WO2009076886A1 - 网络部署方法和网络系统以及ip节点 - Google Patents

网络部署方法和网络系统以及ip节点 Download PDF

Info

Publication number
WO2009076886A1
WO2009076886A1 PCT/CN2008/073399 CN2008073399W WO2009076886A1 WO 2009076886 A1 WO2009076886 A1 WO 2009076886A1 CN 2008073399 W CN2008073399 W CN 2008073399W WO 2009076886 A1 WO2009076886 A1 WO 2009076886A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
label switching
node
protocol label
nodes
Prior art date
Application number
PCT/CN2008/073399
Other languages
English (en)
French (fr)
Inventor
Jianfei He
Huiying Xu
Zhijun Yang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009076886A1 publication Critical patent/WO2009076886A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based

Definitions

  • the present invention relates to the field of broadband Internet technologies, and in particular, to a network deployment method and network system and an IP node. Background technique
  • IP layer and optical transport book layer constitute a multi-layer network. Due to frequent changes in current network traffic, the multi-layer network needs to be able to adapt to dynamic bandwidth requirements.
  • a network construction idea is that the IP layer adopts a router network, and the routers provide links through a static point-to-point WDM (Wavelength Devision Multiplexing) device connection. Since the forwarding mode adopted by the router is packet-by-packet forwarding, it is not suitable for the mode in which multiple nodes are cascaded.
  • WDM Widelength Devision Multiplexing
  • Optical Bypass optical bypass
  • the prior art provides a networking mode in which an optical bypass scheme is applied, which adopts a ROADM (Reconfigurable Optical Add-drop Multiplexer).
  • the network consists of an IP layer located in the upper layer and an optical transport layer located in the lower layer. Each link of the IP layer is fixedly provided by the optical transport layer optical channel. When the optical channel of the optical transport layer changes, the corresponding link of the IP layer also changes.
  • the PE Provider Edge Device
  • P Provider Device
  • the optical port on the router is connected to the wavelength division device, and the link between the routers is provided through the lower wavelength connection.
  • the inventors have found that the above prior art has at least the following disadvantages:
  • the interface between the routers uses a fixed wavelength channel connection, when the optical transport layer is optimized based on the distribution of the traffic and needs an Optical Bypass change, that is, the optical transport layer
  • the optical transport layer When the optical channel is increased or decreased, since each link of the IP layer is fixed by the optical transport layer optical channel, the corresponding link of the IP layer also changes.
  • the interface of the router will change accordingly, due to the characteristics of IP no connection.
  • the routing of each traffic changes with the topology.
  • the routing information is spread and synchronized. It takes time to reach the route convergence.
  • the embodiment of the present invention provides a network deployment method, a network system, and an IP node.
  • the technical solution is as follows: On the one hand, a network deployment method is provided, where the network includes an IP layer and an optical transport layer, and the method includes: establishing a connection-oriented packet transport layer between the IP layer and the optical transport layer;
  • the channel with the connection-oriented packet transport layer is established between any two IP nodes as a link between the two IP nodes.
  • a network system including an IP layer and an optical transport layer located under the layer, and a connection-oriented packet transport layer is added between the IP layer and the optical transport layer, and the network system includes at least two An IP node, wherein any one of the IP nodes is configured to establish, with another IP node, the channel having a connection-oriented packet transport layer, the channel serving as a chain between the any IP node and the another IP node road.
  • an IP node is further provided, where the IP node is located in a network system, where the network system includes an IP layer and an optical transport layer located under the IP layer, and the IP layer and the Adding a connection-oriented packet transport layer between the optical transport layers, and the network system includes at least two IP nodes;
  • the IP node is configured to establish the channel with the connection-oriented packet transport layer between the IP node and the another IP node.
  • a tunnel with a connection-oriented packet transport layer is established between any two IP nodes as a link between two IP nodes to form a fully connected IP core.
  • the network separates the IP layer from the optical transport layer, so that the IP layer does not feel the change of the optical layer channel between the IP nodes, solves the oscillation of the IP layer network route, and reduces the damage to the transmitted service.
  • FIG. 1 is a topological view of a network composed of an IP layer and an optical transport layer provided by the prior art
  • Embodiment 2 is a topological diagram of a network provided by Embodiment 1 and Embodiment 3 of the present invention
  • FIG. 3 is a schematic diagram of a partial optical Bypass of a network provided by Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart of a network deployment method according to Embodiment 1 of the present invention.
  • Embodiment 5 is a topological diagram of a network provided by Embodiment 2 and Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a partial optical Bypass of a network provided by Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a network deployment method according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of an IP node according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram of an IP node according to Embodiment 6 of the present invention. detailed description
  • An embodiment of the present invention provides a network deployment method, where the network includes an IP layer and an optical transport layer, and the method includes: establishing a connection-oriented packet transport layer between the IP layer and the optical transport layer; between any two IP nodes A channel with a connection-oriented packet transport layer is established as a link between two IP nodes.
