WO2009078472A1 - 通信方法、システム及び通信装置 - Google Patents

通信方法、システム及び通信装置 Download PDF

Info

Publication number
WO2009078472A1
WO2009078472A1 PCT/JP2008/073131 JP2008073131W WO2009078472A1 WO 2009078472 A1 WO2009078472 A1 WO 2009078472A1 JP 2008073131 W JP2008073131 W JP 2008073131W WO 2009078472 A1 WO2009078472 A1 WO 2009078472A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
propagation path
spatial
data
spatial stream
Prior art date
Application number
PCT/JP2008/073131
Other languages
English (en)
French (fr)
Inventor
Mariko Matsumoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2009546299A priority Critical patent/JPWO2009078472A1/ja
Publication of WO2009078472A1 publication Critical patent/WO2009078472A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a spatial multiplexing communication method, system, and communication apparatus such as a transceiver.
  • This type of spatial multiplexing is used to send and receive multimedia information such as video information and audio information.
  • multimedia information can be prioritized according to its importance. For example, when audio and image are transmitted simultaneously as video information, audio information has higher priority than image information.
  • scalable coding generates multiple pieces of information with different levels of quantization from the same multimedia information, thereby generating information with different priorities.
  • image coding has a concept of a high-priority range of interest (R0I: Region of interest). Increasing the resolution increases the amount of data, but increasing the resolution of only important parts such as the boundaries of characters and characters in the animation image is an effective means of increasing the resolution without increasing the amount of data (Non-patent Document 1, (See Patent Document 2).
  • Non-Patent Documents 12 For example, priorities that do not guarantee data quality are set to background, best-f-auto, and priorities that guarantee data quality are guaranteed and priority is specified by data (Non-Patent Document 1) 3)
  • Scalability includes SNR scalability, spatial scalability, temporal scalability, and R0I scalability.
  • Scalability coding can generate low quality, small amount of data from the same information source, and high quality data.
  • scalable coding transmits the lowest resolution, base layer, and an extended layer data string to increase the resolution.
  • Non-Patent Document 1 Non-Patent Document 2
  • MIMO Multi Input Multi Output
  • SDM Space Division Multiplexing
  • Fig. 11 shows E-SDM, which is a spatial multiplexing method using eigenvalues.
  • the maximum value of the number m of spatially multiplexed streams in the propagation path composed of M transmitting antennas 70 3 and N receiving antennas 7 0 5 is given by m ⁇ min (M, N).
  • min (M, N) is the smaller of M or N and is a numerical value.
  • ra min (M, N) is obtained, and when it becomes a problem, the number of eigenvalues is reduced to m ⁇ min (M, N).
  • FDD method frequency division duplex method
  • the uplink and downlink frequencies are different, so the transmission path characteristics are different. Therefore, on the receiving side, a known signal (or pseudo) sent from the transmitting side to the receiving side is used.
  • the known signal is a signal for determining the propagation path for each antenna.
  • the signal When transmitting at the same time, the signal is different for each antenna. However, the same signal may be used when specifying time such as uplink sounding.
  • i'S represents the complex conjugate transpose of a matrix.
  • W is the communication band
  • ⁇ 2 is the noise on the receiving side
  • Pi is the power set on the transmitting side.
  • the mobile station on the receiving side specifies the power and data rate from the discrete values prepared by the system based on the propagation path information.
  • channel information include CQI (Channel Quality Indicator;) that selects the amount of data per unit block, way ⁇ ⁇ ⁇ , and PCI (Precoding control indicator) and Codebook Index. Wait update interval Precoding update Interval (See Non-Patent Document 10; Non-Patent Document 11; Non-patent Document 12).
  • the scheduler allocates data according to the data rate.
  • the received signal R (707) is given as follows.
  • ⁇ 2 is the receiving noise and I is the unit matrix.
  • Non-Patent Document 7 By distributing and transmitting the information to be transmitted to the data rate that can be transmitted in each spatial stream, it is possible to transmit by effectively utilizing radio resources (see Non-Patent Document 7 and Non-Patent Document 8).
  • Non-Patent Document 3 There is an encoding method called a code book for reducing the signal to be notified (see Non-Patent Document 3).
  • TDD time division duplex
  • the same method as FDD may be used, but the channel characteristics can be calculated on the transmission side because the channel characteristics are the same for the upstream and downstream. In this case, it is necessary to transmit the signal from which the propagation path is calculated from the receiving side to the transmitting side.
  • the transmission signal a method of transmitting a known signal such as a preamble or sounding is generally used, but a radio resource reduction method using a control signal such as ACK or NACK instead of the control signal such as ACK has been proposed in the retransmission control described above. (See Non-Patent Document 7). It is possible to determine whether or not a decoded data error is included by encoding on the transmission side and decoding on the reception side. Then, there is a method of performing retransmission control by notifying whether or not the received data contains an error from the receiving side to the transmitting side using an ACK or NACK signal (see Patent Document 1).
  • Non-Patent Document 4 it has been reported that when the transmission weight is not updated frequently, the spatial stream of the maximum eigenvalue is likely to deteriorate (see Non-Patent Document 4).
  • Related technologies include channel matrix fluctuation prediction that predicts propagation path fluctuations (see Patent Document 4), ordering that specifies the transmission order from the receiving side to the transmitting side (see Patent Document 5), and data priority priority control for adaptive modulation is (Patent Document 6 reference) power s.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2007-166633 ([00 1 7] i [002 1], Figure 1)
  • Patent Document 2 Special Table 2005-502223 Publication ([00 7 9] i [009 6], Figure (Fig. 5)
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-252834 ([00 1 8] i [0022])
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-303625 ([0044], FIG. 1)
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-13680 ([00 24] 1 [00 2 9], FIG. 4, FIG. 5)
  • Patent Document 6 Japanese Patent Laid-Open No. 2006-333283 ([00 3 3] 1 [003 7], Diagram 2)
  • Non-Patent Document 1 Masayuki Takamura, Yoshiyuki Yashima, “Reversible video image encoding based on H. 264” The IEICE Journal, February 2006, Vol. J89-D No.2 pp.314-322
  • Non-Patent Document 2 Kim Kobayashi, Masaaki Fujiyoshi, Yusuke Seki, Hitoshi Takaya, “Information Embedding into JPEG 2000 Coded Images Using Legal Operations” Journal of Academic Society of Japan, March 2006, Vol. J89- A No.3 pp.234-242 (R0I)
  • Non-Patent Document 3 3GPP, TS 36.211 v.8.0, (6.3.4.2.3. Codebook for precoding, p.29) September 2007
  • Non-Patent Document 4 Mori, Tanabe, Sato, "Link Adaptation Method Robust to Channel Time Variation in SVD-M 10 System", B-5-39, Sodai Paper, September 2007 Sentence! ⁇ ; 5: Y. Karasa a, innovative Antennas and Propagation Studies for MIMO Systems, "IEICE Trans. Communs., Special Section: 2006 International Symposium on Antennas and Propagation (ISAP2006), vol. E90-B, no.9 , pp.2194-2202, March 2007 2. Chapter 1
  • Non-Patent Document 6 Manabu Mikami, Teruya Fujii, “Performance Evaluation of MIMO Transmission Systems Considering Effects of Feedback Delay and Antenna Correlation", B-5-80, IEICE General Conference, March 2005 (Fig. 2)
  • Non-Patent Document 7 Takahiko Tsutsumi, Toshihiko Nishimura, Takeo Ogane, "Study on the effect of channel information error in various spatial multiplexing systems", Vol. J89-B No. 9, pp. 1496-1504, IEICE Transactions Magazine B, September 2004
  • Non-patent document 8 Shinsuke Ibi, Seiichi Sampei, Norihiko Morinaga, "Transmission capacity control type MIM0 adaptive modulation system", Vol. J88-B No. 6 pp. 1090-1101, IEICE Transactions B, 2005 6 Moon pp. 1092-1093, formula (9)
  • Non-Patent Document 9 Kei Mizutani, Kei Sakaguchi, Junichi Takada, Junmichi Araki, "MIM0 eigenmode correlation analysis based on real-time propagation measurement", B-1-247, Science Society Conference, September 2005 (Formula ( 2), formula (3))
  • Non-Patent Document 10 3GPP, TS 25. 214 v. 7. 6, (9. p. 71-72, MIM0 block diagram, 6. A. 2. 2-6. A. 4, p. 44-55 (HARQ, PCI) September 2007
  • Non-Patent Document 1 1 3GPP, Rl-072843 "Way Forward on 4-Tx Antenna Codebook for SU-MIMO" June 2007
  • Non-Patent Literature 1 2 3GPP, R 070093 "Investigations on Codebook Size for MIMO Precoding in E-UTRA Downlink” January 2007 Figure 1
  • Non-Patent Literature 13 Masahiro Morikura, Shuji Kubota, "802.11 High-Speed Wireless LAN Textbook", December 2004, Impress Invention Disclosure
  • Patent Documents 1 to 6 and Non-Patent Documents 1 to 13 all have the following problems.
  • the first problem is that resources are wasted because they frequently communicate in the opposite direction in order to follow changes in propagation path characteristics.
  • FDD frequency duplex method
  • TDD time division duplex
  • the third problem is that in E-SDM, calculation for updating the weight is frequently performed.
  • the reason is that in order to follow changes in propagation path characteristics, the acquisition of propagation path characteristics and weight calculation based on it are frequently performed.
  • the conventional communication method sometimes causes a multimedia communication stop, for example, a communication hindrance such as a video stop.
  • Patent Documents 4 and 6 only disclose that a transmission method corresponding to the priority of transmission data is selected based on propagation path prediction.
  • the present invention by clearly associating the degradation prediction of multiple spatial streams and the priority of transmission data, communication of data with priority is not inhibited, radio resources are effectively used, and delay due to retransmission control is reduced.
  • the transmission weight calculation frequency can be reduced.
  • the principle of the present invention is to give priority to a spatial stream on the basis of spatial degradation prediction (transmission path prediction) to a plurality of spatial streams, and to consider the priority of the spatial stream.
  • transmission path prediction transmission path prediction
  • the spatial multiplexing communication method for prioritized data between specific transceivers includes a priority allocation unit, a spatial multiplexing transmission unit, a spatial multiplexing reception unit, a decoding unit with priority, and propagation. It comprises a path estimation means and a propagation path prediction priority determination means, and operates to assign high priority data with high priority to spatial streams that are not easily degraded.
  • the present invention it is possible to effectively utilize radio resources on the transmission side from the reception side without impeding communication of data with priority.
  • the reason is that the quality deterioration due to the temporal change of the spatial stream is predicted, the priority is set to the spatial stream, and the data with priority is assigned according to the priority of the spatial stream, thereby reducing the frequency of tracking the channel characteristics. This is because prioritized data communication is not hindered.
  • the E-S DM can reduce the transmission weight calculation frequency without stopping communication of data with priority. The reason is that even if the transmission frequency of the transmission weight is reduced to follow the time variation of the propagation path characteristics, high priority data can be communicated without error and communication is not hindered.
  • FIG. 1 is a block diagram for explaining a communication system according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart for schematically explaining the operation of the communication system according to the present invention.
  • FIG. 3 is a block diagram illustrating a communication system according to the second embodiment of the present invention. .
  • FIG. 4 is a flowchart for specifically explaining the operation of the communication system according to the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the best mode for carrying out the first invention.
  • FIG. 6 is a flowchart showing the operation of the best mode for carrying out the first invention.
  • FIG. 7A to FIG. 7E are block diagrams showing a configuration for explaining another embodiment of the present invention.
  • FIG. 8A to FIG. 8E are blocks showing a configuration for explaining another embodiment of the present invention.
  • FIG. 8A to FIG. 8E are blocks showing a configuration for explaining another embodiment of the present invention.
  • 9A to 9D are block diagrams showing a configuration for explaining another embodiment of the present invention.
  • FIG. 1 O A and FIG. 1 OB are schematic views showing a configuration for explaining another embodiment of the present invention.
  • FIG. 11 is a schematic diagram for explaining a conventional example.
  • FIG. 12A and FIG. 12B are block diagrams for explaining the third embodiment of the present invention.
  • FIG. 13 is a flowchart for explaining the operation of the system according to the third embodiment.
  • the communication system performs prioritized data communication between one or more specific transmitters / receivers.
  • the first embodiment of the present invention includes a priority assignment unit 1 0 1, a spatial multiplexing transmission unit 1 0 2, a spatial multiplexing reception unit 1 0 3, and a priority decoding unit 1. 0 4, a channel estimation unit 1 0 6, and a channel prediction priority setting unit 1 0 5.
  • the propagation path 10 7 is a spatial multiplexing propagation path for performing communication between one or more specific transceivers, and may change with time.
  • the channel prediction priority setting unit 1 0 5 and the channel estimation unit 1 0 6 may be on either the transmission side or the reception side.
  • FDD method frequency division duplex method
  • TDD method time division duplex method
  • the uplink and downlink have the same propagation path. But it is possible.
  • data with priority is composed of multiple data strings with different priorities.
  • the priority of data is given according to the importance of data. For example, sound In video information that includes both voice information and image information, audio information has a higher priority than image information.
  • the priority is the lowest quality data with the lowest quality called the base layer. Has a higher priority than the enhancement layer to improve quality.
  • the priority assignment unit 1 0 1 assigns the data with priority to the spatial stream in order from the highest priority.
  • priorities are also assigned to the spatial streams, and the priority assigning unit 1 0 1 of this embodiment sets the priority data in order from the highest priority data. Allocate to a high spatial stream.
  • Spatial multiplexing transmission section 102 forms a plurality of spatial streams using a plurality of antenna elements or a plurality of polarizations of a single antenna element, and performs spatial multiplexing transmission.
  • Spatial multiplexing methods include methods that do not perform weight multiplication (such as SDM) and methods that perform weight multiplication (such as W-SDM and E-SDM).
  • the propagation path estimator 10 6 uses each known antenna or determined signal as a pseudo known signal, multiplies the complex conjugate of the known signal, and averages the result to each transmitting / receiving antenna (or polarization). ) Calculate the characteristics of the spatial multiple propagation path between and output the propagation path calculation value.
  • the propagation path prediction priority setting unit 1 0 5 predicts the ease of deterioration of each spatial stream from the propagation path calculation value, and assigns a low priority to the one that is difficult to deteriorate and one that is easy to deteriorate.
  • the spatial multiplexing receiver 103 receives signals using the polarization of a plurality of antenna elements or single antenna elements, and separates the spatially multiplexed signals by signal processing.
  • the decoding unit with priority 1 0 4 decodes the encoded signal with priority.
  • Decryption with priority is a communication hindrance when information with high priority is erroneous due to changes in propagation path characteristics, but information with low priority is erroneous and quality degradation occurs when information with high priority is propagated correctly. Communication is successful.
  • the first embodiment of the present invention is for the case of communicating data with priority for personal communication between one or more specific transceivers.
  • the data with priority transmitted / received in the first embodiment of the present invention is composed of a plurality of data strings each having a related priority. Priorities of data columns are assigned according to the importance of information. As described above, in video information in which audio information and image information are mixed, audio information has a higher priority than image information. In scalable coded data, the quality of the data with the lowest quality called the base layer is low. The priority is higher than the enhancement layer to improve quality. In the priority allocation unit 1 0 1, the data with priority is allocated to the spatial stream with high priority sequentially from the data string with high priority.
  • the priority-assigned data assigned to each spatial stream is multiplied by the weight calculated from the propagation path calculation value using the multiple antenna elements or multiple polarizations of a single antenna element in the spatial multiplexing transmitter 1 0 2. Spatial multiplexed transmission.
  • Correlation matrix H using the unique base-vector e for the "; eigenvector e t for L i, the eigenvalues of H, the correlation matrix iH" (D eigenvalues e i, the sender-wait ⁇ t and the receiving-wait Eigenvalue transmission is performed by setting as follows.
  • Equation 21 Equation 22
  • the propagation path estimator 10 6 uses each known antenna or determined signal as a pseudo known signal, multiplies the complex conjugate of the known signal, and averages the result to each transmitting / receiving antenna (or polarization). ) Calculate the characteristics of the spatial multiple propagation path between and output the propagation path calculation value.
  • the propagation path estimation unit 106 performs an operation of calculating a propagation path characteristic by multiplying a signal that has passed through the propagation path by a complex conjugate of a known signal or a pseudo known signal, and averaging the result to eliminate the influence of noise. Is called.
  • a propagation path matrix H is obtained using this propagation path calculation value.
  • the propagation path prediction priority setting unit 1 0 5 predicts the ease of deterioration of each spatial stream from the propagation path calculation value, and assigns a lower priority to the one that is less likely to deteriorate and lower priority to the one that is more likely to deteriorate. Assign as priority.
  • the degradation prediction method in the channel prediction priority setting unit 1 0 5 will be described based on the flowchart of FIG. 2.
  • the channel calculation value is input (step al)
  • an index of the ease of degradation of the spatial stream. Is calculated (step a2)
  • the priority of each spatial stream is set based on the ease of degradation (step a3).
  • the operations of the propagation path estimation unit 10 6, the propagation path prediction priority setting unit 1 0 5, and the priority assignment unit 1 0 1 described above can be realized not only by a hardware circuit but also by software. The same applies to other embodiments described below.
  • the spatial multiplexing receiving section 103 receives signals using the polarization of a plurality of antenna elements or a single antenna element, and separates the signals that have been spatially multiplexed by signal processing.
  • the decoding unit with priority 1 0 4 decodes the encoded signal with priority.
  • Decoding with priority is a power that hinders communication when high-priority information is mistaken due to changes in propagation path characteristics.
  • Low priority quality when high-priority information is correctly propagated even if the information is wrong Communication will be successful only by deterioration. Therefore, the method according to the present invention can bias errors due to a decrease in followability of propagation path characteristics to a low-priority portion of the data with priority by priority assignment. As a result, even if information with low priority is incorrect, communication is not hindered, and the frequency with which propagation path characteristics are reflected in the transmission weight can be reduced.
  • the second embodiment of the present invention relates to prioritized data communication between one or more specific transceivers.
  • Priority data is information composed of a plurality of data strings having different priorities.
  • the priority given to the data string is given according to the importance of the data string. For example, in video information in which audio information and image information are mixed, audio information has a higher priority than image information.
  • the priority of the lowest quality data with the lowest quality called the base layer Has a higher priority than the enhancement layer to improve quality.
  • Data with priority is assigned to a spatial stream with high priority in the priority assignment unit 2 0 1 in order from the data string with high priority.
  • the prioritized data assigned to each spatial stream is multiplexed and transmitted by the multiplexing unit 2 0 2.
  • Multiplexing methods include spatial multiplexing, frequency multiplexing, and time multiplexing.
  • the propagation path estimation unit 206 uses each of the known signal or the determined signal as a pseudo known signal and multiplies the signal that has passed through the propagation path by the complex conjugate of the known signal and averages them. Calculate propagation path characteristics and output propagation path calculation values.
  • This embodiment is different from FIG. 1 in that the propagation path calculation value is notified to the propagation path prediction priority setting unit 2 0 5 and is not notified to the multiplex transmission unit 2 0 2.
