WO2014097878A1 - Light emitting device, and method for producing light emitting device - Google Patents

Light emitting device, and method for producing light emitting device Download PDF

Info

Publication number
WO2014097878A1
WO2014097878A1 PCT/JP2013/082425 JP2013082425W WO2014097878A1 WO 2014097878 A1 WO2014097878 A1 WO 2014097878A1 JP 2013082425 W JP2013082425 W JP 2013082425W WO 2014097878 A1 WO2014097878 A1 WO 2014097878A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
emitting layer
emitting device
light
Prior art date
Application number
PCT/JP2013/082425
Other languages
French (fr)
Japanese (ja)
Inventor
村山 浩二
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014097878A1 publication Critical patent/WO2014097878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to a light-emitting device and a method for manufacturing the light-emitting device, and more particularly, a light-emitting device having a quantum dot in which a surface of ultrafine particles is coated with a surfactant and forming a light-emitting layer with the aggregate of the quantum dots
  • the present invention relates to a device and a manufacturing method thereof.
  • Quantum dots which are nanoparticles with a particle size of 10 nm or less, have excellent carrier (electron, hole) confinement properties, and can easily generate excitons by electron-hole recombination. Therefore, light emission from free excitons can be expected, and light emission with high emission efficiency and sharp emission spectrum can be realized. Further, since quantum dots can be controlled in a wide wavelength range using the quantum size effect, their application to light emitting devices such as semiconductor lasers and light emitting diodes (LEDs) has attracted attention.
  • quantum dots nanoparticles
  • This self-assembling method is a method of producing quantum dots by a dry process, and a semiconductor layer is vapor-phase epitaxially grown under a specific condition that causes lattice mismatch to self-form a three-dimensional quantum dot structure.
  • FIG. 11 is a cross-sectional view schematically showing a quantum dot structure manufactured by this type of self-assembly method.
  • a plurality of quantum dots 102 are discretely distributed on the surface of the first substrate 101, and a second substrate 103 is formed on the surface of the first substrate 101 so as to cover the quantum dots 102.
  • distortion is caused by the difference between the lattice constant of the first substrate 101 and the lattice constant of the second substrate 103, and when the epitaxial growth cannot be performed, quantum dots 102 are formed at the locations where the distortion occurs. Is done.
  • the self-assembly method is said to be capable of obtaining a high-quality quantum dot structure in which quantum dots are distributed at a higher density than in the case of artificially performing microfabrication.
  • the quantum dots 102 are discretely distributed on the first substrate 101, the quantum dots 102 cannot be integrated on the first substrate 101 with high density. That is, in the self-assembly method, the surface density of the quantum dots 102 is small, and the interval t between the quantum dots 102 is larger than the quantum size of the quantum dots 102.
  • the first substrate 101 is bonded to the second substrate 103 at locations other than where the quantum dots 102 are formed, electrons and holes are injected into the quantum dots 102 as indicated by arrows in the figure. Without being transported to the first substrate 101 or the second substrate 103, the luminous efficiency may be reduced.
  • carriers that are not injected into the quantum dots may be recombined outside the quantum dots 102. If the light is recombined outside the quantum dots 102 to emit light as described above, the emission color purity may be reduced, and if the light is not emitted even after recombination, a leakage current may be caused and the emission efficiency may be reduced. There is.
  • Patent Document 1 a substrate having a main surface made of a first semiconductor, a plurality of quantum dots distributed discretely on the main surface, and a surface on which the quantum dots are distributed is formed.
  • a semiconductor device having a third semiconductor having a larger band gap or a barrier layer formed of an insulating material has been proposed.
  • a barrier layer 104 having insulating properties is formed by oxidizing a semiconductor such as AlAs having a larger band gap energy than the first substrate 101 and the second substrate 103.
  • carriers electrospray and holes
  • Patent Document 2 discloses a light emitting layer that is formed of quantum dots and emits light by recombination of electrons and holes, an n-type inorganic semiconductor layer that transports the electrons to the light emitting layer, and the holes in the light emitting layer.
  • a transporting p-type inorganic semiconductor layer, a first electrode for injecting the electrons into the n-type inorganic semiconductor layer, and a second electrode for injecting the holes into the p-type inorganic semiconductor layer There has been proposed a light emitting device comprising:
  • Patent Document 2 As shown in FIG. 13, a p-type semiconductor layer 111 and an n-type semiconductor layer 112 are formed of an inorganic material, and a light-emitting layer is formed between the p-type semiconductor layer 111 and the n-type semiconductor layer 112. A quantum dot layer 113 is interposed. That is, in Patent Document 2, a potential barrier is formed between the light-emitting layer and the carrier transport layer by forming the p-type semiconductor layer 111 and the n-type semiconductor layer 112 with an inorganic material having a band structure with good carrier transport properties. Even if there is a carrier, carriers are injected into the quantum dot layer 113 by the tunnel effect, thereby improving the injection efficiency of carriers into the quantum dot layer 113.
  • the quantum dot layer semiconductor 113 is produced by a wet process, the substrate on which the p-type semiconductor layer 111 is formed is immersed in a colloidal solution containing quantum dots, and the substrate is pulled up.
  • the quantum dot layer 113 is formed by evaporating the colloidal solution.
  • JP 2002-184970 A (Claim 1, Claim 2, FIG. 1, FIG. 3) JP 2006-185985 (Claim 1, FIG. 1, FIG. 3)
  • the barrier layer 104 is formed to fill the gap between the quantum dots 102 as shown in FIG. 12 described above, the barrier layer 104 is formed by a dry process. In order to effectively fill the gap with the barrier layer 104, the manufacturing process may be complicated.
  • the barrier layer 104 is formed after the quantum dot 102 is formed.
  • the barrier layer on the quantum dot 102 is dry-etched so as not to prevent carrier injection into the quantum dot 102. 104 needs to be removed, resulting in a complicated manufacturing process.
  • Patent Document 2 after the substrate is immersed in the colloidal solution, the substrate is pulled up to evaporate the colloidal solution.
  • the ultrafine nanoparticles are aggregated, and the particle size becomes coarse and desired. It is difficult to obtain the quantum dot layer 113 having the above emission characteristics.
  • the surface of the nanoparticle 114 is coat
  • the ligand of the surfactant 115 is low in volume, it is difficult to obtain sufficient dispersibility even if the nano particles 114 are coated with the surfactant 115. Because of its low molecular weight, its melting point and boiling point are low, and many are liquid at room temperature. In addition, such a surfactant that is liquid at normal temperature has a strong molecular motion, and the probability of inactivating the surface defects of the nanoparticles is reduced. Therefore, it is preferable to use a surfactant having a bulky ligand such as hexadecylamine.
  • the n-type semiconductor material 116 may flow between the nanoparticles 114.
  • the carriers are not injected into the nanoparticles 114 but pass through the surfactant 115 and pass through the gaps between the nanoparticles 114 and the nanoparticles 114, so that the p-type semiconductor layer (hole transport layer) 111 and the n-type semiconductor are used.
  • carriers may recombine in the n-type semiconductor material 116 flowing between the nanoparticles 114, and exciton emission may occur in the n-type semiconductor material 116.
  • Patent Document 2 even if the surface of the nanoparticle 114 is coated with the surfactant 115, if the ligand of the surfactant 115 is bulky, the carrier does not recombine in the nanoparticle 114.
  • the carriers that pass through the outside of the nanoparticles 114 and reach the p-type semiconductor layer 111 and the n-type semiconductor layer 112 or recombine outside the nanoparticles 114 are generated, resulting in a decrease in luminous efficiency and emission color purity. There is a risk of lowering.
  • the surfactant 115 having a low ligand volume when used, the dispersibility is lacking as described above, and the surface defects of the nanoparticles 114 may not be sufficiently inactivated.
  • the present invention has been made in view of such circumstances, and has improved the efficiency of carrier injection into nanoparticles, has good light emission characteristics, and has good light extraction efficiency from the light emitting layer to the outside. It is an object to provide a device and a method for manufacturing the light emitting device.
  • the present inventor has conducted intensive research to achieve the above object, and as a result, a dense insulating material made of a polymer compound excellent in voltage resistance is filled between ultrafine particles as nanoparticles, and the light-emitting layer is formed.
  • a dense insulating material made of a polymer compound excellent in voltage resistance is filled between ultrafine particles as nanoparticles, and the light-emitting layer is formed.
  • the light-emitting device according to the present invention is a light-emitting device in which a light-emitting layer is formed of an assembly of quantum dots, and the quantum dot has an ultrafine particle surface.
  • the light emitting layer is coated with a surfactant, and the space between the quantum dots is filled with an insulating material made of a polymer compound, and the light emitting layer has a thickness of 0.5 to 2 monolayers. It is a feature.
  • the monolayer refers to the average number of particles in the thickness direction of the quantum dots that are closely packed in the light emitting layer.
  • the polymer compound is selected from the group consisting of a polyimide resin, an acrylic resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, and a polyvinyl resin. Preferably it contains more than one species.
  • the ultrafine particles have a core-shell structure including a core portion and a shell portion covering the core portion.
  • a hole transport layer is formed on one main surface of the light emitting layer and an electron transport layer is formed on the other main surface of the light emitting layer.
  • the ultrafine particles include any one of a compound semiconductor, an oxide, and a single semiconductor.
  • the light-emitting device of the present invention is preferably an electroluminescence element (hereinafter referred to as “EL element”).
  • EL element an electroluminescence element
  • the light emitting layer can be manufactured inexpensively and efficiently without preparing a mixed solution in which a quantum dot dispersion solution and an insulating solution are mixed, without requiring a plurality of complicated film forming processes.
  • the method for manufacturing a light-emitting device includes a quantum dot dispersion solution preparation step of preparing a quantum dot dispersion solution coated with ultrafine particles with a surfactant, and an insulating material made of a polymer compound dissolved in a solvent.
  • a light emitting layer manufacturing step to be manufactured.
  • the manufacturing method of the light-emitting device of the present invention includes a first electrode layer forming step of forming a first electrode layer by applying a first conductive material to the surface of the transparent substrate, and the first electrode. Applying a hole transporting material to the surface of the layer to form a hole transporting layer, and forming an electron transporting layer by applying an electron transporting material to the surface of the light emitting layer.
  • the light emitting layer is preferably formed by applying the mixed solution to the surface of the hole transport layer.
  • a light-emitting device can be manufactured inexpensively and with high efficiency.
  • the quantum dots are coated with a surfactant on the surface of the ultrafine particles, and the light emitting layer has a polymer compound (polyimide resin, acrylic resin, polystyrene) between the quantum dots.
  • Resin, polycarbonate resin, polyester resin, polyamide resin, polyvinyl resin, etc. and the thickness of the light emitting layer is 0.5 to 2 monolayers.
  • carriers injected into the electrode by voltage application can be efficiently injected into the ultrafine particles without recombination of holes and electrons outside the ultrafine particles, thereby improving the emission characteristics,
  • a light-emitting device with good light extraction efficiency can be obtained.
  • a quantum dot dispersion solution preparation step for preparing a quantum dot dispersion solution coated with ultrafine particles with a surfactant, and an insulating material made of a polymer compound dissolved in a solvent
  • An insulating solution preparation step for preparing an insulating solution, a mixed solution preparation step for preparing a mixed solution by mixing the quantum dot dispersion solution and the insulating solution, and a light emitting layer using the mixed solution A light-emitting layer manufacturing step for manufacturing a light-emitting layer, and thus a light-emitting layer can be manufactured in one process without requiring a plurality of complicated film forming processes such as a dry process, and can be manufactured efficiently at low cost. Can do.
  • FIG. 10 is a schematic diagram for explaining the problem of Patent Document 2.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of an organic EL element such as a light emitting diode as a light emitting device according to the present invention.
  • an anode 2 is formed on a glass substrate (transparent substrate) 1, and a hole injection layer 3 and a hole transport layer 4 made of a hole transporting material are sequentially formed on the surface of the anode 2,
  • a light emitting layer 6 made of an assembly of quantum dot layers 5 is formed on the surface of the hole transport layer 4, and an electron transport layer 7 made of an electron transporting material is formed on the surface of the light emitting layer 6.
  • a cathode 8 is formed on the surface of the layer 7.
  • the quantum dot 5 has a core-shell structure in which nanoparticles (ultrafine particles) 9 have a core portion 10 and a shell portion 11 that protects the core portion 10, and the surface of the shell portion 11 is an interface. Coated with activator 12. Then, the holes transported from the hole transport layer 4 and the electrons transported from the electron transport layer 7 are injected into the core part 10 of the nanoparticles 9, and the holes and electrons are injected into the core part 10. Recombines and emits excitons.
  • nanoparticles (ultrafine particles) 9 have a core portion 10 and a shell portion 11 that protects the core portion 10, and the surface of the shell portion 11 is an interface. Coated with activator 12. Then, the holes transported from the hole transport layer 4 and the electrons transported from the electron transport layer 7 are injected into the core part 10 of the nanoparticles 9, and the holes and electrons are injected into the core part 10. Recombines and emits excitons.
  • the core material for forming the core portion 10 is not particularly limited as long as it is an inorganic semiconductor material having a photoelectric conversion effect, and InP, CdSe, CdS, PbSe, and the like can be used.
  • a shell material constituting the shell portion 11 an inorganic material having a higher energy level than the core material, for example, ZnS can be used.
  • a bulky polar group is used from the viewpoint of efficiently deactivating dispersibility and surface defects of the nanoparticles 9. It is possible to use an organic compound having a polar group bonded to an alkyl group such as a long-chain amine such as hexadecylamine or octadecylamine, trioctylphosphine, trioctylphosphine oxide, oleic acid or myristic acid.
  • the polar group is coordinated to the surface of the nanoparticle 9 as a ligand.
  • various organic semiconductor materials of the hole transport property normally used for organic EL elements for example, poly (3,4) -Ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS), N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4 '-Diamine (TPD), 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), 4,4', 4 "-tris (2-naphthylphenylamino) ) Triphenylamine (2-TNATA), N, N′-7-di (1-naphthyl) -N, N′-diphenyl-4,4′-diaminobiphenyl (Spiro-NPB), 4,4
  • Examples of the electron transporting material for forming the electron transporting layer 7 include various organic semiconductor materials having electron transporting properties that are usually used for organic EL elements, such as tris (8-hydroxyquinoline) aluminum (Alq3), 2- (4-Biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,2 ′, 2 ′′-(1,3,5-benzonitrile) -Tris (1-phenyl-1-H-benzimidazole (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 3- (benzothiazol-2-yl) -7- ( Diethylamino) -2H-1-benzopyran-2-one (coumarin 6), bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq) 4,4'-bis (9-carbazolyl) -2,2'-dimethyl-
  • the insulating material 13 is filled in the gaps between the quantum dots 5.