  • connection-oriented packet transport layer established between the IP layer and the optical transport layer may be an MPLS-TE layer, or may be replaced by another connection-oriented packet transport layer, for example, PBT (Provider Backbone Transport, carrier backbone network) Transmission), T-MPLS (Transport Multi-protocol Label Switching).
  • PBT Provider Backbone Transport, carrier backbone network
  • T-MPLS Transport Multi-protocol Label Switching
  • the method provided by the embodiment of the present invention establishes a channel with a connection-oriented packet transport layer between any two IP nodes as a link between two IP nodes by establishing a packet transport layer between the IP layer and the optical transport layer. , forming a fully connected IP core network (where the IP core network is composed of an IP layer and the above link), thereby separating the IP layer from the optical transport layer, so that the IP layer does not perceive the optical layer channel between the IP nodes.
  • the change solves the oscillation of the IP layer network route and reduces the damage to the transmitted service.
  • an MPLS-TE channel can be established between any two IP nodes as two IP nodes.
  • the links between them form a fully connected IP core network, separating the IP layer from the optical transport layer.
  • Real-time monitoring of the MPLS-TE layer traffic change between any two nodes.
  • the lower-layer optical channel of the MPLS-TE LSP is dynamically adjusted.
  • the change of the lower-layer optical channel causes the MPLS-TE LSP.
  • Route changed, due to MPLS-TE is set to the same as the attribute of the TE link. That is, the IP layer does not feel the change of the optical layer channel between PE2 and PE6, so it does not cause the IP layer to oscillate.
  • an embodiment of the present invention provides a network deployment method, which specifically includes:
  • Step 101 Establish a connection-oriented packet transport layer, such as an MPLS-TE layer, between the IP layer and the optical transport layer.
  • the MPLS-TE layer is used to carry the IP layer
  • the optical transport layer is used to carry the MPLS-TE layer.
  • MPLS-TE can also be replaced by other connection-oriented packet transport layers, such as PBT (Provider Backbone Transport), T-MPLS (Transport Multi-Protocol Label Switching). Wait.
  • PBT Provide Backbone Transport
  • T-MPLS Transport Multi-Protocol Label Switching
  • the MPLS-TE mode When the MPLS-TE mode is adopted, it is implemented by a router.
  • a router In order to implement both IP and MPLS-TE switching on an IP node, a router that supports both IP and MPLS-TE can be used.
  • Step 102 Establish a channel with a connection-oriented packet transport layer between any two IP nodes (usually between routers) as a link between two IP nodes, thereby forming a fully connected IP core network, specifically An MPLS-TE LSP is established between any two IP nodes as an IP layer link, but the LSP between the two IP nodes is not necessarily a direct link.
  • Step 103 Collect an initial traffic matrix of the IP layer network, an IP node distribution, and an initial topology of the optical transport layer network.
  • the initial topology includes information such as nodes, pipes/fibers.
  • Step 104 Allocate the route and bandwidth of the MPLS-TE LSP through the multi-layer network joint planning method or tool, and plan the allocation of the optical layer channel and the optical layer network resource of the MPLS-TE LSP.
  • the step is to perform multi-layer network planning through a multi-layer network joint planning method or tool to design an initial network topology and capacity, and service routing.
  • the specific design process is as follows: First, according to the initial network topology and the LSP requirement information between nodes, the MPLS-TE layer is designed for each LSP, and then the overall network cost is optimal or the resource utilization is optimal. Inter-mapping and grooming mechanisms are used to create an optical channel carrying the MPLS-TE layer LSP at the optical network layer, and finally obtain the MPLS-TE layer LSP routing, optical layer channel routing, network link capacity, and node capacity design results.
  • Optical network layer devices need to support wavelength switching.
  • DWDM devices can be used. If you need to support ODUk switching at the same time, you can use DWDM devices with OTN capabilities. In order to dynamically monitor the traffic between nodes after the network is running, the node needs to have Support for traffic monitoring.
  • Step 105 In order to adapt to the dynamic change of the IP layer traffic, reserve a certain surplus network resource in the network.
  • Step 106 Real-time monitoring of the traffic change of the IP layer between any two nodes in the MPLS-TE layer.
  • Step 107 The MPLS-TE layer is configured to enable modification of the optical transport layer channel carrying the MPLS-TE layer LSP according to the detected change of the IP layer traffic between any two nodes, and any two detected The IP link information between IP nodes does not change.
  • the initial multi-layer network structure is obtained, including the IP layer network topology of the fully connected IP core network, and the optical layer network resource deployment.
  • IP protocol layer Supports connectionless IP switching
  • MPLS-TE layer Supports connection-oriented MPLS-TE switching
  • OTN Optical Transport Network
  • protocol layer (optional): Supports connection-oriented ODUk switching
  • DWDM (Dense Wavelength Devision Multiplexing) Layer Supports connection-oriented optical layer wavelength switching.
  • FIG. 2 is a schematic diagram of a network obtained by using the network deployment method provided by the embodiment of the present invention.
