WO2009079959A1 - Procédé pour acquérir une valeur de rebond, tester un résiliomètre et étalonner un détecteur - Google Patents

Procédé pour acquérir une valeur de rebond, tester un résiliomètre et étalonner un détecteur Download PDF

Info

Publication number
WO2009079959A1
WO2009079959A1 PCT/CN2008/073610 CN2008073610W WO2009079959A1 WO 2009079959 A1 WO2009079959 A1 WO 2009079959A1 CN 2008073610 W CN2008073610 W CN 2008073610W WO 2009079959 A1 WO2009079959 A1 WO 2009079959A1
Authority
WO
WIPO (PCT)
Prior art keywords
equation
rebound
point
hammer
value
Prior art date
Application number
PCT/CN2008/073610
Other languages
English (en)
Chinese (zh)
Inventor
Shengye Tang
Original Assignee
Shengye Tang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2007103019014A external-priority patent/CN101206166A/zh
Priority claimed from CNA2007103022002A external-priority patent/CN101196452A/zh
Application filed by Shengye Tang filed Critical Shengye Tang
Publication of WO2009079959A1 publication Critical patent/WO2009079959A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/62Manufacturing, calibrating, or repairing devices used in investigations covered by the preceding subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/52Investigating hardness or rebound hardness by measuring extent of rebound of a striking body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/021Treatment of the signal; Calibration

