JP2006188589A - Active energy ray-curable resin composition and cured film obtained from the composition - Google Patents
Active energy ray-curable resin composition and cured film obtained from the composition Download PDFInfo
- Publication number
- JP2006188589A JP2006188589A JP2005000938A JP2005000938A JP2006188589A JP 2006188589 A JP2006188589 A JP 2006188589A JP 2005000938 A JP2005000938 A JP 2005000938A JP 2005000938 A JP2005000938 A JP 2005000938A JP 2006188589 A JP2006188589 A JP 2006188589A
- Authority
- JP
- Japan
- Prior art keywords
- component
- active energy
- resin composition
- energy ray
- curable resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Macromonomer-Based Addition Polymer (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
本発明は、紫外線、電子線などの活性エネルギー線により硬化する活性エネルギー線硬化性樹脂組成物および当該組成物から得られる硬化フィルムに関する。更に詳細には、本発明の活性エネルギー線硬化性樹脂組成物は柔軟性、透明性、水蒸気バリアー性に優れ、且つ加熱収縮率が極めて小さい硬化膜を形成しうるため、各種保護フィルムの用途に有用である。 The present invention relates to an active energy ray-curable resin composition that is cured by active energy rays such as ultraviolet rays and electron beams, and a cured film obtained from the composition. More specifically, the active energy ray-curable resin composition of the present invention is excellent in flexibility, transparency, and water vapor barrier properties, and can form a cured film having a very small heat shrinkage rate. Useful.
従来、プラスチックフィルムは、物品保護、意匠性、その他の機能性付与などの観点で各種用途に使用されている。プラスチックフィルムの製造方法としては、熱可塑性樹脂を加温・溶融させて成型する押出法またはカレンダー法が一般的であるが、その他の方法として、熱可塑性樹脂の溶剤溶液をキャストしてフィルム化するキャスティング法、活性エネルギー線硬化性樹脂を硬化させてフィルム化する方法などが知られている。 Conventionally, plastic films have been used in various applications from the viewpoints of article protection, design properties, and other functionalities. As a method for producing a plastic film, an extrusion method or a calender method in which a thermoplastic resin is heated and melted for molding is generally used. As another method, a solvent solution of the thermoplastic resin is cast to form a film. A casting method, a method of curing an active energy ray-curable resin to form a film, and the like are known.
押出法またはカレンダー法による場合は、得られるフィルムの厚み方向の寸法精度が通常±5%程度、高価な精密装置を使用しても±3%程度であり、±1%以内という目標を達成するのは困難である。また、押出方向に引っ張りながら製造するので、フィルムの複屈折率が大きいという欠点もある。 In the case of the extrusion method or the calendering method, the dimensional accuracy in the thickness direction of the obtained film is usually about ± 5%, even if an expensive precision device is used, about ± 3%, and the target of within ± 1% is achieved. It is difficult. Moreover, since it manufactures, pulling in an extrusion direction, there also exists a fault that the birefringence of a film is large.
キャスティング法によれば、寸法精度が高く複屈折率の小さいフィルムを収得しやすい。しかし、当該フィルム製造時の回収溶剤の問題、残留溶剤に起因して製造フィルム中にボイド(気泡)が発生するなどの欠点がある。製造条件を緩和し、残留溶剤の影響を最小限にすることにより、ボイドのないフィルムを製造することも可能ではあるが、生産性が劣り、生産コストが極めて高くなる不利がある。 According to the casting method, it is easy to obtain a film having a high dimensional accuracy and a small birefringence. However, there are drawbacks such as the problem of the recovered solvent at the time of manufacturing the film and the generation of voids (bubbles) in the manufactured film due to the residual solvent. Although it is possible to manufacture a film without voids by relaxing the manufacturing conditions and minimizing the influence of the residual solvent, there is a disadvantage that the productivity is inferior and the production cost is extremely high.
活性エネルギー線硬化法による場合は、平滑な剥離フィルムに無溶剤液状活性エネルギー線硬化性樹脂を一定膜厚で塗工し、活性エネルギー線を照射、硬化し、剥離フィルムより剥離することで目的のフィルムが得られる。この製造方法で得られるフィルムは、寸法精度が高く、さらに複屈折、透明性、耐候性に優れている。またこの製造方法は、省エネルギー化、加工処理速度の向上など生産面での利点がある。 When using the active energy ray curing method, a solvent-free liquid active energy ray curable resin is applied to a smooth release film at a certain thickness, irradiated with an active energy ray, cured, and peeled off from the release film. A film is obtained. The film obtained by this production method has high dimensional accuracy and is excellent in birefringence, transparency and weather resistance. Further, this manufacturing method has advantages in terms of production such as energy saving and improvement of processing speed.
しかし、前記利点を有する活性エネルギー線硬化法で得られたフィルムを保護フィルムとして使用する場合には、一般的に高温高湿下での信頼性が要求されるため、水蒸気バリアー性が低いフィルムでは、当該環境下で、保護フィルムが吸湿して水分が保護対象物に移行、浸透しやすく、極端な場合には保護フィルムが膨潤して基材から剥離してしまうことがある。 However, when a film obtained by the active energy ray curing method having the above-mentioned advantages is used as a protective film, generally, reliability under high temperature and high humidity is required. In such an environment, the protective film absorbs moisture and moisture easily migrates and penetrates into the object to be protected. In extreme cases, the protective film may swell and peel from the substrate.
ところで、各種保護フィルムは基材(保護対象物)と接着させる場合があるが、当該加熱接着時にフィルムの加熱収縮率が大きいと、基材と保護フィルムとの接着不良が生じて歩留まりや生産性が低下したり、生産コストが極めて高くなるという欠点がある。また、得られた製品の熱劣化が生じることも多い。また、基材が平滑板状ではなく、湾曲していたり、凹凸があるような場合には、柔軟性が低い保護フィルムでは基材形状に追随できず、保護フィルムにクラックが生じる場合もある。 By the way, there are cases where various protective films are adhered to a base material (object to be protected), but if the heat shrinkage rate of the film is large at the time of the heat adhesion, adhesion failure between the base material and the protective film occurs, yield and productivity. There is a drawback that the production cost is reduced or the production cost is extremely high. In addition, thermal degradation of the obtained product often occurs. Moreover, when the base material is not a smooth plate shape but is curved or has irregularities, a protective film with low flexibility cannot follow the base material shape and a crack may occur in the protective film.
水蒸気バリアー性が良好な保護フィルムを提供しうる活性エネルギー線樹脂組成物として、ポリカーボネートジオールと有機ジイソシアネートならびにヒドロキシ(メタ)アクリレートを反応させて得られるウレタンオリゴマーと、ホモポリマーのガラス転移温度が55℃以上である(メタ)アクリレートモノマーからなる組成物が開示されている(特許文献1参照)。当該文献に記載された組成物は、構成成分としてポリカーボネートオリゴマー成分を用いているため、得られる硬化皮膜の水蒸気バリアー性および柔軟性が良好であり、活性エネルギー線硬化性の光ファイバー被覆剤などの用途に好適であると記載されている。しかし、当該文献には、当該硬化皮膜の加熱収縮に関しては、一切の教示も示唆もされていないが、本願人の知見では、当該硬化皮膜は水蒸気バリアー性および柔軟性には優れるものの、加熱収縮率が高く、従って上記のような保護フィルムとしては必ずしも満足できるものではない。 As an active energy ray resin composition capable of providing a protective film with good water vapor barrier properties, a urethane oligomer obtained by reacting polycarbonate diol, organic diisocyanate and hydroxy (meth) acrylate, and a glass transition temperature of a homopolymer of 55 ° C. The composition which consists of the (meth) acrylate monomer which is the above is disclosed (refer patent document 1). Since the composition described in this document uses a polycarbonate oligomer component as a constituent component, the resulting cured film has good water vapor barrier properties and flexibility, and is used for active energy ray-curable optical fiber coating agents, etc. It is described as being suitable. However, although there is no teaching or suggestion regarding the heat shrinkage of the cured film in the document, according to the knowledge of the present applicant, although the cured film is excellent in water vapor barrier property and flexibility, Therefore, the protective film is not always satisfactory.
本発明は、上記の背景技術に鑑みなされたものであり、その目的は、透明性、柔軟性、水蒸気バリアー性に優れ、且つ加熱収縮率が極めて低いフィルムを形成しうる、活性エネルギー線硬化性樹脂組成物を提供することにある。 The present invention has been made in view of the above-described background art, and the purpose thereof is active energy ray curable, which can form a film having excellent transparency, flexibility, water vapor barrier properties and extremely low heat shrinkage. The object is to provide a resin composition.