  • PE is an IP network edge node that supports IP and MPLS-TE protocols;
  • P is an internal node of the network and supports IP and MPLS-TE protocols;
  • CE Customer Edge Device
  • the MPLS-TE protocol is established between the PE node and the P-node of the IP layer.
  • the CE node and the PE node are also connected through MPLS-TE.
  • the MPLS-TE layer monitors the IP layer traffic change between any two IP nodes in real time.
  • the lower layer optical channel of the MPLS-TE LSP is dynamically adjusted. For example: Referring to Figure 3, when the traffic between the two nodes P1 and P3 increases to a certain threshold (close to a capacity of 10G wavelength), a 10G Lambda channel is established directly between P1 and P3, and the Optical Bypass 0 is monitored.
  • the traffic size and deployment strategy can also use the OTN or SDH (Synchronous Digital Hierarchy) channel as the Optical Bypass channel.
  • the route of the MPLS-TE LSP between PE2 and PE6 is changed from the original PE2-P1-P2-P3-PE6 to PE2-P1-P3-PE6; because it is in the IP layer and the optical transport layer.
  • Establish an MPLS-TE layer and establish an MPLS-TE LSP between any two IP nodes (usually routers) as a link between the two nodes to form a fully-connected IP core network, thereby IP layer Separated from the light transmission layer.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE link, that is, the IP layer sense. It is not affected by the change of the optical layer channel between PE2 and PE6, so it will not cause the IP layer to oscillate.
  • the method provided by the embodiment of the present invention can dynamically monitor the MPLS-TE layer traffic change between any two nodes in real time, and dynamically adjust the lower layer optical channel of the MPLS-TE LSP when the traffic increases or decreases beyond a certain threshold.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE (Traffic Engineering) link, the IP layer does not feel the IP node. The change in the optical layer channel does not cause the IP layer to oscillate.
  • an embodiment of the present invention provides a network deployment method, which specifically includes:
  • Step 201 Establish a connection-oriented packet transport layer, such as an MPLS-TE layer, between the IP layer and the optical transport layer.
  • a connection-oriented packet transport layer such as an MPLS-TE layer
  • the MPLS-TE layer is used to carry the IP layer.
  • the MPLS-TE is set so that when the MPLS-TE layer changes, the IP layer does not change with the MPLS-TE layer.
  • the optical transport layer is used to carry the MPLS-TE layer. When the optical transport layer changes, the MPLS-TE layer changes.
  • MPLS-TE can also be replaced by other connection-oriented packet transport layers, such as PBT, T-MPLS, and so on.
  • a router that supports both IP and MPLS-TE can be used.
  • a channel with a connection-oriented packet transport layer is established between any two IP nodes as a link between two IP nodes.
  • Step 202 Establish a channel with a connection-oriented packet transport layer between any two IP nodes (usually between routers), specifically an MPLS LSP, as a link between two IP nodes, forming a full connection IP core network.
  • IP nodes usually between routers
  • MPLS LSP MPLS LSP
  • Step 203 Establish an MPLS-TE LSP between any two nodes of the MPLS-TE layer.
  • Step 204 Map the MPLS LSP-to-one between the IP nodes to the LSP of the MPLS-TE layer.
  • Step 205 Collect an initial traffic matrix of the IP layer network, an IP node distribution, and an initial topology of the optical transport layer network.
  • the initial topology includes information such as nodes, pipes/fibers.
  • Step 206 Allocate the routing and bandwidth of the MPLS-TE LSP through the multi-layer network joint planning method or tool, and plan the allocation of the optical layer channel and the optical layer network resource of the MPLS-TE LSP.
  • the step is to perform multi-layer network planning through a multi-layer network joint planning method or tool to design an initial network topology and capacity, and service routing.
  • the specific design process is as follows: First, according to the initial network topology and the LSP requirement information between nodes, the route is designed for each LSP in the MPLS-TE layer, and then the whole network cost is optimal or resource utilization is utilized. The optimal rate is the design goal, and the optical channel carrying the MPLS-TE layer LSP is created in the optical network layer, and the routing of the MPLS-TE layer LSP, the routing of the optical layer channel, and the network link are finally obtained. Capacity and node capacity design results.
  • the optical layer channel of the MPLS-TE LSP can be a Wavelength path or an ODUk path.
  • Optical network layer devices need to support wavelength switching.
  • DWDM devices can be used. If you need to support ODUk switching at the same time, you can use DWDM devices with OTN capabilities. In order to dynamically monitor the traffic between nodes after the network is running, the node needs to have the function of supporting traffic monitoring.
  • Step 207 In order to adapt to the dynamic change of the IP layer traffic, reserve a certain surplus network resource in the network.
  • Step 208 Real-time monitoring of the traffic change of the MPLS layer between any two nodes in the MPLS-TE layer.
  • Step 209 The MPLS-TE layer is configured to enable the modification of the optical transport layer channel carrying the MPLS-TE layer LSP according to the detected change of the MPLS layer traffic between any two nodes, and the detected any The IP link information between the two IP nodes does not change.