  • the channel prediction priority setting unit 2 0 5 predicts the ease of degradation of each spatial stream from the notified channel characteristics, and assigns a higher priority to those that are less likely to degrade and a lower priority to those that are more likely to degrade. Outputs the priority of each spatial stream.
  • the propagation path characteristics mentioned here are signal-to-noise ratios, etc. When predicted from a single calculation, the value is lower than the comparison value. Also, during repeated communication, the stability of each spatial stream is judged based on changes in the propagation path calculation values this time and the previous time, and a higher priority is set for a stable spatial stream than for other spatial streams. It is.
  • step al an index of the susceptibility to degradation of the spatial stream is calculated (step a 2). Based on this, set the priority of each spatial stream (step).
  • the spatial stream in this embodiment includes a spatial stream in spatial multiplexing, a propagation path between antennas, and radio resources by frequency and time multiplexing.
  • a communication system according to the third embodiment of the present invention will be specifically described.
  • the communication system according to the third embodiment of the present invention communicates data with priority between specific one or more transmitters / receivers.
  • the communication system includes a switching unit 8 0 1, a data allocation unit 8 0 2, and a priority allocation processing unit 8. 0 3, switching unit 8 0 4, multiplex transmission unit 8 0 5, control unit 8 0 6, propagation path estimation unit 8 0 7, multiple reception unit 8 0 9, decoding unit with priority 8 1 0
  • the priority assignment processing unit 8 0 3 includes a priority assignment unit 8 1 3 and a channel prediction priority setting unit 8 14.
  • FIG. 12A The operation of the communication system according to the third embodiment of the present invention will be described with reference to FIG. 12A, FIG. 12B, and FIG.
  • the broken lines in FIGS. 12A and 12B are control signals, and FIG. 13 shows the processing flow of the control unit 86.
  • control unit 8 6 determines whether or not the data has priority (step b2). If it is not the data with priority, the control unit 8 0 1 and 8 0 4 Send data to the data allocation unit 80 2 to instruct and invalidate the allocation with priority (step b5).
  • the control unit 8 0 6 can be realized not only by hardware but also by a microprocessor operating by a program.
  • the definition of data with priority is data composed of a plurality of data strings having different priorities. As described above, the priority of data with priority is given according to the importance.
  • step b5 disabling the priority assignment in step b5 is the same as the conventional assignment.
  • the data allocation unit 8 0 2 allocates data to the spatial stream according to the propagation path information sent from the propagation path estimation unit 8 0 8.
  • the data allocation unit 8 0 2 may be configured by hardware or may be realized by software.
  • the multiplex transmission unit 8 0 5 multiplex-transmits the data assigned to each spatial stream. Multiplexing methods include spatial multiplexing, frequency multiplexing, and time multiplexing.
  • the signal that has passed through the propagation path 8 07 is received by the multiple receiving unit 8 09, and the decoding unit 8 10 with priority decodes the received signal and outputs data.
  • control unit 8 06 instructs the propagation path estimation unit 8 08 to set the propagation path information notification interval ⁇ to the initial value ⁇ ⁇ (step b6).
  • the propagation path estimation unit 8 08 outputs the propagation path characteristics obtained by calculating the characteristics of the propagation path 8 07 and the propagation path information obtained therefrom. In the case of continuous communication, the propagation path information notification interval is taken.
  • the propagation path characteristics are propagation path calculation values, noise information, signal-to-noise ratio, and so on.
  • the propagation path calculation value is calculated by multiplying the received signal that has passed through the propagation path by the complex conjugate of the known signal and averaging using the known signal or the determined signal as a pseudo known signal.
  • the propagation path estimation unit 8 08 selects the propagation path calculated value and the calculated noise value or the signal-to-noise ratio from the values determined by the system according to the propagation path information notification interval ⁇ , and outputs the propagation path information.
  • the propagation path information is a specification of the communication capacity for each spatial stream calculated from the propagation path calculation value and noise.
  • CQI Channel Quality Indicator
  • the calculated noise value is obtained by subtracting the propagation path power value from the received signal power using the propagation path calculation value, and the signal-to-noise ratio is obtained as the ratio of the propagation path power to the noise power.
  • step b2 in Figure 1-3 in the case of data with priority, the control unit 8 0 6
  • the switching unit 8 0 1, 8 0 4 is instructed to enable the priority-encoded processing unit 8 0 3 and output to the multiplex transmission unit 8 0 5 to enable priority-assignment (step b3) .
  • the priority allocation processing unit 8 0 3 with priority data allocation unit 8 1 3 (Fig. 1 2 B)) converts the data with priority to the spatial stream with higher priority sequentially from the data sequence with higher priority. Assign.
  • the amount of data allocated to each spatial stream given by the channel information from the channel estimation unit 8 08 is also used.
  • the priority allocation processing unit 8 0 3 of the priority allocation processing unit 8 0 3 shown in Fig. 1 2 B is configured to degrade each spatial stream from the channel characteristics notified from the channel estimation unit 8 0 8. Predicts ease, assigns high priority to those that are difficult to degrade, and assigns low priority to those that are likely to degrade, and outputs the priority of each spatial stream.
  • propagation path characteristics are propagation path calculation values, noise information, signal-to-noise ratio, etc.
  • the value is lower than the comparison value. is there.
  • the stability of each spatial stream is judged based on changes in the propagation path values this time and the previous time, and a higher priority is set for a stable spatial stream than for other spatial streams.
  • An operation such as performing is performed.
  • the multiplex transmission unit 8 05 multiplexes the data allocated to each spatial stream. Multiplexing methods include spatial multiplexing, frequency multiplexing, and time multiplexing.
  • the signal that has passed through the propagation path 8 07 is received by the multiplex receiving unit 8 09, and the decoding unit with priority 8 10 decodes the received signal and outputs data.
  • the control unit 8 06 instructs the propagation channel estimation unit 8 0 8 to set the initial value ⁇ for the propagation channel information notification interval. Set to a value longer than 0 (step b4).
  • the spatial stream in this embodiment includes a spatial stream in spatial multiplexing, a propagation path between antennas, and radio resources by frequency and time multiplexing. Whether or not the data in step b2 requires real-time May be included.
  • An example is RT-VR, which is QoS for real-time applications (see References 12).
  • FIG. 4 there is shown a flowchart for specifically explaining the degradation prediction method of E-S DM used in the embodiment shown in FIGS. 1 and 2.
  • the flowchart shown in FIG. The operation of the propagation path prediction priority setting unit 1 0 5 is shown.
  • the channel prediction priority setting unit 10 5 and the priority assignment unit 1 0 1 may be realized by hardware or may be realized by a software program.
  • the software program may be stored in a computer-readable recording medium.
  • Eigenvalue calculation methods include singular value decomposition, Householder, QR decomposition, and DB method.
  • the priority PSi of the i-th spatial stream is initialized (step S4).
  • step S5 If the value of m is 1 or less, the priority is invalid and the process ends (step S5).
  • step S6 the maximum eigenvalue; L max is obtained (step S7), and the priority PSmax of the associated spatial stream is lowered (step S8).
  • the priority of the spatial stream is the highest, and the higher the value, the lower the priority. This is because the spatial stream with the maximum eigenvalue tends to deteriorate with time. This is because the maximum eigenvalue stream is assigned the maximum power, and the interference due to time changes is larger than other spatial streams (see Non-Patent Document 9).
  • step S6 If the value of m is greater than 2 (step S6), the maximum eigenvalue; I max and the minimum eigenvalue min are obtained (step S9), and the associated spatial stream priority PSmax, PSmin is lowered (step S10).
  • propagation path matrix creation (step S3) and eigenvalue calculation (step S4) can be shared with the reception side transmission multiplex part or the transmission side transmission multiplex part.
  • peering communication refers to, for example, data communication that spans multiple packets. This is a specific example of FIG. 2, and is an operation of the propagation path prediction priority setting unit 10 5 of FIG.
  • each spatial stream is predicted and stabilized from the eigenvalue calculated from the previous propagation path calculation value, the eigenvector calculated from the eigenvector and the current propagation path calculation value, and changes in the eigenvector.
  • m (n-1) is the number of previous eigenvalues.
  • Eigenvector calculation methods include singular value decomposition, Householder, QR decomposition, and DB method.
  • each eigenvector ei is the number of transmitting antennas M in the transmitting eigenvector, and the number of receiving antennas N when performing in the receiving eigenvector. Since both methods can be used for deterioration prediction, in this case, the eigenvector correlation amount is calculated in either case, and the maximum eigenvector correlation amount is selected for each spatial stream.
  • the i-th spatial stream is determined to be unstable, and a low priority is set (step S19).
  • PSi l Equation 36 ⁇ e ( n _ is ⁇ e thL ⁇ ⁇ e i7 ( ⁇ _ 1 ⁇ ⁇ e ⁇ Set the advance.
  • step S24 Find the maximum eigenvalue max (step S24) and prioritize the associated spatial stream
  • the spatial stream is for each transmission antenna, and spatial stream number i is considered to be equal to antenna number j.
  • the propagation path calculation value hjk (n-1) calculated at the previous time is held (step S26).
  • the propagation path calculation value hjk (n) calculated this time is input (step 27).
  • the propagation path change amount A hj (n) of the antenna j is calculated (step S28).
  • this formula is used when the propagation path calculation value is not a standardized value.
  • step S29 The amount of change in the propagation path of each antenna is compared, and the priority and the priority are set in order from the antenna with the larger value (step S29).
  • a hj (n) is a negative value, it indicates that it has shrunk, so it is predicted that it will deteriorate, and a low priority is set.
  • the priority of spatial stream number 3 with the largest propagation path change amount A hj (n) is set to 1 as the maximum, and then the priority is set in the order of spatial numbers 2, 1, and 4 in the order of decreasing priority. To do.
  • the operation of the propagation path prediction priority setting unit 1 0 5 in FIG. 1 and the example of repeated communication as a specific example in FIG. 2 show the eigenvalue of the destination calculated from the propagation path calculation value calculated in the previous round. And the current eigenvalue obtained from the propagation path calculated this time, and the spatial stream related to the eigenvalue that has changed significantly is predicted to be more likely to deteriorate than the spatial stream of the eigenvalue that does not change so much, and the priority is set low. .
  • various methods can be used for assigning the priority of the spatial stream, such as setting a low priority by predicting that the spatial stream related to the reduced eigenvalue will deteriorate.
  • FIGS. 7A to 7E another embodiment according to the present invention will be described.
  • Data with priority shall be composed of multiple data strings with different priorities.
  • the propagation path prediction priority setting unit 3 0 5 predicts the ease of deterioration of each spatial stream from the propagation path calculation value, and assigns a higher priority to those that are less likely to deteriorate and a lower priority to those that are more likely to deteriorate.
  • the priority assignment unit 3 0 4 assigns the priority-priority data in descending order to the high-priority spatial stream. When allocating, if the number of data does not match, adjust the data distribution.
  • the above-described propagation path prediction priority setting unit 3 0 5 and priority assignment unit 3 0 4 may be realized by hardware as in the above-described embodiment, or may be realized by a software program.
  • Tables 4 and 5 show examples of prioritized data and the number of bits, spatial stream priority and the number of transmitted bits.
  • Prioritized data is spatially scalable as described in the background art of this specification. , Temporal scalability, SNR scalability, R0I scalability, etc. Also, when video and audio are delivered simultaneously, the audio priority is higher than the image. There is also a composite type of these scalability and data types. Although the method of expressing the priority varies depending on the system, in this example, the high priority is represented by a small number.
  • the channel prediction priority setting unit 3 0 5 sets the priority of the i-th spatial stream.
  • the number of transmission bits is specified by the propagation path information.
  • Table 5 is an example.
  • the priority allocation unit 3 0 4 allocates the priority layer 1 to the second spatial stream with priority 1 because the priority allocation unit 3 0 4 sequentially allocates the highest priority priority data to the spatial stream with the highest priority.
  • the second spatial stream is allocated 128 bits in the base layer, followed by the first 256 layers of redundant data in the first enhancement layer, a total of 384 bits. Subsequently, the remaining 1 2 6 bits of redundant data of the first enhancement layer are allocated to the third spatial stream of priority 2 and then the redundant data of the second enhancement layer is assigned to the first space of priority 3 and 4 Damaged to the stream and the fourth spatial stream.
  • the priority assignment unit 3 0 4 may have a data adjustment function.
  • the channel encoder 3 0 2 shown in FIG. 7A to FIG. 7E performs channel encoding so that the receiving side can check for errors in the data allocated for each spatial stream, and performs spatial multiplexing. Send to the transmitter 3 0 6.
  • the spatial multiplexing transmission unit 30 6 includes a weight multiplication unit 3 20, a known signal insertion modulation unit 3 2 1, and a weight generation unit 3 2 2.
  • Known signal insertion modulation unit 3 2 1 inserts a known signal into the weighted signal, modulates CDMA or 0FDMA, etc., depending on the method, and wirelessly if necessary The frequency is converted to the carrier frequency and transmitted from the transmission spatial multiplexing antenna 3 07 to the spatial multiplexing propagation path 3 0 8.
  • the transmission spatial multiplexing antenna 3 07 includes a configuration using a plurality of antenna elements and a configuration method using a plurality of polarized waves of a single antenna.
  • Multiple data streams multiplexed and transmitted on the spatial multiplexing channel 3 0 8 are transmitted by multiple streams.
  • Radio waves are received by the spatial multiplexing receiving unit 3 10 through the reception spatial multiplexing antenna 3 09. Thermal noise is also added when receiving.
  • the spatial multiplexing receiver 3 1 0 and the demodulator 3 2 3 demodulates CDMA, OFDM, etc. according to the modulation on the transmission side, and converts it to a frequency that can be signal processed as required.
  • the weight multiplication unit 3 2 4 of the spatial multiplexing receiver 3 10 multiplies the demodulated signal by the weight.
  • the propagation path estimation unit 3 1 4 of the receiving-side radio station 30 2 has a propagation path calculation unit 3 2 5, a weight generation unit 3 2 6, and a propagation path information generation unit 3. 2 7 is provided.
  • the propagation path calculation unit 3 2 5 of the propagation path estimation unit 3 1 4 uses a post-determination signal that can be treated as a known signal or a pseudo-known signal inserted on the transmission side, and applies a complex conjugate of the known signal to the demodulated signal. Multiply and average to obtain the propagation path calculation value, and output it to the weight generator 3 26 as the propagation path estimation value.
  • the weight generator 3 2 6 calculates the weight from the propagation path estimation value. There are E-SDM, ZF, and MMSE methods for calculating the weight.
  • the propagation path information generation section 3 2 7 of the propagation path estimation section 3 14 selects and outputs the propagation path information to be transmitted to the transmission side based on the propagation path calculation value or weight from the values decided by the system.
  • the propagation path information is a specification of the communication capacity and transmission side weight for each spatial stream calculated from the propagation path calculation value and noise.
  • CQI Channel Quality Indicator
  • PCI Precoding control indicator
  • the priority is determined by predicting the ease of degradation of the spatial stream from the propagation path information.
  • the inferiority is that the spatial stream multiplied by the maximum weight is likely to be degraded, and that a spatial stream with a large change in capacity and weight setting is more likely to degrade than the previous propagation path information.
  • the channel decoding unit with priority 3 1 shown in FIG. 7A performs channel decoding for each spatial stream according to the priority of the spatial stream. If decoding of the highest priority spatial stream fails, a communication inhibition signal is output, and if successful, a communication inhibition signal is not output. The communication inhibition signal is notified to the reception side retransmission control unit 3 1 6.
  • Receiving side retransmission control section 3 16 does not request retransmission unless communication is interrupted, and outputs a retransmission request signal to receiving side transmitting section when communication is inhibited.
  • the priority decoding unit 3 1 2 performs priority channel decoding when the priority channel decoding unit 3 11 does not output a communication inhibition signal. Priority of the same information In the case of attached data, since the base layer cannot communicate and it is invalid to decode the enhancement layer, the subsequent decoding is interrupted and only the decoded data is sent to the display unit 3 1 3. If the priority data with the highest priority does not end with the highest priority spatial stream and decoding of the subsequent spatial stream fails, the priority channel decoding unit 3
  • the display unit 3 1 3 is a display for images and a microphone for audio.
  • the propagation path information from the receiving side radio station 3 0 2 is the antenna 3 1 8 and the reverse propagation path 3 1
  • a retransmission request signal is sent via the receiving side transmitter 3 1 7, antenna 3 1 8, reverse propagation path 3 1 9, antenna 3 2 8, and transmitting side receiver 3 2 9.
  • Receiving side retransmission control unit 3 30 is notified, and the transmitting side retransmission control unit retransmits the data that has been blocked.
  • the reverse propagation path 3 19 has a frequency different from that of the propagation path 3 08 in the FDD system and the same frequency in the TDD system.
  • the antennas 3 1 8 and 3 2 7 may be spatially multiplexed antennas and the reverse propagation path 3 19 may be a spatially multiplexed path, or not.
  • FIG. 7E shows an example of a spatial multiplexing transmitter 30 06 having a configuration different from that of the spatial multiplexing transmitter 30 06 shown in FIG. 7B.
  • 7E includes a known signal insertion unit 3 31, a weight multiplication unit 3 3 2, and a modulation unit 3 3 3, and a weight generation unit as in FIG. Has 3 2 2.
  • this is an example in which the insertion position of the known signal inserted by the known signal insertion unit 3 31 is different.
  • the known signal insertion unit 3 31 provided in the spatial multiplexing transmission unit 30 6 inserts the known signal into the signal encoded for each spatial stream, and then The weight multiplier 3 3 2 multiplies the weight, and the modulator 3 3 3 performs modulation such as CDMA and OFDM.
  • low-priority data is a background or best effort that does not guarantee reliable transmission, and will be referred to as best effort here.
  • data with high priority is data that guarantees reliable transmission and is referred to as guarantee.
  • the QoS of low-priority data is a type of best effort that does not guarantee the transmission of QoS of high-priority data in the background
  • the effect of this embodiment is that the delay due to retransmission control can be reduced even if the propagation path estimation frequency on the transmission side is reduced.
  • the reason is that errors can be biased to low priority and prioritized data in order to allocate high priority priority data to spatial streams that are not easily degraded by changes in channel characteristics over time. This is because data with high priority and priority can be communicated correctly and retransmission control is not performed.
  • FIGS. 8A to 8E another embodiment of the present invention will be described.
  • the illustrated embodiment is an example in which data with priority is communicated from a specific transmitting radio station 4 0 1 to a receiving radio station 4 0 2.
  • Prioritized data consists of multiple data strings with priorities set according to importance.
  • the priority assignment unit 4 0 4 assigns the data with priority to the spatial stream with the highest priority in order from the data with the highest priority. Spatial stream priority information is given as prioritized channel information.
  • the data distribution adjustment method when the number of data does not match is performed in the same manner as the priority assignment unit 3 04 shown in FIG. 7A.
  • the channel encoding unit 45 5 performs channel encoding so that each of the data allocated to each spatial stream can be checked for errors on the receiving side, and sends the data to the modulation spatial multiplexing transmission unit 4 06.
  • weight generator 4 2 2 sets m X m transmission weight Wt from priority propagation path information, and weight multiplier 4 2
  • the detailed operation is the same as that of the spatial multiplexing transmitter 3 06 shown in FIGS. 7A to 7E.
  • the known signal insertion modulation unit 4 2 1 of the spatial multiplexing transmission unit 4 06 inserts the known signal into the weighted signal and performs modulation such as CDMA or 0FDMA depending on the method. If necessary, frequency conversion to a radio carrier frequency is performed, and transmission is transmitted from the spatial multiplexing antenna 4 0 7 to the spatial multiplexing propagation path 4 0 8.
  • the transmission spatial multiplexing antenna 4 07 has a configuration using multiple antenna elements and a configuration method using multiple polarizations of a single antenna.
  • a plurality of multiplexed data streams are transmitted by a plurality of streams on the spatial multiplexing channel 4 0 8.
  • the spatial multiplex channel 4 0 8 propagation loss, multipath, fading, shadowing, etc. occur, and the characteristics of the spatial multiplex channel 4 8 change with time.
  • the receiving-side radio station 4 0 2 receives radio waves with the reception spatial multiplexing antenna 4 0 9. At this time, thermal noise is added.
  • the demodulator 4 2 3 of the spatial multiplexing receiver 4 1 0 demodulates CDMA, OFDM, etc. according to the modulation on the transmission side, and can process signals as necessary To a different frequency.
  • the weight multiplier 4 2 4 multiplies the demodulated signal by the weight.
  • the propagation path calculation unit 4 2 5 converts the post-determination signal that can be treated as a known signal or pseudo known signal inserted on the transmission side. Used to multiply the demodulated signal by the complex conjugate of the known signal and average it to obtain the calculated propagation path.
  • the weight generation unit 4 26 of the propagation path estimation unit 4 14 shown in FIG. 8D calculates a weight from the propagation path estimation value.
  • the weight calculation method is E-SDM, ZF, ⁇ SE and so on.
  • the prioritized propagation path information generation unit 4 2 7 selects the propagation path information to be sent to the transmission side based on the propagation path calculation value or weight from the values decided by the system.
  • the spatial stream priority information received from the propagation path prediction priority setting unit 4 15 is combined to output the priority-added propagation path information.
  • the propagation path information is a specification of the communication capacity and transmission side weight for each spatial stream calculated from the propagation path calculation value and noise.
  • Examples of conventional propagation path information include CQI and PCI.
  • the priority propagation path characteristic adds priority information g bits to the propagation path information f bits.
  • the propagation path information is 6 bits, 2 bits of priority information is added to it and notified in 8 bits.
  • the channel prediction priority setting unit 4 15 shown in Fig. 8A determines the priority by predicting the ease of degradation of the spatial stream from the channel calculation value. As methods for predicting the ease of deterioration, there are methods described above with reference to FIGS. 7A to 7E and FIG.
  • the spatial stream multiplied by the maximum weight is likely to deteriorate, and the spatial stream that has a large change in capacity and weight setting compared to the previous propagation path information is likely to deteriorate. Ease may be predicted.
  • the channel decoding unit with priority 4 1 1 performs channel decoding for each spatial stream according to the priority of the spatial stream. If decoding of the highest priority spatial stream fails, a communication inhibition signal is output, and if successful, a communication inhibition signal is not output. The communication inhibition signal is notified to the receiving side retransmission control unit 4 1 6.
  • Receiving side retransmission control section 4 16 does not request retransmission unless communication is interrupted, and outputs a retransmission request signal to receiving side transmitting section when communication is inhibited.
  • the priority decoding unit 4 1 2 performs priority channel decoding when the priority channel decoding unit 4 1 1 does not output a communication inhibition signal. In the case of data with the same information priority, even if the basic layer cannot communicate and decoding the enhancement layer is invalid Therefore, the subsequent decryption is interrupted, and only the decrypted data is sent to the display unit 4 1 3.
  • the prioritized channel decoding unit 4 If the priority-priority data with the highest priority does not end with the highest-priority spatial stream and decoding of the subsequent spatial stream fails, the prioritized channel decoding unit 4
  • the display unit 4 1 3 is a display for an image and a microphone for an audio.
  • the propagation path information is received by the antenna 4 2 8 through the antenna 4 1 8 and the reverse propagation path 4 1 9 and received by the transmission side reception unit 4 2 9.
  • a retransmission request signal is sent via the receiving side transmitter 4 1 7, antenna 4 1 8, reverse channel 4 1 9, antenna 4 2 8, and transmitting side receiver 4 2 9.
  • the transmission side retransmission control unit 4 3 0 is notified, and the transmission side retransmission control unit 4 3 0 retransmits the data with communication obstruction.
  • the reverse propagation path 4 19 has a frequency different from the propagation path 4 0 8 in the FDD system, and the same frequency in the TDD system.
  • the antennas 4 1 8 and 4 2 8 are spatially multiplexed antennas and the reverse propagation path 4 19 is a spatially multiplexed path.
  • the spatial multiplexing transmission unit 40 6 shown in FIG. 8E is different from FIG. 8B in the position of the known signal insertion.
  • the known signal insertion unit 4 3 1 inserts a known signal into the signal encoded for each spatial stream, and then the weight multiplication unit 4 3 2 calculates the weight.
  • Multiplying and modulation section 4 3 3 performs modulation such as CDMA and OFDM.
  • the input unit 5 3 0 is a camera or a microphone.
  • the coding unit with priority 5 0 3 performs scalable coding and outputs data with priority.
  • the data holding unit 5 3 1 holds data for retransmission.
  • Prioritized data consists of multiple data strings with priorities set according to importance.
  • the priority assignment unit 5 0 4 assigns the data with priority to the spatial stream with the highest priority in order from the data with the highest priority.
  • the channel prediction priority setting unit 5 3 3 gives the priority of the spatial stream. At that time, the data distribution adjustment method when the number of data does not match is the same as the priority assignment unit 3 0 4 described above.
  • the channel coding unit 50 5 performs channel coding so that the data allocated to each spatial stream can be checked for errors on the receiving side, and sends the data to the spatial multiplexing transmission unit 5 06.
  • control signal insertion unit 5 45 shown in FIG. 9B inserts a retransmission request signal when there is a retransmission request signal from retransmission control unit 5 32. If not, do not insert.
  • the weight multiplier 5 2 0 multiplies the transmission weight from the propagation path estimator 5 3 4, and the known signal insertion modulator 5 2 1 inserts a known signal into the weighted signal, Therefore, modulation of CDMA, 0FDMA, OFDM, etc.
  • the frequency is converted into a frequency and transmitted from the spatial multiplexing antenna 5 07 to the spatial multiplexing propagation path 5 08 through the antenna switching unit 5 43 that is switched in the transmission direction.
  • the same frequency resource is used by switching between the forward direction and the reverse direction according to time, so the antenna switching units 5 4 3 and 5 4 4
  • the input from the spatial multiplexing transmitters 5 0 6 and 5 1 0 and the output to the spatial multiplexing receivers 5 2 9 and 5 1 0 are switched for effective use.
  • the spatial multiplexing antenna 5 07 includes a configuration using multiple antenna elements and a configuration method using multiple polarizations of a single antenna.
  • the propagation path is a spatial multiplex propagation path, and multiple data streams that are multiplexed are transmitted by multiple streams. Propagation loss, multipath, fading, and shadowing occur.
  • Second radio station 5 0 2 receives radio waves with spatial multiplexing antenna 5 09. At this time, thermal noise is added.
  • the signal that has passed through the antenna switching unit 5 4 4 is sent to the demodulating unit 5 2 3 of the spatial multiplexing receiving unit 5 10 shown in FIG. 9C, and the demodulating unit 5 2 3 matches the modulation on the transmitting side.
  • the weight multiplier 5 2 4 multiplies the demodulated signal by the weight, and the control signal separator 5 46 separates the retransmission request signal and transmits it to the retransmission controller 5 1 6.
  • the propagation path estimation unit 5 14 uses the post-determination signal that can be treated as a known signal or pseudo known signal inserted on the transmission side by the propagation path calculation unit 5 25 shown in FIG. Is multiplied by the complex conjugate of the known signal and averaged to obtain a propagation path calculation value. Further, the weight generator 5 26 calculates the weight from the propagation path estimation value.
  • the weight calculation methods include E-SDM, ZF, and MMSE.
  • the channel prediction priority setting unit 5 1 5 in Fig. 9A determines the priority by predicting the ease of degradation of the spatial stream from the channel calculation value. There is a method of the figure (flow chart) explained earlier for predicting the ease of deterioration.
  • the spatial stream with the largest eigenvalue is a spatial stream that is easily degraded, for example, a spatial stream that has a large change compared to the previous propagation path calculation value. If decoding of the highest priority spatial stream fails, a communication inhibition signal is output, and if successful, a communication inhibition signal is not output. Notify the communication obstruction signal to the receiving side retransmission controller 5 1 6
  • the spatial stream with the largest eigenvalue is a spatial stream that is easily degraded, for example, a spatial stream that has a large change compared to the previous propagation path calculation value.
  • the retransmission control unit 5 16 does not request retransmission unless there is communication inhibition, and outputs a retransmission request signal to the receiving side transmission unit when there is communication inhibition.
  • the priority decoding unit 5 1 2 performs priority channel decoding when there is no communication inhibition signal output in the priority channel encoding unit 5 37.
  • the subsequent decoding is interrupted, and only the decoded data is sent to the display unit 5 13. If the priority data with the highest priority does not end with the spatial stream with the highest priority and decoding of the subsequent spatial stream fails, the prioritized channel encoder 5 3 7 outputs a communication inhibition signal. To do. If there is communication interruption, stop the decoding process and wait for the re-transmission data.
  • the display unit 5 1 3 of the second radio station 50 2 is a display for images and a microphone for audio.
  • retransmission control section 5 16 when there is communication obstruction, retransmission control section 5 16 outputs a retransmission request signal.
  • the retransmission request signal is inserted into the transmission signal by the control signal insertion unit 5 45 of the spatial multiplexing transmission unit 5 17 shown in FIG. 9B.
  • the retransmission control signal is further spatially multiplexed through the antenna switching unit 54 4 switched to the transmission direction through the weight multiplication unit 5 20 and the known signal insertion modulation unit 5 21 shown in FIG. 9B. Propagated in the reverse direction from the antenna 5 0 9 through the transmission path 5 0 8, received by the spatial multiplexing antenna 5 0 7 of the first base station 5 0 1, and passed through the antenna switching unit 5 4 3 switched in the reverse direction And received by the spatial multiplexing receiver 5 2 9. After being received, the retransmission control signal is demodulated by the demodulator 5 2 3 and weighted by the weight multiplier 5 5 4, and then sent from the control signal separator 5 4 6 to the retransmission controller 5 3 2. Sent to.
  • the retransmission control unit 53 2 retransmits the data with priority information held in the data holding unit 53 1 again at the forward communication timing.
  • data with priority information is again allocated to the spatial stream through the priority allocation unit 5 0 4, the channel encoding unit 5 5 with priority, the spatial multiplexing transmission unit 5 0 6, and the antenna set in the transmission direction Through the switching unit 5 4 3, it propagates in the spatial multiplexing propagation path 5 0 8 in the forward direction and transmits. .
  • Data with priority information from the first radio station 5 0 1 is received by the spatial multiple antenna 5 0 9 of the second radio station 5 0 2 and passes through the antenna switching unit 5 4 4 switched to the reception direction. It passes through the spatial multiplexing receiver 5 1 0 and is decoded by the channel decoding unit 5 1 1 with priority. At this time, if the signal of the spatial stream with high priority of the retransmitted signal can be correctly decoded and there is no communication hindrance, the channel decoding unit outputs a channel decoded signal.
  • the decoding unit with priority 5 1 2 outputs the decoded signal with priority, and the display unit 5 1 3 performs display.
  • the operation in the reverse direction is the same.
  • the first radio station 5001 and the second radio station 5002 have the same configuration and operation.
  • the input unit 5 3 6 of the second radio station 5 0 2 is also a camera or a microphone.
  • the coding unit with priority 5 3 7 performs scalable coding and outputs data with priority.
  • the data holding unit 5 3 1 holds data for retransmission. Prioritized data consists of multiple data strings with priorities set according to importance.
  • the priority assignment unit 5 3 8 assigns the priority-priority data in descending order to the spatial stream with the highest priority.
  • the propagation path prediction priority setting unit 5 1 5 gives the priority of the spatial stream. At that time, the data distribution adjustment method when the number of data does not match is the same as the method explained above.
  • the channel encoder 5 39 encodes the data allocated to each spatial stream so that the receiving side can check for errors, and sends the data to the spatial multiplexing transmitter 5 17.
  • the spatial multiplexing transmitter 5 1 7 of the second radio station 5 0 2 if there is a retransmission request signal from the retransmission control unit 5 1 6 in the control signal insertion unit 5 4 5, retransmission is performed.
  • the request signal is inserted, the weight multiplier 5 2 0 multiplies the transmission weight from the propagation path estimator 5 14, and the known signal insertion modulator 5 2 1 receives the signal multiplied by the weight.
  • modulation such as CDMA or 0FDMA, OFDM is performed, and if necessary Then, the frequency is converted into a radio carrier frequency and transmitted from the spatial multiplexing antenna 50 9 through the antenna switching unit 54 4 4 switched to transmission, and propagates in the spatial multiplexing propagation path 5 8 8 in the reverse direction.
  • First radio station 5 0 1 receives radio waves with spatial multiplexing antenna 5 0 7.
  • the signal that has passed through the antenna switching unit 5 4 3 switched to the receiving direction is demodulated by the demodulating unit 5 2 3 of the spatial multiplexing receiving unit 5 2 9 shown in Fig. 9C, and can be processed as necessary. Converted to frequency.
  • the weight multiplying unit 5 24 of the spatial multiplexing receiving unit 5 29 multiplies the demodulated signal by the weight, and the control signal demultiplexing unit 5 46 receives the retransmission request signal when there is a retransmission request signal. Separately, output to retransmission control unit 53 2, and if there is no retransmission request signal, do not output to retransmission control unit 5 3 2.
  • the propagation path estimation unit 5 3 4 uses the post-determination signal that can be treated as a known signal or pseudo known signal inserted on the transmission side by the propagation path calculation unit 5 2 5 shown in FIG. Is multiplied by the complex conjugate of the known signal and averaged to obtain a propagation path calculation value.
  • the weight generation unit 5 2 6 calculates the weight from the propagation path estimation value.
  • the channel prediction priority setting unit 5 3 3 determines the priority by predicting the ease of degradation of the spatial stream from the channel calculation value. If decoding of the spatial stream with the highest priority fails, a communication inhibition signal is output, and if successful, a communication inhibition signal is not output. The communication inhibition signal is notified to the receiving side retransmission control unit 53 2.
  • retransmission control section 53 2 does not request retransmission, and if there is communication inhibition, it outputs a retransmission request signal to the receiving side transmission section.
  • the priority decoding unit 5 41 performs priority channel decoding when there is no communication inhibition signal output in the priority channel encoding unit 5 05. In the case of data with priority of the same information, since the basic layer cannot communicate and it is invalid to decode the extended layer, the subsequent decoding is interrupted and only the decoded data is sent to the display unit 5 42.
  • the prioritized channel coding unit outputs a communication inhibition signal.
  • the display unit 5 4 2 is a display for images and a microphone for audio. If there is communication obstruction, retransmission control section 5 3 2 outputs a retransmission request signal.
  • spatial multiplexing transmission section 50 6 inserts a retransmission request signal at control signal insertion section 5 45 at the forward transmission timing. Further, the retransmission control signal is transmitted through the transmission line 5 0 8 from the antenna switching unit 5 4 3 switched in the transmission direction through the weight multiplication unit 5 2 0 and the known signal insertion modulation unit 5 2 1 through the spatial multiplexing antenna 5 0 7. Propagate in the forward direction.
  • the propagated retransmission request signal is received by the antenna unit 5 0 9 of the second radio station 5 0 2 and received by the spatial multiplexing receiver 5 1 0 through the antenna switching unit 5 4 4 switched to the receiving side. Then, the signal is demodulated by the demodulator 5 2 3, weighted by the weight multiplier 5 5 4, and then sent from the control signal separator 5 46 to the retransmission controller 5 3 2.
  • the retransmission control unit 5 16 of the second wireless station 50 2 retransmits the data with priority information of the data holding unit 5 40 through the priority assignment unit 5 38.
  • the data with priority information is assigned to the spatial stream again through the priority allocation unit 5 3 8, and the channel coding unit with priority 5 3 9, the spatial multiplexing transmission unit 5 1 7, and the antenna switching unit switched to the transmission direction It propagates in the reverse direction through the spatial multiplexing channel 5 0 8 through 5 4 4.
  • the channel decoding unit with priority 5 4 0 decodes. At this time, if the signal of the spatial stream with high priority of the retransmitted signal can be decoded correctly and there is no communication hindrance, the channel decoding unit outputs a channel decoded signal.
  • the decoding unit with priority 5 4 1 outputs a signal after decoding with priority, and the display unit 5 4 2 performs display.
  • FIG. 1 OA An embodiment when the present invention is applied to a system including a plurality of radio stations will be described with reference to FIG. 1 OA and FIG. 1 OB.
  • the first radio station 6 0 1, the second radio station 6 0 2, and the third radio station 6 0 3 perform spatial multiplexing communication.
  • This method is known as multi-user MIM0 and multi-base station cooperative MIM0.
  • Fig. 1 OA is an example in which the present invention is applied to such a system. Propagation from the first radio station 6 0 1 to the second radio station 60 2 and the third radio station 6 0 3 is called the forward direction, and the opposite is called the reverse direction.
  • each radio station transmits a known signal during transmission.
  • the propagation path characteristics are calculated using post-determination signals that can be used as known signals or pseudo-known signals.
  • the second radio station 60 2 and the third radio station 60 3 notify the propagation path characteristics to the first wireless station 6 0 1, and the first wireless station 6 0 1 combines the propagation path characteristics and waits. Is generated.
  • XK + k , j 2, 3 and K is the number of receiving antennas of the second radio station 6 0 2 and the third radio station 6 0 3.
  • the propagation path matrix H can be obtained as follows, so the weight calculation and eigenvalue calculation can be performed in the same way as for one-to-one communication. Equation 42
  • Figure 10 B is an example of cooperative communication.
  • Information with priority is sent to the 4th radio station 6 0 4 and the 5th
  • the data is transmitted from the line station 60 5 to the sixth radio station 6 06 and the seventh radio station 6 07.
  • the fourth radio station 60 4 and the fifth radio station 60 05, the sixth radio station 6 06 and the seventh radio station 6 07 share t: the transmission signal and the reception signal, respectively.
  • the propagation path characteristics between the j-th transmitting antenna of the first radio station and the k-th receiving antenna of the u-th radio station are h ( u ⁇ 4 ) XK + k and ( 1_6 ) XL + j .
  • the propagation path matrix H can be obtained as follows, so the weight calculation and eigenvalue calculation can be performed in the same way as for one-to-one communication.
  • destination priorities include 3GPP terminal classes.
  • the present invention can also be applied to such multi-station communication.
  • priority can be assigned like the spatial stream between two stations described so far, and communication can be performed according to the priority of data with priority. .
  • the present invention can be applied to uses such as multimedia information distribution in personal mobile communication. It is also applicable to uses such as cooperative communication of multiple radio stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

空間多重通信に伴う通信阻害を軽減することである。複数の空間ストリームに、伝搬路予測に基づいて優先度を付け、優先度の高い空間ストリームに優先度の高いデータを割り当てる空間多重通信方法が得られる。このような構成の採用により、伝搬路特性の時間変化に追従するための逆方向の通信頻度を減らす事により、通信阻害せずに逆方向の通信リソースを有効活用でき、また、通信阻害が発生しにくく再送制御による遅延を生じにくくする目的を達成する。

Description

明 細 書 通信方法、 システム及び通信装置 技術分野
本発明は、空間多重通信方法、システム、及び送受信機等の通信装置に関する。 背景技術
この種の空間多重通信は映像情報、 音声情報等のマルチメディァ情報を送受す るために用いられている。 このようなマルチメディア情報には、 重要さに応じて 優先度が設定できる。 例えば、 映像情報として音声と画像が同時に送信される時 は、 音声情報は画像情報より優先度が高い。 また、 スケーラブル符号化は、 同じ マルチメディア情報から量子化の粗さの異なる複数の情報を生成し、 これによつ て、優先度が異なる情報を生成している。 更に、 画像符号化には、 興味範囲 (R0I : Region of interest) という優先度の高い範囲の概念がある。 解像度を上げると データ量が増えるが、 アニメ画像の境界や文字などの重要部分のみの解像度を上 げることはデータ量を上げないで解像度を上げる有効な手段である (非特許文献 1、 非特許文献 2参照) 。 このように、 マルチメディア情報はその情報の特徴に よる優先度がある (非特許文献 1 2参照) 。 例えば、 データの品質を保証しない 優先度をバックグラウンド、 ベストエフオート、 データの品質を保証する優先度 はギャランティとレ、い、 データにより更に細かぐ優先度が規定されている (非特 許文献 1 3参照) 。
スケ一ラビリティには、 SNRスケーラビリティ、 空間スケーラビリティ、 時間 スケーラビリティ、 R0Iスケーラビリティがある。
スケーラビリティ符号化は、 同じ情報元から品質の低レ、少ない量のデータを生 成できると共に、 品質の高い多いデータを生成することができる。
これは、 放送通信において、 同一データ配信で、 品質の異なる複数のタイプの 通信を可能にするものである。
具体的には、 JPEG2000, H. 264, MPEG4, MPEG4 AACなどの多くの標準方式がある。 例として、 空間スケーラビリティを用いて説明すると、 スケーラブル符号化は、 最も解像度の低レ、基本レイヤと、 それと合わせて解像度を上げるための拡張レイ ャのデータ列を送信する。
受信側では、 各々の装置の処理能力に応じて選択的に受信する。 解像度の低い 携帯端末は基本レイヤのみを受信し、 他の情報は受信せず破棄する。 大きな表示 部を持つ装置は基本レイャに加えて拡張レイヤのデータ列を全て受信して解像度 を高める。 (非特許文献 1、 非特許文献 2参照) 。
一方、特定の 1つもしくは複数の送受信機間で通信を行うパーソナル通信では、 空間多重通信 (MIM0: Multi Input Multi Output) が行なわれる。 MIMOには、 受 信側で伝搬路計算をする SDM (Space Division Multiplexing)の他に、 送受信機 間の伝搬路特性から計算したウェイ トを送信側で乗算して高速化する E-SDM
(Eigenbeam - Space Division Multiplexing)や W-SDM (Weighted-Space Division Multiplexing)がある (特許文献.2参照) 。
例として、 図 1 1に固有値を用いた空間多重方法である E- SDMを示す。
M本の送信アンテナ 7 0 3、 N本の受信アンテナ 7 0 5で構成する伝搬路の空 間多重ストリーム数 mの最大値は m≤min (M, N) で与えられる。 min (M, N)は、 Mか Nのどちらか小さレ、数値である。 伝搬路特性の相互相関が問題とならない時は ra=min (M, N) が得られ、問題となる場合は固有値の数が減り m<min (M, N) となる。 周波数分割複信方式 (FDD方式) では、 上りと下りの周波数が異なるために伝 搬路特性が異なるため、 受信側で、 送信側から受信側に送られた既知信号 (もし くは擬似的に既知信号として取り扱うことのできる正しく受信された信号) を受 信する際、 受信側で既知信号の複素共役を乗算し、 雑音の影響を除く こめに平均 化して伝搬路特性を計算する。 結果として、 送信アンテナ j と受信アンテナ k間 の伝搬路計算値 hkj (k=l, 2, · ' ·Ν, j=l, 2, · ' ·Μ)を得る。
既知信号は、 アンテナ毎に伝搬路を判別するための信号であり、 同一時間に送 信の場合はァンテナ毎に異なる信号であるが、 上りのサゥンディングなど時間指 定するときは同じ信号でも良い。 この伝搬路計算値を用いて伝搬路行列 Η ( 7 0 4 ) を得る。 H = 式
h hN2 特異値分解などを用いて、 相関行列/^ Jと/// の共通の固有値; li (i=l,2, 〜 m)を求める。
i'S は行列の複素共役転置を ,:表す。
相関行列/^ iJの固有値え iに対する固有べク トノレ et,i、相関行列///^の固有値 え iに対する固有べク トル er,iを用いて、 送信側ウェイ ト^ t (7 0 2) 及び受信 側ウェイ ト Er H (7 0 6) を以下に設定する事で固有値伝送を行う。 式 2
D 式 3
Figure imgf000005_0001
E, = k.1 er,2 ··· 式 4
Er = [erl e 式 5 固有値、 固有べク トルの求め方には、 特異値分解の他に、 ラグランジュ法、 QR 分解、 シュール分解、 Householder法、 BD法など多くの方法が提案されている (非 特許文献 5参照) 。
このとき、第 i空間ストリームに割り付ける信号 Siにより構成する S ( 7 0 3) と、 送信アンテナ (または偏波) jで伝送する信号 xjの関係は以下になる。
X = E.S 式 6 = [:
Figure imgf000005_0002
式 7
Figure imgf000005_0003
式 8 S = [ ji, azs2 ■■■ a3smJ 式 9 ここで、 y t, i, j(i=l,2, …, , j=l,2,〜M)は空間ス トリームえ iの固有べク トル etiiの要素であり、 ひ iは各空間ストリームの電力制御に用いるゲインである。 aiは、 各空間ストリームの固有値と受信側の雑音情報と空間ストリームの総 電力にから、 注水定理により決定する。 これにより、 第 i空間ストリームの信号 対雑音比 SNRiが決定すると、通信容量の上限 Ciを決定できる(特許文献 3参照)。 ς = [bps] 式 ιο
Figure imgf000006_0001
このとき、 Wは通信帯域、 σ2は受信側の雑音、 Piは送信側で設定する電力であ る。
P, = a 式"
実際のシステムの例では、 受信側の移動局が伝搬路情報によって、 システムで 用意される離散的な値の中から電力及びデータレートを指定する。 伝搬路情報の 従来例としては単位ブロック当たりのデータ量を選択する CQI (Channel Quality Indicator;、ウェイ 卜を迪知, o PCI (Precoding control indicator)や Codebook Indexがあり、 ウェイ ト更新間隔 Precoding update Intervalについても検討さ れている (非特許文献 1 0、 非特許文献 1 1、 非特許文献 1 2参照) 。
その後に、 スケジューラがデータレートに合わせてデータを割り付ける。
受信信号 R (70 7) は、 以下のように与えられる。
R = D2S 式 12
R-k r2 … Γ 式13
W-SDMでは、 伝搬路特性に基づいて送信側では送信電力制御及び伝送レート制 御のみを行う。 従って、 空間ス トリーム数 m=Mであり、 aiを空間ス トリーム毎 に制御するのみである。
X = S 式 14
S = [a1sl a2s 式 15 受信側では、 いくつかの方法があり、 例えば ZF (Zero forcing)と MMSE (Minimum Mean square Error) める。
ZFの受信ウェイ トを Wr ZF、 MMSEの送信ウェイ トを WrsEとすると、以下のよう である。 wr ZF = -¾— 式1 6
r-ZF H"H
ττΗ
Wf = ~ ^ ~ - 式 1 7
ΗΗΗ + σ
ここで σ 2は受信側雑音、 Iは単位行列である。
送信する情報を各空間ストリームで送信可能なデータレートに分配して送信す る事で、 無線リソースを有効活用して伝送できる (非特許文献 7、 非特許文献 8 参照) 。
また、周波数分割複信方式(FDD)においては、上りと下りで周波数が異なる為、 伝搬路特性も異なる。 従って、 下りで固有値伝送を行う場合は上りから下りに、 上りで固有値伝送を行う場合は下りから上りに^ fを通知する必要がある(特許文 献 1参照) 。
この通知する信号を削減するためのコードブックという符号化方法がある (非 特許文献 3参照) 。
時分割複信方式 (TDD) においては、 FDDと同じ方法を用いる場合もあるが、 上 りと下りの伝搬路特性が等しい為、 送信側で伝搬路特性を計算できる。 この場合 は、 伝搬路計算を行う元になる信号を受信側から送信側に送信する必要がある。 送信信号は、 プリアンブルやサゥンディングという既知信号の送信を行う方法が 一般的であるが、 先に述べる再送制御において、 ACK、 NACKなどの制御信号を代 わりに用いた無線リソース削減方法も提案されている (非特許文献 7参照) 。 送信側で符号化し、 受信側で復号する事により復号データ誤りを含むかどうか を判定出来る。 そして、 受信側から送信側に受信データが誤りを含むかどうかを ACK、 NACK信号で通知し、 再送制御を行う方法がある (特許文献 1参照) 。
また、 送信ウェイ ト更新を頻繁に行わない時、 最大固有値の空間ストリームは 劣化しやすい事が報告されている (非特許文献 4参照) 。 関連する技術として、 伝搬路の変動を予測するチャネル行列変動予測と (特許 文献 4参照) 、 送信順序を受信側から送信側に指定するオーダリング (特許文献 5参照) 、 データの優先度に応じた適応変調を行う優先度制御 (特許文献 6参照) 力 sある。
特許文献 1 :特開 2007-166633号公報 ( 【00 1 7】 一 【002 1】 、 図 1) 特許文献 2 :特表 2005-502223号公報 ( 【00 7 9】 一 【009 6】 、 図 1、 図 5)
特許文献 3 :特開 2005-252834号公報 ( 【00 1 8】 一 【0022】 ) 特許文献 4 :特開 2006-303625号公報 ( 【0044】 、 図 1)
特許文献 5 :特開 2006-13680号公報 ( 【00 24】 一 【00 2 9】 、 図 4、 図 5)
特許文献 6 :特開 2006-333283号公報 ( 【00 3 3】 一 【003 7】 、 図 表 2)
非特許文献 1 :高村 誠之, 八島 由幸, 「H. 264に基づくスケーラブル動画 像可逆符号化」 信学会 D誌、 2006年 2月、 Vol. J89-D No.2 pp.314-322
非特許文献 2 :金 弘林, 藤吉 正明, 関 裕介, 貴家 仁志, 「法演算を用い る JPEG 2000符号化画像への情報埋込法」 信学会 A誌、 2006年 3月、 Vol. J89-A No.3 pp.234-242 (R0I)
非特許文献 3 : 3GPP, TS 36.211 v.8.0, (6.3.4.2.3. Codebook for precoding, p.29) 2007年 9月
非特許文献 4 :森, 田邊, 佐藤, "SVD- M 10システムにおける伝搬路時間変動 にロバストなリンクァダプテーシヨン方式" , B-5-39, ソ大論文, 2007年 9月 非特 g午文!^; 5: Y. Karasa a, Innovative Antennas and Propagation Studies for MIMO Systems, " IEICE Trans. Communs. , Special Section: 2006 International Symposium on Antennas and Propagation (ISAP2006) , vol. E90-B, no.9, pp.2194-2202, 2007年 3月 2. 1章
非特許文献 6 :三上学, 藤井輝也, "フィードバック遅延およびアンテナ相関の影 響を考慮した MIMO伝送方式の性能評価" , B-5-80, 信学総合大会, 2005年 3月 (図 2) 非特許文献 7 :堤貴彦, 西村寿彦, 大鐘武雄, "各種空間多重方式におけるチ ャネル情報誤差の影響に関する検討" , Vol. J89-B No. 9, pp. 1496-1504, 電子通 信学会論文誌 B, 2004年 9月
非特許文献 8 :衣斐信介, 三瓶政一, 森永 規彦, "伝送容量制御型 MIM0適応 変調方式" , Vol. J88-B No. 6 pp. 1090- 1101, 電子通信学会論文誌 B , 2005年 6 月 pp. 1092-1093,式(9)
非特許文献 9 :水谷慶, 坂口啓, 高田潤一, 荒木純道, "リアルタイム伝搬測定 にもとづく MIM0固有モード間相関解析", B-1-247, 信学ソサイエティ大会, 2005 年 9月 (式 (2)、 式 (3) )
非特許文献 1 0 : 3GPP, TS 25. 214 v. 7. 6, (9. p. 71-72, MIM0 ブロック 図, 6. A. 2. 2-6. a. 4, p. 44 - 55 HARQ, PCI) 2007年 9月
非特許文献 1 1 : 3GPP, Rl-072843 " Way Forward on 4-Tx Antenna Codebook for SU-MIMO " 2007年 6月
非特許文献 1 2 : 3GPP, Rト 070093 "Investigations on Codebook Size for MIMO Precoding in E-UTRA Downlink" 2007年 1月 Figure 1
非特許文献 1 3 :守倉正博, 久保田周治, "802. 11高速無線 LAN教科書", 2004 年 12月,.ィンプレス 発明の開示
発明が解決しようとする課題
しかしながら、 特許文献 1〜6、 及び、 非特許文献 1〜1 3に記載された方法 はいずれも、 次のような問題点を有している。 第 1の問題点は、 伝搬路特性の変 化に追従するために頻繁に逆方向の通信を行うため、 リソースを無駄に使用して しまうとレ、うことである。
具体的に説明すると、 周波数複信方式 (FDD) においては、 受信側で計算した伝 搬路特性を符号化した伝搬路情報が送信側 通知されている。 また、 時分割複信 方式 (TDD) においては、 FDDと同様の方法が採用される一方、 また別な方法とし て、 送信側で伝搬路特性を計算する為に、 受信側から送信側に送られる既知信号 もしくは既知信号の代わりの信号の送信が行われる方法が採用されることもある。 第 2の問題点は、 再送制御によって生じる遅延である。
その理由は、 通信中に誤りが発生すると、 受信側から送信側に再送要求し、 送 信側から再送して再度受信するために時間が掛かるためである (再送制御は非特 許文献 6参照) 。
第 3の問題点は、 E- SDMでは、 ウェイ ト更新のための計算が頻繁に行われると いうことである。 その理由は、 伝搬路特性の変化に追従するために、 伝搬路特性 の取得とそれに基づくウェイト計算を頻繁に行う為である。
このような問題点のために、従来の通信方法では、マルチメディア通信の停止、 例えば、 映像停止等の通信阻害が発生する場合があつた。
課題を解決するための手段
更に、 特許文献 4及び 6は、 伝搬路の予測に基づいて送信データの優先度に応 じた伝送方式を選択することを開示しているだけである。
本発明では、 複数の空間ストリームの劣化予測と送信データの優先度を明確に 関連づけることによって、 優先度付きデータの通信を阻害せず、 無線リソースを 有効に活用し、 再送制御による遅延を削減し、 送信ウェイ ト計算頻度を削減でき る。
具体的に云えば、本発明の原理は、複数の空間ストリームに空間の劣化予測(伝 搬路予測) に基づいて、 空間ス トリームに優先度を与え、 当該空間ス トリームの 優先度を考慮して送信データを割り付けることにより、 再送制御等による悪影響 を軽減することにある。
即ち、 本発明によれば、 複数の多重ス トリームに、 伝搬路予測に基づいて優先 順位を付け、 優先順位の高い多重ストリームに優先度の高いデータを割り当てる 通信方法が得られる。 具体的には、 本発明の特定送受信機間の優先度付きデータ の空間多重通信方法は、優先度割付部と、空間多重送信部と、空間多重受信部と、 優先度付き復号手段と、伝搬路推定手段と、伝搬路予測優先度判定手段とを備え、 劣化しにくい空間ストリームに高い優先度の優先度付きデータを割り付けるよう に動作する。
このような構成を採用し、 優先度付きデータの通信の場合は、 伝搬路特性の時 間変化に追従するための逆方向の通信頻度を減らす事により、 通信阻害せずに逆 方向の通信リソースを有効活用でき、 E-SDMなどの送信側でも伝搬路特性追従の ためのゥヱイ ト計算が必要な方法を用いる場合には、 伝搬路特性追従ためのゥェ ィ ト計算処理回数を低減でき、 また、 通信阻害の発生を少なくし、 再送制御によ る遅延を軽減できる。
発明の効果
本発明によれば、 優先度付きデータの通信を阻害せず、 受信側から送信側 の 無線リソースを有効活用できることにある。 その理由は、 空間ストリームの時間 変化による品質劣化を予測して優先度を空間ストリームに設定し、 空間ストリー ムの優先度に従って優先度付きデータを割り付ける事で、 伝搬路特性の追従頻度 を減らしても、 優先度付きデータの通信は阻害されないためである。
更に、 本発明では、 E- S DMでは、 優先度付きデータの通信を停止しないで、 送信ウェイ ト計算頻度を削減できることにある。 その理由は、 伝搬路特性の時間 変化に追従するための送信ゥ イ トの計算頻度を減らしても、 優先度の高い優先 度付きデータが誤り無く通信でき通信阻害されないためである。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る通信システムを説明するためのプロッ ク図である。
図 2は、 本発明に係る通信システムの動作を概略的に説明刷るフローチヤ一ト である。
図 3は、 本発明の第 2の実施形態に係る通信システムを説明するブロック図で ある。 .
図 4は、 第 1の実施形態に係る通信システムの動作を具体的に説明するフロー チヤ一トである。
図 5は、 第 1の発明を実施するための最良の形態の動作を示す流れ図である。 図 6は、 第 1の発明を実施するための最良の形態の動作を示す流れ図である。 図 7 A〜図 7 Eは、 本発明の他の実施例を説明するための構成を示すブロック 図である。
図 8 A〜図 8 Eは、 本発明の他の実施例を説明するための構成を示すブロック 図である。
図 9 A〜図 9 Dは、 本発明の他の実施例を説明するための構成を示すブロック 図である。
図 1 O A及び図 1 O Bは、 本発明の他の実施例を説明するための構成を示す模 式図である。
図 1 1は、 従来例を説明するための模式図である。
図 1 2 A及び図 1 2 Bは、 本発明の第 3の実施形態を説明するブロック図であ る。
図 1 3は、 第 3の実施形態に係るシステムの動作を説明するフローチャートで ある。 発明を実施するための最良の形態
次に、 発明を実施するための最良の形態について図面を参照して詳細に説明す る。
本発明の第 1の実施の形態に係る通信システムは、 特定の一つ又は複数の送受 信機間の優先度付きデータ通信を行う。 図 1を参照すると、 本発明の第 1の実施 の形態は、 優先度割付部 1 0 1と、 空間多重送信部 1 0 2と、 空間多重受信部 1 0 3と、 優先度付き復号部 1 0 4と、 伝搬路推定部 1 0 6と、 伝搬路予測優先度 設定部 1 0 5とを含む。
伝搬路 1 0 7は、 特定の一つ又は複数の送受信機間の通信を行う空間多重伝搬 路であり、 時間と共に変化する場合がある。
伝搬路予測優先度設定部 1 0 5と伝搬路推定部 1 0 6は、 送信側及び受信側の どちらにあっても良い。 例えば、 周波数分割複信方式 (FDD方式) では伝搬路推 定部は受信側に必要だが、 時間分割複信方式 (TDD方式) では、 上りと下りは同 じ伝搬路となるため、 送受信側どちらでも可能である。
図 1に示された第 1の実施の形態における動作を概略的に説明する。
まず、 優先度付きデータは、 各々関連する異なる優先度の複数のデータ列で構 成される。
ここで、 データの優先度は、 データの重要度に応じて付けられる。 例えば、 音 声情報と画像情報の混在するビデオ情報においては、 音声情報の方が画像情報よ り優先度が高く、 また、 スケーラブル符号化データでは、 基本レイヤと呼ばれる 最も品質が低く量の小さいデータの優先度は、 品質を上げる為の拡張レイヤより 優先度が高い。
優先度付きデータの通信の場合は、 以下の動作を行い、 伝搬路情報の更新周期 を長くする。 まず、 優先度割付部 1 0 1は優先度付きデータの優先度の高いもの から順次、 空間ストリ一ムに割り付ける。
ここで、 本発明では、 空間ストリームにも優先度が付けられており、 この実施 形態の優先度割付部 1 0 1は、 優先度付きデータは、 その優先度の高いものから 順次、 優先度の高い空間ストリームに割り付ける。
空間多重送信部 1 0 2は、 複数アンテナ素子もしくは単一アンテナ素子の複数 偏波を用いて複数空間ストリームを形成し、 空間多重送信を行う。 空間多重方法 には、 ウェイ ト乗算をしない方法 (SDMなど) と、 ウエイ ト乗算をする方法 (W-SDM, E-SDMなど) がある。
伝搬路推定部 1 0 6は、 既知信号もしくは、 判定済み信号を疑似的に既知信号 として用いて、 その既知信号の複素共役を乗算して平均化する事により、 各々の 送受信アンテナ (もしくは偏波) 間における空間多重伝搬路の特性を計算し、 伝 搬路計算値を出力する。
伝搬路予測優先度設定部 1 0 5は、 伝搬路計算値から各空間ストリームの劣化 し易さを予測し、 劣化しにくいものに高く、 劣化しやすいものに低い優先度を割 り付ける。
空間多重受信部 1 0 3は、 複数アンテナ素子もしくは単一アンテナ素子の偏波 を用いて受信し、 信号処理によつて空間多重された信号を分離する。
優先度付き復号部 1 0 4は、 優先度付き符号化信号を復号する。 優先度付き復 号は、 伝搬路特性の変化によって優先度の高い情報が誤る場合は通信阻害となる が、 優先度の低い情報が誤り、 優先度の高い情報が正しく伝搬されると品質劣化 となり通信成功となる。
従って、 本発明では、 空間ス トリームに優先度を割り付けることにより、 伝搬 路特性の追従性低下による誤りを、 優先度付きデータの優先度の低い部位に偏ら せることができる。 これにより、 通信を阻害せず、 伝搬路情報の更新のための逆 方向の通信頻度を減らして通信リソースを有効利用し、 E-SDMにおいては伝搬路 特性の送信ウェイ トへの反映頻度を減らして計算回数を低減し、 通信阻害し難く することで再送制御による遅延の発生を低減する事が可能となる。
次に、 図 1及び図 2を参照して本実施の形態の全体の動作について詳細に説明 する。
本発明の第 1の実施の形態は、 特定の一つ又は複数の送受信機間のパーソナル 通信の優先度付きデータを通信する場合におけるものである。
図 1を参照すると、 本発明の第 1の実施の形態で送受される優先度付きデータ は、 各々関連する優先度の付いた複数のデータ列で構成されている。 データ列の 優先度は、 情報の重要度に応じて付けられる。 前述したように、 音声情報と画像 情報の混在するビデオ情報においては、 音声情報は画像情報より優先度が高く、 また、 スケーラブル符号化データでは、 基本レイヤと呼ばれる最も品質が低く量 の小さいデータの優先度は、 品質を上げる為の拡張レイヤより優先度が高い。 優先度付きデータは、 優先度割付部 1 0 1において、 優先度の高いデータ列か ら順次、 優先度の高い空間ストリームに割り付けられる。
各空間ストリームに割り付けられた優先度付きデータは、 空間多重送信部 1 0 2において、 複数アンテナ素子もしくは単一アンテナ素子の複数偏波を用いて、 伝搬路計算値から計算したウェイ トを乗算され空間多重送信される。
ウェイ トを乗算する方法の一つである E-SDMについて具体的にウェイ ト計算方 法を説明すると、 伝搬路推定部 1 0 6から送信される送信アンテナ jと受信アン テナ k間の伝搬路計算値 hkj (k=l, 2, '· -Ν, j=l, 2,… から、伝搬路行列 Hを得る。
H 式 1 8
Figure imgf000014_0001
特異値分解などを用いて、 相関行列/ / Jと///^の共通の固有値え i (i=l, 2 m)を求める。
ww は行列の複素共役転置を表す。 相関行列 H"Hの固有値; L iに対する固有ベク トル e t,;、相関行列 iH"(D固有値 え iに対する固有べク トル e を用いて、 送信側ウェイ ト^ t及び受信側ウェイ ト を以下に設定する事で固有値伝送を行う。
H = £r£»£ = 式 19
D 式 20
Figure imgf000015_0001
e'.: 式 21
Figure imgf000015_0002
式 22 このとき、 第 i空間ストリームに割り付ける情報 Si と、 送 1 (または 偏波) jで伝送する信号 xjの関係は以下になる。
X = E,S 式 23
Figure imgf000015_0003
Γ 式 24
1 式 25
S = a2s2 ■■■ amsm 式 26 ここで、 yt, i, j(i=l,2, ',m, j=l,2, ·'·Μ)は空間ス トリーム; Liの固有べク トル et,iの要素であり、 aiは各空間ストリームの電力制御に用いるゲインである。
W-SDMは、 伝搬路特性に基づいて送信側で送信電力制御及び伝送レート制御の みを行う。 従って、 空間ストリーム数 m=Mであり、 aiを空間ス トリーム毎に制 御するのみである。
X = S 式 27 S = a2s2 ··· amsmJ 式 28 伝搬路 1 0 7は空間多重伝搬路である。
伝搬路推定部 1 0 6は、 既知信号もしくは、 判定済み信号を疑似的に既知信号 として用いて、 その既知信号の複素共役を乗算して平均化する事により、 各々の 送受信アンテナ (もしくは偏波) 間における空間多重伝搬路の特性を計算し、 伝 搬路計算値を出力する。
即ち、 伝搬路推定部 1 0 6では、 伝搬路を通った信号に既知信号もしくは疑似 既知信号の複素共役を乗算し、 雑音の影響を除くために平均化して伝搬路特性を 計算する動作が行われる。 結果として、 送信アンテナ jと受信アンテナ k間の伝 搬路計算値 hkj (k=l, 2,—N, j=l, 2,… を得る。 この伝搬路計算値を用いて伝搬 路行列 Hを得る。
次に、 伝搬路予測優先度設定部 1 0 5は、 伝搬路計算値から各空間ストリーム の劣化し易さを予測し、 劣化しにくいものに高く、 劣化しやすいものに低い優先 度を空間ストリームの優先度として割り付ける。
図 2のフローチャートに基づいて、 伝搬路予測優先度設定部 1 0 5における劣 化予測方法について説明すると、 伝搬路計算値が入力されると (ステップ a l ) 、 空間ストリームの劣化しやすさの指標を計算し (ステップ a2) 、 劣化しやすさに 基づいて各空間ス トリームの優先度を設定する (ステップ a3) 。
上記した伝搬路推定部 1 0 6、 伝搬路予測優先度設定部 1 0 5、 及び、 優先度 割付部 1 0 1の動作は、 ハードウェア回路によって実現できるだけでなく、 ソフ トウエアによっても実現できる。 このことは、 以下に説明する他の実施形態にお いても同様である。
空間多重受信部 1 0 3は、 複数アンテナ素子もしくは単一アンテナ素子の偏波 を用いて受信し、 信号処理によって空間多重送信された信号を分離する。 優先度 付き復号部 1 0 4は、 優先度付き符号化信号を復号する。
優先度付き復号は、 伝搬路特性の変化によって優先度の高い情報が誤る場合は 通信阻害となる力 優先度の低レ、情報が誤っていても優先度の高い情報が正しく 伝搬されると品質劣化となるだけで通信成功となる。 従って、 本発明に係る方式は、 優先度割付により、 伝搬路特性の追従性低下に よる誤りを、 優先度付きデータの優先度の低い部位に偏らせる事ができる。 この 結果、 優先度の低い情報が誤っていても、 通信は阻害されることがなく、 また、 伝搬路特性の送信ウェイ トに対する反映頻度を減らすことが可能になる。
次に、 本発明の第 2の発明を実施するための最良の形態について図面を参照し て詳細に説明する。
本発明の第 2の実施の形態は、 特定の一つ又は複数の送受信機間における優先 度付きデータ通信に関するものであり、 図 3を参照すると、 本発明の第 2の実施 の形態の動作は、 優先度付きデータは、 各々関連する異なる優先度の複数のデー タ列で構成される情報である。
データ列に付けられる優先度は、 この実施形態においても、 データ列の重要度 に応じて付けられる。 例えば、 音声情報と画像情報の混在するビデオ情報におい ては、 音声情報は画像情報より優先度が高く、 また、 スケーラブル符号化データ では、 基本レイヤと呼ばれる最も品質が低く量の小さいデータの優先度は、 品質 を上げる為の拡張レイヤより優先度が高い。
優先度付きデータは、 優先度割付部 2 0 1において、 優先度の高いデータ列か ら順次、 優先度の高い空間ストリームに割り付けられる。
各空間ストリ一ムに割り付けられた優先度付きデータは、 多重送信部 2 0 2に おいて、 多重送信される。 多重方法は、 空間多重、周波数多重、 時間多重がある。 伝搬路推定部 2 0 6は、 既知信号もしくは、 判定済み信号を疑似的に既知信号 として用いて、 伝搬路を通った信号に既知信号の複素共役を乗算して平均化する 事により、 各々の伝搬路の特性を計算し、 伝搬路計算値を出力する。
この実施形態では、伝搬路計算値は伝搬路予測優先度設定部 2 0 5に通知され、 多重送信部 2 0 2には通知されていない点で、 図 1とは相違している。
伝搬路予測優先度設定部 2 0 5は、 通知される伝搬路特性から各空間ストリー ムの劣化し易さを予測し、 劣化しにくいものに高く、 劣化しやすいものに低い優 先度を割り付け、 各空間ス トリームの優先度を出力する。
ここで言う伝搬路特性とは、 信号対雑音比などであり、 1度の計算から予測す る場合は、 値が比較値と比べて低いなどである。 また、 繰り返し通信中においては、 今回と前回の伝搬路計算値の変化から、 各 空間ストリームの安定性を判断して、 安定した空間ストリームにはそうでない空 間ストリームより高い優先度を設定するなどである。
通信中においてバケツトを繰り返し送受信する状態では、 伝搬路計算値を操り 返し計算して空間ストリームの優先度を設定し直す。
図 2に示されたフローチャートを再度参照して、 図 3に示された伝搬路予測優 先度設定部 2 0 5で行われる劣化予測方法について説明する。 伝搬路計算値が伝 搬路予測優先度設定部 2 0 5に入力されると (ステップ al) 、 空間ス トリームの 劣化しやすさの指標を計算し (ステップ a 2) 、 劣化しやすさに基づいて各空間ス トリームの優先度を設定する (ステップ ) 。
本実施の形態における空間ストリームは、 空間多重における空間ストリームと 各アンテナ間伝搬路と、 また、 周波数、 時間多重による無線リソースを含む。 次に、 本発明の第 3の実施の形態に係る通信システムを具体的に説明する。 本発明の第 3の実施の形態に係る通信システムは、 特定の一つ又は複数の送受 信機間における優先度付きデータの通信を行う。
ここで、 説明の都合上、 図 1 2 Aを参照すると、 本発明の第 3の実施の形態に 係る通信システムは、 切り換え部 8 0 1、 データ割付部 8 0 2、 優先度割付処理 部 8 0 3、 切り換え部 8 0 4、 多重送信部 8 0 5、 制御部 8 0 6、 伝搬路推定部 8 0 7、 多重受信部 8 0 9、 優先度付き復号部 8 1 0で構成される。
更に、 優先度割付処理部 8 0 3は、 図 1 2 Bに示すように、 優先度割付部 8 1 3, 伝搬路予測優先度設定部 8 1 4によって構成されている。
図 1 2 A, 図 1 2 B及び図 1 3を参照して、 本発明の第 3の実施の形態に係る 通信システムの動作を説明する。 尚、 図 1 2 A及び図 1 2 Bの破線は制御信号で あり、 図 1 3は制御部 8 0 6の処理フローを表す。
制御部 8 0 6は、 データが入力されると (ステップ bl) 、 優先度付きデータか どうかを判断し (ステップ b2) 、 優先度付きデータでない場合は、 切り換え部 8 0 1、 8 0 4に指示して優先度付き割付を無効にするように、 データ割付部 8 0 2にデータを送る (ステップ b5) 。 制御部 8 0 6はハードウェアで実現できるだ けでなく、 プログラムによって動作するマイクロプロセッサによっても実現でき る。
ここで、 優先度付きデータの定義は、 各々関連する異なる優先度の複数のデー タ列で構成されるデータである。優先度付きデータの優先度は、前述したように、 重要度に応じて付けられる。
ここで、 ステツプ b5の優先度付き割付を無効にするとは、従来通りの割付を行 う事である。
データ割付部 8 0 2は、伝搬路推定部 8 0 8から送られる伝搬路情報に従って、 データを空間ストリームに割り付ける。 データ割付部 8 0 2はハードウエアで構 成されても良いし、 ソフトウェアで実現されても良い。
多重送信部 8 0 5は、 各空間ストリ一ムに割り付けられたきデータを、 多重送 信する。 多重方法は、 空間多重、 周波数多重、 時間多重がある。 伝搬路 8 0 7を 通った信号は多重受信部 8 0 9で受信され、 優先度付き復号部 8 1 0は受信信号 を復号し、 データを出力する。
また、 制御部 8 0 6は、 伝搬路情報通知間隔 τを初期値 τ θに設定するよう伝 搬路推定部 8 0 8に指示する (ステップ b6) 。
伝搬路推定部 8 0 8は、 伝搬路 8 0 7の特性を計算した伝搬路特性と、 そこか ら求めた伝搬路情報を出力する。 連続通信の場合の、 伝搬路情報通知間隔をてと する。 伝搬路特性は、 伝搬路計算値、 雑音情報、 信号対雑音比などである。
伝搬路計算値は、 既知信号もしくは、 判定済み信号を疑似的に既知信号として 用いて、 伝搬路を経た受信信号に既知信号の複素共役を乗算して平均化する事に より計算する。
また、 伝搬路推定部 8 0 8は、 伝搬路情報通知間隔 τに従って、 伝搬路計算値 と雑音計算値もしくは信号対雑音比から、 システムで取り決めた値より選択して 伝搬路情報を出力する。 伝搬路情報は、 伝搬路計算値及び雑音から計算される空 間ストリーム毎の通信容量の指定であり、 伝搬路情報の従来例として、 通信レー トを指定する CQI (Channel Qual ity Indicator) がある。
雑音計算値は、 伝搬路計算値を用いて、 受信信号電力から伝搬路電力値を引い て得られ、 信号対雑音比は、 伝搬路電力と雑音電力の比として得られる。
図 1 3のステップ b2において、 優先度付きデータの場合は、 制御部 8 0 6は、 切り換え部 8 0 1、 8 0 4に指示して優先度付き符号化処理部 8 0 3を有効にし、 多重送信部 8 0 5に出力することで優先度付き割付を有効にする(ステップ b3)。 優先度割付処理部 8 0 3の優先度度付きデータ割付部 8 1 3 (図 1 2 B ) )は、 優先度付きデータの優先度の高いデータ列から順次、 優先度の高い空間ストリー ムに割り付ける。
優先度付きデータ割付には、 伝搬路推定部 8 0 8からの伝搬路情報で与えられ る各空間ストリームに割り付けるデータ量も用いる。
図 1 2 Bに示された優先度割付処理部 8 0 3の伝搬路予測優先度設定部 8 1 4 は、 伝搬路推定部 8 0 8から通知される伝搬路特性から各空間ストリームの劣化 し易さを予測し、 劣化しにくいものに高く、 劣化しやすいものに低い優先度を割 り付け、 各空間ストリームの優先度を出力する。
ここで、伝搬路特性とは、伝搬路計算値、雑音情報、信号対雑音比などであり、 1度の計算から劣化しやすさを予測する場合は、 値が比較値と比べて低いなどで ある。
また、 繰り返し通信中においては、 今回と前回の伝搬路計算値の変化から、 各 空間ストリームの安定性を判断して、 安定した空間ストリ一ムにはそうでない空 間ストリームより高い優先度を設定する等の動作が行なわれる。
多重送信部 8 0 5は、 各空間ス トリームに割り付けられたデータを、 多重送信 する。 多重方法は、 空間多重、 周波数多重、 時間多重がある。 伝搬路 8 0 7を通 つた信号は多重受信部 8 0 9で受信され、 優先度付き復号部 8 1 0は受信信号を 復号し、 データを出力する。
また、 図 1 3において、 制御部 8 0 6は、 入力されたデータが優先度付きデー タの場合は、伝搬路推定部 8 0 8に指示して、伝搬路情報通知間隔てを初期値 τ 0 より長い値に設定する (ステップ b4) 。
優先度付きデータの場合は、 優先度付きデータ割付を行い、 伝搬路情報通知間 隔を長くする事により、 逆方向の無線リソースを有効に活用する。
本実施の形態における空間ストリームは、 空間多重における空間ストリームと 各アンテナ間伝搬路と、 また、 周波数、 時間多重による無線リソースを含む。 また、 ステップ b2における判断には、 リアルタイム性が必要なデータかどうか を含んでも良い。例としては、 リアルタイムアプリケーション用 QoSである RT-VR など (参考文献 1 2参照) 。
実施例
次に、 各実施形態に係る通信システムの具体的な実施例について説明する。 図 4に戻ると、 図 1及び図 2に示された実施形態で使用される E— S DMの劣 化予測方法を具体的に説明するフローチャートが示されており、 ここでは、 図 1 に示された伝搬路予測優先度設定部 1 0 5の動作が示されている。 尚、 伝搬路予 測優先度設定部 1 0 5及び優先度割付部 1 0 1は、 ハードウェアによって実現さ れても良いし、 ソフトウェアプログラムによって実現されても良い。 また、 当該 ソフトウェアプログラムはコンピュータで読み取り可能な記録媒体に格納されて いるものであっても良い。
図 4において、 伝搬路計算値 hkjが入力されると (ステップ S1) 、 伝搬路計算 値 hkjを配置して伝搬路行列 Hを作成し (ステップ S2) 、 固有値計算を行い、 固 有値数 m及び固有値; L i (i=l, 2, ·· ·, m)を計算する (ステップ S3) 。 固有値の計算 方法には、 特異値分解、 Householder, QR分解、 DB法などがある。
第 i空間ス トリームの優先度 PSiを初期化する (ステップ S4) 。
PSi = l (i = l, 2, 式 29
mの値が 1以下の場合は優先度は無効なため終了する (ステップ S5) 。 mが 2 以下の場合 (ステップ S6) 、 最大固有値; L maxを求め (ステップ S7) 、 関連する 空間ストリームの優先度 PSmaxを下げる (ステップ S8) 。
PSmax=2 式 30
ここで、 空間ス トリームの優先度は 1が最も高く、 値が大きくなるほど優先度 は低いとしている。 最大固有値の空間ストリームは時間と共に劣化し易いためで ある。 最大固有値のス トリームは最大電力が割り当てられ、 時間変化による干渉 は他の空間ストリームより大きくなるためである (非特許文献 9参照) 。
mの値が 2より大きい場合は (ステップ S6) 、 最大固有値; I maxと最小固有値 え minを求め (ステップ S9) 、 関連する空間ス トリームの優先度 PSmax、 PSminを 下げる (ステップ S10) 。
PSmin=2 式 31 最小固有値は少しの変動があっても無くなり易いため、 通信が誤る可能性が高 いためである。
表 1に、 m=2の場合の優先度設定例を示す。 最大固有値え max=4であり、 このと き i=lなので、 PS1=2とする。
表 1
優先度設定例 (m=2の場合)
Figure imgf000022_0001
表 2に、 ra=4の場合の優先度設定例を示す。 最大固有値; L raax=9であり、 このと き i=2なので、 PS2=2とし、 ; L min=0. 25で、 このとき i=lなので PS2=2とし、 最 大固有値の空間ストリームと最小固有値の空間ストリームの優先度を下げる。 表 2
優先度設定例 (11F4の場合)
Figure imgf000022_0002
また、 伝搬路行列作成 (ステップ S3) と固有値計算 (ステップ S4) は、 受信側 の送信多重部もしくは送信側の送信多重部との共用ができる。
図 5のフロ一チヤ一トに基づいて、 繰り返し通信中の E- SDMの劣化予測方法に ついて説明する。 ここで云う繰り返し通信中とは、 例えば、 複数パケットにまた がるデータ通信である。 これは、 図 2の具体例であり、 図 1の伝搬路予測優先度 設定部 1 0 5の動作である。
繰り返し通信中において、 前回の伝搬路計算値から計算した固有値、 固有べク トルと今回の伝搬路計算値から計算した固有値、 固有ベク トルの変化から、 各空 間ストリームの安定度を予測し安定度の高い空間ストリームの優先度を上げ、 不 安定な空間ス トリームの優先度を下げる方法である。
まず、 前回の固有ベク トル eu (n-l) (i=l,2,…!!!, u=l, 2, · · ·, m (n- 1) )が保持され ている (ステップ Sll) 。 ここで m(n- 1)は、 前回の固有値の数である。
伝搬路予測優先度設定部 1 0 5は、 第 n回の伝搬路計算値 hkj(n)が入力される と (ステツプ S12)、伝搬路計算値 hkj (n)を配置して伝搬路行列 H(n)を作成し(ス テツプ S13) 、 固有べクトル計算を行い、 固有値数 m及び固有べク トル ei(i=l,2, •••,m)を決定する (ステップ S14) 。 固有ベク トルの計算方法には、 特異値分解、 Householder, QR分解、 DB法などがある。 各固有べク トル eiの長さは送信側固有 ベクトルでは送信側アンテナ数 Mとなり、 受信側固有ベク トルで行う場合は、 受 信側アンテナ数 Nとなる。 劣化予測はどちらを用いることも可能なため、 本説明 では、 どちらの場合も固有ベク トル相関量計算を行い、 空間ス トリーム毎に最大 の固有べク トル相関量を選択する事で、 前回の空間ストリーム番号 uと今回の固 有ストリーム番号 iの関連づけを行う。
Figure imgf000023_0001
(i=l,2,'"m,u=l,2,〜,m(n-l)) 式 32 ただし、 ここで e n), e n-l)は正規化された値である。 つまり、
Figure imgf000023_0002
("— (« - 1) = e2 (" - l)e2 (w— 1) =… = e„,(n_!) (" - ("- 0 {' 各 iに対して Δ eiuが最大となる uを選択し、そのときの uを i(n- 1)とする(ス テツプ S16) 。
更に、 しきい値 AethLを定め、 Δ _υがしきい値 AethLより低い場合 (ステ ップ S18) 、 前回の第 i(n-l)空間ス トリームと今回の第 i空間ス トリームは連続 する空間ストリームではないと判断し、 第 i空間ストリームは不安定であると判 断して低い優先度を設定する (ステップ S19) 。
PSi=3 式 35 また、 しきい値 AethHを定め、 Δ υがしきい値 AethHより高い場合 (ステ ップ S20) 、 前回の固有ベク トルと今回の固有ベクトルの相関が充分に高いと判 断し、 高い優先度を設定する (ステップ S21) 。
PSi=l 式 36 厶 e (n_ が Δ e thLく Δ ei7 (η_1} < Δ e ίΜの空間ストリームには、 中程度の優 先度を設定する。
PSi=2 式 37 i=lから mまでの全空間ストリームに関して行う (ステップ S17, S23) 。
最大固有値え maxを求め (ステップ S24) 、 関連する空間ストリームの優先度
PSmaxを下げる (ステップ S25) 。
これは、 最大固有値は劣化しやすく、 また、 特に記載してないが最大送信電力 を割り付けるために、 相関の劣化によるストリーム間千渉電力も大きくなるため である (非特許文献 3参照) 。
図 6のフローチヤ一トに基づいて、図 2の具体例である繰り返し通信中の W-SDM の劣化予測方法について説明する。
これは、 図 3の伝搬路予測優先度設定部 2 0 5の動作である。
W - SDMは、 伝搬路特性から送信電力制御や適応変調を行うのみであるため、 空 間ストリームは送信アンテナ毎になり、 空間ストリーム番号 iはアンテナ番号 j と等しいと考える。
先の時間に計算した伝搬路計算値 hjk (n- 1)が保持されている(ステップ S26)。 今回計算した伝搬路計算値 hjk (n)が入力される (ステップ 27) 。 アンテナ jの伝 搬路変化量 A hj (n)を計算する (ステップ S28) 。 但し、 この式は伝搬路計算値が 規格化された値でない場合に用いる。
Δ/ι. («) 式 38
Figure imgf000024_0001
各ァンテナの伝搬路変化量を比較し、 大きな値のアンテナから順次高レ、優先度 を設定する (ステップ S29) 。
特に、 A hj (n)がマイナスの値の場合は縮小した事を示すので、劣化すると予測 し、 低い優先度を設定する。
具体例を表 3に示すと、伝搬路変化量 A hj (n)が最も大きい空間ストリーム番号 3の優先度を最大の 1とし、 続いて空間番号 2 , 1、 4の順に優先度を低く設定 する。
表 3 優先度設定例 (W-SDMの場合)
Figure imgf000025_0001
図 1の伝搬路予測優先度設定部 1 0 5の動作及び図 2の具体例として、 繰り返 し通信中の例を示すと、先の回に計算した伝搬路計算値から求めた先の固有値と、 今回の伝搬路計算値から求めた今回の固有値を比較し、 大きく変化した固有値に 関連する空間ストリームは、 あまり変化しない固有値の空間ストリームより劣化 しやすいと予測して優先度を低く設定する。
また、 縮小した固有値に関連する空間ストリームは劣化すると予測して優先度 を低く設定する等、 空間ストリームの優先度の割付には種々の手法を使用するこ とができる。
図 7 A〜図 7 Eを参照して、 本発明に係る他の実施例を説明する。
ここでは、 優先度付きデータが特定の送信側 3 0 1から受信側無線局 3 0 2に 送信される例が示されている。 優先度付きデータは、 各々異なる優先度の複数の データ列で構成されているものとする。
伝搬路予測優先度設定部 3 0 5は、 伝搬路計算値から各空間ストリームの劣化 し易さを予測し、 劣化しにくいものに高く、 劣化しやすいものに低い優先度を割 り付ける。
優先度割付部 3 0 4は、 優先度付きデータの優先度の高いものから順次、 優先 度の高い空間ス トリームに割り付ける。 割付の際、 データ数が合わないとデータ 配分の調整を行う。 上記した伝搬路予測優先度設定部 3 0 5及び優先度割付部 3 0 4は、 前述した実施例と同様に、 ハードウェアによって実現されても良いし、 ソフトウエアプログラムによって実現されても良い。
以下に表を用いて具体的に説明する。
表 4 , 表 5に優先度付きデータとそのビット数、 空間ストリームの優先度と送 信ビット数の例を示す。
優先度付きデータは、 本明細書の背景技術で説明したように空間スケーラビリ ティ、 時間スケーラビリティ、 SNRスケーラビリティ、 R0Iスケーラビリティ等に 基くものがあり、また、ビデオ配信において音声と画像が同時配信される場合は、 音声の優先度は画像より高いとする。 また、 これらのスケーラビリティ、 データ タイプの複合型もある。優先度の表し方はシステムにより異なるが、この例では、 優先度が高い事を小さな番号で表している。
表 4によると、 最も解像度が低い基本レイヤと、 その解像度を順次上げる冗長 データの第 1拡張レイヤと第 2拡張レイヤがある。優先度は情報の重要度に従い、 基本レイヤがもっとも高く、 1とする。 サービス品質 (QoS)が低いものほど、 優先 度は高い傾向となる。 一方、 第 i空間ス トリームの優先度は、 伝搬路予測優先度 設定部 3 0 5が設定する。
送信ビット数は、 伝搬路情報によって指定される。 表 5はその例である。
優先度割付部 3 0 4は、 最も優先度の高い優先度付きデータから順次、 優先度 の高い空間ストリームに割り振るので、 優先度 1の基本レイヤを優先度 1の第 2 空間ス トリームに割り振る。
データ列のデータ数が異なるため、 第 2空間ストリームには、 基本レイヤ 128 ビッ トに引き続いて第 1拡張レイヤの冗長データの前半 256ビッ トの合計 384ビ ットが割り振られる。 続いて、 第 1拡張レイヤの冗長データの残り 1 2 6ビット を優先度 2の第 3空間ストリームに割り振り、 続いて、 第 2拡張レイヤの冗長デ ータを優先度 3及び 4の第 1空間ストリームと第 4空間ストリームに害 ijり振られ る。
このように、 優先度割付部 3 0 4は、 データ調整機能を有する場合がある。 表 4 優先度付きデータ
Figure imgf000026_0001
表 5 空間ストリームの優先度
Figure imgf000027_0001
図 7 A〜図 7 Eに示されたチャネル符号化部 3 0 2は、 空間ストリーム毎に割 り振られたデータそれぞれに、 受信側で誤りがないか検査できるようにチャネル 符号化し、 空間多重送信部 3 0 6に送る。
空間多重送信部 3 0 6は図 7 Bに示されたように、 ウェイ ト乗算部 3 2 0、 既 知信号挿入変調部 3 2 1、 ウェイ ト生成部 3 2 2を備えている。 ウェイト生成部 3 2 2は伝搬路情報から M X mの送信ウェイ ト Wtを設定し、 ウェイ ト乗算部 3 2 0で各々の空間ス トリームで送信するチャネル符号化したデータ bi (i=l, 2, - - Mil) に送信ウェイ トを掛けてアンテナ送信信号 t i (i = l,2, ·· ·, !!))とする。
T = W,B 式 39 = [ … t 式40
B - [ b2 … b 式 4"! 既知信号挿入変調部 3 2 1はウェイ トを掛けた信号に既知信号を挿入し、 方式 によって、 CDMAもしくは 0FDMAなどの変調を行い、 必要に応じて無線搬送波周波 数に周波数変換し、 送信空間多重アンテナ 3 0 7から空間多重伝搬路 3 0 8に送 信する。
送信空間多重アンテナ 3 0 7は、 複数アンテナ素子による構成と、 単一アンテ ナの複数偏波を利用する構成方法がある。
空間多重伝搬路 3 0 8で、 多重送信した複数のデータ列は、 複数ストリームに よって伝送されるが、 空間多重伝搬路 3 0 8では、 伝搬損失やマルチパスやフエ 一ジング、 シャドウイングなどが生じる。
受信側 3 0 2では、 電波を受信空間多重アンテナ 3 0 9を介して空間多重受信 部 3 1 0で受信する。 受信する際、 熱雑音も加わる。
空間多重受信部 3 1 0は、 図 7 Cに示されているように、 復調部 3 2 3とゥヱ ィ ト乗算部 3 2 4とを備え、 復調部 3 2 3では、 送信側の変調に合わせて CDMA、 OFDM等の復調を行い、 必要に応じて信号処理可能な周波数に変換する。 一方、 空 間多重受信部 3 1 0のウェイ ト乗算部 3 2 4では復調信号にウェイ トを乗算する。 受信側無線局 3 0 2の伝搬路推定部 3 1 4は、 図 7 Dに示すように、 伝搬路計 算部 3 2 5、 ウェイ ト生成部 3 2 6、 及び、 伝搬路情報生成部 3 2 7を備えてい る。 伝搬路推定部 3 1 4の伝搬路計算部 3 2 5では、 送信側で挿入された既知信 号もしくは疑似既知信号として扱うことのできる判定後信号を用い、 復調信号に 既知信号の複素共役を乗算して平均化して伝搬路計算値を得、 伝搬路推定値とし てウェイ ト生成部 3 2 6に出力する。 ウェイ ト生成部 3 2 6は、 伝搬路推定値か ら、 ウェイトを計算する。 ウェイ トの計算方法は、 E-SDM、 ZF、 MMSEなどがある。 伝搬路推定部 3 1 4の伝搬路情報生成部 3 2 7は、 伝搬路計算値もしくはゥェ ィ トを元に送信側に送る伝搬路情報を、 システムで取り決めた値より選択し出力 する。
伝搬路情報は、 伝搬路計算値及び雑音から計算される空間ストリーム毎の通信 容量と送信側ウェイトの指定であり、 伝搬路情報の従来例としては通信レートを 表示する CQI (Channel Qual ity Indicator) 、 ウェイ トを通知する PCI (Precoding control indicator) やし odebook Index力ある。
伝搬路情報から空間ストリームの劣化しやすさを予測し優先度を決定する。 劣 ィ匕しゃすさは、 最大ウェイ トを掛ける空間ストリームは劣化しやすい、 先の伝搬 路情報と比較して容量やウェイ ト設定の変化の大きい空間ストリームは劣化しや すいなどである。
図 7 Aに示された優先度付きチャネル復号部 3 1 1は、 空間ストリームの優先 度に従い、 空間ストリーム毎にチャネル復号する。 優先度の最も高い空間ストリ 一ムの復号が失敗すると通信阻害信号を出力し、 成功すると通信阻害信号を出力 しない。 通信阻害信号は受信側再送制御部 3 1 6に通知される。
受信側再送制御部 3 1 6は、 通信阻害がなければ再送要求せず、 通信阻害があ ると受信側送信部に再送要求信号を出力する。
優先度付き復号部 3 1 2では、 優先度付きチャネル復号部 3 1 1において通信 阻害信号の出力がないとき、 優先度付きチャネル復号を行う。 同一情報の優先度 付きデータの場合、 基本レイヤが通信できておらず拡張レイヤを復号しても無効 なため、 以降の復号を中断し、 復号したデータのみを表示部 3 1 3に送る。 優先度が最高の優先度付きデータが優先度の最も高い空間ストリームで終了せ ず、 続く空間ス トリームの復号が失敗した場合は、 優先度付きチャネル復号部 3
1 2が通信阻害信号を出力する。 通信阻害がある場合は、 復号処理を停止して再 送データの受信を待つ。
優先度が最高の優先度付きデータは正しく復号でき優先度の低い優先度付きデ 一タの復号に失敗した場合は、 通信阻害信号は出力しない。 表示部 3 1 3は、 画 像の場合はディスプレイ、 音声の場合はマイクなどである。
受信側無線局 3 0 2からの伝搬路情報は、 アンテナ 3 1 8と逆方向伝搬路 3 1
9を通してアンテナ 3 2 8で受信され、 送信側受信部 3 2 9で受信され、 空間多 重送信部 3 0 6のウェイ ト生成部 3 2 2と、 伝搬路予測優先度設定部 3 0 5に通 知される。
また、 通信阻害が発生した場合、 再送要求信号が受信側送信部 3 1 7、 アンテ ナ 3 1 8、 逆方向伝搬路 3 1 9、 アンテナ 3 2 8、 送信側受信部 3 2 9を経て送 信側再送制御部 3 3 0に伝えられ、 送信側再送制御部は、 通信阻害のあったデー タを再送する。
このとき、 逆方向伝搬路 3 1 9は、 FDD方式では伝搬路 3 0 8とは異なる周波 数であり、 TDD方式では同一周波数である。
また、 アンテナ 3 1 8 , 3 2 7が空間多重アンテナで逆方向伝搬路 3 1 9が空 間多重伝搬路の場合もそうでない場合もある。
図 7 Eには、 図 7 Bに示された空間多重送信部 3 0 6とは異なる構成を有する 空間多重送信部 3 0 6の例が示されている。 図 7 Eに示された空間多重送信部 3 0 6は、 既知信号挿入部 3 3 1、 ウェイ ト乗算部 3 3 2、 変調部 3 3 3を備える と共に、 図 7 Bと同様にウェイト生成部 3 2 2を有している。 図 7 Eからも明ら かなように、 既知信号挿入部 3 3 1で挿入される既知信号の挿入位置が異なって いる例である。
図 7 Eに示された例では、 空間多重送信部 3 0 6に設けられた既知信号挿入部 3 3 1は、 空間ス トリーム毎に符号化した信号に既知信号を挿入し、 その後、 ゥ エイ ト乗算部 3 3 2はウェイ トを乗算し、変調部 3 3 3は CDMA、 OFDMなどの変調 を行う。
この例では、 優先度の低いデータは確実な送信を保証しないバックグラウンド やべストェフォートであり、 ここでは代表してべストェフォートと呼ぶことにす る。 また、 優先度の高いデータは確実な送信を保証するデータであり、 代表して ギャランティと呼ぶことにする。
一方、 優先度の低いデータの Q o Sがバックグラウンドで優先度の高いデータ の Q o Sも送信を保証しないタイプのべストェフォートの場合は、
再送制御は行わない。 その場合は、 送信側制御部 3 3◦、 受信側送信部 3 1 7は 不要であり、 遅延時間は更に削減できる。 全てのデータがべストェフォートであ つても、 べス トェフォートの中で優先度の高いデートを優先度の高い空間ス トリ 一ムに割り当てることによつて優先度の高いデータが伝送し易くなるという効果 が得られる。
これは、 ベストエフオートの定義が、 ベストエフオートとそれより Q o Sの低 いバックグラウンドを含む場合、 また、 同じべストエフオートの中でもレベルと 言われる更に細かい段階分けをする場合に相当する。
この実施例の効果は、 送信側での伝搬路推定頻度を減らしても、 再送制御によ る遅延を削減できる事である。 その理由は、 伝搬路特性の時間変化によって劣化 しにくい空間ストリームに優先度の高い優先度付きデータを割り振るために、 誤 りを優先度の低レ、優先度付きデータに偏らせる事ができるため、 優先度の高レ、優 先度付きデータは正しく通信でき、 再送制御を行わないためである。
図 8 A〜図 8 Eを参照して、 本発明に係る他の実施例を説明する。
図示された実施例は、 優先度付きデータを、 特定の送信側無線局 4 0 1から受 信側無線局 4 0 2に通信する例である。 優先度付きデータは、 重要度に応じた優 先度を設定された複数のデータ列で構成される。 優先度割付部 4 0 4は、 優先度 付きデータの優先度の高いものから順次、 優先度の高い空間ストリームに割り付 ける。 空間ス トリームの優先度情報は優先度付き伝搬路情報で与えられる。 その 際、 データ数が合わない時のデータ配分調整方法は、 図 7 Aに示した優先度割付 部 3 0 4と同様な方法で行われる。 チャネル符号化部 4 0 5は、 空間ストリーム毎に割り振られたデータそれぞれ に、 受信側で誤りがないか検査できるようにチャネル符号化し、 変調空間多重送 信部 4 0 6に送る。
空間多重送信部 4 0 6では、 図 8 Bに示すように、 優先度付き伝搬路情報から ウェイ ト生成部 4 2 2が m X mの送信ウェイ ト Wtを設定し、 ウェイ ト乗算部 4 2 0で各々の空間ストリームで送信するチャネル符号化したデータ bi (i=l, 2, - - -, m) に送信ウェイ トを掛けてアンテナ送信信号 t i (i=l, 2, · · ·, m)とする。
詳細動作は図 7 A〜図 7 Eに示した空間多重送信部 3 0 6と同様である。
即ち、 図 8 Bに示すように、 空間多重送信部 4 0 6の既知信号挿入変調部 4 2 1はウェイ トを掛けた信号に既知信号を挿入し、 方式によって、 CDMAもしくは 0FDMAなどの変調を行い、 必要に応じて無線搬送波周波数に周波数変換し、 送信 空間多重アンテナ 4 0 7から空間多重伝搬路 4 0 8に送信する。
送信空間多重アンテナ 4 0 7は、 複数アンテナ素子による構成と、 単一アンテナ の複数偏波を利用する構成方法がある。
空間多重伝搬路 4 0 8で、 多重送信した複数のデータ列は、 複数ストリームに よって伝送される。 空間多重伝搬路 4 0 8では、 伝搬損失やマルチパスやフエ一 ジング、 シャドウイングなどが生じ、 空間多重伝搬路 4 0 8の特性は時間と共に 変化する。
受信側無線局 4 0 2では、 受信空間多重アンテナ 4 0 9で電波を受信する。 このとき熱雑音が加わる。 図 8 Cに示されているように、 空間多重受信部 4 1 0の復調部 4 2 3では、 送信側の変調に合わせて CDMA、 OFDM等の復調を行い、 必 要に応じて信号処理可能な周波数に変換する。 ウェイ ト乗算部 4 2 4では復調信 号にウェイ トを乗算する。
次に、 図 8 Dに示された伝搬路推定部 4 1 4では、 伝搬路計算部 4 2 5で、 送 信側で挿入された既知信号もしくは疑似既知信号として扱うことのできる判定後 信号を用い、 復調信号に既知信号の複素共役を乗算して平均化して伝搬路計算値 を得る。
更に、 図 8 Dに示された伝搬路推定部 4 1 4のウェイ ト生成部 4 2 6は、 伝搬 路推定値から、 ゥ-ィ トを計算する。 ウェイ トの計算方法は、 E-SDM、 ZF、 匪 SE などがある。
優先度付き伝搬路情報生成部 4 2 7は、 伝搬路計算値もしくはウェイ トを元に 送信側に送る伝搬路情報を、 システムで取り決めた値より選択する。 また、 伝搬 路予測優先度設定部 4 1 5から受け取った空間ストリーム優先度情報を合わせて 優先度付き伝搬路情報を出力する。
伝搬路情報は、 伝搬路計算値及び雑音から計算される空間ストリーム毎の通信 容量と送信側ウェイ トの指定であり、伝搬路情報の従来例としては CQI、 PCIなど がある。
このとき、 伝搬路情報のビット数を f ビットとすると、 優先度付き伝搬路特性 は、 伝搬路情報 f ビットに優先度情報 gビットを付加する。
例として、 空間ストリームの個数が m=4の場合に、 最も優先度の高い空間スト リーム番号を優先度情報として付加すると、 2 ビッ トで通知可能なので、 g=2ビッ トを付加する。 伝搬路情報が 6ビッ トの場合、 それに優先度情報 2 ビットを足し て 8ビッ トで通知する。
図 8 Aに示された伝搬路予測優先度設定部 4 1 5は、 伝搬路計算値から空間ス トリームの劣化しやすさを予測して優先度を決定する。 劣化しやすさの予測方法 としては、 先に図 7 A〜図 7 E及び図 4を参照して説明した方法がある。
更に、 最大ウェイ トを掛ける空間ス トリームは劣化しやすいこと、 先の伝搬路 情報と比較して容量やウェイ ト設定の変化の大きい空間ストリームは劣化しやす いこと等を利用して、 劣化しやすさを予測しても良い。
優先度付きチャネル復号部 4 1 1は、 空間ストリームの優先度に従い、 空間ス トリーム毎にチャネル復号する。 優先度の最も高い空間ストリ一ムの復号が失敗 すると通信阻害信号を出力し、 成功すると通信阻害信号を出力しない。 通信阻害 信号は受信側再送制御部 4 1 6に通知される。
受信側再送制御部 4 1 6は、 通信阻害がなければ再送要求せず、 通信阻害があ ると受信側送信部に再送要求信号を出力する。
優先度付き復号部 4 1 2では、 優先度付きチャネル復号部 4 1 1において通信 阻害信号の出力がないとき、 優先度付きチャネル復号を行う。 同一情報の優先度 付きデータの場合、 基本レイャが通信できておらず拡張レイヤを復号しても無効 なため、 以降の復号を中断し、 復号したデータのみを表示部 4 1 3に送る。
優先度が最高の優先度付きデータが優先度の最も高い空間ストリームで終了せ ず、 続く空間ストリームの復号が失敗した場合は、 優先度付きチャネル復号部 4
1 2が通信阻害信号を出力する。 通信阻害がある場合は、 復号処理を停止して再 送データの受信を待つ。
優先度が最高の優先度付きデータは正しく復号でき優先度の低レ、優先度付きデ 一タの復号に失敗した場合は、 通信阻害信号は出力しない。 表示部 4 1 3は、 画 像の場合はディスプレイ、 音声の場合はマイクなどである。
図示された例では、 伝搬路情報は、 アンテナ 4 1 8と逆方向伝搬路 4 1 9を通 してアンテナ 4 2 8で受信され、 送信側受信部 4 2 9で受信され、 図 8 Bに示さ れた空間多重送信部 4 0 6のウェイ ト生成部 4 2 2と、 図 8 Aの優先度割付部 4
0 4に通知される。
また、 通信阻害が発生した場合、 再送要求信号が受信側送信部 4 1 7、 アンテ ナ 4 1 8、 逆方向伝搬路 4 1 9、 アンテナ 4 2 8、 送信側受信部 4 2 9を経て送 信側再送制御部 4 3 0に伝えられ、 送信側再送制御部 4 3 0は、 通信阻害のあつ たデータを再送する。
このとき、 逆方向伝搬路 4 1 9は、 FDD方式では伝搬路 4 0 8とは異なる周波 数であり、 TDD方式では同一周波数である。
また、 アンテナ 4 1 8 , 4 2 8が空間多重アンテナで逆方向伝搬路 4 1 9が空間 多重伝搬路の場合もそうでなレ、場合もある。
図 8 Eに示された空間多重送信部 4 0 6は図 8 Bと既知信号挿入の位置が異な つている。
この例では、 空間多重送信部 4 0 6において、 既知信号挿入部 4 3 1は、 空間 ス トリーム毎に符号化した信号に既知信号を挿入し、 その後ウェイ ト乗算部 4 3 2はウェイ トを乗算し、 変調部 4 3 3は CDMA、 OFDMなどの変調を行う。
これは優先度の低いデータがべストェフォートであり、 優先度の高いデータが 再送制御を必要とするギャランティの場合の例であり、優先度の高いデータの QoS もべス トエフオートの場合は、 再送制御は行わない。 その場合は、 送信側再送制 御部 3 3 0、 受信側 3 1 8は不要であり、 遅延時間は更に削減できる。 全てのデータがべストェフォートであっても、 べストェフォートの中で優先度 の高いデータを優先度の高い空間ストリームに割り当てることによって優先度の 高いデータが伝送し易くなるという効果が得られる。
これは、 ベストエフオートの定義が、 ベストエフオートとそれより Q o Sの低 いバックグラウンドを含む場合、 また、 同じべストエフオートの中でもレベルと 言われる更に細かい段階分けをする場合に相当する。
この実施例のように、 送信側において伝搬路の予測頻度を減らし、 受信側にお いて伝搬路の予測を行わなくても、 再送制御による遅延を削減できると言う効果 を有している。
図 9 A〜図 9 Dを参照して、 更に他の実施例を説明する。 ここでは、 第 1無線 局 5 0 1と第 2無線局 5 0 2は時分割複信方式 (TDD方式) で通信をしているも のとする。
入力部 5 3 0はカメラやマイクである。 優先度付き符号化部 5 0 3はスケーラ ブル符号化を行い、 優先度付きデータを出力する。 データ保持部 5 3 1は再送の ためのデータ保持を行う。 優先度付きデータは、 重要度に応じた優先度を設定さ れた複数のデータ列で構成される。
優先度割付部 5 0 4は、 優先度付きデータの優先度の高いものから順次、 優先 度の高い空間ストリームに割り付ける。 伝搬路予測優先度設定部 5 3 3が空間ス トリームの優先度を与える。 その際、 データ数が合わない時のデータ配分調整方 法は、 先に述べた優先度割付部 3 0 4と同様である。
チャネル符号化部 5 0 5は、 空間ストリーム毎に割り振られたデータそれぞれ に、 受信側で誤りがないか検査できるようにチャネル符号化し、 空間多重送信部 5 0 6に送る。
空間多重送信部 5 0 6では、 図 9 Bに示された制御信号挿入部 5 4 5が再送制 御部 5 3 2からの再送要求信号がある場合は再送要求信号を挿入する。 無い場合 は挿入しない。
ウェイ ト乗算部 5 2 0では、伝搬路推定部 5 3 4からの送信ウェイ トを乗算し、 既知信号挿入変調部 5 2 1はゥ-ィ トを掛けた信号に既知信号を挿入し、 方式に よって、 CDMAもしくは 0FDMA、 OFDMなどの変調を行い、 必要に応じて無線搬送波 周波数に周波数変換し、 送信方向に切り替えられたアンテナ切り替え部 5 4 3を 通して、 空間多重アンテナ 5 0 7から空間多重伝搬路 5 0 8に送信する。
TDD方式では同じ周波数リソースを時間によつて順方向と逆方向に切り替えて 使うため、 アンテナ切り替え部 5 4 3及び 5 4 4は、 同じアンテナ 5 0 7及び 5 0 9に対して、 時間により、 空間多重送信部 5 0 6、 5 1 0からの入力と、 空間 多重受信部 5 2 9、 5 1 0への出力を切り替えて有効活用する。
空間多重アンテナ 5 0 7は、 複数アンテナ素子による構成と、 単一アンテナの 複数偏波を利用する構成方法がある。 伝搬路は、 空間多重伝搬路で、 多重送信し た複数のデータ列は、 複数ストリームによって伝送され。 また、 伝搬損失やマル チパスやフェージング、 シャドウイングが生じる。
第 2無線局 5 0 2は、 空間多重アンテナ 5 0 9で電波を受信する。 このとき熱 雑音が加わる。
アンテナ切り替え部 5 4 4を通った信号は、 図 9 Cに示された空間多重受信部 5 1 0の復調部 5 2 3に送られ、復調部 5 2 3では、送信側の変調に合わせて CDMA、 OFDM等の復調を行い、 必要に応じて信号処理可能な周波数に変換する。
ウェイ ト乗算部 5 2 4では復調信号にウェイ トを乗算し、 制御信号分離部 5 4 6では、 再送要求信号を分離し、 再送制御部 5 1 6に伝える。
伝搬路推定部 5 1 4では、 図 9 Dに示された伝搬路計算部 5 2 5で、 送信側で 挿入された既知信号もしくは疑似既知信号として扱うことのできる判定後信号を 用い、復調信号に既知信号の複素共役を乗算して平均化して伝搬路計算値を得る。 更に、 ウェイ ト生成部 5 2 6は、 伝搬路推定値から、 ウェイ トを計算する。 ゥ エイ トの計算方法は、 E- SDM、 ZF、 MMSEなどがある。
図 9 Aの伝搬路予測優先度設定部 5 1 5は、 伝搬路計算値から空間ストリーム の劣化しやすさを予測して優先度を決定する。 劣化しやすさの予測は、 先に説明 した図 (フローチャート) の方法がある。
最大固有値の空間ストリームは劣化しやすい空間ストリームであり、 例えば、 先の回の伝搬路計算値と比較して変化の大きい空間ストリーム等である。 優先度 の最も高い空間ストリームの復号が失敗すると通信阻害信号を出力し、 成功する と通信阻害信号を出力しない。 通信阻害信号は受信側再送制御部 5 1 6に通知す る。
再送制御部 5 1 6は、 通信阻害がなければ再送要求せず、 通信阻害があると受 信側送信部に再送要求信号を出力する。
優先度付き復号部 5 1 2では、 優先度付きチャネル符号部 5 3 7において通信 阻害信号の出力がないとき、 優先度付きチャネル復号を行う。 同一情報の優先度 付きデータの場合、 基本レイヤが通信できておらず拡張レイヤを復号しても無効 なため、 以降の復号を中断し、 復号したデータのみを表示部 5 1 3に送る。 優先度が最高の優先度付きデータが優先度の最も高い空間ス トリームで終了せ ず、 続く空間ス トリームの復号が失敗した場合は、 優先付きチャネル符号化部 5 3 7が通信阻害信号を出力する。 通信阻害がある場合は、 復号処理を停止して再 送データの受信を待つ。
優先度が最高の優先度付きデータは正しく復号でき優先度の低い優先度付きデ 一タの復号に失敗した場合は、 通信阻害信号は出力しない。
第 2無線局 5 0 2の表示部 5 1 3は、 画像の場合はディスプレイ、 音声の場合 はマイクなどである。
一方、 通信阻害がある場合は、 再送制御部 5 1 6は再送要求信号を出力する。 TDD方式における逆方向の通信に割り当てられた時間において、再送要求信号は、 図 9 Bに示された空間多重送信部 5 1 7の制御信号挿入部 5 4 5で送信信号に挿 入される。
再送制御信号は、 更に、 図 9 Bに示されたウェイ ト乗算部 5 2 0、 既知信号挿 入変調部 5 2 1を通じて、 送信方向に切り替えたアンテナ切り替え部 5 4 4を通 じて空間多重アンテナ 5 0 9から、 伝送路 5 0 8を通して逆方向に伝搬され、 第 1基地局 5 0 1の空間多重アンテナ 5 0 7で受信され、 逆方向に切り替えられた アンテナ切り替え部 5 4 3を通って、 空間多重受信部 5 2 9で受信される。 受信 された後、 再送制御信号は復調部 5 2 3で復調され、 ゥヱイ ト乗算部 5 2 4でゥ エイ トを掛けられたあと、 制御信号分離部 5 4 6から、 再送制御部 5 3 2に送ら れる。
再送制御部 5 3 2は、 データ保持部 5 3 1に保持されている優先度情報付きデ ータを、 再度、 順方向の通信タイミングで再送する。 この場合、 優先度割付部 5 0 4を通じて優先度情報付きデータを再度空間スト リームに割り付け、優先度付きチャネル符号化部 5 0 5、空間多重送信部 5 0 6、 送信方向に設定されたアンテナ切り替え部 5 4 3を通して、 空間多重伝搬路 5 0 8を順方向に伝搬し、 送信する。 .
第 1無線局 5 0 1からの優先度情報付きデータは、 第 2無線局 5 0 2の空間多 重アンテナ 5 0 9で受信され、 受信方向に切り替えられたアンテナ切り替え部 5 4 4を通って空間多重受信部 5 1 0を通り、 優先度付きチャネル復号部 5 1 1で 復号される。 この時、 再送された信号の優先度の高い空間ストリームの信号が正 しく復号できて通信阻害がないと、 チャネル復号部は、 チャネル復号信号を出力 する。 優先度付き復号部 5 1 2は優先度付き復号した信号を出力し、 表示部 5 1 3は表示を行う。
逆方向の動作も同様である。 第 1無線局 5 0 1と第 2無線局 5 0 2は同じ構成 及び動作である。
第 2無線局 5 0 2の入力部 5 3 6もカメラやマイクである。 優先度付き符号化 部 5 3 7はスケーラブル符号化を行い、 優先度付きデータを出力する。 データ保 持部 5 3 1は再送のためのデータ保持を行う。 優先度付きデータは、 重要度に応 じた優先度を設定された複数のデータ列で構成される。
優先度割付部 5 3 8は、 優先度付きデータの優先度の高いものから、 順次、 優 先度の高い空間ストリームに割り付ける。
伝搬路予測優先度設定部 5 1 5が空間ストリームの優先度を与える。 その際、 データ数が合わない時のデータ配分調整方法は、先に説明した方法と同様である。 チャネル符号化部 5 3 9は、 空間ストリーム毎に割り振られたデータそれぞれ に、 受信側で誤りがないか検査できるようにチャネル符号化し、 空間多重送信部 5 1 7に送る。
図 9 Bに示すように、 第 2無線局 5 0 2の空間多重送信部 5 1 7では、 制御信 号挿入部 5 4 5で再送制御部 5 1 6からの再送要求信号がある場合は再送要求信 号を挿入し、 ウェイ ト乗算部 5 2 0では、 伝搬路推定部 5 1 4からの送信ウェイ トを乗算し、 既知信号挿入変調部 5 2 1はウェイ トを掛けた信号に既知信号を挿 入し、 方式によって、 CDMAもしくは 0FDMA、 OFDMなどの変調を行い、 必要に応じ て無線搬送波周波数に周波数変換し、 送信に切り替えたアンテナ切り替え部 5 4 4を通して空間多重アンテナ 5 0 9から送信し、 空間多重伝搬路 5 0 8を逆方向 に伝搬する。
第 1無線局 5 0 1は、 空間多重アンテナ 5 0 7で電波を受信する。 受信方向に 切り替えたアンテナ切り替え部 5 4 3を通った信号は、 図 9 Cに示された空間多 重受信部 5 2 9の復調部 5 2 3で復調され、 必要に応じて信号処理可能な周波数 に変換される。
続いて、 空間多重受信部 5 2 9のゥ イ ト乗算部 5 2 4では復調信号にウェイ トを乗算し、 制御信号分離部 5 4 6では、 再送要求信号がある場合は再送要求信 号を分離して再送制御部 5 3 2に出力し、 再送要求信号が無い場合には、 再送制 御部 5 3 2に出力しない。
伝搬路推定部 5 3 4では、 図 9 Dに示された伝搬路計算部 5 2 5で、 送信側で 挿入された既知信号もしくは疑似既知信号として扱うことのできる判定後信号を 用い、復調信号に既知信号の複素共役を乗算して平均化して伝搬路計算値を得る。 ウェイ ト生成部 5 2 6は、 伝搬路推定値から、 ウェイ トを計算する。
伝搬路予測優先度設定部 5 3 3は、 伝搬路計算値から空間ストリームの劣化し やすさを予測して優先度を決定する。 優先度の最も高い空間ストリームの復号が 失敗すると通信阻害信号を出力し、 成功すると通信阻害信号を出力しない。 通信 阻害信号は受信側再送制御部 5 3 2に通知する。
再送制御部 5 3 2は、 通信阻害がなければ再送要求せず、 通信阻害があると受 信側送信部に再送要求信号を出力する。
優先度付き復号部 5 4 1では、 優先度付きチャネル符号部 5 0 5において通信 阻害信号の出力がないとき、 優先度付きチャネル復号を行う。 同一情報の優先度 付きデータの場合、 基本レイャが通信できておらず拡張レイャを復号しても無効 なため、 以降の復号を中断し、 復号したデータのみを表示部 5 4 2に送る。
優先度が最高の優先度付きデータが優先度の最も高い空間ストリームで終了せ ず、 続く空間ストリームの復号が失敗した場合は、 優先付きチャネル符号部が通 信阻害信号を出力する。
通信阻害がある場合は、 復号処理を停止して再送データの受信を待つ。 優先度が最高の優先度付きデータは正しく復号でき優先度の低い優先度付きデ 一タの復号に失敗した場合は、 第 1無線局 5 0 1は通信阻害信号を出力しない。 表示部 5 4 2は、 画像の場合はディスプレイ、 音声の場合はマイクなどである。 通信阻害がある場合は、 再送制御部 5 3 2は、 再送要求信号を出力する。
空間多重送信部 5 0 6は、 図 9 Bに示すように、 順方向送信タイミングにおい て、 制御信号揷入部 5 4 5で再送要求信号を挿入する。 更に、 再送制御信号は、 ウェイ ト乗算部 5 2 0、 既知信号挿入変調部 5 2 1を通じて、 送信方向に切り替 えたアンテナ切り替え部 5 4 3から空間多重アンテナ 5 0 7を通じて伝送路 5 0 8を順方向に伝搬する。 伝搬された再送要求信号は、 第 2無線局 5 0 2のアンテ ナ部 5 0 9で受信され、受信側に切り替えたアンテナ切り替え部 5 4 4を通って、 空間多重受信部 5 1 0で受信され、 復調部 5 2 3で復調され、 ウェイ ト乗算部 5 2 4でウェイ トを掛けられたあと、 制御信号分離部 5 4 6から、 再送制御部 5 3 2に送られる。
逆方向送信タイミングにおいて、 第 2無線局 5 0 2の再送制御部 5 1 6は、 優 先度割付部 5 3 8を通じて、 データ保持部 5 4 0の優先度情報付きデータを再送 する。
優先度情報付きデータは優先度割付部 5 3 8を通じて、 再度、 空間ストリーム に割り付け、 優先度付きチャネル符号化部 5 3 9、 空間多重送信部 5 1 7、 送信 方向に切り替えられたアンテナ切り替え部 5 4 4を通して、 空間多重伝搬路 5 0 8を逆方向に伝搬する。
第 1無線局 5 0 1では、 優先度情報付きデータを空間多重ァンテナ 5 0 7で受 信し、 受信方向に切り替えられたアンテナ切り替え部 5 4 3を通って空間多重受 信部 5 2 9を通り、 優先度付きチャネル復号部 5 4 0で復号される。 この時、 再 送された信号の優先度の高い空間ス トリームの信号が正しく復号できて通信阻害 がないと、 チャネル復号部は、 チャネル復号信号を出力する。 優先度付き復号部 5 4 1は優先度付き復号後の信号を出力し、 表示部 5 4 2は表示を行う。
これは優先度の低いデータがべストェフォートであり、 優先度の高いデータが 再送制御を必要とするギャランティの場合の例であり、優先度の高いデータの QoS もべス トエフオートの場合は、 再送制御は行わない。 その場合は、 再送制御部 5 3 2, 5 3 8は不要であり、 遅延時間は更に削減できる。
全てのデータがべス トェフォートであっても、 べストェフォートの中で優先度 の高いデータ
一一
高いデータが伝送し易くなるという効果が得られる。
これは、 ベス トエフ ベストエフオートとそれより Q o Sの低 いバックグラウンドを含む場合、 また、 同じべス トエフオートの中でもレベルと 言われる更に細かい段階分けをする場合に相当する。
図 1 O A及び図 1 O Bを参照して、 複数無線局を含むシステムに本発明を適用 した場合の実施例を説明する。
図 1 0 Aでは、 第 1無線局 6 0 1と第 2無線局 6 0 2、 第 3無線局 6 0 3は空 間多重通信をする。 この方法はマルチユーザ MIM0、 複数基地局協調 MIM0として 知られている。 図 1 O Aはこのようなシステムに本発明を適用した例である。 第 1無線局 6 0 1から第 2無線局 6 0 2、 第 3無線局 6 0 3への伝搬を順方向 と呼び、 反対を逆方向という。 前述した例と同様に、 各無線局は送信時に既知信 号を送信する。
受信側では既知信号もしくは疑似既知信号として用いることの出来る判定後信 号を用いて、 伝搬路特性を計算する。
第 2無線局 6 0 2、 第 3無線局 6 0 3は伝搬路特性を第 1無線局 6 0 1に通知 し、 第 1無線局 6 0 1では、 それぞれの伝搬路特性を組み合わせてウェイ トを生 成する。
図 1 0 Aの例において、 第 1無線局 6 0 1の第 j送信アンテナと、 第 u無線局 の第 k受信ァンテナ間の伝搬路特性を!^ XK+k, jとする。このとき u=2, 3であり、 Kは、第 2無線局 6 0 2と第 3無線局 6 0 3の受信アンテナ数である。このとき、 伝搬路行列 Hは以下に得る事が出来るため、 ウェイ ト計算、 固有値計算は 1対 1 通信と同様に行える。 式 42
Figure imgf000040_0001
図 1 0 Bは協調通信の例であり、 優先度付き情報を第 4無線局 6 0 4と第 5無 線局 6 0 5から、 第 6無線局 6 0 6と第 7無線局 6 0 7に伝達する。 この方法で は、 第 4無線局 6 0 4と第 5無線局 6 0 5、 第 6無線局 6 0 6と第 7無線局 6 0 7はそれぞれ t:送信信号及び受信信号を共有する。
第 1無線局の第 j送信アンテナと、 第 u無線局の第 k受信アンテナ間の伝搬路 特性を h(u4) XK+k(1_6) XL+jとする。 このとき、 1 =4, 5、 u=6,7であり、 Lは第 4無線 局、 第 5無線局の送信アンテナ数、 Kは第 6無線局、 第 7無線局の受信アンテナ 数である。 このとき、伝搬路行列 Hは以下に得る事が出来るため、 ウェイ ト計算、 固有値計算は 1対 1通信と同様に行える。
H 式 43
送信側から複数の宛先 のデータがある場合、 優先度には、 各々の宛先毎の優 先度を用いる必要があり、 また、 宛先のユーザの優先度情報も加味される。 宛先 の優先度の例としては、 3GPPにおける端末のクラスなどがある。
このような複数局通信においても本発明は適用できる。 すなわち、 2以上の複 数局間の空間ストリームにおいても、 これまで述べた 2局間の空間ストリームの ように優先度を付けて、 優先度付きデータの優先度に応じて割り付け通信する事 ができる。
産業上の利用可能性
本発明によれば、 パーソナル移動体通信におけるマルチメディァ情報の配信と いった用途に適用できる。 また、 複数無線局の協調通信といった用途にも適用可 能である。
この出願は、 2 0 0 7年 1 2月 1 7日に出願された日本出願特願第 2 0 0 7— 3 2 5 3 3 0号及び 2 0 0 8年 7月 2 4日に出願された日本出願特願第 2 0 0 8 - 1 9 1 3 0 3号を基礎とする優先権を主張し、 その開示のすべてをここに取り 込む。

Claims

1 . それぞれ優先度の付いた複数のデータ列で構成された優先度付きデータ を複数の空間ストリームとして空間多重伝搬路を介して送信し、
前記空間多重伝搬路を介して受信された複数の空間ストリームを多重分離して 受信すると共に、
前記空間多重伝搬路に既知信請号又は判定済の疑似的な既知信号を送信すること により、 前記空間多重伝搬路の特性を計算して、 伝搬路計算値として求め、 前記伝搬路計算値から各空間ストリームの劣化し易さを予測し、 劣化しにくい ものに高く、 劣化しやすいものに低い空間ストリームの優先度を割り付け、 ξ車
前記空間ストリームの優先度に従って、 前記優先度の付いたデータの優先度の 囲
高いものから、 順次、 優先度の高い空間ストリームに割り付けることを特徴とす る通信方法。
2 . 請求項 1において、 前記空間多重伝搬路の特性の計算は、 前記空間多重 伝搬路を通った信号に、 前記既知信号又は前記疑似的な既知信号の複素共役を乗 算して平均化することを含むことを特徴とする通信方法。
3 . 請求項 1において、 前記複数の空間ス トリームの送信は、 複数アンテナ 素子を用いるか、 或いは、 単一アンテナ素子の複数偏波を用いて、 前記複数空間 ストリームを形成し、 空間多重送信を行うことを含んでいることを特徴とする通 信方法。
4 . 前記複数の空間ストリームの多重分離受信は、 複数アンテナ素子もしく は単一アンテナ素子の偏波を用いて受信し、 前記複数の空間ストリームを分離受 信することを含んでいることを特徴とする通信方法。
5 . 請求項 1において、 前記空間ストリームの優先度の割付は、 前記伝搬路 計算値から計算した固有値の大きい空間ストリームに低い優先度を設定すること を含むことを特徴とする通信方法。
6 . 請求項 1において、 前記空間ストリームの優先度の割付は、 前記空間ス トリームが 3以上ある場合、 前記伝搬路計算値から計算した固有値が最大の空間 ストリームに低い優先度を設定すると共に、 固有値の小さい空間ストリームに低 い優先度を設定することを含むことを特徴とする通信方法。
7 . 請求項 1において、 前記空間ストリームの優先度の割付は、 前回の伝搬 路計算値から、 不安定な空間ストリームと安定した空間ス トリームを検出し、 安 定した空間ストリ一ムには高い優先度を、 不安定な空間ストリ一ムには低い優先 度を設定することを含むことを特徴とする通信方法。
8 . 請求項 7において、 繰り返し通信する場合において、 前記空間ストリー ムの優先度の割付は、 前回の伝搬路計算値から計算した前回の固有べクトルと今 回の伝搬路計算値から計算した固有べク トルの固有べク トル相関量を計算し、 固 有べク トル相関量が大きい場合、 空間ストリームが安定していると判断して高い 優先度を設定し、 小さい場合に、 空間ストリームが不安定と判断して低い優先度 を設定することを含むことを特徴とする通信方法。
9 . 請求項 8において、 繰り返し通信する場合において、 前記空間ス トリー ムの優先度の割付は、 前回の伝搬路計算値と今回の伝搬路計算値から計算した伝 搬路変化量を比較し、前記今回の伝搬路変化量が大きレ、場合には不安定と判断し、 低い優先度を設定し、 前記今回の伝搬路変化量が小さい場合には安定していると 判断し、 高い優先度を設定することを含むことを特徴とする通信方法。
1 0 . 請求項 1において、 更に、 前記優先度付きデータを含む前記複数の空 間ス トリームを前記空間ストリーム毎に、 符号化すると共に、 前記符号化された 空間ストリームを復号し、 前記復号において、 前記優先度が最大のデータの復号 に失敗すると通信阻害信号を出力し、 前記通信阻害信号を受けて、 再送要求信号 を出力することを含むことを特徴とする通信方法。
1 1 . 請求項 1 0において、 前記符号化された空間ストリームの復号におい て、 優先度が最大でないデータの復号に失敗した場合には通信阻害信号を出力せ ず、 前記再送要求信号も出力しないことを含むことを特徴とする通信方法。
1 2 . 入力データに応答し、 当該入力データが優先度の付いた複数のデータ 列で構成されている優先度付きデータであるかどうかを判定し、
前記入力データが優先度付きデータでないことが判定されると、 優先度付き割 付を行うことなく、 伝搬路情報通知間隔を所定の間隔に設定すると共に、
他方、 前記入力データが優先度付きデータであることが判定されると、 優先度 付き割付を行うと共に、 前記伝搬路情報通知間隔を前記優先度付きデータでない 場合における前記所定の間隔より長く設定して、
空間多重伝搬路を通して、 複数空間ストリームの空間多重送受信を行い、 更に、 既知信号を用いるか、 判定済み信号を疑似的に既知信号として用いて、 伝搬路を通った信号に既知信号の複素共役を乗算して平均化することにより、 伝 搬路計算値を計算し、 前記伝搬路計算値に基づいた伝搬路情報を伝搬路情報通知 間隔で出力する一方、
前記伝搬路計算値に基づき各空間ストリームの劣化し易さを予測し、 劣化しに くいものに高く、 劣化しやすいものに低い空間ストリームの優先度を割り付ける ことにより、 伝搬路予測優先度設定を行い、
前記伝搬路情報の指定する通信容量に従い、 データの優先度と、 前記伝搬路予 測優先度設定によって得られる前記空間ストリームの優先度を用いて、 優先度付 きデータの優先度の高いものから順次、 優先度の高い空間ストリームに割り付け ることを特徴とする通信方法。
1 3 . 請求項 1力 ら 1 2のいずれか一つに記載の通信方法を利用した通信シ ステム。
1 4 . 請求項 1から 1 2のいずれか一つに記載の通信方法に使用される通信 装置。
1 5 . 複数の空間ストリームに、 伝搬路予測に基づいて空間ストリ一ムの優 先度を付け、 前記空間ストリームの優先度に基づいてデータを割り当てることを 特徴とする通信方法。
1 6 . 請求項 1 5において、 前記データは優先度を有するデータであり、 前 記空間ストリームの優先度と前記データの優先度の双方に基づいて、 前記データ を前記空間ストリ一ムに割り当てることを特徴とする通信方法。
1 7 . 空間多重伝搬路の特性を推定し、 伝搬路計算値を出力する伝搬路推定 手段と、 前記伝搬路計算値から各空間ストリームの優先度を予測し、 各空間スト リームに優先度を設定する伝搬路予測優先度設定手段とを備えていることを特徴 とする通信装置。
1 8 . 請求項 1 7において、 前記伝搬路予測優先度設定手段は、 空間ストリ ームの劣化し易さを予測し、 前記空間ストリームに、 劣化しにくいものに高く、 劣化しやすいものに低い優先度を割り付ける手段を有することを特徴とする通信 装置。
1 9 . 請求項 1 7において、 前記伝搬路推定手段は、 既知信号又は判定済み 信号を疑似的な既知信号を生成する生成手段と、 前記空間多重伝搬路を通った前 記既知信号又は前記疑似的な既知信号に、 これらの信号の複素共役を乗算して平 均化することにより、 前記空間多重伝搬路の特性をあらわす伝搬路計算値を出力 する手段とを有することを特徴とする通信装置。
2 0 . 請求項 1 7において、 更に、 前記空間ストリームの優先度に応じて、 入力データを割り付けるデータ割付手段を備えていることを特徴とする通信装置。
2 1 . 請求項 2 0において、 前記データ割付手段は、 優先度付きデータを前 記入力データとして受け、前記入力データのうち、優先度の高いデータに対して、 優先度の高い前記空間ストリームを割り付ける優先度割付手段を有していること を特徴とする通信装置。
2 2 . 請求項 2 0において、 前記データ割付手段は、 前記入力データの優先 度を判定する優先度付きデータ判定手段と、 前記入力データが優先度付きデータ である場合に、 前記優先度割付手段を有効にすると共に、 伝搬路情報通知間隔を 前記入力データが優先度付きデータでない場合に比較して長くする手段を有する ことを特徴とする通信装置。
2 3 . 空間多重伝搬路の特性を推定し、 伝搬路計算値を出力する伝搬路推定 回路部と、 前記伝搬路計算値から各空間ストリームの優先度を予測し、 各空間ス トリームに優先度を設定する伝搬路予測優先度設定回路部とを備えていることを 特徴とする通信装置。
2 4 . 複数の空間ストリームを含む空間多重伝搬路を介して送受信を行う通 信装置を制御するのに使用されるプログラムにおいて、 各空間ストリームに関す る前記空間多重伝搬路の特性を推定し、 前記各空間ストリームに関する前記空間 多重伝搬路の推定値を算出するステップと、 前記推定値に基づいて前記各空間ス トリームに優先度を割り付けるステップとを含むことを特徴とするプログラム。
2 5 . 請求項 2 4において、 前記優先度を割り付けるステップは、 前記各空 間ストリームの劣化し易さを予測するステップと、 劣化しにくい空間ストリーム に高い優先度を割り付け、 劣化し易い空間ストリームに低い優先度を割り付ける ステップとを有することを特徴とするプログラム。
2 6 . 複数の空間ス トリームを含む空間多重伝搬路を介して送受信を行う通 信装置を制御するのに使用されるプログラムを格納した記録媒体において、 各空 間ストリームに関する前記空間多重伝搬路の特性を推定し、 前記各空間ストリー ムに関する前記空間多重伝搬路の推定値を算出するステップと、 前記推定値に基 づレ、て前記各空間ストリームに優先度を割り付けるステップとを含むプログラム を格納したコンピュータで読み取り可能な記録媒体。
PCT/JP2008/073131 2007-12-17 2008-12-12 通信方法、システム及び通信装置 WO2009078472A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009546299A JPWO2009078472A1 (ja) 2007-12-17 2008-12-12 通信方法、システム及び通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007325330 2007-12-17
JP2007-325330 2007-12-17
JP2008191303 2008-07-24
JP2008-191303 2008-07-24

Publications (1)

Publication Number Publication Date
WO2009078472A1 true WO2009078472A1 (ja) 2009-06-25

Family

ID=40795584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073131 WO2009078472A1 (ja) 2007-12-17 2008-12-12 通信方法、システム及び通信装置

Country Status (2)

Country Link
JP (1) JPWO2009078472A1 (ja)
WO (1) WO2009078472A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071917A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 基地局およびチャネル割当方法
JP2012004876A (ja) * 2010-06-17 2012-01-05 Nec Corp 両偏波伝送方式の通信装置及び通信方法
JP2015159555A (ja) * 2009-11-30 2015-09-03 アルカテル−ルーセント 無線ビデオの優先順位ベースの伝送の方法
JP2021027461A (ja) * 2019-08-05 2021-02-22 国立大学法人九州工業大学 無線通信方法および無線通信システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314483A (ja) * 2001-02-01 2002-10-25 Fujitsu Ltd アレーアンテナを用いた送信用装置、受信用装置、及び、通信システム
JP2004515152A (ja) * 2000-12-02 2004-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
JP2007049531A (ja) * 2005-08-11 2007-02-22 Kddi Corp 電力線通信モデム装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515152A (ja) * 2000-12-02 2004-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
JP2002314483A (ja) * 2001-02-01 2002-10-25 Fujitsu Ltd アレーアンテナを用いた送信用装置、受信用装置、及び、通信システム
JP2007049531A (ja) * 2005-08-11 2007-02-22 Kddi Corp 電力線通信モデム装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the Society Conference of IEICE Tsushin 1", 7 September 2005, article KEI MIZUTANI ET AL.: "Real Time Denpan Sokutei ni Motozuku MIMO Koyu Mode-kan Sokan Kaiseki", pages: 247 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071917A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 基地局およびチャネル割当方法
JP2015159555A (ja) * 2009-11-30 2015-09-03 アルカテル−ルーセント 無線ビデオの優先順位ベースの伝送の方法
JP2012004876A (ja) * 2010-06-17 2012-01-05 Nec Corp 両偏波伝送方式の通信装置及び通信方法
JP2021027461A (ja) * 2019-08-05 2021-02-22 国立大学法人九州工業大学 無線通信方法および無線通信システム
JP7308518B2 (ja) 2019-08-05 2023-07-14 国立大学法人九州工業大学 無線通信方法および無線通信システム

Also Published As

Publication number Publication date
JPWO2009078472A1 (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
US8442448B2 (en) Apparatus and method for transmitting/receiving data in a closed-loop multi-antenna system
US8315346B2 (en) Method for transmitting/receiving feedback information in a multi-antenna system supporting multiple users, and feedback system supporting the same
EP1366579B1 (en) Method for controlling the weighting of a data signal in the at least two antenna elements of a radio connection unit, module and communications system
JP5069083B2 (ja) ユーザ装置、基地局装置及びmimo伝送制御方法
JP5507846B2 (ja) レート制御を伴う多重空間チャネル伝送
US20150030058A9 (en) Cqi feedback for mimo deployments
EP2229743B1 (en) Feedback with unequal error protection
WO2006062356A1 (en) Transmitter, receiver and method for controlling multiple input multiple output system
WO2010043129A1 (zh) 一种下行多输入多输出模式自适应切换的方法和系统
KR20090016386A (ko) 다중안테나 시스템에서 귀환데이터 전송방법
WO2008147297A2 (en) Interference-improved uplink data rates for a group of mobile stations transmitting to a base station
BRPI0610924A2 (pt) aparelho e método para transmitir/receber dados em um sistema de comunicação móvel utilizando múltiplas antenas
JPWO2006095904A1 (ja) 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
CN102356566B (zh) 在使用预编码的多用户网络中的通信方法及其设备
WO2009087933A1 (ja) Mimo方式の移動体通信システムにおける重み係数通知方法、並びにこの方法の使用に好適な基地局およびユーザ装置
EP2478723B1 (en) Apparatuses and methods for coordinated multipoint transmission using compressed feedback information
TW201042940A (en) A method for communicating in a MIMO network
WO2015023218A1 (en) Methods and devices for determining link adaptation parameters
CN106452522A (zh) 在多个空间层上发送数据的方法以及用户设备
WO2009078472A1 (ja) 通信方法、システム及び通信装置
KR100968118B1 (ko) 무선 통신 시스템에서 채널 사운딩 신호 전송 장치 및 방법
WO2009092184A1 (zh) 时分双工多入多出下行发射系统的用户调度方法和装置
WO2011143970A1 (zh) 一种多输入多输出信道自适应的方法及装置
KR20080084092A (ko) 다중안테나 시스템에서 피드백 정보 제공 장치 및 방법
KR101337035B1 (ko) 더티 페이퍼 코딩을 이용한 데이터 전송 방법 및 전송기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08860947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009546299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08860947

Country of ref document: EP

Kind code of ref document: A1