本発明者は、前記課題を解決すべく鋭意研究を行った結果、特定のウレタンアクリレートオリゴマーおよび特定のモノマーからなる活性エネルギー線硬化性樹脂組成物が、柔軟性、水蒸気バリアー性に優れ、且つ加熱収縮率が極めて低いという諸物性を同時に満足する透明硬化フィルムを提供できるという知見を得た。本発明は斯かる知見に基づき完成されたものである。 As a result of intensive studies to solve the above problems, the present inventor has found that an active energy ray-curable resin composition comprising a specific urethane acrylate oligomer and a specific monomer is excellent in flexibility, water vapor barrier properties, and heating. The inventor has obtained the knowledge that a transparent cured film can be provided which simultaneously satisfies the physical properties of extremely low shrinkage. The present invention has been completed based on such findings.
すなわち本発明は、水酸基価が100〜500mgKOH/gの範囲内であるポリカーボネートジオールおよび/または水酸基価が100〜1,810mgKOH/gの範囲内であるポリアルキルジオール(a1)、脂肪族ジイソシアネート(a2)、ならびにヒドロキシ(メタ)アクリレート(a3)を、(a1)成分の水酸基/(a2)成分のイソシアネート基(当量比)が0.6〜0.9の割合となるようにして反応させたウレタンアクリレートオリゴマー(A)と、分子中に脂肪族環状構造および/または芳香族環状構造と1つの(メタ)アクリロイル基を有するモノマー(B)とを含有し、且つそれらの配合割合(質量)〔(A)/((A)+(B))〕が0.3〜0.6の範囲内である活性エネルギー線硬化性樹脂組成物に係る。また本発明は、当該活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射し、硬化させて得られる硬化フィルムに係る。 That is, the present invention relates to a polycarbonate diol having a hydroxyl value in the range of 100 to 500 mgKOH / g and / or a polyalkyldiol (a1) having a hydroxyl value in the range of 100 to 1,810 mgKOH / g, an aliphatic diisocyanate (a2 ) And hydroxy (meth) acrylate (a3), such that the hydroxyl group of component (a1) / isocyanate group (equivalent ratio) of component (a2) are in a ratio of 0.6 to 0.9. It contains an acrylate oligomer (A), a monomer (B) having an aliphatic cyclic structure and / or aromatic cyclic structure and one (meth) acryloyl group in the molecule, and their blending ratio (mass) [( A) / ((A) + (B))] relates to an active energy ray-curable resin composition in the range of 0.3 to 0.6.The present invention also relates to a cured film obtained by irradiating the active energy ray-curable resin composition with an active energy ray and curing it.
上記構成による本発明の活性エネルギー線硬化性樹脂組成物は、前記ウレタンアクリレートオリゴマー(A)〔以下、(A)成分という〕に起因して、強靭性、柔軟性に優れた硬化フィルムを提供できる。また、前記モノマー(B)〔以下、(B)成分という〕が(A)成分との相溶性に優れ、(A)成分が当該樹脂組成物中に均一に溶解することにより、透明性に優れた硬化フィルムが得られる。更に、(A)および(B)成分に起因して、水蒸気バリアー性に優れ、加熱収縮率の低い硬化フィルムが得られる。本発明の活性エネルギー線硬化性樹脂組成物が有するこれらの諸特性に基づき、各種基材(プラスチック成型品、金属、木材など)に適用される場合に懸念されていた従来の保護フィルムが有する問題点、例えば、基材との接着不良、保護フィルムのクラック発生などを、悉く解消することができる。 The active energy ray-curable resin composition of the present invention having the above configuration can provide a cured film excellent in toughness and flexibility due to the urethane acrylate oligomer (A) [hereinafter referred to as the component (A)]. . Further, the monomer (B) [hereinafter referred to as the component (B)] has excellent compatibility with the component (A), and the component (A) is uniformly dissolved in the resin composition, so that it has excellent transparency. A cured film is obtained. Furthermore, due to the components (A) and (B), a cured film having excellent water vapor barrier properties and a low heat shrinkage rate can be obtained. Based on these characteristics of the active energy ray-curable resin composition of the present invention, problems with conventional protective films that have been a concern when applied to various substrates (plastic molded products, metals, wood, etc.) A point, for example, adhesion failure with a base material, generation | occurrence | production of the crack of a protective film, etc. can be eliminated ugly.
本発明の活性エネルギー線硬化性樹脂組成物における(A)成分は、水酸基価が100〜500mgKOH/gの範囲内であるポリカーボネートジオールおよび/または水酸基価が100〜1,810mgKOH/gの範囲内であるポリアルキルジオール〔以下、併せて(a1)成分という〕と、脂肪族ジイソシアネート(a2)〔以下(a2)成分という〕とを特定の比率で反応させて得られるウレタンプレポリマー中の残存イソシアネート基に、ヒドロキシ(メタ)アクリレート(a3)〔以下(a3)成分という〕を反応させて得られるものである。 The component (A) in the active energy ray-curable resin composition of the present invention is a polycarbonate diol having a hydroxyl value in the range of 100 to 500 mgKOH / g and / or a hydroxyl value in the range of 100 to 1,810 mgKOH / g. Residual isocyanate groups in a urethane prepolymer obtained by reacting a certain polyalkyldiol [hereinafter referred to collectively as component (a1)] and aliphatic diisocyanate (a2) [hereinafter referred to as component (a2)] at a specific ratio And hydroxy (meth) acrylate (a3) [hereinafter referred to as component (a3)].
(a1)成分のうち、前記で特定されたポリカーボネートジオールとは、カーボネート結合により炭化水素鎖が連結し末端に水酸基を有する化合物であり、その水酸基価は100〜500mgKOH/gの範囲内である。具体的には1.4−ブタンジオール、1,6−ヘキサンジオール、3−メチルペンタンジオール、シクロヘキサンジメタノール等がカーボネート結合により連結したジオール等があげられる。水酸基価が100mgKOH/g未満のものを使用した場合には、本発明におけるような優れた水蒸気バリアー性は発現されない。水酸基価が500mgKOH/gを超えるものを使用した場合には、ウレタン化反応の際、反応物粘度が極めて高くなり、反応が進行しにくくなり合成が困難となる傾向がある他、入手も困難な場合が多い。 Among the components (a1), the polycarbonate diol specified above is a compound having a hydrocarbon chain linked by a carbonate bond and having a hydroxyl group at the terminal, and the hydroxyl value thereof is in the range of 100 to 500 mgKOH / g. Specific examples include diols in which 1.4-butanediol, 1,6-hexanediol, 3-methylpentanediol, cyclohexanedimethanol and the like are linked by a carbonate bond. When a hydroxyl value of less than 100 mgKOH / g is used, excellent water vapor barrier properties as in the present invention are not exhibited. When a hydroxyl value exceeding 500 mgKOH / g is used, the viscosity of the reaction product becomes extremely high during the urethanization reaction, the reaction does not proceed easily and the synthesis tends to be difficult, and it is difficult to obtain. There are many cases.
(a1)成分のうち、前記で特定されたポリアルキルジオールは、末端の水酸基以外は炭化水素鎖である化合物であり、水酸基価が100〜1,810mgKOH/gの範囲内のものである。具体的には、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、2−メチルペンタンジオール、3−メチルペンタンジオール、1,9−ノナンジオール、ブチルエチルプロパンジオール、1,12−ドデカンジオール等の低分子量ジオールや、シクロヘキサンジメタノール、水素化ビスフェノールA等の脂肪族環状構造を有するジオールがあげられる。水酸基価が100mgKOH/g未満のものを使用した場合には、ウレタンアクリレートが、本発明で必須構成成分である分子中に脂肪族環状構造および/または芳香族環状構造と1つの(メタ)アクリロイル基を有するモノマーとの相溶性が悪くなる傾向があり、均一な液状透明組成物および透明硬化物が得られない。水酸基価が1,810mgKOH/gを超えるものを使用した場合には、ウレタン化反応の際、反応物粘度が極めて高くなり、反応が進行しにくくなり合成が困難となる傾向がある他、入手も困難な場合が多い。 Among the components (a1), the polyalkyldiol specified above is a compound that is a hydrocarbon chain other than the terminal hydroxyl group, and has a hydroxyl value in the range of 100 to 1,810 mgKOH / g. Specifically, ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 2-methylpentanediol, 3-methylpentanediol, 1,9-nonanediol, butylethyl Examples thereof include low molecular weight diols such as propanediol and 1,12-dodecanediol, and diols having an aliphatic cyclic structure such as cyclohexanedimethanol and hydrogenated bisphenol A. When a hydroxyl group having a hydroxyl value of less than 100 mgKOH / g is used, the urethane acrylate has an aliphatic cyclic structure and / or an aromatic cyclic structure and one (meth) acryloyl group in the molecule which is an essential component in the present invention. There exists a tendency for compatibility with the monomer which has this to worsen, and a uniform liquid transparent composition and transparent cured | curing material cannot be obtained. When a hydroxyl value exceeding 1,810 mgKOH / g is used, the viscosity of the reaction product becomes extremely high during the urethanization reaction, the reaction does not proceed easily, and the synthesis tends to be difficult. Often difficult.