  • the initial multi-layer network structure is obtained, including the IP layer network topology of the IP core network and the optical layer network resource deployment.
  • This embodiment uses the following protocol stack:
  • IP/MPLS protocol layer Supports connectionless IP switching and MPLS switching;
  • MPLS-TE layer Supports connection-oriented MPLS-TE switching
  • OTN protocol layer (optional): Supports connection-oriented ODUk switching
  • DWDM layer Supports connection-oriented optical layer wavelength switching.
  • FIG. 5 is a schematic diagram of a network obtained by using the network deployment method provided by the embodiment of the present invention.
  • PE is an IP network edge node that supports IP, MPLS, and MPLS-TE protocols;
  • P is an internal node of the network and supports IP, MPLS, and MPLS-TE protocols;
  • CE is an IP access node that supports only IP and MPLS protocols.
  • the MPLS-TE protocol is supported.
  • the MPLS LSP is established between the PE node and the P node in the IP network, and then the LSP-to-one is mapped to the LSP of the MPLS-TE layer.
  • the MPLS-TE layer monitors the MPLS layer traffic change between any two nodes in real time.
  • the lower-layer optical channel of the MPLS-TE LSP is dynamically adjusted. For example: Referring to Figure 6, when the traffic between the two nodes P1 and P3 increases to a certain threshold (close to a capacity of 10G wavelength), a 10G Lambda channel is directly established between P1 and P3 to implement Optical Bypass 0 according to monitoring.
  • the traffic size and deployment strategy can also use the OTN or SDH channel as the Optical Bypass channel.
  • the route of the MPLS-TE LSP between PE2 and PE6 is changed from the original PE2-P1-P2-P3-PE6 to PE2-P1-P3-PE6; because it is in the IP layer and the optical transport layer.
  • Establish an MPLS-TE layer and establish an MPLS LSP as an IP layer link between any two IP nodes (usually routers) to form a fully connected IP core network, and any two IP nodes in the MPLS-TE layer.
  • the MPLS-TE layer used to carry the IP layer changes accordingly.
  • the MPLS-TE is set to the same as the attribute of the TE link. That is, the IP layer does not experience the change of the optical layer channel between PE2 and PE6, so the IP layer does not oscillate.
  • the method provided by the embodiment of the present invention can dynamically monitor the MPLS-TE layer traffic change between any two nodes in real time, and dynamically adjust the lower layer optical channel of the MPLS-TE LSP when the traffic increases or decreases beyond a certain threshold.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE (Traffic Engineering) link, the IP layer does not feel the IP node. The change in the optical layer channel does not cause the IP layer to oscillate.
  • an embodiment of the present invention provides a network system, including an IP layer and an optical transport layer located under the layer, and a connection-oriented packet transport layer is added between the IP layer and the optical transport layer, and the network system includes at least two An IP node, where any IP node is used to establish a tunnel with a connection-oriented packet transport layer with another IP node, the tunnel acting as a link between any IP node and another IP node.
  • connection establishment module specifically includes:
  • a multi-protocol label switching connection establishing unit with traffic engineering configured to establish, with another IP node, a label switching path with multi-protocol label switching with traffic engineering as an IP layer link;
  • a traffic monitoring unit configured to monitor real-time monitoring of traffic at an IP layer between another IP node in a multi-protocol label switching layer with traffic engineering
  • a dynamic adjustment unit configured to drive, by the multi-protocol label switching layer with traffic engineering, optical transmission of a label switching path carrying a multi-protocol label switching layer with traffic engineering according to the detected IP layer traffic change between another IP node The modification of the layer channel, the detected IP link information between the other IP node and the unchanged.
  • connection-oriented packet transport layer established between the IP layer and the optical transport layer may be an MPLS-TE layer, or may be replaced by another connection-oriented packet transport layer, for example, PBT (Provider Backbone Transport, carrier backbone network) Transmission), T-MPLS (Transport Multi-protocol Label Switching).
  • PBT Provider Backbone Transport, carrier backbone network
  • T-MPLS Transport Multi-protocol Label Switching
  • connection-oriented packet transport layer between the IP layer and the optical transport layer may be an MPLS-TE layer, as follows.
  • the system provided by the embodiment of the present invention includes an IP layer formed by a router and an optical transport layer composed of a WDM device located at a lower layer thereof, and an MPLS-TE layer is further included between the IP layer and the optical transport layer, and the system includes at least two IP nodes. , its Any one of the IP nodes used to establish a connection with another IP node with a connection-oriented packet transport layer as a link between the IP node and another IP node, in the system provided by the embodiment of the present invention
  • the any IP node may include a connection establishing module, and the connection establishing module is configured to establish a path with the connection-oriented packet transport layer between the IP node and another IP node as another chain between the IP node and another IP node.
  • the WDM device is specifically a DWDM device or a DTDM device with 0TN capability.
  • connection establishment module specifically includes:
  • An MPLS-TE connection establishing unit configured to establish an MPLS-TE LSP as an IP layer link with another IP node
  • a traffic monitoring unit configured to perform real-time monitoring at the MPLS-TE layer and a traffic change of an IP layer between another node
  • a dynamic adjustment unit configured to change the IP layer traffic between the detected and another IP node by MPLS-TE
  • the layer drives the modification of the optical transport layer channel carrying the LSP of the MPLS-TE layer, but the detected IP link information with another IP node does not change.
  • PE is an IP network edge node that supports IP, MPLS, and MPLS-TE protocols
  • P is an internal network node that supports IP, MPLS, and MPLS-TE protocols
  • CE is an IP access node that supports IP and MPLS-TE protocols
  • An MPLS-TE LSP is established between the PE node and the P node of the IP layer.
  • the CE node and the PE node are also connected through MPLS-TE.
  • the MPLS-TE layer monitors the traffic change of the IP layer between any two nodes in real time. When the traffic increases or decreases beyond a certain threshold, the lower optical channel of the MPLS-TE LSP is dynamically adjusted.
  • an MPLS-TE layer is established between the IP layer and the optical transport layer, and an MPLS-TE LSP is established between any two IP nodes (usually routers) as a link between the two nodes, forming a fully connected
  • the IP core network separates the IP layer from the optical transport layer.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE link, The IP layer does not feel the change of the optical layer channel between the IP nodes, so it does not cause the IP layer to oscillate.
  • the PBT layer or the T-MPLS layer can also be used instead of the MPLS-TE layer.
  • the system provided by the embodiment of the present invention can dynamically monitor the MPLS-TE layer traffic change between any two nodes in real time, and dynamically adjust the lower layer optical channel of the MPLS-TE LSP when the traffic increases or decreases beyond a certain threshold.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE (Traffic Engineering) link, the IP layer does not feel the IP node. The change in the optical layer channel does not cause the IP layer to oscillate.
  • an embodiment of the present invention provides a network system, including an IP layer and an optical transport layer located under the layer, and a connection-oriented packet transport layer is added between the IP layer and the optical transport layer, and the network system includes at least two An IP node, where any IP node is used to establish a tunnel with a connection-oriented packet transport layer with another IP node, the tunnel acting as a link between the IP-node and another IP node.
  • connection establishment module specifically includes:
  • a multi-protocol label switching connection establishing unit configured to establish a multi-protocol label switching label switching path with another IP node as an IP layer link;
  • a multi-protocol label switching connection establishing unit with traffic engineering is configured to establish a label switching path with a multi-protocol label switching with traffic engineering as another multi-protocol label switching layer link with traffic engineering;
  • mapping unit configured to map a label switching path of a multi-protocol label switching with another IP node to a label switching path of a multi-protocol label switching with traffic engineering
  • a traffic monitoring unit configured to monitor a traffic change of a multi-protocol label switching layer between the network and another IP node in real time in a multi-protocol label switching layer with traffic engineering
  • a dynamic adjustment unit configured to drive a label switching path of a multi-protocol label switching layer with traffic engineering by a multi-protocol label switching layer with traffic engineering according to the detected multi-protocol label switching layer traffic change between another IP node The modification of the optical transport layer channel, the detected IP link information between the other IP node and the unchanged.
  • connection-oriented packet transport layer established between the IP layer and the optical transport layer may be an MPLS-TE layer, or may be replaced by another connection-oriented packet transport layer, for example, PBT (Provider Backbone Transport, carrier backbone network) Transmission), T-MPLS (Transport Multi-protocol Label Switching).
  • PBT Provider Backbone Transport, carrier backbone network
  • T-MPLS Transport Multi-protocol Label Switching
  • connection-oriented packet transport layer between the IP layer and the optical transport layer may be an MPLS-TE layer, as follows.
  • the network system includes an IP layer formed by a router and an optical transport layer formed by a WDM device located at a lower layer thereof, and an MPLS-TE layer is further included between the IP layer and the optical transport layer, and the network system includes at least two An IP node, wherein any one of the IP nodes includes a connection establishment module, and the connection establishment module is configured to establish a path with a connection-oriented packet transport layer as a link with any other IP node, specifically:
  • the MPLS LSP-to-one mapping between IP nodes is mapped to the MPLS-TE LSP.
  • the WDM device is specifically a DWDM device or a DWDM device with 0TN capability.
  • the connection establishment module specifically includes:
  • An MPLS connection establishing unit is configured to establish an MPLS LSP as an IP layer link with another IP node.
  • the MPLS-TE connection establishing unit is configured to establish an MPLS-TE LSP as an MPLS-TE relationship with the IP node.
  • mapping unit configured to map an MPLS LSP-to-one between the IP nodes to an MPLS-TE LSP
  • a traffic monitoring unit configured to monitor real-time monitoring of traffic of the MPLS layer between another IP node at the MPLS-TE layer;
  • a dynamic adjustment unit for changing MPLS layer traffic between the detected and another IP node by MPLS - the TE layer drives the modification of the optical transport layer channel of the LSP carrying the MPLS-TE layer, between the detected and another IP node
  • the IP link information does not change.
  • PE is an IP network edge node that supports IP, MPLS, and MPLS-TE protocols
  • P is an internal network node that supports IP, MPLS, and MPLS-TE protocols
  • CE is an IP access node that supports IP and MPLS-TE protocols
  • An MPLS LSP is established between the PE node and the P node in the IP network, and then the LSP is mapped to the LSP of the MPLS-TE layer, and the CE node and the PE node are also connected by MPLS-TE.
  • the MPLS-TE layer monitors the traffic change of the MPLS layer between any two nodes in real time. When the traffic increases or decreases beyond a certain threshold, the lower optical channel of the MPLS-TE LSP is dynamically adjusted.
  • the MPLS-TE layer is established between the IP layer and the optical transport layer, and an MPLS LSP is established as an IP layer link between any two IP nodes (usually routers) to form a fully connected IP core network, MPLS.
  • An MPLS-TE LSP is established between any two IP nodes in the TE layer, and the MPLS LSP-to-one mapping between the IP nodes is mapped to the MPLS-TE LSP, thereby separating the IP layer from the optical transport layer.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE link, that is, the IP layer does not feel the change of the optical layer channel between the IP nodes. Will not cause the IP layer to oscillate.
  • the system provided by the embodiment of the present invention can dynamically monitor the MPLS-TE layer traffic change between any two nodes in real time, and dynamically adjust the lower layer optical channel of the MPLS-TE LSP when the traffic increases or decreases beyond a certain threshold.
  • the MPLS-TE layer used to carry the IP layer changes accordingly. Since the MPLS-TE is set to the attribute of the TE (Traffic Engineering) link, the IP layer does not feel the IP node. The change in the optical layer channel does not cause the IP layer to oscillate.
  • Example 5 The content of the information exchange, the execution process, and the like between the IP nodes in the foregoing system are based on the same concept as the method embodiment of the present invention. For details, refer to the description in the method embodiment of the present invention, and details are not described herein again.
  • Example 5
  • an embodiment of the present invention provides an IP node, where the IP node is located in a network system, where The system includes an IP layer and an optical transport layer located under the IP layer, and an connection-oriented packet transport layer is added between the IP layer and the optical transport layer, and the network system includes at least two IP nodes; wherein the IP node is used with at least A channel with a connection-oriented packet transport layer is established between another IP node, and the channel acts as a link between the IP node and another IP node.
  • the IP node provided by the embodiment of the present invention includes a connection establishment module for establishing a path with a connection-oriented packet transport layer between another IP node as a link between the IP node and another IP node.
  • connection establishment module specifically includes:
  • An MPLS-TE connection establishing unit configured to establish an MPLS-TE LSP as an IP layer link with another IP node
  • the dynamic adjustment unit implements the optical transmission of the LSP carrying the MPLS-TE by the MPLS-TE layer by performing corresponding settings in the MPLS-TE layer for changing the traffic of the IP layer between the detected and another IP node. Modification of the layer channel, the IP link information between the detected and another IP node is unchanged.
  • connection-oriented packet transport layer established between the IP layer and the optical transport layer may be an MPLS-TE layer, or may be replaced by another connection-oriented packet transport layer, for example, PBT (Provider Backbone Transport, carrier backbone network) Transmission), T-MPLS (Transport Multi-protocol Label Switching).
  • PBT Provider Backbone Transport, carrier backbone network
  • T-MPLS Transport Multi-protocol Label Switching
  • an embodiment of the present invention provides an IP node, where the IP node is located in a network system, where the network system includes an IP layer and an optical transport layer located under the IP layer, and an IP layer and an optical transport layer are added to each other. Having a connection-oriented packet transport layer, and the network system includes at least two IP nodes; wherein the IP node is configured to establish a channel with a connection-oriented packet transport layer with at least another IP node, the channel acts as an IP node and another The link between IP nodes.
  • the IP node includes a connection establishment module for establishing a tunnel with a connection-oriented packet transport layer between another IP node as a link with another IP node.
  • connection establishment module specifically includes:
  • An MPLS connection establishing unit configured to establish an MPLS LSP as an IP layer link with another IP node
  • an MPLS-TE connection establishing unit configured to establish an MPLS-TE LSP with another IP node, where LSP as the link in the MPLS-TE layer
  • mapping unit for mapping LSPs of MPLS with another IP node to one MPLS-TE LSP; a traffic monitoring unit for real-time monitoring and another IP in a multi-protocol label switching layer with traffic engineering More between nodes Traffic change at the protocol label switching layer;
  • the dynamic adjustment unit implements the light of the MPLS layer carrying the MPLS-TE layer by the MPLS-TE layer by performing corresponding settings in the MPLS-TE layer for changing the traffic of the MPLS layer between the detected and another IP node. Modification of the transport layer channel, the IP link information between the detected and another IP node is unchanged.
  • connection-oriented packet transport layer established between the IP layer and the optical transport layer may be an MPLS-TE layer, or may be replaced by another connection-oriented packet transport layer, for example, PBT (Provider Backbone Transport, carrier backbone network) Transmission), T-MPLS (Transport Multi-protocol Label Switching).