  • the quantum dot 5 is fixed between the nanoparticles 9 even if the surface density of the quantum dot 5 is improved. A gap is created. Accordingly, the carriers are not efficiently injected into the core portion 10 of the nanoparticles 9 and recombined outside the core portion 10 or reach the hole transport layer 4 or the electron transport layer 7, As a result, the emission color purity and the emission efficiency may be reduced.
  • the gaps between the quantum dots 5 are filled with a dense insulating material 13 having excellent voltage resistance.
  • Such an insulating material is preferably a polymer compound.
  • a grain boundary is formed, so that the carrier passes through the periphery of the nanoparticle 9 without being injected into the core portion 10 of the nanoparticle 9 in such a form as to travel through the grain boundary, or the grain boundary.
  • electrons and holes may be recombined, which is not preferable.
  • Such a polymer compound is not particularly limited, and examples thereof include polyimide resins, acrylic resins such as polymethyl methacrylate (PMMA) and polyacrylate, homopolymerized styrene, and acrylonitrile-styrene monomers.
  • Polystyrene resins such as copolymer (AS) or acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate resins, polyamide resins such as nylon, polyester resins, polyvinyl acetate and polyvinyl chloride, etc.
  • Various polymer compounds such as a resin can be used. Further, since the light emitting layer 6 is an ultra-thin film as will be described later, even if it is colored, the light emission purity is not affected.
  • the thickness of the light emitting layer 6 is controlled to be an ultrathin film of 0.5 to 2 monolayers.
  • the monolayer refers to the average number of particles in the thickness direction of the quantum dots 5 that are closely packed in the light emitting layer 6.
  • the average value of the number of particles in the thickness direction of the light emitting layer 6 is “1” in the state in which the quantum dots 5 are converted into close-packed in-plane, one monolayer (monomolecular layer), The case of “5” is 0.5 monolayer, and the case of “1.3” is 1.3 monolayer.
  • the thickness of the light emitting layer 6 needs to be 2 monolayers or less.
  • FIG. 3 is a cross-sectional view of the main part of the organic EL element when the thickness of the light emitting layer is 3 monolayers.
  • the thickness of the light emitting layer 6 exceeds 2 monolayers and becomes a thick film, for example, 3 monolayers, the surface density becomes saturated. For this reason, when the insulating material 13 is filled between the quantum dots 5, the interval between the quantum dots 5 is expanded, and the carrier transportability may be lowered.
  • the quantum dots 5 in contact with only one of the hole transport layer 4 and the electron transport layer 7 are included in the light emitting layer 6.
  • quantum dots 5 that do not contact any of the hole transport layer 4 and the electron transport layer 7 are formed, and it becomes difficult to efficiently inject electrons and holes into the nanoparticles 9 at the same time. That is, the carrier must be injected into the core portion 10 through the dense insulating material having high withstand voltage in addition to the surfactant 12 and the shell portion 11, and the carrier can be efficiently transported. This may make it difficult to recombine electrons and holes in the core 10 and reduce the possibility of exciton light emission.
  • the thickness of the light emitting layer 6 needs to be 2 monolayers or less.
  • the thickness of the light emitting layer 6 must be at least 0.5 monolayer.
  • the thickness of the light emitting layer 6 becomes excessively thin, and the distance between the hole transport layer 4 and the electron transport layer 7 becomes extremely small, and near the boundary surface between the two.
  • the distance between the hole transport layer 4 and the electron transport layer 7 becomes extremely small, and near the boundary surface between the two.
  • the organic EL element formed in this way carriers are injected into the anode 2 and the cathode 8 when a voltage is applied.
  • the holes injected into the anode 2 and the electrons injected into the cathode 8 are injected into the nanoparticles 9 through the bulk hetero network of the surfactant 12, and the holes and electrons are injected into the core 10. Recombine and emit light.
  • the nanoparticles 9 can be manufactured using various materials.
  • InP is used for the core portion 10 and ZnS is used for the shell portion 11 will be described as an example. .
  • FIG. 4 is a production process diagram showing a procedure for producing a quantum dot dispersion solution.
  • a quantum dot dispersion solution 14 containing InP / ZnS nanoparticles 9 is prepared.
  • indium acetate, myristic acid and octadecene are mixed in a container and dissolved by stirring in a nitrogen atmosphere, thereby preparing an indium precursor solution. Further, tristrimethylsilylphosphine, octylamine, and octadecene are mixed in a nitrogen atmosphere, thereby preparing a phosphorus precursor solution.
  • the indium precursor solution is heated to a predetermined temperature (for example, 190 ° C.), and the phosphorus precursor solution is injected into the heated solution. Then, precursors with high activity react with each other at a high temperature, indium and phosphorus combine to form nuclei, and then react with surrounding unreacted components to cause crystal growth, thereby producing InP quantum dots.
  • a predetermined temperature for example, 190 ° C.
  • a zinc oxide solution in which zinc oxide is dissolved in stearic acid and a sulfur solution in which sulfur is dissolved in stearic acid are prepared.
  • an InP quantum dot solution adjusted to a predetermined temperature (for example, 150 ° C.), heated and cooled, and washed to remove excess organic components in the solution. .
  • a surfactant made of an organic compound such as hexadecylamine hereinafter referred to as “HDA”
  • HDA hexadecylamine
  • An InP / ZnS dispersion solution having / ZnS as nanoparticles 9, that is, a quantum dot dispersion solution 14 is produced.
  • the concentration of the quantum dot dispersion solution 14 is adjusted according to a desired monolayer of the light emitting layer 6, for example, 1 to 5 mg / mL.
  • the insulating material 13 is dissolved in an organic solvent of the same type as the dispersion solvent, for example, toluene, to produce an insulating solution 15.
  • an organic solvent of the same type as the dispersion solvent for example, toluene
  • the quantum dot dispersion solution 14 and the insulating solution 15 are mixed to prepare a mixed solution 16 having a quantum dot concentration of 0.8 to 1.0 mg / mL as shown in FIG.
  • organic solvent for dissolving the insulating material 13 can be appropriately selected according to the insulating material 13 to be used.
  • a polyimide resin is used for the insulating material 13
  • a compound having a five-membered lactam structure such as N-methyl-2-pyrrolitone or ⁇ -butyrolactone can be used.
  • acrylic resin, polycarbonate resin, or polyester resin is used for the insulating material 13
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • chlorine-containing hydrocarbons such as trichlene, chlorobenzene, dichloroethane, and chloroform
  • esters Organic organic compounds, ketone organic compounds, and the like can be used.
  • a polystyrene-type resin for the insulating material 13
  • aromatic hydrocarbon and chlorine-containing hydrocarbon can be used in addition to the above-mentioned aromatic hydrocarbon and chlorine-containing hydrocarbon, and a polyamide-type resin is used. Phenol or methanol can be used. Furthermore, when using a polyvinyl acetate resin for the insulating material 13, in addition to the aromatic hydrocarbon and chlorine-containing hydrocarbon described above, aniline and pyridine can be used, and when using a polyvinyl chloride resin, The chlorine-containing hydrocarbons and acetone described above can be used.
  • the dispersion solvent of the quantum dot dispersion solution 14 is selected according to the organic solvent dissolved in the polymer compound as described above.
  • the organic solvent dissolved in the polymer compound for example, when PMMA is used for the insulating material 13, toluene in which PMMA is dissolved can be selected as an organic solvent for the insulating solution 15 and a dispersion solvent for the quantum dot dispersion solution 14.
  • 5 and 6 are manufacturing process diagrams showing the manufacturing method of the light emitting diode.
  • an ITO film is formed on the glass substrate 1 by sputtering and UV ozone treatment is performed to form an anode 2 having a thickness of 100 nm to 150 nm.
  • a hole injection layer solution is prepared.
  • the same material as the hole transporting material can be used, and for example, PEDOT: PSS or the like can be used.
  • the hole injection layer solution is applied onto the anode 2 by using a spin coating method or the like to form the hole injection layer 3 having a film thickness of 20 nm to 30 nm as shown in FIG.
  • a hole transport layer solution having a lower energy of HOMO (Highest Occupied Molecular Orbital) level than the hole injection layer material is prepared.
  • HOMO Highest Occupied Molecular Orbital
  • poly-TPD having a HOMO level lower than that of PEDOT: PSS can be used.
  • the hole transport layer solution is applied onto the positive electrode injection layer 3 by using a spin coat method or the like to form the hole transport layer 4 having a film thickness of 60 nm to 70 nm as shown in FIG.
  • the hole transport layer 4 may also be used as the hole injection layer 3.
  • the hole transport layer 4 can be formed of only poly-TPD, and the hole injection layer 3 can be omitted.
  • the mixed solution 16 is applied onto the hole transport layer 4 and dried in an N 2 atmosphere as shown in FIG.
  • the light emitting layer 6 is formed.
  • an electron transporting layer 7 having a film thickness of 50 nm to 70 nm is formed on the surface of the light emitting layer 6 by a vacuum deposition method.
  • LiF, Al or the like is used to form a cathode 8 having a film thickness of 100 nm to 300 nm by a vacuum vapor deposition method, whereby a light emitting diode is manufactured.
  • the quantum dot dispersion solution 14 in which the nanoparticles 9 are coated with the surfactant 12 is prepared, while the insulating material 13 made of a polymer compound is dissolved in a solvent to form the insulating solution 15.
  • the mixed solution 16 is prepared by mixing the quantum dot dispersion solution 14 and the insulating solution 15, and the light emitting layer 6 is formed by applying the mixed solution 16 to the surface of the hole transport layer 4. Therefore, the light emitting layer 6 can be manufactured in one process without requiring a plurality of complicated film forming processes such as a dry process, and can be manufactured inexpensively and efficiently.
  • the space between the nanoparticles 9 is filled with the insulating material 13, so that carriers are injected into the nanoparticles 9 with high efficiency and pass through the outside of the nanoparticles 9. Can be suppressed.
  • carriers injected into the electrode by voltage application can be efficiently injected into the nanoparticles 9 without recombination of holes and electrons outside the ultrafine particles, thereby improving the light emission characteristics.
  • the nanoparticles 9 have a core-shell structure in which the core portion 10 is covered with one layer of the shell portion 11, but the core portion has a two-layer core-shell structure or no shell portion. The same applies to the case.
  • a compound semiconductor made of InP / ZnS is used as the nanoparticles 9, but it goes without saying that it may be an oxide or a single semiconductor.
  • the said embodiment demonstrated the organic EL element which formed the positive hole transport layer 4 and the electron carrying layer 7 adjacent to the light emitting layer 6 with the organic compound, it is the same also about the inorganic EL element formed with the inorganic compound.
  • it is possible to suppress the leakage of carriers to the adjacent layer and to manufacture a high-quality light-emitting device with good injection efficiency into the nanoparticles 9 at low cost and high efficiency.
  • the electron transport layer 7 is performed by a dry process using a vacuum evaporation method, but may be formed by a wet process such as a spin coating method. However, in this case, it is necessary to use a dispersion solvent having the same polarity as the dispersion solution used in the dipping process.
  • the present invention can be applied to various light emitting devices such as semiconductor lasers and various display devices other than EL elements.
  • sample preparation (Sample numbers 1 to 5) A quantum dot dispersion solution having a concentration of 2 to 5 mg / mL was prepared by coating InP / ZnS nanoparticles formed of InP in the core and ZnS in the shell with HDA as a surfactant and dispersed in a toluene solution. .
  • PMMA as an insulating material was dissolved in toluene to prepare an insulating solution having a concentration of 0.1 mol / mL. Thereafter, the quantum dot dispersion solution and the insulating solution were mixed to prepare a mixed solution having a quantum dot concentration of 0.8 mg / mL.
  • an ITO film was formed on the glass substrate by a sputtering method, UV ozone treatment was performed, and an anode with a film thickness of 120 nm was produced.
  • PEDOT PSS as a hole injection layer material was dispersed in pure water to prepare a hole injection layer solution. Then, a hole injection layer solution was applied on the anode using a spin coating method to form a 20 nm thick hole injection layer.
  • poly-TPD as a hole transporting material was dispersed in chlorobenzene to prepare a hole transport layer solution. Then, the hole transport layer solution was applied onto the positive electrode injection layer by using a spin coating method to produce a 65 nm-thick hole transport layer.
  • the above-described mixed solution was applied onto the hole transport layer to form a light emitting layer. That is, the mixed solution was dropped onto the hole transport layer and the glass substrate was rotated at 3000 rpm for 60 seconds to produce a light emitting layer.
  • Alq3 was used as an electron transporting material, and an electron transport layer having a film thickness of 50 nm was formed on the surface of the light emitting layer by a vacuum deposition method.
  • the light emitting layer was adjusted to have a thickness of 0.3 to 4 monolayer by adjusting the dropping amount of the mixed solution and the concentration of quantum dots in the mixed solution.
  • TEM transmission electron microscope
  • sample number 4 the number of monolayers was confirmed from the TEM image shown in FIG. 7 as follows.
  • Sample No. 6 In Sample No. 2, instead of using the mixed solution described above, a quantum dot dispersion solution was used, and the quantum dot dispersion solution was applied on the hole transport layer so as to have a thickness of 0.5 monolayer. A layer was formed. Other than that, the sample No. 6 was prepared by the same method and procedure as Sample No. 2.
  • Table 1 shows the thickness of the light emitting layer of each sample Nos. 1 to 6 and whether or not the PMMA is filled in the light emitting layer.
  • each sample was placed in an integrating sphere, and a DC voltage was applied using a constant current power source (2400 manufactured by Keithley Instruments Inc.) to cause the sample to emit light.
  • the emitted light was collected by an integrating sphere, and the emission spectrum was measured using a multichannel detector (PMA-11 manufactured by Hamamatsu Photonics).
  • FIG. 8 shows the measurement results.
  • the horizontal axis indicates the wavelength (nm)
  • the vertical axis indicates the emission spectrum (au)
  • the upper side indicates the measurement result of the sample number 2
  • the lower side indicates the measurement result of the sample number 6.
  • Sample No. 6 had an emission spectrum peaked at a wavelength of around 614 nm, but an emission spectrum appeared even at a wavelength of around 535 nm, and the purity of the emitted color was reduced. This is because Alq3, which is an electron transporting material, flows between quantum dots and there are carriers that recombine within the nanoparticles, while some holes flow into the gaps between the quantum dots in the electron transporting material. It is considered that light was recombined with electrons or recombined with electrons in the electron transport layer adjacent to the light emitting layer, and light was emitted even in the vicinity of 535 nm which is the absorption wavelength region of Alq3.
  • Alq3 which is an electron transporting material
  • sample No. 2 is dense and has excellent voltage resistance, and is filled between the quantum dots, so that it emits light only in the vicinity of 614 nm, which is the absorption wavelength region of the quantum dots, and emits light in the electron transport layer. It was confirmed that good emission color purity was obtained.
  • FIG. 9 is a characteristic diagram showing the relationship between the applied DC voltage and the luminance.
  • the horizontal axis indicates the DC voltage (a.u.), and the vertical axis indicates the luminance (a.u.).
  • Equation (1) The external quantum efficiency ⁇ ext was calculated by multiplying the internal quantum efficiency ⁇ int and the light extraction efficiency ⁇ out.
  • ⁇ ext ⁇ ⁇ ⁇ int ⁇ ⁇ out (1)
  • is a carrier balance factor of holes and electrons.
  • the internal quantum efficiency ⁇ int indicates the recombination ratio of electrons and holes in the quantum dot, that is, the ratio of photons that contributed to exciton emission, measured the number of emitted photons, and injected electrons calculated from the current density. And the number of emitted photons.
  • the light extraction efficiency ⁇ out indicates the ratio of the light extracted to the outside with respect to the exciton emission.
  • FIG. 10 is a characteristic diagram showing the relationship between the current density and the external quantum efficiency.
  • the horizontal axis represents the current density (au), and the vertical axis represents the external quantum efficiency (a.u.).
  • the light emitting layer has a thickness of 0.5 monolayer or more, good external quantum efficiency is obtained even at a low current density.
  • the thickness of the light emitting layer is preferably 0.5 to 2 monolayers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

Nano elements (9) each comprise a core shell construction having a core part (10) and a shell part (11) that protects the core part (10). Quantum dots (5) are each covered by a surfactant (12) that provides the surface of the shell part (11) in the nano element (9) with bulky ligands. In a light emitting layer (6), spaces between the quantum dots (5) are filled with an insulating material comprising a polymer compound. The thickness of the light emitting layer (6) is controlled in such a manner as to be 0.5 to 2 monolayers. A quantum dot dispersion solution obtained by dispersing the quantum dots (5) in a dispersion solvent, and an insulating solution obtained by dissolving the insulating material (14) in an organic solvent are prepared, and the light emitting layer (6) is formed by applying a mixed solution obtained by mixing both of the abovementioned solutions together on a hole transport layer (4). A light emitting device in which the efficiency of injecting a carrier in nano particles is improved, that has good light emission properties, and is efficient at ejecting light to the outside from a light emitting layer is thus achieved. Furthermore, a method for producing the light emitting device is thus achieved.

Description

発光デバイス、及び該発光デバイスの製造方法Light emitting device and method for manufacturing the light emitting device
 本発明は、発光デバイス、及び該発光デバイスの製造方法に関し、より詳しくは超微粒子の表面が界面活性剤で被覆された量子ドットを有し、該量子ドットの集合体で発光層を形成する発光デバイスとその製造方法に関する。 The present invention relates to a light-emitting device and a method for manufacturing the light-emitting device, and more particularly, a light-emitting device having a quantum dot in which a surface of ultrafine particles is coated with a surfactant and forming a light-emitting layer with the aggregate of the quantum dots The present invention relates to a device and a manufacturing method thereof.
 粒径が10nm以下のナノ粒子である量子ドットは、キャリア(電子、正孔)の閉じ込め性に優れていることから、電子-正孔の再結合により励起子を容易に生成することができる。このため自由励起子からの発光が期待でき、発光効率が高く発光スペクトルの鋭い発光を実現することが可能である。また、量子ドットは、量子サイズ効果を利用した広い波長範囲での制御が可能であることから、半導体レーザや発光ダイオード(LED)等の発光デバイスへの応用が注目されている。 Quantum dots, which are nanoparticles with a particle size of 10 nm or less, have excellent carrier (electron, hole) confinement properties, and can easily generate excitons by electron-hole recombination. Therefore, light emission from free excitons can be expected, and light emission with high emission efficiency and sharp emission spectrum can be realized. Further, since quantum dots can be controlled in a wide wavelength range using the quantum size effect, their application to light emitting devices such as semiconductor lasers and light emitting diodes (LEDs) has attracted attention.
 この種の発光デバイスでは、キャリアを高効率で量子ドット(ナノ粒子)内に閉じ込めて再結合させ、発光効率を高めるのが重要とされている。そして、量子ドットを作製する方法としては、セルフアセンブル(自己組織化)法と呼称される方法が知られている。このセルフアセンブル法は、ドライプロセスで量子ドットを作製する方法であり、格子不整合となる特定の条件下で半導体層を気相エピタキシャル成長させ、3次元的な量子ドット構造を自己形成している。 In this type of light emitting device, it is important to confine carriers in quantum dots (nanoparticles) with high efficiency and recombine to increase the light emission efficiency. As a method for producing quantum dots, a method called a self-assembly method is known. This self-assembling method is a method of producing quantum dots by a dry process, and a semiconductor layer is vapor-phase epitaxially grown under a specific condition that causes lattice mismatch to self-form a three-dimensional quantum dot structure.
 図11は、この種のセルフアセンブル法で作製された量子ドット構造を模式的に示す断面である。 FIG. 11 is a cross-sectional view schematically showing a quantum dot structure manufactured by this type of self-assembly method.
 セルフアセンブル法では、第1の基板101の表面に複数の量子ドット102を離散的に分布させ、前記量子ドット102を覆うように第1の基板101の表面には第2の基板103が形成される。すなわち、このセルフアセンブル法では、第1の基板101の格子定数と第2の基板103の格子定数との差から歪みを生じさせ、エピタキシャル成長ができなくなると歪みが生じた箇所に量子ドット102が形成される。そして、セルフアセンブル法は、人為的に微細加工する場合に比べて、量子ドットが高密度に分布し、かつ高品質の量子ドット構造を得ることができるとされている。 In the self-assembly method, a plurality of quantum dots 102 are discretely distributed on the surface of the first substrate 101, and a second substrate 103 is formed on the surface of the first substrate 101 so as to cover the quantum dots 102. The That is, in this self-assembling method, distortion is caused by the difference between the lattice constant of the first substrate 101 and the lattice constant of the second substrate 103, and when the epitaxial growth cannot be performed, quantum dots 102 are formed at the locations where the distortion occurs. Is done. The self-assembly method is said to be capable of obtaining a high-quality quantum dot structure in which quantum dots are distributed at a higher density than in the case of artificially performing microfabrication.
 しかしながら、このようなセルフアセンブル法では、量子ドット102が第1の基板101上で離散的に分布することから、該量子ドット102を第1の基板101上に高密度に集積させることができない。すなわち、セルフアセンブル法では、量子ドット102の面密度が小さく、量子ドット102同士の間隔tが量子ドット102の量子サイズに比べても大きくなる。しかも、量子ドット102の形成箇所以外では、第1の基板101は第2の基板103と接合されることから、電子や正孔は、図中、矢印で示すように、量子ドット102に注入されずに第1の基板101又は第2の基板103に輸送され、発光効率の低下を招くおそれがある。 However, in such a self-assembly method, since the quantum dots 102 are discretely distributed on the first substrate 101, the quantum dots 102 cannot be integrated on the first substrate 101 with high density. That is, in the self-assembly method, the surface density of the quantum dots 102 is small, and the interval t between the quantum dots 102 is larger than the quantum size of the quantum dots 102. In addition, since the first substrate 101 is bonded to the second substrate 103 at locations other than where the quantum dots 102 are formed, electrons and holes are injected into the quantum dots 102 as indicated by arrows in the figure. Without being transported to the first substrate 101 or the second substrate 103, the luminous efficiency may be reduced.
 また、上記セルフアセンブル法では、量子ドットに注入されなかったキャリアが量子ドット102の外部で再結合するおそれもある。そして、このように量子ドット102の外部で再結合して発光すると発光色純度の低下を招くおそれがあり、また再結合しても発光しない場合はリーク電流となって発光効率の低下を招くおそれがある。 In the self-assembly method, carriers that are not injected into the quantum dots may be recombined outside the quantum dots 102. If the light is recombined outside the quantum dots 102 to emit light as described above, the emission color purity may be reduced, and if the light is not emitted even after recombination, a leakage current may be caused and the emission efficiency may be reduced. There is.
 そこで、特許文献1には、第1の半導体からなる主表面を有する基板と、前記主表面の上に離散的に分布する複数の量子ドットと、前記量子ドットの分布する面の上に形成された第2の半導体からなる被覆層と、前記量子ドットの分布する面内のうち、前記量子ドットの配置されていない領域の少なくとも一部に配置され、前記第1及び第2の半導体のバンドギャップよりも大きなバンドギャップを有する第3の半導体もしくは絶縁材料で形成された障壁層とを有する半導体装置が提案されている。 Therefore, in Patent Document 1, a substrate having a main surface made of a first semiconductor, a plurality of quantum dots distributed discretely on the main surface, and a surface on which the quantum dots are distributed is formed. A covering layer made of the second semiconductor and a band gap of the first and second semiconductors disposed in at least a part of a region where the quantum dots are not arranged in a plane where the quantum dots are distributed. A semiconductor device having a third semiconductor having a larger band gap or a barrier layer formed of an insulating material has been proposed.
 この特許文献1では、図12に示すように、第1の基板101や第2の基板103よりも大きなバンドギャップエネルギーを有するAlAs等の半導体を酸化させて絶縁性を有する障壁層104を形成し、これにより図中、矢印で示すように、キャリア(電子及び正孔)を量子ドット102に注入し易くし、再結合による発光効率の向上を図っている。 In this Patent Document 1, as shown in FIG. 12, a barrier layer 104 having insulating properties is formed by oxidizing a semiconductor such as AlAs having a larger band gap energy than the first substrate 101 and the second substrate 103. As a result, as indicated by arrows in the figure, carriers (electrons and holes) can be easily injected into the quantum dots 102 to improve luminous efficiency by recombination.
 また、特許文献2には、量子ドットでなり、電子及びホールの再結合によって発光する発光層と、前記発光層へ前記電子を輸送するn型の無機半導体層と、前記発光層へ前記ホールを輸送するp型の無機半導体層と、前記n型の無機半導体層に前記電子を注入するための第1の電極と、前記p型の無機半導体層に前記ホールを注入するための第2の電極とを具備した発光デバイスが提案されている。 Patent Document 2 discloses a light emitting layer that is formed of quantum dots and emits light by recombination of electrons and holes, an n-type inorganic semiconductor layer that transports the electrons to the light emitting layer, and the holes in the light emitting layer. A transporting p-type inorganic semiconductor layer, a first electrode for injecting the electrons into the n-type inorganic semiconductor layer, and a second electrode for injecting the holes into the p-type inorganic semiconductor layer There has been proposed a light emitting device comprising:
 この特許文献2では、図13に示すように、p型半導体層111及びn型半導体層112を無機材料で形成し、これらp型半導体層111とn型半導体層112との間に発光層となる量子ドット層113が介装されている。すなわち、この特許文献2では、キャリア輸送性の良好なバンド構造を有する無機材料でp型半導体層111及びn型半導体層112を形成することによって、発光層とキャリア輸送層との間にポテンシャル障壁がある場合であっても、トンネル効果によりキャリアを量子ドット層113に注入し、これによりキャリアの量子ドット層113への注入効率を向上させている。 In Patent Document 2, as shown in FIG. 13, a p-type semiconductor layer 111 and an n-type semiconductor layer 112 are formed of an inorganic material, and a light-emitting layer is formed between the p-type semiconductor layer 111 and the n-type semiconductor layer 112. A quantum dot layer 113 is interposed. That is, in Patent Document 2, a potential barrier is formed between the light-emitting layer and the carrier transport layer by forming the p-type semiconductor layer 111 and the n-type semiconductor layer 112 with an inorganic material having a band structure with good carrier transport properties. Even if there is a carrier, carriers are injected into the quantum dot layer 113 by the tunnel effect, thereby improving the injection efficiency of carriers into the quantum dot layer 113.
 また、この特許文献2では、量子ドット層半導体113をウェットプロセスで作製しており、p型半導体層111が形成された基板を、量子ドットを含むコロイド溶液に浸漬し、基板を引き上げた後、コロイド溶液を蒸発させることにより量子ドット層113を形成している。 Moreover, in this patent document 2, the quantum dot layer semiconductor 113 is produced by a wet process, the substrate on which the p-type semiconductor layer 111 is formed is immersed in a colloidal solution containing quantum dots, and the substrate is pulled up. The quantum dot layer 113 is formed by evaporating the colloidal solution.
特開2002-184970号公報(請求項1、請求項2、図1、図3)JP 2002-184970 A (Claim 1, Claim 2, FIG. 1, FIG. 3) 特開2006-185985号公報(請求項1、図1、図3)JP 2006-185985 (Claim 1, FIG. 1, FIG. 3)
 しかしながら、特許文献1は、上記した図12に示すように、量子ドット102同士の間隙を埋めるために障壁層104を形成しているものの、ドライプロセスで作製していることから、量子ドット間の間隙を障壁層104で効果的に充填するためには製造工程の煩雑化を招くおそれがある。 However, in Patent Document 1, although the barrier layer 104 is formed to fill the gap between the quantum dots 102 as shown in FIG. 12 described above, the barrier layer 104 is formed by a dry process. In order to effectively fill the gap with the barrier layer 104, the manufacturing process may be complicated.
 すなわち、特許文献1では、量子ドット102を形成した後、障壁層104が形成されるが、この場合、量子ドット102へのキャリア注入を妨げないようにドライエッチングして量子ドット102上の障壁層104を除去する必要があり、製造工程の煩雑化を招く。 That is, in Patent Document 1, the barrier layer 104 is formed after the quantum dot 102 is formed. In this case, the barrier layer on the quantum dot 102 is dry-etched so as not to prevent carrier injection into the quantum dot 102. 104 needs to be removed, resulting in a complicated manufacturing process.
 また、特許文献2では、基板をコロイド溶液に浸漬した後、該基板を引き上げ、コロイド溶液を蒸発させているものの、超微粒のナノ粒子同士が凝集するおそれがあり、粒径が粗大化し、所望の発光特性を有する量子ドット層113を得るのは困難である。 Further, in Patent Document 2, after the substrate is immersed in the colloidal solution, the substrate is pulled up to evaporate the colloidal solution. However, there is a possibility that the ultrafine nanoparticles are aggregated, and the particle size becomes coarse and desired. It is difficult to obtain the quantum dot layer 113 having the above emission characteristics.
 そして、このようなナノ粒子同士の凝集を回避するためには、図14に示すように、配位子を有する界面活性剤115でナノ粒子114の表面を被覆し、ナノ粒子114の表面欠陥を不活性化するのが望ましいと考えられる。 And in order to avoid such aggregation of nanoparticles, as shown in FIG. 14, the surface of the nanoparticle 114 is coat | covered with the surfactant 115 which has a ligand, and the surface defect of the nanoparticle 114 is removed. It may be desirable to deactivate.
 この場合、界面活性剤115の配位子は嵩が低いと、ナノ粒子114を界面活性剤115で被覆しても、十分な分散性を得るのが困難であり、しかも、界面活性剤115の分子量も小さいことから融点や沸点が低く、常温で液体のものが多い。しかも、このような常温で液体の界面活性剤は、分子運動が激しく、ナノ粒子の表面欠陥を不活性化する確率が小さくなる。したがって、ヘキサデシルアミン等の嵩高い配位子を有する界面活性剤を使用するのが好ましい。 In this case, if the ligand of the surfactant 115 is low in volume, it is difficult to obtain sufficient dispersibility even if the nano particles 114 are coated with the surfactant 115. Because of its low molecular weight, its melting point and boiling point are low, and many are liquid at room temperature. In addition, such a surfactant that is liquid at normal temperature has a strong molecular motion, and the probability of inactivating the surface defects of the nanoparticles is reduced. Therefore, it is preferable to use a surfactant having a bulky ligand such as hexadecylamine.
 しかしながら、嵩高い配位子を有する界面活性剤115でナノ粒子114を被覆した場合、ナノ粒子114間の間隔が開いてしまい、膜密度を十分に緻密化するのが困難となる。このためn型半導体層112の形成工程で、ナノ粒子114間にn型半導体材料116が流れ込んでしまうおそれがある。そしてその結果、キャリアはナノ粒子114に注入されずに界面活性剤115を伝ってナノ粒子114とナノ粒子114との間隙を通過し、p型半導体層(正孔輸送層)111やn型半導体層(電子輸送層)112に流れてしまうおそれがある。また、図中、aに示すように、ナノ粒子114間に流れ込んだn型半導体材料116中でキャリアが再結合し、n型半導体材料116内で励起子発光するおそれもある。 However, when the nanoparticles 114 are coated with the surfactant 115 having a bulky ligand, the interval between the nanoparticles 114 is opened, and it is difficult to sufficiently densify the film density. For this reason, in the process of forming the n-type semiconductor layer 112, the n-type semiconductor material 116 may flow between the nanoparticles 114. As a result, the carriers are not injected into the nanoparticles 114 but pass through the surfactant 115 and pass through the gaps between the nanoparticles 114 and the nanoparticles 114, so that the p-type semiconductor layer (hole transport layer) 111 and the n-type semiconductor are used. There is a risk of flowing into the layer (electron transport layer) 112. In addition, as indicated by a in the figure, carriers may recombine in the n-type semiconductor material 116 flowing between the nanoparticles 114, and exciton emission may occur in the n-type semiconductor material 116.
 このように特許文献2で、たとえナノ粒子114の表面を界面活性剤115で被覆したとしても、界面活性剤115の配位子が嵩高いと、キャリアはナノ粒子114内で再結合せずに、ナノ粒子114の外部を通過してp型半導体層111やn型半導体層112に達したり、ナノ粒子114の外部で再結合して発光するキャリアが発生し、発光効率の低下や発光色純度の低下を招くおそれがある。 Thus, in Patent Document 2, even if the surface of the nanoparticle 114 is coated with the surfactant 115, if the ligand of the surfactant 115 is bulky, the carrier does not recombine in the nanoparticle 114. The carriers that pass through the outside of the nanoparticles 114 and reach the p-type semiconductor layer 111 and the n-type semiconductor layer 112 or recombine outside the nanoparticles 114 are generated, resulting in a decrease in luminous efficiency and emission color purity. There is a risk of lowering.
 一方、配位子の嵩が低い界面活性剤115を使用した場合は、上述したように分散性に欠ける上に、ナノ粒子114の表面欠陥を十分に不活性化できなくなるおそれがある。 On the other hand, when the surfactant 115 having a low ligand volume is used, the dispersibility is lacking as described above, and the surface defects of the nanoparticles 114 may not be sufficiently inactivated.
 本発明はこのような事情に鑑みなされたものであって、ナノ粒子内へのキャリアの注入効率が向上し、良好な発光特性を有すると共に発光層から外部への光の取出効率も良好な発光デバイス、及び該発光デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has improved the efficiency of carrier injection into nanoparticles, has good light emission characteristics, and has good light extraction efficiency from the light emitting layer to the outside. It is an object to provide a device and a method for manufacturing the light emitting device.
 本発明者は上記目的を達成するために鋭意研究を行なったところ、緻密で耐電圧性に優れた高分子化合物からなる絶縁性材料をナノ粒子である超微粒子間に充填し、かつ発光層の厚みを0.5~2モノレイヤーに制御することにより、キャリアの超微粒子内への注入効率を向上させることができ、これにより発光特性が向上し、かつ外部への光の取出効率も良好であるという知見を得た。 The present inventor has conducted intensive research to achieve the above object, and as a result, a dense insulating material made of a polymer compound excellent in voltage resistance is filled between ultrafine particles as nanoparticles, and the light-emitting layer is formed. By controlling the thickness to 0.5 to 2 monolayers, it is possible to improve the efficiency of carrier injection into ultrafine particles, thereby improving the light emission characteristics and the efficiency of extracting light to the outside. The knowledge that there is.
 本発明はこのような知見に基づきなされたものであって、本発明に係る発光デバイスは、発光層が量子ドットの集合体で形成された発光デバイスにおいて、前記量子ドットは、超微粒子の表面が界面活性剤で被覆されると共に、前記発光層は、前記量子ドット間が高分子化合物からなる絶縁性材料で充填され、かつ、発光層の厚みが、0.5~2モノレイヤーであることを特徴としている。 The present invention has been made based on such knowledge, and the light-emitting device according to the present invention is a light-emitting device in which a light-emitting layer is formed of an assembly of quantum dots, and the quantum dot has an ultrafine particle surface. The light emitting layer is coated with a surfactant, and the space between the quantum dots is filled with an insulating material made of a polymer compound, and the light emitting layer has a thickness of 0.5 to 2 monolayers. It is a feature.
 ここで、モノレイヤーとは、発光層に最密充填されている量子ドットの厚み方向の平均粒子個数をいう。 Here, the monolayer refers to the average number of particles in the thickness direction of the quantum dots that are closely packed in the light emitting layer.
 また、本発明の発光デバイスは、前記高分子化合物が、ポリイミド系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びポリビニル系樹脂の群から選択された1種以上を含むのが好ましい。 In the light emitting device of the present invention, the polymer compound is selected from the group consisting of a polyimide resin, an acrylic resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, and a polyvinyl resin. Preferably it contains more than one species.
 さらに、本発明の発光デバイスは、前記超微粒子は、コア部と該コア部を被覆するシェル部とからなるコアーシェル構造を有しているのが好ましい。 Furthermore, in the light-emitting device of the present invention, it is preferable that the ultrafine particles have a core-shell structure including a core portion and a shell portion covering the core portion.
 また、本発明の発光デバイスは、前記発光層の一方の主面に正孔輸送層が形成されると共に、前記発光層の他方の主面に電子輸送層が形成されているのが好ましい。 In the light emitting device of the present invention, it is preferable that a hole transport layer is formed on one main surface of the light emitting layer and an electron transport layer is formed on the other main surface of the light emitting layer.
 また、本発明の発光デバイスは、前記超微粒子が、化合物半導体、酸化物、及び単体半導体のいずれかを含むのが好ましい。 In the light emitting device of the present invention, it is preferable that the ultrafine particles include any one of a compound semiconductor, an oxide, and a single semiconductor.
 さらに、本発明の発光デバイスは、エレクトロ・ルミネッセンス素子(以下、「EL素子」という。)であるのが好ましい。 Furthermore, the light-emitting device of the present invention is preferably an electroluminescence element (hereinafter referred to as “EL element”).
 また、上記発光層は、量子ドット分散溶液と絶縁性溶液とを混合させた混合溶液を調製することにより、煩雑な複数の成膜プロセスを要することなく、安価かつ効率良く製造することができる。 Further, the light emitting layer can be manufactured inexpensively and efficiently without preparing a mixed solution in which a quantum dot dispersion solution and an insulating solution are mixed, without requiring a plurality of complicated film forming processes.
 すなわち、本発明に係る発光デバイスの製造方法は、界面活性剤で超微粒子を被覆した量子ドット分散溶液を作製する量子ドット分散溶液作製工程と、高分子化合物からなる絶縁性材料を溶媒に溶解させて絶縁性溶液を作製する絶縁性溶液作製工程と、前記量子ドット分散溶液と前記絶縁性溶液とを混合して混合溶液を作製する混合溶液作製工程と、前記混合溶液を使用して発光層を作製する発光層作製工程とを含むことを特徴としている。 That is, the method for manufacturing a light-emitting device according to the present invention includes a quantum dot dispersion solution preparation step of preparing a quantum dot dispersion solution coated with ultrafine particles with a surfactant, and an insulating material made of a polymer compound dissolved in a solvent. An insulating solution preparation step for preparing an insulating solution, a mixed solution preparation step for preparing a mixed solution by mixing the quantum dot dispersion solution and the insulating solution, and a light emitting layer using the mixed solution. And a light emitting layer manufacturing step to be manufactured.
 また、本発明の発光デバイスの製造方法は、透明基板の表面に第1の導電性材料を塗付して第1の電極層を形成する第1の電極層形成工程と、前記第1の電極層の表面に正孔輸送性材料を塗付し、正孔輸送層を形成する正孔輸送層形成工程と、前記発光層の表面に電子輸送性材料を塗付し、電子輸送層を形成する電子輸送層形成工程と、前記電子輸送層の表面に第2の導電性材料を塗付して第2の電極層を形成する第2の電極層形成工程とを含み、前記発光層形成工程は、前記正孔輸送層の表面に前記混合溶液を塗付して前記発光層を形成するのが好ましい。 Moreover, the manufacturing method of the light-emitting device of the present invention includes a first electrode layer forming step of forming a first electrode layer by applying a first conductive material to the surface of the transparent substrate, and the first electrode. Applying a hole transporting material to the surface of the layer to form a hole transporting layer, and forming an electron transporting layer by applying an electron transporting material to the surface of the light emitting layer. An electron transport layer forming step, and a second electrode layer forming step of forming a second electrode layer by applying a second conductive material to the surface of the electron transport layer, the light emitting layer forming step comprising: The light emitting layer is preferably formed by applying the mixed solution to the surface of the hole transport layer.
 これにより隣接する正孔輸送層や電子輸送層が無機材料或いは有機材料のいずれで形成されていても、キャリアの隣接層へのリークを抑制でき、超微粒子への注入効率が良好な高品質の発光デバイスを安価かつ高効率で製造することができる。 As a result, even if the adjacent hole transport layer or electron transport layer is formed of either an inorganic material or an organic material, leakage of the carrier to the adjacent layer can be suppressed, and high-quality injection efficiency into the ultrafine particles is good. A light-emitting device can be manufactured inexpensively and with high efficiency.
 本発明の発光デバイスによれば、量子ドットは、超微粒子の表面が界面活性剤で被覆されると共に、前記発光層は、前記量子ドット間が高分子化合物(ポリイミド系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びポリビニル系樹脂等)からなる絶縁性材料で充填され、かつ、発光層の厚みが、0.5~2モノレイヤーであるので、正孔と電子とが超微粒子の外部で再結合するのを回避してキャリアを効率良く超微粒子内に輸送することができ、これにより、キャリアの超微粒子への注入効率を向上させることが可能となる。 According to the light emitting device of the present invention, the quantum dots are coated with a surfactant on the surface of the ultrafine particles, and the light emitting layer has a polymer compound (polyimide resin, acrylic resin, polystyrene) between the quantum dots. Resin, polycarbonate resin, polyester resin, polyamide resin, polyvinyl resin, etc.) and the thickness of the light emitting layer is 0.5 to 2 monolayers. By avoiding recombination of holes and electrons outside the ultrafine particles, carriers can be efficiently transported into the ultrafine particles, which can improve the efficiency of carrier injection into the ultrafine particles. Become.
 すなわち、電圧印加により電極に注入されたキャリアは、超微粒子の外部で正孔と電子が再結合することもなく、効率良く超微粒子内に注入することができ、これにより発光特性が向上し、かつ外部への光の取出効率も良好な発光デバイスを得ることができる。 That is, carriers injected into the electrode by voltage application can be efficiently injected into the ultrafine particles without recombination of holes and electrons outside the ultrafine particles, thereby improving the emission characteristics, In addition, a light-emitting device with good light extraction efficiency can be obtained.
 また、本発明の発光デバイスの製造方法によれば、界面活性剤で超微粒子を被覆した量子ドット分散溶液を作製する量子ドット分散溶液作製工程と、高分子化合物からなる絶縁性材料を溶媒に溶解させて絶縁性溶液を作製する絶縁性溶液作製工程と、前記量子ドット分散溶液と前記絶縁性溶液とを混合して混合溶液を作製する混合溶液作製工程と、前記混合溶液を使用して発光層を作製する発光層作製工程とを含むので、ドライプロセスのような複数の煩雑な成膜プロセスを要することなく、1プロセスで発光層を作製することが可能であり、安価で効率良く製造することができる。 In addition, according to the method for manufacturing a light-emitting device of the present invention, a quantum dot dispersion solution preparation step for preparing a quantum dot dispersion solution coated with ultrafine particles with a surfactant, and an insulating material made of a polymer compound dissolved in a solvent An insulating solution preparation step for preparing an insulating solution, a mixed solution preparation step for preparing a mixed solution by mixing the quantum dot dispersion solution and the insulating solution, and a light emitting layer using the mixed solution A light-emitting layer manufacturing step for manufacturing a light-emitting layer, and thus a light-emitting layer can be manufactured in one process without requiring a plurality of complicated film forming processes such as a dry process, and can be manufactured efficiently at low cost. Can do.
本発明に係る発光デバイスの一実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the light-emitting device which concerns on this invention. 図1の発光デバイス使用される量子ドットを模式的に示す拡大断面図である。It is an expanded sectional view which shows typically the quantum dot used for the light-emitting device of FIG. 発光層の厚みを3モノレイヤーとした場合の要部断面図である。It is principal part sectional drawing at the time of setting the thickness of a light emitting layer to 3 monolayers. 発光層を原料となる混合溶液の作製手順を模式的に示す図である。It is a figure which shows typically the preparation procedures of the mixed solution which uses a light emitting layer as a raw material. 本発明に係る発光デバイスの製造方法を示す製造工程図(1/2)である。It is a manufacturing process figure (1/2) which shows the manufacturing method of the light emitting device which concerns on this invention. 本発明に係る発光デバイスの製造方法を示す製造工程図(2/2)である。It is a manufacturing process figure (2/2) which shows the manufacturing method of the light-emitting device which concerns on this invention. 実施例中の試料番号4のTEM像を示す図である。It is a figure which shows the TEM image of the sample number 4 in an Example. 実施例中の試料番号2及び試料番号6の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the sample number 2 and the sample number 6 in an Example. 実施例試料の電圧-輝度特性を示す図である。It is a figure which shows the voltage-luminance characteristic of an Example sample. 実施例試料の電流密度-外部量子効率特性を示す図である。It is a figure which shows the current density-external quantum efficiency characteristic of an Example sample. 量子ドットをセルフアセンブル法で作製する場合の一般的方法を説明するための断面図である。It is sectional drawing for demonstrating the general method in the case of producing a quantum dot by the self-assembly method. 特許文献1に記載された先行技術を説明するための断面図である。It is sectional drawing for demonstrating the prior art described in patent document 1. FIG. 特許文献2に記載された先行技術を説明するための断面図である。It is sectional drawing for demonstrating the prior art described in patent document 2. FIG. 特許文献2の課題を説明するための模式図である。10 is a schematic diagram for explaining the problem of Patent Document 2. FIG.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は本発明に係る発光デバイスとしての発光ダイオード等の有機EL素子の一実施の形態を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing one embodiment of an organic EL element such as a light emitting diode as a light emitting device according to the present invention.
 この有機EL素子は、ガラス基板(透明基板)1上に陽極2が形成され、該陽極2の表面に正孔輸送性材料からなる正孔注入層3及び正孔輸送層4が順次形成され、該正孔輸送層4の表面に量子ドット層5の集合体からなる発光層6が形成され、さらに発光層6の表面には電子輸送性材料からなる電子輸送層7が形成され、該電子輸送層7の表面には陰極8が形成されている。 In this organic EL element, an anode 2 is formed on a glass substrate (transparent substrate) 1, and a hole injection layer 3 and a hole transport layer 4 made of a hole transporting material are sequentially formed on the surface of the anode 2, A light emitting layer 6 made of an assembly of quantum dot layers 5 is formed on the surface of the hole transport layer 4, and an electron transport layer 7 made of an electron transporting material is formed on the surface of the light emitting layer 6. A cathode 8 is formed on the surface of the layer 7.
 量子ドット5は、図2に示すように、ナノ粒子(超微粒子)9がコア部10と該コア部10を保護するシェル部11とを有するコアーシェル構造からなり、該シェル部11の表面が界面活性剤12で被覆されている。そして、正孔輸送層4から輸送されてきた正孔と電子輸送層7から輸送されてきた電子とが、ナノ粒子9のコア部10に注入されて正孔と電子とがコア部10内で再結合し、励起子発光する。 As shown in FIG. 2, the quantum dot 5 has a core-shell structure in which nanoparticles (ultrafine particles) 9 have a core portion 10 and a shell portion 11 that protects the core portion 10, and the surface of the shell portion 11 is an interface. Coated with activator 12. Then, the holes transported from the hole transport layer 4 and the electrons transported from the electron transport layer 7 are injected into the core part 10 of the nanoparticles 9, and the holes and electrons are injected into the core part 10. Recombines and emits excitons.
 ここで、コア部10を形成するコア材料としては、光電変換作用を奏する無機半導体材料であれば特に限定されるものではなく、InP、CdSe、CdS、PbSe等を使用することができ、また、シェル部11を構成するシェル材料としては、コア材料よりも高いエネルギー準位を有する無機材料、例えばZnSを使用することができる。 Here, the core material for forming the core portion 10 is not particularly limited as long as it is an inorganic semiconductor material having a photoelectric conversion effect, and InP, CdSe, CdS, PbSe, and the like can be used. As a shell material constituting the shell portion 11, an inorganic material having a higher energy level than the core material, for example, ZnS can be used.
 また、界面活性剤12としては、〔発明が解決しようとする課題〕の項でも述べたように、分散性やナノ粒子9の表面欠陥を効率良く不活性化する観点から、嵩高い極性基を有する有機化合物、例えば、ヘキサデシルアミンやオクタデシルアミン等の長鎖アミン、トリオクチルホスフィン、トリオクチルホスフィンオキシド、オレイン酸、ミリスチン酸等のアルキル基に極性基が結合した界面活性剤を使用することができ、極性基が配位子としてナノ粒子9の表面に配位する。 As the surfactant 12, as described in the section [Problems to be Solved by the Invention], a bulky polar group is used from the viewpoint of efficiently deactivating dispersibility and surface defects of the nanoparticles 9. It is possible to use an organic compound having a polar group bonded to an alkyl group such as a long-chain amine such as hexadecylamine or octadecylamine, trioctylphosphine, trioctylphosphine oxide, oleic acid or myristic acid. The polar group is coordinated to the surface of the nanoparticle 9 as a ligand.
 また、正孔注入層3及び正孔輸送層4を形成する正孔輸送性材料としては、有機EL素子用に通常使用される正孔輸送性の各種有機半導体材料、例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルフォネート)(PEDOT:PSS)、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-1,1′-ビフェニル-4,4′-ジアミン(TPD)、4,4′-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、4,4′,4″-トリス(2-ナフチルフェニルアミノ)トリフェニルアミン(2-TNATA)、N,N′-7-ジ(1-ナフチル)-N,N′-ジフェニル-4,4′-ジアミノビフェニル(Spiro-NPB)、4,4′,4″-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(m-MTDATA)、及びこれらの誘導体を使用することができる。 Moreover, as a hole transport material which forms the hole injection layer 3 and the hole transport layer 4, various organic semiconductor materials of the hole transport property normally used for organic EL elements, for example, poly (3,4) -Ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS), N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4 '-Diamine (TPD), 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl (α-NPD), 4,4', 4 "-tris (2-naphthylphenylamino) ) Triphenylamine (2-TNATA), N, N′-7-di (1-naphthyl) -N, N′-diphenyl-4,4′-diaminobiphenyl (Spiro-NPB), 4,4 ′, 4 ″ -Tris (3-methylphenylphenyla Mino) triphenylamine (m-MTDATA), and derivatives thereof can be used.
 また、電子輸送層7を形成する電子輸送性材料としては、有機EL素子用に通常使用される電子輸送性の各種有機半導体材料、例えば、トリス(8-ヒドロキシキノリン)アルミニウム(Alq3)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,2′,2″-(1,3,5-ベンジニトリル)-トリス(1-フェニル-1-H-ベンゾイミダゾール(TPBi)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、3-(ベンゾチアゾール-2-イル)-7-(ジエチルアミノ)-2H-1-ベンゾピラン-2-オン(クマリン6)、ビス(2-メチル-8-キノリノラート)-4-(フェニルフェノラート)アルミニウム(BAlq)、4,4′-ビス(9-カルバゾリル)-2,2′-ジメチルビフェニル(CDBP)、及びこれらの誘導体を使用することができる。 Examples of the electron transporting material for forming the electron transporting layer 7 include various organic semiconductor materials having electron transporting properties that are usually used for organic EL elements, such as tris (8-hydroxyquinoline) aluminum (Alq3), 2- (4-Biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,2 ′, 2 ″-(1,3,5-benzonitrile) -Tris (1-phenyl-1-H-benzimidazole (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 3- (benzothiazol-2-yl) -7- ( Diethylamino) -2H-1-benzopyran-2-one (coumarin 6), bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (BAlq) 4,4'-bis (9-carbazolyl) -2,2'-dimethyl-biphenyl (CDBP), and you can use these derivatives.
 そして、発光層6は、量子ドット5の間隙に絶縁性材料13が充填されている。 In the light emitting layer 6, the insulating material 13 is filled in the gaps between the quantum dots 5.
 量子ドット5のコア部10内でキャリアを再結合させて効率よく励起子発光させるためには、量子ドット5の近傍に輸送されてきたキャリアをコア部10内に効率的に注入する必要がある。 In order to recombine carriers in the core portion 10 of the quantum dot 5 and efficiently emit excitons, it is necessary to efficiently inject the carrier transported in the vicinity of the quantum dot 5 into the core portion 10. .
 しかしながら、量子ドット5は、ナノ粒子9の表面が嵩高い配位子を有する界面活性剤12で被覆されているため、量子ドット5の面密度を向上させてもナノ粒子9間には一定の間隙が生じる。したがって、キャリアは、ナノ粒子9のコア部10内に効率良く注入されずに、コア部10の外部で再結合したり、或いは正孔輸送層4や電子輸送層7に到達してしまい、その結果、発光色純度や発光効率の低下を招くおそれがある。 However, since the surface of the nanoparticle 9 is coated with the surfactant 12 having a bulky ligand, the quantum dot 5 is fixed between the nanoparticles 9 even if the surface density of the quantum dot 5 is improved. A gap is created. Accordingly, the carriers are not efficiently injected into the core portion 10 of the nanoparticles 9 and recombined outside the core portion 10 or reach the hole transport layer 4 or the electron transport layer 7, As a result, the emission color purity and the emission efficiency may be reduced.
 そこで、本実施の形態では、量子ドット5間の間隙を緻密で耐電圧性に優れた絶縁性材料13で充填している。 Therefore, in the present embodiment, the gaps between the quantum dots 5 are filled with a dense insulating material 13 having excellent voltage resistance.
 このような絶縁性材料としては、高分子化合物が好ましい。無機材料の場合は粒界を形成するため、斯かる粒界を伝わるような形態でキャリアがナノ粒子9のコア部10に注入されずに該ナノ粒子9の周辺を通過したり、或いは粒界で電子と正孔が再結合するおそれがあり、好ましくない。 Such an insulating material is preferably a polymer compound. In the case of an inorganic material, a grain boundary is formed, so that the carrier passes through the periphery of the nanoparticle 9 without being injected into the core portion 10 of the nanoparticle 9 in such a form as to travel through the grain boundary, or the grain boundary. In this case, electrons and holes may be recombined, which is not preferable.
 そして、このような高分子化合物としては、特に限定されるものではなく、例えば、ポリイミド系樹脂、ポリメタクリル酸メチル(PMMA)やポリアクリレート等のアクリル系樹脂、単独重合スチレンやアクリルニトリル-スチレンモノマー共重合体(AS)或いはアクリルニトリル-ブタジエン-スチレン共重合体(ABS)等のポリスチレン系樹脂、ポリカーボネート系樹脂、ナイロン等のポリアミド系樹脂、ポリエステル系樹脂、ポリ酢酸ビニルやポリ塩化ビニル等のポリビニル系樹脂等の各種高分子化合物を使用することができる。また、発光層6は、後述するように超薄膜であることから有色であっても発光純度に影響を及ぼすことはない。 Such a polymer compound is not particularly limited, and examples thereof include polyimide resins, acrylic resins such as polymethyl methacrylate (PMMA) and polyacrylate, homopolymerized styrene, and acrylonitrile-styrene monomers. Polystyrene resins such as copolymer (AS) or acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate resins, polyamide resins such as nylon, polyester resins, polyvinyl acetate and polyvinyl chloride, etc. Various polymer compounds such as a resin can be used. Further, since the light emitting layer 6 is an ultra-thin film as will be described later, even if it is colored, the light emission purity is not affected.
 さらに、本実施の形態では、発光層6の厚みが0.5~2モノレイヤーの超薄膜となるように制御されている。ここで、モノレイヤーとは、発光層6内に最密充填されている量子ドット5の厚み方向の平均粒子個数をいう。例えば、量子ドット5を面内で最密充填に換算した状態で発光層6の厚み方向の粒子個数の平均値が「1」の場合が1モノレイヤー(単分子層)であり、「0.5」の場合が0.5モノレイヤーであり、「1.3」の場合が1.3モノレイヤーである。 Furthermore, in the present embodiment, the thickness of the light emitting layer 6 is controlled to be an ultrathin film of 0.5 to 2 monolayers. Here, the monolayer refers to the average number of particles in the thickness direction of the quantum dots 5 that are closely packed in the light emitting layer 6. For example, when the average value of the number of particles in the thickness direction of the light emitting layer 6 is “1” in the state in which the quantum dots 5 are converted into close-packed in-plane, one monolayer (monomolecular layer), The case of “5” is 0.5 monolayer, and the case of “1.3” is 1.3 monolayer.
 発光層6のナノ粒子9の面密度が小さければ小さい程、絶縁性材料13の充填効果は大きく、斯かる観点から発光層6の厚みは2モノレイヤー以下とする必要がある。 The smaller the surface density of the nanoparticles 9 of the light emitting layer 6 is, the larger the filling effect of the insulating material 13 is. From this viewpoint, the thickness of the light emitting layer 6 needs to be 2 monolayers or less.
 図3は、発光層の厚みを3モノレイヤーとした場合の有機EL素子の要部断面図である。 FIG. 3 is a cross-sectional view of the main part of the organic EL element when the thickness of the light emitting layer is 3 monolayers.
 発光層6の厚みが2モノレイヤーを超えて厚膜になり、例えば、3モノレイヤーになると、面密度が飽和状態となる。このため絶縁性材料13が量子ドット5間に充填されると量子ドット5間の間隔が拡がり、キャリア輸送性が低下するおそれがある。 When the thickness of the light emitting layer 6 exceeds 2 monolayers and becomes a thick film, for example, 3 monolayers, the surface density becomes saturated. For this reason, when the insulating material 13 is filled between the quantum dots 5, the interval between the quantum dots 5 is expanded, and the carrier transportability may be lowered.
 また、発光層6が、3モノレイヤーのように2モノレイヤー以上になると、発光層6内には、正孔輸送層4及び電子輸送層7のいずれか一方にしか接しない量子ドット5の他、正孔輸送層4及び電子輸送層7のいずれにも接しない量子ドット5が生じ、このため電子及び正孔をナノ粒子9内に同時に効率よく注入するのが困難になる。すなわち、キャリアは界面活性剤12及びシェル部11に加え、緻密で耐電圧性の高い絶縁性材料を伝ってコア部10に注入されなければならないが、このようなキャリアの輸送を効率良く行うのが困難となり、コア部10内で電子と正孔とが再結合して励起子発光する可能性が低下するおそれがある。 In addition, when the light emitting layer 6 has two or more monolayers such as three monolayers, the quantum dots 5 in contact with only one of the hole transport layer 4 and the electron transport layer 7 are included in the light emitting layer 6. As a result, quantum dots 5 that do not contact any of the hole transport layer 4 and the electron transport layer 7 are formed, and it becomes difficult to efficiently inject electrons and holes into the nanoparticles 9 at the same time. That is, the carrier must be injected into the core portion 10 through the dense insulating material having high withstand voltage in addition to the surfactant 12 and the shell portion 11, and the carrier can be efficiently transported. This may make it difficult to recombine electrons and holes in the core 10 and reduce the possibility of exciton light emission.
 したがって、発光層6の厚みを2モノレイヤー以下とする必要がある。 Therefore, the thickness of the light emitting layer 6 needs to be 2 monolayers or less.
 ただし、発光層6の厚みは、少なくとも0.5モノレイヤー以上は必要である。発光層6の厚みが0.5モノレイヤー未満になると、発光層6の厚みが過度に薄くなって正孔輸送層4と電子輸送層7との間隔が極端に小さくなり、双方の境界面付近で光が全反射し、特に電流密度が低い領域では光エネルギーを外部に十分に取り出すことができなくなるおそれがある。 However, the thickness of the light emitting layer 6 must be at least 0.5 monolayer. When the thickness of the light emitting layer 6 is less than 0.5 monolayer, the thickness of the light emitting layer 6 becomes excessively thin, and the distance between the hole transport layer 4 and the electron transport layer 7 becomes extremely small, and near the boundary surface between the two. Thus, there is a possibility that light is totally reflected and light energy cannot be sufficiently extracted outside, particularly in a region where the current density is low.
 このように形成された有機EL素子では、電圧が印加されると、陽極2及び陰極8にキャリアが注入される。陽極2に注入された正孔及び陰極8に注入された電子は、界面活性剤12のバルクへテロ的なネットワーク内を伝ってナノ粒子9内に注入され、コア部10内で正孔と電子とが再結合し、発光する。 In the organic EL element formed in this way, carriers are injected into the anode 2 and the cathode 8 when a voltage is applied. The holes injected into the anode 2 and the electrons injected into the cathode 8 are injected into the nanoparticles 9 through the bulk hetero network of the surfactant 12, and the holes and electrons are injected into the core 10. Recombine and emit light.
 そして、本実施の形態では、正孔及び電子は、量子ドット5の間隙に流れ込むこともなく、界面活性剤12を介してナノ粒子9内に注入されるので、正孔と電子とは輸送中に近づいて再結合することがなく、効率良くキャリア輸送することができ、これにより電気信号から光信号への光電変換を高効率で行なうことができる。 And in this Embodiment, since a hole and an electron do not flow into the gap | interval of the quantum dot 5, but are inject | poured into the nanoparticle 9 via the surfactant 12, a hole and an electron are in the middle of transport. Thus, the carrier can be transported efficiently without recombination, and photoelectric conversion from an electric signal to an optical signal can be performed with high efficiency.
 次に、上記有機EL素子の製造方法を説明する。 Next, a method for manufacturing the organic EL element will be described.
 ナノ粒子9は、上述したように種々の材料を使用して作製することができるが、下記の実施の形態では、コア部10にInP、シェル部11にZnSを使用した場合を例に説明する。 As described above, the nanoparticles 9 can be manufactured using various materials. In the following embodiment, the case where InP is used for the core portion 10 and ZnS is used for the shell portion 11 will be described as an example. .
 図4は量子ドット分散溶液の作製手順を示す製造工程図である。 FIG. 4 is a production process diagram showing a procedure for producing a quantum dot dispersion solution.
 まず、図4(a)に示すように、InP/ZnSをナノ粒子9とする量子ドット分散溶液14を作製する。 First, as shown in FIG. 4A, a quantum dot dispersion solution 14 containing InP / ZnS nanoparticles 9 is prepared.
 すなわち、例えば、酢酸インジウム、ミリスチン酸及びオクタデセンを容器中で混合し、窒素雰囲気中、撹拌して溶解させ、これによりインジウム前駆体溶液を調製する。さらに、窒素雰囲気中、トリストリメチルシリルホスフィン、オクチルアミン、オクタデセンを混合し、これによりリン前駆体溶液を調製する。 That is, for example, indium acetate, myristic acid and octadecene are mixed in a container and dissolved by stirring in a nitrogen atmosphere, thereby preparing an indium precursor solution. Further, tristrimethylsilylphosphine, octylamine, and octadecene are mixed in a nitrogen atmosphere, thereby preparing a phosphorus precursor solution.
 次いで、インジウム前駆体溶液を所定温度(例えば、190℃)に加熱し、この加熱溶液中にリン前駆体溶液を注入する。すると、高温により活性度の高い前駆体同士が反応し、インジウムとリンが結合して核を形成し、その後周囲の未反応成分と反応して結晶成長が起り、これによりInP量子ドットが作製される。 Next, the indium precursor solution is heated to a predetermined temperature (for example, 190 ° C.), and the phosphorus precursor solution is injected into the heated solution. Then, precursors with high activity react with each other at a high temperature, indium and phosphorus combine to form nuclei, and then react with surrounding unreacted components to cause crystal growth, thereby producing InP quantum dots. The
 次に、酸化亜鉛をステアリン酸に溶解させた酸化亜鉛溶液、及びイオウをステアリン酸に溶解させたイオウ溶液を用意する。 Next, a zinc oxide solution in which zinc oxide is dissolved in stearic acid and a sulfur solution in which sulfur is dissolved in stearic acid are prepared.
 次いで、所定温度(例えば、150℃)に調整されたInP量子ドット溶液に酸化亜鉛溶液及びイオウ溶液を交互に微量ずつ滴下し、加熱・冷却し、洗浄して溶液中の過剰有機成分を除去する。そしてこの後、ヘキサデシルアミン(以下、「HDA」という。)等の有機化合物からなる界面活性剤を添加しつつ、分散溶媒、例えばトルエン中に分散させ、これにより界面活性剤で被覆されたInP/ZnSをナノ粒子9とするInP/ZnS分散溶液、すなわち量子ドット分散溶液14が作製される。尚、量子ドット分散溶液14の濃度は、発光層6の所望するモノレイヤーに応じて調製され、例えば1~5mg/mLに調製される。 Next, a small amount of zinc oxide solution and sulfur solution are alternately added dropwise to an InP quantum dot solution adjusted to a predetermined temperature (for example, 150 ° C.), heated and cooled, and washed to remove excess organic components in the solution. . After that, while adding a surfactant made of an organic compound such as hexadecylamine (hereinafter referred to as “HDA”), it is dispersed in a dispersion solvent, for example, toluene, whereby InP coated with the surfactant. An InP / ZnS dispersion solution having / ZnS as nanoparticles 9, that is, a quantum dot dispersion solution 14 is produced. The concentration of the quantum dot dispersion solution 14 is adjusted according to a desired monolayer of the light emitting layer 6, for example, 1 to 5 mg / mL.
 次いで、図4(b)に示すように、絶縁性材料13を前記分散溶媒と同種の有機溶媒、例えば、トルエンに溶解させて絶縁性溶液15を作製する。 Next, as shown in FIG. 4B, the insulating material 13 is dissolved in an organic solvent of the same type as the dispersion solvent, for example, toluene, to produce an insulating solution 15.
 そして、量子ドット分散溶液14と絶縁性溶液15とを混合させ、図4(c)に示すように、量子ドットの濃度が0.8~1.0mg/mLの混合溶液16を作製する。 Then, the quantum dot dispersion solution 14 and the insulating solution 15 are mixed to prepare a mixed solution 16 having a quantum dot concentration of 0.8 to 1.0 mg / mL as shown in FIG.
 尚、絶縁性材料13を溶解させる有機溶媒は、使用する絶縁性材料13に応じて適宜選択することができる。 Note that the organic solvent for dissolving the insulating material 13 can be appropriately selected according to the insulating material 13 to be used.
 例えば、絶縁性材料13にポリイミド系樹脂を使用する場合は、N-メチル-2-ピロリトンやγ-ブチロラクトン等の五員環ラクタム構造を有する化合物を使用することができる。また、絶縁性材料13にアクリル系樹脂やポリカーボネート樹脂、ポリエステル系樹脂を使用する場合は、ベンゼン、トルエン、キシレン等の芳香族炭化水素、トリクレン、クロロベンゼン、ジクロロエタン、クロロホルム等の塩素含有炭化水素、エステル系有機化合物、ケトン系有機化合物等を使用することができる。また、絶縁性材料13にポリスチレン系樹脂を使用する場合は、上述した芳香族炭化水素、塩素含有炭化水素の他、アセトン、メタノール、エタノール等を使用することができ、ポリアミド系樹脂を使用する場合は、フェノールやメタノールを使用することができる。さらに絶縁性材料13にポリ酢酸ビニル樹脂を使用する場合は、上述した芳香族炭化水素、塩素含有炭化水素の他、アニリン、ピリジンを使用することができ、ポリ塩化ビニル樹脂を使用する場合は、上述した塩素含有炭化水素やアセトンを使用することができる。 For example, when a polyimide resin is used for the insulating material 13, a compound having a five-membered lactam structure such as N-methyl-2-pyrrolitone or γ-butyrolactone can be used. When acrylic resin, polycarbonate resin, or polyester resin is used for the insulating material 13, aromatic hydrocarbons such as benzene, toluene, and xylene, chlorine-containing hydrocarbons such as trichlene, chlorobenzene, dichloroethane, and chloroform, and esters Organic organic compounds, ketone organic compounds, and the like can be used. Moreover, when using a polystyrene-type resin for the insulating material 13, acetone, methanol, ethanol, etc. can be used in addition to the above-mentioned aromatic hydrocarbon and chlorine-containing hydrocarbon, and a polyamide-type resin is used. Phenol or methanol can be used. Furthermore, when using a polyvinyl acetate resin for the insulating material 13, in addition to the aromatic hydrocarbon and chlorine-containing hydrocarbon described above, aniline and pyridine can be used, and when using a polyvinyl chloride resin, The chlorine-containing hydrocarbons and acetone described above can be used.
 また、量子ドット分散溶液14の分散溶媒は、上述のような高分子化合物に溶解する有機溶媒に応じて選択される。例えば、絶縁性材料13にPMMAを使用する場合は、PMMAが溶解するトルエンを絶縁性溶液15の有機溶媒及び量子ドット分散溶液14の分散溶媒に選択することができる。 Further, the dispersion solvent of the quantum dot dispersion solution 14 is selected according to the organic solvent dissolved in the polymer compound as described above. For example, when PMMA is used for the insulating material 13, toluene in which PMMA is dissolved can be selected as an organic solvent for the insulating solution 15 and a dispersion solvent for the quantum dot dispersion solution 14.
 図5及び図6は上記発光ダイオードの製造方法を示す製造工程図である。 5 and 6 are manufacturing process diagrams showing the manufacturing method of the light emitting diode.
 図5(a)に示すように、スパッタ法によりガラス基板1上にITO膜を成膜し、UVオゾン処理を行い、膜厚100nm~150nmの陽極2を形成する。 As shown in FIG. 5 (a), an ITO film is formed on the glass substrate 1 by sputtering and UV ozone treatment is performed to form an anode 2 having a thickness of 100 nm to 150 nm.
 次に、正孔注入層溶液を用意する。正孔注入層用材料としては、正孔輸送性材料と同様の材料を使用することができ、例えば、PEDOT:PSS等を使用することができる。 Next, a hole injection layer solution is prepared. As the material for the hole injection layer, the same material as the hole transporting material can be used, and for example, PEDOT: PSS or the like can be used.
 そして、スピンコート法等を使用して正孔注入層溶液を陽極2上に塗布し、図5(b)に示すように、膜厚20nm~30nmの正孔注入層3を形成する。 Then, the hole injection layer solution is applied onto the anode 2 by using a spin coating method or the like to form the hole injection layer 3 having a film thickness of 20 nm to 30 nm as shown in FIG.
 次に、正孔注入層材料よりもHOMO(Highest Occupied Molecular Orbital;最高被占軌道)準位の低いエネルギーを有する正孔輸送層溶液を用意する。例えば、正孔注入層用材料にPEDOT:PSSを使用した場合は、該PEDOT:PSSよりもHOMO準位の低いポリ-TPD等を使用することができる。 Next, a hole transport layer solution having a lower energy of HOMO (Highest Occupied Molecular Orbital) level than the hole injection layer material is prepared. For example, when PEDOT: PSS is used as the material for the hole injection layer, poly-TPD having a HOMO level lower than that of PEDOT: PSS can be used.
 そして、スピンコート法等を使用して正孔輸送層溶液を正極注入層3上に塗布し、図5(c)に示すように、膜厚60nm~70nmの正孔輸送層4を形成する。 Then, the hole transport layer solution is applied onto the positive electrode injection layer 3 by using a spin coat method or the like to form the hole transport layer 4 having a film thickness of 60 nm to 70 nm as shown in FIG.
 尚、上記正孔注入層3は、正孔の輸送性を向上させるために設けたものであることから、正孔輸送層4が正孔注入層3を兼用してもよく、この場合は正孔輸送層4をポリ-TPDのみで形成し、正孔注入層3を省略することができる。 Since the hole injection layer 3 is provided to improve the hole transportability, the hole transport layer 4 may also be used as the hole injection layer 3. The hole transport layer 4 can be formed of only poly-TPD, and the hole injection layer 3 can be omitted.
 次に、上述した混合溶液16を用意する。 Next, the mixed solution 16 described above is prepared.
 そして、スピンコート法等を使用し、混合溶液16を正孔輸送層4上に塗布し、図6(d)に示すように、N雰囲気で乾燥させ、厚みが0.5~2モノレイヤーの発光層6を形成する。 Then, using a spin coating method or the like, the mixed solution 16 is applied onto the hole transport layer 4 and dried in an N 2 atmosphere as shown in FIG. The light emitting layer 6 is formed.
 次に、Alq3等の電子輸送性材料を使用し、図6(e)に示すように、真空蒸着法で発光層6の表面に膜厚50nm~70nmの電子輸送層7を形成する。 Next, using an electron transporting material such as Alq3, as shown in FIG. 6E, an electron transporting layer 7 having a film thickness of 50 nm to 70 nm is formed on the surface of the light emitting layer 6 by a vacuum deposition method.
 そして、図6(f)に示すように、LiF、Al等を使用し、真空蒸着法で膜厚100nm~300nmの陰極8を形成し、これにより発光ダイオードが作製される。 Then, as shown in FIG. 6 (f), LiF, Al or the like is used to form a cathode 8 having a film thickness of 100 nm to 300 nm by a vacuum vapor deposition method, whereby a light emitting diode is manufactured.
 このように本実施の形態では、ナノ粒子9を界面活性剤12で被覆した量子ドット分散溶液14を作製する一方、高分子化合物からなる絶縁性材料13を溶媒に溶解させて絶縁性溶液15を作製し、量子ドット分散溶液14と絶縁性溶液15とを混合して混合溶液16を作製し、この混合溶液16を正孔輸送層4の表面に塗付して発光層6を形成しているので、ドライプロセスのような複数の煩雑な成膜プロセスを要することなく、1プロセスで発光層6を作製することが可能となり、安価で効率良く製造することができる。 As described above, in this embodiment, the quantum dot dispersion solution 14 in which the nanoparticles 9 are coated with the surfactant 12 is prepared, while the insulating material 13 made of a polymer compound is dissolved in a solvent to form the insulating solution 15. The mixed solution 16 is prepared by mixing the quantum dot dispersion solution 14 and the insulating solution 15, and the light emitting layer 6 is formed by applying the mixed solution 16 to the surface of the hole transport layer 4. Therefore, the light emitting layer 6 can be manufactured in one process without requiring a plurality of complicated film forming processes such as a dry process, and can be manufactured inexpensively and efficiently.
 そしてこのようにして形成された有機EL素子は、ナノ粒子9間が絶縁性材料13で充填されているので、キャリアがナノ粒子9の内部に高効率で注入され、ナノ粒子9の外部を通過してしまうのを抑制することができる。 In the organic EL device thus formed, the space between the nanoparticles 9 is filled with the insulating material 13, so that carriers are injected into the nanoparticles 9 with high efficiency and pass through the outside of the nanoparticles 9. Can be suppressed.
 すなわち、電圧印加により電極に注入されたキャリアは、超微粒子の外部で正孔と電子が再結合することもなく、効率良くナノ粒子9内に注入することができ、これにより発光特性が向上し、かつ外部への光の取出効率も良好な発光デバイスを得ることができる。 That is, carriers injected into the electrode by voltage application can be efficiently injected into the nanoparticles 9 without recombination of holes and electrons outside the ultrafine particles, thereby improving the light emission characteristics. In addition, it is possible to obtain a light-emitting device having good light extraction efficiency to the outside.
 尚、本発明は上記実施の形態に限定されるものでない。上記実施の形態では、ナノ粒子9は、コア部10を1層のシェル部11で被覆したコアーシェル構造を有しているが、シェル部が二層構造のコアーシェルーシェル構造や、シェル部のない場合にも同様に適用できる。 In addition, this invention is not limited to the said embodiment. In the above-described embodiment, the nanoparticles 9 have a core-shell structure in which the core portion 10 is covered with one layer of the shell portion 11, but the core portion has a two-layer core-shell structure or no shell portion. The same applies to the case.
 また、上記実施の形態では、ナノ粒子9としてInP/ZnSからなる化合物半導体を使用したが、酸化物や単体半導体であってもよいのはいうまでもない。 In the above embodiment, a compound semiconductor made of InP / ZnS is used as the nanoparticles 9, but it goes without saying that it may be an oxide or a single semiconductor.
 また、上記実施の形態では、発光層6に隣接する正孔輸送層4や電子輸送層7を有機化合物で形成した有機EL素子について説明したが、無機化合物で形成した無機EL素子についても同様であり、キャリアの隣接層へのリークを抑制することができ、ナノ粒子9への注入効率が良好な高品質の発光デバイスを安価かつ高効率で製造することができる。 Moreover, although the said embodiment demonstrated the organic EL element which formed the positive hole transport layer 4 and the electron carrying layer 7 adjacent to the light emitting layer 6 with the organic compound, it is the same also about the inorganic EL element formed with the inorganic compound. In addition, it is possible to suppress the leakage of carriers to the adjacent layer and to manufacture a high-quality light-emitting device with good injection efficiency into the nanoparticles 9 at low cost and high efficiency.
 また、上記実施の形態では、電子輸送層7は真空蒸着法を使用したドライプロセスで行っているが、スピンコート法等のウェットプロセスで作製してもよい。ただし、この場合は、浸漬工程で使用した分散溶液と同じ極性の分散溶媒を使用する必要がある。 In the above embodiment, the electron transport layer 7 is performed by a dry process using a vacuum evaporation method, but may be formed by a wet process such as a spin coating method. However, in this case, it is necessary to use a dispersion solvent having the same polarity as the dispersion solution used in the dipping process.
 また、本発明は、EL素子以外の半導体レーザや各種表示装置等の種々の発光デバイスに適用できるのはいうまでもない。 Needless to say, the present invention can be applied to various light emitting devices such as semiconductor lasers and various display devices other than EL elements.
〔試料の作製〕
(試料番号1~5)
 コア部がInP、シェル部がZnSで形成されたInP/ZnSナノ粒子を界面活性剤としてのHDAで被覆し、トルエン溶液に分散させた濃度が2~5mg/mLの量子ドット分散溶液を用意した。
[Sample preparation]
(Sample numbers 1 to 5)
A quantum dot dispersion solution having a concentration of 2 to 5 mg / mL was prepared by coating InP / ZnS nanoparticles formed of InP in the core and ZnS in the shell with HDA as a surfactant and dispersed in a toluene solution. .
 次いで、絶縁性材料としてのPMMAをトルエンに溶解させ、濃度が0.1mol/mLの絶縁性溶液を作製した。その後、量子ドット分散溶液と絶縁性溶液とを混合させ、量子ドットの濃度が0.8mg/mLの混合溶液を作製した。 Next, PMMA as an insulating material was dissolved in toluene to prepare an insulating solution having a concentration of 0.1 mol / mL. Thereafter, the quantum dot dispersion solution and the insulating solution were mixed to prepare a mixed solution having a quantum dot concentration of 0.8 mg / mL.
 次に、スパッタ法によりガラス基板上にITO膜を成膜し、UVオゾン処理を行い、膜厚120nmの陽極を作製した。 Next, an ITO film was formed on the glass substrate by a sputtering method, UV ozone treatment was performed, and an anode with a film thickness of 120 nm was produced.
 次に、正孔注入層用材料としてのPEDOT:PSSを純水に分散させて正孔注入層溶液を作製した。そして、スピンコート法を使用して正孔注入層溶液を陽極上に塗布し、膜厚20nmの正孔注入層を形成した。 Next, PEDOT: PSS as a hole injection layer material was dispersed in pure water to prepare a hole injection layer solution. Then, a hole injection layer solution was applied on the anode using a spin coating method to form a 20 nm thick hole injection layer.
 次に、正孔輸送性材料としてのポリ-TPDをクロロベンゼンに分散させて正孔輸送層溶液を作製した。そして、スピンコート法を使用して正孔輸送層溶液を正極注入層上に塗布し、膜厚65nmの正孔輸送層を作製した。 Next, poly-TPD as a hole transporting material was dispersed in chlorobenzene to prepare a hole transport layer solution. Then, the hole transport layer solution was applied onto the positive electrode injection layer by using a spin coating method to produce a 65 nm-thick hole transport layer.
 次に、スピンコート法を使用し、上述した混合溶液を正孔輸送層上に塗布し、発光層を形成した。すなわち、混合溶液を正孔輸送層に滴下し、ガラス基板を回転数:3000rpmで60秒間回転させて発光層を作製した。 Next, using the spin coating method, the above-described mixed solution was applied onto the hole transport layer to form a light emitting layer. That is, the mixed solution was dropped onto the hole transport layer and the glass substrate was rotated at 3000 rpm for 60 seconds to produce a light emitting layer.
 次に、電子輸送性材料としてAlq3を使用し、真空蒸着法で発光層の表面に膜厚50nmの電子輸送層を作製した。 Next, Alq3 was used as an electron transporting material, and an electron transport layer having a film thickness of 50 nm was formed on the surface of the light emitting layer by a vacuum deposition method.
 そして、LiF及びAlを使用し、真空蒸着法で二層構造からなる膜厚が250nmの陰極を形成し、これにより試料番号1~5の試料を作製した。 Then, using LiF and Al, a cathode having a film thickness of 250 nm having a two-layer structure was formed by a vacuum deposition method, and thereby samples Nos. 1 to 5 were produced.
 尚、上記発光層は、混合溶液の滴下量や混合溶液の量子ドットの濃度を調整し、厚みが0.3~4モノレイヤーとなるように調整した。 The light emitting layer was adjusted to have a thickness of 0.3 to 4 monolayer by adjusting the dropping amount of the mixed solution and the concentration of quantum dots in the mixed solution.
 ここで、発光層のモノレイヤー数は、上記陰極まで形成した各試料の断面を透過型電子顕微鏡(以下、「TEM」という。)で観察し、確認した。 Here, the number of monolayers of the light emitting layer was confirmed by observing a cross section of each sample formed up to the cathode with a transmission electron microscope (hereinafter referred to as “TEM”).
 例えば、試料番号4について、図7に示すTEM像から以下のようにしてモノレイヤー数を確認した。 For example, for sample number 4, the number of monolayers was confirmed from the TEM image shown in FIG. 7 as follows.
 すなわち、この図7から分かるように、厚み方向に最密充填された平均粒子個数は2であり、これにより試料番号4のモノレイヤーを「2」と確認した。 That is, as can be seen from FIG. 7, the average number of particles closely packed in the thickness direction was 2, thereby confirming that the monolayer of sample number 4 was “2”.
 同様に、試料番号1~3、5の各試料についても、TEM像からモノレイヤー数を確認した。 Similarly, the number of monolayers was confirmed from the TEM image for each of the sample numbers 1 to 3, and 5.
(試料番号6)
 試料番号2において、上述した混合溶液を使用する代わりに、量子ドット分散溶液を使用し、該量子ドット分散溶液を正孔輸送層上に厚みが0.5モノレイヤーとなるように塗布し、発光層を形成した。それ以外は、試料番号2と同様の方法・手順で、試料番号6の試料を作製した。
(Sample No. 6)
In Sample No. 2, instead of using the mixed solution described above, a quantum dot dispersion solution was used, and the quantum dot dispersion solution was applied on the hole transport layer so as to have a thickness of 0.5 monolayer. A layer was formed. Other than that, the sample No. 6 was prepared by the same method and procedure as Sample No. 2.
〔試料の評価〕
 表1は、試料番号1~6の各試料の発光層の厚み及び発光層へのPMMAの充填の有無を示している。
(Sample evaluation)
Table 1 shows the thickness of the light emitting layer of each sample Nos. 1 to 6 and whether or not the PMMA is filled in the light emitting layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、試料番号2、6について、各試料を積分球内に配し、定電流電源(ケースレー・インスツルメント社製2400)を使用して直流電圧を印加し、試料を発光させた。そして、発光した光を積分球で集光し、マルチチャンネル検出器(浜松ホトホニックス社製PMA-11)を使用し、発光スペクトルを測定した。 Next, for sample numbers 2 and 6, each sample was placed in an integrating sphere, and a DC voltage was applied using a constant current power source (2400 manufactured by Keithley Instruments Inc.) to cause the sample to emit light. The emitted light was collected by an integrating sphere, and the emission spectrum was measured using a multichannel detector (PMA-11 manufactured by Hamamatsu Photonics).
 図8はその測定結果を示している。横軸が波長(nm)、縦軸が発光スペクトル(a.u.)であり、上側が試料番号2、下側が試料番号6の測定結果を示している。 FIG. 8 shows the measurement results. The horizontal axis indicates the wavelength (nm), the vertical axis indicates the emission spectrum (au), the upper side indicates the measurement result of the sample number 2, and the lower side indicates the measurement result of the sample number 6.
 試料番号6は、波長が614nm付近で発光スペクトルがピークに達しているが、535nm付近の波長域でも発光スペクトルが出現し、発光色の純度が低下した。これは電子輸送性材料であるAlq3が量子ドット間に流れ込み、ナノ粒子内で再結合するキャリアが存在する一方で、一部の正孔は量子ドット間の隙間に流れ込んだ電子輸送性材料中で電子と再結合し、或いは発光層に隣接する電子輸送層中で電子と再結合し、Alq3の吸収波長域である535nm付近でも発光したものと思われる。 Sample No. 6 had an emission spectrum peaked at a wavelength of around 614 nm, but an emission spectrum appeared even at a wavelength of around 535 nm, and the purity of the emitted color was reduced. This is because Alq3, which is an electron transporting material, flows between quantum dots and there are carriers that recombine within the nanoparticles, while some holes flow into the gaps between the quantum dots in the electron transporting material. It is considered that light was recombined with electrons or recombined with electrons in the electron transport layer adjacent to the light emitting layer, and light was emitted even in the vicinity of 535 nm which is the absorption wavelength region of Alq3.
 これに対し試料番号2は、緻密で耐電圧性に優れたPMMAで量子ドット間が充填されているので、量子ドットの吸収波長域である614nm付近のみで発光し、電子輸送層で発光することはなく、良好な発光色純度が得られることが確認された。 On the other hand, sample No. 2 is dense and has excellent voltage resistance, and is filled between the quantum dots, so that it emits light only in the vicinity of 614 nm, which is the absorption wavelength region of the quantum dots, and emits light in the electron transport layer. It was confirmed that good emission color purity was obtained.
 次に、試料番号1~5の各試料について、直流電圧をステップ状に印加し、そのときの輝度を上記マルチチャンネル検出器で測定した。 Next, for each of the samples Nos. 1 to 5, a DC voltage was applied stepwise, and the luminance at that time was measured with the multi-channel detector.
 図9は、印加した直流電圧と輝度との関係を示す特性図であり、横軸が直流電圧(a.u.)、縦軸は輝度(a.u.)を示している。 FIG. 9 is a characteristic diagram showing the relationship between the applied DC voltage and the luminance. The horizontal axis indicates the DC voltage (a.u.), and the vertical axis indicates the luminance (a.u.).
 試料番号5に示すように、発光層の厚みが2モノレイヤーを超えて4モノレイヤーになると高電圧を印加しても高い輝度を得ることができないことが確認された。これは発光層の厚みが厚いため、正孔輸送層及び電子輸送層のいずれにも接しない多数の量子ドットが存在することとなり、その結果、電子及び正孔をナノ粒子内に効率よく同時に注入することができず、励起子発光するナノ粒子が極端に少なくなったものと思われる。 As shown in Sample No. 5, when the thickness of the light emitting layer exceeds 2 monolayers and becomes 4 monolayers, it was confirmed that high luminance cannot be obtained even when a high voltage is applied. Since the light emitting layer is thick, there are many quantum dots that do not touch either the hole transport layer or the electron transport layer. As a result, electrons and holes are efficiently injected into the nanoparticles simultaneously. It seems that the number of nanoparticles that emit excitons is extremely small.
 そして、この図9から明らかなように、発光層の厚みが薄いほど、高輝度発光していることが分かる。ただし、試料番号1は、後述するように発光層の厚みが0.3モノレイヤーと過度に薄いため、外部量子効率ηextが低下し、好ましくない。 As is apparent from FIG. 9, it can be seen that the thinner the light emitting layer is, the higher the luminance is emitted. However, Sample No. 1 is not preferable because the thickness of the light emitting layer is excessively thin as 0.3 monolayer as described later, and the external quantum efficiency ηext is lowered.
 次に、試料番号1~5の各試料について、直流電圧をステップ状に印加し、そのときの電流密度を上記マルチチャンネル検出器で測定し、数式(1)に示すように、各電流密度における内部量子効率ηintと光取出効率ηoutとを乗算し、外部量子効率ηextを算出した。 Next, a DC voltage was applied in a stepwise manner for each of the samples Nos. 1 to 5, and the current density at that time was measured with the multi-channel detector. As shown in Equation (1), The external quantum efficiency ηext was calculated by multiplying the internal quantum efficiency ηint and the light extraction efficiency ηout.
 ηext=γ・ηint・ηout …(1)
 γは正孔と電子のキャリアバランス因子である。
ηext = γ · ηint · ηout (1)
γ is a carrier balance factor of holes and electrons.
 尚、内部量子効率ηintは、量子ドット内での電子と正孔の再結合割合、つまり励起子発光に寄与した光子の割合を示し、発光光子数を計測し、電流密度から算出される注入電子数と前記発光光子数とから算出される。また、光取出効率ηoutは、励起子発光に対し外部に取り出される光の割合を示している。 The internal quantum efficiency ηint indicates the recombination ratio of electrons and holes in the quantum dot, that is, the ratio of photons that contributed to exciton emission, measured the number of emitted photons, and injected electrons calculated from the current density. And the number of emitted photons. The light extraction efficiency ηout indicates the ratio of the light extracted to the outside with respect to the exciton emission.
 図10は、電流密度と外部量子効率との関係を示す特性図であり、横軸が電流密度(a.u.)、縦軸が外部量子効率(a.u.)である。 FIG. 10 is a characteristic diagram showing the relationship between the current density and the external quantum efficiency. The horizontal axis represents the current density (au), and the vertical axis represents the external quantum efficiency (a.u.).
 この図10から明らかなように、発光層が0.5モノレイヤー以上の厚みを有することにより、低い電流密度でも良好な外部量子効率を得ている。 As is apparent from FIG. 10, when the light emitting layer has a thickness of 0.5 monolayer or more, good external quantum efficiency is obtained even at a low current density.
 一方、試料番号1に示すように、発光層の厚みが0.5モノレイヤー未満となって0.3モノレイヤーに過度に薄膜化した場合、電流密度が低い領域では外部量子効率が低下している。これは発光層の厚みが0.3モノレイヤーに薄くなると、正孔輸送層と電子輸送層との間隔が極端に小さくなり、双方の境界面付近で光が全反射し、特に電流密度が低い領域では光エネルギーを外部に十分に取り出すことができなくなるためと思われる。 On the other hand, as shown in Sample No. 1, when the thickness of the light emitting layer is less than 0.5 monolayer and excessively thinned to 0.3 monolayer, the external quantum efficiency decreases in the region where the current density is low. Yes. This is because when the thickness of the light emitting layer is reduced to 0.3 monolayer, the distance between the hole transport layer and the electron transport layer becomes extremely small, and light is totally reflected near the boundary surface between them, and the current density is particularly low. This is probably because light energy cannot be sufficiently extracted outside in the region.
 したがって、輝度特性や外部量子効率を考慮すると、発光層の厚みは0.5~2モノレイヤーが好ましいことが確認された。 Therefore, in consideration of luminance characteristics and external quantum efficiency, it was confirmed that the thickness of the light emitting layer is preferably 0.5 to 2 monolayers.
 キャリアのナノ粒子内部への注入効率を向上させて良好な発光効率を有し、外部への光の取出効率も良好な有機EL素子等の発光デバイスを実現できる。 It is possible to realize a light emitting device such as an organic EL element which has a good light emission efficiency by improving the efficiency of carrier injection into the nanoparticles and a good light extraction efficiency to the outside.
1 透明基板
2 陽極(第1の電極層)
4 正孔輸送層
5 量子ドット
6 発光層
7 電子輸送層
8 陰極(第2の電極層)
9 ナノ粒子(超微粒子)
10 コア部
11 シェル部
12 界面活性剤
13 絶縁性材料
14 量子ドット分散溶液
15 絶縁性溶液
16 混合溶液
1 Transparent substrate 2 Anode (first electrode layer)
4 hole transport layer 5 quantum dot 6 light emitting layer 7 electron transport layer 8 cathode (second electrode layer)
9 Nanoparticles (ultrafine particles)
DESCRIPTION OF SYMBOLS 10 Core part 11 Shell part 12 Surfactant 13 Insulating material 14 Quantum dot dispersion solution 15 Insulating solution 16 Mixed solution

Claims (8)

  1.  発光層が量子ドットの集合体で形成された発光デバイスにおいて、
     前記量子ドットは、超微粒子の表面が界面活性剤で被覆されると共に、
     前記発光層は、前記量子ドット間が高分子化合物からなる絶縁性材料で充填され、
     かつ、発光層の厚みが、0.5~2モノレイヤーであることを特徴とする発光デバイス。
    In the light emitting device in which the light emitting layer is formed of an assembly of quantum dots,
    The quantum dot has a surface of ultrafine particles coated with a surfactant,
    The light emitting layer is filled with an insulating material made of a polymer compound between the quantum dots,
    A light emitting device having a light emitting layer thickness of 0.5 to 2 monolayers.
  2.  前記高分子化合物は、ポリイミド系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びポリビニル系樹脂の群から選択された1種以上を含むことを特徴とする請求項1記載の発光デバイス。 The polymer compound includes at least one selected from the group consisting of a polyimide resin, an acrylic resin, a polystyrene resin, a polycarbonate resin, a polyester resin, a polyamide resin, and a polyvinyl resin. The light emitting device according to claim 1.
  3.  前記超微粒子は、コア部と該コア部を被覆するシェル部とからなるコアーシェル構造を有していることを特徴とする請求項1又は請求項2記載の発光デバイス。 3. The light emitting device according to claim 1, wherein the ultrafine particles have a core-shell structure including a core part and a shell part covering the core part.
  4.  前記発光層の一方の主面に正孔輸送層が形成されると共に、前記発光層の他方の主面に電子輸送層が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の発光デバイス。 The hole transport layer is formed on one main surface of the light emitting layer, and the electron transport layer is formed on the other main surface of the light emitting layer. A light emitting device according to any one of the above.
  5.  前記超微粒子は、化合物半導体、酸化物、及び単体半導体のいずれかを含むことを特徴とする請求項1乃至請求項4のいずれかに記載の発光デバイス。 5. The light emitting device according to claim 1, wherein the ultrafine particles include any one of a compound semiconductor, an oxide, and a single semiconductor.
  6.  エレクトロ・ルミネッセンス素子であることを特徴とする請求項1乃至請求項5のいずれかに記載の発光デバイス。 The light-emitting device according to claim 1, wherein the light-emitting device is an electroluminescence element.
  7.  界面活性剤で超微粒子を被覆した量子ドット分散溶液を作製する量子ドット分散溶液作製工程と、
     高分子化合物からなる絶縁性材料を溶媒に溶解させて絶縁性溶液を作製する絶縁性溶液作製工程と、
     前記量子ドット分散溶液と前記絶縁性溶液とを混合して混合溶液を作製する混合溶液作製工程と、
     前記混合溶液を使用して発光層を作製する発光層作製工程とを含むことを特徴とする発光デバイスの製造方法。
    A quantum dot dispersion solution preparation step of preparing a quantum dot dispersion solution coated with ultrafine particles with a surfactant;
    An insulating solution preparation step of preparing an insulating solution by dissolving an insulating material made of a polymer compound in a solvent;
    A mixed solution preparation step of mixing the quantum dot dispersion solution and the insulating solution to prepare a mixed solution;
    And a light emitting layer manufacturing step of manufacturing a light emitting layer using the mixed solution.
  8.  透明基板の表面に第1の導電性材料を塗付して第1の電極層を形成する第1の電極層形成工程と、
     前記第1の電極層の表面に正孔輸送性材料を塗付し、正孔輸送層を形成する正孔輸送層形成工程と、
     前記発光層の表面に電子輸送性材料を塗付し、電子輸送層を形成する電子輸送層形成工程と、
     前記電子輸送層の表面に第2の導電性材料を塗付して第2の電極層を形成する第2の電極層形成工程とを含み、
     前記発光層形成工程は、前記正孔輸送層の表面に前記混合溶液を塗付して前記発光層を形成することを特徴とする請求項7記載の発光デバイスの製造方法。
    A first electrode layer forming step of forming a first electrode layer by applying a first conductive material to the surface of the transparent substrate;
    Applying a hole transporting material to the surface of the first electrode layer, and forming a hole transport layer;
    Applying an electron transporting material to the surface of the light emitting layer, and forming an electron transport layer; and
    A second electrode layer forming step of forming a second electrode layer by applying a second conductive material to the surface of the electron transport layer,
    8. The method of manufacturing a light emitting device according to claim 7, wherein in the light emitting layer forming step, the light emitting layer is formed by applying the mixed solution to a surface of the hole transport layer.
PCT/JP2013/082425 2012-12-20 2013-12-03 Light emitting device, and method for producing light emitting device WO2014097878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-277853 2012-12-20
JP2012277853 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014097878A1 true WO2014097878A1 (en) 2014-06-26

Family

ID=50978213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082425 WO2014097878A1 (en) 2012-12-20 2013-12-03 Light emitting device, and method for producing light emitting device

Country Status (1)

Country Link
WO (1) WO2014097878A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882554A (en) * 2015-04-30 2015-09-02 中国科学院半导体研究所 Inorganic and organic hybrid electroluminescent element and manufacturing method thereof
WO2018053061A1 (en) * 2016-09-15 2018-03-22 Jason Hartlove Architectural window with built-in qled lighting
CN111788866A (en) * 2018-03-07 2020-10-16 夏普株式会社 Light-emitting device, method for manufacturing light-emitting device, and apparatus for manufacturing light-emitting device
CN112425265A (en) * 2018-07-24 2021-02-26 夏普株式会社 Light-emitting device, method for manufacturing light-emitting device, and apparatus for manufacturing light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502176A (en) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device with quantum dots
JP2008214363A (en) * 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
WO2009081918A1 (en) * 2007-12-26 2009-07-02 Idemitsu Kosan Co., Ltd. Organic/inorganic hybrid electroluminescent element
JP2010532409A (en) * 2007-06-29 2010-10-07 イーストマン コダック カンパニー Luminescent nanocomposite particles
WO2012128173A1 (en) * 2011-03-24 2012-09-27 株式会社 村田製作所 Light emitting device and method for manufacturing said light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502176A (en) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device with quantum dots
JP2008214363A (en) * 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2010532409A (en) * 2007-06-29 2010-10-07 イーストマン コダック カンパニー Luminescent nanocomposite particles
WO2009081918A1 (en) * 2007-12-26 2009-07-02 Idemitsu Kosan Co., Ltd. Organic/inorganic hybrid electroluminescent element
WO2012128173A1 (en) * 2011-03-24 2012-09-27 株式会社 村田製作所 Light emitting device and method for manufacturing said light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882554A (en) * 2015-04-30 2015-09-02 中国科学院半导体研究所 Inorganic and organic hybrid electroluminescent element and manufacturing method thereof
WO2018053061A1 (en) * 2016-09-15 2018-03-22 Jason Hartlove Architectural window with built-in qled lighting
CN111788866A (en) * 2018-03-07 2020-10-16 夏普株式会社 Light-emitting device, method for manufacturing light-emitting device, and apparatus for manufacturing light-emitting device
CN111788866B (en) * 2018-03-07 2023-05-23 夏普株式会社 Light emitting device
CN112425265A (en) * 2018-07-24 2021-02-26 夏普株式会社 Light-emitting device, method for manufacturing light-emitting device, and apparatus for manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
JP6233417B2 (en) Light emitting device
JP5828340B2 (en) Light emitting device and method for manufacturing the light emitting device
JP6061112B2 (en) Light emitting device
JP6710248B2 (en) Quantum dot light emitting diode and quantum dot light emitting device including the same
JP6168372B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
CA2934970C (en) Light emitting device including semiconductor nanocrystals
Bae et al. Highly efficient green‐light‐emitting diodes based on CdSe@ ZnS quantum dots with a chemical‐composition gradient
JP5370702B2 (en) Thin film formation method
US9093657B2 (en) White light emitting devices
JP5218927B2 (en) Nanoparticle material and photoelectric conversion device
KR101357045B1 (en) Tunable Light Emitting Diode using Graphene conjugated Metal oxide semiconductor-Graphene core-shell Quantum dots and its fabrication process thereof
US20160064681A1 (en) Light emtting device using graphene quantum dot and preparing method of the same
JP5200296B2 (en) Method for producing nanoparticle material
US10925133B2 (en) Carbon dot light emitting diodes
JP2006066395A (en) White luminescence organic/inorganic hybrid electroluminescent element containing semiconductor nanocrystal
WO2014097878A1 (en) Light emitting device, and method for producing light emitting device
JP2008300270A (en) Light emitting element
Mallem et al. Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP