WO2009081700A1 - ポリマー被覆無機物微粒子とその製造方法 - Google Patents
ポリマー被覆無機物微粒子とその製造方法 Download PDFInfo
- Publication number
- WO2009081700A1 WO2009081700A1 PCT/JP2008/071927 JP2008071927W WO2009081700A1 WO 2009081700 A1 WO2009081700 A1 WO 2009081700A1 JP 2008071927 W JP2008071927 W JP 2008071927W WO 2009081700 A1 WO2009081700 A1 WO 2009081700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- inorganic fine
- polymer
- group
- iniferter
- Prior art date
Links
- 0 CC1(*)C=CC(CSC(N(*)*)=S)=CC=C1 Chemical compound CC1(*)C=CC(CSC(N(*)*)=S)=CC=C1 0.000 description 2
- NNWSFHNQRXKZKK-UHFFFAOYSA-N CCCC(c1ccc(CCC(C)=C)cc1)=O Chemical compound CCCC(c1ccc(CCC(C)=C)cc1)=O NNWSFHNQRXKZKK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/40—Compounds of aluminium
- C09C1/42—Clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F292/00—Macromolecular compounds obtained by polymerising monomers on to inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/005—Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/12—Treatment with organosilicon compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/03—Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
Definitions
- the present invention relates to polymer-coated inorganic fine particles and a method for producing the same, and more particularly to polymer-coated inorganic fine particles that can be monodispersed by covering the surface of one inorganic fine particle with a thin polymer layer and a method for producing the same.
- Composite particles in which the surface of nanometer-sized inorganic fine particles are coated with a polymer have been applied to various fields and have been widely used.
- inorganic fine particles such as nanometer-sized magnetic fine particles whose surfaces are coated with a polymer has been particularly active in the biotechnology and medical fields.
- Inorganic fine particles coated with polymers have been studied for application as biosensors and affinity carriers.
- inorganic fine particles are magnetic fine particles
- MRI magnetic resonance diagnostic equipment
- DDS delivery system
- the shape and dimensions of the inorganic fine particles constituting the polymer-coated inorganic fine particles are well aligned.
- these inorganic fine particles are uniformly coated with a polymer one by one, and that when the polymer-coated inorganic fine particles are dispersed in a certain solvent, the state becomes monodisperse or close to monodispersion. .
- the inorganic fine particles are magnetic fine particles
- the particle diameter of the polymer-coated magnetic fine particles is as small as possible, while the magnetization of the magnetic fine particles is as large as possible.
- the magnetic fine particles constituting the polymer-coated magnetic fine particles have an average particle size as small as possible within a range in which magnetization as a ferromagnetic material can be maintained, particles are well aligned, and one magnetic fine particle It is desirable that they are thinly coated with a polymer.
- inorganic fine particles that meet these requirements and to coat the inorganic fine particles with a thin polymer by a method that can be well controlled.
- a polymerization initiator is fixed on the surface of inorganic fine particles, and these inorganic fine particles are coated with a polymer by Livink radical polymerization in which polymerization is initiated by a polymerization initiator fixed on the surface of the fine particles in a monomer solution. There is a way to do it.
- Non-Patent Documents 1 to 10 describe various studies on a method of fixing a polymerization initiator on the surface of fine particles, starting a living polymerization of monomers from the surface of these fine particles, and coating the fine particles one by one with the polymer. ing.
- Non-Patent Document 1 discloses that 3-chloropropionic acid is fixed on the surface of MnFe 2 O 4 fine particles, which is heated and stirred in a styrene solution as a polymerization initiator, and the average particle size is about 9 nm polystyrene coated Mn ferrite particles are obtained.
- Non-Patent Document 2 a living free radical polymerization initiator having a phosphonic acid group and mediated by a nitroxyl group is immobilized on the surface of a magnetite particle having a particle diameter of 10 nm, and this is heated in a styrene solution to obtain polystyrene. Magnetite particles grown on the surface are obtained.
- Non-Patent Document 3 in addition to magnetite particles grown on the surface of polystyrene as in Non-Patent Document 2, magnetite particles grown on the surface of poly-3-vinylpyridine are obtained.
- Non-Patent Document 4 describes a polymer coating of oleic acid-coated ⁇ -Fe 2 O 3 nanoparticles obtained by thermal decomposition of Fe (CO) 5 in di-n-octyl ether in the presence of oleic acid.
- a polymerization initiator having surface activity is bound to ⁇ -Fe 2 O 3 nanoparticles, styrene is polymerized using this polymerization initiator, and the surface of ⁇ -Fe 2 O 3 nanoparticles having an average particle diameter of 4 nm is formed. It has a core-shell composite structure made of polystyrene.
- Non-Patent Document 5 describes a core coated with polystyrene by atom transfer radical polymerization in which 2-bromo-2-methylpropionic acid is immobilized on the surface of ⁇ -Fe 2 O 3 nanoparticles of about 10 nm as a polymerization initiator. -It is described that a shell composite structure is obtained.
- Non-Patent Document 6 discloses that ⁇ -Fe 2 O 3 nanoparticles having an average particle diameter of 4 nm are treated with caproate to give functional groups to the particle surface, and chloromethylphenylethyl-dimethylchlorosilane is added to the particles.
- Core-shell nanoparticles are described in which ⁇ -Fe 2 O 3 nanoparticles are coated with polymethyl methacrylate by atom transfer radical polymerization using the surface as a polymerization initiator.
- Non-Patent Document 7 discloses that 2-bromo-2-methylpropionic acid is adsorbed on the surface of a magnetite fine particle having a number average particle size of 10.1 nm, which is precipitated with alkali, and polymerization is initiated using this as a polymerization initiator. It is described that stable magnetic fine particles which can be reversibly changed with respect to temperature can be produced by coating with poly-2-methoxyethyl methacrylate.
- a radical polymerization initiator having a phosphate group is fixed on the surface of magnetite fine particles of 10 nm and 25 nm, and titanium oxide fine particles of 15 nm, and the polymerization is started from the particle surface.
- Non-Patent Document 9 a polymerization initiator is covalently bonded to the surface of a magnetite fine particle having an average particle size of 9 nm by a new method of ligand exchange reaction and condensation of triethoxysilane having a polymerization initiation site. Describes a method for producing magnetic nanoparticles with covalently bonded polystyrene shells by atom transfer radical polymerization initiating.
- Non-Patent Document 10 discloses that as a magnetite magnetic fine particle having a core-shell-corona structure for delivering a block hydrophobic drug, 2-bromo-2-methylpropionic acid is immobilized on the surface of the magnetite magnetic fine particle, A method for producing fine particles coated with a block copolymer of methacrylate and poly-2-hydroxyethyl methacrylate is described.
- Non-Patent Documents 1 to 10 a living radical polymerization is used to form a polymer coating, a polymerization initiator is fixed on the surface of inorganic fine particles, and a living radical polymerization is started from the surface of fine particles.
- Various polymer coating methods for coating the particles have been described.
- the methods described in these non-patent documents have insufficient points to precisely control the polymer coating, such that the polymer coating is thicker than the size of the fine particles, and the fine particles cannot be uniformly coated one by one. there were.
- Patent Document 1 Japanese Patent Laid-Open No. 2006-328309 describes that the molecular weight distribution of the polymer chain covering the magnetic fine particles can be reduced by performing living radical polymerization by fixing a polymerization initiator on the surface of the magnetic fine particles.
- a polymerization initiator on the surface of the magnetic fine particles.
- an organic halide or a sulfonyl halide having a halogen as a polymerization starting point on the particle surface of ferrofluid colloid HC-50 (an aggregate of superparamagnetic materials having a primary particle diameter of 5 nm) is used.
- By fixing and living radical polymerization homopolymerization of styrene, methyl methacrylate, benzyl methacrylate, etc.
- the polymer-coated magnetic fine particles obtained in this manner can narrow the polymer molecular weight distribution to some extent, it cannot be said that the coating of the fine particles with the polymer is precisely controlled, and the magnetic fine particles are coated with the polymer one by one, It was not possible to realize polymer-coated magnetic fine particles in a monodispersed state.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-56094 describes a thermoresponsive polymer coating of magnetic fine particles by living radical polymerization using a water-soluble N, N-diethyl polymerization initiator.
- a living radical polymerization in an aqueous solution is facilitated by using a water-soluble N, N-diethyl polymerization initiator.
- the formation of a block polymer consisting of acrylic acid, methacrylic acid and the thermoresponsive polymer N-isopropylacrylamide using this method is described.
- a composite of the polymer and a magnetic material is produced, and its thermal response is investigated.
- Patent Document 2 since the polymerization initiator is present in the monomer solution without being fixed on the surface of the magnetic fine particles, this method is not a method suitable for coating the inorganic fine particles one by one.
- the ferrite fine particles When the ferrite fine particles have a particle size of about 10 nm or less, they have magnetism, but they are much weaker than normal ferromagnetism and exhibit superparamagnetism. Since such superparamagnetic fine particles have a weak magnetic cohesive force between the particles, it is easy to disperse in a solvent. Therefore, it is easy to disperse fine particles in a solvent and coat them one by one with a polymer. .
- Non-Patent Documents 1 to 10 describe a method of coating superparamagnetic fine particles having a weak magnetic cohesive force between particles, but do not give any suggestion on a method of coating ferromagnetic fine particles one by one with a polymer. There wasn't. Although Non-Patent Document 7 describes magnetic fine particles having an average particle diameter slightly exceeding 10 nm, this particle is also described as exhibiting superparamagnetism as in the above case. Non-Patent Document 8 describes the surface coating of magnetite particles having an average particle diameter of 25 nm in addition to the description of the surface coating of superparamagnetic fine particles having an average particle size of 10 nm.
- An object of the present invention is to provide polymer-coated inorganic fine particles obtained by precisely controlling the polymerization reaction and coating inorganic fine particles with a thin polymer layer, and a method for producing the same.
- Another object of the present invention is to provide polymer-coated inorganic fine particles capable of maintaining a monodispersed state by precisely controlling the polymerization reaction and coating the inorganic fine particles one by one with a thin polymer layer, and a method for producing the same.
- the inorganic fine particles are particularly ferromagnetic particles, and the magnetic particles having sufficiently small particle diameters as long as they have a magnetization as a ferromagnetic substance are thinly and uniformly coated with a polymer one by one, thereby reducing the particle diameter. It is an object to provide a polymer-coated magnetic fine particle having a large magnetization and a method for producing the same.
- the polymer-coated inorganic fine particles of the present invention have the following chemical formula
- X is a hydrophilic atomic group capable of binding to the surface of the inorganic fine particle
- R 1 and R 2 are monovalent groups formed by removing one hydrogen atom from each independently selected hydrocarbon.
- Iniferters represented by a hydrocarbyl group, which is a group are fixed on the surface of the inorganic fine particles through the atomic group X, and form a graft chain on the surface of the inorganic fine particles by a polymerization reaction using the iniferter as an initiator. Is covered with a polymer layer.
- X in the iniferter is an atomic group having a functional group bonded to the surface of the inorganic fine particle or a functional group bonded to the surface of the inorganic fine particle, and plays a role of fixing the iniferter to the surface of the magnetic fine particle.
- the iniferter R 1 -R 2 takes in the monomer M through an insertion reaction, and radicals can be sequentially transferred to the tip of the polymerization reaction as the polymerization reaction proceeds.
- examples of the functional group bonded to the surface of the inorganic fine particles include a carboxyl group, a mercapto group, a phosphoric acid group, a phosphorous acid group, a sulfonic acid group, and a phenol group.
- the functional group that binds to the surface of the inorganic fine particles preferably has a group that forms a silanol group by hydrolysis. It was found that the iniferter having such a group can be strongly bonded to the surface of the inorganic fine particles. In addition, since a group that forms a silanol group by hydrolysis exists in the silane coupling agent, an iniferter having such a group can be obtained by binding the silane coupling agent to the iniferter.
- the group that forms a silanol group by hydrolysis may be in the form of —Si (OR 1 ) (OR 2 ) (OR 3 ), or in the form of —Si (OR 1 ) (OR 2 ) R 3 .
- R 1 , R 2 and R 3 are each a hydrocarbyl group which is a monovalent group formed by removing one hydrogen atom from a hydrocarbon such as a methyl group or an ethyl group.
- the polymer coating can be formed on the surface of the inorganic fine particles while controlling the polymer successfully. I can do it now.
- the above-mentioned inorganic fine particles of the present invention preferably have an average particle size of 4 to 500 nm and a ratio of the standard deviation of the particle size distribution to the average particle size is not more than 0.2 mm.
- the inorganic fine particles having such a size can obtain excellent performance in affinity carriers, medical applications and biotechnology applications.
- the thickness of the polymer coating can be controlled in detail according to the particle size and purpose of the fine particles.
- the inorganic fine particles having a thin polymer coating with a polymer coating thickness of 10 nm or less can be obtained.
- the volume fraction of inorganic fine particles can be increased in medical and biotechnology applications, and as a result, the performance of polymer coated inorganic fine particles can be improved. Became.
- the polymer coating is formed by the polymerization reaction using the iniferter on the surface of the inorganic fine particles to which the iniferter is fixed as an initiator, there is a great feature that the coating can be made extremely thin and uniform. For this reason, there is no particular limitation on the lower limit of the thickness of the polymer coating, but in order to further reduce the interaction between the inorganic fine particles by the polymer coating, it is more preferable to set the thickness of the polymer coating to 0.5 nm mm or more. .
- polymer-coated inorganic fine particles individually coated with inorganic fine particles can be obtained, and a monodispersed state can be maintained.
- the individual fine particles are dispersed in the solvent as very small particles and can pass through even small voids, so that polymer-coated inorganic fine particles in a highly desirable form can be obtained for various uses such as medical and biotechnology. Can now.
- a polymer coating obtained by block copolymerization with two or more kinds of polymers can be used. And the functional group which can fix a biological substance can be given to the at least 1 block in a block copolymer. By doing so, polymer-coated fine particles capable of fixing biological substances can be obtained.
- the coating of the polymer layer is made by block copolymerization of two or more kinds of polymers, in the formation of the first polymer layer, a polymerization reaction using an iniferter fixed on the surface of the inorganic fine particles as an initiator is performed. Do.
- magnetism can be utilized in various forms. Ferrite fine particles can be used as such magnetic fine particles. Ferrite fine particles have high chemical stability and are suitable for various applications. In addition, there is a great advantage that the particle shape and particle size of the ferrite fine particles can be controlled by a method through thermal decomposition using oleic acid.
- ferrite fine particles those having an average particle diameter of 4 nm or more and a ratio of the standard deviation of the particle size distribution to the average particle diameter of 0.2 mm or less can be used.
- polymer-coated inorganic fine particles including ferromagnetic fine particles having a large magnetization can be realized.
- the iniferter compound of the present invention comprises an atomic group capable of binding to the surface of inorganic fine particles by forming a silanol group by hydrolysis. It has been found that when such an iniferter compound is fixed on the surface of the fine particles and polymer coating of the inorganic fine particles is performed by a polymerization reaction, the inorganic fine particles can be efficiently coated with the polymer.
- R 1 and R 2 are each a hydrocarbyl group that is a monovalent group generated by removing one hydrogen atom from an independently selected hydrocarbon, and X forms a silanol group by hydrolysis.
- An iniferter which is an atomic group having a group and capable of binding to the surface of the inorganic fine particles is particularly excellent.
- An iniferter having a group that forms a silanol group by hydrolysis and having an atomic group capable of binding to the surface of the inorganic fine particles can be produced by binding a silane coupling agent to a substance having the function of an iniferter.
- the method for producing polymer-coated inorganic fine particles of the present invention has the following chemical formula on the surface of the inorganic fine particles dispersed in the dispersion.
- X is a hydrophilic atomic group R 1 and R 2 that can be bonded to the ferrite particle surface, and a hydrocarbyl group that is a monovalent group formed by removing one hydrogen atom from a hydrocarbon
- a monomer is added to the dispersion of inorganic fine particles, and a graft chain is formed on the surface of the ferrite particles by a polymerization reaction using an iniferter fixed on the surface of the inorganic fine particles as an initiator, And a step of coating the inorganic fine particles one by one with a polymer layer.
- an iniferter used as a polymerization initiator a compound that is well suited for the above purpose is synthesized, and this iniferter is fixed on the surface of inorganic fine particles with a well-controlled particle size distribution and a narrow particle size distribution to initiate polymerization.
- a polymer graft chain is formed on the surface of the inorganic fine particles, the polymerization can be precisely controlled, and polymer-coated inorganic fine particles in which the inorganic fine particles are thinly coated with a polymer one by one can be produced.
- FIG. 1 is a diagram showing a flow of main steps for producing polymer-coated inorganic fine particles in one embodiment of the present invention.
- inorganic fine particles are synthesized.
- the inorganic fine particles of the present invention are preferably particles having a precisely controlled particle size and a uniform particle size.
- Such inorganic fine particles can be produced, for example, by thermally decomposing an iron oleate complex obtained from iron chloride and sodium oleate in a high boiling point solvent.
- inorganic fine particles such as spherical ferrite fine particles whose particle diameter is precisely controlled and whose particle diameters are well aligned can be obtained.
- the inorganic fine particles thus obtained are freed from unnecessary components by washing in step 104.
- ferrite fine particles obtained by thermally decomposing iron oleate complex in a high boiling point solvent
- ferrite fine particles are obtained by repeating the operation of adding 2-methoxyethanol to precipitate the ferrite fine particles and then collecting the magnetic particles. Can be washed.
- Step 106 the inorganic fine particles are dispersed in a solvent to prepare a dispersion.
- Step 108 an iniferter is added to the dispersion.
- the iniferter is dispersed on the surface of the inorganic fine particles dispersed in the solvent. Fix it.
- the iniferter used here has a functional group that can be fixed to the surface of the inorganic fine particles.
- the inorganic fine particles are ferrite fine particles that can be synthesized by thermal decomposition of an iron oleate complex in a high boiling point solvent, for example, 2-methoxyethanol can be used as a cleaning solvent. Further, toluene can be used as a solvent for dispersing the ferrite fine particles.
- step 112 the inorganic fine particles having the iniferter fixed on the surface are thoroughly washed in step 112 to remove the unreacted iniferter.
- This washing step can be performed in the same procedure as the previous washing step 104.
- step 114 the iniferter-immobilized inorganic fine particles washed well in step 114 are dispersed again in a solvent to prepare a dispersion.
- a monomer is injected into each dispersion.
- the inorganic fine particles are coated with a polymer by each polymerization reaction.
- the present invention is not limited to three steps, and a plurality of types of polymer blocks can be obtained by performing a plurality of steps as required. A copolymer can be obtained. In this way, inorganic fine particles can be polymer-coated by a well-controlled multilayer block copolymer.
- the shape of the inorganic fine particles to be used is uniform and the particle diameters are well aligned, so that the polymer coating of the inorganic fine particles can be controlled more precisely.
- the average particle diameter of the inorganic fine particles is 4 nm to 500 nm and the value obtained by dividing the standard deviation by the average particle diameter as the particle size distribution is 0.2 mm or less because the polymer coating of the inorganic fine particles can be precisely controlled. .
- an inorganic fine particle having an average particle diameter of 4 nm to 30 nm and a value obtained by dividing the standard deviation by the average particle diameter is 0.2 mm or less is more preferable for precisely controlling the polymer coating of the inorganic fine particles.
- the particle size of the inorganic fine particles can be determined by measuring the particle size of an electron microscopic image of the inorganic fine particles. Following these polymerization reaction steps, washing is performed in step 122 to obtain polymer-coated inorganic fine particles 124.
- the inorganic fine particles have a precisely controlled particle size and have a uniform particle shape and particle size.
- a method of synthesizing such inorganic fine particles there is a method of producing in an aqueous solution or an organic solvent, and for example, a method through thermal decomposition of a metal oleate complex in oleic acid can be used.
- ferrite fine particles having a particle size that is precisely controlled and having a very uniform particle diameter can be obtained.
- this method has a feature that a large amount of fine particles can be synthesized in a relatively short time.
- various functional particles such as magnetic fine particles, biosensor particles, or quantum dot particles can be used in addition to ferrite fine particles such as magnetite and maghemite. it can.
- This iniferter is separated into an active species having a radical and a leaving group by uniform cleavage, and radical polymerization of the monomer starts from the active species, and the radical moves to the terminal one after another, and the polymerization proceeds. Since the radical of the leaving group is weakly bonded to the terminal, the polymerization reaction proceeds while the stability of the radical of the active species is maintained and the side reaction as described above is prevented. Thus, the iniferter plays a particularly important role in precisely controlling the polymerization.
- FIG. 2 is a schematic view of a situation in which such an iniferter is fixed to the inorganic fine particles, and the inorganic fine particles are coated with the polymer by polymerization using the iniferter as a polymerization initiator.
- an iniferter 204 which is a polymerization initiator, is fixed on the surface of the inorganic fine particle 202, and a monomer is polymerized starting from the fixed iniferter to form a first polymer 206 on the surface of the inorganic fine particle.
- FIG. 2B is a schematic diagram of the case where the second polymer 208 is formed by further polymerizing the monomer with the first polymer 206 formed on the surface of the inorganic fine particles 202.
- FIG. 2C is a schematic cross-sectional view of the polymer-coated inorganic fine particles thus obtained.
- a certain monomer is polymerized by living radical polymerization to coat inorganic fine particles with the polymer, and then a monomer 208 different from the monomer used in the previous polymerization is added, and for example, living radical polymerization is performed.
- a block copolymer can be obtained.
- Iniferter In the present invention, a substance represented by the following chemical formula is used as an iniferter.
- R 1 and R 2 are hydrocarbyl groups which are monovalent groups formed by removing one hydrogen atom from a hydrocarbon, and an ethyl group having 2 carbon atoms can be particularly preferably used.
- an independently selected alkyl group having 5 or less carbon atoms can be used.
- an ethyl group can be particularly preferably used, and a methyl group can be preferably used.
- X is an atomic group that is well bonded to the surface of the inorganic fine particles, and the iniferter is bonded to the inorganic fine particles through this atomic group.
- a carboxyl group or an atomic group having a carboxyl group is preferable, an atomic group having a carboxyl group having a plurality of carboxyl groups, a carboxyl group and a hydroxyl group, an amino group, or the like Those having other hydrophilic groups are preferred.
- X of the above iniferter is particularly preferably an atomic group having a group that forms a silanol group by hydrolysis.
- the iniferter is bonded to a silane coupling agent.
- Such an iniferter is an active species represented by the following chemical formula generated by uniform cleavage when polymerization is initiated,
- the radical polymerization of the monomer is initiated by the radicals possessed by the active species, and the radicals move one after another to the terminal to proceed the polymerization. Since the stable leaving group is weakly bonded to the end of the polymerization in which the radical is present, the stability of the radical of the active species is maintained and the side reaction is prevented. In addition, since the radical on a sulfur atom is delocalized by the contribution of a thiocarbonyl group, it is thought that the radical of a leaving group is comparatively stable.
- the polymer coating of the inorganic fine particles can be precisely controlled, and the inorganic fine particles can be coated with the polymer one by one. .
- the monomer used for polymer coating of the inorganic fine particles by polymerization can be appropriately selected from monomers capable of radical polymerization depending on the application.
- the inorganic fine particles can be coated with a single monomer, and a plurality of polymers can be block copolymerized. According to the present invention, when a plurality of polymers are block copolymerized, each block can be precisely controlled.
- Examples of such monomers include styrene, styrene ⁇ -, o-, m-, p-alkyl, alkoxyl, halogen, haloalkyl, nitro, cyano, amide, ester substituted products; styrene sulfonic acid, 2,4-dimethylstyrene, Polymerizable defects such as paradimethylaminostyrene, vinylbenzyl chloride, vinylbenzaldehyde, indene, 1-methylindene, acenaphthalene, vinylnaphthalene, vinylanthracene, vinylcarbazole, 2-vinylpyridine, 4-vinylpyridine, 2-vinylfluorene, etc.
- alkyl such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate (Meth) acrylates; unsaturated monocarboxylic acid esters such as methyl crotonate, ethyl crotonate, methyl cinnamate, and ethyl cinnamate; trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, heptafluoro Fluoroalkyl (meth) acrylates such as butyl (meth) acrylate; trimethylsiloxanyldimethylsilylpropyl (meth) acrylate, tris (trimethylsiloxanyl) silylpropyl (meth) acryl
- Example 1 Preparation of ferrite fine particles Ferrite fine particles used as inorganic fine particles corresponding to the core part of polymer-coated magnetic fine particles are in accordance with the method described in Nature Mater. 2004, 3, 891-895, and iron chloride and sodium oleate are used. To obtain an iron oleate complex, which was thermally decomposed in a high boiling point solvent.
- the obtained ferrite fine particles were observed with a transmission electron microscope (TEM, H-7500, manufactured by Hitachi High-Technologies Corporation). As a result, ferrite particles having an approximately spherical particle diameter of 19 nm were obtained, and it was confirmed that the standard deviation of the particle diameter distribution was 3.2 nm and the particle size was very well aligned.
- TEM transmission electron microscope
- the amount of iniferter bonded to the ferrite fine particles was determined as follows. By treating the iniferter-fixed ferrite fine particles with 1M sodium hydroxide aqueous solution, the iniferter is detached from the ferrite fine particle surface, and the supernatant is measured with a spectrophotometer (DU640 manufactured by Beckman®). The amount of bound iniferter was determined.
- the operations of dispersion in toluene and centrifugation were repeated three times to remove unreacted monomers.
- the obtained polymer-coated ferrite fine particles were observed and evaluated with a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the average particle diameter determined from the observed TEM images of 100 particles was 25.6 nm, and the standard deviation was 5.23 nm.
- the conversion rate was measured when a part of the solution (500 ml) immediately after the completion of polymerization was transferred to a glass vial and a small amount of hydroquinone was quickly added thereto, the conversion rate was measured. As a result, the conversion rate was 90.53%.
- Example 2 Using the ferrite fine particles and the iniferter prepared in Example 1, the iniferter was fixed to the ferrite fine particles by the same method as in Example 1, and 0.06 g of styrene was injected into the system while maintaining at 70 ° C. and 200 rpm. After the time polymerization reaction, 0.02 g, 0.01 g, and 0.01 g of styrene, glycidyl methacrylate, and ethylene glycol dimethacrylate were added, and the polymerization reaction was performed for 12 hours. After completion of the reaction, the reaction solution was dispersed in toluene, and toluene was removed by centrifugation.
- the operations of dispersion in toluene and centrifugation were repeated three times to remove unreacted monomers.
- the obtained polymer-coated ferrite fine particles were observed and evaluated with a TEM.
- the average particle size determined from the TEM images of 100 particles observed was 23.8 nm, and the standard deviation was 4.27 nm.
- a part (500 ml) of the solution immediately after the completion of the polymerization was transferred to a glass vial, and a small amount of hydroquinone was quickly added thereto to measure the conversion. As a result, the conversion was 99.63%.
- Example 3 Using the ferrite fine particles and the iniferter prepared in Example 1, the iniferter was fixed to the ferrite fine particles by the same method as in Example 1, and then styrene, glycidyl methacrylate, and ethylene glycol disulfide were kept in the system while maintaining 70 ° C. and 200 rpm. Methacrylate was added in an amount of 0.02 g, 0.01 g and 0.01 g, respectively, and the polymerization reaction was carried out for 12 hours. Thereafter, 0.02 g of glycidyl methacrylate was injected, and a polymerization reaction was performed for 12 hours.
- the reaction solution was dispersed in toluene, and toluene was removed by centrifugation. The operations of dispersion in toluene and centrifugation were repeated three times to remove unreacted monomers.
- the obtained polymer-coated ferrite fine particles were observed and evaluated with a TEM. The average particle size obtained from the TEM images of 100 particles observed was 20.6 nm, and the standard deviation was 3.42 nm.
- a part (500 ml) of the solution immediately after the completion of the polymerization was transferred to a glass vial, and a small amount of hydroquinone was quickly added thereto to measure the conversion rate. As a result, the conversion rate was 99.93%.
- Example 1 to 3 The results of Examples 1 to 3 are summarized in Table 1. In any of Examples 1 to 3, the conversion rate was 90% or more.
- FIG. 4 is a TEM photographic image of the polymer-coated particles obtained in Example
- (a) is a TEM photographic image of the polymer-coated particles obtained in Example 1
- (b) is obtained in Example 2.
- (C) is a TEM photographic image of the polymer-coated particles obtained in Example 3. 4A to 4C, it was confirmed that there was one ferrite fine particle in the center of each particle, and the ferrite fine particle was coated with a polymer. Further, it was observed that as the amount of monomer added increases, the polymer coating becomes thicker and the particle diameter of the polymer-coated particles increases.
- Example 4 Inorganic fine particles Ferrite fine particles, which are magnetic fine particles, were produced as the inorganic fine particles serving as the core in the same manner as in Example 1 in accordance with the method described in Nature Mater. 2004, 3, 891-895. The obtained ferrite fine particles were observed with a TEM to obtain ferrite fine particles having an average particle diameter of 19 nm and a standard deviation of the particle diameter of 3.23 nm.
- the iniferter indicated by is obtained. Since this iniferter has a silane coupling agent bonded to it, it forms a silanol group by hydrolysis and forms a strong and stable bond on the surface of the inorganic fine particles. Fixed.
- Dimethyl sulfoxide (Nacalai Tesque Co., Ltd.) in which 0.15 g of thiomalic acid (Tokyo Chemical Industry Co., Ltd.) is dissolved in 8 ml of nitrogen-substituted toluene (Kokusan Chemical Co., Ltd.) 2 ml of the solution was added and sonicated for 4 hours.
- the ferrite fine particles were washed 5 times with 5 ml of 2-methoxyethanol to remove unreacted thiomalic acid.
- the product was washed 3 times with 2-methoxyethanol and 5 times with methanol to remove the detached thiomalic acid and unreacted iniferter.
- the iniferter-fixed ferrite fine particles were dispersed in 90 ml of methanol, sealed, and stored at 4 ° C.
- the ferrite fine particles are treated with 98 ° C., 6M HCl aqueous solution, and completely dissolved.
- the precipitated components are dissolved in 1M aqueous sodium hydroxide solution, and the absorbance at a wavelength of 252.5 nm is measured with a spectrophotometer (Beckman DU640).
- the iniferter fixed to the ferrite fine particles was quantified. As a result, an iniferter of 87.9 nmol per 1 mg of ferrite fine particles was fixed.
- FIG. 6A is a TEM photograph image of the polymer-coated ferrite fine particles obtained in Example 4. Further, a part of the solution (500 ml) immediately after the completion of the polymerization was transferred to a 5 ml glass vial, and a small amount of hydroquinone was quickly added thereto to measure the conversion rate.
- Example 5 10 ml of the solution obtained in 3) of Example 4 (ferrite fine particles 10 mg) was washed three times with toluene, dispersed in 20 ml of toluene, and this was taken up in a 200 ml four-necked flask. Capacitor ceramic rubber was attached and preincubated for 1 hour at 70 ° C. and 200 rpm. While maintaining 70 ° C. and 200 rpm, 0.02 g, 0.01 g, and 0.01 g of styrene, glycidyl methacrylate, and ethylene glycol dimethacrylate were added to the system, respectively, and a polymerization reaction was performed for 18 hours.
- FIG. 6B is a TEM image of the polymer-coated ferrite fine particles obtained in Example 5. Further, a part of the solution (500 ml) immediately after the completion of the polymerization was transferred to a 5 ml glass vial, and a small amount of hydroquinone was quickly added thereto to measure the conversion rate.
- Example 4 and 5 are shown in Table 2.
- the conversion rate in Examples 4 and 5 was 85% or more.
- the average particle diameter shown in Table 2 is calculated from the measured values of 100 particles in the transmission electron micrograph shown in FIG.
- FIG. 6B shows a TEM photographic image of the polymer-coated ferrite fine particles obtained at this time. From this photograph, it can be seen that each ferrite fine particle is coated with a polymer.
- Magnetic fine particles are prepared by adding an aqueous solution of nitric acid to an aqueous solution of ferrous chloride to partially oxidize divalent iron ions to form and grow spinel-structured iron oxide particles in water, followed by washing. A dispersion in which ferrite fine particles having an average particle size of 40 nm were dispersed in water was obtained.
- the particle diameter of the generated particles can be controlled to the range of several hundred nm, and the particle diameter is larger and the particle diameter is well aligned and single compared to the method of thermally decomposing iron oleate complex. Dispersible ferrite particles could be manufactured in a form dispersed in water.
- the iniferter represented by the above [Chemical Formula 10] synthesized in Example 4 was added and fixed to the surface of the ferrite fine particles, and the excess iniferter was removed by washing.
- Styrene, glycidyl methacrylate, and ethylene glycol dimethacrylate were added as monomers to the ferrite fine particle dispersion with the iniferter fixed thereon to cause a polymerization reaction.
- glycidyl methacrylate and glycerol methacrylate were injected to cause further polymerization reaction. After these polymerization reactions, the reaction solution was dispersed in Mill-Q water, and water was removed by centrifugation.
- Example 7 1) Preparation of ferrite fine particles Ferrite fine particles used as inorganic fine particles corresponding to the core of the polymer-coated magnetic fine particles conform to the method described in J. Magn. Magn. Mater., 310, 2408-2410, 2007, Under a nitrogen atmosphere, iron (II) chloride was oxidized with sodium nitrate in a 0.1 M aqueous sodium hydroxide solution to initiate the reaction. Two hours later, the obtained ferrite fine particles were observed with a transmission electron microscope (TEM, H-7500, manufactured by Hitachi High-Technology Co., Ltd.), and fine particles having an angular structure were observed.
- TEM, H-7500 manufactured by Hitachi High-Technology Co., Ltd.
- the final concentration is 0.2M with respect to the solution after the reaction for 2 hours in an attempt to make the particles having an angular structure close to a spherical shape.
- An ammonium chloride solution was added to the mixture, and the mixture was allowed to react for 2 hours under a nitrogen atmosphere.
- the obtained ferrite fine particles were observed with a transmission electron microscope. As a result, as shown in FIG. 7, it was confirmed that ferrite particles having a substantially spherical particle diameter of 40 nm were obtained. This is probably because the ammonium ion derived from ammonium chloride was coordinated with the Fe ions on the ferrite surface during the crystal growth, thereby preventing the crystal growth, and as a result, a spherical crystal was obtained.
- ferrite coating substance 1 The ferrite fine particles after the ultrasonic treatment were washed three times with N, N-dimethylformamide, dispersed in 40 ml of N, N-dimethylformamide, sealed and stored at 4 ° C.
- the iniferter-fixed ferrite fine particles are referred to as “ferrite coating substance 1”.
- the ferrite fine particles can be suitably dispersed, the above iniferter can be suitably dissolved, and the remanent magnetization increases as the size of the magnetic particles increases (20 nm or more).
- N, N-dimethylformamide was selected as a result of intensive studies as a solvent capable of maintaining the dispersibility of the ferrite fine particles in the iniferter fixation process.
- the amount of iniferter bonded to the ferrite fine particles was determined as follows.
- the iniferter-fixed ferrite fine particles are replaced with toluene, dried to a powder, treated with 6M hydrochloric acid to solubilize the ferrite, precipitate the iniferter, remove the supernatant by centrifugation, and remove the precipitate from 1M water.
- the solution was dispersed in an aqueous sodium oxide solution, and the absorbance of the solution was measured with a spectrophotometer (manufactured by Beckman® DU640), and the amount of iniferter bound to the ferrite fine particles was determined from the absorbance at 252.5 nm.
- the obtained iniferter immobilization amount was about 400 nmol / mg (ferrite).
- the ferrite coated materials 1 to 3 obtained by the above-described procedure were measured for the particle diameter in each N, N-dimethylformamide by dynamic light scattering (DLS), and were measured with a transmission electron microscope (TEM). Observed and evaluated.
- the table below summarizes the weight particle diameter (Dw), the number particle diameter (Dn), and the ratio (Dw / Dn) for the measurement results of the ferrite coating materials 1 to 3. As shown in the table below, the value of Dw / Dn indicating the degree of dispersion of the particles is almost close to “1” for any of the ferrite coating materials 1 to 3, indicating that the particles are in a single particle dispersion state. It was done.
- FIG. 8 shows a transmission electron micrograph image of the ferrite coating material 3. As shown in FIG. 8, it was confirmed that ferrite fine particles having a particle diameter of 40 nm were coated with a polymer one by one.
- ferrite fine particles having an average particle diameter of 100 nm can be produced with a polymer coating thickness of 20 nm.
- Magnetic fluid (ferricolloid, HC-50, manufactured by Taiho Kogyo Co., Ltd.) 3.0 g was placed in a 100 glass vial and left at 70 ° C for about 1 week to remove the solvent kerosene.
- Take 0.6 g of the obtained magnetic particles in a 300 ml round bottom flask, add 200 ml of a mixed solvent of toluene (manufactured by Kokusan Kagaku): methanol (manufactured by Kishida Chemical) 4: 1 (volume ratio), and magnetize by ultrasonic treatment After dispersing the particles, 1.0 g of 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane (manufactured by fluorochem) was added and reacted at 70 ° C.
- the resultant was washed 5 times with toluene, and after sufficiently removing the solvent, it was allowed to stand for 3 days in a desiccator and sufficiently dried to obtain about 0.2 g of magnetic particles into which a polymerization initiating group had been introduced.
- the magnetic particles thus obtained (0.14 g), styrene (manufactured by Wako Pure Chemical Industries, purified by vacuum distillation) (1.02 g) and xylene (Kishida Chemical) (0.62 g) were placed in a 200 ml ml four-necked round-bottomed flask, where odor Copper (I) (Sigma-Aldrich) mg 9 mg, 4,4'-dinonyl-2-2'-dipyridyl (Sigma-Aldrich) 50 mg was added and mixed, and then dissolved oxygen was removed by nitrogen flow for 1 hour. After that, the mixture was stirred at 110 ° C. with a three-one motor at a rotation speed of 200 rpm and reacted for 10 hours.
- the polymer-coated magnetic particles thus obtained were washed 5 times with toluene, dispersed in 10 ml of tetrahydrofuran (THF) (manufactured by Nacalai Tesque, low moisture solvent), sealed in a 20 ml glass vial, and stored at 4 ° C. did.
- THF tetrahydrofuran
- the obtained sample was measured for particle size in THF by FPAR-1000 manufactured by Otsuka Electronics. Further, it was added onto a carbon-deposited collodion mesh, and the dried state was observed with a transmission electron microscope (H-7600, manufactured by Hitachi High-Technology).
- the average particle size calculated from the measured values of 100 particles in the obtained transmission electron micrograph was 205.9 ⁇ 177.1 nm.
- FIG. 9 shows a transmission electron micrograph of the polymer-coated magnetic fine particles. It was confirmed that the polymer contained a plurality of magnetic substances to form one particle. Many fine particles of only a magnetic material not covered with a polymer were also observed. From this result, it is shown that the polymer-coated magnetic fine particles obtained by the polymerization method described in Patent Document 1 have a non-uniform shape and the efficiency of the polymerization reaction is not so high. Therefore, it was shown that the method described in Patent Document 1 cannot obtain polymer-coated magnetic fine particles in which magnetic particles are thinly coated with a polymer one by one.
- polymer-coated inorganic fine particles in which a polymer graft chain is formed on the surface of the inorganic fine particles the polymerization is precisely controlled, and the inorganic fine particles are thinly coated with the polymer one by one can be produced.
- the particle size is small, the particle size is well controlled, the particle size is well aligned, and sufficiently fine magnetic particles are thinly coated with a polymer one by one within the range having magnetization as a ferromagnetic material. Therefore, it became possible to obtain polymer-coated magnetic fine particles having a large magnetization.
- the polymer-coated inorganic fine particles obtained in this way can be controlled precisely and the particles can be coated one by one.
- affinity carriers for use in medical and biotechnology
- biosensor carriers such as MRI contrast agents, and DDS carriers. It is expected to be widely used in various industrial fields including the application of.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
- Polymerization Catalysts (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、重合反応を精密に制御し、無機物微粒子を薄いポリマー層で被覆することによって得られるポリマー被覆磁性微粒子と、その製造方法を提供することを課題としている。無機物微粒子の表面に、Xを該無機物微粒子表面と結合可能な親水性の原子団 R1 および R2 をそれぞれ炭化水素から一個の水素原子を除去することにより生成する一価基であるヒドロカルビル基として、下記化学式 で示されるイニファータを固定し、このイニファータを開始剤とするリビンクラジカル重合によってこの無機物微粒子表面にグラフト鎖を形成することにより、ポリマー層で被覆された無機物微粒子を製造する。
Description
本発明はポリマー被覆無機物微粒子およびその製造方法に関し、特に1個の無機物微粒子の表面を薄いポリマー層で覆うことにより単分散可能なポリマー被覆無機物微粒子とその製造方法に関する。
ナノメータサイズの無機物微粒子の表面をポリマーで被覆した複合粒子は様々な分野に応用されて、幅広く利用されてきた。近年では、バイオテクノロジーや医学的分野においては、表面をポリマーで被覆したナノメータサイズの磁性微粒子などの無機物微粒子のさまざまな応用についての研究が特に盛んである。
ポリマーで被覆された無機物微粒子は、バイオセンサやアフィニティ担体としての応用が研究されているほか、特に無機物微粒子が磁性微粒子の場合について、磁気共鳴診断装置(MRI)の造影剤や磁性を用いた薬物送達システム(DDS)の媒体として利用する研究が進められている。
これらの応用において、ポリマー被覆無機物微粒子がより高度の機能を示すために、ポリマー被覆無機物微粒子の構成する無機物微粒子の形状や寸法がよく揃っていることが望まれる。また、これら無機物微粒子が1個ずつポリマーで均一に被覆されていることや、このポリマー被覆無機物微粒子をある溶媒中に分散させた場合に、単分散あるいは単分散に近い状態になることが望まれる。
特に、無機物微粒子が磁性微粒子である場合には、ポリマー被覆磁性微粒子の粒子径ができるだけ小さく、他方で磁性微粒子の磁化はできるだけ大きいことが望まれる。このためには、ポリマー被覆磁性微粒子を構成する磁性微粒子は、強磁性体としての磁化を保持し得る範囲内において平均粒子径が可能な限り小さく、粒子がよく揃っていて、磁性微粒子が1個ずつ薄くポリマーで被覆されていることが望ましい。
こうした要求を満たすポリマー被覆無機物微粒子を実現するためには、これらの要求に適合した無機物微粒子を作製し、よく制御できる方法により、無機物微粒子を薄くポリマーで被覆をする必要がある。そのような被覆方法として、重合開始剤を無機物微粒子の表面に固定し、モノマー溶液中にて微粒子表面に固定された重合開始剤により重合が開始するリビンクラジカル重合によって、これら無機物微粒子をポリマーで被覆する方法がある。
非特許文献1~10には、微粒子表面に重合開始剤を固定し、これらの微粒子表面からモノマーのリビング重合を開始させ、微粒子を1個ずつポリマーで被覆する方法についてのさまざまな研究が記載されている。これらの文献のうち、非特許文献1には、MnFe2O4微粒子表面に3-クロロプロピオン酸を固定し、これを重合開始剤としてスチレン溶液中で加熱して撹拌し、平均粒子径が約 9 nm のポリスチレン被覆 Mn フェライト粒子を得ている。非特許文献2では、ホスホン酸基を有し、ニトロキシル基で媒介されたリビングフリーラジカル重合開始剤を粒子径 10 nm のマグネタイト粒子表面に固定し、これをスチレン溶液中で加熱して、ポリスチレンを表面に生やしたマグネタイト粒子を得ている。非特許文献3では、非特許文献2と同様にポリスチレンを表面に生やしたマグネタイト粒子のほか、ポリ-3-ビニルピリジンを表面に生やしたマグネタイト粒子を得ている。
非特許文献4では、オレイン酸存在下、ジ-n-オクチルエーテル中で Fe(CO)5 を熱分解して得たオレイン酸被覆の γ-Fe2O3 ナノ粒子のポリマー被覆について記載されている。まず表面活性を有する重合開始剤をγ-Fe2O3 ナノ粒子に結合させ、この重合開始剤を用いてスチレンを重合させ、平均粒子径 4 nmのγ-Fe2O3 ナノ粒子の表面にポリスチレンを生やしたコア-シェル複合構造を得ている。非特許文献5には、約 10 nm のγ-Fe2O3 ナノ粒子表面に2-ブロモ-2-メチルプロピオン酸を重合開始剤として固定し、原子移動ラジカル重合により、ポリスチレンで被覆されたコア-シェル複合構造が得られることが記載されている。非特許文献6には、平均粒子径 4 nmのγ-Fe2O3 ナノ粒子をカプロン酸塩で処理して粒子表面に官能基を持たせ、さらにクロロメチルフェニレチル-ジメチルクロロシランをこの粒子表面に取込み、これを重合開始剤とする原子移動ラジカル重合により、ポリメチルメタクリレートでγ-Fe2O3 ナノ粒子を被覆したコア-シェルナノ粒子が記載されている。
非特許文献7には、アルカリで沈澱させた数平均粒子径 10.1 nm のマグネタイト微粒子表面に2-ブロモ-2-メチルプロピオン酸を吸着させ、これを重合開始剤として重合を開始させて、マグネタイト微粒子をポリ-2-メトキシエチルメタクリレートで被覆させることにより、温度変化に対し可逆的変化する安定な磁性微粒子が製作できること記載されている。非特許文献8には、リン酸基を持ちニトロキシドを介してラジカル重合開始剤を 10 nm 及び 25 nm のマグネタイト微粒子や 15 nm の酸化チタン微粒子表面に固定し、粒子表面から重合を開始させて微粒子がポリスチレンやポリ-3-ビニルピリジンで被覆されることが記載されている。非特許文献9には、リガンド交換反応と重合開始サイトを持つトリエトキシシランの縮合という新しい方法により、平均粒子径が 9 nm のマグネタイト微粒子の表面に重合開始剤を共有結合させ、粒子表面から重合を開始する原子移動ラジカル重合により、共有結合のポリスチレンシェルを持つ磁性ナノ粒子を作製する方法が記載されている。非特許文献10には、ブロック疎水性薬剤をデリバリーするためのコア-シェル-コロナ構造を持つマグネタイト磁性微粒子として、マグネタイト磁性微粒子の表面に2-ブロモ-2-メチルプロピオン酸を固定し、ポリエチルメタクリレートとポリ-2-ヒドロキシエチルメタクリレートとのブロックコポリマーで被覆された微粒子の製造方法が記載されている。
このように、非特許文献1~10にはリビングラジカル重合を用いてポリマー被覆を形成することや、無機物微粒子表面に重合開始剤を固定させて、微粒子表面からリビングラジカル重合を開始し、ポリマーで粒子を被覆する各種のポリマー被覆方法が記載されている。しかしながら、これらの非特許文献に記載された方法はポリマー被覆を精密に制御する上で、微粒子の大きさに比べポリマー被覆が厚い、微粒子を1個ずつ均一に被覆できないなど、不十分な点があった。
また特許文献1(特開2006-328309号公報)には、磁性微粒子表面に重合開始剤を固定してリビングラジカル重合を行うことにより、磁性微粒子を被覆するポリマー鎖の分子量分布が小さくできることが記載されている。この文献には、例えば磁性流体フェリコロイドHC-50(一次粒子径が 5 nm の超常磁性体の集合体)の粒子表面に重合の開始点となるハロゲンを持つ有機ハロゲン化物やハロゲン化スルホニル化合物を固定し、リビングラジカル重合により、スチレン、メチルメタクリレート、ベンジルメタクリレートなどの単独重合や、メチルメタクリレート/ジメチルアミノエチルメタクリレート、ベンジルメタクリレート/メチルメタクリレート-メチレングリコールジメタクリレートなどのブロック共重合を行うことによって、最終的に 80~170 nm の粒子径を有する磁性ポリマー粒子が得られること、そしてこの方法により、ポリマー分子量分布の狭いポリマー被覆が得られることが記載されている。なお、リビングラジカル重合の例として、連鎖移動能の高い開始剤を用いるイニファータ重合にも言及している。
しかしながら、こうして得られるポリマー被覆磁性微粒子はポリマー分子量分布をある程度狭くすることはできるものの、微粒子のポリマーによる被覆が精密に制御されているとは言えず、磁性微粒子が1個ずつポリマーで被覆され、単分散の状態のポリマー被覆磁性微粒子を実現できるものではなかった。
特許文献2(特開2007-56094号公報)には、水溶性のN,N-ジエチル重合開始剤を用いた、リビングラジカル重合による磁性微粒子の熱応答性ポリマー被覆が記載されている。この文献では、水溶性のN,N-ジエチル重合開始剤を使用することより、水溶液中でのリビングラジカル重合を容易にしている。この方法を用いたアクリル酸、メタクリル酸および熱応答性のポリマーであるN-イソプロピルアクリルアミドからなるブロックポリマーの形成が記載されている。また、このポリマーを含む水溶液中でフェライトを合成することで、ポリマーと磁性体との複合体を作製し、その熱応答性を調べている。しかしながら、特許文献2では、重合開始剤は磁性微粒子表面に固定せずにモノマー溶液中に存在させているため、この方法は無機物微粒子を1個ずつポリマー被覆するのに適した方法ではなかった。
無機物微粒子が磁性微粒子の場合、粒子サイズは、小さいがよく揃っていて、常温で強磁性が確保される範囲の大きさであることが望まれる。このとき、微粒子間に強い磁気凝集力が働く。このような強い磁気凝集能があっても、磁性微粒子を1個ずつポリマーで被覆し、得られたポリマー被覆磁性微粒子が単分散状態となることが望まれる。上記非特許文献1~10は、非特許文献7および非特許文献8の一部を除くと、いずれも粒子径が 10 nm 程度あるいはそれ以下の微粒子のポリマー被覆について記載している。フェライト微粒子は粒子径が 10 nm 程度あるいはそれ以下の大きさになると、磁性は有しているものの通常の強磁性に比べ磁性が著しく弱くなり、超常磁性を示す。このような超常磁性微粒子は粒子間の磁気凝集力が弱いので、溶媒中での分散が容易であるため、溶媒中に微粒子を分散させてそれらを1個ずつポリマーで被覆することは容易である。
従って、非特許文献1~10には粒子間の磁気凝集力が弱い超常磁性微粒子を被覆する方法が記載されているものの、強磁性微粒子を1個ずつポリマーで被覆する方法について示唆を与えるものではなかった。なお、非特許文献7には、平均粒子径が 10 nm をわずかに超えた磁性微粒子について記載されているものの、この粒子も上記の場合と同様、超常磁性を示すと記載されている。また非特許文献8では、平均粒子径 10 nm の超常磁性微粒子の表面被覆についての記載のほかに、平均粒子径が 25 nm のマグネタイト粒子の表面被覆についての記載がある。しかし、平均粒子径 10 nm の超常磁性粒子において行われた表面被覆方法をそのまま平均粒子径 25 nm のマグネタイト粒子に適用しているだけで、強磁性微粒子を分散させて1個ずつポリマーで被覆することを可能にしたものではなかった。さらに前述の通り、特許文献1および2も、粒子を1個ずつポリマーで被覆することを可能にするものではなかった。このように各文献に記載されている方法のいずれも、強磁性微粒子を1個ずつ薄くポリマーで被覆するのに適した方法ではなかった。
前述の各文献に記載された方法は、いずれの場合もポリマー被覆を精密に制御することにより、薄いポリマー被覆の形成や、粒子1個の均一な被覆という点において十分ではなかった。
本発明は重合反応を精密に制御し、無機物微粒子を薄いポリマー層で被覆することによって得られるポリマー被覆無機物微粒子と、その製造方法を提供することを課題としている。また、重合反応を精密に制御し、無機物微粒子を1個ずつ薄いポリマー層で被覆することによって単分散状態を保つことが可能なポリマー被覆無機物微粒子とその製造方法を提供することを課題としている。さらに、無機物微粒子が特に強磁性粒子であって、強磁性体としての磁化を有する範囲で十分に小さい粒子径を有する磁性微粒子を1個ずつポリマーで薄く均一に被覆することにより、粒子径が小さく磁化の大きいポリマー被覆磁性微粒子と、その製造方法を提供することを課題としている。
本発明のポリマー被覆無機物微粒子は、下記化学式
上記イニファータが持つXは、無機物微粒子の表面と結合する官能基または無機物微粒子の表面と結合する官能基を有する原子団であって、イニファータを磁性微粒子の表面に固定する役割を果たす。ここにイニファータは、連鎖移動または1次ラジカル停止能、あるいはこの両機能を有する開始剤(initiator-transfer agent-terminator、略してiniferter)であって、例えば、R1-R2+nM=R1-(M)n-R2 のようにして、イニファータR1-R2がモノマーMを挿入反応で取込み、重合反応の進行に伴い、ラジカルが重合反応の先端に順次トランスファーできるものである。
本発明において、上記の無機物微粒子の表面と結合する官能基としては、カルボキシル基、メルカプト基、リン酸基、亜リン酸基、スルホン酸基、フェノール基などがある。
また本発明において、上記の無機物微粒子の表面と結合する官能基は、加水分解でシラノール基を形成する基を有するものが好ましい。このような基を持つイニファータは、無機物微粒子表面と強く結合できることがわかった。また、加水分解でシラノール基を形成する基はシランカップリング剤に存在しているので、シランカップリング剤をイニファータに結合させることで、このような基を持つイニファータを得ることができる。加水分解によってシラノール基を形成する基は、-Si(OR1)(OR2)(OR3)の形であってもよいし、また-Si(OR1)(OR2)R3の形であってもよく、さらに-Si(OR1)R2R3の形であってもよい。ここにR1、R2およびR3はそれぞれにメチル基、エチル基などの炭化水素から一個の水素原子を除去することにより生成する一価基であるヒドロカルビル基である。
こうしたイニファータを無機物微粒子の表面に固定し、イニファータを開始剤とする重合反応で無機物微粒子の表面にグラフト鎖を形成することにより、ポリマー被覆を首尾良く制御しながら無機物微粒子の表面に形成することができるようになった。
本発明の上記の無機物微粒子は、平均粒子径が 4 nm 以上500 nm 以下であり、粒子径分布の標準偏差の平均粒子径との比の値が 0.2 以下であることが望ましい。このような大きさの無機物微粒子は、アフィニティ担体をはじめ、医用やバイオテクノロジーの各用途において、優れた性能を得ることができる。
また本発明により、微粒子の粒子径や目的に応じてポリマー被覆の厚さを詳細に制御できるようになり、その結果、ポリマー被覆の厚さが 10 nm 以下という薄いポリマー被覆のなされた無機物微粒子を実現することができた。ポリマー被覆の厚さを 10 nm 以下にすることにより、医用やバイオテクノロジーなどの各用途において、無機物微粒子の体積率を高めることができ、その結果としてポリマー被覆無機物微粒子の性能を高めることができるようになった。なお、本発明においては、イニファータを固定した無機微粒子表面のイニファータを開始剤として重合反応よりポリマー被覆が形成されるので、きわめて薄く均一に被覆ができることに大きな特徴がある。このため、ポリマー被覆の厚さの下限についての制約は特にないが、ポリマー被膜によって無機微粒子間の相互作用をより小さくするためには、ポリマー被覆の厚さを0.5nm 以上にすることがより好ましい。
また本発明により、無機物微粒子を1個ずつ個別に被覆されたポリマー被覆無機物微粒子が得られ、かつ単分散状態を保つことができるようになった。この結果、個々の微粒子が非常に小さな粒子として溶媒中に分散し、小さな空隙をも通過できるようになり、医用やバイオテクノロジーなどの各種用途において、非常に望ましい形態のポリマー被覆無機物微粒子を得ることができるようになった。
本発明において、2種類以上のポリマーでブロック共重合されたポリマー被覆とすることができる。そしてブロック共重合体における少なくとも1つのブロックに、生体物質を固定できる官能基を持たせることができる。こうすることで、生体物質を固定できるポリマー被覆微粒子を得ることができる。なお、本発明において、ポリマー層の被覆を2種類以上のポリマーがブロック共重合した構成とする場合、最初のポリマー層の形成において、無機物微粒子表面に固定されたイニファータを開始剤とする重合反応を行う。
上記無機物微粒子として磁性微粒子を用いれば、さまざまな形で磁性を利用することができる。このような磁性微粒子としてフェライト微粒子を用いることができる。フェライト微粒子は化学的安定性が高く、種々の用途に適している。しかもオレイン酸を利用した熱分解を経由する方法などにより、フェライト微粒子の粒子形状、粒子サイズを制御できるといった大きな利点がある。
フェライト微粒子としては、平均粒子径が 4 nm 以上であって、粒子径分布の標準偏差の平均粒子径との比の値が 0.2 以下であるものを用いることができる。このようなフェライト微粒子を用いることにより、磁化の大きい強磁性微粒子を含むポリマー被覆無機物微粒子が実現できる。
本発明のイニファータ化合物は、加水分解でシラノール基を形成することで無機物微粒子表面と結合可能な原子団を具えていることをもう1つの特徴としている。このようなイニファータ化合物を微粒子表面に固定して重合反応により無機物微粒子のポリマー被覆を行うと、無機物微粒子を効率よくポリマーで被覆できることが判明した。
このようなイニファータ化合物として、下記化学式
加水分解でシラノール基を形成する基を有し、無機物微粒子表面と結合可能な原子団を有するイニファータは、イニファータの機能を有する物質にシランカップリング剤を結合させることで製造できる。
本発明のポリマー被覆無機物微粒子の製造方法は、分散液中に分散している無機物微粒子の表面に、下記化学式
本発明により、重合開始剤として用いるイニファータとして、上記の目的によく適う化合物を合成し、粒子径がよく制御された粒子径分布の狭い無機物微粒子表面にこのイニファータを固定して重合を開始することによって、無機物微粒子表面にポリマーのグラフト鎖が形成され、重合が精密に制御でき、無機物微粒子を1個ずつポリマーで薄く被覆されたポリマー被覆無機物微粒子を作製することができるようになった。
次に図面を参照しつつ、本発明の実施形態の説明をすることにより、本発明についてのさらなる詳細を述べる。
1)表面被覆のプロセス
図1は、本発明の一実施形態におけるポリマー被覆無機物微粒子の作製の主な工程の流れを示した図である。図1において、工程102にて、無機物微粒子を合成する。本発明の無機物微粒子は、粒子径が精密に制御され、粒形径のよく揃った粒子であることが好ましい。そのような無機物微粒子は、例えば、塩化鉄とオレイン酸ナトリウムから得られるオレイン酸鉄錯体を高沸点溶媒中で熱分解することで作製できる。この方法により、粒子径が精密に制御され、粒子径のよく揃った球状のフェライト微粒子などの無機物微粒子を得ることができる。
図1は、本発明の一実施形態におけるポリマー被覆無機物微粒子の作製の主な工程の流れを示した図である。図1において、工程102にて、無機物微粒子を合成する。本発明の無機物微粒子は、粒子径が精密に制御され、粒形径のよく揃った粒子であることが好ましい。そのような無機物微粒子は、例えば、塩化鉄とオレイン酸ナトリウムから得られるオレイン酸鉄錯体を高沸点溶媒中で熱分解することで作製できる。この方法により、粒子径が精密に制御され、粒子径のよく揃った球状のフェライト微粒子などの無機物微粒子を得ることができる。
こうして得られた無機物微粒子は、工程104の洗浄により不要な成分を除く。例えばオレイン酸鉄錯体を高沸点溶媒中で熱分解させて得られるフェライト微粒子の場合には、2-メトキシエタノールを加えてフェライト微粒子を沈澱させてから磁気回収する、という操作の繰り返しにより、フェライト微粒子を洗浄することができる。
次に工程106でこの無機物微粒子を溶媒に分散させて分散液を作製し、工程108でこの分散液にイニファータを添加し、工程110のソニケーションにより、溶媒に分散された無機物微粒子表面にイニファータを固定する。ここで用いるイニファータは、無機物微粒子表面に固定できる官能基を具えている。無機微粒子が、高沸点溶媒中、オレイン酸鉄錯体の熱分解により合成できるフェライト微粒子の場合には、洗浄溶媒として、例えば2-メトキシエタノールを用いることができる。また、このフェライト微粒子を分散させる溶媒として、トルエンを用いることができる。
このようにして、表面にイニファータが固定された無機物微粒子を、工程112でよく洗浄し、未反応のイニファータを除去する。この洗浄の工程は、先の洗浄の工程104と同様の手順で行うことができる。
次に、工程114にてよく洗浄されたイニファータ固定化無機物微粒子を再び溶媒に分散して分散液を作製し、工程116から工程120までの3工程にて、各分散液にモノマーを注入し、それぞれの重合反応により無機物微粒子をポリマーで被覆する。ここでは重合反応(1)~重合反応(3)の3工程を経る場合を示しているが、3工程に限ることなく、必要に応じた複数の工程を経ることによって、複数種のポリマーのブロック共重合体を得ることができる。このようにして、よく制御された多層のブロック共重合ポリマーによって、無機物微粒子をポリマー被覆できる。
なお、この場合、使用する無機物微粒子の形状が均一で、その粒子径がよく揃っていることが重要であり、より精密に無機物微粒子のポリマー被覆を制御できる。例えば、無機物微粒子の平均粒子径が 4 nm 以上 500 nm 以下で、粒子径分布として標準偏差を平均粒子径で除した値が 0.2 以下であれば、精密に無機物微粒子のポリマー被覆を制御できるので好ましい。また無機物微粒子の平均粒子径が 4 nm 以上 30 nm 以下でその標準偏差を平均粒子径で除した値が 0.2 以下であるものは、無機物微粒子のポリマー被覆を精密に制御する上でさらに好ましい。なお、無機物微粒子の粒子径の測定には、無機物微粒子の電子顕微鏡像の粒子径を測定することによって求めることができる。これらの重合反応の工程に続き、工程122にて洗浄を行い、ポリマー被覆無機物微粒子124を得る。
2)無機物微粒子
本発明において、無機物微粒子は粒子サイズが精密に制御され、粒形および粒径がよく揃っていることが好ましい。そのような無機物微粒子を合成する方法として、水溶液中もしくは有機溶媒中で作製する方法があり、例えば、オレイン酸中でのオレイン酸金属錯塩の熱分解を経る方法を用いることができる。この熱分解法を利用したフェライト微粒子の合成により、反応条件を巧く制御することによって、粒子サイズが精密に制御され、粒子径が非常によく揃ったフェライト微粒子が得られる。また、この方法は比較的短時間で微粒子の大量合成が可能であるという特徴もある。本発明によりポリマーで被覆される無機物微粒子として、マグネタイトやマグへマイトなどのフェライト微粒子のほか、他の磁性微粒子やバイオセンサー用粒子、あるいは量子ドット用粒子などの様々な機能性粒子を用いることができる。
本発明において、無機物微粒子は粒子サイズが精密に制御され、粒形および粒径がよく揃っていることが好ましい。そのような無機物微粒子を合成する方法として、水溶液中もしくは有機溶媒中で作製する方法があり、例えば、オレイン酸中でのオレイン酸金属錯塩の熱分解を経る方法を用いることができる。この熱分解法を利用したフェライト微粒子の合成により、反応条件を巧く制御することによって、粒子サイズが精密に制御され、粒子径が非常によく揃ったフェライト微粒子が得られる。また、この方法は比較的短時間で微粒子の大量合成が可能であるという特徴もある。本発明によりポリマーで被覆される無機物微粒子として、マグネタイトやマグへマイトなどのフェライト微粒子のほか、他の磁性微粒子やバイオセンサー用粒子、あるいは量子ドット用粒子などの様々な機能性粒子を用いることができる。
3)イニファータを用いた重合
イニファータを用いた重合は、モノマーの存在下で開始剤に熱または光を作用させると、開始剤を起点として重合が開始し、副反応がなければ連鎖移動や停止の反応がないので、生成されるポリマーの数平均分子量がモノマーの反応率、すなわち転化率に正比例して増加する。この性質を利用し、生成されるポリマーの数平均分子量を制御する。また、一旦重合が終了した反応系にモノマーを添加することにより、成長の末端から再び重合が開始できる。この性質を利用すれば、ある種のラジカル重合性モノマーの重合を行った後に、他のラジカル重合性モノマーの重合を行うことができ、このような工程を重ねることにより、無機物微粒子に対しブロック共重合ポリマーによる被覆が形成される。なお、このイニファータを用いた重合における副反応として、例えば、成長末端同士の停止反応などが生じると、こうした利点を生かすことができないが、本発明では次の4)で示されるイニファータを開始剤に用いることにより、このような副反応を防止できる。このイニファータは、均等開裂によってラジカルを有する活性種と脱離基とに分離し、活性種からモノマーのラジカル重合が開始し、ラジカルが次々と末端に移動して重合が進行するが、この重合の末端には、脱離基のラジカルが弱く結合することで、重合反応が進行する一方で活性種のラジカルの安定性が保たれて前述のような副反応が防止される。このように、重合を精密に制御するにはイニファータが特に重要な役割を果たす。
イニファータを用いた重合は、モノマーの存在下で開始剤に熱または光を作用させると、開始剤を起点として重合が開始し、副反応がなければ連鎖移動や停止の反応がないので、生成されるポリマーの数平均分子量がモノマーの反応率、すなわち転化率に正比例して増加する。この性質を利用し、生成されるポリマーの数平均分子量を制御する。また、一旦重合が終了した反応系にモノマーを添加することにより、成長の末端から再び重合が開始できる。この性質を利用すれば、ある種のラジカル重合性モノマーの重合を行った後に、他のラジカル重合性モノマーの重合を行うことができ、このような工程を重ねることにより、無機物微粒子に対しブロック共重合ポリマーによる被覆が形成される。なお、このイニファータを用いた重合における副反応として、例えば、成長末端同士の停止反応などが生じると、こうした利点を生かすことができないが、本発明では次の4)で示されるイニファータを開始剤に用いることにより、このような副反応を防止できる。このイニファータは、均等開裂によってラジカルを有する活性種と脱離基とに分離し、活性種からモノマーのラジカル重合が開始し、ラジカルが次々と末端に移動して重合が進行するが、この重合の末端には、脱離基のラジカルが弱く結合することで、重合反応が進行する一方で活性種のラジカルの安定性が保たれて前述のような副反応が防止される。このように、重合を精密に制御するにはイニファータが特に重要な役割を果たす。
図2は無機物微粒子にこのようなイニファータを固定し、このイニファータを重合開始剤とした重合により、無機物微粒子をポリマーで被覆する状況の模式図である。図2の(a)において、無機物微粒子202の表面には、重合開始剤であるイニファータ204が固定され、固定されたイニファータを起点としてモノマーが重合し、無機物微粒子表面に第1のポリマー206を形成する。図2の(b)は、無機物微粒子202の表面に形成した第1のポリマー206にさらにモノマーを重合させて、第2のポリマー208を形成する場合についての模式図である。図2(c)は、こうして得られるポリマー被覆無機物微粒子の模式的な断面図である。まず、リビングラジカル重合により、あるモノマーを重合させて無機物微粒子をポリマーで被覆し、次に先の重合で用いたモノマーとは異種のモノマー208を添加し、例えばリビングラジカル重合を行うことで、こうしたブロック共重合体を得ることができる。
4)イニファータ
本発明においては、イニファータとして、次の化学式で示される物質を用いる。
本発明においては、イニファータとして、次の化学式で示される物質を用いる。
さらに、上記イニファータのXは、加水分解でシラノール基を形成する基を有する原子団であることが特に好ましい。例えば、イニファータがシランカップリング剤と結合していることが好ましい。このように加水分解でシラノール基を形成する基を有するイニファータを用いれば、強く、かつ安定にイニファータが結合した無機物微粒子を得ることができる。
このようなイニファータは重合を開始する際に均等開裂により生成される次の化学式で示される活性種と、
このようなイニファータを無機物微粒子表面に固定し、ラジカル重合の開始剤として用いる本発明の方法により、無機物微粒子のポリマー被覆を精密に制御でき、無機物微粒子を1個ずつポリマーで被覆できるようになった。
5)モノマーおよびポリマー
本発明において、重合で無機物微粒子をポリマー被覆するために用いるモノマーは、用途に応じてラジカル重合の可能なモノマーの中から適宜選択することができる。この場合、無機物微粒子を単一のモノマーで被覆することができるほか、複数のポリマーをブロック共重合させた形にすることもできる。本発明によれば、複数のポリマーをブロック共重合させる場合には、各ブロックを精密に制御することができる。
本発明において、重合で無機物微粒子をポリマー被覆するために用いるモノマーは、用途に応じてラジカル重合の可能なモノマーの中から適宜選択することができる。この場合、無機物微粒子を単一のモノマーで被覆することができるほか、複数のポリマーをブロック共重合させた形にすることもできる。本発明によれば、複数のポリマーをブロック共重合させる場合には、各ブロックを精密に制御することができる。
このようなモノマーとして、スチレン、スチレンのα-、o-、m-、p-アルキル、アルコキシル、ハロゲン、ハロアルキル、ニトロ、シアノ、アミド、エステル置換体;スチレンスルフォン酸、2,4-ジメチルスチレン、パラジメチルアミノスチレン、ビニルベンジルクロライド、ビニルベンズアルデヒド、インデン、1-メチルインデン、アセナフタレン、ビニルナフタレン、ビニルアントラセン、ビニルカルバゾール、2-ビニルピリジン、4-ビニルピリジン、2-ビニルフルオレンなどの重合性不飽和芳香族化合物;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;クロトン酸メチル、クロトン酸エチル、ケイ皮酸メチル、ケイ皮酸エチルなどの不飽和モノカルボン酸エステル類;トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、ヘプタフルオロブチル(メタ)アクリレートなどのフルオロアルキル(メタ)アクリレート類;トリメチルシロキサニルジメチルシリルプロピル(メタ)アクリレート、トリス(トリメチルシロキサニル)シリルプロピル(メタ)アクリレート、ジ(メタ)アクリロイルプロピルジメチルシリルエーテルなどのシロキサニル化合物類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、グリセロール(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレートなどのアミン含有(メタ)アクリレート類;クロトン酸2-ヒドロキシエチル、クロトン酸2-ヒドロキシプロピル、ケイ皮酸2-ヒドロキシプロピルなどの不飽和カルボン酸のヒドロキシアルキルエステル類;(メタ)アリルアルコールなどの不飽和アルコール類;(メタ)アクリル酸、クロトン酸、ケイ皮酸などの不飽和(モノ)カルボン酸類;(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、(メタ)アクリル酸-β-メチルグリシジル、(メタ)アクリル酸-β-エチルグリシジル、(メタ)アクリル酸-β-プロピルグリシジル、α-エチルアクリル酸-β-メチルグリシジル、(メタ)アクリル酸-3-メチル-3,4-エポキシブチル、(メタ)アクリル酸-3-エチル-3,4-エポキシブチル、(メタ)アクリル酸-4-メチル-4,5-エポキシペンチル、(メタ)アクリル酸-5-メチル-5,6-エポキシヘキシル、(メタ)アクリル酸-β-メチルグリシジル、(メタ)アクリル酸-3-メチル-3,4-エポキシブチルなどのエポキシ基含有(メタ)アクリル酸エステル類;及びこれらのモノ、ジエステル類;を挙げることができる。
(実施例1)
1)フェライト微粒子の作製
ポリマー被覆磁性微粒子のコア部に相当する無機物微粒子として用いるフェライト微粒子は、 Nature Mater. 2004, 3, 891-895 に記載されている方法に準拠し、塩化鉄とオレイン酸ナトリウムとを反応させてオレイン酸鉄錯体を得て、この錯体を高沸点溶媒中で熱分解させて製作した。
1)フェライト微粒子の作製
ポリマー被覆磁性微粒子のコア部に相当する無機物微粒子として用いるフェライト微粒子は、 Nature Mater. 2004, 3, 891-895 に記載されている方法に準拠し、塩化鉄とオレイン酸ナトリウムとを反応させてオレイン酸鉄錯体を得て、この錯体を高沸点溶媒中で熱分解させて製作した。
得られたフェライト微粒子を透過型電子顕微鏡(TEM,H-7500,日立ハイテクノロジー(株)製)にて観察した。その結果、ほぼ球状の粒子径 19 nm のフェライト微粒子が得られ、その粒子径分布の標準偏差は 3.2 nm と、粒子サイズが非常によく揃っていたことが確認された。
2)イニファータの合成
イニファータは図3に従って合成した。図3に示したように、4‐クロロメチルベンゾイル酸塩化物をトルエン中、塩酸で処理し、4‐クロロメチルベンゾイル酸を得、それをメタノール還流下で、
イニファータは図3に従って合成した。図3に示したように、4‐クロロメチルベンゾイル酸塩化物をトルエン中、塩酸で処理し、4‐クロロメチルベンゾイル酸を得、それをメタノール還流下で、
3)フェライト微粒子表面へのイニファータ固定化
上記1)にて作製したフェライト微粒子 40 mg(固形分 0.25 mmol)を 100 ml のナスフラスコにとり、2-メトキシエタノール(和光純薬工業(株)製)でフェライト微粒子を沈澱させ、上清を取り除いた。その後、デカンテーション・2-メトキシエタノール添加・分散・磁気回収という一連の操作を繰り返すことで、フェライト微粒子を 40 ml のトルエンに分散させた。これに上記2)で作製したイニファータ 0.21 g(0.75 mmol)を加え、16時間超音波処理して、イニフアータをフェライト微粒子表面に固定した。超音波処理後のフェライト微粒子を2-メトキシエタノールで3回洗浄し、80 ml のトルエンに分散させ、密閉し、4℃で保存した。
上記1)にて作製したフェライト微粒子 40 mg(固形分 0.25 mmol)を 100 ml のナスフラスコにとり、2-メトキシエタノール(和光純薬工業(株)製)でフェライト微粒子を沈澱させ、上清を取り除いた。その後、デカンテーション・2-メトキシエタノール添加・分散・磁気回収という一連の操作を繰り返すことで、フェライト微粒子を 40 ml のトルエンに分散させた。これに上記2)で作製したイニファータ 0.21 g(0.75 mmol)を加え、16時間超音波処理して、イニフアータをフェライト微粒子表面に固定した。超音波処理後のフェライト微粒子を2-メトキシエタノールで3回洗浄し、80 ml のトルエンに分散させ、密閉し、4℃で保存した。
ここで、フェライト微粒子に結合したイニファータ量を以下のようにして求めた。イニフアータ固定フェライト微粒子を1Mの水酸化ナトリウム水溶液で処理することで、イニファータをフェライト微粒子表面から脱離させ、上澄みを分光光度計(Beckman 製DU640)にて測定し、252.5 nm における吸光度からフェライト微粒子に結合したイニファータの量を求めた。
4)イニファータ固定化フェライト微粒子表面でのリビングラジカル重合
上記3)で得られた分散液 20 ml(フェライト微粒子 10 mg)を 200 ml 四つ口フラスコに取り、撹拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃、200 rpm で1時間プレインキュベートした。
上記3)で得られた分散液 20 ml(フェライト微粒子 10 mg)を 200 ml 四つ口フラスコに取り、撹拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃、200 rpm で1時間プレインキュベートした。
70℃、200 rpm を保ったまま、系内にスチレンを0.06 g 注入し、12時間重合反応を行った後、スチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.02 g、0.01 g および 0.01 g 加え、12時間重合反応を行った。さらにグリシジルメタクリレート 0.02 g を注入し、12時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子を透過型電子顕微鏡(TEM)にて観察・評価した。観察した100個の粒子のTEM像から求めた平均粒子径は 25.6 nm であり、その標準偏差は 5.23 nm であった。また、重合終了直後の溶液の一部(500 ml)をガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定したところ、転化率は90.53 %であった。
(実施例2)
実施例1で作成したフェライト微粒子とイニファータを用い、実施例1と同じ手法でフェライト微粒子にイニファータを固定した後、70℃、200 rpm に保ったまま、系内にスチレン 0.06 gを注入し、12時間重合反応を行った後、スチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.02 g、0.01 g および 0.01 g 加え、12時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。観察した100個の粒子のTEM像から求めた平均粒子径は 23.8 nm であり、その標準偏差は 4.27 nm であった。また、重合終了直後の溶液の一部(500 ml)をガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定したところ、転化率は99.63 %であった。
実施例1で作成したフェライト微粒子とイニファータを用い、実施例1と同じ手法でフェライト微粒子にイニファータを固定した後、70℃、200 rpm に保ったまま、系内にスチレン 0.06 gを注入し、12時間重合反応を行った後、スチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.02 g、0.01 g および 0.01 g 加え、12時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。観察した100個の粒子のTEM像から求めた平均粒子径は 23.8 nm であり、その標準偏差は 4.27 nm であった。また、重合終了直後の溶液の一部(500 ml)をガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定したところ、転化率は99.63 %であった。
(実施例3)
実施例1で作成したフェライト微粒子とイニファータを用い、実施例1と同じ手法でフェライト微粒子にイニファータを固定した後、70℃、200 rpm に保ったまま、系内にスチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.02 g、0.01 g および0.01 g ずつ加え、12時間重合反応を行った。その後、グリシジルメタクリレート 0.02 g を注入し、12時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。観察した100個の粒子のTEM像から求めた平均粒子径は 20.6 nm であり、その標準偏差は3.42 nm であった。また、重合終了直後の溶液の一部(500 ml)をガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定したところ、転化率は99.93 %であった。
実施例1で作成したフェライト微粒子とイニファータを用い、実施例1と同じ手法でフェライト微粒子にイニファータを固定した後、70℃、200 rpm に保ったまま、系内にスチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.02 g、0.01 g および0.01 g ずつ加え、12時間重合反応を行った。その後、グリシジルメタクリレート 0.02 g を注入し、12時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。観察した100個の粒子のTEM像から求めた平均粒子径は 20.6 nm であり、その標準偏差は3.42 nm であった。また、重合終了直後の溶液の一部(500 ml)をガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定したところ、転化率は99.93 %であった。
これら実施例1~3の結果を表1にまとめて示した。実施例1~3のいずれの場合も、転化率は90 %以上であった。
図4は実施例で得られたポリマー被覆粒子のTEM写真像であって、(a)は実施例1で得られたポリマー被覆粒子のTEM写真像、(b)は実施例2で得られたポリマー被覆粒子のTEM写真像、(c)は実施例3で得られたポリマー被覆粒子のTEM写真像である。図4(a)~(c)のいずれの場合についても、各粒子の中央にはフェライト微粒子が1個存在し、フェライト微粒子がポリマーで被覆された構造となっていることが確認された。また、添加するモノマーの量が多くなると、ポリマーの被覆が厚くなり、ポリマー被覆粒子の粒子径が大きくなることが観察された。
(実施例4)
1)無機物微粒子
コアとなる無機物微粒子として、実施例1と同様に、Nature Mater. 2004, 3, 891-895 に記載されている方法に準拠して磁性微粒子であるフェライト微粒子を作製した。得られたフェライト微粒子はTEMで観察し、平均粒子径 19 nm、粒子径の標準偏差が 3.23 nmのフェライト微粒子を得た。
1)無機物微粒子
コアとなる無機物微粒子として、実施例1と同様に、Nature Mater. 2004, 3, 891-895 に記載されている方法に準拠して磁性微粒子であるフェライト微粒子を作製した。得られたフェライト微粒子はTEMで観察し、平均粒子径 19 nm、粒子径の標準偏差が 3.23 nmのフェライト微粒子を得た。
2)シランカップリング剤結合イニファータの合成
イニファータは図5に示した手順で合成した。4-クロロメチルベンゾイル酸塩化物をトルエン中、塩酸で処理して4-クロロメチルベンゾイル酸を得、それをメタノール還流下でナトリウムジエチルチオカルバネートとヨウ化ナトリウムを作用させることにより、実施例1にて作成し、使用した先に化学式(化8)で示したイニファータを得た。
イニファータは図5に示した手順で合成した。4-クロロメチルベンゾイル酸塩化物をトルエン中、塩酸で処理して4-クロロメチルベンゾイル酸を得、それをメタノール還流下でナトリウムジエチルチオカルバネートとヨウ化ナトリウムを作用させることにより、実施例1にて作成し、使用した先に化学式(化8)で示したイニファータを得た。
このイニファータに対し、図5に示したように、4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride(DMT-MM)を脱水縮合剤として用い、エタノール中で3-アミノプロピルトリエトキシシランと結合させることにより、化学式が、下記式
3)フェライト粒子表面へのイニファータの固定化
1)で作製したフェライト微粒子 90 mg (固形分、0.56 mmol) を 100 ml のガラスバイアルにとり、2-プロパノール(国産化学(株)製)でフェライト微粒子を沈殿させ、デカンテーション・2-プロパノール添加・分散・磁気回収を3回繰り返して、フェライト微粒子表面に残存していたオレイン酸を除去した。窒素置換されたトルエン(国産化学(株)製) 8 ml にこのフェライト微粒子を分散させ、0.15 g のチオリンゴ酸(東京化成工業(株)製)が溶解しているジメチルスルホキシド(ナカライテスク(株)製)溶液を 2 ml 加え、超音波処理を4時間行った。5 ml の2-メトキシエタノールでフェライト微粒子5回洗浄し、未反応のチオリンゴ酸を除去した。続いてこのフェライト微粒子をメタノールで3回洗浄し、超音波処理によりトルエン:メタノール=3:1(体積比)の混合溶媒 20 ml に分散させた。2)で作製したイニファータ 0.59 g (1.25 mmol) を加え、16時間超音波処理し、リガンド交換反応によりイニファータをフェライト微粒子表面に固定した。
1)で作製したフェライト微粒子 90 mg (固形分、0.56 mmol) を 100 ml のガラスバイアルにとり、2-プロパノール(国産化学(株)製)でフェライト微粒子を沈殿させ、デカンテーション・2-プロパノール添加・分散・磁気回収を3回繰り返して、フェライト微粒子表面に残存していたオレイン酸を除去した。窒素置換されたトルエン(国産化学(株)製) 8 ml にこのフェライト微粒子を分散させ、0.15 g のチオリンゴ酸(東京化成工業(株)製)が溶解しているジメチルスルホキシド(ナカライテスク(株)製)溶液を 2 ml 加え、超音波処理を4時間行った。5 ml の2-メトキシエタノールでフェライト微粒子5回洗浄し、未反応のチオリンゴ酸を除去した。続いてこのフェライト微粒子をメタノールで3回洗浄し、超音波処理によりトルエン:メタノール=3:1(体積比)の混合溶媒 20 ml に分散させた。2)で作製したイニファータ 0.59 g (1.25 mmol) を加え、16時間超音波処理し、リガンド交換反応によりイニファータをフェライト微粒子表面に固定した。
反応終了後、2-メトキシエタノールで3回、メタノールで5回洗浄し、脱離したチオリンゴ酸および未反応のイニファータを除去した。続いて、90 ml のメタノールにイニファータ固定フェライト微粒子を分散させ、密閉して4℃で保存した。このフェライト微粒子を98℃、6M HCl 水溶液で処理して完全に溶解させ、ここで析出した成分を1M水酸化ナトリウム水溶液に溶解させ、分光光度計(Beckman製DU640)にて波長 252.5 nm における吸光度を測定し、フェライト微粒子に固定されたイニファータを定量した。その結果、フェライト微粒子1 mg 当たり、87.9 nmol のイニファータが固定されていた。
4)イニファータ固定フェライト微粒子表面でのリビングラジカル重合
3)で得られた溶液 10 ml(フェライト微粒子 10 mg)を200 ml 四つ口フラスコに取り、メタノール 10 ml を加えて全量を 20 ml とした。攪拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃, 200 rpm で1時間プレインキュベートした。70℃、 200 rpm を保ったまま、系内にスチレン、グリシジルメタクリレート、エチレングリコールジメタクリレートをそれぞれ 0.02 g、0.01 g、0.01 g 加え、18時間重合反応を行った。続いて、グリシジルメタクリレートを0.02 g 注入し、18時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。
3)で得られた溶液 10 ml(フェライト微粒子 10 mg)を200 ml 四つ口フラスコに取り、メタノール 10 ml を加えて全量を 20 ml とした。攪拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃, 200 rpm で1時間プレインキュベートした。70℃、 200 rpm を保ったまま、系内にスチレン、グリシジルメタクリレート、エチレングリコールジメタクリレートをそれぞれ 0.02 g、0.01 g、0.01 g 加え、18時間重合反応を行った。続いて、グリシジルメタクリレートを0.02 g 注入し、18時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。
図6(a)は実施例4で得られたポリマー被覆フェライト微粒子のTEM写真像である。また、重合終了直後の溶液の一部(500 ml)を 5 ml ガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定した。
(実施例5)
実施例4の3)で得られた溶液 10 ml(フェライト微粒子 10 mg)をトルエンで3回洗浄し、20 ml のトルエンに分散させ、これを 200 ml 四つ口フラスコに取り、攪拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃, 200 rpm で1時間プレインキュベートした。70℃, 200 rpm を保ったまま、系内にスチレン、グリシジルメタクリレート、エチレングリコールジメタクリレートをそれぞれ 0.02 g、0.01 g、0.01 g 加え、18時間重合反応を行った。続いて、グリシジルメタクリレート0.02 g を注入し、18時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。
実施例4の3)で得られた溶液 10 ml(フェライト微粒子 10 mg)をトルエンで3回洗浄し、20 ml のトルエンに分散させ、これを 200 ml 四つ口フラスコに取り、攪拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃, 200 rpm で1時間プレインキュベートした。70℃, 200 rpm を保ったまま、系内にスチレン、グリシジルメタクリレート、エチレングリコールジメタクリレートをそれぞれ 0.02 g、0.01 g、0.01 g 加え、18時間重合反応を行った。続いて、グリシジルメタクリレート0.02 g を注入し、18時間重合反応を行った。反応終了後、反応液をトルエンに分散させ、遠心分離によりトルエンを除去した。トルエンへの分散と遠心分離の操作を3回繰り返し、未反応のモノマーを取り除いた。得られたポリマー被覆フェライト微粒子をTEMにて観察・評価した。
図6(b)は実施例5で得られたポリマー被覆フェライト微粒子のTEM写真像である。また、重合終了直後の溶液の一部(500 ml)を 5 ml ガラスバイアルに移し、これにすばやく少量のハイドロキノンを加えて転化率を測定した。
これら実施例4および5の結果を表2に示す。実施例4および5における転化率は85%以上であった。なお、表2に示した平均粒子径は、図6に示した透過型電子顕微鏡写真における100個の粒子の測定値から算出したものである。
これらの結果、シランカップリング剤を有するイニファータを用いたリビングラジカル重合によってもポリマー被覆フェライト微粒子が得られ、高い転化率を達成できた。このとき得られたポリマー被覆フェライト微粒子のTEM写真像が図6(b)である。この写真から、フェライト微粒子が1個ずつポリマーで被覆されていることがわかる。
(実施例6)
磁性微粒子の作製は塩化第1鉄の水溶液に、硝酸の水溶液を添加し、2価鉄イオンを一部酸化することにより、水中でスピネル構造の酸化鉄微粒子を生成させ成長させた後、洗浄し、平均粒子径が40 nmのフェライト微粒子が水に分散した分散液を得た。この磁性微粒子の作製方法によれば、生成する粒子の粒子径を数100 nm範囲まで制御でき、オレイン酸鉄錯体を熱分解する方法に比べ、より大きな粒子径で、粒子径がよく揃い、単分散可能なフェライト微粒子を、水中に分散した形で製作することができた。
磁性微粒子の作製は塩化第1鉄の水溶液に、硝酸の水溶液を添加し、2価鉄イオンを一部酸化することにより、水中でスピネル構造の酸化鉄微粒子を生成させ成長させた後、洗浄し、平均粒子径が40 nmのフェライト微粒子が水に分散した分散液を得た。この磁性微粒子の作製方法によれば、生成する粒子の粒子径を数100 nm範囲まで制御でき、オレイン酸鉄錯体を熱分解する方法に比べ、より大きな粒子径で、粒子径がよく揃い、単分散可能なフェライト微粒子を、水中に分散した形で製作することができた。
この分散液に、実施例4で合成した上記の[化10]で表わされるイニファータを添加し、フェライト微粒子の表面に固定し、余剰のイニファータを洗浄により除去した。このイニファータを固定したフェライト微粒子分散液に、モノマーとしてスチレン、グリシジルメタクリレートおよびエチレングリコールジメタクリレートを加え、重合反応をさせた。続いてグリシジルメタクリレートおよびグリセロールメタクリレートを注入し、さらに重合反応させた。これらの重合反応の後、反応液をMill-Q水中に分散させ、遠心分離により水を除去した。このMill-Q水中への分散と遠心分離の操作を繰り返し、未反応のモノマーを除去した。こうして得られた微粒子を電子顕微鏡観察した結果、フェライト微粒子が1個ずつ約2 nmのポリマーで被覆されたポリマー被覆微粒子を形成していることが観察された。また、この方法でモノマーの重合条件を変えることにより、ポリマー被覆の厚さをより厚くすることもできた。
(実施例7)
1)フェライト微粒子の作製
ポリマー被覆磁性微粒子のコア部に相当する無機物微粒子として用いるフェライト微粒子は、J. Magn. Magn. Mater., 310, 2408-2410, 2007に記載されている方法に準拠し、窒素雰囲気下にて塩化鉄(II)を0.1M 水酸化ナトリウム水溶液中で硝酸ナトリウムで酸化させ、反応を開始した。2時間後、得られたフェライト微粒子を透過型電子顕微鏡(TEM,H-7500,日立ハイテクノロジー(株)製)にて観察したところ、角張った構造をした微粒子が観察された。この角張った構造をした微粒子を球形に近い構造にすることを企図して、フェライト表面のFeイオンにアンモニウムイオンをキレートさせるべく、上記2時間反応後の溶液に対し、終濃度0.2Mとなるように塩化アンモニウム溶液を加え、窒素雰囲気下で2時間反応させた後、密閉したままそのまま16時間反応させフェライト微粒子を作製した。
1)フェライト微粒子の作製
ポリマー被覆磁性微粒子のコア部に相当する無機物微粒子として用いるフェライト微粒子は、J. Magn. Magn. Mater., 310, 2408-2410, 2007に記載されている方法に準拠し、窒素雰囲気下にて塩化鉄(II)を0.1M 水酸化ナトリウム水溶液中で硝酸ナトリウムで酸化させ、反応を開始した。2時間後、得られたフェライト微粒子を透過型電子顕微鏡(TEM,H-7500,日立ハイテクノロジー(株)製)にて観察したところ、角張った構造をした微粒子が観察された。この角張った構造をした微粒子を球形に近い構造にすることを企図して、フェライト表面のFeイオンにアンモニウムイオンをキレートさせるべく、上記2時間反応後の溶液に対し、終濃度0.2Mとなるように塩化アンモニウム溶液を加え、窒素雰囲気下で2時間反応させた後、密閉したままそのまま16時間反応させフェライト微粒子を作製した。
得られたフェライト微粒子を透過型電子顕微鏡にて観察した。その結果、図7に示すように、ほぼ球状の粒子径 40 nm のフェライト微粒子が得られたことが確認された。これは、結晶成長途中にフェライト表面のFeイオンに塩化アンモニウム由来のアンモニウムイオンが配位することで結晶成長が妨げられ、その結果、球状の結晶が得られたものと考えられる。
2)フェライト微粒子表面へのイニファータ固定化
上述した手順1)で作製したフェライト微粒子に対して、実施例4で合成した下記化学式で示されるイニファータを下記の手順に従って固定した。
上述した手順1)で作製したフェライト微粒子に対して、実施例4で合成した下記化学式で示されるイニファータを下記の手順に従って固定した。
まず、上記1)にて作製したフェライト微粒子 40 mg(固形分 0.25 mmol)を 、100mlのガラスバイアル中に36 ml のN,N-ジメチルホルムアミド(キシダ化学(株)製)に分散させた。同様に上記化学式で示されるイニファータ0.26 g(0.75 mmol)を4mlのN,N-ジメチルホルムアミドに溶解させ、これをフェライト微粒子の上記分散液に加え、16時間超音波処理して、イニファータをフェライト微粒子表面に固定した。超音波処理後のフェライト微粒子をN,N-ジメチルホルムアミドで3回洗浄し、40 ml のN,N-ジメチルホルムアミドに分散させ、密閉し、4℃で保存した。この、イニファータ固定フェライト微粒子を、以下、「フェライト被覆物質1」として参照する。
なお、本実施例においては、フェライト微粒子を好適に分散させることができ、且つ、上記イニファータを好適に溶解させることができ、さらに磁性粒子のサイズが大きくなるにつれ(20nm 以上)大きくなる残留磁化の影響下においても、イニファータ固定化過程におけるフェライト微粒子の分散性を維持することができる溶媒として、鋭意検討した結果、N,N-ジメチルホルムアミドを選択した。
ここで、フェライト微粒子に結合したイニファータ量を以下のようにして求めた。イニファータ固定フェライト微粒子をトルエンに置換し、乾燥し粉末にした後、6Mの塩酸で処理してフェライトを可溶化しイニファータを析出させた後、遠心分離により上清を取り除き、沈殿物を1Mの水酸化ナトリウム水溶液に分散させ、その溶液の吸光度を分光光度計(Beckman 製 DU640)にて測定し、252.5 nm における吸光度からフェライト微粒子に結合したイニファータの量を求めた。得られたイニファータ固定化量は約400 nmol/mg(フェライト)であった。
4)イニファータ固定化フェライト微粒子表面でのリビングラジカル重合
上記2)で得られたイニファータ固定フェライト微粒子の分散液 10 ml(フェライト微粒子 10 mg)に90mlのN,N-ジメチルホルムアミドを加え全量を100 mlとした後200 ml 四つ口フラスコに取り、撹拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃、300 rpm で1時間プレインキュベートした。70℃、300 rpm を保ったまま、系内にスチレン、グリシジルメタクリレートおよびジビニルベンゼンを それぞれ0.087g、0.0097g、0.003g注入し、24時間重合反応を行った後、遠心分離により溶媒を除去し、N,N-ジメチルホルムアミドで3回洗浄し、10mlのN,N-ジメチルホルムアミドに分散させ、4℃に保存した。上述した手順によって得られた微粒子を、以下、「フェライト被覆物質2」として参照する。
上記2)で得られたイニファータ固定フェライト微粒子の分散液 10 ml(フェライト微粒子 10 mg)に90mlのN,N-ジメチルホルムアミドを加え全量を100 mlとした後200 ml 四つ口フラスコに取り、撹拌棒・リービッヒコンデンサ・セラムラバーを取り付け、70℃、300 rpm で1時間プレインキュベートした。70℃、300 rpm を保ったまま、系内にスチレン、グリシジルメタクリレートおよびジビニルベンゼンを それぞれ0.087g、0.0097g、0.003g注入し、24時間重合反応を行った後、遠心分離により溶媒を除去し、N,N-ジメチルホルムアミドで3回洗浄し、10mlのN,N-ジメチルホルムアミドに分散させ、4℃に保存した。上述した手順によって得られた微粒子を、以下、「フェライト被覆物質2」として参照する。
この溶液に90mlのN,N-ジメチルホルムアミドを加え、グリシジルメタクリレートおよびエチレングリコールジメタクリレートをそれぞれ0.0097 g、0.0003 g加え、24時間重合反応を行った。反応終了後、遠心分離により遠心分離により溶媒を除去し、N,N-ジメチルホルムアミドで3回洗浄し、10mlのN,N-ジメチルホルムアミドに分散させ、4℃に保存した。上述した手順によって得られた微粒子を、以下、「フェライト被覆物質3」として参照する。
上述した手順で得られたフェライト被覆物質1~3について、それぞれのN,N-ジメチルホルムアミド中での粒子径を動的光散乱法(DLS)にて測定し、透過型電子顕微鏡(TEM)にて観察・評価した。下記表は、フェライト被覆物質1~3の測定結果につき、重量粒子径(Dw)、個数粒子径(Dn)、およびこれらの比(Dw/Dn)をまとめて示す。下記表に示されるように、粒子の分散度を示すDw/Dn の値は、フェライト被覆物質1~3のいずれについても、ほぼ「1」に近い値となり、単粒子分散状態であることが示された。
また、図8は、フェライト被覆物質3の透過型電子顕微鏡写真像を示す。図8に示されるように、粒子径 40 nmのフェライト微粒子が1個ずつポリマーで被覆されていることが確認された。
こうした方法を用いれば、例えば平均粒子径100nmのフェライト微粒子に対し、ポリマー被覆の厚さを20nmにしたものを作製できることがわかった。また、このような方法により、より粒子径の大きい無機物微粒子に対し、均一性のよいポリマー被覆を行うことができ、4 nmから500 nmの粒子径を持つ無機微粒子に対し、均一性のよいポリマー被覆が得られる。
(比較例)
本比較例は、特許文献1(特開2006-328309「磁性ポリマー粒子及びその製造方法」)の段落0052~0053に示された実施例1の記載に忠実に従って実施し、本発明の実施例との比較を行ったものである。
本比較例は、特許文献1(特開2006-328309「磁性ポリマー粒子及びその製造方法」)の段落0052~0053に示された実施例1の記載に忠実に従って実施し、本発明の実施例との比較を行ったものである。
磁性流体(フェリコロイド、HC-50、タイホー工業製)3.0 g を 100 ml ガラスバイアルに取り、70℃に約1週間放置して溶媒のケロシンを除去した。得られた磁性粒子 0.6 g を 300 ml 丸底フラスコに取り、トルエン(国産化学製):メタノール(キシダ化学製) =4:1(体積比)の混合溶媒を 200 ml 加え、超音波処理で磁性粒子を分散させた後、1.0 gの 2-(4-クロロスフォニルフェニル)エチルトリメトキシシラン(fluorochem 製)を加え、70℃で24時間反応を行った。反応終了後、トルエンで5回洗浄し、溶媒を十分に取り除いた後、デシケータにて3日間放置して十分に乾燥させ、重合開始基が導入された磁性粒子を約 0.2 g 得た。
こうして得られた磁性粒子 0.14 g とスチレン(和光純薬工業製、減圧蒸留にて精製)1.02 g、キシレン(キシダ化学製)0.6 g を 200 ml 四つ口丸底フラスコ中に入れ、そこに臭化銅(I) (シグマ・アルドリッチ製) 9mg、4,4’-ジノニル-2-2’-ジピリジル(シグマ・アルドリッチ製) 50 mg を加えて混合した後、1時間窒素フローにより溶存酸素を取り除いた後、110℃でスリーワンモーターにて 200 rpm の回転速度で攪拌し、10時間反応させた。
こうして得られたポリマー被覆磁性微粒子をトルエンで5回洗浄し、テトラヒドロフラン(THF)(ナカライテスク製、低水分溶剤)10 mlに分散させ、20 ml のガラスバイアルに入れて密閉し、4℃で保存した。得られたサンプルは大塚電子製FPAR-1000でTHF中の粒子径を測定した。また、カーボン蒸着されたコロジオンメッシュ上に添加し、乾燥後の状態を透過型電子顕微鏡(日立ハイテクノロジー製、H-7600)にて観察した。得られた透過型電子顕微鏡写真における100個の粒子の測定値から算出した平均粒子径は205.9±177.1 nmであった。
光散乱法によるTHF中の得られた粒子の粒子径を測定した結果、個数粒子径として Dn = 21.7±4.4 nm、重量粒子径として Dw = 3133.8±2354.2 nmという値が得られた。これらの結果から、粒子の分散度を示す Dw/Dn の値は 140.9 となり、単粒子分散状態の1からは大きくかけ離れている。このため、得られたポリマー被覆磁性微粒子は、単分散状態とは大きく異なり、いくつかの粒子が凝集した集合体であると考えられる。
このポリマー被覆磁性微粒子の透過型電子顕微鏡写真を図9に示す。ポリマーが磁性体を複数個含有して1個の粒子を形成していることが確認できた。また、ポリマーで被覆されていない磁性体のみの微粒子も多く観察された。この結果から、特許文献1に記載された重合法で得られるポリマー被覆磁性微粒子は形状が不均一であって、重合反応の効率はあまり高くないことを示している。よって、特許文献1に記載された方法では、磁性粒子が1個ずつポリマーで薄く被覆されたポリマー被覆磁性微粒子を得ることはできないことが示された。
本発明により、無機物微粒子表面にポリマーのグラフト鎖を形成し、重合を精密に制御して、無機物微粒子を1個ずつポリマーで薄く被覆したポリマー被覆無機物微粒子を作製できるようになった。また、粒子サイズがよく制御され、粒子径がよく揃い、強磁性体としての磁化を有する範囲で十分に微細な磁性微粒子を1個ずつポリマーで薄く被覆することで、粒子径が小さいにもかかわらず、磁化の大きいポリマー被覆磁性微粒子を得ることができるようになった。こうして得られるポリマー被覆無機物微粒子は、ポリマー被覆が精密に制御でき、粒子を1個ずつ被覆することができるので、アフィニティ担体、バイオセンサー用キャリア、MRI造影剤、DDSキャリアなどの医用やバイオテクノロジーへの応用をはじめ、各産業分野において幅広く利用されることが期待される。
102…無機物微粒子作製工程、 104…洗浄工程、 106…分散工程、 108…イニファータ添加工程、 110…ソニケーション工程、 112…洗浄工程、 114…溶媒に分散する工程、 116…重合反応工程(1)、 118…重合反応工程(2) 120…重合反応工程(3)、 122…洗浄工程、 124…ポリマー被覆無機物微粒子、 202…無機物微粒子、 204…開始剤、 206…第1のポリマー、 208…第2のポリマー
Claims (18)
- 前記イニファータのXが、カルボキシル基、メルカプト基、リン酸基、亜リン酸基、スルホン酸基、及びフェノール基、カルボキシル基を保有する原子団、メルカプト基を保有する原子団、リン酸基を保有する原子団、亜リン酸基を保有する原子団、スルホン酸基を保有する原子団、及びフェノール基を保有する原子団からなる群から選ばれる少なくとも1種であることを特徴とする、請求項1記載のポリマー被覆無機物微粒子。
- 前記イニファータのXが、加水分解でシラノール基を形成する基を有する原子団であることを特徴とする、請求項1記載のポリマー被覆無機物微粒子。
- 前記無機物微粒子の平均粒子径が 4 nm 以上 500 nm 以下であって、粒子径分布の標準偏差の平均粒子径との比の値が 0.2 以下であることを特徴とする、請求項1または2記載のポリマー被覆無機物微粒子。
- 前記ポリマー被覆の厚さが 10 nm 以下であることを特徴とする、請求項1~4のいずれか1項に記載のポリマー被覆無機物微粒子。
- 前記ポリマー被覆が、無機物微粒子を1個ずつ個別に被覆してなることを特徴とする、請求項1~5のいずれか1項に記載のポリマー被覆無機物微粒子。
- 前記ポリマー層の被覆が、2種類以上のポリマーのブロック共重合によって構成されたブロック共重合体であることを特徴とする、請求項1~6のいずれか1項に記載のポリマー被覆無機物微粒子。
- 前記ブロック共重合体の少なくとも1つのブロックが、生体物質を固定する官能基を有することを特徴とする、請求項7に記載のポリマー被覆無機物微粒子。
- 前記無機物微粒子が磁性微粒子であることを特徴とする、請求項1~8のいずれか1項に記載のポリマー被覆無機物微粒子。
- 前記磁性微粒子がフェライト微粒子であることを特徴とする、請求項9に記載のポリマー被覆無機物微粒子。
- 前記フェライト微粒子の平均粒子径が 4 nm 以上であって、粒子径分布の標準偏差の平均粒子径との比の値が 0.2 以下であることを特徴とする、請求項10に記載のポリマー被覆無機物微粒子。
- 加水分解でシラノール基を形成し、無機物微粒子の表面と結合可能な原子団を具えたことを特徴とする、イニファータ化合物。
- 前記無機物微粒子の分散液および前記イニファータを開始剤とした重合反応の溶媒として極性有機溶媒を使用することを特徴とする、請求項14に記載の製造方法。
- 前記極性有機溶媒がN, N-ジメチルホルムアミドであることを特徴とする、請求項15に記載の製造方法。
- 前記無機物微粒子としてのフェライト微粒子を調製する工程であって、塩化鉄(II)を水酸化ナトリウム水溶液中で硝酸ナトリウムによって酸化させた後に、Feイオンをキレート化する溶液を添加してさらに反応させることによって、球状のフェライト微粒子を得る工程をさらに含む、請求項14に記載の製造方法。
- 前記球状のフェライト微粒子を得る工程で添加する溶液が塩化アンモニウム溶液であることを特徴とする請求項17に記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08865151.8A EP2221327B1 (en) | 2007-12-04 | 2008-12-03 | Polymer-coated fine inorganic particle and process for producing the same |
US12/745,013 US20110006245A1 (en) | 2007-12-04 | 2008-12-03 | Polymer coated inorganic fine particle and method for preparing the same |
JP2009547007A JP5531232B2 (ja) | 2007-12-04 | 2008-12-03 | ポリマー被覆無機物微粒子とその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-313073 | 2007-12-04 | ||
JP2007313073 | 2007-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009081700A1 true WO2009081700A1 (ja) | 2009-07-02 |
Family
ID=40801011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/071927 WO2009081700A1 (ja) | 2007-12-04 | 2008-12-03 | ポリマー被覆無機物微粒子とその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110006245A1 (ja) |
EP (1) | EP2221327B1 (ja) |
JP (1) | JP5531232B2 (ja) |
WO (1) | WO2009081700A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011162718A (ja) * | 2010-02-12 | 2011-08-25 | Tohoku Univ | 高分子直接グラフトナノ粒子 |
JP2012017446A (ja) * | 2010-06-10 | 2012-01-26 | Kansai Paint Co Ltd | 有機無機複合微粒子、その分散体、及び上記分散体の製造方法、並びに塗料組成物 |
JP2014133677A (ja) * | 2013-01-09 | 2014-07-24 | Shimane Univ | 水溶性超常磁性ナノ粒子 |
JP2015140397A (ja) * | 2014-01-29 | 2015-08-03 | 日立化成株式会社 | ポリマー被覆無機物微粒子及びその製造法並びにその材料 |
WO2015133507A1 (ja) * | 2014-03-05 | 2015-09-11 | Jsr株式会社 | 固相担体、リガンド結合固相担体、標的物質の検出又は分離方法、固相担体の製造方法、及びリガンド結合固相担体の製造方法 |
CN105037595A (zh) * | 2015-07-06 | 2015-11-11 | 中国科学技术大学 | 一种基于3-羟基-4-吡啶酮类化合物的高分子铁(iii)螯合剂及其制备方法 |
JP2018532526A (ja) * | 2015-09-29 | 2018-11-08 | 上▲海▼▲ケ▼励▲アン▼勤科技▲発▼展有限公司 | ナノ粒子及びその調製方法 |
JP2019002019A (ja) * | 2018-08-22 | 2019-01-10 | ナノコ テクノロジーズ リミテッド | 量子ドットポリマー膜を作製する方法 |
JP2020180223A (ja) * | 2019-04-25 | 2020-11-05 | キヤノン株式会社 | アミド結合を有し、かつアルコキシシリル基を有する化合物の製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010029739A1 (ja) * | 2008-09-11 | 2010-03-18 | 国立大学法人東京工業大学 | 蛍光分子を含有するポリマー粒子およびその製造方法 |
WO2010118336A1 (en) * | 2009-04-10 | 2010-10-14 | Rensselaer Polytechnic Institute | Diblock copolymer modified nanoparticle-polymer nanocomposites for electrical insulation |
US9327024B2 (en) | 2009-10-30 | 2016-05-03 | Tokyo Institute Of Technology | Polymer coated ferrite fine particles and method for preparing polymer coated ferrite fine particles |
CN109776743B (zh) * | 2018-01-02 | 2021-06-04 | 安徽工程大学 | 一种吸附功能磁性Fe3O4@PS-TMT纳米粒子及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004530751A (ja) * | 2001-05-04 | 2004-10-07 | ローディア インコーポレイティド | ブロック共重合体を界面活性剤として用いるラテックス製造プロセス |
JP2005170959A (ja) * | 2003-12-05 | 2005-06-30 | Japan Science & Technology Agency | 生体高分子固定化可能なグラフト重合体ならびにそれを固定した基材 |
JP2006113389A (ja) * | 2004-10-15 | 2006-04-27 | Canon Inc | 電気泳動粒子及びその製造方法とそれを用いた電気泳動表示素子 |
JP2006113374A (ja) * | 2004-10-15 | 2006-04-27 | Canon Inc | 電気泳動粒子及びその製造方法 |
JP2006520844A (ja) * | 2003-03-21 | 2006-09-14 | スリーエム イノベイティブ プロパティズ カンパニー | ラジカル重合のためのアズラクトン光イニファータ |
JP2006328309A (ja) | 2005-05-30 | 2006-12-07 | Canon Inc | 磁性ポリマー粒子及びその製造方法 |
JP2007056094A (ja) | 2005-08-23 | 2007-03-08 | Chisso Corp | 熱応答性磁性微粒子、その製造方法及び該微粒子を用いた吸着材 |
JP2007093688A (ja) * | 2005-09-27 | 2007-04-12 | Toshiba Corp | ホログラム記録媒体、マスターホログラムの製造方法およびコピーホログラムの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892798A (en) * | 1988-12-13 | 1990-01-09 | Minnesota Mining And Manufacturing Company | Electrophoretic imaging metal-toner fluid dispersion |
AU2002246978A1 (en) * | 2001-01-10 | 2002-07-24 | Symyx Technologies, Inc. | Polymer brushes for immobilizing molecules to a surface |
SE0401739D0 (sv) * | 2004-07-01 | 2004-07-01 | Boerje Sellergren | Polymer films |
GB0505367D0 (en) * | 2005-03-16 | 2005-04-20 | Combining Co The Ltd | A method for producing a grafted polymer coating |
-
2008
- 2008-12-03 WO PCT/JP2008/071927 patent/WO2009081700A1/ja active Application Filing
- 2008-12-03 JP JP2009547007A patent/JP5531232B2/ja not_active Expired - Fee Related
- 2008-12-03 EP EP08865151.8A patent/EP2221327B1/en not_active Not-in-force
- 2008-12-03 US US12/745,013 patent/US20110006245A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004530751A (ja) * | 2001-05-04 | 2004-10-07 | ローディア インコーポレイティド | ブロック共重合体を界面活性剤として用いるラテックス製造プロセス |
JP2006520844A (ja) * | 2003-03-21 | 2006-09-14 | スリーエム イノベイティブ プロパティズ カンパニー | ラジカル重合のためのアズラクトン光イニファータ |
JP2005170959A (ja) * | 2003-12-05 | 2005-06-30 | Japan Science & Technology Agency | 生体高分子固定化可能なグラフト重合体ならびにそれを固定した基材 |
JP2006113389A (ja) * | 2004-10-15 | 2006-04-27 | Canon Inc | 電気泳動粒子及びその製造方法とそれを用いた電気泳動表示素子 |
JP2006113374A (ja) * | 2004-10-15 | 2006-04-27 | Canon Inc | 電気泳動粒子及びその製造方法 |
JP2006328309A (ja) | 2005-05-30 | 2006-12-07 | Canon Inc | 磁性ポリマー粒子及びその製造方法 |
JP2007056094A (ja) | 2005-08-23 | 2007-03-08 | Chisso Corp | 熱応答性磁性微粒子、その製造方法及び該微粒子を用いた吸着材 |
JP2007093688A (ja) * | 2005-09-27 | 2007-04-12 | Toshiba Corp | ホログラム記録媒体、マスターホログラムの製造方法およびコピーホログラムの製造方法 |
Non-Patent Citations (15)
Title |
---|
CHEM. MATER., vol. 15, 2003, pages 3 - 5 |
EUR. POLYMER J., vol. 43, 2003, pages 762 - 772 |
J. AM. CHEM. SOC., vol. 124, 2002, pages 14312 - 14313 |
J. MAGN. MATER., vol. 310, 2007, pages 2408 - 2410 |
J. POLYMER SCI. A: POLYMER CHEM., vol. 48, 2005, pages 3675 - 3688 |
MACROMOL. RAPID COMMUN., vol. 27, 2006, pages 2107 - 2112 |
MACROMOLECULES, vol. 37, 2004, pages 2203 - 2209 |
MACROMOLECULES, vol. 39, 2006, pages 3469 - 3472 |
MIKA YAMAGATA ET AL.: "Design Sareta Kobunshi no Suiyoeki kara Chosei suru Jiseitai Fukugo Ryushi", POLYMER PREPRINTS, vol. 53, no. 2, 2004, JAPAN, pages 3745 - 3746 * |
NANO LETT., vol. 3, 2003, pages 789 - 793 |
NATURE MATER., vol. 3, 2004, pages 891 - 895 |
NATURE. MATER., vol. 3, 2004, pages 891 - 895 |
SCI. TECHNOL. ADV. MATER., vol. 7, 2006, pages 617 - 628 |
See also references of EP2221327A4 * |
SOLID STATE SCI., vol. 6, 2004, pages 879 - 885 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011162718A (ja) * | 2010-02-12 | 2011-08-25 | Tohoku Univ | 高分子直接グラフトナノ粒子 |
JP2012017446A (ja) * | 2010-06-10 | 2012-01-26 | Kansai Paint Co Ltd | 有機無機複合微粒子、その分散体、及び上記分散体の製造方法、並びに塗料組成物 |
JP2014133677A (ja) * | 2013-01-09 | 2014-07-24 | Shimane Univ | 水溶性超常磁性ナノ粒子 |
JP2015140397A (ja) * | 2014-01-29 | 2015-08-03 | 日立化成株式会社 | ポリマー被覆無機物微粒子及びその製造法並びにその材料 |
WO2015133507A1 (ja) * | 2014-03-05 | 2015-09-11 | Jsr株式会社 | 固相担体、リガンド結合固相担体、標的物質の検出又は分離方法、固相担体の製造方法、及びリガンド結合固相担体の製造方法 |
JPWO2015133507A1 (ja) * | 2014-03-05 | 2017-04-06 | Jsr株式会社 | 固相担体、リガンド結合固相担体、標的物質の検出又は分離方法、固相担体の製造方法、及びリガンド結合固相担体の製造方法 |
US10466235B2 (en) | 2014-03-05 | 2019-11-05 | Jsr Corporation | Solid support, ligand-bound solid support, detection or separation method for target substance, solid support production method, and ligand-bound solid support production method |
CN105037595A (zh) * | 2015-07-06 | 2015-11-11 | 中国科学技术大学 | 一种基于3-羟基-4-吡啶酮类化合物的高分子铁(iii)螯合剂及其制备方法 |
JP2018532526A (ja) * | 2015-09-29 | 2018-11-08 | 上▲海▼▲ケ▼励▲アン▼勤科技▲発▼展有限公司 | ナノ粒子及びその調製方法 |
JP2019002019A (ja) * | 2018-08-22 | 2019-01-10 | ナノコ テクノロジーズ リミテッド | 量子ドットポリマー膜を作製する方法 |
JP2020180223A (ja) * | 2019-04-25 | 2020-11-05 | キヤノン株式会社 | アミド結合を有し、かつアルコキシシリル基を有する化合物の製造方法 |
JP7337535B2 (ja) | 2019-04-25 | 2023-09-04 | キヤノン株式会社 | アミド結合を有し、かつアルコキシシリル基を有する化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2221327B1 (en) | 2014-04-16 |
US20110006245A1 (en) | 2011-01-13 |
EP2221327A1 (en) | 2010-08-25 |
JPWO2009081700A1 (ja) | 2011-05-06 |
EP2221327A4 (en) | 2011-04-27 |
JP5531232B2 (ja) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5531232B2 (ja) | ポリマー被覆無機物微粒子とその製造方法 | |
Ma et al. | Hydrophilic dual‐responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation‐precipitation polymerization | |
TWI417330B (zh) | 新穎奈米顆粒 | |
Butterworth et al. | Synthesis and characterization of polypyrrole–magnetite–silica particles | |
TWI376705B (en) | Magnetic particles and fabrication method thereof | |
JP5569837B2 (ja) | 表面被覆無機物粒子の製造方法 | |
US8404347B2 (en) | Method of synthesis of amphiphilic magnetic composite particles | |
Pimpha et al. | Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization | |
JP4094277B2 (ja) | シェル架橋型ミセルを鋳型とする金属ナノ粒子の調製 | |
CN104151764B (zh) | 一种聚合物刷修饰的磁性复合微球及其制备方法与应用 | |
JP5688807B2 (ja) | ポリマー被覆フェライト微粒子および製造方法 | |
Abdollahi et al. | Grafting of water‐soluble sulfonated monomers onto functionalized fumed silica nanoparticles via surface‐initiated redox polymerization in aqueous medium | |
Wang et al. | Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles | |
Zou et al. | Preparation of silica-coated poly (styrene-co-4-vinylpyridine) particles and hollow particles | |
Li et al. | Mechanistic investigation of surfactant-free emulsion polymerization using magnetite nanoparticles modified by citric acid as stabilizers | |
Griffete et al. | Elaboration of hybrid silica particles using a diazonium salt chemistry approach | |
Li et al. | Synthesis of Fe3O4@ poly (methacrylic acid) core–shell submicrospheres via RAFT precipitation polymerization | |
Abdollahi et al. | Hydrophilic polymer/fumed silica hybrid nanoparticles synthesized via surface-initiated redox polymerization | |
Liu et al. | Synthesis of ellipsoidal hematite/silica/polymer hybrid materials and the corresponding hollow polymer ellipsoids | |
Ji et al. | Preparation of polymer/silica/polymer tri-layer hybrid materials and the corresponding hollow polymer microspheres with movable cores | |
Hsiao et al. | Preparation of sulfate-and carboxyl-functionalized magnetite/polystyrene spheres for further deposition of gold nanoparticles | |
JPS59221302A (ja) | 磁性重合体粒子の製造方法 | |
EP2518118B1 (en) | Titanium oxide spacing by SIP | |
Chaparro et al. | Polymer/laponite nanocomposite films produced from surfactant-free latexes using cationic macromolecular reversible addition-fragmentation chain transfer copolymers | |
Peng et al. | Fumed silica/polymer hybrid nanoparticles prepared by redox-initiated graft polymerization in emulsions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08865151 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2009547007 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008865151 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12745013 Country of ref document: US |