Definitions

  • the invention relates to a rebounding tool (a mortar rebounding instrument, a high-strength rebounding instrument, etc.) widely used for the strength detection of concrete and mortar structures or components and rocks, and a method for obtaining the rebound value and the method for verifying the rebounding instrument and the calibration sensor .
  • a rebounding tool a mortar rebounding instrument, a high-strength rebounding instrument, etc.
  • the digital rebound hammer is equipped with a sensor on the ordinary hammer to automatically obtain the rebound value.
  • the current method is to convert the original signal, position or displacement value into a rebound value, and does not reflect the characteristics and condition of the hammer itself.
  • the sensor structure is complex and the mechanical properties are high.
  • the rebounder needs to be calibrated at regular intervals or times of work, and the qualified rebounder can be used for work. Now the rebound test needs to be performed on the rebound tester or the special steel anvil. During the two verifications, if the latter test fails, it is impossible to determine whether the test data during the two verification tests is valid.
  • Some types of digital rebound hammers need to pre-establish a correspondence between position, displacement or rebound value and the original signal (usually a sequence of discrete points) (the process in which the relationship is established is to calibrate the sensor).
  • the process in which the relationship is established is to calibrate the sensor.
  • the calibration sensor is to manually locate the acquisition position of the original signal, and then collect the original signal. This process is repeated, it is necessary to collect enough original signals at different positions, and finally the original signal is correlated with the position, displacement or rebound value.
  • the workload is large and complicated, and requires professional personnel to operate. There is an optical reading error when locating the original signal acquisition position. Summary of the invention
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a method for obtaining a rebound value based on a direction standard equation is proposed, which can reflect the performance and condition of the rebound hammer in real time.
  • Another technical problem to be solved by the present invention is to provide a check for the deficiencies of the prior art.
  • the method of determining the rebounding instrument to verify whether the rebounding instrument is qualified can be implemented at any time on the spot, which is quick, simple and accurate.
  • Another technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a method for calibrating a sensor is proposed, which is simple and fast, ignores read errors, and has no professional skill requirements.
  • the present invention provides a method for obtaining a rebound value based on a direction standard equation, specifically, when the hammer rebounder works, collecting a timing end time ⁇ , and obtaining a back direction standard equation or a transformation form thereof Bomb value
  • the method for obtaining the rebound value according to the present invention is performed according to the standard equation of direction in the working direction of the rebound hammer, and the rebound value is calculated by the acquisition time. Since the direction standard equation is determined by the natural characteristics of the hammer, the collected rebound value can reflect the performance and condition of the hammer in real time.
  • the present invention provides a method for verifying a rebound hammer based on a direction standard equation, which is to compare whether the rebound value and the visual rebound value obtained according to the foregoing method are equal within the error range, and verify the rebound. Whether the instrument is qualified; rebound on the rebound tester or special steel anvil, check whether the rebound value obtained according to the above method is within the range allowed by the rebound tester, and check whether the rebound hammer is qualified.
  • the present invention provides a method for calibrating a sensor based on a directional standard equation, specifically, when the hammer rebounds, during the timing phase, each time point t, . and t, is collected.
  • the original signal ⁇ establishes the relationship between the measured displacement ⁇ , and the time points t,. according to the direction standard equation or its transformation form, thus establishing the relationship between the measured displacement ⁇ , and the original signal, that is,
  • the sensor can be calibrated.
  • the method for calibrating the sensor of the present invention requires only one or several rebounds (preferably in a place with high strength, such as a rebound calibrator or tool steel, etc.), and the rest of the work can be automatically performed by the instrument. Simple and fast, ignoring reading errors, no professional skills required. detailed description
  • timing start point For the convenience of the description, seven instructions practically used in the present invention are introduced: timing start point, start position, timing end point, timing stage, measured displacement, original signal, and direction standard equation.
  • Timing starting point The moment when the hammer hits the pointer slider shrapnel during the rebounding process. The hammer then pushes the pointer slider (for some types of sensors, it also drives the sensor or part of it) to move together.
  • Starting position The position at which the timing start hammer and the pointer slider (including the portion of the sensor or sensor that is driven by the hammer or the pointer slider) are located.
  • Timing end point After the start of the time, the hammer and the pointer slider reach the maximum displacement from the starting position, denoted by T.
  • Timing phase The time period from the start of the time to the end of the time, including the start of the time and the end of the time. The time in this phase is expressed by .
  • Original signal The electrical signal collected by the digital rebound hammer sensor that has not been converted to the measured displacement value, position or rebound value.
  • Direction standard equation When the hammer of the same type of test is working, in the same direction of the bounce, the hammer will drive the pointer slider during the rebound process (for some kinds of sensors, it will also drive the sensor or part thereof).
  • the equations of motion are equal within the tolerances of the error.
  • the directional standard equation can have equal mathematical expressions within the tolerances of various errors, either continuous or discrete.
  • the standard equations for the different types of rebound hammers are not equal; the standard equations for the direction of the same type of hammers in different directions are also unequal.
  • the hammer is working in a certain direction, and the rebound value is obtained according to the direction standard equation of the direction or various transformation forms thereof.
  • rebound hammer is qualified; if it is not within the scope of the specification, the rebound hammer is not qualified.
  • Point ( ,;) indicates that a certain type of qualified rebound hammer works in a certain direction.
  • the maximum displacement value corresponding to the timing end point value T for the convenience of description, the sequence of points (2) is a sequence of direction standard points, which should be distributed in the space where all the rebound values may appear, and the density is sufficient. Collected to 7 ⁇ according to the direction standard point sequence (2), you can get the rebound value.
  • X G(x l , x 2 ,..., x i ,...,x n ,t l ,t 2 ,...,t i ,...,t n )( ⁇ i ⁇ n ;i,nGN+) (3)
  • X,.,t,. refers to the timing phase.
  • the measured displacement measured is ⁇ , .
  • ⁇ , . and t,. are substituted into equation (3), and the rebound value can be obtained.
  • the time is synchronized with the hammer to move a point through a number of stationary points, or to collect a point that moves synchronously with the hammer to pass a stationary point, or to collect and hammer
  • Synchronous motion of several points through a number of static point time points ⁇ can be converted to ⁇ , . and t,., substituted into equation (3), you can Get the rebound value. It is also possible to change the direction standard equation (1) or equation (3) to:
  • Equation (5) transforms:
  • the direction standard point sequence (2) is established, and the ⁇ , Query direction standard point sequence (2) is obtained, and the rebound value can be obtained.
  • (x,.,t,.) refers to the timing phase.
  • the measured displacement is ⁇ , .
  • the ⁇ , . and t,. are substituted into the equation (12), and the rebound value can be obtained.
  • a point of synchronous movement with the hammer is collected through several stationary points.
  • the time point ⁇ , or the time point at which a plurality of points moving synchronously with the hammer can pass through a stationary point ⁇ , or the time points at which several points moving synchronously with the hammer can be collected through several stationary points can be converted into X ,. and t,., substituted into equation (12), you can get the rebound value.
  • the rebound hammer is qualified by comparing whether the rebound value and the visual rebound value obtained according to the above various methods are equal within the error range. If they are equal, it indicates that the motion equation of the detected rebound hammer is equal to the direction standard equation within the error range, and the rebound hammer is qualified; if not, the motion equation of the detected rebound hammer and the direction standard equation are in error. The range is not equal, and the rebound hammer being tested is unqualified.
  • This method requires a rebound gauge on the hammer, but does not require a rebounder or a special anvil.
  • rebound on the rebound calibrator or special steel anvil and whether the rebound value obtained according to the above various methods is within the range allowed by the rebound test specification, and whether the rebound hammer is qualified. If the specification is within the scope of the specification, the rebounder is qualified; if it is not within the scope of the specification, the rebound is unqualified.

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Lorsque le résiliomètre fonctionne, le temps T du point de fin de temporisation est collecté, puis la valeur de rebond est acquise selon l'équation standard de direction ou ses formes transformées, ou le temps ti et le déplacement correspondant xi pendant le mouvement sont acquis, puis la valeur de rebond est acquise selon l'équation transformée de l'équation standard de direction. Le fait que le résiliomètre soit qualifié ou non peut être testé par la détermination du fait que la valeur de rebond déterminée selon l'équation standard de direction ou ses formes transformées est égale ou non à la valeur de rebond lue à l'œil dans la plage d'erreurs, ou le marteau du résiliomètre rebondit sur un instrument d'inspection du résiliomètre ou sur une enclume en acier spéciale, le fait que le résiliomètre soit qualifié ou non pouvant également être testé par la détection du fait que la valeur de rebond déterminée selon l'équation standard de direction ou ses formes transformées se situe ou non dans la plage acceptée par la norme du résiliomètre. Le détecteur du résiliomètre est étalonné par établissement d'une relation entre une sortie de signal initial par le détecteur et une valeur de déplacement acquise selon l'équation standard de direction ou ses formes transformées.
PCT/CN2008/073610 2007-12-19 2008-12-19 Procédé pour acquérir une valeur de rebond, tester un résiliomètre et étalonner un détecteur WO2009079959A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNA2007103019014A CN101206166A (zh) 2007-12-19 2007-12-19 基于运动方程建立数显回弹仪传感器之位移与感应值关系
CNA2007103022002A CN101196452A (zh) 2007-12-19 2007-12-19 数显回弹仪基于运动方程获取回弹值及数字检定方法
CN200710301901.4 2007-12-19
CN200710302200.2 2007-12-19

Publications (1)

Publication Number Publication Date
WO2009079959A1 true WO2009079959A1 (fr) 2009-07-02

Family

ID=40800728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073610 WO2009079959A1 (fr) 2007-12-19 2008-12-19 Procédé pour acquérir une valeur de rebond, tester un résiliomètre et étalonner un détecteur

Country Status (1)

Country Link
WO (1) WO2009079959A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406872A (zh) * 2014-12-04 2015-03-11 林波 回弹仪用连续多测点检测支架及连续多测点自动回弹装置
CN109556946A (zh) * 2018-06-13 2019-04-02 乐陵市回弹仪厂 用于回弹仪上的滑块装配机构
CN110186792A (zh) * 2019-06-20 2019-08-30 中国电建集团成都勘测设计研究院有限公司 双护盾tbm掌子面岩体强度快速测试装置
CN112213215A (zh) * 2020-09-02 2021-01-12 廊坊市阳光建设工程质量检测有限公司 一种组合回弹检测混凝土抗压强度的方法
CN112285212A (zh) * 2020-10-14 2021-01-29 广西交科集团有限公司 一种基于超声回弹法检测混凝土强度的系统和方法
CN113640162A (zh) * 2021-09-06 2021-11-12 中国化学工程第三建设有限公司 气动式混凝土回弹仪装置
CN117647458A (zh) * 2024-01-30 2024-03-05 山东省信息技术产业发展研究院(中国赛宝(山东)实验室) 一种工程施工用电子仪器校准设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176026A (en) * 1989-12-07 1993-01-05 Proceq S.A. Apparatus for measuring the surface hardness of building materials
CN2476808Y (zh) * 2001-04-24 2002-02-13 中国建筑科学研究院建筑结构研究所 带电子示值器的回弹仪
CN2521608Y (zh) * 2002-01-23 2002-11-20 潘宗岭 回弹仪数据采集装置
JP2005114490A (ja) * 2003-10-07 2005-04-28 Mie Tlo Co Ltd 反発弾性係数測定方法及び測定装置
JP2007017386A (ja) * 2005-07-11 2007-01-25 Nakamura Sangyo Gakuen リバウンドハンマーによるコンクリート硬度測定における測定値補正方法及びテストアンビル保持装置。
CN101196452A (zh) * 2007-12-19 2008-06-11 唐圣业 数显回弹仪基于运动方程获取回弹值及数字检定方法
CN101206166A (zh) * 2007-12-19 2008-06-25 唐圣业 基于运动方程建立数显回弹仪传感器之位移与感应值关系

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176026A (en) * 1989-12-07 1993-01-05 Proceq S.A. Apparatus for measuring the surface hardness of building materials
CN2476808Y (zh) * 2001-04-24 2002-02-13 中国建筑科学研究院建筑结构研究所 带电子示值器的回弹仪
CN2521608Y (zh) * 2002-01-23 2002-11-20 潘宗岭 回弹仪数据采集装置
JP2005114490A (ja) * 2003-10-07 2005-04-28 Mie Tlo Co Ltd 反発弾性係数測定方法及び測定装置
JP2007017386A (ja) * 2005-07-11 2007-01-25 Nakamura Sangyo Gakuen リバウンドハンマーによるコンクリート硬度測定における測定値補正方法及びテストアンビル保持装置。
CN101196452A (zh) * 2007-12-19 2008-06-11 唐圣业 数显回弹仪基于运动方程获取回弹值及数字检定方法
CN101206166A (zh) * 2007-12-19 2008-06-25 唐圣业 基于运动方程建立数显回弹仪传感器之位移与感应值关系

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HU, ZHENHONG ET AL.: "Experimental studies on calibration of impedance sensory rebounding instrument with digital indication", JOURNAL OFPINGDINGSHAN INSTITUTE OF TECHNOLOGY, vol. 11, no. 3, September 2004 (2004-09-01), pages 50 - 51 *
JIANG, PING: "Intelligent Rebound Hammer System Based on Photoelectric Detection", ELECTRONIC DESIGN & APPLICATION WORLD, no. 9, September 2003 (2003-09-01), pages 32 - 33 *
SHI, HUI: "A Resilience Test Instrument for the Flexible Polyurethane Foam", POLYURETHANE INDUSTRY, vol. 17, no. 2, 2002, pages 48 - 50 *
SUN, YICHUAN: "self testing method for rebounding instrument - steel anvil general test method proceeding of the eighth national conference on nondestructive test technique", PROCEEDING OF THE EIGHTH NATIONAL CONFERENCE ON NONDESTRUCTIVE TEST TECHNIQUE IN CONSTRUCTION ENGINEERING, 2004, pages 409 - 413 *
ZHU, HUAFENG. ET AL.: "A new digital rebounding instrument, proceeding of the eighth national conference on nondestructive test technique", CONSTRUCTION ENGINEERING, 2004, pages 402 - 408 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406872A (zh) * 2014-12-04 2015-03-11 林波 回弹仪用连续多测点检测支架及连续多测点自动回弹装置
CN109556946A (zh) * 2018-06-13 2019-04-02 乐陵市回弹仪厂 用于回弹仪上的滑块装配机构
CN109556946B (zh) * 2018-06-13 2024-05-03 乐陵市回弹仪厂 用于回弹仪上的滑块装配机构
CN110186792A (zh) * 2019-06-20 2019-08-30 中国电建集团成都勘测设计研究院有限公司 双护盾tbm掌子面岩体强度快速测试装置
CN110186792B (zh) * 2019-06-20 2023-12-05 中国电建集团成都勘测设计研究院有限公司 双护盾tbm掌子面岩体强度快速测试装置
CN112213215B (zh) * 2020-09-02 2023-04-07 廊坊市阳光建设工程质量检测有限公司 一种组合回弹检测混凝土抗压强度的方法
CN112213215A (zh) * 2020-09-02 2021-01-12 廊坊市阳光建设工程质量检测有限公司 一种组合回弹检测混凝土抗压强度的方法
CN112285212A (zh) * 2020-10-14 2021-01-29 广西交科集团有限公司 一种基于超声回弹法检测混凝土强度的系统和方法
CN112285212B (zh) * 2020-10-14 2024-03-22 广西交科集团有限公司 一种基于超声回弹法检测混凝土强度的系统和方法
CN113640162A (zh) * 2021-09-06 2021-11-12 中国化学工程第三建设有限公司 气动式混凝土回弹仪装置
CN113640162B (zh) * 2021-09-06 2023-08-04 中国化学工程第三建设有限公司 气动式混凝土回弹仪装置
CN117647458A (zh) * 2024-01-30 2024-03-05 山东省信息技术产业发展研究院(中国赛宝(山东)实验室) 一种工程施工用电子仪器校准设备
CN117647458B (zh) * 2024-01-30 2024-05-14 山东省信息技术产业发展研究院(中国赛宝(山东)实验室) 一种工程施工用电子仪器校准设备

Similar Documents

Publication Publication Date Title
WO2009079959A1 (fr) Procédé pour acquérir une valeur de rebond, tester un résiliomètre et étalonner un détecteur
CN101641582B (zh) 使用频谱分析的振弦式传感器
CN105300513A (zh) 多只叶尖定时传感器叶片振动共振倍频数辨识方法和装置
CN101561342A (zh) 分时快速稳态正弦扫频激振频响函数测量系统及方法
JP2006308342A (ja) ボルト軸力測定装置
CN105698886A (zh) 一种基于超声波检测技术的气体流量检测方法
Phani et al. An experimental assessment of methods for mitigating plasticity error during nanoindentation with continuous stiffness measurement
CN204903118U (zh) 一种非接触式测量柔性结构的模态振型的系统
Gade et al. How to determine the modal parameters of simple structures
CN205426330U (zh) 多只叶尖定时传感器叶片振动共振倍频数辨识装置
WO2007009460A1 (fr) Algorithmes robustes pour analyse modale expérimentale
CN104483389A (zh) 基于组合震源法检测桥梁预应力管道注浆质量的方法
JP4173089B2 (ja) 動的載荷試験方法
CN101206166A (zh) 基于运动方程建立数显回弹仪传感器之位移与感应值关系
EP2411649B1 (fr) Sourveillance d'un accouplement dans un système rotatif d'un moteur à combustion interne
CN110220662A (zh) 一种叶片高频静态频率的测试方法
Jiang et al. Natural frequency measurement of a 13-meter wind turbine blade using different techniques
TWI373929B (en) Method and apparatus for quantifying the timing error induced by crosstalk between signal paths
Ewing et al. Combined tension-torsion studies on polymers: Apparatus and preliminary results for polythene
CN101196452A (zh) 数显回弹仪基于运动方程获取回弹值及数字检定方法
CN1201911A (zh) 一种地震检波器测试仪检定方法及其装置
Delhez Experimental and numerical modal analyses of a pre-stressed steel strip
Garg et al. Bilateral comparison in primary vibration calibration of NPL, India and The Modal Shop, USA
Pedersen et al. Applied modal analysis of wind turbine blades
CN109696660A (zh) 一种用于自由声场传声筒幅值灵敏度与相位检测的精确测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865265

Country of ref document: EP

Kind code of ref document: A1