(a2)成分は、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ω,ω’−ジイソシアネートジメチルシクロヘキサン、リジンジイソシアネート等の脂肪族ジイソシアネートが挙げられる。芳香族ジイソシアネートを使用した場合には、硬化フィルムの耐候性が低下する傾向があるため、脂肪族ジイソシアネートを使用するのが好ましい。 The component (a2) is, for example, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2,4′-diisocyanate, ω, ω′-diisocyanate dimethyl. Aliphatic diisocyanates such as cyclohexane and lysine diisocyanate can be mentioned. When an aromatic diisocyanate is used, it is preferable to use an aliphatic diisocyanate because the weather resistance of the cured film tends to decrease.
(a3)成分は、分子中に水酸基と(メタ)アクリロイル基を各1個有する化合物であり、例えば、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等が挙げられる。分子中に一つの水酸基と二つ以上の(メタ)アクリロイル基とを有する化合物を用いた場合には、得られる硬化フィルムの柔軟性が低下する傾向があるため、(a3)成分としては使用できない。 The component (a3) is a compound having one hydroxyl group and one (meth) acryloyl group in the molecule. For example, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) An acrylate etc. are mentioned. When a compound having one hydroxyl group and two or more (meth) acryloyl groups in the molecule is used, since the flexibility of the resulting cured film tends to be lowered, it cannot be used as the component (a3). .
(A)成分を製造するには、従来公知の各種の製造方法を採用でき、例えば、(a1)成分、(a2)成分および(a3)成分を一括仕込みし、同時に反応させる方法(1)、(a1)成分と(a3)成分を反応させた後、(a2)成分を反応させる方法(2)、(a1)成分と(a2)成分を反応させた後、(a3)成分を反応させる方法(3)などがあり、適宜に選択することができるが、ウレタンアクリレートの高分子量化、低分子量成分の削減の点からは方法(3)が好ましい。以下に、方法(3)について、より詳細に説明する。(a1)成分と過剰の(a2)成分とを、公知のウレタン化触媒の存在下に、60〜90℃程度、好ましくは70〜85℃で反応させる。当該反応においては、反応時の粘度調整や副反応の防止の観点から、必要に応じて(a2)成分に対して不活性なアクリルモノマーを希釈剤として存在させることもできる。(a1)成分の水酸基/(a2)成分のイソシアネート基(当量比)は0.6〜0.9程度、好ましくは0.65〜0.9である。当該比率が0.6未満では、最終的に得られる(A)成分中に、低分子量ウレタン(メタ)アクリレートが多く含有されることになり、得られる硬化膜が脆くなる。また当該比率が0.9を超える場合は、末端イソシアネート基の数が極端に減少し、目的とする(A)成分が得られ難くなる。 In order to produce the component (A), various conventionally known production methods can be employed. For example, the method (1) in which the components (a1), (a2) and (a3) are charged together and reacted simultaneously. A method of reacting the component (a1) and the component (a3) and then reacting the component (a2) (2), a method of reacting the component (a1) and the component (a2) and then reacting the component (a3) (3) and the like, and can be selected as appropriate, but the method (3) is preferable from the viewpoint of increasing the molecular weight of urethane acrylate and reducing the low molecular weight components. Hereinafter, the method (3) will be described in more detail. The component (a1) and the excess component (a2) are reacted in the presence of a known urethanization catalyst at about 60 to 90 ° C, preferably 70 to 85 ° C. In the reaction, an acrylic monomer that is inactive with respect to the component (a2) can be present as a diluent as necessary from the viewpoint of adjusting the viscosity during the reaction and preventing side reactions. The hydroxyl group of component (a1) / isocyanate group (equivalent ratio) of component (a2) is about 0.6 to 0.9, preferably 0.65 to 0.9. If the ratio is less than 0.6, the component (A) finally obtained contains a large amount of low molecular weight urethane (meth) acrylate, and the resulting cured film becomes brittle. Moreover, when the said ratio exceeds 0.9, the number of terminal isocyanate groups will reduce extremely and it will become difficult to obtain the target (A) component.
(a1)成分と(a2)成分とを反応させて得られたウレタンプレポリマーに、ついで(a3)成分を反応させるが、反応温度は通常60〜90℃程度、好ましくは70〜85℃とするのがよい。当該反応において、ウレタンプレポリマーと(a3)成分との使用割合は、〔ウレタンプレポリマーの残存イソシアネート基/(a3)成分の水酸基〕(当量比)を考慮して決定され、通常は当該比率が1.0〜1.1、好ましくは1.0〜1.05の範囲である。当該比率が1.0未満では、最終的に得られる(A)成分中に、未反応イソシアネート基が残存することになり、得られる組成物が、経時で増粘、ゲル化等安定性が悪くなる傾向がある。また当該比率が1.1を超える場合は、未反応(a3)成分が残存することになり、本発明におけるような優れた水蒸気バリアー性は発現されない。 The component (a3) is then reacted with the urethane prepolymer obtained by reacting the component (a1) and the component (a2), and the reaction temperature is usually about 60 to 90 ° C, preferably 70 to 85 ° C. It is good. In the reaction, the proportion of the urethane prepolymer and the component (a3) used is determined in consideration of [residual isocyanate group of the urethane prepolymer / hydroxyl group of the component (a3)] (equivalent ratio). The range is 1.0 to 1.1, preferably 1.0 to 1.05. If the ratio is less than 1.0, unreacted isocyanate groups remain in the finally obtained component (A), and the resulting composition has poor stability such as thickening and gelation over time. Tend to be. Moreover, when the said ratio exceeds 1.1, an unreacted (a3) component will remain and the outstanding water vapor | steam barrier property in this invention is not expressed.
また、なお、(a3)成分との使用割合を次のように示すこともできる。すなわち、(a3)成分の水酸基/(a2)成分のイソシアネート基(当量比)が0.1〜0.4、好ましくは0.1〜0.35の範囲である。当該比率が0.1未満では、最終的に得られる(A)成分中に、未反応イソシアネート基が残存することになり、得られる組成物が、経時で増粘、ゲル化等安定性が悪くなる傾向がある。また当該比率が0.4を超える場合は、未反応(a3)成分が残存することになり、本発明におけるような優れた水蒸気バリアー性は発現されない。 In addition, the use ratio with the component (a3) can also be shown as follows. That is, the hydroxyl group of component (a3) / isocyanate group (equivalent ratio) of component (a2) is in the range of 0.1 to 0.4, preferably 0.1 to 0.35. If the ratio is less than 0.1, unreacted isocyanate groups remain in the finally obtained component (A), and the resulting composition has poor stability such as thickening and gelation over time. Tend to be. Moreover, when the said ratio exceeds 0.4, an unreacted (a3) component will remain and the outstanding water vapor | steam barrier property in this invention is not expressed.
更には、(a1)成分と(a2)成分と(a3)成分の相互の使用割合は次のように示すことができる。すなわち、〔(a1)成分の水酸基+(a3)成分の水酸基〕/(a2)成分のイソシアネート基(当量比)が1.0〜1.1、好ましくは1.0〜1.05の範囲である。当該比率が1.0未満では、最終的に得られる(A)成分中に、未反応イソシアネート基が残存することになり、得られる組成物が、経時で増粘、ゲル化等安定性が悪くなる傾向がある。また当該比率が1.1を超える場合は、未反応(a3)成分が残存することになり、本発明におけるような優れた水蒸気バリアー性は発現されない。 Furthermore, the mutual use ratio of the component (a1), the component (a2) and the component (a3) can be shown as follows. That is, [the hydroxyl group of component (a1) + the hydroxyl group of component (a3)] / isocyanate group (equivalent ratio) of component (a2) is in the range of 1.0 to 1.1, preferably 1.0 to 1.05. is there. If the ratio is less than 1.0, unreacted isocyanate groups remain in the finally obtained component (A), and the resulting composition has poor stability such as thickening and gelation over time. Tend to be. Moreover, when the said ratio exceeds 1.1, an unreacted (a3) component will remain and the outstanding water vapor | steam barrier property in this invention is not expressed.
なお、前記の残存イソシアネート基の定量は、例えばJIS K1556に準拠して、水酸基当量数の定量は、例えばJIS K1557に準拠して測定することができる。 The quantification of the residual isocyanate group can be measured, for example, according to JIS K1556, and the quantification of the number of hydroxyl equivalents can be measured, for example, according to JIS K1557.
上記手法により合成される(A)成分のGPC測定、ポリスチレン換算での重量平均分子量は10,000〜50,000、好ましくは10,000〜30,000の範囲内である。重量平均分子量が10,000未満の場合は、本発明におけるような低い加熱収縮率を発現しない。重量平均分子量が50,000以上の場合は、得られる樹脂組成物の粘度が非常に高くなり、フィルムを製造する際、塗布むらやうねりが生じ、目的とする一定膜厚の寸法精度の高いフィルム得るのが困難となる。 The GPC measurement of the component (A) synthesized by the above method, the weight average molecular weight in terms of polystyrene is in the range of 10,000 to 50,000, preferably 10,000 to 30,000. When the weight average molecular weight is less than 10,000, the low heat shrinkage rate in the present invention is not exhibited. When the weight average molecular weight is 50,000 or more, the viscosity of the resulting resin composition becomes very high, and when the film is produced, coating unevenness and undulation occur, and the desired film having a high dimensional accuracy with a certain film thickness. It becomes difficult to obtain.
(B)成分は、脂肪族環状構造および/または芳香族環状構造を有し、且つ分子中に一つの(メタ)アクリロイル基を有する化合物であって、(A)成分以外のものである。具体的には、シクロヘキサン、ベンゼン等の単環式炭化水素に一つの(メタ)アクリロイル基が付加したもの、環が二個以上縮合した多環式炭化水素に(メタ)アクリロイル基が付加したもの、橋かけ環式炭化水素に(メタ)アクリロイル基が付加したものなど多種がある。更に具体的には、シクロヘキシル(メタ)アクリレート、EO変性フェノール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、EO変性クミルフェノール(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどがあげられる。なお、(B)成分の代わりに、脂肪族環状構造、芳香族環状構造鎖のいずれをも有しないモノマーを使用した場合には、得られる硬化フィルムは、本発明におけるような優れた水蒸気バリアー性や低い加熱収縮率を発現しない。また(B)成分の代わりに、分子中に二つ以上の(メタ)アクリロイル基を有する化合物を使用した場合には、得られる硬化フィルムは、脆く、柔軟性のないものとなり、また本発明におけるような低い加熱収縮率は発現されない。 The component (B) is a compound having an aliphatic cyclic structure and / or an aromatic cyclic structure and having one (meth) acryloyl group in the molecule, and is other than the component (A). Specifically, one (meth) acryloyl group added to a monocyclic hydrocarbon such as cyclohexane or benzene, or one (meth) acryloyl group added to a polycyclic hydrocarbon condensed with two or more rings There are various types such as those obtained by adding a (meth) acryloyl group to a bridged cyclic hydrocarbon. More specifically, cyclohexyl (meth) acrylate, EO-modified phenol (meth) acrylate, EO-modified nonylphenol (meth) acrylate, EO-modified cumylphenol (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) Examples include acrylate and dicyclopentanyl (meth) acrylate. In addition, when a monomer having neither an aliphatic cyclic structure nor an aromatic cyclic structure chain is used in place of the component (B), the resulting cured film has excellent water vapor barrier properties as in the present invention. Or low heat shrinkage. In addition, when a compound having two or more (meth) acryloyl groups in the molecule is used instead of the component (B), the resulting cured film is brittle and inflexible. Such a low heat shrinkage rate is not exhibited.
(A)成分および(B)成分の使用割合(質量)は、〔(A)/((A)+(B))〕が0.3〜0.6程度、好ましくは0.4〜0.5となるようにする。0.3より小さくなると、フィルム作成時の硬化性が悪く、多量の活性エネルギー線を照射しなくてはならず、生産性が悪化するととともに、得られるフィルムの柔軟性が不十分となる傾向がある。当該配合量が0.6を超える場合には、得られる樹脂組成物の粘度が非常に高くなり、一定膜厚の寸法精度の高いフィルムを作成するのが困難となったり、得られる硬化膜の水蒸気バリアー性が不十分となる傾向がある。 [(A) / ((A) + (B))] is about 0.3 to 0.6, preferably 0.4 to 0, in the use ratio (mass) of the component (A) and the component (B). To be 5. If it is less than 0.3, the curability at the time of film creation is poor, a large amount of active energy rays must be irradiated, the productivity deteriorates, and the flexibility of the resulting film tends to be insufficient. is there. When the blending amount exceeds 0.6, the viscosity of the resulting resin composition becomes very high, making it difficult to produce a film with a constant film thickness and high dimensional accuracy, Water vapor barrier properties tend to be insufficient.
本発明の樹脂組成物の粘度は通常1,000〜30,000mPa・s/25℃、好ましくは2,000〜20,000mPa・s/25℃である。粘度が高すぎると、フィルムを製造する際、塗布むらやうねりが生じ、目的とする一定膜厚の寸法精度の高いフィルム得るのが困難となる。逆に低すぎても、フィルム膜厚のコントロールが難しく、目的とする一定膜厚の寸法精度の高いフィルムが形成できない場合がある。 The viscosity of the resin composition of the present invention is usually 1,000 to 30,000 mPa · s / 25 ° C., preferably 2,000 to 20,000 mPa · s / 25 ° C. If the viscosity is too high, coating unevenness and undulation will occur when the film is produced, and it will be difficult to obtain a film with a desired constant film thickness and high dimensional accuracy. On the other hand, even if it is too low, it is difficult to control the film thickness, and it may be impossible to form a target film with a certain thickness and high dimensional accuracy.
本発明の活性エネルギー線硬化性樹脂組成物は、剥離フィルムまたはプラスチック基材に塗布された後、活性エネルギー線を照射することにより硬化する。活性エネルギー線としては、電子線、紫外線、可視光線などがある。紫外線、可視光線で硬化させる場合には、光重合開始剤が当該組成物に配合されるが、当該光重合開始剤としては格別の限定はなく各種公知のものを使用できる。具体的には、ベンゾイル安息香酸メチル、ベンゾイン、ベンジルジメチルケタール、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニル−1−プロパノン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−1−プロパノン、1−ヒドロキシシクロヘキシルフェニルケトン、2,4−ジエチルチオキサントン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、カンファーキノン、アントラセン、ベンジル、フェニルメチルグリオキシレートなどが挙げられる。これらの光重合開始剤は、それぞれ単独または組み合わせて使用することができる。本発明の樹脂組成物を紫外線、可視光線で硬化させるために最適な光重合開始剤の配合量は、全組成物中に、0.01〜10%程度、特に0.5〜5%が好ましい。配合の上限は、組成物の硬化特性、力学特性、光学特性、取り扱い等の点からこの範囲が好ましく、配合の下限は、硬化速度の低下防止の点からこの範囲が好ましい。 The active energy ray-curable resin composition of the present invention is cured by irradiating active energy rays after being applied to a release film or a plastic substrate. Examples of active energy rays include electron beams, ultraviolet rays, and visible rays. In the case of curing with ultraviolet light or visible light, a photopolymerization initiator is blended in the composition, but the photopolymerization initiator is not particularly limited and various known ones can be used. Specifically, methyl benzoylbenzoate, benzoin, benzyldimethyl ketal, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, 2-methyl-1- [4- (methylthio) phenyl] 2-morpholino-1-propanone, 1-hydroxycyclohexyl phenyl ketone, 2,4-diethylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide , Camphorquinone, anthracene, benzyl, phenylmethylglyoxylate and the like. These photopolymerization initiators can be used alone or in combination. The optimum amount of the photopolymerization initiator for curing the resin composition of the present invention with ultraviolet rays or visible rays is preferably about 0.01 to 10%, particularly preferably 0.5 to 5% in the entire composition. . The upper limit of the blending is preferably in this range from the viewpoints of the curing characteristics, mechanical characteristics, optical characteristics, handling, etc. of the composition, and the lower limit of the blending is preferably in this range from the viewpoint of preventing the curing rate from being lowered.
本発明の活性エネルギー線硬化性樹脂組成物の硬化速度を一層向上させるために、前記光重合開始剤と光増感剤とを併用してもよい。当該光増感剤の具体例としては、トリエタノールアミン、ジエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4,4’−ジエチルアミノベンゾフェノン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸−2−ジメチルアミノエチル、ジエチルアミノエチル(メタ)アクリレート、トリブチルホスフィンなどが挙げられ、これらはそれぞれ単独でまたは組み合わせて使用できる。本発明の樹脂組成物を紫外線、可視光線で硬化させるために最適な光増感剤の配合量は、全組成物中に、0.01〜10%程度、特に0.5〜5%が好ましい。配合の上限は、組成物の硬化特性、力学特性、光学特性、取り扱い等の点からこの範囲が好ましく、配合の下限は、添加効果が発現する量を示す。 In order to further improve the curing rate of the active energy ray-curable resin composition of the present invention, the photopolymerization initiator and the photosensitizer may be used in combination. Specific examples of the photosensitizer include triethanolamine, diethanolamine, methyldiethanolamine, triisopropanolamine, 4,4′-diethylaminobenzophenone, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and benzoic acid. -2-dimethylaminoethyl, diethylaminoethyl (meth) acrylate, tributylphosphine and the like can be mentioned, and these can be used alone or in combination. The optimum amount of the photosensitizer for curing the resin composition of the present invention with ultraviolet rays or visible rays is preferably about 0.01 to 10%, particularly preferably 0.5 to 5% in the entire composition. . The upper limit of the blending is preferably within this range from the viewpoints of the curing characteristics, mechanical characteristics, optical characteristics, handling, etc. of the composition, and the lower limit of the blending indicates the amount at which the addition effect is manifested.
また、本発明の活性エネルギー線硬化性樹脂組成物は、前記各種成分に加えて、表面平滑剤、界面活性剤、紫外線吸収剤、無機フィラー、シランカップリング剤、コロイダルシリカ、接着性改良剤、消泡剤、湿潤剤、防錆剤あるいは貯蔵安定剤などの添加剤を適宜配合することができる。 Moreover, the active energy ray-curable resin composition of the present invention includes, in addition to the above-mentioned various components, a surface smoothing agent, a surfactant, an ultraviolet absorber, an inorganic filler, a silane coupling agent, colloidal silica, an adhesion improver, Additives such as antifoaming agents, wetting agents, rust inhibitors and storage stabilizers can be appropriately blended.
本発明の活性エネルギー線硬化性樹脂組成物は、各種の基材(プラスチック成形品フィルム、シートなど)の表面に塗布され、重合硬化される。当該塗布方法としては、公知各種の方法を格別限定なく採用できる。当該硬化性樹脂組成物の塗布量としては、格別限定されず、用途に応じて適宜に決定できるが、通常は硬化膜厚が0.01〜100mm程度になる量とされる。膜厚が、0.01mm未満の場合は、硬化フィルムが脆く柔軟性が不十分となる傾向がある。また膜厚が100mmを超える場合には、硬化皮膜にクラック等が発生する傾向がある。 The active energy ray-curable resin composition of the present invention is applied to the surface of various base materials (plastic molded product films, sheets, etc.) and polymerized and cured. As the coating method, various known methods can be employed without any particular limitation. The coating amount of the curable resin composition is not particularly limited and can be appropriately determined according to the use, but is usually an amount that provides a cured film thickness of about 0.01 to 100 mm. When the film thickness is less than 0.01 mm, the cured film tends to be brittle and insufficient in flexibility. Moreover, when a film thickness exceeds 100 mm, there exists a tendency for a crack etc. to generate | occur | produce in a cured film.
紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整されるが、高圧水銀灯を使用する場合、80〜160W/cmの光量を有したランプ1灯に対して搬送速度5〜60m/分で硬化させるのが好ましい。一方、電子線により硬化させる場合、100〜500eVのエネルギーを有する電子線加速装置の使用が好ましい。 In the case of curing with ultraviolet rays, an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp is used as a light source, and the amount of light and the arrangement of the light source are adjusted as necessary. It is preferable to cure at a conveyance speed of 5 to 60 m / min for one lamp having a light quantity of 160 W / cm. On the other hand, when curing with an electron beam, it is preferable to use an electron beam accelerator having energy of 100 to 500 eV.
本発明の樹脂組成物を活性エネルギー線によって硬化させることにより得られる硬化物は、以下の物性を有するものであることが特に好ましい。一つは、樹脂組成物を硬化し得られる厚み100μmの硬化フィルムの、120℃で1時間加熱したときの加熱収縮率が1.5%以下、好ましくは1%以下となることである。この物性を満足するフィルムを与える樹脂組成物を用いることで、各種保護フィルムを形成した場合、優れた基材との密着性、耐熱性等を与える。加熱収縮率が1.5%を超えると、基材との接着不良、保護フィルムのクラック発生等を引き起こす場合がある。 It is particularly preferred that the cured product obtained by curing the resin composition of the present invention with active energy rays has the following physical properties. One is that the heat shrinkage rate of a cured film having a thickness of 100 μm obtained by curing the resin composition when heated at 120 ° C. for 1 hour is 1.5% or less, preferably 1% or less. By using a resin composition that gives a film satisfying these physical properties, when various protective films are formed, excellent adhesion to a substrate, heat resistance, and the like are given. If the heat shrinkage rate exceeds 1.5%, adhesion failure with the substrate, cracking of the protective film, etc. may be caused.
また、その硬化フィルムの透湿度は100g/m2・日以下、好ましくは70g/m2・日以下である。この物性を満足するフィルムを与える樹脂組成物を用いることで、各種保護フィルムを形成した場合、高温高湿下での優れた耐久性を与える。透湿度が100g/m2・日を超えると、当該環境下にて、保護フィルムが吸湿して水分が保護対象物に移行、浸透しやすく、極端な場合には保護フィルムが膨潤して基材から剥離してしまうことがある。 Further, the moisture permeability of the cured film is 100 g / m 2 · day or less, preferably 70 g / m 2 · day or less. By using a resin composition that provides a film satisfying these physical properties, when various protective films are formed, excellent durability under high temperature and high humidity is provided. When the moisture permeability exceeds 100 g / m 2 · day, the protective film absorbs moisture in the environment and moisture easily migrates and penetrates into the object to be protected. In extreme cases, the protective film swells and becomes a base material. May peel off.
更に、その硬化フィルムの伸度は10〜300%、好ましくは50〜200%の範囲である。この物性を満足するフィルムを与える樹脂組成物を用いることで、各種保護フィルムを形成した場合、優れた基材との密着性、形状追随性等を与える。伸度が10%未満であると、基材との接着不良、保護フィルムのクラック発生等を引き起こす場合がある。 Furthermore, the elongation of the cured film is in the range of 10 to 300%, preferably 50 to 200%. By using a resin composition that gives a film satisfying these physical properties, when various protective films are formed, excellent adhesion to a substrate, shape following property, and the like are given. If the elongation is less than 10%, poor adhesion to the substrate, cracking of the protective film, etc. may be caused.
以下に、実施例をあげて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお以下「部」及び「%」は、特記しない限りいずれも質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Hereinafter, “parts” and “%” are based on mass unless otherwise specified.
(活性エネルギー線硬化性樹脂組成物の合成)
実施例1
温度計、攪拌機、冷却管を備えた反応装置に、ポリカーボネートジオール(ダイセル化学工業(株)製、商品名「プラクセルCD205PL」、水酸基価224mgKOH/g)76.30部、ジシクロペンタニルアクリレート(日立化成工業(株)製、商品名「ファンクリルFA−513A」)200部、重合禁止剤としてのハイドロキノンモノメチルエーテル(川口化学工業(株)製、商品名「MQ」)0.2部、イソホロンジイソシアネート(デグサ社製、商品名「VESTANAT IPDI」)67.85部を仕込み、攪拌下80℃まで昇温し、1時間保温後、オクチル酸スズ(APIコーポレーション(株)製、商品名「スタノクト」)0.08部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、ポリカーボネートジオールを38.15部添加し、攪拌下80℃まで昇温し、1時間保温した後、ヒドロキシエチルアクリレート(大阪有機化学工業(株)製、商品名「HEA」)17.70部を添加した。そのまま攪拌下80℃で0.5時間反応させ、オクチル酸スズ0.08部を添加し、さらに80℃で1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物400部にハイドロキノンモノメチルエーテル0.2部、EO変性パラクミルフェノールアクリレート(東亞合成(株)製、商品名「アロニックスM−110」)100部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。当該組成物中のウレタンオリゴマー成分の重量平均分子量をGPC(装置:東ソー(株)製、商品名「HLC−8020」、カラム:東ソー(株)(株)製、商品名「G5000HXL」、「G4000HXL」、「G3000HXL」、「G2000HXL」)により測定し、測定値は11,800であった。また、当該組成物の粘度(25℃)はE型回転粘度計(東京計器(株)製)を用いて測定し、測定値は7,050mPa・sであった。
(Synthesis of active energy ray-curable resin composition)
Example 1
In a reaction apparatus equipped with a thermometer, a stirrer, and a condenser tube, 76.30 parts of polycarbonate diol (manufactured by Daicel Chemical Industries, trade name “Placcel CD205PL”, hydroxyl value 224 mgKOH / g), dicyclopentanyl acrylate (Hitachi) 200 parts by Kasei Kogyo Co., Ltd., trade name “Fancryl FA-513A”), 0.2 part hydroquinone monomethyl ether (trade name “MQ” by Kawaguchi Chemical Industries, Ltd.) as a polymerization inhibitor, isophorone diisocyanate (Degussa, trade name “VESTANAT IPDI”) was charged with 67.85 parts, heated to 80 ° C. with stirring, and incubated for 1 hour, then octylate (API Corporation, trade name “STANOCTO”). 0.08 part was added, and it heat-retained at 80 degreeC continuously for 1 hour. Subsequently, the internal temperature was reduced to 70 ° C. or less, 38.15 parts of polycarbonate diol was added, the temperature was raised to 80 ° C. with stirring, and the mixture was kept for 1 hour, and then hydroxyethyl acrylate (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.) "HEA") 17.70 parts was added. The mixture was allowed to react at 80 ° C. for 0.5 hours with stirring, 0.08 part of tin octylate was added, and the mixture was further reacted at 80 ° C. for 1.5 hours and sampled. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 400 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether and 100 parts of EO-modified paracumylphenol acrylate (trade name “Aronix M-110” manufactured by Toagosei Co., Ltd.) are added and mixed. Then, an active energy ray-curable resin composition was obtained. The weight average molecular weight of the urethane oligomer component in the composition is GPC (apparatus: manufactured by Tosoh Corp., trade name “HLC-8020”, column: manufactured by Tosoh Corp., trade names “G5000HXL”, “G4000HXL”. ”,“ G3000HXL ”,“ G2000HXL ”) and the measured value was 11,800. The viscosity (25 ° C.) of the composition was measured using an E-type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.), and the measured value was 7,050 mPa · s.
実施例2
実施例1において、前記ジシクロペンタニルアクリレートの代わりに、イソボロニルアクリレート(大阪有機化学工業(株)製、商品名「IBXA」)を200部使用し他は、同様に反応を行い、活性エネルギー線硬化性樹脂組成物を得た。
Example 2
In Example 1, instead of the dicyclopentanyl acrylate, 200 parts of isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name “IBXA”) was used, and the reaction was performed in the same manner. An energy ray curable resin composition was obtained.
実施例3
実施例1で用いたのと同様の反応装置に、前記ポリカーボネートジオール95.40部、前記ジシクロペンタニルアクリレート200部、前記EO変性パラクミルフェノールアクリレート50部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、および前記イソホロンジイソシアネート84.80部を仕込み、攪拌下80℃まで昇温し、1時間保温した後、前記オクチル酸スズ0.1部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、ポリカーボネートジオールを47.70部添加し、攪拌下80℃まで昇温し、1時間保温した後、前記ヒドロキシエチルアクリレート22.10部を添加した。そのまま攪拌下80℃で0.5時間反応させ、オクチル酸スズ0.1部を添加し、さらに80℃で1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.2部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 3
In the same reactor as used in Example 1, 95.40 parts of the polycarbonate diol, 200 parts of the dicyclopentanyl acrylate, 50 parts of the EO-modified paracumylphenol acrylate, the hydroquinone monomethyl ether as a polymerization inhibitor 0.2 part and 84.80 parts of the isophorone diisocyanate were added, the temperature was raised to 80 ° C. with stirring, and the temperature was kept for 1 hour, and then 0.1 part of the tin octylate was added, and then kept at 80 ° C. for 1 hour. did. Subsequently, the internal temperature was reduced to 70 ° C. or less, 47.70 parts of polycarbonate diol was added, the temperature was raised to 80 ° C. with stirring, and the temperature was kept for 1 hour, and then 22.10 parts of the hydroxyethyl acrylate was added. The mixture was allowed to react at 80 ° C. for 0.5 hours with stirring, 0.1 part of tin octylate was added, and the mixture was further reacted at 80 ° C. for 1.5 hours and sampled. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
実施例4
実施例1で用いたと同様の反応装置に、1,12−ドデカンジオール(宇部興産(株)製、商品名「1,12−ドデカンジオール」、水酸基価555mgKOH/g)60.57部、前記ジシクロペンタニルアクリレート250部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、およびトリメチルヘキサメチレンジイソシアネート(デグサ社製、商品名「VESTANAT TMDI」)125.89部を仕込み、攪拌下80℃まで昇温し、1時間保温した後、前記オクチル酸スズ0.1部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、1,12−ドデカンジオールを40.38部添加し、攪拌下80℃まで昇温し、1時間保温した後、前記ヒドロキシエチルアクリレート23.15部を添加した。そのまま攪拌下80℃で0.5時間反応させ、オクチル酸スズ0.1部を添加し、さらに80℃で1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.2部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 4
In the same reaction apparatus as used in Example 1, 60.57 parts of 1,12-dodecanediol (manufactured by Ube Industries, trade name “1,12-dodecanediol”, hydroxyl value 555 mgKOH / g), 250 parts of cyclopentanyl acrylate, 0.2 part of the hydroquinone monomethyl ether as a polymerization inhibitor, and 125.89 parts of trimethylhexamethylene diisocyanate (manufactured by Degussa, trade name “VESTANATM TMDI”) are charged to 80 ° C. with stirring. After raising the temperature and keeping the temperature for 1 hour, 0.1 part of the tin octylate was added, and the temperature was kept at 80 ° C. for 1 hour. Subsequently, the internal temperature was reduced to 70 ° C. or less, 40.38 parts of 1,12-dodecanediol was added, the temperature was raised to 80 ° C. with stirring, and the mixture was kept for 1 hour, and then 23.15 parts of the hydroxyethyl acrylate was added. . The mixture was allowed to react at 80 ° C. for 0.5 hours with stirring, 0.1 part of tin octylate was added, and the mixture was further reacted at 80 ° C. for 1.5 hours and sampled. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
実施例5
実施例4で得られた活性エネルギー線硬化性樹脂組成物80部に対し、前記EO変性パラクミルフェノールアクリレート20部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Example 5
20 parts of the EO-modified paracumylphenol acrylate was added to and mixed with 80 parts of the active energy ray-curable resin composition obtained in Example 4 to obtain an active energy ray-curable resin composition.
比較例1
実施例1で用いたと同様の反応装置に、ポリエステルジオール(旭電化工業(株)製、商品名「アデカニューエースYG-108」、水酸基価125mgKOH/g)117.76部、前記イソボロニルアクリレート250部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、および前記イソホロンジイソシアネート58.18部を仕込み、攪拌下80℃まで昇温し、1時間保温した後、前記オクチル酸スズ0.1部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、上記ポリエステルジオールを58.88部添加し、攪拌下80℃まで昇温し、1時間保温した後、前記ヒドロキシエチルアクリレート15.18部を添加した。そのまま攪拌下80℃で1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.37部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Comparative Example 1
In the same reactor as used in Example 1, polyester diol (manufactured by Asahi Denka Kogyo Co., Ltd., trade name “Adeka New Ace YG-108”, hydroxyl value 125 mg KOH / g) 117.76 parts, the isoboronyl acrylate 250 parts, 0.2 part of the hydroquinone monomethyl ether as a polymerization inhibitor, and 58.18 parts of the isophorone diisocyanate were charged, the temperature was raised to 80 ° C. with stirring, the temperature was kept for 1 hour, and then the tin octylate 0.1 Then, the mixture was kept at 80 ° C. for 1 hour. Subsequently, the internal temperature was reduced to 70 ° C. or less, 58.88 parts of the polyester diol was added, the temperature was raised to 80 ° C. with stirring, and the mixture was kept for 1 hour, and then 15.18 parts of the hydroxyethyl acrylate was added. The reaction was allowed to proceed for 1.5 hours at 80 ° C. with stirring, and sampling was performed. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.37 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
比較例2
実施例1で用いたと同様の反応装置に、前記ポリカーボネートジオール106.20部、前記イソボロニルアクリレート250部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、および前記イソホロンジイソシアネート94.47部を仕込み、攪拌下80℃まで昇温し、1時間保温後、前記オクチル酸スズ0.1部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、前記ヒドロキシエチルアクリレート49.29部を添加した。そのまま攪拌下80℃で0.5時間反応させ、オクチル酸スズ0.1部を添加し、さらに80℃で1.5時間反応させ、サンプリングを行った。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.2部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Comparative Example 2
In the same reactor as used in Example 1, 106.20 parts of the polycarbonate diol, 250 parts of the isobornyl acrylate, 0.2 part of the hydroquinone monomethyl ether as a polymerization inhibitor, and 94.47 parts of the isophorone diisocyanate. The mixture was heated to 80 ° C. with stirring, and kept for 1 hour, and then 0.1 part of the tin octylate was added, and then kept at 80 ° C. for 1 hour. Subsequently, the internal temperature was set to 70 ° C. or lower, and 49.29 parts of the hydroxyethyl acrylate was added. The reaction was continued at 80 ° C. for 0.5 hours with stirring, 0.1 part of tin octylate was added, and the reaction was further carried out at 80 ° C. for 1.5 hours, and sampling was performed. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
比較例3
実施例1で用いたと同様の反応装置に、ポリカーボネートジオール(日本ポリウレタン工業(株)製、商品名「ニッポラン980R」、水酸基価56mgKOH/g)186.8部、前記イソボロニルアクリレート250部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、前記イソホロンジイソシアネート41.5部を仕込み、攪拌下80℃まで昇温し、1時間保温した後、前記オクチル酸スズ0.1部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、前記ヒドロキシエチルアクリレート21.67部を添加した。そのまま攪拌下80℃1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.2部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Comparative Example 3
In the same reaction apparatus as used in Example 1, polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “Nipporan 980R”, hydroxyl value 56 mg KOH / g) 186.8 parts, 250 parts of the above isobornyl acrylate, polymerization 0.2 parts of the hydroquinone monomethyl ether as an inhibitor and 41.5 parts of the isophorone diisocyanate were charged, heated to 80 ° C. with stirring, and kept for 1 hour, and then added with 0.1 parts of the tin octylate, Subsequently, the mixture was kept at 80 ° C. for 1 hour. Subsequently, the internal temperature was set to 70 ° C. or lower, and 21.67 parts of the hydroxyethyl acrylate was added. The reaction was allowed to proceed for 1.5 hours at 80 ° C. with stirring and sampled. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
比較例4
実施例1で用いたと同様の反応装置に、ポリカーボネートジオール(プラクセルCD205PL ダイセル化学工業(株)製)133.53部、前記イソボロニルアクリレート150部、重合禁止剤としての前記ハイドロキノンモノメチルエーテル0.2部、および前記イソホロンジイソシアネート118.73部を仕込み、攪拌下80℃まで昇温し、1時間保温した後、前記オクチル酸スズ0.14部を添加し、引き続き80℃で1時間保温した。続いて内温を70℃以下にし、ポリカーボネートジオールを66.76部添加し、攪拌下80℃まで昇温し、1時間保温した後、前記ヒドロキシエチルアクリレート30.98部を添加した。そのまま攪拌下80℃0.5時間反応させ、オクチル酸スズ0.1部を添加し、さらに80℃で1.5時間反応させ、サンプリングした。試料を赤外吸収スペクトル法にて測定し、波長2250cm−1のイソシアネート基の吸収が消失していることを確認した。得られたウレタンアクリレートオリゴマー/モノマー組成物500部にハイドロキノンモノメチルエーテル0.2部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Comparative Example 4
In the same reaction apparatus as used in Example 1, polycarbonate diol (Placcel CD205PL manufactured by Daicel Chemical Industries, Ltd.) 133.53 parts, 150 parts of isobornyl acrylate, and hydroquinone monomethyl ether 0.2 as a polymerization inhibitor And 118.73 parts of the isophorone diisocyanate were added, the temperature was raised to 80 ° C. with stirring, and the temperature was kept for 1 hour. Then, 0.14 part of the tin octylate was added, and the temperature was kept at 80 ° C. for 1 hour. Subsequently, the internal temperature was reduced to 70 ° C. or less, 66.76 parts of polycarbonate diol was added, the temperature was raised to 80 ° C. with stirring, and the temperature was kept for 1 hour, and then 30.98 parts of hydroxyethyl acrylate was added. The mixture was allowed to react with stirring at 80 ° C. for 0.5 hours, 0.1 part of tin octylate was added, and the mixture was further reacted at 80 ° C. for 1.5 hours and sampled. The sample was measured by the infrared absorption spectrum method, and it was confirmed that the absorption of the isocyanate group having a wavelength of 2250 cm −1 disappeared. To 500 parts of the obtained urethane acrylate oligomer / monomer composition, 0.2 part of hydroquinone monomethyl ether was added and mixed to obtain an active energy ray-curable resin composition.
比較例5
比較例4で得られた活性エネルギー線硬化性樹脂組成物35.7部に対し前記イソボロニルアクリレート64.3部を添加、混合し、活性エネルギー線硬化性樹脂組成物を得た。
Comparative Example 5
The active energy ray-curable resin composition was obtained by adding and mixing 64.3 parts of the isobornyl acrylate to 35.7 parts of the active energy ray-curable resin composition obtained in Comparative Example 4.
上記各例で得られた活性エネルギー線硬化性樹脂組成物について、各成分の組成、ウレタンオリゴマー成分の重量平均分子量、組成物の粘度を表1および表2に示す。 Tables 1 and 2 show the composition of each component, the weight average molecular weight of the urethane oligomer component, and the viscosity of the composition of the active energy ray-curable resin composition obtained in each of the above examples.
表1および表2において、
(A)成分−1:実施例1および2で得られるウレタンアクリレートオリゴマー
(A)成分−2:実施例3で得られるウレタンアクリレートオリゴマー
他オリゴマー−1:比較例1で得られるウレタンアクリレートオリゴマー
他オリゴマー−2:比較例2で得られるウレタンアクリレートオリゴマー
他オリゴマー−3:比較例3で得られるウレタンアクリレートオリゴマー
(B)成分−1:ジシクロペンタニルアクリレート(日立化成工業(株)製、商品名「ファンクリルFA−513A」)
(B)成分−2:イソボロニルアクリレート(大阪有機化学工業(株)製、商品名「IBXA」)
(B)成分−3:EO変性パラクミルフェノールアクリレート(東亞合成(株)製、商品名「アロニックスM−110」)
他モノマー−1:ジシクロペンタジエンジアクリレート(共栄社化学(株)製、商品名「ライトアクリレートDCP−A」)
をそれぞれ示す。
In Table 1 and Table 2,
(A) Component-1: Urethane acrylate oligomer obtained in Examples 1 and 2 (A) Component-2: Urethane acrylate oligomer and other oligomers obtained in Example 3-1: Urethane acrylate oligomer and other oligomers obtained in Comparative Example 1 -2: Urethane acrylate oligomer and other oligomers obtained in Comparative Example 2-3: Urethane acrylate oligomer (B) component obtained in Comparative Example 3-1: Dicyclopentanyl acrylate (manufactured by Hitachi Chemical Co., Ltd., trade name " Funkrill FA-513A ")
(B) Component-2: Isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name “IBXA”)
(B) Component-3: EO-modified paracumylphenol acrylate (trade name “Aronix M-110” manufactured by Toagosei Co., Ltd.)
Other monomer-1: dicyclopentadiene diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name “light acrylate DCP-A”)
Respectively.
(硬化シートの作成方法)
上記で得られた各種の活性エネルギー線硬化性樹脂組成物を、平滑なPETフィルムからなる剥離フィルム(基材)に塗布し、次いで塗布面の上方から、電子流150keV、照射線量30kGlyの条件下にて、電子線を照射することにより、剥離フィルム上に透明な硬化シートを形成させた。剥離フィルムから剥離して得られた硬化シートの厚みは100μmであった。
(Method for creating cured sheet)
The various active energy ray-curable resin compositions obtained above are applied to a release film (base material) made of a smooth PET film, and then, from above the application surface, an electron current of 150 keV and an irradiation dose of 30 kGly. Then, a transparent cured sheet was formed on the release film by irradiating with an electron beam. The thickness of the cured sheet obtained by peeling from the release film was 100 μm.
(活性エネルギー線硬化性樹脂組成物および硬化シートの性能評価)
各種の物性については、下記の方法に準拠して測定し、当該測定結果から評価した。
(1)硬化シートの透湿度:JIS Z0208に準拠(カップ法、40℃×90%RH)
(2)硬化シートの伸度:JIS K7127に準拠(引張速度200mm/分)
(3)硬化シートの加熱収縮率:150mm標線を入れ、標線間の長さを測定した。この後、120℃オーブン中に1時間放置し、再び標線間の長さを測定した。加熱前後の変化率を算出した。
上記で得られた測定値は、いずれも表3および表4に示す。
(Performance evaluation of active energy ray-curable resin composition and cured sheet)
About various physical properties, it measured based on the following method and evaluated from the said measurement result.
(1) Moisture permeability of cured sheet: compliant with JIS Z0208 (cup method, 40 ° C. × 90% RH)
(2) Elongation of cured sheet: Conforms to JIS K7127 (Tensile speed: 200 mm / min)
(3) Heat shrinkage rate of the cured sheet: A 150 mm mark was inserted, and the length between the marks was measured. Then, it was left to stand in 120 degreeC oven for 1 hour, and the length between marked lines was measured again. The rate of change before and after heating was calculated.
The measured values obtained above are shown in Tables 3 and 4.
Claims (9)
The cured film according to any one of claims 6 to 8, wherein the elongation (thickness: 100 µm) is in the range of 10 to 300%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000938A JP4441870B2 (en) | 2005-01-05 | 2005-01-05 | Active energy ray-curable resin composition and cured film obtained from the composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005000938A JP4441870B2 (en) | 2005-01-05 | 2005-01-05 | Active energy ray-curable resin composition and cured film obtained from the composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006188589A true JP2006188589A (en) | 2006-07-20 |
JP4441870B2 JP4441870B2 (en) | 2010-03-31 |
Family
ID=36796088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005000938A Expired - Fee Related JP4441870B2 (en) | 2005-01-05 | 2005-01-05 | Active energy ray-curable resin composition and cured film obtained from the composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441870B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046292A1 (en) * | 2005-10-21 | 2007-04-26 | Nippon Kayaku Kabushiki Kaisha | Polyurethane compound, photosensitive resin composition containing the same, cured article obtained therefrom, and film comprising the same |
JP2008127429A (en) * | 2006-11-17 | 2008-06-05 | Denki Kagaku Kogyo Kk | Photo-curable resin composition |
JP2009030041A (en) * | 2007-07-05 | 2009-02-12 | Tomoegawa Paper Co Ltd | Resin film, optical resin film, low retardation film, and method of producing resin film |
WO2009107301A1 (en) * | 2008-02-27 | 2009-09-03 | Dic株式会社 | Moisture-permeable film, process for producing the same, and layered product including the same |
JP2010037411A (en) * | 2008-08-04 | 2010-02-18 | Mitsubishi Rayon Co Ltd | Resin cured product and key sheet |
JP2010065193A (en) * | 2008-09-12 | 2010-03-25 | Mitsubishi Rayon Co Ltd | Curable composition, cured product, and optical information medium |
WO2014033932A1 (en) * | 2012-08-31 | 2014-03-06 | 株式会社ダイセル | Optical sheet |
JP2015214643A (en) * | 2014-05-09 | 2015-12-03 | 凸版印刷株式会社 | Curable composition, substrate formed with surface layer film using the same, and method for manufacturing substrate formed with surface layer film |
CN112250831A (en) * | 2020-10-12 | 2021-01-22 | 深圳飞扬兴业科技有限公司 | UV resin and preparation method thereof |
-
2005
- 2005-01-05 JP JP2005000938A patent/JP4441870B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046292A1 (en) * | 2005-10-21 | 2007-04-26 | Nippon Kayaku Kabushiki Kaisha | Polyurethane compound, photosensitive resin composition containing the same, cured article obtained therefrom, and film comprising the same |
JP2008127429A (en) * | 2006-11-17 | 2008-06-05 | Denki Kagaku Kogyo Kk | Photo-curable resin composition |
JP2009030041A (en) * | 2007-07-05 | 2009-02-12 | Tomoegawa Paper Co Ltd | Resin film, optical resin film, low retardation film, and method of producing resin film |
KR101414090B1 (en) * | 2008-02-27 | 2014-07-02 | 디아이씨 가부시끼가이샤 | Moisture-permeable film, process for producing the same, and layered product including the same |
JP4329046B1 (en) * | 2008-02-27 | 2009-09-09 | Dic株式会社 | Moisture permeable film, method for producing the same, and laminate using the same |
US8277930B2 (en) | 2008-02-27 | 2012-10-02 | Dic Corporation | Moisture-permeable film, production method of same and laminate using same |
WO2009107301A1 (en) * | 2008-02-27 | 2009-09-03 | Dic株式会社 | Moisture-permeable film, process for producing the same, and layered product including the same |
JP2010037411A (en) * | 2008-08-04 | 2010-02-18 | Mitsubishi Rayon Co Ltd | Resin cured product and key sheet |
JP2010065193A (en) * | 2008-09-12 | 2010-03-25 | Mitsubishi Rayon Co Ltd | Curable composition, cured product, and optical information medium |
WO2014033932A1 (en) * | 2012-08-31 | 2014-03-06 | 株式会社ダイセル | Optical sheet |
JP2015214643A (en) * | 2014-05-09 | 2015-12-03 | 凸版印刷株式会社 | Curable composition, substrate formed with surface layer film using the same, and method for manufacturing substrate formed with surface layer film |
CN112250831A (en) * | 2020-10-12 | 2021-01-22 | 深圳飞扬兴业科技有限公司 | UV resin and preparation method thereof |
CN112250831B (en) * | 2020-10-12 | 2022-11-25 | 深圳飞扬骏研新材料股份有限公司 | UV resin and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4441870B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868654B2 (en) | Active energy ray-curable pressure-sensitive adhesive composition and method for producing the composition | |
WO2006120887A1 (en) | Photosensitive resin compositions, cured articles of the compositions, and films containing the compositions | |
JPH05194689A (en) | Radiation-curable composition having high-temperature oil resistance | |
WO2012096111A1 (en) | Radical-curable hot-melt urethane resin composition and moldings for optical use | |
JP6087187B2 (en) | Energy ray curable resin composition | |
WO2015133416A1 (en) | Polyurethane compound and resin composition containing same, cured product of said resin composition, and method for producing said resin composition | |
KR20170047240A (en) | Polyurethane compound and resin composition containing same | |
WO2016121706A1 (en) | Photosensitive resin composition and cured product thereof | |
WO2017047612A1 (en) | Polyurethane compound and resin composition containing same | |
KR20120002366A (en) | A composition for making hard coating layer and hard coating film made by using the same | |
JP4441870B2 (en) | Active energy ray-curable resin composition and cured film obtained from the composition | |
JP5098722B2 (en) | Curable resin composition, film laminate for sticking, and laminate for impact absorption | |
JPH07310067A (en) | Curable liquid (pressure-sensitive) adhesive composition | |
WO2009057441A1 (en) | Curable sheet composition | |
JP7420930B2 (en) | curable composition | |
WO2006134990A1 (en) | Resin composition for optical disk and cured product thereof | |
JP7054753B1 (en) | Hardcourt resin composition | |
JPH0748422A (en) | Active energy ray-curable resin composition | |
JP2009140599A (en) | Optical information recording medium | |
JP5132946B2 (en) | Active energy ray-curable resin composition for mold printing and molded article | |
JP2019178193A (en) | Curable resin composition | |
JP2019157092A (en) | Active energy ray-curable resin composition, and coating agent and sheet using the same | |
JP2004196965A (en) | Urethane (meth)acrylate compound and actinic energy ray curable resin composition using the same | |
JP7087466B2 (en) | Method for manufacturing resin laminate and resin laminate | |
JP4017055B2 (en) | (Meth) acrylic acid ester and resin composition using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091230 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4441870 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |