WO2009081556A1 - Multilayer sheet and optical recording medium - Google Patents

Multilayer sheet and optical recording medium Download PDF

Info

Publication number
WO2009081556A1
WO2009081556A1 PCT/JP2008/003853 JP2008003853W WO2009081556A1 WO 2009081556 A1 WO2009081556 A1 WO 2009081556A1 JP 2008003853 W JP2008003853 W JP 2008003853W WO 2009081556 A1 WO2009081556 A1 WO 2009081556A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
mass
laminated sheet
layer
Prior art date
Application number
PCT/JP2008/003853
Other languages
French (fr)
Japanese (ja)
Inventor
Kahoru Niimi
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Publication of WO2009081556A1 publication Critical patent/WO2009081556A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/256Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers improving adhesion between layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material

Definitions

  • the present invention is transparent, optically less distorted, has toughness, heat resistance, scratch resistance, and excellent secondary processing.
  • a layer such as a window, display, optical recording medium, etc.
  • the present invention relates to a suitably usable laminated sheet and an optical recording medium formed using the sheet.
  • Patent Document 1 discloses the superiority of a coating method, particularly a spin coater method, as a method for processing an active energy ray-curable resin composition.
  • Patent Document 2 discloses a sheet with a pressure sensitive adhesive using a UV curable acrylic resin.
  • Patent Document 3 can impart excellent scratch resistance, water resistance and chemical resistance to image paper such as photographs output by a printer and the surface of a display, etc., and there is little distortion and image sharpness.
  • the adhesive sheet with a hard coat which hardened urethane acrylate which can improve thickness and can further reduce thickness is described.
  • the sheet with pressure-sensitive adhesive described in Patent Document 2 is not designed in consideration of surface hardness and contamination resistance in the embodiment, and is not practical.
  • the pressure-sensitive adhesive sheet with a hard coat described in Patent Document 3 has a total thickness of 50 ⁇ m or less, and lacks self-sustainability, so it is necessary to provide protective films on both sides, and it cannot be said that productivity is good and is practical. It was hard to say.
  • the present invention is transparent, has small optical distortion, has good film-forming properties, is excellent in secondary workability, and can be both self-supporting and flexible as a sheet.
  • a high-density recording medium of a next-generation disc for example, an optical recording medium such as a Blu-ray disc, UDO, etc.
  • the present inventor forms a laminated sheet when a laminated sheet made of a cured product of an active energy ray-curable resin composition is bonded to an optical disk or the like and used as a protective sheet. Since the cured product of the active energy ray-curable resin composition acts as a stress that relaxes and shrinks at high temperatures, the wet sheet has a large dimensional change in wet heat, and the warp that occurs on the optical disk when bonded to the optical disk in the operating temperature range. Clarified that is remarkable.
  • the present inventors have conducted further diligent studies to obtain a laminated sheet having a configuration in which a hard coat layer is laminated on at least one surface of a film layer, and the laminated sheet having the configuration is described below as (A) to By having the physical properties of (D), shrinkage stress can be reduced, and even if processed into a film, problems such as brittleness and breakage, lack of waist and difficulty in handling are not caused, and film forming properties are good. It has been found that it is excellent in secondary workability and can be both self-supporting and flexible as a sheet. (A) Storage elastic modulus at 25 ° C.
  • the inventor of the present invention provides a laminated sheet having a configuration in which a hard coat layer, a film layer, and an adhesive material layer are sequentially laminated, with the total thickness of the laminated sheet being 70 to 200 ⁇ m or less, and an adhesive material for the film layer.
  • the thickness ratio of the layer to 10 to 50% and the thickness ratio of the hard coat layer to the film layer to 1 to 5%, it is possible to remarkably suppress the occurrence of warping that occurs on the optical disc, and to improve the film forming property. Yes, it was found that it was excellent in secondary workability, and both the self-supporting property and flexibility as a sheet could be achieved.
  • the laminated sheet has a property that the storage elastic modulus at 25 ° C. is 1000 MPa or more and the storage elastic modulus at 80 ° C. is 100 MPa or less, the effect of reducing the stress can be exerted and processed into a film shape. It was also found that problems such as fragility and fragility, lack of waist and difficulty in handling did not occur.
  • the present invention relates to the following [1] to [10].
  • C Storage elastic modulus at 100 ° C. Is 100 MPa or less
  • Elongation at break at 80 ° C. is 4% or more
  • a protective film for optical disks comprising the laminated sheet according to any one of [1] to [8].
  • the storage elastic modulus is a value of elastic modulus at a predetermined temperature measured by a dynamic viscoelasticity measurement method (JIS K7244-4) at a frequency of 10 Hz and a strain of 0.1%, and is a glass transition.
  • the temperature refers to the temperature at the maximum value of the loss tangent (Tan ⁇ ) measured by the same measurement method.
  • the tensile breaking elongation is applied to one or both of the flow direction (MD) and the direction (TD) perpendicular to the flow direction during film formation.
  • the present invention is transparent and has a small optical distortion, and even when processed into a film shape, it does not cause problems such as brittleness and breakage, lack of waist and difficulty in handling, and has good film-forming properties.
  • An optical recording medium excellent in processability and capable of providing a laminated sheet that does not cause warpage even when used by being bonded to an optical disk or the like, and is obtained by laminating the laminated sheet having these properties In addition to the above-mentioned excellent optical and mechanical properties, it has excellent lamination convenience, thickness accuracy and cost, and its added value is extremely high industrially and commercially.
  • it is suitable for forming at least one layer of a high-density recording medium of a next-generation type disc, for example, an optical disc such as a Blu-ray disc or UDO.
  • the laminated sheet of the first aspect of the present invention is a laminated sheet having a configuration in which a hard coat layer is laminated on at least one surface of a film layer, each layer comprising an active energy ray-curable resin composition,
  • the laminate sheet is not particularly limited as long as it has the following properties, and the laminated sheet has the following properties (A) to (D), that is, has a high elastic modulus near room temperature and becomes soft at high temperatures.
  • the sheet by setting the glass transition temperature of the active energy ray-curable resin composition of the film layer constituting the laminated sheet to 90 ° C. or less, various engineer plastics such as polycarbonate (glass transition temperature 150 ° C.) and PMMA (polyethylene When bonded to a resin substrate such as methyl methacrylate (glass transition temperature 105 ° C.), the sheet follows the dimensional change in the heat-resistant temperature range of the adherend, and the adherend and the laminated sheet of the present invention Effectively relieves strain (dimensional change) that occurs in the meantime.
  • various engineer plastics such as polycarbonate (glass transition temperature 150 ° C.) and PMMA (polyethylene
  • the sheet When bonded to a resin substrate such as methyl methacrylate (glass transition temperature 105 ° C.), the sheet follows the dimensional change in the heat-resistant temperature range of the adherend, and the adherend and the laminated sheet of the present invention Effectively relieves strain (dimensional change) that occurs in the meantime.
  • the hard coat layer provided on the surface is designed to maintain an appropriate surface hardness even in a high temperature range (the glass transition temperature is higher than 90 ° C.), but the stress relaxation property described above is impaired by the hard coat layer.
  • the elastic modulus of the laminated sheet in the high temperature region is adjusted to 100 MPa or less (so as not to be too high) so as to maintain an appropriate elongation.
  • the total thickness of the laminated sheets 70 ⁇ m to 200 ⁇ m or less it is possible to achieve both excellent self-supporting properties and flexibility, and by setting the thickness ratio of the hard coat layer to the film layer to 1 to 5%, While imparting surface hardness, it is possible to relieve the difference in wet heat dimensional change, and it is possible to remarkably suppress the occurrence of warpage occurring in the optical disc.
  • the difference in wet heat dimensional change of the laminated sheet can be alleviated without impairing the physical properties unique to each layer, it is preferable to adjust the total thickness of the laminated sheet and the thickness of each layer constituting the laminated sheet.
  • each layer constituting the laminated sheet of the first embodiment of the present invention is preferably made of a cured product of an active energy ray-curable resin composition having a nonvolatile component concentration of 95% or more.
  • an active energy ray-curable resin composition having a nonvolatile component concentration of 95% or more.
  • the total thickness of the laminated sheet is preferably 70 to 200 ⁇ m or less, and more preferably 75 to 100 ⁇ m or less.
  • the thickness ratio of the hard coat layer to the film layer is preferably 1 to 5%, more preferably 1 to 3%.
  • the laminated sheet of the second embodiment of the present invention has a structure in which a hard coat layer, a film layer, and an adhesive material layer are sequentially laminated, each layer is made of an active energy ray-curable resin composition, and has a total thickness of 70. If the thickness ratio of the adhesive layer to the film layer is 10 to 50% and the thickness ratio of the hard coat layer to the film layer is 1 to 5%, it is not particularly limited. When the total thickness of the laminated sheet is 70 ⁇ m to 200 ⁇ m or less, both excellent self-supporting property and flexibility can be achieved, and the thickness ratio of the adhesive layer to the film layer is 10 to 50%.
  • the hardness of the sheet can be secured, the difference in wet heat dimensional change between the adherend and the laminated sheet can be reduced, and the thickness ratio of the hard coat layer to the film layer can be 1 to 5%. Accordingly, while imparting surface hardness, it is possible to relax the wet heat dimensional change difference.
  • the wet heat dimensional change difference of the laminated sheet can be alleviated without impairing the physical properties unique to each layer.
  • the total thickness of the laminated sheet is required to be 70 to 200 ⁇ m or less, preferably 75 to 100 ⁇ m or less. Further, the thickness ratio of the pressure-sensitive adhesive layer to the film layer needs to be 10 to 50%, but it is preferably 15 to 30%, more preferably 20 to 25%. Further, the thickness ratio of the hard coat layer to the film layer needs to be 1 to 5%, and more preferably 1 to 3%.
  • the film layer of the first form or the second form is composed of an active energy ray-curable resin composition containing a (meth) acrylate monomer, oligomer, polymer, or a mixture thereof, and active energy rays such as ultraviolet rays and electron beams. It is formed by curing.
  • the active energy ray-curable resin composition is not particularly limited.
  • urethane (meth) acrylate type epoxy (meth) acrylate type, polyester (meth) acrylate type, which is cured with active energy ray
  • examples include polybutadiene (meth) acrylate-based and polyol poly (meth) acrylate-based monomer-type and oligomer-type active energy ray-curable resins as main components, and other photopolymerizable monomers and compositions containing photopolymerization initiators. It is done.
  • the storage elastic modulus at 25 ° C. is preferably 2000 MPa or more, and the storage elastic modulus at 100 ° C. is preferably adjusted to 100 MPa or less.
  • the storage elastic modulus at 25 ° C. is preferably 1000 MPa or more, and the storage elastic modulus at 80 ° C. is preferably adjusted to 100 MPa or less. It is important that the storage elastic modulus is within this range.
  • the blending of the active energy ray-curable resin composition may be adjusted, and in particular, (1) urethane (meth) acrylate. 20 to 60 parts by mass, (2) 10 to 60 parts by mass of a monomer having an alkylene oxide group and at least two (meth) acryloyl groups, (3) having one (meth) acryloyl group and an aromatic ring structure in the molecule 10-50 parts by weight of monomer, (4) 0-20 parts by weight of monomer having one (meth) acryloyl group and alicyclic structure in the molecule, (5) 0-20 parts by weight of epoxy acrylate oligomer, (6) photopolymerization It is preferable to use a composition containing 0.1 to 10 parts by mass of an initiator.
  • the composition of the active energy ray-curable resin composition having an upper nonvolatile component concentration of 95% or more is not limited to the above.
  • the (1) urethane (meth) acrylate used in the film layer is suitable for imparting toughness and curability of the film, and is preferably contained in an amount of 20 to 60%. By adjusting to this range, the film is excellent in hardness and toughness, and the viscosity does not become too high.
  • the urethane (meth) acrylate include urethane (meth) which can be synthesized by adding a hydroxyl group-containing (meth) acrylate to a compound obtained by urethane condensation of an aliphatic polyol or an aliphatic polyol glycidyl ether and an alicyclic diisocyanate. Mention may be made of acrylates.
  • Examples of the aliphatic polyol include alkyl polyols such as ethylene glycol, propylene glycol, tetramethylene glycol, and hexanediol.
  • Examples of the aliphatic polyol glycidyl ether include polyethers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • Examples include glycol compounds such as polyols. These can be used individually by 1 type or in combination of 2 or more types. Among these, a tetramethylene glycol skeleton is preferable.
  • Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and cyclohexanedimethanol.
  • diisocyanate examples include aromatic diisocyanates such as tolylene diisocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4-isocyanatocyclohexyl) methane, and 1,2-hydrogenated xylylene.
  • aromatic diisocyanates such as tolylene diisocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4-isocyanatocyclohexyl) methane, and 1,2-hydrogenated xylylene.
  • aliphatic diisocyanates such as range isocyanate, 1,4-hydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, and norbornane diisocyanate. These can be used individually by 1 type or in combination
  • the urethane (meth) acrylate represented by the following [Chemical Formula 1] obtained by (meth) acrylating the terminal obtained by urethane condensation of isophorone diisocyanate and polytetraethylene glycol is more.
  • urethane obtained by reacting 4-hydroxybutyl acrylate with the end of a structure having a weight average molecular weight of 600 to 10,000, more preferably 1000 to 4000 and having about 4 to 20 urethane bonds in the molecule is preferable.
  • (Meth) acrylate is most preferred.
  • m represents an integer of 1 to 4
  • n represents an integer of 1 to 10.
  • a coating film can be easily obtained with high thickness accuracy when a composition is formed by a general film forming method such as die coating.
  • the surface smoothness can be imparted, and for example, it is preferable that the coating film has a crosslinked structure with a bifunctional or higher (meth) acrylate functional group, and the main chain is a moderately rigid skeleton.
  • [Chemical Formula 4] (However, R represents hydrogen or a methyl group, and n and m represent an integer of 1 to 4.)
  • the monomer (2) having an alkylene oxide group and at least two (meth) acryloyl groups include ethylene glycol-modified bisphenol A diacrylate, ethylene glycol-modified bisphenol F diacrylate, (poly) ethylene glycol diacrylate, (Poly) propylene glycol modified bisphenol A diacrylate, (poly) propylene glycol modified bisphenol F diacrylate, (poly) ethylene propylene glycol modified bisphenol A diacrylate, (poly) ethylene propylene glycol modified bisphenol F diacrylate, (poly) propylene Glycol diacrylate, glycerin glycidyl ether diacrylate, tripropylene glycol glycidyl ether diacrylate Chryrate, butanediol diacrylate, hexadiol diacrylate, EO modified neopentyl glycol diacrylate, PO modified neopentyl glycol diacrylate, EO modified trimethylolpropyl
  • the above (3) monomer having one (meth) acryloyl group and aromatic ring structure in the molecule has a relatively low molecular weight, a low viscosity, and a large elongation of a single polymer.
  • the viscosity of the composition It is preferable that the structure is easy to improve toughness by lowering, specifically, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) Acrylate, Nonylphenoxypropylene glycol (meth) acrylate, Nonylphenoxyethylene glycol (meth) acrylate, Nonylphenoxypolyethylene glycol (meth) acrylate, Nonylphenoxy polypropylene glycol (meth) acrylate , Paracumylphenoxyethylene glycol (meth) acrylate, paracumylphenoxypolyethylene glycol (
  • the monomer having one (meth) acryloyl group and alicyclic structure in the molecule (4) is an alicyclic (meth) acrylate oligomer having a monofunctional (meth) acryloyl group, and the alicyclic structure is a cured product composition.
  • the structure imparting hardness is good, specifically, norbornyl ring, adamantyl ring, dicyclopentane ring, tricyclodecane ring, tetracyclododecane ring, bornene ring, decahydronaphthalene ring, polyhydroanthracene ring, tricyclene,
  • Examples include steroid skeletons such as cholesteric rings, bile acids, digitaloid rings, camphor rings, iso camphor rings, sesquiterpene rings, sandton rings, diterpene rings, triterpene rings, and steroid saponin rings. Because of its excellent surface hardness, With emissions skeleton (meth) acrylate.
  • alicyclic (meth) acrylate components can be used alone or in combination of two or more as desired.
  • the (4) monomer having one (meth) acryloyl group and alicyclic structure in the molecule is blended as necessary, and if blended, the film-forming processability and heat distortion resistance of the composition. In addition, it is possible to obtain the effects of thermal decomposition resistance and cost improvement.
  • epoxy (meth) acrylate it is an epoxy (meth) acrylate oligomer having two or more (meth) acryloyl groups and has a high molecular weight and polarity, and the physical properties are easily improved by the reaction of acryloyl groups.
  • Good structure such as 1,4 butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene Glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol Diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, trimethylol ethane triglycidyl ether, aliphatic polyol polyglycidyl ether, polyglycol diepoxide, castor oil polyglycidyl ether, cyclohexane dimethanol diglycidy
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenoxy fluorenediglycidyl ether, bisphenoxyfluorene Epoxy resins such as ethanol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, cyclohexane dimethanol diglycidyl ether, tricyclodecane dimethanol diglycidyl ether, (meth) acrylic acid, (meta ) Epoxy (meth) acrylates obtained by reacting unsaturated monobasic acids such as acrylic acid dimer and caprolactone-modified (meth) acrylic acid And the like.
  • epoxy (meth) acrylates since the heat resistance of the resulting composition after curing can be improved, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol A ethylene oxide-added diglycidyl ether Bisphenol-type epoxy (meth) acrylate compounds, bisphenol A-type epoxy (meth) acrylate, bisphenol F-type epoxy, which are (meth) acrylic acid adducts of polyfunctional epoxy compounds such as bisphenol A propylene oxide-added diglycidyl ether (Meth) acrylate, bisphenol S type epoxy (meth) acrylate, tetrabromobisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meth) acrylate, hydrogenated resin Bisphenol type epoxy (meth) acrylates such as phenol F type epoxy (meth) acrylate are suitable, and among them, bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy are excellent because of excellent balance between vis
  • bisphenol type epoxy (meth) acrylate represented by the following [Chemical Formula 5] is particularly preferable.
  • R1 and R2 represent hydrogen or a methyl group, and n represents an integer of 1 to 12.
  • the weight average molecular weight is preferably in the range of 400 to 4000 from the viewpoint of reducing the volume shrinkage due to the polymerization of the composition obtained.
  • the range of n 1 to 12 is preferred. Is preferred.
  • the weight average molecular weight of the bisphenol type epoxy (meth) acrylate exceeds 4000, the viscosity of the composition becomes extremely high, and the processability tends to be lowered. Therefore, in the present invention, when bisphenol type epoxy (meth) acrylate is used, it is more preferable to use one having a weight average molecular weight of 400 to 4000. These epoxy (meth) acrylates can be used alone or in combination of two or more as desired.
  • said (5) epoxy acrylate oligomer is mix
  • Examples of the above (6) photopolymerization initiator include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophene, methylorthobenzoylbenzoate, 4-phenylbenzophenone, and t-butylanthraquinone.
  • acetophenone derivatives whose decomposition products after generation of radicals do not become volatile components specifically 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-Methyl-propan-1-one and the like, and benzophenone derivatives that do not generate decomposition products after radical generation are suitable in terms of transparency and durability.
  • the amount of the photoinitiator is appropriately adjusted according to the curability and the like of the composition, and is typically 1 to 10 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin composition of the present invention. is there.
  • the hard coat layer is made of an active energy ray-curable resin composition containing an acrylate monomer, oligomer, polymer, or a mixture thereof, and is formed by being cured with active energy rays such as ultraviolet rays and electron beams.
  • the active energy ray-curable hard coating agent is not particularly limited, and examples thereof include a silicone hard coating agent and a fluorine hard coating agent.
  • a polymer containing at least one (meth) acryloyloxy group in the side chain and a structure represented by the following [Chemical Formula 2] and / or at least one (meth) acryloyloxy group in the molecule 5 to 20 parts by mass, preferably 5 to 10 parts by mass of a polymer having a fluoroalkylene oxide group
  • the composition of the active energy ray-curable resin composition having an upper nonvolatile component concentration of 95% or more is not limited to the above.
  • n an integer of 5 to 100.
  • the above (4) photopolymerization initiator may be the same as the photopolymerization initiator described in the film layer.
  • the configuration of the laminated sheet of the first embodiment of the present invention is not particularly limited as long as it has a configuration in which a hard coat layer is laminated on at least one surface of the film layer, and is active on the opposite surface of the hard coat layer.
  • An adhesive layer made of an energy ray curable resin composition can also be laminated.
  • the adhesive layer of the first form contains an active energy ray-curable resin composition containing a (meth) acrylate monomer, oligomer, polymer or a mixture thereof, and by active energy rays such as ultraviolet rays and electron beams. What is formed by curing is preferable, but in addition, any of acrylic, polyester, urethane, rubber, silicone, etc. may be used. Besides the active energy ray curable type, A thermosetting type can also be used, and these may be a mixed system, and is not necessarily limited.
  • an adhesive material layer of a 2nd form It consists of an active energy ray curable resin composition containing a (meth) acrylate type monomer, an oligomer, a polymer, or a mixture thereof, an ultraviolet-ray, an electron beam It is formed by curing with active energy rays such as.
  • the active energy ray-curable resin compositions containing these (meth) acrylate monomers, oligomers, polymers or mixtures thereof the reaction of (meth) acrylate monomers and the like with urethane (meth) acrylate as the main ingredient It is preferable that the storage elastic modulus at 25 ° C.
  • the composition of the active energy ray-curable resin composition may be adjusted. Among them, (1) urethane (meth) acrylate 50 90 parts by mass, (2) 10-50 parts by mass of a compound having one (meth) acryloyl group and an aliphatic structure having 4 or more carbon atoms in the molecule, and (3) 1-10 parts by mass of a photopolymerization initiator. It is preferable to use a composition comprising the same.
  • the (1) urethane (meth) acrylate preferably has a structure in which both the coating suitability when uncured and the adhesive property of the cured product are compatible, and a hydroxyl group-containing acrylate is contained in one molecule in a structure in which a polyol and an isocyanate are condensed.
  • R 1 is an alkyl group having 4 or more carbon atoms
  • R 2 is an aliphatic isocyanate compound residue
  • R 3 is a polyol residue having a molecular weight of 300 or more
  • R 4 is hydrogen or an alkyl acrylate having 4 or more carbon atoms. Represents a group.
  • R 2 represents an isocyanate residue.
  • aromatic diisocyanates such as tolylene diisocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4-isocyanate).
  • aliphatic diisocyanates such as natocyclohexyl) methane, 1,2-hydrogenated xylylene diisocyanate, 1,4-hydrogenated xylylene diisocyanate, hydrogenated tetramethyl xylylene diisocyanate, and norbornane diisocyanate.
  • aliphatic isocyanate compounds are preferable, and isophorone diisocyanate and a polymer of isophorone diisocyanate are more preferable because they are excellent in light transmittance and heat decomposition resistance.
  • R 3 represents a polyol residue, and in order to impart flexibility and tackiness of the cured product, and because the compound viscosity before curing does not become too high, a structure with low polarity is preferable.
  • a high molecular weight aliphatic polyol of 300 or more is preferable, and examples thereof include polyisobutylene polyol and polybutadiene polyol.
  • R 4 in the formula is hydrogen or a residual chain of a hydroxyl group-containing acrylate.
  • the hydroxyl group-containing acrylate is not particularly limited, but an acrylate compound in which the alcohol residual chain is an alkyl alcohol having 4 to 20 carbon atoms is preferable.
  • urethane (meth) acrylates a urethane (meth) acrylate having a molecular weight of 10,000 to 200,000, more preferably a molecular weight of 15,000 to 100,000 is preferable. By setting it as this range, the crosslink density of the cured product does not increase, the tack and flexibility as an adhesive material are excellent, and the film forming property is excellent.
  • Examples of the compound (2) having one (meth) acryloyl group in the molecule and an aliphatic structure having 4 or more carbon atoms include butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, lauryl acrylate, octyl acrylate, isooctyl Examples thereof include acrylate compounds having a fatty structure such as acrylate, decyl acrylate, isodecyl acrylate, caprolactone acrylate, nonyl acrylate, and nonylphenoxyethylene glycol acrylate, or derivatives thereof.
  • the above (3) photopolymerization initiator may be the same as the photopolymerization initiator described in the film layer.
  • Components other than the above as the active energy ray curable resin composition constituting each layer include other photocurable oligomers / monomers, sensitizers, crosslinking agents, ultraviolet absorbers, polymerization inhibitors, fillers, heat Colorants such as plastic resins, dyes, and pigments can be added within a range that is effective and does not hinder physical properties such as curing, transparency, and heat resistance.
  • the production method of the laminated sheet of the present invention is not particularly limited, and in the first embodiment, for example, the activity sufficiently mixed and dispersed on the release film, belt, and roll for a process that is continuously driven at a constant speed.
  • a film layer component made of an energy ray-curable resin composition is quantitatively supplied and shaped into a film shape by surface tension, heating, or pressure effect, cured by irradiation with active energy rays, and a film layer is formed.
  • the hard coat layer can be produced in the same manner in the order of film formation and lamination.
  • an adhesive layer is formed on the release film, and the film layer and the hard coat layer are laminated on the adhesive layer by the above method. It ’s fine.
  • the adhesive layer component consisting of the active energy ray-curable resin composition sufficiently mixed and dispersed on the process release film, belt, and roll continuously driven at a constant speed is quantitatively supplied. Then, it is formed into a film shape by surface tension, heating, and pressure effect, irradiated with active energy rays and semi-cured to form an adhesive layer, and then the film layer and hard coat layer are similarly formed. Then, it can be manufactured by sequentially forming a film and laminating.
  • Gravure coating, roll coating, rod coating, knife coating, blade coating, screen coating, die coating, curtain flow coating, etc. can be used for quantitative supply of the active energy ray-curable resin composition constituting each layer of the present invention. it can.
  • An appropriate method may be selected from these according to the thickness of the sheet when the composition of the present invention is formed into a sheet. For example, when a laminated sheet having a thickness of 70 to 200 ⁇ m is obtained, these thicknesses are in a thick region as the thickness of the sheet obtained by coating processing, and in consideration of thickness accuracy, processing effort, appearance, etc.
  • a combination in which the composition is a solvent-free system in which the curing component is substantially 100% is preferable.
  • substantially 100% means that no solvent or volatile component is used in the composition formulation, or that the solvent residue or photoinitiator residue is negligible due to its low adverse effect on actual performance.
  • the influence on the coating processability due to the increase in the viscosity due to the solvent-free composition can be adjusted by material selection or heating in the composition.
  • Process release films include polyethylene film, biaxially stretched polypropylene film, poly-4-methylpentene-1 film, biaxially stretched polyethylene terephthalate film, biaxially stretched polyethylene naphthalate film, fluororesin film, etc.
  • a film excellent in properties and smoothness can be used, preferably a biaxially stretched polyethylene terephthalate film excellent in optical smoothness, and more preferably excellent in optical smoothness that has been subjected to mold release treatment with a silicone coating. It is a biaxially stretched polyethylene terephthalate film. The degree of releasability is adjusted by the balance between the releasability after curing the composition, the wetting stability of the film form when coated, and the adhesion.
  • the thickness of the release film is adjusted mainly by the balance of stability when coating the composition of the present invention, suppression of warpage due to curing shrinkage after curing, active energy ray permeability related to curing, and release film cost. Practically, it is 50 to 250 ⁇ m.
  • the process release belt is seamlessly joined to a sheet material with excellent smoothness and dimensional stability, such as stainless steel and surface-plated steel, and is applied to two or more rolls and used for continuous constant speed machining by driving the rolls.
  • the surface can be further coated with a fluororesin or ceramic to increase the mold release.
  • the process release roll is further released by coating the surface-plated steel with a fluororesin or ceramic.
  • the composition can be shaped while only one side is in contact, and the other side can be processed in an atmospheric contact state, or can be processed by bringing the double-sided process release material into contact with various combinations. .
  • a process release film When a process release film is not used, a single laminated sheet can be obtained, so that it can be used for specific applications such as forming a film for optical function adjustment in a form such as winding it into a roll and cutting it into sheets. It will be. On the other hand, if a process release film is used, it can be obtained as a laminate sheet with a release film between it and a laminate sheet. It is also within the scope of the present invention that the process release film is used as a protective film or a process release film for a specific application in a form that is laminated as it is for a specific application.
  • the active energy ray for irradiating and curing the mixture of each compound raw material is not particularly limited and can be applied industrially, and includes ultraviolet rays, electron rays, ⁇ rays, X rays, etc.
  • ultraviolet rays are particularly easy to use.
  • the ultraviolet light source various light emitting characteristics such as a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp and the like can be used without particular limitation, and can be appropriately adjusted according to the film thickness and the curing condition.
  • the energy can be similarly adjusted, and the illuminance is approximately 0.1 to 5 J / cm 2 .
  • the optical recording medium of the present invention for example, is provided with a light transmissive layer that also serves as a protective film on a disk substrate that has a concave and convex pattern such as pits and grooves formed on the surface and serves as a signal recording surface.
  • the optical disk is configured to record and reproduce information by irradiating laser light from the above, and the laminated sheet of the present invention is used as the light transmission layer.
  • an adhesive layer or the like is laminated on the laminated sheet of the present invention on the surface of a recording film (signal recording surface) formed on the disk substrate. After adhering the material layer surface, the laminated sheet may be irradiated with active energy rays and cured.
  • the light transmittance in the wavelength range of 380 to 800 nm is 88% or more, particularly 400 to 410 nm.
  • the light transmittance in the wavelength range is preferably 90% or more.
  • the wavelength of the optical signal applied to the optical recording medium of the present invention is not particularly limited, but may be laser light having a wavelength range of 380 to 800 nm generally used for reading and writing of an optical disc, A blue-violet laser beam of around 400 nm capable of increasing the recording capacity is extremely preferable because the transmittance in this wavelength region is 90% or more as described above.
  • curable resin composition 1 for hard coat layer After mixing to 8% by mass of the acrylic copolymer obtained in Production Example 1, 50% by mass of pentaerythritol tetraacrylate, 20% by mass of ethoxyphenyl acrylate, and 20% by mass of tetrahydrofurfuryl acrylate, and then concentrated under reduced pressure. After removing the solvent so that the volatile component was 5% or less, 2% by mass of bisacylphosphine oxide was mixed and dissolved to obtain a curable resin composition 1 for a hard coat layer.
  • an H2 type rotor was attached to a Toki Sangyo B-type viscometer (TVB-10), and the viscosity of the composition was measured at a rotational speed of 100 rpm. The result was 250 mPa ⁇ s. It was.
  • TVB-10 Toki Sangyo B-type viscometer
  • the urethane (meth) acrylate relate shown in the following [Chemical Formula 1] (urethane obtained by adding 4-hydroxybutyl acrylate to the end of urethane condensation of isophorone diisocyanate and tetramethylene glycol) ) Acrylate relate (weight average molecule; 1000 to 4000) 38% by mass, ethylene oxide (4 mol) modified bisphenol A diacrylate 30% by mass, 2-hydroxy-3-phenoxypropyl acrylate 20% by mass, isobornyl acrylate 10% by mass , And 2-hydroxy-1- ⁇ 4- [4- (hydroxy-2-methyl-propionyl) benzyl] phenyl ⁇ -2-methyl-propan-1-one are mixed and dissolved, and the film layer is cured. Resin composition 1 is obtained .
  • curable resin composition 2 for film layer 48% by mass of urethane (meth) acrylate similar to the curable resin composition 1 of the film layer, 20% by mass of bilphenol A epoxy acrylate, 30% by mass of tricyclodecane diacrylate, 2-hydroxy-1- ⁇ 4- [ 4- (Hydroxy-2-methyl-propionyl) benzyl] phenyl ⁇ -2-methyl-propan-1-one (2% by mass) was mixed and dissolved to obtain a curable resin composition 2 having a film layer.
  • curable resin composition 3 for film layer 48% by mass of urethane (meth) acrylate, 50% by mass of tricyclodecane diacrylate, and 2-hydroxy-1- ⁇ 4- [4- (hydroxy-2-methyl-) as in the curable resin composition 1 of the film layer. 2 mass% of propionyl) benzyl] phenyl ⁇ -2-methyl-propan-1-one was mixed and dissolved to obtain a curable resin composition 3 for the film layer.
  • curable resin composition 4 for film layer 48% by mass of urethane (meth) acrylate, 20% by mass of bilphenol A epoxy acrylate, 30% by mass of nonylphenoxyethylene glycol acrylate, 2-hydroxy-1- ⁇ 4- [ 4- (Hydroxy-2-methyl-propionyl) benzyl] phenyl ⁇ -2-methyl-propan-1-one (2% by mass) was mixed and dissolved to obtain a curable resin composition 4 for a film layer.
  • urethane (meth) acrylate As urethane (meth) acrylate, urethane (meth) acrylate shown in the following [Chemical Formula 1] (urethane (meth) acrylate obtained by adding 4-hydroxybutyl acrylate to the end of urethane condensation of isophorone diisocyanate and tetramethylene glycol) (Weight average molecule; 1000 to 4000) 38% by mass, ethylene oxide (4 mol) modified bisphenol A diacrylate 30% by mass, 2-hydroxy-3-phenoxypropyl acrylate 20% by mass, isobornyl acrylate 10% by mass, and 2 -Hydroxy-1- ⁇ 4- [4- (hydroxy-2-methyl-propionyl) benzyl] phenyl ⁇ -2-methyl-propan-1-one 2% by mass is mixed and dissolved to form a curable resin composition for the film layer Product 5 was obtained.
  • [Chemical Formula 1] urethane (meth) acryl
  • urethane (meth) acrylate 4-hydroxybutyl acrylate was added to the end of urethane condensation of urethane (meth) acrylate (bis (4-isocyanatocyclohexyl) methane and polyisobutylene diol shown in [Chemical Formula 3] below. 70 mass% of the obtained urethane (meth) acrylate (weight average molecule; 15000)), 20 mass% of isodecyl acrylate, 6 mass% of isobornyl acrylate, and 4 mass% of trimethylbenzophenone are mixed and dissolved, and the curability of the adhesive material layer. A resin composition was obtained.
  • R 1 is a tetraalkyl chain
  • R 2 is a residual chain of bis (4-isocyanatocyclohexyl) methane
  • R 3 is a residual chain of polyisobutylene polyol
  • R 4 is a residual chain of hydrogen or 4-hydroxybutyl acrylate. Represent.
  • a film layer of curable resin composition 1 was formed with a die coater at a thickness of 78 ⁇ m, and irradiation intensity was 200 mW / cm 2 with a high-pressure mercury lamp.
  • the curable resin composition 1 of the hard coat layer is applied onto the film layer with a gravure coater to a coating thickness of 2 ⁇ m, and a metal halide lamp A hard coat layer was formed by irradiating an active energy ray at an irradiation intensity of 200 mW / cm 2 and an integrated irradiation amount of 400 mJ / cm 2 to obtain a laminated sheet 1.
  • a curable resin composition 1 of a film layer / a curable resin composition 1 of a hard coat layer is formed by a two-layer die at a thickness of 79 ⁇ m / 1 ⁇ m.
  • the laminated sheet 2 was obtained by coating the hard coat layer on top and irradiating the active energy rays with a high-pressure mercury lamp so that the accumulated light amount was 800 mJ / cm 2 .
  • Example 3 A laminated sheet 3 was obtained in the same manner as in Example 2 except that the thickness of the film layer / hard coat layer was 76 ⁇ m / 4 ⁇ m, respectively.
  • Example 4 A laminated sheet 4 was obtained in the same manner as in Example 1 except that the curable resin composition 2 of the film layer was used.
  • a curable resin composition 1 of a film layer was formed with a die coater at a thickness of 80 ⁇ m, and an irradiation intensity of 200 mW / cm 2 with a high-pressure mercury lamp, After irradiating the active energy ray so that the integrated light quantity is 600 mJ, the hard coat layer curable resin composition 1 is coated on the film layer with a die coater by 10 ⁇ m, and the active energy ray is irradiated with a metal halide lamp with an irradiation intensity of 200 mW. / cm 2, was irradiated such that the integrated irradiation dose 400 mJ / cm 2 to form a hard coat layer to obtain a laminated sheet 5.
  • Example 3 A laminated sheet 7 was obtained in the same manner as in Example 1 except that the thickness of the film layer / hard coat layer was 30 ⁇ m / 5 ⁇ m.
  • Example 4 A laminated sheet 8 was obtained in the same manner as in Example 1 except that the film layer curable resin composition 4 was used.
  • a curable resin composition 1 of a film layer was formed with a die coater at a thickness of 80 ⁇ m, and an irradiation intensity of 200 mW / cm 2 with a high-pressure mercury lamp, The laminated sheet 9 was obtained by irradiating active energy rays so that the integrated light amount was 600 mJ.
  • Example 5 A smooth polyethylene terephthalate film with a thickness of 75 ⁇ m having releasability is coated with a curable resin composition of the above adhesive layer at a thickness of 20 ⁇ m with a die coater and irradiated with active energy rays with a high-pressure mercury lamp.
  • the adhesive layer was semi-cured by irradiation with an intensity of 100 mW / cm 2 and an integrated light amount of 600 mJ.
  • a curable resin composition 5 of a film layer is formed with a thickness of 77 ⁇ m with a die coater, and an active energy ray is irradiated with an irradiation intensity of 200 mW / cm 2 and an integrated light amount of 600 mJ with a high-pressure mercury lamp.
  • the hard coat layer curable resin composition 2 was coated on the film layer with a gravure coater to a thickness of 2 ⁇ m, and an active energy ray was irradiated with a metal halide lamp with an irradiation intensity of 200 mW / cm 2 and an integrated irradiation amount of 400 mJ. Irradiation was performed so as to be / cm 2 to obtain a laminated sheet 10.
  • Example 6 After a 20 ⁇ m adhesive layer was provided in the same manner as in Example 5, the film layer curable resin composition 5 / hard coat layer curable resin was formed by a two-layer die on the semi-cured adhesive layer. The composition 2 was applied so that the hard coat layer had a thickness of 77 ⁇ m / 3 ⁇ m, and was irradiated with an active energy ray with a high-pressure mercury lamp so as to obtain an integrated light amount of 600 mJ, whereby a laminated sheet 11 was obtained.
  • the curable resin composition of the pressure-sensitive adhesive layer is applied to a smooth polyethylene terephthalate film having releasability at a thickness of 20 ⁇ m with a die coater, and a two-layer die is formed on the uncured pressure-sensitive adhesive layer.
  • Film layer curable resin composition 5 / hard coat layer curable resin composition 2 was applied to a thickness of 75 ⁇ m / 5 ⁇ m, and activated with a high-pressure mercury lamp to achieve an integrated light quantity of 1000 mJ / cm 2.
  • the laminated sheet 12 was obtained by irradiation with energy rays.
  • Example 7 A laminated sheet 13 was obtained in the same manner as in Example 6 except that the thickness ratio of the pressure-sensitive adhesive layer / film layer / hard coat layer was 20 ⁇ m / 30 ⁇ m / 5 ⁇ m.
  • An inorganic layer was laminated in the order of an Ag reflection film, a ZnS—SiO 2 dielectric layer, an Sb / Te phase change recording film, and a ZnS—SiO 2 dielectric layer on a 1.1 mm thick polycarbonate molded into a disk shape.
  • a 100 ⁇ m stroke release film was peeled off and an acrylic adhesive sheet was laminated to a total thickness of 100 ⁇ m, and then laminated to the inorganic layer laminated side of the substrate.
  • Samples 1 to 9 were prepared, and for the laminated sheets 10 to 14, an acrylic pressure-sensitive adhesive sheet was laminated on the inorganic layer laminated side of the substrate so that the 75 ⁇ m stroke release film was peeled off and the total thickness was 100 ⁇ m. Samples 1 to 9 were prepared and evaluated as follows.
  • ⁇ Surface performance evaluation> (Pencil hardness) About the obtained disk sample, the pencil hardness of the laminated sheet side surface was measured, and HB or more was determined to be ⁇ , and B or less was determined to be ⁇ .
  • a # 0000 steel wool was reciprocated 10 times at a load of 250 g in the obtained disk sample, and it was determined that the scratched one was ⁇ and the scratched one was ⁇ .
  • ⁇ Durability evaluation> Corrosion resistance test
  • the disk sample was allowed to stand for 200 hours in a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 85% RH, and then the appearance of the disk sample was visually determined to make the following determinations.
  • Corrosion of the deposited layer, peeling of the protective film, cracking, etc. were not observed.
  • X Corrosion of the deposited layer or peeling or cracking of the protective film was observed.

Abstract

Disclosed is a multilayer sheet which does not cause warp in a disk when used in optical disks or the like. Specifically disclosed is a multilayer sheet having a structure wherein a hard coat layer is arranged on at least one side of a film layer. The multilayer sheet is characterized in that each layer is composed of an active energy ray-curable resin composition and has the following characteristics (A)-(D). (A) The storage modulus at 25˚C is not less than 2000 MPa. (B) The glass transition temperature as the maximum value of loss tangent of the active energy ray-curable resin composition of the film layer is not more than 90˚C. (C) The storage modulus at 100˚C is not more than 100 MPa. (D) The tensile elongation at break at 80˚C is not less than 4%.

Description

積層シート及び光記録媒体Laminated sheet and optical recording medium
 本発明は、透明で光学的に歪みが少なく、靱性、耐熱性、耐擦傷性を有し、2次加工に優れた、窓・ディスプレイ・光記録媒体等の一部の層を形成する際に好適に使用可能な積層シート、及び該シートを用いて形成された光記録媒体に関する。 The present invention is transparent, optically less distorted, has toughness, heat resistance, scratch resistance, and excellent secondary processing. When forming a part of a layer such as a window, display, optical recording medium, etc. The present invention relates to a suitably usable laminated sheet and an optical recording medium formed using the sheet.
 近年ディスプレイ等光学製品、電子機器、情報記録部材等において光学的に歪みの小さいプラスチックフィルムが多く用いられ、かつ応用されている。このようなシートへの要求性能として光学的に歪みの少ない性質だけでなく、耐湿熱変形性、被着体への接着力、及び非汚染性などが挙げられる。特に高精密部品や光ディスクなどの先端技術の分野においては高温高湿等、厳しい環境条件下における信頼性が求められる場合が殆どであるが、これらの用途に用いられるフィルムは、流延法やコーティング法等にて形成されたものが殆どであり、材料も該加工法に適したものに限定される。そのため、上記フィルムは、耐湿熱変形性、加工性、コストなどが折り合わず、用途や使用条件等において、著しい制約を受けているのが実情であった。 In recent years, plastic films with small optical distortion have been frequently used and applied in optical products such as displays, electronic devices, and information recording members. The required performance for such a sheet includes not only the property of optically less distortion but also resistance to moist heat deformation, adhesion to an adherend, and non-contamination. Especially in the field of advanced technology such as high-precision parts and optical disks, reliability under severe environmental conditions such as high temperature and high humidity is often required, but films used for these applications are cast and coated. Most of them are formed by a method or the like, and materials are also limited to those suitable for the processing method. For this reason, the above-mentioned film has not been reconciled with heat-and-moisture resistance, processability, cost, and the like, and the actual situation is that the film is severely restricted in terms of use and use conditions.
 例えば、特許文献1では、活性エネルギー線硬化性樹脂組成物の加工方法としてコーティング法、特にスピンコーター法の優位性が示されている。 For example, Patent Document 1 discloses the superiority of a coating method, particularly a spin coater method, as a method for processing an active energy ray-curable resin composition.
 また、特許文献2には、UV硬化性のアクリル樹脂を用いた感圧接着剤付きのシートが示されている。 Patent Document 2 discloses a sheet with a pressure sensitive adhesive using a UV curable acrylic resin.
 さらに、特許文献3には、プリンターにより出力される写真等の画像紙や、ディスプレイ等の表面に優れた耐擦傷性、耐水性や耐薬品性を付与でき、また歪が少なく、画像の鮮明性を向上させることができ、さらに厚みを薄くすることができる、ウレタンアクリレートを硬化させたハードコート付粘着シートが記載されている。 Furthermore, Patent Document 3 can impart excellent scratch resistance, water resistance and chemical resistance to image paper such as photographs output by a printer and the surface of a display, etc., and there is little distortion and image sharpness. The adhesive sheet with a hard coat which hardened urethane acrylate which can improve thickness and can further reduce thickness is described.
特開2003-231725号公報JP 2003-231725 A 特開2006-330714号公報JP 2006-330714 A 国際公開公報第2004/083330号パンフレットInternational Publication No. 2004/083330 Pamphlet
 特許文献1記載の発明では、厚さ50~100μm程度のフィルムを得る場合、これらの方法では、厚さ精度が十分でないばかりでなく、使用される活性エネルギー線硬化性樹脂組成物の飛散等によるロスも大きく、実用的とは言い難い。 In the invention described in Patent Document 1, when obtaining a film having a thickness of about 50 to 100 μm, these methods are not only sufficient in thickness accuracy but also due to scattering of the active energy ray-curable resin composition used. The loss is large and it is hard to say that it is practical.
 また特許文献2記載の感圧接着剤付きのシートは、実施形態において表面の硬度や耐汚染性を考慮した設計になっておらず、実用的とは言い難い。 In addition, the sheet with pressure-sensitive adhesive described in Patent Document 2 is not designed in consideration of surface hardness and contamination resistance in the embodiment, and is not practical.
 さらに特許文献3記載のハードコート付粘着シートは、該シートの総厚みが50μm以下と薄く、自立性に欠ける為両面にプロテクトフィルムを設ける必要があり、生産性が良いとは言えず実用的とは言い難いものであった。 Furthermore, the pressure-sensitive adhesive sheet with a hard coat described in Patent Document 3 has a total thickness of 50 μm or less, and lacks self-sustainability, so it is necessary to provide protective films on both sides, and it cannot be said that productivity is good and is practical. It was hard to say.
 そこで本発明は、透明で光学的な歪みが小さく、製膜性が良好であり、2次加工性に優れ、シートとしての自立性及び柔軟性を両立でき、例えば、光ディスク等に使用した場合には、ディスクに反りを生じさせない積層シートや、該積層シートを用いて形成された光ディスク、特に次世代型ディスクの高密度記録媒体、例えばブルーレイディスク、UDO等の光記録媒体を提供することを課題とする。 Therefore, the present invention is transparent, has small optical distortion, has good film-forming properties, is excellent in secondary workability, and can be both self-supporting and flexible as a sheet. Is to provide a laminated sheet that does not warp the disc, an optical disc formed using the laminated sheet, particularly a high-density recording medium of a next-generation disc, for example, an optical recording medium such as a Blu-ray disc, UDO, etc. And
 本発明者は、これら課題を解決するために鋭意検討した結果、活性エネルギー線硬化性樹脂組成物の硬化物からなる積層シートを光ディスク等に貼り合わせて保護シートとして使用すると、積層シートを構成する活性エネルギー線硬化性樹脂組成物の硬化物が高温時に緩和されて収縮する応力として働くため、積層シートの湿熱寸法変化が大きく、使用温度範囲において、光ディスクに貼り合わせた際に、光ディスクに生じる反りが顕著であることを明らかにした。 As a result of intensive studies to solve these problems, the present inventor forms a laminated sheet when a laminated sheet made of a cured product of an active energy ray-curable resin composition is bonded to an optical disk or the like and used as a protective sheet. Since the cured product of the active energy ray-curable resin composition acts as a stress that relaxes and shrinks at high temperatures, the wet sheet has a large dimensional change in wet heat, and the warp that occurs on the optical disk when bonded to the optical disk in the operating temperature range. Clarified that is remarkable.
 そこで、本発明者等は、さらに鋭意検討を重ね、フィルム層の少なくとも一方の面にハードコート層が積層された構成を備えた積層シートとし、該構成を備えた積層シートが以下(A)~(D)の物性を有することによって、収縮応力を低減できると共に、フィルム状に加工させても、脆く壊れやすい、腰がなく取り回し辛い等の問題が生ずることがなく、製膜性が良好であり、2次加工性に優れ、シートとしての自立性及び柔軟性を両立できることを見出した。
(A)25℃における貯蔵弾性率が2000MPa以上
(B)フィルム層の活性エネルギー線硬化性樹脂組成物の損失正接の極大値としてのガラス転移温度が90℃以下
(C)100℃における貯蔵弾性率が100MPa以下
(D)80℃における引張り破断伸びが4%以上
Accordingly, the present inventors have conducted further diligent studies to obtain a laminated sheet having a configuration in which a hard coat layer is laminated on at least one surface of a film layer, and the laminated sheet having the configuration is described below as (A) to By having the physical properties of (D), shrinkage stress can be reduced, and even if processed into a film, problems such as brittleness and breakage, lack of waist and difficulty in handling are not caused, and film forming properties are good. It has been found that it is excellent in secondary workability and can be both self-supporting and flexible as a sheet.
(A) Storage elastic modulus at 25 ° C. is 2000 MPa or more (B) Glass transition temperature as maximum of loss tangent of active energy ray-curable resin composition of film layer is 90 ° C. or lower (C) Storage elastic modulus at 100 ° C. Is 100 MPa or less (D) Elongation at break at 80 ° C. is 4% or more
 また、本発明者は、ハードコート層、フィルム層、及び粘着材層が順次積層された構成を備えた積層シートとして、該積層シート全体の厚みを70~200μm以下とし、かつフィルム層に対する粘着材層の厚み比を10~50%、及びフィルム層に対するハードコート層の厚み比を1~5%とすることで、光ディスクに生じる反りの発生を顕著に抑制でき、さらに、製膜性が良好であり、2次加工性に優れ、シートとしての自立性及び柔軟性を両立できることを見出した。 In addition, the inventor of the present invention provides a laminated sheet having a configuration in which a hard coat layer, a film layer, and an adhesive material layer are sequentially laminated, with the total thickness of the laminated sheet being 70 to 200 μm or less, and an adhesive material for the film layer. By setting the thickness ratio of the layer to 10 to 50% and the thickness ratio of the hard coat layer to the film layer to 1 to 5%, it is possible to remarkably suppress the occurrence of warping that occurs on the optical disc, and to improve the film forming property. Yes, it was found that it was excellent in secondary workability, and both the self-supporting property and flexibility as a sheet could be achieved.
 この場合、積層シートが、25℃における貯蔵弾性率が1000MPa以上であり、かつ80℃における貯蔵弾性率が100MPa以下の性質を有すると、応力の低減に効果を発揮でき、フィルム状に加工させても、脆く壊れやすい、腰がなく取り回し辛い等の問題が生ずることがないことも見出した。 In this case, if the laminated sheet has a property that the storage elastic modulus at 25 ° C. is 1000 MPa or more and the storage elastic modulus at 80 ° C. is 100 MPa or less, the effect of reducing the stress can be exerted and processed into a film shape. It was also found that problems such as fragility and fragility, lack of waist and difficulty in handling did not occur.
 すなわち、本発明は、下記[1]~[10]に関するものである。 That is, the present invention relates to the following [1] to [10].
 [1]、フィルム層の少なくとも片面に、ハードコート層を積層してなる構成を備えた積層シートであって、各層が活性エネルギー線硬化性樹脂組成物からなり、かつ以下の(A)~(D)の性質を有することを特徴とする積層シート。
(A)25℃における貯蔵弾性率が2000MPa以上
(B)フィルム層の活性エネルギー線硬化性樹脂組成物の損失正接の極大値としてのガラス転移温度が90℃以下
(C)100℃における貯蔵弾性率が100MPa以下
(D)80℃における引張り破断伸びが4%以上
[1] A laminated sheet having a configuration in which a hard coat layer is laminated on at least one surface of a film layer, each layer comprising an active energy ray-curable resin composition, and the following (A) to ( A laminated sheet having the property of D).
(A) Storage elastic modulus at 25 ° C. is 2000 MPa or more (B) Glass transition temperature as maximum of loss tangent of active energy ray-curable resin composition of film layer is 90 ° C. or lower (C) Storage elastic modulus at 100 ° C. Is 100 MPa or less (D) Elongation at break at 80 ° C. is 4% or more
 [2]、積層のシートの総厚みが70~200μm以下であって、フィルム層に対するハードコート層の厚み比が1~5%であることを特徴とする[1]記載の積層シート。 [2] The laminated sheet according to [1], wherein the total thickness of the laminated sheets is 70 to 200 μm or less, and the thickness ratio of the hard coat layer to the film layer is 1 to 5%.
 [3]、ハードコート層、フィルム層、及び粘着材層が順次積層された構成を備える積層シートであって、各層が活性エネルギー線硬化性樹脂組成物からなり、積層シートの総厚みが70~200μm以下であって、フィルム層に対する粘着材層の厚み比が10~50%であり、かつフィルム層に対するハードコート層の厚み比が1~5%であることを特徴とする積層シート。 [3] A laminated sheet having a structure in which a hard coat layer, a film layer, and an adhesive material layer are sequentially laminated, each layer comprising an active energy ray-curable resin composition, and the total thickness of the laminated sheet is 70 to A laminated sheet having a thickness of 200 μm or less, a thickness ratio of the adhesive layer to the film layer of 10 to 50%, and a thickness ratio of the hard coat layer to the film layer of 1 to 5%.
 [4]、25℃における貯蔵弾性率が1000MPa以上であり、かつ80℃における貯蔵弾性率が100MPa以下であることを特徴とする[3]記載の積層シート。 [4] The laminated sheet according to [3], wherein the storage elastic modulus at 25 ° C. is 1000 MPa or more and the storage elastic modulus at 80 ° C. is 100 MPa or less.
 [5]、フィルム層が、以下の(1)~(6)に示す化合物を含有する組成物からなることを特徴とする[1]~[4]のいずれか記載の積層シート。
(1)下記[化1]で表わされるウレタン(メタ)アクリレートオリゴマー20~60質量部
Figure JPOXMLDOC01-appb-C000001
(但し、式中mは1~4の整数を表わし、nは1~10の整数を表わす。)
(2)アルキレンオキサイド基及び少なくとも2つの(メタ)アクリロイル基を有するモノマー10~60質量部
(3)分子内に1つの(メタ)アクリロイル基及び芳香族環構造を有するモノマー10~50質量部
(4)分子内に1つの(メタ)アクリロイル基及び脂環構造を有するモノマー0~20質量部
(5)エポキシ(メタ)アクリレート0~20質量部
(6)光重合開始剤0.1~10質量部
[5] The laminated sheet according to any one of [1] to [4], wherein the film layer comprises a composition containing the compounds shown in the following (1) to (6).
(1) 20 to 60 parts by mass of a urethane (meth) acrylate oligomer represented by the following [Chemical Formula 1]
Figure JPOXMLDOC01-appb-C000001
(In the formula, m represents an integer of 1 to 4, and n represents an integer of 1 to 10.)
(2) 10 to 60 parts by mass of a monomer having an alkylene oxide group and at least two (meth) acryloyl groups (3) 10 to 50 parts by mass of a monomer having one (meth) acryloyl group and an aromatic ring structure in the molecule ( 4) Monomer having 1 (meth) acryloyl group and alicyclic structure in the molecule 0 to 20 parts by mass (5) Epoxy (meth) acrylate 0 to 20 parts by mass (6) Photopolymerization initiator 0.1 to 10 parts by mass Part
 [6]、ハードコート層が、以下の(1)~(4)に示す化合物を含有する組成物からなることを特徴とする請求項1~5のいずれか記載の積層シート。
(1)側鎖に少なくとも1つの(メタ)アクリロイルオキシ基及び下記[化2]で表わされる構造を含む重合体及び/又は分子内に少なくとも1つの(メタ)アクリロイルオキシ基と、フルオロアルキレンオキサイド基とを有する重合体5~20質量部
Figure JPOXMLDOC01-appb-C000002
(但し、nは5~100の整数を表す。)
(2)分子内に少なくとも3つの(メタ)アクリロイル基を含有するモノマー30~60質量部
(3)分子内に1つの(メタ)アクリロイル基及び環構造を有するモノマー0~20質量部
(4)光重合開始剤0.1~10質量部
[6] The laminated sheet according to any one of [1] to [5], wherein the hard coat layer is composed of a composition containing the compounds shown in the following (1) to (4).
(1) A polymer containing at least one (meth) acryloyloxy group in the side chain and a structure represented by the following [Chemical Formula 2] and / or at least one (meth) acryloyloxy group in the molecule, and a fluoroalkylene oxide group 5 to 20 parts by mass of a polymer having
Figure JPOXMLDOC01-appb-C000002
(However, n represents an integer of 5 to 100.)
(2) 30 to 60 parts by mass of a monomer containing at least three (meth) acryloyl groups in the molecule (3) 0 to 20 parts by mass of a monomer having one (meth) acryloyl group and a ring structure in the molecule (4) Photopolymerization initiator 0.1 to 10 parts by mass
 [7]、粘着材層が、以下の(1)~(3)に示す化合物を含有する組成物からなることを特徴とする[3]~[6]のいずれか記載の積層シート。
(1)下記[化3]の骨格を有し、1分子当たりの平均官能基数が1~2であり、かつ分子量が10000以上のウレタン(メタ)アクリレート50~90質量部
Figure JPOXMLDOC01-appb-C000003
(但し、式中、Rは炭素数4以上のアルキル基、Rは脂肪族イソシアネート化合物残基、Rは分子量300以上のポリオール残基、Rは水素又は炭素数4以上のアルキルアクリレート基を表わす。)
(2)分子内に1つの(メタ)アクリロイル基及び炭素数4以上の脂肪族構造を有する化合物10~50質量部
(3)光重合開始剤1~10質量部
[7] The laminated sheet according to any one of [3] to [6], wherein the pressure-sensitive adhesive layer is composed of a composition containing the following compounds (1) to (3).
(1) Urethane (meth) acrylate having a skeleton of the following [Chemical Formula 3], an average number of functional groups per molecule of 1 to 2, and a molecular weight of 10,000 or more, 50 to 90 parts by mass
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 is an alkyl group having 4 or more carbon atoms, R 2 is an aliphatic isocyanate compound residue, R 3 is a polyol residue having a molecular weight of 300 or more, and R 4 is hydrogen or an alkyl acrylate having 4 or more carbon atoms. Represents a group.)
(2) 10 to 50 parts by mass of a compound having one (meth) acryloyl group and an aliphatic structure having 4 or more carbon atoms in the molecule (3) 1 to 10 parts by mass of a photopolymerization initiator
 [8]、光重合開始剤が、分子量300以上のαヒドロキシアセトフェノン誘導体、又はベンゾフェノン誘導体であることを特徴とする[5]~[7]のいずれか記載の積層シート。 [8] The laminated sheet according to any one of [5] to [7], wherein the photopolymerization initiator is an α-hydroxyacetophenone derivative or a benzophenone derivative having a molecular weight of 300 or more.
 [9]、[1]~[8]のいずれか記載の積層シートからなる光ディスク用保護フィルム。 [9] A protective film for optical disks comprising the laminated sheet according to any one of [1] to [8].
 [10]、[1]~[8]のいずれか記載の積層シートを少なくとも1層積層してなる光記録媒体。 [10] An optical recording medium obtained by laminating at least one laminated sheet according to any one of [1] to [8].
 なお、本発明で貯蔵弾性率とは、動的粘弾性測定法により(JIS K7244-4)、周波数10Hz、ひずみ0.1%にて測定した所定の温度における弾性率の値であり、ガラス転移温度とは、同測定法により測定される損失正接(Tanδ)の極大値における温度をいう。また、引っ張り破断伸びは、その測定方向が、製膜時における流れ方向(MD)及びそれに直交する方向(TD)のいずれか一方又は双方に適用されるものとする。 In the present invention, the storage elastic modulus is a value of elastic modulus at a predetermined temperature measured by a dynamic viscoelasticity measurement method (JIS K7244-4) at a frequency of 10 Hz and a strain of 0.1%, and is a glass transition. The temperature refers to the temperature at the maximum value of the loss tangent (Tan δ) measured by the same measurement method. The tensile breaking elongation is applied to one or both of the flow direction (MD) and the direction (TD) perpendicular to the flow direction during film formation.
 本発明によると、透明で光学的な歪みが小さく、フィルム状に加工させても、脆く壊れやすい、腰がなく取り回し辛い等の問題が生ずることがなく、製膜性が良好であり、2次加工性に優れ、光ディスク等と貼り合わせて使用しても反りの問題が生じることのない積層シートを提供することができ、これらの性質を備えた該積層シートを積層して得られる光記録媒体は、上記の優れた光学的・機械的物性に加えて、積層の簡便性、厚さ精度、コストに優れ、その付加価値は工業的、商業的に極めて高いものである。特に、次世代型ディスクの高密度記録媒体、例えば、ブルーレイディスク、UDO等の光ディスクの少なくとも1つの層を形成するのに好適なものである。 According to the present invention, it is transparent and has a small optical distortion, and even when processed into a film shape, it does not cause problems such as brittleness and breakage, lack of waist and difficulty in handling, and has good film-forming properties. An optical recording medium excellent in processability and capable of providing a laminated sheet that does not cause warpage even when used by being bonded to an optical disk or the like, and is obtained by laminating the laminated sheet having these properties In addition to the above-mentioned excellent optical and mechanical properties, it has excellent lamination convenience, thickness accuracy and cost, and its added value is extremely high industrially and commercially. In particular, it is suitable for forming at least one layer of a high-density recording medium of a next-generation type disc, for example, an optical disc such as a Blu-ray disc or UDO.
(第一形態)
 本発明の第一形態の積層シートとしては、フィルム層の少なくとも片面に、ハードコート層を積層してなる構成を備えた積層シートであって、各層が活性エネルギー線硬化性樹脂組成物からなり、かつ以下の性質を有するものであれば、特に制限されるものではなく、積層シートが以下の(A)~(D)の性質、すなわち室温付近においては高い弾性率をもち、かつ高温時に軟質化して高温域において適度な伸びを維持している、を有することで、収縮応力を低減できると共に、フィルム状に加工させても、脆く壊れやすい、腰がなく取り回し辛い等の問題が生ずることがない。より詳しくは、積層シートを構成するフィルム層の活性エネルギー線硬化性樹脂組成物のガラス転移温度を90℃以下とすることによって、ポリカーボネート(ガラス転移温度150℃)等の各種エンジニアプラスチックやPMMA(ポリメチルメタクリレート;ガラス転移温度105℃)等の樹脂基板に貼合して使用する際、被着体の耐熱温度域における寸法変化に該シートが追随し、被着体と本発明の積層シートとの間に発生する歪み(寸法変化差)を有効に緩和する。このとき表面に設けられたハードコート層は高温域でも適度な表面硬度を維持するように(ガラス転移温度が90℃よりさらに高く)設計されるが、ハードコート層によって前述した応力緩和性が損なわれないように、高温度領域における積層シートの弾性率は100MPa以下に(高くなりすぎないよう)調整して、適度な伸びを維持しているように設計されている。また、積層シートの総厚みを70μm~200μm以下とすることにより、優れた自立性及び柔軟性を両立することができ、フィルム層に対するハードコート層の厚み比を1~5%とすることにより、表面硬度を付与すると共に、湿熱寸法変化差を緩和することができ、光ディスクに生じる反りの発生を顕著に抑制できる。このように、各層固有の物性を損なうことなく、積層シートの湿熱寸法変化差を緩和することができるため、積層シートの総厚みや、積層シートを構成する各層の厚みを調整することが好ましい。
(A)25℃における貯蔵弾性率が2000MPa以上
(B)フィルム層の活性エネルギー線硬化性樹脂組成物の損失正接の極大値としてのガラス転移温度が90℃以下
(C)100℃における貯蔵弾性率が100MPa以下
(D)80℃における引張り破断伸びが4%以上
(First form)
The laminated sheet of the first aspect of the present invention is a laminated sheet having a configuration in which a hard coat layer is laminated on at least one surface of a film layer, each layer comprising an active energy ray-curable resin composition, The laminate sheet is not particularly limited as long as it has the following properties, and the laminated sheet has the following properties (A) to (D), that is, has a high elastic modulus near room temperature and becomes soft at high temperatures. By maintaining a moderate elongation in a high temperature range, shrinkage stress can be reduced, and even when processed into a film, problems such as brittleness and breakage, lack of waist and difficulty in handling are not caused. . More specifically, by setting the glass transition temperature of the active energy ray-curable resin composition of the film layer constituting the laminated sheet to 90 ° C. or less, various engineer plastics such as polycarbonate (glass transition temperature 150 ° C.) and PMMA (polyethylene When bonded to a resin substrate such as methyl methacrylate (glass transition temperature 105 ° C.), the sheet follows the dimensional change in the heat-resistant temperature range of the adherend, and the adherend and the laminated sheet of the present invention Effectively relieves strain (dimensional change) that occurs in the meantime. At this time, the hard coat layer provided on the surface is designed to maintain an appropriate surface hardness even in a high temperature range (the glass transition temperature is higher than 90 ° C.), but the stress relaxation property described above is impaired by the hard coat layer. In order to prevent this, the elastic modulus of the laminated sheet in the high temperature region is adjusted to 100 MPa or less (so as not to be too high) so as to maintain an appropriate elongation. Further, by making the total thickness of the laminated sheets 70 μm to 200 μm or less, it is possible to achieve both excellent self-supporting properties and flexibility, and by setting the thickness ratio of the hard coat layer to the film layer to 1 to 5%, While imparting surface hardness, it is possible to relieve the difference in wet heat dimensional change, and it is possible to remarkably suppress the occurrence of warpage occurring in the optical disc. Thus, since the difference in wet heat dimensional change of the laminated sheet can be alleviated without impairing the physical properties unique to each layer, it is preferable to adjust the total thickness of the laminated sheet and the thickness of each layer constituting the laminated sheet.
(A) Storage elastic modulus at 25 ° C. is 2000 MPa or more (B) Glass transition temperature as maximum of loss tangent of active energy ray-curable resin composition of film layer is 90 ° C. or lower (C) Storage elastic modulus at 100 ° C. Is 100 MPa or less (D) Elongation at break at 80 ° C. is 4% or more
 また、本発明の第一形態の積層シートを構成する各層は、不揮発性成分濃度が95%以上である活性エネルギー線硬化性樹脂組成物の硬化物からなることが好ましい。このように実質無溶剤の活性エネルギー線硬化性樹脂組成物を使用することにより、被着体への汚染性を低減することが可能となり、特に高精密部品や光ディスクなどの先端技術の分野において効果を発揮する。 Further, each layer constituting the laminated sheet of the first embodiment of the present invention is preferably made of a cured product of an active energy ray-curable resin composition having a nonvolatile component concentration of 95% or more. By using such a substantially solvent-free active energy ray-curable resin composition, it becomes possible to reduce the contamination to the adherend, and particularly effective in the field of advanced technology such as high precision parts and optical disks. Demonstrate.
 上記積層シートの総厚みは、70~200μm以下とすることが好ましく、中でも75~100μm以下とすることが好ましい。また、フィルム層に対するハードコート層の厚み比は1~5%であることが好ましく、1~3%とすることがより好ましい。 The total thickness of the laminated sheet is preferably 70 to 200 μm or less, and more preferably 75 to 100 μm or less. The thickness ratio of the hard coat layer to the film layer is preferably 1 to 5%, more preferably 1 to 3%.
(第二形態)
 本発明の第二形態の積層シートとしては、ハードコート層、フィルム層、及び粘着材層が順次積層されてなる構成を備え、各層が活性エネルギー線硬化性樹脂組成物からなり、総厚みが70~200μm以下であって、フィルム層に対する粘着材層の厚み比が10~50%であり、かつフィルム層に対するハードコート層の厚み比が1~5%であれば、特に制限されるものではなく、積層シートの総厚みを70μm~200μm以下とすることにより、優れた自立性及び柔軟性を両立することができ、フィルム層に対する粘着材層の厚み比を10~50%とすることにより、積層シートの硬度が確保できると共に、被着体と積層シートとの湿熱寸法変化差を緩和することができ、フィルム層に対するハードコート層の厚み比を1~5%とすることにより、表面硬度を付与すると共に、湿熱寸法変化差を緩和することができる。このように、積層シートの総厚みや、積層シートを構成する各層の厚みを調整することで、各層固有の物性を損なうことなく、積層シートの湿熱寸法変化差を緩和することができる。
(Second form)
The laminated sheet of the second embodiment of the present invention has a structure in which a hard coat layer, a film layer, and an adhesive material layer are sequentially laminated, each layer is made of an active energy ray-curable resin composition, and has a total thickness of 70. If the thickness ratio of the adhesive layer to the film layer is 10 to 50% and the thickness ratio of the hard coat layer to the film layer is 1 to 5%, it is not particularly limited. When the total thickness of the laminated sheet is 70 μm to 200 μm or less, both excellent self-supporting property and flexibility can be achieved, and the thickness ratio of the adhesive layer to the film layer is 10 to 50%. The hardness of the sheet can be secured, the difference in wet heat dimensional change between the adherend and the laminated sheet can be reduced, and the thickness ratio of the hard coat layer to the film layer can be 1 to 5%. Accordingly, while imparting surface hardness, it is possible to relax the wet heat dimensional change difference. Thus, by adjusting the total thickness of the laminated sheet and the thickness of each layer constituting the laminated sheet, the wet heat dimensional change difference of the laminated sheet can be alleviated without impairing the physical properties unique to each layer.
 上記積層シートの総厚みは、70~200μm以下であることを必要とするが、中でも75~100μm以下とすることが好ましい。また、フィルム層に対する粘着材層の厚み比は10~50%であることを必要とするが、中でも15~30%であることが好ましく、20~25%とすることがより好ましい。さらに、フィルム層に対するハードコート層の厚み比は1~5%であることを必要とするが、中でも1~3%とすることがより好ましい。 The total thickness of the laminated sheet is required to be 70 to 200 μm or less, preferably 75 to 100 μm or less. Further, the thickness ratio of the pressure-sensitive adhesive layer to the film layer needs to be 10 to 50%, but it is preferably 15 to 30%, more preferably 20 to 25%. Further, the thickness ratio of the hard coat layer to the film layer needs to be 1 to 5%, and more preferably 1 to 3%.
(フィルム層)
 上記第一形態又は上記第二形態のフィルム層は、(メタ)アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物からなり、紫外線、電子線等の活性エネルギー線により硬化して形成されるものである。該活性エネルギー線硬化性樹脂組成物としては、特に制限されるものではなく、例えば、活性エネルギー線で硬化する、ウレタン(メタ)アクリレート系、エポキシ(メタ)アクリレート系、ポリエステル(メタ)アクリレート系、ポリブタジエン(メタ)アクリレート系、ポリオールポリ(メタ)アクリレート系などのモノマー型やオリゴマー型活性エネルギー線硬化性樹脂を主成分とし、その他光重合性モノマーや、光重合開始剤を含有する組成物が挙げられる。具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸-2-エチルヘキシル、ヒドロキシエチルアクリレート、2-(N,N-ジメチルアミノ)エチルアクリレート、2-(N,N-ジエチルアミノ)エチルアクリレート、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、ヒドロキシエチルメタクリレート、2-(N,N-ジメチルアミノ)エチルメタクリレート、2-(N,N-ジエチルアミノ)エチルメタクリレート等の単官能基型モノマー、ペンタエリスリトールテトラアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラメタクリレート、トリメチロールプロパントリメタクリレート等の多官能型モノマー、アジピン酸/1,6ヘキサンジオール型オリゴマージアクリレート、無水フタル酸/プロピレンオキシド型オリゴマージアクリレート、トリメリット酸ジエチレングリコール型オリゴマートリアクリレート、アジピン酸/1,6ヘキサンジオール型オリゴマージメタクリレート、無水フタル酸/プロピレンオキシド型オリゴマージメタクリレート、トリメリット酸ジエチレングリコール型オリゴマートリメタクリレート等の多官能ポリエステルアクリレート系オリゴマー、ビスフェノールA/エピクロルヒドリン型オリゴマーアクリレート、フェノールノボラック/エピクロルヒドリン型オリゴマーアクリレート、環状脂肪族エポキシドとアクリル酸の付加型、ビスフェノールA/エピクロルヒドリン型オリゴマーメタクリレート、フェノールノボラック/エピクロルヒドリン型オリゴマーメタクリレート、環状脂肪族エポキシドとメタクリル酸の付加型等の多官能エポキシアクリレート、トリレンジイソシアナート、ヘキサメチレンジイソシアナート、メチレンジフェニルジイソシアナート、キシリレンジイソシアナート、イソフォロンジイソシアナート等のジイソシアナートと多官能アルコールの反応したウレタンオリゴマーより誘導されるウレタン(メタ)アクリレートリレート等のアクリル酸誘導体が挙げられる。これらは単独で用いてもよく、2種類以上を組み合わせて用いることができる。
(Film layer)
The film layer of the first form or the second form is composed of an active energy ray-curable resin composition containing a (meth) acrylate monomer, oligomer, polymer, or a mixture thereof, and active energy rays such as ultraviolet rays and electron beams. It is formed by curing. The active energy ray-curable resin composition is not particularly limited. For example, urethane (meth) acrylate type, epoxy (meth) acrylate type, polyester (meth) acrylate type, which is cured with active energy ray, Examples include polybutadiene (meth) acrylate-based and polyol poly (meth) acrylate-based monomer-type and oligomer-type active energy ray-curable resins as main components, and other photopolymerizable monomers and compositions containing photopolymerization initiators. It is done. Specifically, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, 2- (N, N-dimethylamino) ethyl acrylate, 2 -(N, N-diethylamino) ethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, hydroxyethyl methacrylate, 2- (N, N-dimethylamino) ethyl methacrylate Monofunctional group type monomers such as 2- (N, N-diethylamino) ethyl methacrylate, pentaerythritol tetraacrylate, trimethylolpropane triacrylate, pentaerythritol tetramethacrylate, Multi-functional monomer such as dimethylolpropane trimethacrylate, adipic acid / 1,6 hexanediol oligomer diacrylate, phthalic anhydride / propylene oxide oligomer diacrylate, trimellitic acid diethylene glycol oligomer triacrylate, adipic acid / 1, Polyfunctional polyester acrylate oligomers such as 6-hexanediol oligomer dimethacrylate, phthalic anhydride / propylene oxide oligomer dimethacrylate, trimellitic acid diethylene glycol oligomer trimethacrylate, bisphenol A / epichlorohydrin oligomer acrylate, phenol novolac / epichlorohydrin oligomer Addition type of acrylate, cycloaliphatic epoxide and acrylic acid, bisphenol A / epichlorohydrin type oligomer methacrylate, phenol novolak / epichlorohydrin type oligomer methacrylate, polyfunctional epoxy acrylate such as addition type of cycloaliphatic epoxide and methacrylic acid, tolylene diisocyanate, hexamethylene diisocyanate, methylene diphenyl diisocyanate, Examples thereof include acrylic acid derivatives such as urethane (meth) acrylate relates derived from urethane oligomers obtained by reacting diisocyanates such as xylylene diisocyanate and isophorone diisocyanate with polyfunctional alcohols. These may be used alone or in combination of two or more.
 上記(メタ)アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物の中でも、ウレタン(メタ)アクリレートを主剤とし、(メタ)アクリレートモノマー等の反応性希釈剤などを含有することで、積層シートとした際に、第一形態においては、25℃における貯蔵弾性率が2000MPa以上であり、かつ100℃における貯蔵弾性率が100MPa以下に調整することが好ましく、第二形態においては、25℃における貯蔵弾性率が1000MPa以上であり、かつ80℃における貯蔵弾性率が100MPa以下に調整することが好ましい。貯蔵弾性率がこの範囲内とすることが重要であり、この範囲とするには、活性エネルギー線硬化性樹脂組成物の配合を調整すれば良いが、中でも、特に(1)ウレタン(メタ)アクリレート20~60質量部、(2)アルキレンオキサイド基及び少なくとも2つの(メタ)アクリロイル基を有するモノマー10~60質量部、(3)分子内に1つの(メタ)アクリロイル基及び芳香族環構造を有するモノマー10~50質量部、(4)分子内に1つの(メタ)アクリロイル基及び脂環構造を有するモノマー0~20質量部、(5)エポキシアクリレートオリゴマー0~20質量部、(6)光重合開始剤0.1~10質量部を含有してなる組成物を用いるのが好ましい。なお、このような組み合わせを採用することによって、不揮発性成分濃度が95%以上である活性エネルギー線硬化性樹脂組成物の硬化物からなる積層シートとすることも可能であり、被着体への非汚染性を低減することができる。なお、上不揮発性成分濃度が95%以上である活性エネルギー線硬化性樹脂組成物の配合が、上記に限定されないことは当然である。 Among active energy ray-curable resin compositions containing the above (meth) acrylate monomers, oligomers, polymers or mixtures thereof, urethane (meth) acrylate as a main agent, reactive diluents such as (meth) acrylate monomers, etc. When the laminated sheet is contained, in the first form, the storage elastic modulus at 25 ° C. is preferably 2000 MPa or more, and the storage elastic modulus at 100 ° C. is preferably adjusted to 100 MPa or less. The storage elastic modulus at 25 ° C. is preferably 1000 MPa or more, and the storage elastic modulus at 80 ° C. is preferably adjusted to 100 MPa or less. It is important that the storage elastic modulus is within this range. To make this range, the blending of the active energy ray-curable resin composition may be adjusted, and in particular, (1) urethane (meth) acrylate. 20 to 60 parts by mass, (2) 10 to 60 parts by mass of a monomer having an alkylene oxide group and at least two (meth) acryloyl groups, (3) having one (meth) acryloyl group and an aromatic ring structure in the molecule 10-50 parts by weight of monomer, (4) 0-20 parts by weight of monomer having one (meth) acryloyl group and alicyclic structure in the molecule, (5) 0-20 parts by weight of epoxy acrylate oligomer, (6) photopolymerization It is preferable to use a composition containing 0.1 to 10 parts by mass of an initiator. In addition, by adopting such a combination, it is also possible to obtain a laminated sheet made of a cured product of an active energy ray-curable resin composition having a nonvolatile component concentration of 95% or more, and to the adherend. Non-contamination can be reduced. Of course, the composition of the active energy ray-curable resin composition having an upper nonvolatile component concentration of 95% or more is not limited to the above.
 フィルム層に用いられる上記(1)ウレタン(メタ)アクリレートは、フィルムの靱性及び硬化性を付与させるのに適しており、20~60%含有することが好ましい。この範囲に調整することによって、フィルムの硬度、靱性に優れ、かつ粘度が高くなりすぎないため、フィルムへの賦形性に優れる。ウレタン(メタ)アクリレートとしては、例えば、脂肪族ポリオール又は脂肪族ポリオールグリシジルエーテルと、脂環式ジイソシアネートとをウレタン縮合させた化合物に水酸基含有(メタ)アクリレートを付加させることにより合成できるウレタン(メタ)アクリレートを挙げることができる。 The (1) urethane (meth) acrylate used in the film layer is suitable for imparting toughness and curability of the film, and is preferably contained in an amount of 20 to 60%. By adjusting to this range, the film is excellent in hardness and toughness, and the viscosity does not become too high. Examples of the urethane (meth) acrylate include urethane (meth) which can be synthesized by adding a hydroxyl group-containing (meth) acrylate to a compound obtained by urethane condensation of an aliphatic polyol or an aliphatic polyol glycidyl ether and an alicyclic diisocyanate. Mention may be made of acrylates.
 脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ヘキサンジオール等のアルキルポリオールが挙げられ、脂肪族ポリオールグリシジルエーテルとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリエーテルポリオール等のグリコール系化合物が挙げられる。これらは、一種単独で、又は二種以上を併用して用いることができる。それらの中でも、テトラメチレングリコール骨格が好ましい。 Examples of the aliphatic polyol include alkyl polyols such as ethylene glycol, propylene glycol, tetramethylene glycol, and hexanediol. Examples of the aliphatic polyol glycidyl ether include polyethers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Examples include glycol compounds such as polyols. These can be used individually by 1 type or in combination of 2 or more types. Among these, a tetramethylene glycol skeleton is preferable.
 水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートとカプロラクトンの付加物、4-ヒドロキシブチル(メタ) アクリレートとカプロラクトンの付加物、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。これらは、一種単独で、又は二種以上を併用して用いることができる。それらの中でも、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましい。 Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and cyclohexanedimethanol. Mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate and caprolactone adduct, 4-hydroxybutyl (meth) ブ チ ル acrylate and caprolactone adduct, trimethylolpropane diacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate Etc. These can be used individually by 1 type or in combination of 2 or more types. Among these, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate are preferable.
 ジイソシアネートとしては、例えば、トリレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート等の芳香族系のジイソシアネートの他、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ビス(4-イソシアナトシクロヘキシル)メタン、1,2-水添キシリレンジイソシアネート、1,4-水添キシリレンジイソシアネート、水添テトラメチルキシリレンジイソシアネート、ノルボルナンジイソシアネート等の脂肪族系のジイソシアネートが挙げられる。これらは、一種単独で、又は二種以上を併用して用いることができる。これらの中でも、脂環式ジイソシアネート化合物が好ましく、中でもイソホロンジイソシアネートが、光線透過率、耐熱変形性、耐熱分解性の面で優れているためより好ましい。 Examples of the diisocyanate include aromatic diisocyanates such as tolylene diisocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4-isocyanatocyclohexyl) methane, and 1,2-hydrogenated xylylene. Examples thereof include aliphatic diisocyanates such as range isocyanate, 1,4-hydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, and norbornane diisocyanate. These can be used individually by 1 type or in combination of 2 or more types. Among these, alicyclic diisocyanate compounds are preferable, and isophorone diisocyanate is more preferable because of its excellent light transmittance, heat distortion resistance, and heat decomposition resistance.
 上記のようにして得られるウレタン(メタ)アクリレートの中でも、イソホロンジイソシアネートとポリテトラエチレングリコールをウレタン縮合させた末端を(メタ)アクリル化した下記[化1]で示されるウレタン(メタ)アクリレートがより好ましく、中でも、重量平均分子量が600~10000、さらに好ましくは1000~4000で、分子内にウレタン結合が4~20程度存在している構造の末端に4-ヒドロキシブチルアクリレートを反応させて得たウレタン(メタ)アクリレートが最も好ましい。
Figure JPOXMLDOC01-appb-C000004
(但し、式中mは1~4の整数を表わし、nは1~10の整数を表わす。)
Among the urethane (meth) acrylates obtained as described above, the urethane (meth) acrylate represented by the following [Chemical Formula 1] obtained by (meth) acrylating the terminal obtained by urethane condensation of isophorone diisocyanate and polytetraethylene glycol is more. Among them, urethane obtained by reacting 4-hydroxybutyl acrylate with the end of a structure having a weight average molecular weight of 600 to 10,000, more preferably 1000 to 4000 and having about 4 to 20 urethane bonds in the molecule is preferable. (Meth) acrylate is most preferred.
Figure JPOXMLDOC01-appb-C000004
(In the formula, m represents an integer of 1 to 4, and n represents an integer of 1 to 10.)
 上記(2)アルキレンオキサイド基及び少なくとも2つの(メタ)アクリロイル基を有するモノマーとしては、ダイコート等の一般的な製膜方法で組成物を製膜する際、高い厚み精度で塗膜が得られやすく、かつ表面の平滑性を付与できるものであって、例えば、2官能以上の(メタ)アクリレート官能基により塗膜に架橋構造を持たせ、かつ主鎖が適度に剛直な骨格であることが好ましく、下記[化4]で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(但し、Rは水素又はメチル基を表し、n、mは1~4の整数を表す。)
As the monomer having the (2) alkylene oxide group and at least two (meth) acryloyl groups, a coating film can be easily obtained with high thickness accuracy when a composition is formed by a general film forming method such as die coating. In addition, the surface smoothness can be imparted, and for example, it is preferable that the coating film has a crosslinked structure with a bifunctional or higher (meth) acrylate functional group, and the main chain is a moderately rigid skeleton. And compounds represented by the following [Chemical Formula 4].
Figure JPOXMLDOC01-appb-C000005
(However, R represents hydrogen or a methyl group, and n and m represent an integer of 1 to 4.)
 上記(2)アルキレンオキサイド基及び少なくとも2つの(メタ)アクリロイル基を有するモノマーとしては、具体的に、エチレングリコール変性ビスフェノールAジアクリレート、エチレングリコール変性ビスフェノールFジアクリレート、(ポリ)エチレングリコールジアクリレート、(ポリ)プロピレングリコール変性ビスフェノールAジアクリレート、(ポリ)プロピレングリコール変性ビスフェノールFジアクリレート、(ポリ)エチレンプロピレングリコール変性ビスフェノールAジアクリレート、(ポリ)エチレンプロピレングリコール変性ビスフェノールFジアクリレート、(ポリ)プロピレングリコールジアクリレート、グリセリングリシジルエーテルジアクリレート、トリプロピレングリコールグリシジルエーテルジアクリレート、ブタンジオールジアクリレート、ヘキサジオールジアクリレート、EO変性ネオペンチルグリコールジアクリレート、PO変性ネオペンチルグリコールジアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、EO変性ペンタエリスリトールトリアクリレート、EO変性ペンタエリスリトールテトラアクリレート、PO変性ペンタエリスリトールテトラアクリレート、EO変性ジペンタエリスリトールペンタ及びヘキサアクリレート、PO変性ジペンタエリスリトールペンタ及びヘキサアクリレート、等を挙げることができる。中でも、低粘度で硬化前の表面張力が比較的高く、硬化後の塗膜に適度な硬度を持たせることが出来ることから、EO変性ビスフェノールAジアクリレートが好ましい。 Specific examples of the monomer (2) having an alkylene oxide group and at least two (meth) acryloyl groups include ethylene glycol-modified bisphenol A diacrylate, ethylene glycol-modified bisphenol F diacrylate, (poly) ethylene glycol diacrylate, (Poly) propylene glycol modified bisphenol A diacrylate, (poly) propylene glycol modified bisphenol F diacrylate, (poly) ethylene propylene glycol modified bisphenol A diacrylate, (poly) ethylene propylene glycol modified bisphenol F diacrylate, (poly) propylene Glycol diacrylate, glycerin glycidyl ether diacrylate, tripropylene glycol glycidyl ether diacrylate Chryrate, butanediol diacrylate, hexadiol diacrylate, EO modified neopentyl glycol diacrylate, PO modified neopentyl glycol diacrylate, EO modified trimethylolpropane triacrylate, PO modified trimethylolpropane triacrylate, EO modified trimethylolpropane tri Acrylate, PO modified trimethylolpropane triacrylate, EO modified pentaerythritol triacrylate, EO modified pentaerythritol tetraacrylate, PO modified pentaerythritol tetraacrylate, EO modified dipentaerythritol penta and hexaacrylate, PO modified dipentaerythritol penta and hexaacrylate , Etc. Among them, EO-modified bisphenol A diacrylate is preferable because it has a low viscosity and has a relatively high surface tension before curing, and can impart an appropriate hardness to the coating film after curing.
 上記(3)分子内に1つの(メタ)アクリロイル基及び芳香族環構造を有するモノマーとしては、比較的低分子量で粘度が低く単独の重合物の伸びが大きいもので、結果、組成物の粘度を下げ靭性を改良しやすい構造であることが好ましく、具体的には、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシプロピレングリコール(メタ)アクリレート、ノニルフェノキシエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、パラクミルフェノキシポリエチレングリコール(メタ)アクリレート、パラクミルフェノキシプロピレングリコール(メタ)アクリレート、パラクミルフェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシ-プロピル(メタ)アクリレート(=エピクロロヒドリン変性フェノキシ(メタ)アクリレート)を挙げることができる。 The above (3) monomer having one (meth) acryloyl group and aromatic ring structure in the molecule has a relatively low molecular weight, a low viscosity, and a large elongation of a single polymer. As a result, the viscosity of the composition It is preferable that the structure is easy to improve toughness by lowering, specifically, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) Acrylate, Nonylphenoxypropylene glycol (meth) acrylate, Nonylphenoxyethylene glycol (meth) acrylate, Nonylphenoxypolyethylene glycol (meth) acrylate, Nonylphenoxy polypropylene glycol (meth) acrylate , Paracumylphenoxyethylene glycol (meth) acrylate, paracumylphenoxypolyethylene glycol (meth) acrylate, paracumylphenoxypropylene glycol (meth) acrylate, paracumylphenoxypolypropylene glycol (meth) acrylate, 2-hydroxy-3-phenoxy -Propyl (meth) acrylate (= epichlorohydrin modified phenoxy (meth) acrylate).
 上記(4)分子内に1つの(メタ)アクリロイル基及び脂環構造を有するモノマーとしては、1官能の(メタ)アクリロイル基をもつ脂環(メタ)アクリレートオリゴマーで、脂環構造は硬化物組成に硬度を付与させる構造がよく、具体的には、ノルボルニル環、アダマンチル環、ジシクロペンタン環、トリシクロデカン環、テトラシクロドデカン環、ボルネン環、デカヒドロナフタレン環、ポリヒドロアントラセン環、トリシクレン、コレステリック環などのステロイド骨格、胆汁酸、ジギタロイド環、ショウノウ環、イソショウノウ環、セスキテルペン環、サントン環、ジテルペン環、トリテルペン環、ステロイドサポニン環などが挙げられ、中でも、得られる活性エネルギー線硬化組成物の表面硬度に優れることから、トリシクロデカン骨格をもつ(メタ)アクリレートが好ましい。これら脂環(メタ)アクリレート成分は、所望により1種もしくは2種以上を混合して使用することができる。なお、前記(4)分子内に1つの(メタ)アクリロイル基及び脂環構造を有するモノマーは、必要に応じて配合するものであり、配合すれば、組成物のフィルム化加工性、耐熱変形性、耐熱分解牲、コスト向上の効果を得ることができる。 The monomer having one (meth) acryloyl group and alicyclic structure in the molecule (4) is an alicyclic (meth) acrylate oligomer having a monofunctional (meth) acryloyl group, and the alicyclic structure is a cured product composition. The structure imparting hardness is good, specifically, norbornyl ring, adamantyl ring, dicyclopentane ring, tricyclodecane ring, tetracyclododecane ring, bornene ring, decahydronaphthalene ring, polyhydroanthracene ring, tricyclene, Examples include steroid skeletons such as cholesteric rings, bile acids, digitaloid rings, camphor rings, iso camphor rings, sesquiterpene rings, sandton rings, diterpene rings, triterpene rings, and steroid saponin rings. Because of its excellent surface hardness, With emissions skeleton (meth) acrylate. These alicyclic (meth) acrylate components can be used alone or in combination of two or more as desired. The (4) monomer having one (meth) acryloyl group and alicyclic structure in the molecule is blended as necessary, and if blended, the film-forming processability and heat distortion resistance of the composition. In addition, it is possible to obtain the effects of thermal decomposition resistance and cost improvement.
 上記(5)エポキシ(メタ)アクリレートとしては、二つ以上の(メタ)アクリロイル基を有するエポキシ(メタ)アクリレートオリゴマーで分子量や極性が高いもので、アクリロイル基の反応で容易に物性が向上しやすい構造が良く、例えば、1,4ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエ-テル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、脂肪族ポリオールポリグリシジルエーテル、ポリグリコールジエポキサイド、ヒマシ油ポリグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールAエチレンオキサイド付加ジグリシジルエーテル、ビスフェノールAプロピレンオキサイド付加ジグリシジルエーテル、フタル酸及びジヒドロフタル酸等の二塩基酸とエピハロヒドリンとの反応によって得られるジグリシジルエステル化合物;アミノフェノール及びビス(4-アミノフェニル)メタン等の芳香族アミンとエピハロヒドリンとの反応によって得られるエポキシ化合物;1,1,1,3,3,3-ヘキサフルオロ-2,2-[4-(2,3-エポキシプロポキシ)フェニル]プロパン、フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂等の多官能エポキシ化合物の(メタ)アクリル酸付加体が挙げられる。 As said (5) epoxy (meth) acrylate, it is an epoxy (meth) acrylate oligomer having two or more (meth) acryloyl groups and has a high molecular weight and polarity, and the physical properties are easily improved by the reaction of acryloyl groups. Good structure, such as 1,4 butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene Glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol Diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, trimethylol ethane triglycidyl ether, aliphatic polyol polyglycidyl ether, polyglycol diepoxide, castor oil polyglycidyl ether, cyclohexane dimethanol diglycidyl ether, resorcinol di Dibasic acids such as glycidyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol A ethylene oxide addition diglycidyl ether, bisphenol A propylene oxide addition diglycidyl ether, phthalic acid and dihydrophthalic acid Diglycidyl ester compound obtained by the reaction of phenoxy and epihalohydrin; amino Epoxy compounds obtained by reaction of aromatic amines such as enol and bis (4-aminophenyl) methane with epihalohydrin; 1,1,1,3,3,3-hexafluoro-2,2- [4- (2 , 3-epoxypropoxy) phenyl] propane, phenol novolac type epoxy resin, and cresol novolac type epoxy resin, and the like (meth) acrylic acid adducts.
 さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノキシフルオレンジグリシジルエーテル、ビスフェノキシフルオレンエタノールジグリシジルエーテル、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、シクロヘキサンジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリシジルエーテル等のエポキシ樹脂に、(メタ)アクリル酸、(メタ)アクリル酸ダイマー、カプロラクトン変性(メタ)アクリル酸等の不飽和一塩基酸類を反応させて得られるエポキシ(メタ)アクリレート類等が挙げられる。 Furthermore, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenoxy fluorenediglycidyl ether, bisphenoxyfluorene Epoxy resins such as ethanol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, cyclohexane dimethanol diglycidyl ether, tricyclodecane dimethanol diglycidyl ether, (meth) acrylic acid, (meta ) Epoxy (meth) acrylates obtained by reacting unsaturated monobasic acids such as acrylic acid dimer and caprolactone-modified (meth) acrylic acid And the like.
 これらエポキシ(メタ)アクリレートの中でも、得られる組成物の硬化後の耐熱性を向上できることから、ビスフェノ-ルAジグリシジルエ-テル、ビスフェノ-ルFジグリシジルエ-テル、ビスフェノ-ルAエチレンオキサイド付加ジグリシジルエ-テル、ビスフェノ-ルAプロピレンオキサイド付加ジグリシジルエ-テル等の多官能エポキシ化合物の(メタ)アクリル酸付加体であるビスフェノール型エポキシ(メタ)アクリレート化合物類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールS型エポキシ(メタ)アクリレート、テトラブロモビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノールF型エポキシ(メタ)アクリレート等のビスフェノール型エポキシ(メタ)アクリレート類が好適であり、その中でも、粘度と耐熱性のバランスに優れることから、ビスフェノールA型エポキシ(メタ)アクリレート及びビスフェノールF型エポキシ(メタ)アクリレートがさらに好ましく、ビスフェノールAグリシジルエーテル(メタ)アクリレートが特に好ましい。 Among these epoxy (meth) acrylates, since the heat resistance of the resulting composition after curing can be improved, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol A ethylene oxide-added diglycidyl ether Bisphenol-type epoxy (meth) acrylate compounds, bisphenol A-type epoxy (meth) acrylate, bisphenol F-type epoxy, which are (meth) acrylic acid adducts of polyfunctional epoxy compounds such as bisphenol A propylene oxide-added diglycidyl ether (Meth) acrylate, bisphenol S type epoxy (meth) acrylate, tetrabromobisphenol A type epoxy (meth) acrylate, hydrogenated bisphenol A type epoxy (meth) acrylate, hydrogenated resin Bisphenol type epoxy (meth) acrylates such as phenol F type epoxy (meth) acrylate are suitable, and among them, bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy are excellent because of excellent balance between viscosity and heat resistance. (Meth) acrylate is more preferred, and bisphenol A glycidyl ether (meth) acrylate is particularly preferred.
 また、下記[化5]で表されるビスフェノール型エポキシ(メタ)アクリレートが特に好ましい。
Figure JPOXMLDOC01-appb-C000006
(但し、R1、R2は水素又はメチル基を表し、nは1から12の整数を表す。)
Further, bisphenol type epoxy (meth) acrylate represented by the following [Chemical Formula 5] is particularly preferable.
Figure JPOXMLDOC01-appb-C000006
(However, R1 and R2 represent hydrogen or a methyl group, and n represents an integer of 1 to 12.)
 また、得られる組成物の重合に伴う体積収縮率を低くする点においては、重量平均分子量400~4000の範囲にあることが好ましく、上記一般[化5]においては、n=1~12の範囲が好ましい。 Further, the weight average molecular weight is preferably in the range of 400 to 4000 from the viewpoint of reducing the volume shrinkage due to the polymerization of the composition obtained. In the above general formula [5], the range of n = 1 to 12 is preferred. Is preferred.
 ビスフェノール型エポキシ(メタ)アクリレートの重量平均分子量が4000を超えると組成物の粘度が極端に高くなり、加工性が低下する傾向にある。よって、本発明では、ビスフェノール型エポキシ(メタ)アクリレートを使用する場合、重量平均分子量が400~4000のものを使用することがより好ましい。これらエポキシ(メタ)アクリレートは所望により1種もしくは2種以上を混合して使用することができる。 When the weight average molecular weight of the bisphenol type epoxy (meth) acrylate exceeds 4000, the viscosity of the composition becomes extremely high, and the processability tends to be lowered. Therefore, in the present invention, when bisphenol type epoxy (meth) acrylate is used, it is more preferable to use one having a weight average molecular weight of 400 to 4000. These epoxy (meth) acrylates can be used alone or in combination of two or more as desired.
 なお、上記(5)エポキシアクリレートオリゴマーも、必要に応じて配合するものであり、配合すれば、耐熱変形性、耐熱分解牲、2次加工性、コスト向上の効果を得ることができる。 In addition, said (5) epoxy acrylate oligomer is mix | blended as needed, and if it mix | blends, the effect of a heat-resistant deformation property, heat-resistant decomposition property, secondary workability, and a cost improvement can be acquired.
 上記(6)光重合開始剤としては、例えば、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェン、メチルオルトベンゾイルベンゾエイト、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒロドキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2-メチル-〔4-(メチルチオ)フェニル〕-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、ジエチルチオキサントン、イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、メチルベンゾイルホルメート等を例示することができる。これらは1種を単独で又は2種以上を併用して用いることができる。これらの中でもラジカル発生後の分解物が揮発性成分とならないアセトフェノン誘導体、具体的には2-ヒロドキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン等や、ラジカル発生後も分解物を発生しないベンゾフェノン誘導体等が透明性、耐久性の面で好適である。光開始剤の量は、組成物の硬化性等に応じて適宜調整されるが、典型的には本発明の活性エネルギー線硬化性樹脂組成物100重量部に対して、1~10重量部である。 Examples of the above (6) photopolymerization initiator include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophene, methylorthobenzoylbenzoate, 4-phenylbenzophenone, and t-butylanthraquinone. 2-ethylanthraquinone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) -Benzyl] phenyl] -2-methyl-propan-1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2-methyl- [4 -(Methylthio) fu Nyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, diethylthioxanthone, isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide Examples thereof include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and methylbenzoylformate. These can be used alone or in combination of two or more. Among these, acetophenone derivatives whose decomposition products after generation of radicals do not become volatile components, specifically 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl] -2-Methyl-propan-1-one and the like, and benzophenone derivatives that do not generate decomposition products after radical generation are suitable in terms of transparency and durability. The amount of the photoinitiator is appropriately adjusted according to the curability and the like of the composition, and is typically 1 to 10 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin composition of the present invention. is there.
(ハードコート層)
 上記ハードコート層は、アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物からなり、紫外線、電子線等の活性エネルギー線により硬化して形成されるものである。
(Hard coat layer)
The hard coat layer is made of an active energy ray-curable resin composition containing an acrylate monomer, oligomer, polymer, or a mixture thereof, and is formed by being cured with active energy rays such as ultraviolet rays and electron beams.
 活性エネルギー線硬化性ハードコート剤としては、特に制限されるものではなく、例えば、シリコーン系ハードコート剤や、フッ素系ハードコート剤を挙げることができる。これらの中でも、特に(1)側鎖に少なくとも1つの(メタ)アクリロイルオキシ基及び下記[化2]で表わされる構造を含む重合体及び/又は分子内に少なくとも1つの(メタ)アクリロイルオキシ基とフルオロアルキレンオキサイド基とを有する重合体5~20質量部、好ましくは5~10質量部(2)分子内に少なくとも3つの(メタ)アクリロイル基を含有するモノマー30~60質量部、(3)分子内に1つの(メタ)アクリロイル基及び環構造を有するモノマー0~20質量部、(4)光重合開始剤0.1~10質量部を含有してなる組成物を用いるのが好ましい。なお、このような組み合わせを採用することによって、不揮発性成分濃度が95%以上である活性エネルギー線硬化性樹脂組成物の硬化物からなる積層シートとすることも可能であり、被着体への非汚染性を低減することができる。なお、上不揮発性成分濃度が95%以上である活性エネルギー線硬化性樹脂組成物の配合が、上記に限定されないことは当然である。 The active energy ray-curable hard coating agent is not particularly limited, and examples thereof include a silicone hard coating agent and a fluorine hard coating agent. Among these, in particular, (1) a polymer containing at least one (meth) acryloyloxy group in the side chain and a structure represented by the following [Chemical Formula 2] and / or at least one (meth) acryloyloxy group in the molecule; 5 to 20 parts by mass, preferably 5 to 10 parts by mass of a polymer having a fluoroalkylene oxide group (2) 30 to 60 parts by mass of a monomer containing at least three (meth) acryloyl groups in the molecule, (3) molecule It is preferable to use a composition containing 0 to 20 parts by mass of a monomer having one (meth) acryloyl group and a ring structure and (4) 0.1 to 10 parts by mass of a photopolymerization initiator. In addition, by adopting such a combination, it is also possible to obtain a laminated sheet made of a cured product of an active energy ray-curable resin composition having a nonvolatile component concentration of 95% or more, and to the adherend. Non-contamination can be reduced. Of course, the composition of the active energy ray-curable resin composition having an upper nonvolatile component concentration of 95% or more is not limited to the above.
Figure JPOXMLDOC01-appb-C000007
(但し、nは5~100の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(However, n represents an integer of 5 to 100.)
 上記(4)光重合開始剤としては、フィルム層で記載した光重合開始剤と同様のものを挙げることができる。 The above (4) photopolymerization initiator may be the same as the photopolymerization initiator described in the film layer.
 本発明の第一形態の積層シートの構成としては、フィルム層の少なくとも片面に、ハードコート層を積層してなる構成を備えるものであれば、特に制限されず、ハードコート層の反対面に活性エネルギー線硬化性樹脂組成物からなる粘着材層を積層させることもできる。 The configuration of the laminated sheet of the first embodiment of the present invention is not particularly limited as long as it has a configuration in which a hard coat layer is laminated on at least one surface of the film layer, and is active on the opposite surface of the hard coat layer. An adhesive layer made of an energy ray curable resin composition can also be laminated.
(粘着材層)
 第一形態の粘着材層としては、(メタ)アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物を含有してなり、紫外線、電子線等の活性エネルギー線により硬化して形成されるものが好ましいが、その他にも、アクリル系、ポリエステル系、ウレタン系、ゴム系、シリコーン系等のいずれであってもよく、活性エネルギー線硬化性タイプのもの以外にも、熱硬化性タイプのものを用いることもでき、これらの混合系であってもよく、必ずしも制限されない。
 第二形態の粘着材層としては、特に制限されるものではないが、(メタ)アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物からなり、紫外線、電子線等の活性エネルギー線により硬化して形成されるものである。
 第二形態において、これら(メタ)アクリレート系モノマー、オリゴマー、ポリマー又はそれらの混合物を含む活性エネルギー線硬化性樹脂組成物の中でも、ウレタン(メタ)アクリレートを主剤として、(メタ)アクリレートモノマー等の反応性希釈剤などを含有することで、積層シートとした際に、25℃における貯蔵弾性率が1000MPa以上であり、かつ80℃における貯蔵弾性率が100MPa以下とすることが好ましい。貯蔵弾性率をこの範囲内とすることが重要であり、この範囲内とするには活性エネルギー線硬化性樹脂組成物の配合を調整すれば良いが、中でも、(1)ウレタン(メタ)アクリレート50~90質量部、(2)分子内に1つの(メタ)アクリロイル基及び炭素数4以上の脂肪族構造を有する化合物10~50質量部、及び(3)光重合開始剤1~10質量部を含有してなる組成物を用いるのが好ましい。
(Adhesive layer)
The adhesive layer of the first form contains an active energy ray-curable resin composition containing a (meth) acrylate monomer, oligomer, polymer or a mixture thereof, and by active energy rays such as ultraviolet rays and electron beams. What is formed by curing is preferable, but in addition, any of acrylic, polyester, urethane, rubber, silicone, etc. may be used. Besides the active energy ray curable type, A thermosetting type can also be used, and these may be a mixed system, and is not necessarily limited.
Although it does not restrict | limit especially as an adhesive material layer of a 2nd form, It consists of an active energy ray curable resin composition containing a (meth) acrylate type monomer, an oligomer, a polymer, or a mixture thereof, an ultraviolet-ray, an electron beam It is formed by curing with active energy rays such as.
In the second embodiment, among the active energy ray-curable resin compositions containing these (meth) acrylate monomers, oligomers, polymers or mixtures thereof, the reaction of (meth) acrylate monomers and the like with urethane (meth) acrylate as the main ingredient It is preferable that the storage elastic modulus at 25 ° C. is 1000 MPa or more and the storage elastic modulus at 80 ° C. is 100 MPa or less when a laminated sheet is contained by including a reactive diluent. It is important to set the storage elastic modulus within this range. To make the storage elastic modulus within this range, the composition of the active energy ray-curable resin composition may be adjusted. Among them, (1) urethane (meth) acrylate 50 90 parts by mass, (2) 10-50 parts by mass of a compound having one (meth) acryloyl group and an aliphatic structure having 4 or more carbon atoms in the molecule, and (3) 1-10 parts by mass of a photopolymerization initiator. It is preferable to use a composition comprising the same.
 上記(1)ウレタン(メタ)アクリレートとしては、未硬化時の塗工適性と硬化物の粘着特性を両立させた構造が好ましく、ポリオールとイソシアネートを縮合させた構造に、水酸基含有アクリレートを1分子中1ないし2当量結合させて得られるウレタン(メタ)アクリレート、例えば下記[化3]で示されるウレタン(メタ)アクリレートを挙げることができる。
Figure JPOXMLDOC01-appb-C000008
(但し、式中、Rは炭素数4以上のアルキル基、Rは脂肪族イソシアネート化合物残基、Rは分子量300以上のポリオール残基、Rは水素又は炭素数4以上のアルキルアクリレート基を表わす。)
The (1) urethane (meth) acrylate preferably has a structure in which both the coating suitability when uncured and the adhesive property of the cured product are compatible, and a hydroxyl group-containing acrylate is contained in one molecule in a structure in which a polyol and an isocyanate are condensed. The urethane (meth) acrylate obtained by combining 1 to 2 equivalents, for example, urethane (meth) acrylate represented by the following [Chemical Formula 3] can be mentioned.
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 is an alkyl group having 4 or more carbon atoms, R 2 is an aliphatic isocyanate compound residue, R 3 is a polyol residue having a molecular weight of 300 or more, and R 4 is hydrogen or an alkyl acrylate having 4 or more carbon atoms. Represents a group.)
 式中Rはイソシアネート残基を表わしており、具体例としては、トリレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート等の芳香族系のジイソシアネートの他、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ビス(4-イソシアナトシクロヘキシル)メタン、1,2-水添キシリレンジイソシアネート、1,4-水添キシリレンジイソシアネート、水添テトラメチルキシリレンジイソシアネート、ノルボルナンジイソシアネート等の脂肪族系のジイソシアネートが挙げられる。これらの中でも脂肪族のイソシアネート化合物が好ましく、中でもイソホロンジイソシアネート及びイソホロンジイソシアネートの多量体が光線透過率、耐熱分解性の面で優れているためより好ましい。 In the formula, R 2 represents an isocyanate residue. Specific examples include aromatic diisocyanates such as tolylene diisocyanate and 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, bis (4-isocyanate). And aliphatic diisocyanates such as natocyclohexyl) methane, 1,2-hydrogenated xylylene diisocyanate, 1,4-hydrogenated xylylene diisocyanate, hydrogenated tetramethyl xylylene diisocyanate, and norbornane diisocyanate. Of these, aliphatic isocyanate compounds are preferable, and isophorone diisocyanate and a polymer of isophorone diisocyanate are more preferable because they are excellent in light transmittance and heat decomposition resistance.
 式中Rはポリオール残基を表わしており、硬化物の柔軟性やタックを付与させる為、及び硬化前の化合物粘度が高く成りすぎない為に極性の低い構造が好ましく、具体的には分子量300以上の高分子量脂肪族ポリオールが好ましく、ポリイソブチレンポリオールやポリブタジエンポリオール等を例示することができる。式中のRは水素又は水酸基含有アクリレートの残鎖である。水酸基含有アクリレートは特に限定されないが、アルコール残鎖が炭素数4~20のアルキルアルコールであるアクリレート化合物が好ましい。 In the formula, R 3 represents a polyol residue, and in order to impart flexibility and tackiness of the cured product, and because the compound viscosity before curing does not become too high, a structure with low polarity is preferable. A high molecular weight aliphatic polyol of 300 or more is preferable, and examples thereof include polyisobutylene polyol and polybutadiene polyol. R 4 in the formula is hydrogen or a residual chain of a hydroxyl group-containing acrylate. The hydroxyl group-containing acrylate is not particularly limited, but an acrylate compound in which the alcohol residual chain is an alkyl alcohol having 4 to 20 carbon atoms is preferable.
 上記ウレタン(メタ)アクリレートの中でも、好ましくは分子量10000~200000、より好ましくは分子量15000~100000のウレタン(メタ)アクリレートが好ましい。この範囲とすることによって、硬化物の架橋密度が高くならず、粘着材としてのタックや柔軟性に優れ、かつ製膜性に優れる。 Among the urethane (meth) acrylates, a urethane (meth) acrylate having a molecular weight of 10,000 to 200,000, more preferably a molecular weight of 15,000 to 100,000 is preferable. By setting it as this range, the crosslink density of the cured product does not increase, the tack and flexibility as an adhesive material are excellent, and the film forming property is excellent.
 上記(2)分子内に1つの(メタ)アクリロイル基及び炭素数4以上の脂肪族構造を有する化合物としては、例えば、ブチルアクリレート、2-エチルヘキシルアクリレート、ステアリルアクリレート、ラウリルアクリレート、オクチルアクリレート、イソオクチルアクリレート、デシルアクリレート、イソデシルアクリレート、カプロラクトンアクリレート、ノニルアクリレート、ノニルフェノキシエチレングリコールアクリレート等の脂肪構造を有するアクリレート化合物もしくはその誘導体が挙げられる。 Examples of the compound (2) having one (meth) acryloyl group in the molecule and an aliphatic structure having 4 or more carbon atoms include butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, lauryl acrylate, octyl acrylate, isooctyl Examples thereof include acrylate compounds having a fatty structure such as acrylate, decyl acrylate, isodecyl acrylate, caprolactone acrylate, nonyl acrylate, and nonylphenoxyethylene glycol acrylate, or derivatives thereof.
 上記(3)光重合開始剤としては、フィルム層で記載した光重合開始剤と同様のものを挙げることができる。 The above (3) photopolymerization initiator may be the same as the photopolymerization initiator described in the film layer.
 各層を構成する活性エネルギー線硬化性樹脂組成物として上記以外の成分としては、他の光硬化性のオリゴマー・モノマーや、増感剤、架橋剤、紫外線吸収剤、重合禁止剤、充填材、熱可塑性樹脂・染料・顔料等の着色剤等が硬化や透明性、耐熱性等の物性に効果的かつ支障とならない範囲で添加できる。 Components other than the above as the active energy ray curable resin composition constituting each layer include other photocurable oligomers / monomers, sensitizers, crosslinking agents, ultraviolet absorbers, polymerization inhibitors, fillers, heat Colorants such as plastic resins, dyes, and pigments can be added within a range that is effective and does not hinder physical properties such as curing, transparency, and heat resistance.
 本発明の積層シートの製造方法としては、特に制限されるものではなく、第一形態においては、例えば、連続して定速駆動する工程用離型フィルム・ベルト・ロール上に十分混合分散した活性エネルギー線硬化性樹脂組成物よりなるフィルム層成分を定量供給して表面張力や加熱、加圧効果によりフィルム状に賦形し、活性エネルギー線を照射して硬化させ、フィルム層を形成し、その上に続けて、ハードコート層を同様にして順に製膜し、積層することで製造することができる。なお、他の層、例えば、粘着材層をさらに積層する場合においては、離型フィルム上に粘着材層を形成し、該粘着材層に上記の方法によって、フィルム層及びハードコート層を積層すれば良い。
 また、第二形態においては、例えば、連続して定速駆動する工程用離型フィルム・ベルト・ロール上に十分混合分散した活性エネルギー線硬化性樹脂組成物よりなる粘着材層成分を定量供給して表面張力や加熱、加圧効果によりフィルム状に賦形し、活性エネルギー線を照射して半硬化させ、粘着材層を形成し、その上に続けて、フィルム層、及びハードコート層を同様にして順に製膜し、積層することで製造することができる。
The production method of the laminated sheet of the present invention is not particularly limited, and in the first embodiment, for example, the activity sufficiently mixed and dispersed on the release film, belt, and roll for a process that is continuously driven at a constant speed. A film layer component made of an energy ray-curable resin composition is quantitatively supplied and shaped into a film shape by surface tension, heating, or pressure effect, cured by irradiation with active energy rays, and a film layer is formed. Subsequently to the above, the hard coat layer can be produced in the same manner in the order of film formation and lamination. In the case of further laminating other layers, for example, an adhesive layer, an adhesive layer is formed on the release film, and the film layer and the hard coat layer are laminated on the adhesive layer by the above method. It ’s fine.
In the second embodiment, for example, the adhesive layer component consisting of the active energy ray-curable resin composition sufficiently mixed and dispersed on the process release film, belt, and roll continuously driven at a constant speed is quantitatively supplied. Then, it is formed into a film shape by surface tension, heating, and pressure effect, irradiated with active energy rays and semi-cured to form an adhesive layer, and then the film layer and hard coat layer are similarly formed. Then, it can be manufactured by sequentially forming a film and laminating.
 本発明の各層を構成する活性エネルギー線硬化性樹脂組成物の定量供給にあたっては、グラビアコーティング、ロールコーティング、ロッドコーティング、ナイフコーティング、ブレードコーティング、スクリーンコーティング、ダイコーティング、カーテンフローコーティング等を用いることができる。これらの中から本発明の組成物をシート化する際の該シートの厚さなどに応じて適当な方式を選択すればよい。例えば、厚さ70~200μmの積層シートを得る場合、これらの厚さはコーティング加工で得るシートの厚さとしては厚い領域にあり、厚さ精度、加工の手間、外観などを考慮すると、特にダイコーティング方式で、組成物を硬化成分が実質100%の無溶剤系とした組み合わせが好ましい。ここで実質100%は、組成物処方上溶剤や揮発成分を使用しないか、もしくは所定の条件で除去した内容で溶剤残留や光開始剤残さが実性能上への弊害の低さから無視できるものとする。組成物の無溶剤化による粘度の上昇に伴うコーティング加工性への影響に対しては組成物での材料選択や加熱により調整できる。 Gravure coating, roll coating, rod coating, knife coating, blade coating, screen coating, die coating, curtain flow coating, etc. can be used for quantitative supply of the active energy ray-curable resin composition constituting each layer of the present invention. it can. An appropriate method may be selected from these according to the thickness of the sheet when the composition of the present invention is formed into a sheet. For example, when a laminated sheet having a thickness of 70 to 200 μm is obtained, these thicknesses are in a thick region as the thickness of the sheet obtained by coating processing, and in consideration of thickness accuracy, processing effort, appearance, etc. A combination in which the composition is a solvent-free system in which the curing component is substantially 100% is preferable. Here, substantially 100% means that no solvent or volatile component is used in the composition formulation, or that the solvent residue or photoinitiator residue is negligible due to its low adverse effect on actual performance. And The influence on the coating processability due to the increase in the viscosity due to the solvent-free composition can be adjusted by material selection or heating in the composition.
 工程用離型フィルムとしてはポリエチレンフィルム、2軸延伸ポリプロピレンフィルム、ポリ4メチルペンテン-1フィルム、2軸延伸ポリエチレンテレフタレートフィルム、2軸延伸ポリエチレンナフタレートフィルム、フッ素樹脂フィルム等の離型性、寸法安定性、平滑性に優れたフィルムが利用でき、好ましくは光学用の平滑性に優れた2軸延伸ポリエチレンテレフタレートフィルムで、より好ましくはさらにシリコーンコーティングで離型処理された光学用の平滑性に優れた2軸延伸ポリエチレンテレフタレートフィルムである。離型性の程度は組成物を硬化させた後の離型性の他、コーティングした時のフィルム形態のぬれ安定性、密着性とのバランスで調整される。また離型フィルムの厚さとしては主に本発明の組成物をコーティングする時の安定性、硬化後の硬化収縮による反り抑制、硬化に関わる活性エネルギー線透過性、離型フィルムコストのバランスで調整され、実用的には50~250μmである。 Process release films include polyethylene film, biaxially stretched polypropylene film, poly-4-methylpentene-1 film, biaxially stretched polyethylene terephthalate film, biaxially stretched polyethylene naphthalate film, fluororesin film, etc. A film excellent in properties and smoothness can be used, preferably a biaxially stretched polyethylene terephthalate film excellent in optical smoothness, and more preferably excellent in optical smoothness that has been subjected to mold release treatment with a silicone coating. It is a biaxially stretched polyethylene terephthalate film. The degree of releasability is adjusted by the balance between the releasability after curing the composition, the wetting stability of the film form when coated, and the adhesion. The thickness of the release film is adjusted mainly by the balance of stability when coating the composition of the present invention, suppression of warpage due to curing shrinkage after curing, active energy ray permeability related to curing, and release film cost. Practically, it is 50 to 250 μm.
 工程用離型ベルトはステンレスや表面メッキ加工鋼など平滑性、寸法安定性に優れたシート材をシームレスに継いで2本以上のロールに掛けてロールの駆動により連続定速加工に利用する。表面をさらにフッ素樹脂やセラミック等でコーティングして高離型化することもできる。工程用離型ロールは表面メッキ加工鋼にさらにフッ素樹脂やセラミック等でコーティングして離型化される。これらはシート化にあたり片面のみ接触した状態で組成物を賦形してもう片面は大気接触状態で加工することもできるし、種々の組み合わせで両面工程用離型材を接触させて加工することもできる。ただし、活性エネルギー線として紫外線を応用した場合には、その低透過性の制約により片面は少なくとも大気もしくは(透明プラスチック)フィルムが必須であり、エネルギー線の照射は大気もしくは(透明プラスチック)フィルム側に限定される。 The process release belt is seamlessly joined to a sheet material with excellent smoothness and dimensional stability, such as stainless steel and surface-plated steel, and is applied to two or more rolls and used for continuous constant speed machining by driving the rolls. The surface can be further coated with a fluororesin or ceramic to increase the mold release. The process release roll is further released by coating the surface-plated steel with a fluororesin or ceramic. In forming a sheet, the composition can be shaped while only one side is in contact, and the other side can be processed in an atmospheric contact state, or can be processed by bringing the double-sided process release material into contact with various combinations. . However, when ultraviolet rays are applied as active energy rays, at least air or (transparent plastic) film is essential on one side due to the low transmittance, and energy rays are irradiated on the air or (transparent plastic) film side. Limited.
 工程用離型フィルムを用いない場合は単独の積層シートが得られるので、そのままロール状に巻き取り断裁して枚葉化するなどの形態で、光学機能調整用フィルム化等具体的な用途に供することになる。一方、工程用離型フィルムを用いた場合にはそれと積層シートとの離型フィルム付積層シートとして得られるので、硬化後に工程用離型フィルムを剥離して首記同様の対応ができるほか、剥離せずにそのまま積層された形態で具体的な用途に供し工程用離型フィルムを保護フィルムないし具体的な用途での工程用離型フィルムとした内容も本主旨の範囲である。 When a process release film is not used, a single laminated sheet can be obtained, so that it can be used for specific applications such as forming a film for optical function adjustment in a form such as winding it into a roll and cutting it into sheets. It will be. On the other hand, if a process release film is used, it can be obtained as a laminate sheet with a release film between it and a laminate sheet. It is also within the scope of the present invention that the process release film is used as a protective film or a process release film for a specific application in a form that is laminated as it is for a specific application.
 各化合物原料の混合物に照射して硬化させるための活性エネルギー線としては、特に制約なく、工業的に利用できるものが応用でき、紫外線、電子線、γ線、X線等が挙げられるが、透過厚さ、エネルギー、設備コスト、光開始剤や増感剤等添加剤のコスト・品質への負荷等総合的に判断すると特に紫外線が利用しやすい。紫外線源としては低圧水銀ランプ、高圧水銀ランプ、キセノンランプ等の紫外線ランプをはじめ、各種発光特性のものが特に制限なく利用でき、フィルム厚さや硬化状況等に応じて適宜調整ができる。また、エネルギーに関しても同様に調整することができ、照度として概ね0.1~5J/cm2である。さらに照射効率を向上するために照射雰囲気を窒素等の不活性ガスとしたり成形した組成物を加温したりしながら照射することも可能である。 The active energy ray for irradiating and curing the mixture of each compound raw material is not particularly limited and can be applied industrially, and includes ultraviolet rays, electron rays, γ rays, X rays, etc. When comprehensively judging thickness, energy, equipment cost, cost and quality of additives such as photoinitiators and sensitizers, ultraviolet rays are particularly easy to use. As the ultraviolet light source, various light emitting characteristics such as a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp and the like can be used without particular limitation, and can be appropriately adjusted according to the film thickness and the curing condition. The energy can be similarly adjusted, and the illuminance is approximately 0.1 to 5 J / cm 2 . Furthermore, in order to improve irradiation efficiency, it is also possible to irradiate while making irradiation atmosphere into inert gas, such as nitrogen, or heating the shape | molded composition.
 本発明の光記録媒体は、例えば、表面にピット、グルーブ等の凹凸パターンが形成されて信号記録面とされているディスク基板上に保護膜を兼ねた光透過層を設け、この光透過層側からレーザー光を照射して情報の記録、再生を行うようにした光ディスクであって、該光透過層として上記の本発明の積層シートが用いられる。ディスク基板上に光透過層を形成するには、例えば、ディスク基板上に形成された記録膜(信号記録面)の表面に、本発明の積層シートに粘着材層等を積層させて、該粘着材層面を貼着した後、該積層シートに対して活性エネルギー線を照射し、硬化させればよい。 The optical recording medium of the present invention, for example, is provided with a light transmissive layer that also serves as a protective film on a disk substrate that has a concave and convex pattern such as pits and grooves formed on the surface and serves as a signal recording surface. The optical disk is configured to record and reproduce information by irradiating laser light from the above, and the laminated sheet of the present invention is used as the light transmission layer. In order to form a light transmission layer on a disk substrate, for example, an adhesive layer or the like is laminated on the laminated sheet of the present invention on the surface of a recording film (signal recording surface) formed on the disk substrate. After adhering the material layer surface, the laminated sheet may be irradiated with active energy rays and cured.
 この場合、光信号の劣化を防止するには積層シートの光透過率は高ければ高いほどよく、380~800nmの範囲の波長域の光の透過率は88%以上であり、特に400~410nmの範囲の波長域の光の透過率は90%以上であることが好ましい。本発明の光記録媒体に対して適用される光信号の波長は特に限定されないが、一般に光ディスクの読み取りや書き込みに使用されている波長380~800nmの範囲のレーザー光であってよく、特に光ディスクの記録容量を高密度にできる400nm前後の青紫色レーザー光であれば、上記のようにこの波長域の透過率が90%以上もあることから、極めて好ましい。 In this case, in order to prevent deterioration of the optical signal, the higher the light transmittance of the laminated sheet, the better. The light transmittance in the wavelength range of 380 to 800 nm is 88% or more, particularly 400 to 410 nm. The light transmittance in the wavelength range is preferably 90% or more. The wavelength of the optical signal applied to the optical recording medium of the present invention is not particularly limited, but may be laser light having a wavelength range of 380 to 800 nm generally used for reading and writing of an optical disc, A blue-violet laser beam of around 400 nm capable of increasing the recording capacity is extremely preferable because the transmittance in this wavelength region is 90% or more as described above.
(ハードコート層成分の合成)
<製造例1>
[(1)側鎖にシリコーン及びメタクリロイル基を含有するポリマーAの合成]
 攪拌機、温度計、コンデンサー、及び窒素ガス導入口を備えた反応器に、トルエン500重量部、エチルアクリレート300重量部及び2-ヒドロキシエチルアクリレート300質量部を入れて、窒素雰囲気下にて80℃まで昇温させた。そこへ、片末端にメタクリロイル基を含有するシリコーンオイル(X-22-174DX:信越シリコーン製)180重量部と重合触媒のアゾビスイソブチロニトリル10部の混合物を30分かけて滴下した。前記熱媒で過熱を防止しつつ2時間重合処理した後、イソシアネートアクリレート(カレンズMOI:昭和電工製)220重量部及び重合触媒のジブチル錫ジラウレート1重量部の混合物を滴下しつつ2時間重合処理し、重量平均分子量2万(ゲルパーミェーションクロマトグラフィーによるポリスチレン換算)のシリコーン構造及びメタクリロイル基を側鎖にもつアクリル共重合体を得た。
(Synthesis of hard coat layer components)
<Production Example 1>
[(1) Synthesis of Polymer A Containing Silicone and Methacryloyl Group in Side Chain]
In a reactor equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas inlet, 500 parts by weight of toluene, 300 parts by weight of ethyl acrylate, and 300 parts by weight of 2-hydroxyethyl acrylate were added up to 80 ° C. in a nitrogen atmosphere. The temperature was raised. A mixture of 180 parts by weight of a silicone oil containing a methacryloyl group at one end (X-22-174DX: manufactured by Shin-Etsu Silicone) and 10 parts of azobisisobutyronitrile as a polymerization catalyst was added dropwise thereto over 30 minutes. After the polymerization treatment for 2 hours while preventing overheating with the heating medium, the polymerization treatment was carried out for 2 hours while dropping a mixture of 220 parts by weight of isocyanate acrylate (Karenz MOI: Showa Denko) and 1 part by weight of dibutyltin dilaurate as a polymerization catalyst. An acrylic copolymer having a weight average molecular weight of 20,000 (polystyrene conversion by gel permeation chromatography) and a methacryloyl group in the side chain was obtained.
<製造例2>
[(2)フルオロアルキレンオキサイド側鎖前駆体 B-1の合成]
 末端にアルコール基をもつフルオロエトキシ-フルオロメトキシエーテル化合物(分子量1500)300重量部とイソホロンジイソシアネート45重量部をトルエン中80℃に昇温しながら反応させ、末端にイソシアネート基を一つもつフルオロアルキレンオキサイド化合物を得た(B-1)。
<Production Example 2>
[(2) Synthesis of fluoroalkylene oxide side chain precursor B-1]
Fluoroalkylene oxide having one terminal isocyanate group by reacting 300 parts by weight of a fluoroethoxy-fluoromethoxyether compound having a terminal alcohol group (molecular weight 1500) and 45 parts by weight of isophorone diisocyanate in toluene while raising the temperature to 80 ° C. A compound was obtained (B-1).
<製造例3>
[(2)’側鎖にフルオロアルキレンオキサイド及びメタクリロイル基を含有するポリマーBの合成]
 製造例1と同様の手法にて、エチルアクリレート380重量部及び2-ヒドロキシエチルアクリレート200質量部を重合触媒のアゾビスイソブチロニトリル5部を用いてトルエン中80℃2時間重合反応させ、その後イソシアネートアクリレート(カレンズMOI:昭和電工製)250重量部、前述で得たフルオロアルキレンオキサイド化合物(B-1)170g及び重合触媒のジブチル錫ジラウレート1重量部の混合物を滴下しつつ2時間重合処理し、重量平均分子量2万(ゲルパーミェーションクロマトグラフィーによるポリスチレン換算)のフルオロアルキレンオキサイド構造及びメタクリロイル基を側鎖にもつアクリル共重合体を得た。
<Production Example 3>
[(2) ′ Synthesis of Polymer B Containing Fluoroalkylene Oxide and Methacryloyl Group in Side Chain]
In the same manner as in Production Example 1, 380 parts by weight of ethyl acrylate and 200 parts by weight of 2-hydroxyethyl acrylate were subjected to a polymerization reaction in toluene at 80 ° C. for 2 hours using 5 parts of azobisisobutyronitrile as a polymerization catalyst. 250 parts by weight of isocyanate acrylate (Karenz MOI: Showa Denko), 170 g of the fluoroalkylene oxide compound (B-1) obtained above and 1 part by weight of dibutyltin dilaurate as a polymerization catalyst were dropped for 2 hours while polymerizing, An acrylic copolymer having a weight-average molecular weight of 20,000 (in terms of polystyrene by gel permeation chromatography) having a fluoroalkylene oxide structure and a methacryloyl group in the side chain was obtained.
(ハードコート層の硬化性樹脂組成物1の調製)
 製造例1で得たアクリル共重合体8質量%に対してにペンタエリスリトールテトラアクリレート50質量%、エトキシフェニルアクリレート20質量%、テトラヒドロフルフリルアクリレート20質量%となるように混合したのち減圧濃縮して揮発性成分が5%以下になるよう脱溶剤した後ビスアシルフォスフィンオキサイド2質量%を混合溶解し、ハードコート層の硬化性樹脂組成物1を得た。温度を25℃に保った状態で、東機産業製B型粘度計(TVB-10)にH2形ローターを取り付け、回転数100rpmの条件で、組成物の粘度を測定したところ250mPa・sであった。
(Preparation of curable resin composition 1 for hard coat layer)
After mixing to 8% by mass of the acrylic copolymer obtained in Production Example 1, 50% by mass of pentaerythritol tetraacrylate, 20% by mass of ethoxyphenyl acrylate, and 20% by mass of tetrahydrofurfuryl acrylate, and then concentrated under reduced pressure. After removing the solvent so that the volatile component was 5% or less, 2% by mass of bisacylphosphine oxide was mixed and dissolved to obtain a curable resin composition 1 for a hard coat layer. With the temperature maintained at 25 ° C., an H2 type rotor was attached to a Toki Sangyo B-type viscometer (TVB-10), and the viscosity of the composition was measured at a rotational speed of 100 rpm. The result was 250 mPa · s. It was.
(ハードコート層の硬化性樹脂組成物2の調製)
 ペンタエリスリトールテトラアクリレート50質量%、エトキシフェニルアクリレート20質量%、テトラヒドロフルフリルアクリレート10質量%、製造例1で得たシリコーン含有共重合体8質量%、製造例3で得たフルオロアルキレンオキサイド含有共重合体8質量%、及びビスアシルフォスフィンオキサイド4質量%を、混合溶解し、ハードコート層の硬化性樹脂組成物2を得た。
(Preparation of curable resin composition 2 for hard coat layer)
Pentaerythritol tetraacrylate 50 mass%, ethoxyphenyl acrylate 20 mass%, tetrahydrofurfuryl acrylate 10 mass%, silicone-containing copolymer obtained in Production Example 1 8 mass%, fluoroalkylene oxide-containing copolymer obtained in Production Example 3 8% by mass of the coalescence and 4% by mass of bisacylphosphine oxide were mixed and dissolved to obtain a curable resin composition 2 for a hard coat layer.
(フィルム層の硬化性樹脂組成物1の調製)
 ウレタン(メタ)アクリレートリレートとして、下記[化1]に示したウレタン(メタ)アクリレートリレート(イソホロンジイソシアネートとテトラメチレングリコールをウレタン縮合させた末端に4-ヒドロキシブチルアクリレートを付加して得たウレタン(メタ)アクリレートリレート(重量平均分子;1000~4000)38質量%、エチレンオキサイド(4モル)変性ビスフェノールAジアクリレート30質量%、2-ヒドロキシ-3-フェノキシプロピルアクリレート20質量%、イソボニルアクリレート10質量%、及び2-ヒドロキシ-1-{4-[4-(ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン2質量%を、混合溶解し、フィルム層の硬化性樹脂組成物1を得た。
Figure JPOXMLDOC01-appb-C000009
(Preparation of curable resin composition 1 for film layer)
As the urethane (meth) acrylate relate, the urethane (meth) acrylate relate shown in the following [Chemical Formula 1] (urethane obtained by adding 4-hydroxybutyl acrylate to the end of urethane condensation of isophorone diisocyanate and tetramethylene glycol) ) Acrylate relate (weight average molecule; 1000 to 4000) 38% by mass, ethylene oxide (4 mol) modified bisphenol A diacrylate 30% by mass, 2-hydroxy-3-phenoxypropyl acrylate 20% by mass, isobornyl acrylate 10% by mass , And 2-hydroxy-1- {4- [4- (hydroxy-2-methyl-propionyl) benzyl] phenyl} -2-methyl-propan-1-one are mixed and dissolved, and the film layer is cured. Resin composition 1 is obtained .
Figure JPOXMLDOC01-appb-C000009
(フィルム層の硬化性樹脂組成物2の調製)
 上記フィルム層の硬化性樹脂組成物1と同様のウレタン(メタ)アクリレート48質量%、ビルフェノールAエポキシアクリレート20質量%、トリシクロデカンジアクリレート30質量%、2-ヒドロキシ-1-{4-[4-(ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン2質量%を、混合溶解し、フィルム層の硬化性樹脂組成物2を得た。
(Preparation of curable resin composition 2 for film layer)
48% by mass of urethane (meth) acrylate similar to the curable resin composition 1 of the film layer, 20% by mass of bilphenol A epoxy acrylate, 30% by mass of tricyclodecane diacrylate, 2-hydroxy-1- {4- [ 4- (Hydroxy-2-methyl-propionyl) benzyl] phenyl} -2-methyl-propan-1-one (2% by mass) was mixed and dissolved to obtain a curable resin composition 2 having a film layer.
(フィルム層の硬化性樹脂組成物3の調製)
 上記フィルム層の硬化性樹脂組成物1と同様のウレタン(メタ)アクリレート48質量%、トリシクロデカンジアクリレート50質量%、2-ヒドロキシ-1-{4-[4-(ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン2質量%を、混合溶解し、フィルム層の硬化性樹脂組成物3を得た。
(Preparation of curable resin composition 3 for film layer)
48% by mass of urethane (meth) acrylate, 50% by mass of tricyclodecane diacrylate, and 2-hydroxy-1- {4- [4- (hydroxy-2-methyl-) as in the curable resin composition 1 of the film layer. 2 mass% of propionyl) benzyl] phenyl} -2-methyl-propan-1-one was mixed and dissolved to obtain a curable resin composition 3 for the film layer.
(フィルム層の硬化性樹脂組成物4の調製)
 上記フィルム層の硬化性樹脂組成物1と同様のウレタン(メタ)アクリレート48質量%、ビルフェノールAエポキシアクリレート20質量%、ノニルフェノキシエチレングリコールアクリレート30質量%、2-ヒドロキシ-1-{4-[4-(ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン2質量%を、混合溶解し、フィルム層の硬化性樹脂組成物4を得た。
(Preparation of curable resin composition 4 for film layer)
48% by mass of urethane (meth) acrylate, 20% by mass of bilphenol A epoxy acrylate, 30% by mass of nonylphenoxyethylene glycol acrylate, 2-hydroxy-1- {4- [ 4- (Hydroxy-2-methyl-propionyl) benzyl] phenyl} -2-methyl-propan-1-one (2% by mass) was mixed and dissolved to obtain a curable resin composition 4 for a film layer.
(フィルム層の硬化性樹脂組成物5の調製)
 ウレタン(メタ)アクリレートとして、下記[化1]に示したウレタン(メタ)アクリレート(イソホロンジイソシアネートとテトラメチレングリコールをウレタン縮合させた末端に4-ヒドロキシブチルアクリレートを付加して得たウレタン(メタ)アクリレート(重量平均分子;1000~4000)38質量%、エチレンオキサイド(4モル)変性ビスフェノールAジアクリレート30質量%、2-ヒドロキシ-3-フェノキシプロピルアクリレート20質量%、イソボニルアクリレート10質量%、及び2-ヒドロキシ-1-{4-[4-(ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチル-プロパン-1-オン2質量%を、混合溶解し、フィルム層の硬化性樹脂組成物5を得た。
Figure JPOXMLDOC01-appb-C000010
(Preparation of curable resin composition 5 for film layer)
As urethane (meth) acrylate, urethane (meth) acrylate shown in the following [Chemical Formula 1] (urethane (meth) acrylate obtained by adding 4-hydroxybutyl acrylate to the end of urethane condensation of isophorone diisocyanate and tetramethylene glycol) (Weight average molecule; 1000 to 4000) 38% by mass, ethylene oxide (4 mol) modified bisphenol A diacrylate 30% by mass, 2-hydroxy-3-phenoxypropyl acrylate 20% by mass, isobornyl acrylate 10% by mass, and 2 -Hydroxy-1- {4- [4- (hydroxy-2-methyl-propionyl) benzyl] phenyl} -2-methyl-propan-1-one 2% by mass is mixed and dissolved to form a curable resin composition for the film layer Product 5 was obtained.
Figure JPOXMLDOC01-appb-C000010
(粘着材層の硬化性樹脂組成物の調製)
 ウレタン(メタ)アクリレートとして、下記[化3]に示したウレタン(メタ)アクリレート(ビス(4-イソシアナトシクロヘキシル)メタンとポリイソブチレンジオールをウレタン縮合させた末端に4-ヒドロキシブチルアクリレートを付加して得たウレタン(メタ)アクリレート(重量平均分子;15000))70質量%、イソデシルアクリレート20質量%、イソボニルアクリレート6質量%、トリメチルベンゾフェノン4質量%を、混合溶解し、粘着材層の硬化性樹脂組成物を得た。
(Preparation of curable resin composition for adhesive layer)
As urethane (meth) acrylate, 4-hydroxybutyl acrylate was added to the end of urethane condensation of urethane (meth) acrylate (bis (4-isocyanatocyclohexyl) methane and polyisobutylene diol shown in [Chemical Formula 3] below. 70 mass% of the obtained urethane (meth) acrylate (weight average molecule; 15000)), 20 mass% of isodecyl acrylate, 6 mass% of isobornyl acrylate, and 4 mass% of trimethylbenzophenone are mixed and dissolved, and the curability of the adhesive material layer. A resin composition was obtained.
Figure JPOXMLDOC01-appb-C000011
 (式中、Rはテトラアルキル鎖、Rはビス(4-イソシアナトシクロヘキシル)メタン)の残鎖、Rはポリイソブチレンポリオール残鎖、Rは水素又は4-ヒドロキシブチルアクリレート残鎖を表わす。)
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 is a tetraalkyl chain, R 2 is a residual chain of bis (4-isocyanatocyclohexyl) methane), R 3 is a residual chain of polyisobutylene polyol, R 4 is a residual chain of hydrogen or 4-hydroxybutyl acrylate. Represent. )
<実施例1>
 離型性を有した厚さ100μmの平滑なポリエチレンテレフタレートフィルムにダイコータにてフィルム層の硬化性樹脂組成物1を厚さ78μmにて製膜し、高圧水銀ランプにて照射強度200mW/cm、積算光量600mJとなるように活性エネルギー線を照射した後、ハードコート層の硬化性樹脂組成物1をフィルム層の上にグラビアコータにて塗工厚みが2μmになるよう塗工して、メタルハライドランプにて活性エネルギー線を照射強度200mW/cm、積算照射量400mJ/cmとなるように照射してハードコート層を形成し、積層シート1を得た。
<Example 1>
On a smooth polyethylene terephthalate film having a releasability of 100 μm, a film layer of curable resin composition 1 was formed with a die coater at a thickness of 78 μm, and irradiation intensity was 200 mW / cm 2 with a high-pressure mercury lamp. After irradiating active energy rays so that the integrated light quantity is 600 mJ, the curable resin composition 1 of the hard coat layer is applied onto the film layer with a gravure coater to a coating thickness of 2 μm, and a metal halide lamp A hard coat layer was formed by irradiating an active energy ray at an irradiation intensity of 200 mW / cm 2 and an integrated irradiation amount of 400 mJ / cm 2 to obtain a laminated sheet 1.
<実施例2>
 離型性を有した厚さ100μmの平滑なポリエチレンテレフタレートフィルム上に2層ダイにてフィルム層の硬化性樹脂組成物1/ハードコート層の硬化性樹脂組成物1を、厚み79μm/1μmにてハードコート層が上になるように塗工し、高圧水銀ランプにて積算光量800mJ/cmとなるように活性エネルギー線を照射して積層シート2を得た。
<Example 2>
On a smooth polyethylene terephthalate film having a releasability of 100 μm, a curable resin composition 1 of a film layer / a curable resin composition 1 of a hard coat layer is formed by a two-layer die at a thickness of 79 μm / 1 μm. The laminated sheet 2 was obtained by coating the hard coat layer on top and irradiating the active energy rays with a high-pressure mercury lamp so that the accumulated light amount was 800 mJ / cm 2 .
<実施例3>
 フィルム層/ハードコート層の厚みをそれぞれ76μm/4μmに以外は実施例2と同様にして積層シート3を得た。
<Example 3>
A laminated sheet 3 was obtained in the same manner as in Example 2 except that the thickness of the film layer / hard coat layer was 76 μm / 4 μm, respectively.
<実施例4>
 フィルム層の硬化性樹脂組成物2を用いる以外は実施例1と同様にして積層シート4を得た。
<Example 4>
A laminated sheet 4 was obtained in the same manner as in Example 1 except that the curable resin composition 2 of the film layer was used.
<比較例1>
 離型性を有した厚さ100μmの平滑なポリエチレンテレフタレートフィルムにダイコータにてフィルム層の硬化性樹脂組成物1を厚さ80μmにて製膜し、高圧水銀ランプにて照射強度200mW/cm、積算光量600mJとなるように活性エネルギー線を照射した後、ハードコート層の硬化性樹脂組成物1をフィルム層の上にダイコータにて10μm塗工してメタルハライドランプにて活性エネルギー線を照射強度200mW/cm、積算照射量400mJ/cmとなるように照射してハードコート層を形成し、積層シート5を得た。
<Comparative Example 1>
On a smooth polyethylene terephthalate film having a releasability of 100 μm, a curable resin composition 1 of a film layer was formed with a die coater at a thickness of 80 μm, and an irradiation intensity of 200 mW / cm 2 with a high-pressure mercury lamp, After irradiating the active energy ray so that the integrated light quantity is 600 mJ, the hard coat layer curable resin composition 1 is coated on the film layer with a die coater by 10 μm, and the active energy ray is irradiated with a metal halide lamp with an irradiation intensity of 200 mW. / cm 2, was irradiated such that the integrated irradiation dose 400 mJ / cm 2 to form a hard coat layer to obtain a laminated sheet 5.
<比較例2>
 フィルム層の硬化性樹脂組成物3を用いる以外は実施例1と同様にして積層シート6を得た。
<Comparative example 2>
A laminated sheet 6 was obtained in the same manner as in Example 1 except that the film layer curable resin composition 3 was used.
<比較例3>
 フィルム層/ハードコート層の厚みが、それぞれ30μm/5μmである以外は実施例1と同様にして積層シート7を得た。
<Comparative Example 3>
A laminated sheet 7 was obtained in the same manner as in Example 1 except that the thickness of the film layer / hard coat layer was 30 μm / 5 μm.
<比較例4>
 フィルム層の硬化性樹脂組成物4を用いる以外は実施例1と同様にして積層シート8を得た。
<Comparative Example 4>
A laminated sheet 8 was obtained in the same manner as in Example 1 except that the film layer curable resin composition 4 was used.
<比較例5>
 離型性を有した厚さ100μmの平滑なポリエチレンテレフタレートフィルムにダイコータにてフィルム層の硬化性樹脂組成物1を厚さ80μmにて製膜し、高圧水銀ランプにて照射強度200mW/cm、積算光量600mJとなるように活性エネルギー線を照射して積層シート9を得た。
<Comparative Example 5>
On a smooth polyethylene terephthalate film having a releasability of 100 μm, a curable resin composition 1 of a film layer was formed with a die coater at a thickness of 80 μm, and an irradiation intensity of 200 mW / cm 2 with a high-pressure mercury lamp, The laminated sheet 9 was obtained by irradiating active energy rays so that the integrated light amount was 600 mJ.
<実施例5>
 離型性を有した厚さ75μmの平滑なポリエチレンテレフタレートフィルムに、上記粘着材層の硬化性樹脂組成物をダイコータにて厚さ20μmにて塗工し、高圧水銀ランプにて活性エネルギー線を照射強度100mW/cm、積算光量600mJ照射して粘着材層を半硬化させた。さらにその上にダイコータにてフィルム層の硬化性樹脂組成物5を厚さ77μmにて製膜し、高圧水銀ランプにて照射強度200mW/cm、積算光量600mJとなるように活性エネルギー線を照射した後、ハードコート層の硬化性樹脂組成物2をフィルム層の上にグラビアコータにて2μm厚に塗工して、メタルハライドランプにて活性エネルギー線を照射強度200mW/cm、積算照射量400mJ/cmとなるように照射し、積層シート10を得た。
<Example 5>
A smooth polyethylene terephthalate film with a thickness of 75 μm having releasability is coated with a curable resin composition of the above adhesive layer at a thickness of 20 μm with a die coater and irradiated with active energy rays with a high-pressure mercury lamp. The adhesive layer was semi-cured by irradiation with an intensity of 100 mW / cm 2 and an integrated light amount of 600 mJ. Further, a curable resin composition 5 of a film layer is formed with a thickness of 77 μm with a die coater, and an active energy ray is irradiated with an irradiation intensity of 200 mW / cm 2 and an integrated light amount of 600 mJ with a high-pressure mercury lamp. After that, the hard coat layer curable resin composition 2 was coated on the film layer with a gravure coater to a thickness of 2 μm, and an active energy ray was irradiated with a metal halide lamp with an irradiation intensity of 200 mW / cm 2 and an integrated irradiation amount of 400 mJ. Irradiation was performed so as to be / cm 2 to obtain a laminated sheet 10.
<実施例6>
 実施例5と同様にして20μmの粘着材層を設けた後、半硬化させた該粘着材層の上に2層ダイにてフィルム層の硬化性樹脂組成物5/ハードコート層の硬化性樹脂組成物2を、厚み77μm/3μmハードコート層が上になるように塗工し、高圧水銀ランプにて積算光量600mJとなるように活性エネルギー線を照射して積層シート11を得た。
<Example 6>
After a 20 μm adhesive layer was provided in the same manner as in Example 5, the film layer curable resin composition 5 / hard coat layer curable resin was formed by a two-layer die on the semi-cured adhesive layer. The composition 2 was applied so that the hard coat layer had a thickness of 77 μm / 3 μm, and was irradiated with an active energy ray with a high-pressure mercury lamp so as to obtain an integrated light amount of 600 mJ, whereby a laminated sheet 11 was obtained.
<比較例6>
 離型性を有した平滑なポリエチレンテレフタレートフィルムに、上記粘着材層の硬化性樹脂組成物をダイコータにて厚さ20μmにて塗工し、未硬化の粘着材層の上に2層ダイにてフィルム層の硬化性樹脂組成物5/ハードコート層の硬化性樹脂組成物2を、厚み75μm/5μmとなるように塗工し、高圧水銀ランプにて積算光量1000mJ/cmとなるように活性エネルギー線を照射して積層シート12を得た。
<Comparative Example 6>
The curable resin composition of the pressure-sensitive adhesive layer is applied to a smooth polyethylene terephthalate film having releasability at a thickness of 20 μm with a die coater, and a two-layer die is formed on the uncured pressure-sensitive adhesive layer. Film layer curable resin composition 5 / hard coat layer curable resin composition 2 was applied to a thickness of 75 μm / 5 μm, and activated with a high-pressure mercury lamp to achieve an integrated light quantity of 1000 mJ / cm 2. The laminated sheet 12 was obtained by irradiation with energy rays.
<比較例7>
 粘着材層/フィルム層/ハードコート層の厚み比が20μm/30μm/5μmである以外は実施例6と同様にして積層シート13を得た。
<Comparative Example 7>
A laminated sheet 13 was obtained in the same manner as in Example 6 except that the thickness ratio of the pressure-sensitive adhesive layer / film layer / hard coat layer was 20 μm / 30 μm / 5 μm.
<比較例8>
 ハードコート層を設けないこと以外は実施例6と同様にして積層シート14を得た。
<Comparative Example 8>
A laminated sheet 14 was obtained in the same manner as in Example 6 except that the hard coat layer was not provided.
<フィルム物性評価>
(動的粘弾性)
 得られた積層シート1~14について、アイティ計測制御社製“DVA-200”を用いて、10Hz、3℃/分の速度で-50℃から150℃まで昇温させ、積層シート1~9については25℃、100℃における、積層シート10~14については25℃、80℃における、貯蔵弾性率及び損失正接(tanδ)の極大値におけるガラス転移温度を計測した。結果は表1又は2に記した。なお、表1のガラス転移温度は、積層シート1~9を構成する各フィルム層の硬化性樹脂組成物の値である。
<Film physical property evaluation>
(Dynamic viscoelasticity)
The obtained laminated sheets 1 to 14 were heated from −50 ° C. to 150 ° C. at a rate of 10 Hz and 3 ° C./minute using “DVA-200” manufactured by IT Measurement Control Co., Ltd. Measured the glass transition temperature at the maximum value of storage elastic modulus and loss tangent (tan δ) at 25 ° C. and 100 ° C., and for laminated sheets 10 to 14 at 25 ° C. and 80 ° C. The results are shown in Table 1 or 2. The glass transition temperature in Table 1 is a value of the curable resin composition of each film layer constituting the laminated sheets 1 to 9.
(引張り破断伸び)
 得られた積層シート1~9の行程用離型フィルムを剥離して10mm幅の短冊状にし、フィルム引っ張り試験機((株)インテスコ社製205X)を用いて80℃に加温したチャンバー内にて、引張り速度5mm/分にて引張り試験を行い、破断時の伸び(%)を計測した。結果は表1に記す。
(Tensile elongation at break)
The process release films of the obtained laminated sheets 1 to 9 were peeled to form strips having a width of 10 mm, and heated in a chamber heated to 80 ° C. using a film tensile tester (205X manufactured by Intesco Corporation). Then, a tensile test was performed at a pulling speed of 5 mm / min, and the elongation (%) at break was measured. The results are shown in Table 1.
<フィルム加工性評価>
 得られた積層シートの工程用基材を剥がしてトムソン刃による裁断加工を10枚行い、裁断時の状況に応じて以下の評価を行った。
○:全てきれいに問題なく切断された。
×:切断面に細かい亀裂が入るものが見られた。
<Film processability evaluation>
The process substrate of the obtained laminated sheet was peeled off, and 10 sheets were cut with a Thomson blade, and the following evaluations were made according to the situation at the time of cutting.
○: All were cut cleanly and without problems.
X: Some cracks were observed on the cut surface.
<硬化物層を有する光ディスクの作製及び評価>
 ディスク状に成形された1.1mm厚のポリカーボネート上にAg反射膜、ZnS-SiO誘電体層、Sb・Te系相変化記録膜、ZnS-SiO誘電体層の順に無機層が積層された基板上に、上記積層シート1~9については、100μm行程用離型フィルムを剥離して総厚みが100μmになるようアクリル系粘着シートを貼り合わせて基板の無機層積層側に貼り合わせ、ディスクサンプル1~9を作製し、上記積層シート10~14については、75μm行程用離型フィルムを剥離して総厚みが100μmになるようアクリル系粘着シートを、基板の無機層積層側に貼り合わせ、ディスクサンプル1~9を作製し、以下の評価を行った。
<Production and evaluation of optical disk having cured product layer>
An inorganic layer was laminated in the order of an Ag reflection film, a ZnS—SiO 2 dielectric layer, an Sb / Te phase change recording film, and a ZnS—SiO 2 dielectric layer on a 1.1 mm thick polycarbonate molded into a disk shape. For the above laminated sheets 1-9, a 100 μm stroke release film was peeled off and an acrylic adhesive sheet was laminated to a total thickness of 100 μm, and then laminated to the inorganic layer laminated side of the substrate. 1 to 9 were prepared, and for the laminated sheets 10 to 14, an acrylic pressure-sensitive adhesive sheet was laminated on the inorganic layer laminated side of the substrate so that the 75 μm stroke release film was peeled off and the total thickness was 100 μm. Samples 1 to 9 were prepared and evaluated as follows.
<表面性能評価>
(鉛筆硬度)
 得られたディスクサンプルについて積層シート側表面の鉛筆硬度を測定し、HB以上を○、B以下を×と判定した。
<Surface performance evaluation>
(Pencil hardness)
About the obtained disk sample, the pencil hardness of the laminated sheet side surface was measured, and HB or more was determined to be ◯, and B or less was determined to be ×.
(耐擦傷性)
 得られたディスクサンプル状に#0000のスチールウールを荷重250gにて10往復させ、傷付かないものを○、傷のついたものを×と判定した。
(Abrasion resistance)
A # 0000 steel wool was reciprocated 10 times at a load of 250 g in the obtained disk sample, and it was determined that the scratched one was ◯ and the scratched one was ×.
<耐久性評価>
(耐腐食試験)
 上記ディスクサンプルを温度80℃、湿度85%RHの恒温恒湿槽にて200時間静置した後、ディスクサンプルの外観を目視で判断し、以下の判定を行った。
○:蒸着層の腐食、保護膜の剥離、割れ等はみられなかった。
×:蒸着層の腐食もしくは保護膜の剥離、割れが見られた。
<Durability evaluation>
(Corrosion resistance test)
The disk sample was allowed to stand for 200 hours in a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 85% RH, and then the appearance of the disk sample was visually determined to make the following determinations.
○: Corrosion of the deposited layer, peeling of the protective film, cracking, etc. were not observed.
X: Corrosion of the deposited layer or peeling or cracking of the protective film was observed.
(反り耐久性試験)
 得られた光ディスクを80℃85%相対湿度下で500時間置いた後の反りについて次の判定を行った。
○:初期反り角と80℃85%相対湿度下で500時間後の反り角の差が0.4°未満。
×:初期反り角と80℃85%相対湿度下で500時間後の反り角の差が0.4°以上。
(War endurance test)
The following judgment was performed about the curvature after putting the obtained optical disk on 80 degreeC85% relative humidity for 500 hours.
○: The difference between the initial warp angle and the warp angle after 500 hours at 80 ° C. and 85% relative humidity is less than 0.4 °
X: The difference between the initial warp angle and the warp angle after 500 hours at 80 ° C and 85% relative humidity is 0.4 ° or more.
(ヒートショック試験)
 得られた光ディスクを25℃から55℃の温度環境下に急変させた時の反り変化量について次の判定を行った。
○:25℃温度環境下における反り角と55℃に環境急変させたときの反り角の差が0.6°未満
×:25℃温度環境下における反り角と55℃に環境急変させたときの反り角の差が0.6°以上
(Heat shock test)
The following determination was made regarding the amount of warpage change when the obtained optical disk was suddenly changed from 25 ° C. to 55 ° C.
○: The difference between the warp angle in the 25 ° C temperature environment and the warp angle when the environment is suddenly changed to 55 ° C is less than 0.6 ° ×: When the environment is suddenly changed to the warp angle under the 25 ° C temperature environment and 55 ° C Difference of warp angle is 0.6 ° or more
(総合評価)
 フィルム加工性、表面性能及び耐久性評価の全ての試験について○の評価を得た場合を総合評価○とし、一つでも×の評価がある場合を総合評価×とした。
(Comprehensive evaluation)
For all tests of film processability, surface performance and durability evaluation, a case where an evaluation of “◯” was obtained was regarded as a comprehensive evaluation, and a case where there was an evaluation of “×” was regarded as an overall evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  フィルム層の少なくとも片面に、ハードコート層を積層してなる構成を備えた積層シートであって、各層が活性エネルギー線硬化性樹脂組成物からなり、かつ以下の(A)~(D)の性質を有することを特徴とする積層シート。
    (A)25℃における貯蔵弾性率が2000MPa以上
    (B)フィルム層の活性エネルギー線硬化性樹脂組成物の損失正接の極大値としてのガラス転移温度が90℃以下
    (C)100℃における貯蔵弾性率が100MPa以下
    (D)80℃における引張り破断伸びが4%以上
    A laminated sheet having a structure in which a hard coat layer is laminated on at least one surface of a film layer, each layer comprising an active energy ray-curable resin composition, and the following properties (A) to (D) A laminated sheet comprising:
    (A) Storage elastic modulus at 25 ° C. is 2000 MPa or more (B) Glass transition temperature as maximum of loss tangent of active energy ray-curable resin composition of film layer is 90 ° C. or lower (C) Storage elastic modulus at 100 ° C. Is 100 MPa or less (D) Elongation at break at 80 ° C. is 4% or more
  2.  積層のシートの総厚みが70~200μm以下であって、フィルム層に対するハードコート層の厚み比が1~5%であることを特徴とする請求項1記載の積層シート。 2. The laminated sheet according to claim 1, wherein the total thickness of the laminated sheets is 70 to 200 μm or less, and the thickness ratio of the hard coat layer to the film layer is 1 to 5%.
  3.  ハードコート層、フィルム層、及び粘着材層が順次積層された構成を備える積層シートであって、各層が活性エネルギー線硬化性樹脂組成物からなり、積層シートの総厚みが70~200μm以下であって、フィルム層に対する粘着材層の厚み比が10~50%であり、かつフィルム層に対するハードコート層の厚み比が1~5%であることを特徴とする積層シート。 A laminated sheet having a configuration in which a hard coat layer, a film layer, and an adhesive layer are sequentially laminated, each layer comprising an active energy ray-curable resin composition, and the total thickness of the laminated sheet is 70 to 200 μm or less. And a thickness ratio of the pressure-sensitive adhesive layer to the film layer is 10 to 50%, and a thickness ratio of the hard coat layer to the film layer is 1 to 5%.
  4.  25℃における貯蔵弾性率が1000MPa以上であり、かつ80℃における貯蔵弾性率が100MPa以下であることを特徴とする請求項3記載の積層シート。 The laminated sheet according to claim 3, wherein the storage elastic modulus at 25 ° C is 1000 MPa or more and the storage elastic modulus at 80 ° C is 100 MPa or less.
  5.  フィルム層が、以下の(1)~(6)に示す化合物を含有する組成物からなることを特徴とする請求項1~4のいずれか記載の積層シート。
    (1)下記[化1]で表わされるウレタン(メタ)アクリレートオリゴマー20~60質量部
    Figure JPOXMLDOC01-appb-C000012
    (但し、式中mは1~4の整数を表わし、nは1~10の整数を表わす。)
    (2)アルキレンオキサイド基及び少なくとも2つの(メタ)アクリロイル基を有するモノマー10~60質量部
    (3)分子内に1つの(メタ)アクリロイル基及び芳香族環構造を有するモノマー10~50質量部
    (4)分子内に1つの(メタ)アクリロイル基及び脂環構造を有するモノマー0~20質量部
    (5)エポキシ(メタ)アクリレート0~20質量部
    (6)光重合開始剤0.1~10質量部
    The laminated sheet according to any one of claims 1 to 4, wherein the film layer comprises a composition containing the compounds shown in the following (1) to (6).
    (1) 20 to 60 parts by mass of a urethane (meth) acrylate oligomer represented by the following [Chemical Formula 1]
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, m represents an integer of 1 to 4, and n represents an integer of 1 to 10.)
    (2) 10 to 60 parts by mass of a monomer having an alkylene oxide group and at least two (meth) acryloyl groups (3) 10 to 50 parts by mass of a monomer having one (meth) acryloyl group and an aromatic ring structure in the molecule ( 4) Monomer having 1 (meth) acryloyl group and alicyclic structure in the molecule 0 to 20 parts by mass (5) Epoxy (meth) acrylate 0 to 20 parts by mass (6) Photopolymerization initiator 0.1 to 10 parts by mass Part
  6.  ハードコート層が、以下の(1)~(4)に示す化合物を含有する組成物からなることを特徴とする請求項1~5のいずれか記載の積層シート。
    (1)側鎖に少なくとも1つの(メタ)アクリロイルオキシ基及び下記[化2]で表わされる構造を含む重合体及び/又は分子内に少なくとも1つの(メタ)アクリロイルオキシ基と、フルオロアルキレンオキサイド基とを有する重合体5~20質量部
    Figure JPOXMLDOC01-appb-C000013
    (但し、nは5~100の整数を表す。)
    (2)分子内に少なくとも3つの(メタ)アクリロイル基を含有するモノマー30~60質量部
    (3)分子内に1つの(メタ)アクリロイル基及び環構造を有するモノマー0~20質量部
    (4)光重合開始剤0.1~10質量部
    The laminated sheet according to any one of claims 1 to 5, wherein the hard coat layer comprises a composition containing the following compounds (1) to (4).
    (1) A polymer containing at least one (meth) acryloyloxy group in the side chain and a structure represented by the following [Chemical Formula 2] and / or at least one (meth) acryloyloxy group in the molecule, and a fluoroalkylene oxide group 5 to 20 parts by mass of a polymer having
    Figure JPOXMLDOC01-appb-C000013
    (However, n represents an integer of 5 to 100.)
    (2) 30 to 60 parts by mass of a monomer containing at least three (meth) acryloyl groups in the molecule (3) 0 to 20 parts by mass of a monomer having one (meth) acryloyl group and a ring structure in the molecule (4) Photopolymerization initiator 0.1 to 10 parts by mass
  7.  粘着材層が、以下の(1)~(3)に示す化合物を含有する組成物からなることを特徴とする請求項3~6のいずれか記載の積層シート。
    (1)下記[化3]の骨格を有し、1分子当たりの平均官能基数が1~2であり、かつ分子量が10000以上のウレタン(メタ)アクリレート50~90質量部
    Figure JPOXMLDOC01-appb-C000014
    (但し、式中、Rは炭素数4以上のアルキル基、Rは脂肪族イソシアネート化合物残基、Rは分子量300以上のポリオール残基、Rは水素又は炭素数4以上のアルキルアクリレート基を表わす。)
    (2)分子内に1つの(メタ)アクリロイル基及び炭素数4以上の脂肪族構造を有する化合物10~50質量部
    (3)光重合開始剤1~10質量部
    The laminated sheet according to any one of claims 3 to 6, wherein the pressure-sensitive adhesive layer is composed of a composition containing the following compounds (1) to (3).
    (1) Urethane (meth) acrylate having a skeleton of the following [Chemical Formula 3], an average number of functional groups per molecule of 1 to 2, and a molecular weight of 10,000 or more, 50 to 90 parts by mass
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, R 1 is an alkyl group having 4 or more carbon atoms, R 2 is an aliphatic isocyanate compound residue, R 3 is a polyol residue having a molecular weight of 300 or more, and R 4 is hydrogen or an alkyl acrylate having 4 or more carbon atoms. Represents a group.)
    (2) 10 to 50 parts by mass of a compound having one (meth) acryloyl group and an aliphatic structure having 4 or more carbon atoms in the molecule (3) 1 to 10 parts by mass of a photopolymerization initiator
  8.  光重合開始剤が、分子量300以上のαヒドロキシアセトフェノン誘導体、又はベンゾフェノン誘導体であることを特徴とする請求項5~7のいずれか記載の積層シート。 8. The laminated sheet according to claim 5, wherein the photopolymerization initiator is an α-hydroxyacetophenone derivative or a benzophenone derivative having a molecular weight of 300 or more.
  9.  請求項1~8のいずれか記載の積層シートからなる光ディスク用保護フィルム。 An optical disk protective film comprising the laminated sheet according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか記載の積層シートを少なくとも1層積層してなる光記録媒体。 An optical recording medium obtained by laminating at least one layer of the laminated sheet according to any one of claims 1 to 8.
PCT/JP2008/003853 2007-12-26 2008-12-19 Multilayer sheet and optical recording medium WO2009081556A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007334519 2007-12-26
JP2007-334519 2007-12-26
JP2007-335850 2007-12-27
JP2007335850 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009081556A1 true WO2009081556A1 (en) 2009-07-02

Family

ID=40800874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003853 WO2009081556A1 (en) 2007-12-26 2008-12-19 Multilayer sheet and optical recording medium

Country Status (1)

Country Link
WO (1) WO2009081556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660842B (en) * 2014-12-26 2019-06-01 日商三菱化學股份有限公司 Laminate and display cover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048798A (en) * 2004-08-02 2006-02-16 Lintec Corp Sheet for forming protective layer of optical recording medium, optical recording medium and manufacturing method of those
JP2006052270A (en) * 2004-08-10 2006-02-23 Sony Chem Corp Non-solvent type photocurable resin composition for protective film
JP2007213744A (en) * 2006-02-13 2007-08-23 Mitsubishi Rayon Co Ltd Optical information medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048798A (en) * 2004-08-02 2006-02-16 Lintec Corp Sheet for forming protective layer of optical recording medium, optical recording medium and manufacturing method of those
JP2006052270A (en) * 2004-08-10 2006-02-23 Sony Chem Corp Non-solvent type photocurable resin composition for protective film
JP2007213744A (en) * 2006-02-13 2007-08-23 Mitsubishi Rayon Co Ltd Optical information medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660842B (en) * 2014-12-26 2019-06-01 日商三菱化學股份有限公司 Laminate and display cover

Similar Documents

Publication Publication Date Title
JP5209310B2 (en) Photosensitive resin composition, cured product thereof, and film containing the same
JPWO2008001855A1 (en) Active energy ray-curable composition, transparent film comprising the composition, and optical disk using the film
JP2009173888A (en) Multilayer sheet and optical recording medium
JP2013537857A (en) Curable resin composition and multilayer laminate produced using the same
EP2346044A1 (en) Uv-curable resin compositions for optical discs and cured products thereof
US20070218374A1 (en) Photo-Curable Transfer Sheet, Process For The Preparation Of Optical Information Recording Medium Using The Sheet, And Optical Information Recording Medium
JP2003263780A (en) Optical information medium
JP2003119231A (en) Active energy-ray-curing composition for optical disk and optical disk
JP2010043194A (en) Curable composition and optical information-recording medium
JP2009173016A (en) Laminate sheet and optical recording medium
JP5294533B2 (en) Curable composition and article having the cured product
TW530187B (en) Radiation curable adhesive for digital versatile disc
JP5662005B2 (en) Curable resin composition and multilayer structure produced using the composition
US6335382B1 (en) Ultraviolet-curable adhesive for bonding optical disks
JP5133116B2 (en) Curable composition and optical information medium
JP4323279B2 (en) Curable composition for intermediate layer of optical recording medium, and optical recording medium
JP2007080448A (en) Optical information medium
JP2011246517A (en) Active energy ray-curable resin composition, concavo-convex shaped article, and optical recording medium
JP2009140599A (en) Optical information recording medium
WO2009081556A1 (en) Multilayer sheet and optical recording medium
JP2006188589A (en) Active energy ray-curable resin composition and cured film obtained from the composition
JP2008088382A (en) Curable composition, its cured product and optical information medium
JP4658858B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2009154372A (en) Laminating sheet and optical recording medium
JP2010065193A (en) Curable composition, cured product, and optical information medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863894

Country of ref document: EP

Kind code of ref document: A1