several μm, but when the film thickness is particularly large, the electron mobility is at least 10 when an electric field of 10 4 to 10 6 V / cm is applied in order to avoid an increase in voltage. It is preferably −5 cm 2 / Vs or higher.
 電子注入層及び電子輸送層に用いられる材料としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノラト)アルミニウムを挙げることができる。 As a material used for the electron injection layer and the electron transport layer, 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable. Specific examples of metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), such as tris (8-quinolinolato) aluminum. it can.
 オキサジアゾール誘導体としては、以下の式で表される電子伝達化合物が挙げられる。 Examples of the oxadiazole derivatives include electron transfer compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000026
(式中、Ar301、Ar302、Ar303、Ar305、Ar306、及びAr309はそれぞれ置換又は無置換のアリール基を示す。またAr304、Ar307、Ar308はそれぞれ置換又は無置換のアリーレン基を示す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, Ar 301 , Ar 302 , Ar 303 , Ar 305 , Ar 306 , and Ar 309 each represent a substituted or unsubstituted aryl group. Ar 304 , Ar 307 , and Ar 308 are each substituted or unsubstituted. Represents an arylene group.)
 ここでアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基等が挙げられる。また、アリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレ基等が挙げられる。また、置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。 Here, examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group. Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group. This electron transfer compound is preferably a thin film-forming compound.
 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000027
(Meはメチル基、tBuはtブチル基を示す。)
Specific examples of the electron transfer compound include the following.
Figure JPOXMLDOC01-appb-C000027
(Me represents a methyl group, and tBu represents a tbutyl group.)
 さらに、電子注入層及び電子輸送層に用いられる材料として、下記式(A)~(F)で表されるものも用いることができる。
Figure JPOXMLDOC01-appb-C000028
Furthermore, materials represented by the following formulas (A) to (F) can also be used as materials used for the electron injection layer and the electron transport layer.
Figure JPOXMLDOC01-appb-C000028
(式(A)及び(B)中、A311~A313は、それぞれ窒素原子又は炭素原子である。
 Ar311は、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核原子数3~60のヘテロアリール基であり、Ar311’は、置換もしくは無置換の核炭素数6~60のアリーレン基又は置換もしくは無置換の核原子数3~60のヘテロアリーレン基であり、Ar312は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar311及びAr312のいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核原子数3~60のモノヘテロ縮合環基である。
 L311、L312及びL313は、それぞれ、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核原子数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R及びR311は、それぞれ水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核原子数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接するR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。)で表される含窒素複素環誘導体。
(In the formulas (A) and (B), A 311 to A 313 each represent a nitrogen atom or a carbon atom.
Ar 311 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms, and Ar 311 ′ is a substituted or unsubstituted nuclear carbon atom. An arylene group of 6 to 60 or a substituted or unsubstituted heteroarylene group of 3 to 60 nuclear atoms, and Ar 312 represents a hydrogen atom, a substituted or unsubstituted aryl group of 6 to 60 nuclear carbon atoms, a substituted or unsubstituted An unsubstituted heteroaryl group having 3 to 60 nucleus atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. However, any one of Ar 311 and Ar 312 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nucleus atoms.
L 311 , L 312 and L 313 are each a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear atoms, or a substituted or unsubstituted group. Substituted fluorenylene group.
R and R 311 are each a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 20 alkyl groups, or substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different. In addition, adjacent R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
     HAr-L314-Ar321-Ar322  (C)
(式中、HArは、置換基を有していてもよい炭素数3~40の含窒素複素環であり、L314は、単結合、置換基を有していてもよい炭素数6~60のアリーレン基、置換基を有していてもよい原子数3~60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、Ar321は、置換基を有していてもよい炭素数6~60の2価の芳香族炭化水素基であり、Ar322は、置換基を有していてもよい炭素数6~60のアリール基又は置換基を有していてもよい原子数3~60のヘテロアリール基である。)で表される含窒素複素環誘導体。
HAr-L 314 -Ar 321 -Ar 322 (C)
(In the formula, HAr is a nitrogen-containing heterocyclic ring having 3 to 40 carbon atoms which may have a substituent, and L 314 has a carbon number of 6 to 60 optionally having a single bond or a substituent. An arylene group, a heteroarylene group having 3 to 60 atoms which may have a substituent, or a fluorenylene group which may have a substituent, and Ar 321 may have a substituent A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms, and Ar 322 is an aryl group having 6 to 60 carbon atoms which may have a substituent or an atomic number which may have a substituent A nitrogen-containing heterocyclic derivative represented by 3 to 60 heteroaryl groups).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、X301及びY301は、それぞれ炭素数1~6の飽和若しくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、R301~R304は、それぞれ、水素、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基又はシアノ基である。これらの基は置換されていてもよい。また、隣接した基が置換若しくは無置換の縮合環を形成してもよい。)で表されるシラシクロペンタジエン誘導体。 Wherein X 301 and Y 301 are each a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted group Or an unsubstituted heterocycle or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R 301 to R 304 are each a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group Perfluoroalkyl group, perfluoroalkoxy group, amino group, alkylcarbonyl group, arylcarbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, alkylcarbonyloxy group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryl Oxycarbonyloxy group, sulfi Group, sulfonyl group, sulfanyl group, silyl group, carbamoyl group, aryl group, heterocyclic group, alkenyl group, alkynyl group, nitro group, formyl group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, A thiocyanate group, an isothiocyanate group, or a cyano group, which may be substituted, or adjacent groups may form a substituted or unsubstituted condensed ring. Pentadiene derivative.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、R321~R328及びZ322は、それぞれ、水素原子、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はアリールオキシ基を示し、X302、Y302及びZ321は、それぞれ、飽和もしくは不飽和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又はアリールオキシ基を示し、Z321とZ322は相互に結合して縮合環を形成してもよく、nは1~3の整数を示し、n又は(3-n)が2以上の場合、R321~R328、X302、Y302、Z322及びZ321は同一でも異なってもよい。但し、nが1、X、Y及びR322がメチル基でR328が水素原子又は置換ボリル基の化合物、及びnが3でZ321がメチル基の化合物を含まない。)で表されるボラン誘導体。 (Wherein R 321 to R 328 and Z 322 are each a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryl group. X 302 , Y 302 and Z 321 each represents a saturated or unsaturated hydrocarbon group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group; 321 and Z 322 may be bonded to each other to form a condensed ring. N represents an integer of 1 to 3, and when n or (3-n) is 2 or more, R 321 to R 328 , X 302 , Y 302 , Z 322 and Z 321 may be the same or different, provided that n is 1, X, Y and R 322 are methyl groups and R 328 is a hydrogen atom or a substituted boryl group, and n is 3. Z 321 does not include a compound having a methyl group.)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式中、Q301及びQ302は、それぞれ、下記式(K)で示される配位子を表し、L315は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、-OR(Rは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基である。)又は-O-Ga-Q303(Q304)(Q303及びQ304は、Q301及びQ302と同じ)で示される配位子を表す。]で表されるガリウム錯体。 [ Wherein Q 301 and Q 302 each represent a ligand represented by the following formula (K), and L 315 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group , Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, —OR (where R is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl Group, a substituted or unsubstituted heterocyclic group) or a ligand represented by —O—Ga—Q 303 (Q 304 ) (Q 303 and Q 304 are the same as Q 301 and Q 302 ). . ] The gallium complex represented by this.
Figure JPOXMLDOC01-appb-C000032
[式中、環A301及びA302は、それぞれ置換基を有してよい互いに縮合した6員アリール環構造である。]
Figure JPOXMLDOC01-appb-C000032
[Wherein, ring A 301 and A 302 are each a 6-membered aryl ring structure condensed with each other, which may have a substituent. ]
 この金属錯体は、n型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きい。
 式(K)の配位子を形成する環A301及びA302の置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基、3-メチルフェニル基、3-メトキシフェニル基、3-フルオロフェニル基、3-トリクロロメチルフェニル基、3-トリフルオロメチルフェニル基、3-ニトロフェニル基等の置換もしくは無置換のアリール基、メトキシ基、n-ブトキシ基、t-ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基、6-(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは無置換のアルコキシ基、フェノキシ基、p-ニトロフェノキシ基、p-t-ブチルフェノキシ基、3-フルオロフェノキシ基、ペンタフルオロフェノキシ基、3-トリフルオロメチルフェノキシ基等の置換もしくは無置換のアリールオキシ基、メチルチオ基、エチルチオ基、t-ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは無置換のアルキルチオ基、フェニルチオ基、p-ニトロフェニルチオ基、p-t-ブチルフェニルチオ基、3-フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3-トリフルオロメチルフェニルチオ基等の置換もしくは無置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノ又はジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビス(アセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、カルバモイル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等の置換もしくは無置換のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリニル基、ピペラジニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成してもよい。
This metal complex has strong properties as an n-type semiconductor and has a large electron injection capability. Furthermore, since the generation energy at the time of complex formation is also low, the bondability between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is large.
Specific examples of the substituents of the rings A 301 and A 302 that form the ligand of the formula (K) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, butyl Group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group and other substituted or unsubstituted alkyl groups, phenyl group, naphthyl group, biphenyl group, anthranyl Group, phenanthryl group, fluorenyl group, pyrenyl group, 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, etc. Substituted or unsubstituted aryl group, methoxy group, n-butoxy group, t-butoxy group, trichloromethoxy group Trifluoroethoxy group, pentafluoropropoxy group, 2,2,3,3-tetrafluoropropoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group, 6- (perfluoroethyl) Substituted or unsubstituted alkoxy group such as hexyloxy group, phenoxy group, p-nitrophenoxy group, pt-butylphenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group, 3-trifluoromethylphenoxy group, etc. A substituted or unsubstituted aryloxy group, a methylthio group, an ethylthio group, a t-butylthio group, a hexylthio group, an octylthio group, a trifluoromethylthio group, or a substituted or unsubstituted alkylthio group, a phenylthio group, a p-nitrophenylthio group, pt-butylphenylthio group, 3-fluorophenylthio O group, pentafluorophenylthio group, substituted or unsubstituted arylthio group such as 3-trifluoromethylphenylthio group, cyano group, nitro group, amino group, methylamino group, ethylamino group, diethylamino group, dipropylamino Group, mono- or di-substituted amino group such as dibutylamino group, diphenylamino group, bis (acetoxymethyl) amino group, bis (acetoxyethyl) amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, etc. Substituted or unsubstituted acylamino group, hydroxyl group, siloxy group, acyl group, carbamoyl group, methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, diethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, phenylcarbamoyl group, etc. Mosquito Cycloalkyl groups such as vamoyl group, carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cyclohexyl group, pyridinyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, acridinyl group, Pyrrolidinyl, dioxanyl, piperidinyl, morpholinyl, piperazinyl, carbazolyl, furanyl, thiophenyl, oxazolyl, oxadiazolyl, benzoxazolyl, thiazolyl, thiadiazolyl, benzothiazolyl, triazolyl, imidazolyl And heterocyclic groups such as benzimidazolyl group. Moreover, the above substituents may combine to form a further 6-membered aryl ring or heterocyclic ring.
 有機EL素子の好ましい形態では、電子を輸送する領域又は陰極と有機層の界面領域に、還元性ドーパントを含有する。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。従って、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、希土類金属の炭酸塩、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。 In a preferred form of the organic EL element, a reducing dopant is contained in a region for transporting electrons or an interface region between the cathode and the organic layer. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. Oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal carbonates, alkaline earth metal carbonates, rare earth metal carbonates, alkali metal organic complexes, alkalis At least one substance selected from the group consisting of organic complexes of earth metals and organic complexes of rare earth metals can be preferably used.
 また、より具体的に、好ましい還元性ドーパントとしては、Li(仕事関数:2.9eV)、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0~2.5eV)、及びBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。
 これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、Rb又はCsであり、最も好ましいのは、Csである。
More specifically, preferable reducing dopants include Li (work function: 2.9 eV), Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2). .16 eV) and Cs (work function: 1.95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV) , And at least one alkaline earth metal selected from the group consisting of Ba (work function: 2.52 eV), and those having a work function of 2.9 eV or less are particularly preferred.
Among these, a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs.
 これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。
 Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
These alkali metals have particularly high reducing ability, and the addition of a relatively small amount to the electron injection region can improve the light emission luminance and extend the life of the organic EL element. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K.
By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, the emission luminance and the life of the organic EL element can be improved.
 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けてもよい。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。
In the present invention, an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer. At this time, current leakage can be effectively prevented and the electron injection property can be improved.
As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
 具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、LiO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、CsF,LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。 Specifically, preferable alkali metal chalcogenides include, for example, Li 2 O, LiO, Na 2 S, Na 2 Se, and NaO, and preferable alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, and BeO. , BaS, and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KCl, and NaCl. Examples of preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
 また、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。
 また、電子輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。
 尚、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
Further, as a semiconductor constituting the electron transport layer, an oxide containing at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. , Nitrides or oxynitrides, or a combination of two or more.
Moreover, it is preferable that the inorganic compound which comprises an electron carrying layer is a microcrystal or an amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced.
Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
[基板]
 本発明の発光素子は基板上に作製する。ここでいう基板は発光素子を支持する基板であり、400~700nmの可視領域の光の透過率が50%以上で、平滑な基板が好ましい。
[substrate]
The light emitting element of the present invention is manufactured on a substrate. The substrate here is a substrate that supports the light-emitting element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
 具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 尚、光取り出し方向の反対側に支持基板が位置する場合には透光性は不要である。
Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
In addition, translucency is unnecessary when a support substrate is located on the opposite side to the light extraction direction.
[陽極]
 発光素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、陽極側に透明性を必要とする場合は、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛合金、金、銀、白金、銅等が適用できる。また、透明性を必要としない、反射型電極とする場合には、それらの金属の他に、アルミ、モリブデン、クロム、ニッケル等の金属や合金を使用することもできる。
 これら材料は単独で用いることもできるが、これら材料同士の合金や、その他の元素を添加した材料も適宜選択して用いることができる。
[anode]
The anode of the light emitting element plays a role of injecting holes into the hole transport layer or the light emitting layer. When transparency is required on the anode side, indium tin oxide alloy (ITO), tin oxide (NESA) ), Indium zinc oxide alloy, gold, silver, platinum, copper and the like can be applied. In addition, when a reflective electrode that does not require transparency is used, a metal or an alloy such as aluminum, molybdenum, chromium, or nickel can be used in addition to these metals.
These materials can be used alone, but an alloy of these materials or a material to which other elements are added can be appropriately selected and used.
 発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率は10%より大きくすることが好ましい。また陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選択される。 When light emitted from the light emitting layer is taken out from the anode, the transmittance of the anode for light emission is preferably greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. Although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
[陰極]
 陰極としては仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質として用いることができる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属等が挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
[cathode]
As the cathode, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a low work function (4 eV or less) can be used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、好ましくは50~200nmである。
Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance with respect to the light emitted from the cathode is larger than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
[絶縁層]
 発光素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
[Insulation layer]
Since a light emitting element applies an electric field to an ultrathin film, pixel defects are likely to occur due to leakage or short circuit. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
 絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、弗化セシウム、炭酸セシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。
 これらの混合物や積層物を用いてもよい。
Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, cesium fluoride, cesium carbonate, aluminum nitride, titanium oxide, and oxide. Examples thereof include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
A mixture or laminate of these may be used.
 本発明の発光素子において、各層の形成方法については、特に記載がない場合、真空蒸着法、LB法、抵抗加熱蒸着法、電子ビーム法、スパッタリング法、分子積層法、コーティング法(スピンコート法、キャスト法、ディップコート法等)、インクジェット法、印刷法等の種々の方法を利用することができる。 In the light-emitting element of the present invention, the formation method of each layer is not particularly described, and is a vacuum evaporation method, an LB method, a resistance heating evaporation method, an electron beam method, a sputtering method, a molecular lamination method, a coating method (spin coating method, Various methods such as a casting method, a dip coating method, an ink jet method, and a printing method can be used.
 また、本発明の発光素子の各層の膜厚については、特に記載がない場合は、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
[実施例]
In addition, as for the film thickness of each layer of the light emitting device of the present invention, unless otherwise specified, generally, if the film thickness is too thin, defects such as pinholes are likely to occur. In general, the range of several nm to 1 μm is preferable.
[Example]
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 尚、実施例又は比較例で使用した材料の構造を以下に示す。また、各材料のHOMO準位及びLUMO準位を表1に示す。
Figure JPOXMLDOC01-appb-C000033
EXAMPLES Next, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
In addition, the structure of the material used by the Example or the comparative example is shown below. Table 1 shows the HOMO level and LUMO level of each material.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-T000034
 尚、HOMO準位は、仕事関数測定装置AC3(理研計器株式会社製)を用いて、各原料の蒸着膜について測定した値である。
 また、LUMO準位は、蒸着膜の吸収端からエネルギーギャップEgを見積り、HOMO準位の実測値を考慮して算出した。
Figure JPOXMLDOC01-appb-T000034
The HOMO level is a value measured for the deposited film of each raw material using a work function measuring apparatus AC3 (manufactured by Riken Keiki Co., Ltd.).
The LUMO level was calculated by estimating the energy gap Eg from the absorption edge of the deposited film and taking into account the actual value of the HOMO level.
実施例1
 25mm×75mm×1.1mm厚のITO透明電極(膜厚120nm)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。その基板の上に、スピンコート法(1500rpm、30秒)で正孔注入層として用いるポリ(エチレンジオキシ)チオフェン:ポリスチレンスルフォン酸(以下、PEDOT:PSS)を40nmの膜厚で成膜し、200℃30分の乾燥を行った。
 HT1のトルエン溶液(濃度2wt%)1.69mlと、CdSe/ZnSコアシェル量子ドットのトルエン分散液(米国エヴィデントテクノロジー社製ED-C11-TOL-0620、濃度10mg/ml)1.2mlを混合し、さらにトルエン0.51mlを追加して、HT1/QD混合溶液を作製した。本溶液を、乾燥窒素置換されたグローブボックス中で、先のPEDOT:PSS塗布基板上に、スピンコート(1500rmp、30秒)で製膜した。
Example 1
A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm × 75 mm × 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. On the substrate, poly (ethylenedioxy) thiophene: polystyrene sulfonic acid (hereinafter referred to as PEDOT: PSS) used as a hole injection layer by spin coating (1500 rpm, 30 seconds) was formed to a thickness of 40 nm, Drying was performed at 200 ° C. for 30 minutes.
1.69 ml of a HT1 toluene solution (concentration 2 wt%) and 1.2 ml of a CdSe / ZnS core-shell quantum dot toluene dispersion (ED-C11-TOL-0620 manufactured by Evident Technology, Inc., concentration 10 mg / ml) are mixed. Further, 0.51 ml of toluene was added to prepare an HT1 / QD mixed solution. This solution was formed into a film by spin coating (1500 rpm, 30 seconds) on the PEDOT: PSS coated substrate in a glove box substituted with dry nitrogen.
 図5に、層構成を透過型電子顕微鏡(TEM)で観察した断面写真を示す。
 この写真から、膜厚約40nmの正孔輸送層(HT1層)の表面全面を、層状にQD単粒子膜が覆っているのが観察された。
In FIG. 5, the cross-sectional photograph which observed the layer structure with the transmission electron microscope (TEM) is shown.
From this photograph, it was observed that the entire surface of the hole transport layer (HT1 layer) having a film thickness of about 40 nm was covered with the QD single particle film in the form of a layer.
 この基板を市販の蒸着装置(日本真空技術(株)製)の基板ホルダーに固定し、真空チャンバー内を1×10-4Paまで減圧した。通常の真空蒸着法を用いて、発光層として発光材料EM1を、電子注入層として電子注入材料Alq3をそれぞれ、40nm、20nmの厚みに蒸着し、最後に陰極として、LiF、Alをそれぞれ1nm、150nmの厚みになるまで蒸着した。
 その後、真空チャンバー内を大気圧に戻し、得られた積層体を蒸着装置から取り出した。
This substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Using a normal vacuum deposition method, a light emitting material EM1 is deposited as a light emitting layer, an electron injection material Alq3 is deposited as an electron injection layer to a thickness of 40 nm and 20 nm, respectively, and finally LiF and Al are deposited as a cathode at 1 nm and 150 nm, respectively. It evaporated until it became the thickness of.
Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus.
 得られた素子に直流電圧を印加し、発光特性を分光放射輝度計(ミノルタCS1000)にて評価した。その結果、印加電圧9Vで、発光輝度115cd/m、効率4.7cd/A、外部量子効率2.5%と、良好な素子特性を得た。色度は(0.591、0.334)であり、QD由来の良好な赤色発光であった。ここで、HT1のHOMO準位は5.5eV、EM1のそれは5.7eV、その差の絶対値は0.2eVであった。尚、外部量子効率の算出は、下記の文献を参照して行った。
 「有機ELディスプレイ」 時任静士他;オーム社、平成16年8月20日、p42-43
A DC voltage was applied to the obtained device, and the light emission characteristics were evaluated with a spectral radiance meter (Minolta CS1000). As a result, with an applied voltage of 9 V, good device characteristics such as emission luminance of 115 cd / m 2 , efficiency of 4.7 cd / A, and external quantum efficiency of 2.5% were obtained. The chromaticity was (0.591, 0.334), and good red light emission derived from QD. Here, the HOMO level of HT1 was 5.5 eV, that of EM1 was 5.7 eV, and the absolute value of the difference was 0.2 eV. The external quantum efficiency was calculated with reference to the following literature.
“Organic EL Display” Shizuka Tokito et al .; Ohmsha, August 20, 2004, p42-43
 尚、QDを使用しない他は、実施例1と同様にして作製した素子からは、発光層(EM1)由来の青色発光が得られ、その時の発光ピーク波長は442nmであった。
 実施例1、及び後述する実施例、比較例で作製した素子の使用材料及び評価結果を表2に示す。
In addition, the blue light emission derived from the light emitting layer (EM1) was obtained from the element produced similarly to Example 1 except not using QD, and the light emission peak wavelength at that time was 442 nm.
Table 2 shows the materials used and the evaluation results of the devices manufactured in Example 1 and Examples and Comparative Examples described later.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
実施例2
 ナノクリスタルとして、CdSe/ZnSコアシェル量子ドットのトルエン分散液(米国エヴィデントテクノロジー社製ED-C11-TOL-0520、濃度10mg/ml)を用いた以外は、実施例1と同じにして、素子を作製、評価した。
 その結果、印加電圧6.5Vで、発光輝度192cd/m、効率4.9cd/A、外部量子効率2.3%と、良好な素子特性を得た。色度は(0.193、0.693)であり、QD由来の良好な緑色発光であった。ここで、HT1のHOMO準位は5.5eV、EM1のそれは5.7eV、その差は0.2eVであった(表2参照)。本素子からQDを除いた素子からは、EM1由来の青発光が得られ、その時の発光ピーク波長は442nmであった。
Example 2
A device was prepared in the same manner as in Example 1 except that a toluene dispersion of CdSe / ZnS core-shell quantum dots (ED-C11-TOL-0520 manufactured by Evident Technology, Inc., concentration 10 mg / ml) was used as the nanocrystal. Preparation and evaluation.
As a result, with an applied voltage of 6.5 V, good device characteristics were obtained, such as emission luminance of 192 cd / m 2 , efficiency of 4.9 cd / A, and external quantum efficiency of 2.3%. The chromaticity was (0.193, 0.693), and good green light emission derived from QD was obtained. Here, the HOMO level of HT1 was 5.5 eV, that of EM1 was 5.7 eV, and the difference was 0.2 eV (see Table 2). From the element obtained by removing QD, blue light emission derived from EM1 was obtained, and the emission peak wavelength at that time was 442 nm.
比較例1
 25mm×75mm×1.1mm厚のITO透明電極(膜厚120nm)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 前述のTPDのトルエン溶液(濃度2wt%)1.69mlと、CdSe/ZnSコアシェル量子ドットのトルエン分散液(米国エヴィデントテクノロジー社製ED-C11-TOL-0620、濃度10mg/ml)1.2mlを混合し、さらにトルエン0.51mlを追加して、TPD/QD混合溶液を作製した。本溶液を、乾燥窒素置換されたグローブボックス中で、先の基板上に、スピンコート(1500rmp、30秒)した。本基板の断面をTEMで観察したところ、正孔輸送層(TPD層)の表面全面を、層状にQD単層膜が覆っているのが観察された
 この基板を市販の蒸着装置(日本真空技術(株)製)の基板ホルダーに固定し、真空チャンバー内を1×10-4Paまで減圧した。通常の真空蒸着法を用いて、発光層として発光材料TAZを、電子注入層として電子注入材料Alq3をそれぞれ、40nm、20nmの厚みに蒸着し、最後に陰極として、LiF、Alをそれぞれ1nm、150nmの厚みになるまで蒸着した。
 その後、真空チャンバー内を大気圧に戻し、得られた積層体を蒸着装置から取り出した。
Comparative Example 1
A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm × 75 mm × 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
1.69 ml of the above TPD toluene solution (concentration 2 wt%) and 1.2 ml of a CdSe / ZnS core-shell quantum dot toluene dispersion (ED-C11-TOL-0620 manufactured by Evident Technology, Inc., concentration 10 mg / ml) After mixing, 0.51 ml of toluene was further added to prepare a TPD / QD mixed solution. This solution was spin-coated (1500 rpm, 30 seconds) on the previous substrate in a glove box substituted with dry nitrogen. When the cross section of this substrate was observed with a TEM, it was observed that the entire surface of the hole transport layer (TPD layer) was covered with a QD monolayer film in a layered manner. And the pressure inside the vacuum chamber was reduced to 1 × 10 −4 Pa. Using a normal vacuum deposition method, a light emitting material TAZ is deposited as a light emitting layer, an electron injection material Alq3 is deposited as an electron injection layer to a thickness of 40 nm and 20 nm, respectively, and finally LiF and Al are respectively deposited as a cathode at 1 nm and 150 nm. It evaporated until it became the thickness of.
Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus.
 得られた素子に直流電圧を印加し、発光特性を分光放射輝度計(ミノルタCS1000)を用いて評価した。その結果、印加電圧30Vで、発光輝度5.4cd/m、効率0.043cd/A、外部量子効率0.016%と、著しく低効率であった。色度は(0.474、0.462)であり、QD由来の発光に加えて、Alq3由来の緑色発光(発光ピーク波長520nm)が重畳していた。ここで、正孔輸送層を構成するTPDのHOMO準位は5.4eV、発光層を構成するTAZのそれは6.5eV、その差は1.1eVであった。
 尚、この素子からQDを除いた素子の発光は、発光層由来ではなく、電子注入層を形成するAlq3由来の緑色発光(発光ピーク波長520nm)と、TPD由来の青色発光(ピーク波長は425nm)とが共存していたが、主たる発光はAlq3由来の緑色発光であった。尚、どの層が発光しているかは、各材料の薄膜のPLスペクトルとの比較から判断した。
A DC voltage was applied to the obtained device, and the light emission characteristics were evaluated using a spectral radiance meter (Minolta CS1000). As a result, when the applied voltage was 30 V, the emission luminance was 5.4 cd / m 2 , the efficiency was 0.043 cd / A, and the external quantum efficiency was 0.016%, which was extremely low efficiency. The chromaticity was (0.474, 0.462), and in addition to light emission derived from QD, green light emission (emission peak wavelength 520 nm) derived from Alq3 was superimposed. Here, the HOMO level of TPD constituting the hole transport layer was 5.4 eV, that of TAZ constituting the light emitting layer was 6.5 eV, and the difference was 1.1 eV.
Note that the light emission of the device excluding QD from this device is not derived from the light emitting layer, but is derived from green light emitted from Alq3 that forms the electron injection layer (emission peak wavelength 520 nm) and blue light emitted from TPD (peak wavelength is 425 nm). However, the main light emission was green light emission derived from Alq3. Note that which layer emits light was determined by comparison with the PL spectrum of the thin film of each material.
比較例2
 25mm×75mm×1.1mm厚のITO透明電極(膜厚120nm)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。その基板の上に、スピンコート法(1500rmp、30秒)で正孔注入層として用いるポリ(エチレンジオキシ)チオフェン:ポリスチレンスルフォン酸(以下、PEDOT:PSS)を40nmの膜厚で成膜し、200℃30分の乾燥を行った。
 後述のHT1のトルエン溶液(濃度2wt%)1.69mlと、CdSe/ZnSコアシェル量子ドットのトルエン分散液(米国エヴィデントテクノロジー社製ED-C11-TOL-0620、濃度10mg/ml)1.2mlを混合し、さらにトルエン0.51mlを追加して、HT1/QD混合溶液を作製した。本溶液を、乾燥窒素置換されたグローブボックス中で、先のPEDOT:PSS塗布基板上に、スピンコート(1500rmp、30秒)した。
 この基板を市販の蒸着装置(日本真空技術(株)製)の基板ホルダーに固定し、真空チャンバー内を1×10-4Paまで減圧した。通常の真空蒸着法を用いて、発光層として発光材料TAZを、電子注入層として電子注入材料Alq3をそれぞれ、40nm、20nmの厚みに蒸着し、最後に陰極として、LiF、Alをそれぞれ1nm、150nmの厚みになるまで蒸着した。
その後、真空チャンバー内を大気圧に戻し、得られた積層体を蒸着装置から取り出した。
Comparative Example 2
A glass substrate (manufactured by Geomatic Co., Ltd.) with an ITO transparent electrode (thickness 120 nm) having a thickness of 25 mm × 75 mm × 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. On the substrate, poly (ethylenedioxy) thiophene: polystyrene sulfonic acid (hereinafter referred to as PEDOT: PSS) used as a hole injection layer by spin coating (1500 rpm, 30 seconds) was formed to a thickness of 40 nm, Drying was performed at 200 ° C. for 30 minutes.
1.69 ml of a HT1 toluene solution (concentration 2 wt%) described later and 1.2 ml of a CdSe / ZnS core-shell quantum dot toluene dispersion (ED-C11-TOL-0620 manufactured by Evident Technology, Inc., concentration 10 mg / ml) After mixing, 0.51 ml of toluene was further added to prepare an HT1 / QD mixed solution. This solution was spin-coated (1500 rpm, 30 seconds) on the PEDOT: PSS-coated substrate in a glove box substituted with dry nitrogen.
This substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. Using a normal vacuum deposition method, a light emitting material TAZ is deposited as a light emitting layer, an electron injection material Alq3 is deposited as an electron injection layer to a thickness of 40 nm and 20 nm, respectively, and finally LiF and Al are respectively deposited as a cathode at 1 nm and 150 nm. It evaporated until it became the thickness of.
Thereafter, the inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus.
 得られた素子に直流電圧を印加し、発光特性を分光放射輝度計(ミノルタCS1000)を用いて評価した。その結果、印加電圧7Vで、発光輝度172cd/m2、効率0.13cd/A、外部量子効率0.043%と、低効率であった。色度は(0.447、0.424)であり、QD由来の発光に加えて、Alq3由来の緑色発光(発光ピーク波長520nm)とHT1由来の青色発光(ピーク波長420nm)が重畳していた。ここで、HT1のHOMO準位は5.5eV、TAZのそれは6.5eV、その差は1.0eVであった。
 本素子からQDを除いた素子からは、正孔輸送層(HT1)由来の青発光が得られ、その時の発光ピーク波長は420nmであった。
A DC voltage was applied to the obtained device, and the light emission characteristics were evaluated using a spectral radiance meter (Minolta CS1000). As a result, at an applied voltage of 7 V, the emission luminance was 172 cd / m 2, the efficiency was 0.13 cd / A, and the external quantum efficiency was 0.043%. The chromaticity was (0.447, 0.424), and in addition to the light emission derived from QD, green light emission derived from Alq3 (emission peak wavelength 520 nm) and blue light emission derived from HT1 (peak wavelength 420 nm) were superimposed. . Here, the HOMO level of HT1 was 5.5 eV, that of TAZ was 6.5 eV, and the difference was 1.0 eV.
Blue light emission derived from the hole transport layer (HT1) was obtained from the device excluding QD from this device, and the emission peak wavelength at that time was 420 nm.
 本発明のQD-LED素子は、TV等向けの平面ディスプレイに好適に利用できる。また、平面発光体やディスプレイのバックライト等の光源、携帯電話、PDA、カーナビゲーション、車のインパネ等の表示部、照明等に好適に使用できる。
 この明細書に記載の文献の内容を全てここに援用する。
The QD-LED element of the present invention can be suitably used for a flat display for TV or the like. Further, it can be suitably used for light sources such as flat light emitters and display backlights, display units such as mobile phones, PDAs, car navigation systems, vehicle instrument panels, and lighting.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (7)

  1.  少なくとも陽極、正孔輸送帯域、発光帯域及び陰極を、この順に含み、
     前記正孔輸送帯域と発光帯域は隣接してあり、前記正孔輸送帯域と発光帯域の界面付近にナノクリスタル発光微粒子がある有機・無機ハイブリッド型電界発光素子であり、
     ナノクリスタル発光微粒子がない他は前記電界発光素子と同様の構成を有する有機電界発光素子の発光帯域の発光ピーク波長が490nm以下の青色光である、有機・無機ハイブリッド型電界発光素子。
    Including at least an anode, a hole transport zone, a light emission zone and a cathode in this order,
    The hole transport band and the light emission band are adjacent to each other, and an organic / inorganic hybrid electroluminescent device having nanocrystal light emitting fine particles near the interface between the hole transport band and the light emission band,
    An organic / inorganic hybrid electroluminescent device that emits blue light having an emission peak wavelength in a light emission band of 490 nm or less of an organic electroluminescent device having the same configuration as the electroluminescent device except that the nanocrystal luminescent fine particles are not present.
  2.  前記ナノクリスタル発光微粒子が半導体ナノクリスタルである、請求項1記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid electroluminescent device according to claim 1, wherein the nanocrystal luminescent fine particles are semiconductor nanocrystals.
  3.  前記正孔輸送帯域の主材料のHOMOエネルギー準位と、前記発光帯域の主材料のHOMOエネルギー準位との差が1eV未満である、請求項1又は2に記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid electroluminescence according to claim 1 or 2, wherein a difference between a HOMO energy level of the main material in the hole transport zone and a HOMO energy level of the main material in the emission zone is less than 1 eV. element.
  4.  前記正孔輸送帯域の主材料のHOMOエネルギー準位と、前記発光帯域の主材料のHOMOエネルギー準位との差が0.5eV未満である、請求項1又は2に記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid type according to claim 1 or 2, wherein a difference between a HOMO energy level of the main material in the hole transport band and a HOMO energy level of the main material in the emission band is less than 0.5 eV. Electroluminescent device.
  5.  前記発光帯域の発する光の発光ピーク波長が470nm以下である請求項3又は4に記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid electroluminescent device according to claim 3 or 4, wherein an emission peak wavelength of light emitted from the emission band is 470 nm or less.
  6.  前記発光帯域の主材料がアントラセン骨格を有する材料である、請求項5に記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid electroluminescent device according to claim 5, wherein a main material of the light emission band is a material having an anthracene skeleton.
  7.  前記正孔輸送帯域の主材料が芳香族アミン誘導体である、請求項5又は6に記載の有機・無機ハイブリッド型電界発光素子。 The organic / inorganic hybrid electroluminescent device according to claim 5 or 6, wherein the main material of the hole transport zone is an aromatic amine derivative.
PCT/JP2008/073360 2007-12-26 2008-12-23 Organic/inorganic hybrid electroluminescent element WO2009081918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007334727 2007-12-26
JP2007-334727 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081918A1 true WO2009081918A1 (en) 2009-07-02

Family

ID=40801219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073360 WO2009081918A1 (en) 2007-12-26 2008-12-23 Organic/inorganic hybrid electroluminescent element

Country Status (1)

Country Link
WO (1) WO2009081918A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097878A1 (en) * 2012-12-20 2014-06-26 株式会社村田製作所 Light emitting device, and method for producing light emitting device
WO2015056749A1 (en) * 2013-10-17 2015-04-23 株式会社村田製作所 Nanoparticle material and light-emittingl device
WO2017140159A1 (en) * 2016-02-18 2017-08-24 京东方科技集团股份有限公司 Quantum dot light-emitting device and fabrication method therefor, display substrate and display device
JP2018019083A (en) * 2016-07-29 2018-02-01 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device and organic light emitting display using the same
CN113130794A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217861A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Electroluminescent element
JP2003257671A (en) * 2002-02-28 2003-09-12 Fuji Photo Film Co Ltd Light emitting element and its manufacturing method
JP2004172102A (en) * 2002-10-29 2004-06-17 Mitsubishi Chemicals Corp Electroluminescent element
JP2004253175A (en) * 2003-02-18 2004-09-09 Mitsubishi Chemicals Corp Ellectroluminescent device
JP2006066395A (en) * 2004-08-25 2006-03-09 Samsung Electronics Co Ltd White luminescence organic/inorganic hybrid electroluminescent element containing semiconductor nanocrystal
JP2006186317A (en) * 2004-11-11 2006-07-13 Samsung Electronics Co Ltd Nano crystal of multilayer structure and manufacturing method therefor
JP2007095685A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Light-emitting device including semiconductor nanocrystal layer free of void and its manufacturing method
JP2007513478A (en) * 2003-12-02 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device
JP2008053229A (en) * 2006-08-24 2008-03-06 Samsung Electronics Co Ltd Organic light emitting display
JP2008300270A (en) * 2007-06-01 2008-12-11 Canon Inc Light emitting element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217861A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Electroluminescent element
JP2003257671A (en) * 2002-02-28 2003-09-12 Fuji Photo Film Co Ltd Light emitting element and its manufacturing method
JP2004172102A (en) * 2002-10-29 2004-06-17 Mitsubishi Chemicals Corp Electroluminescent element
JP2004253175A (en) * 2003-02-18 2004-09-09 Mitsubishi Chemicals Corp Ellectroluminescent device
JP2007513478A (en) * 2003-12-02 2007-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device
JP2006066395A (en) * 2004-08-25 2006-03-09 Samsung Electronics Co Ltd White luminescence organic/inorganic hybrid electroluminescent element containing semiconductor nanocrystal
JP2006186317A (en) * 2004-11-11 2006-07-13 Samsung Electronics Co Ltd Nano crystal of multilayer structure and manufacturing method therefor
JP2007095685A (en) * 2005-09-27 2007-04-12 Samsung Electronics Co Ltd Light-emitting device including semiconductor nanocrystal layer free of void and its manufacturing method
JP2008053229A (en) * 2006-08-24 2008-03-06 Samsung Electronics Co Ltd Organic light emitting display
JP2008300270A (en) * 2007-06-01 2008-12-11 Canon Inc Light emitting element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097878A1 (en) * 2012-12-20 2014-06-26 株式会社村田製作所 Light emitting device, and method for producing light emitting device
WO2015056749A1 (en) * 2013-10-17 2015-04-23 株式会社村田製作所 Nanoparticle material and light-emittingl device
JP6061112B2 (en) * 2013-10-17 2017-01-18 株式会社村田製作所 Light emitting device
JPWO2015056749A1 (en) * 2013-10-17 2017-03-09 株式会社村田製作所 Light emitting device
WO2017140159A1 (en) * 2016-02-18 2017-08-24 京东方科技集团股份有限公司 Quantum dot light-emitting device and fabrication method therefor, display substrate and display device
US10217953B2 (en) 2016-02-18 2019-02-26 Boe Technology Group Co., Ltd. Quantum dot light-emitting device, fabricating method thereof, and display substrate
JP2019508836A (en) * 2016-02-18 2019-03-28 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Quantum dot light emitting device, method of manufacturing the same, display substrate and display device
JP2018019083A (en) * 2016-07-29 2018-02-01 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device and organic light emitting display using the same
CN113130794A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN113130794B (en) * 2019-12-31 2022-12-13 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI669832B (en) Light emitting diode and light emitting display device including the same
JP7335710B2 (en) ELECTROLUMINESCENT DEVICE AND DISPLAY DEVICE INCLUDING THE SAME
US8076839B2 (en) Organic electroluminescence device
JP5927655B2 (en) Multilayer organic light emitting device
US8044390B2 (en) Material for organic electroluminescent device, organic electroluminescent device, and organic electroluminescent display
JP5215966B2 (en) Organic electroluminescence device and organic light emitting medium
JP4509211B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE HAVING TWO LIGHT EMITTING LAYERS THROUGH ELECTRON BARRIER
TWI478410B (en) An organic electroluminescent element
JP5097700B2 (en) Organic electroluminescence device
US20090243473A1 (en) Organic electroluminescence device
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
WO2005117500A1 (en) White organic electroluminescent device
JP2006066395A (en) White luminescence organic/inorganic hybrid electroluminescent element containing semiconductor nanocrystal
KR20100106415A (en) Organic electroluminescent device
JP2002100482A (en) Organic electroluminescence element
WO2005081587A1 (en) White color organic electroluminescence device
WO2007063986A1 (en) Diaminoarylene compound having carbazolyl group and use thereof
WO2005086539A1 (en) Organic electroluminescence display device
JP7088991B2 (en) Organic compounds, light emitting diodes and light emitting devices containing them
TW200910660A (en) Light emitting device
KR20190036937A (en) Lighe emitting diode and light emitting device having thereof
JP2009199738A (en) Organic/inorganic hybrid type electroluminescent element
JP2020066733A (en) Luminescence material, and electroluminescence element, ink composition and printed matter using the same
JP2020041080A (en) Composition for forming luminescent film, luminescent film and electroluminescence element
WO2009081918A1 (en) Organic/inorganic hybrid electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08864426

Country of ref document: EP

Kind code of ref document: A1