  • PBT Provider Backbone Transport, carrier backbone network
  • T-MPLS Transport Multi-protocol Label Switching
  • IP nodes The content of the information exchange, the execution process, and the like in the above-mentioned IP nodes are based on the same concept as the method embodiment of the present invention. For details, refer to the description in the method embodiment of the present invention, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Description

网络部署方法和网络系统以及 IP节点 本申请要求于 2007年 12月 14日提交中国专利局、 申请号为 200710160974.6、 发明名 称为 "网络部署方法和网络系统以及 IP节点" 的中国专利申请的优先权, 其全部内容通过 引用结合在本申请中。 技术领域
本发明涉及宽带互联网技术领域说,特别涉及一种网络部署方法和网络系统以及 IP节点。 背景技术
随着宽带互联网的迅速发展和各种应用的普及, 网络流量每年在快速地增长, 需要有 大容量的核心承载网来传送。 现有的 IP层和光传送书层构成多层网络, 由于当前网络流量变 化频繁, 需要该多层网络能够适应动态的带宽需求。 目前一种建网思路就是 IP层采用路由 器组网,路由器之间通过静态的点到点 WDM (Wavelength Devision Multiplexing,波分复用) 设备连接提供链路。 由于路由器采用的转发模式是逐包转发的, 因此不适合多个节点级联 传送的模式, 例如两个路由器间有大量的数据需要传送时, 这些数据需要在中间的每个路 由器上进行 IP交换和转发处理, 从而中间路由器需要提供大量的交换容量和转发能力来处 理这种透传的业务, 最终导致网络的建设成本比较高。
为了降低对路由器的转发和交换容量需求, 一种新的组网方案 Optical Bypass (光旁路) 被引入, 即在两点之间的流量接近或达到一个波长 (一般为 10G) 的路由器之间建立一个 端到端的波长连接, 以提供直连链路, 使得这些流量不需要通过其他中间路由器交换和转 发, 而是通过 Optical Bypass链路直达, 大大减少中间路由器的容量, 降低网络建设成本。
如图 1所示, 现有技术提供了一种应用 Optical Bypass方案的组网方式, 其具体采用路 由器十 ROADM (Reconfigurable Optical Add-drop Multiplexer, 可重构光分插复用) 的方式。 该网络由位于上层的 IP层和位于下层的光传送层组成。 IP层的每一个链路是由光传送层光 通道固定提供的, 当光传送层的光通道发生改变时, 会引起 IP层相应链路也发生变化。 其 中, PE (Provider Edge Device, 运营商边缘设备)为 IP网络边缘节点; P (Provider Device, 运营商设备) 为网络内部节点。 路由器上出彩光口连接波分设备, 路由器之间的链路通过 下层的波长连接提供。
在实现本发明的过程中, 发明人发现上述现有技术至少具有以下缺点: 在 IP层和光传送层构成的多层网络中, 由于路由器之间的接口使用一个固定的波长通 道连接, 当光传送层基于流量的分布进行优化而需要进行 Optical Bypass变化时, 即光传送 层的光通道增加或减少时, 由于 IP层的每一个链路是由光传送层光通道固定提供的, 会引 起 IP层相应链路也发生变化。 从而改变 IP层的逻辑拓扑, 路由器的接口将随之变化, 由于 IP 无连接的特点。 每一个流量的路由随拓扑变化而变化, 路由信息进行扩散和同步, 需要 一段时间才能达到路由收敛, 在这个过程中信息的传送会生产延时或不能保证可靠发送, 即引起 IP层网络路由的振荡, 基于目前 IP网络的部署, 振荡可能持续 5分钟左右甚至更长 时间, 会对业务产生严重损伤。 发明内容
为了解决现有的 IP层和光传送层构成的多层网络因光传送层的变化而引起 IP层振荡的 问题,本发明实施例提供了一种网络部署方法和网络系统以及 IP节点。所述技术方案如下: 一方面, 提供了一种网络部署方法, 网络包括 IP层和光传送层, 所述方法包括: 在所述 IP层和光传送层之间建立具有面向连接的分组传送层;
在任意两个 IP节点之间建立所述具有面向连接的分组传送层的通道作为所述两个 IP节 点之间的链路。
另一方面, 提供了一种网络系统, 包括 IP层和位于其下层的光传送层, 所述 IP层和光 传送层之间增加建立具有面向连接的分组传送层, 所述网络系统包括至少两个 IP节点, 其 中, 任一 IP节点用于和另一 IP节点建立所述具有面向连接的分组传送层的通道, 所述通道 作为所述任一 IP节点和所述另一 IP节点之间的链路。
再一方面, 还提供了一种 IP节点, 所述 IP节点位于网络系统中, 其中, 所述网络系统 包括 IP层和位于所述 IP层下的光传送层, 且所述 IP层和所述光传送层之间增加建立具有 面向连接的分组传送层, 且所述网络系统包括至少两个 IP节点;
所述 IP节点用于与至少另一个 IP节点之间建立所述具有面向连接的分组传送层的通 道, 所述通道作为所述 IP节点和所述另一 IP节点之间的链路。
本发明实施例提供的技术方案的有益效果是:
通过在 IP层和光传送层之间建立分组传送层,在任意两个 IP节点之间建立具有面向连 接的分组传送层的通道作为两个 IP节点之间的链路, 构成一个全连接的 IP核心网, 从而将 IP层和光传送层隔开, 使 IP层感受不到 IP节点之间光层通道的变化, 解决了 IP层网络路 由的振荡, 降低了对传输的业务的损伤。 附图说明
图 1是现有技术提供的 IP层和光传送层构成的网络的拓扑图;
图 2是本发明实施例 1和实施例 3提供的网络的拓扑图;
图 3是本发明实施例 1提供的网络的局部 Optical Bypass示意图;
图 4是本发明实施例 1提供的网络部署方法的流程图;
图 5是本发明实施例 2和实施例 4提供的网络的拓扑图;
图 6是本发明实施例 2提供的网络的局部 Optical Bypass示意图;
图 7是本发明实施例 2提供的网络部署方法的流程图;
图 8是本发明实施例 5提供的 IP节点的结构示意图;
图 9是本发明实施例 6提供的 IP节点的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供了一种网络部署方法, 其中, 网络包括 IP层和光传送层, 方法包括: 在 IP层和光传送层之间建立具有面向连接的分组传送层;在任意两个 IP节点之间建立具有 面向连接的分组传送层的通道作为两个 IP节点之间的链路。
其中, 上述在 IP 层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE 层,也可以由其他面向连接的分组传送层替代,例如, PBT (Provider Backbone Transport, 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议 标签交换) 等。
本发明实施例提供的方法, 通过在 IP层和光传送层之间建立分组传送层, 在任意两个 IP节点之间建立具有面向连接的分组传送层的通道作为两个 IP节点之间的链路, 构成一个 全连接的 IP核心网 (其中 , 该 IP核心网由 IP层和上述链路构成), 从而将 IP层和光传送 层隔开, 使 IP层感受不到 IP节点之间光层通道的变化, 解决了 IP层网络路由的振荡, 降 低了对传输的业务的损伤。
例如,当上述在 IP层和光传送层之间建立具有面向连接的分组传送层为 MPLS-TE层时, 相应地, 可以在任意两个 IP节点之间建立 MPLS-TE的通道作为两个 IP节点之间的链路, 构成一个全连接的 IP核心网, 从而将 IP层和光传送层隔开。 实时监测任意两个节点间的 MPLS-TE层流量变化, 当流量增长或下降超过一定的阈值时, 动态调整承载 MPLS-TE的 LSP 的下层光通道, 下层光通道的改变引起 MPLS-TE 的 LSP 的路由发生改变, 由于 MPLS-TE设置为 TE链路的属性不变, 即 IP层感受不到 PE2和 PE6之间光层通道的变化, 所以不会引起 IP层的震荡, 详见下文描述。 实施例 1
参见图 4, 本发明实施例提供了一种网络部署方法, 具体包括:
步骤 101 : 在 IP层和光传送层之间建立具有面向连接的分组传送层, 如 MPLS-TE层。 MPLS-TE层用来承载 IP层, 光传送层用来承载 MPLS-TE层。
具体应用时, MPLS-TE也可以由其他面向连接的分组传送层替代, 例如 PBT (Provider Backbone Transport , 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议标签交换) 等。
当采用 MPLS-TE方式时, 是通过路由器来实现的。 为了在 IP节点上同时实现 IP和 MPLS-TE交换, 可以使用同时支持 IP和 MPLS-TE的路由器。
当采用 PBT或 T-MPLS方式时, 是通过支持 PBT或 T-MPLS的专用设备来实现的。 步骤 102: 任意两个 IP节点 (通常为路由器之间) 之间建立具有面向连接的分组传送 层的通道作为两个 IP节点之间的链路, 从而构成一个全连接的 IP核心网, 具体为在任意两 个 IP节点之间建立 MPLS-TE的 LSP作为 IP层链路, 但两个 IP节点之间的 LSP并不一定 为直连链路。
步骤 103 : 收集 IP层网络的初始流量矩阵、 IP节点分布以及光传送层网络的初始拓扑。 其中初始拓扑包括节点、 管道 /光纤等信息。
步骤 104: 通过多层网络联合规划方法或工具, 为 MPLS-TE的 LSP分配路由和带宽, 规划承载 MPLS-TE的 LSP的光层通道和光层网络资源的分配。
其中, 该步骤即通过多层网络联合规划方法或工具进行多层网络规划, 设计出初始的 网络拓扑和容量, 以及业务路由。 具体的设计过程如下: 首先根据初始网络拓扑和节点间 的 LSP需求信息, 在 MPLS— TE层为每条 LSP设计路由, 然后以全网成本最优或资源利用 率最优为设计目标, 使用层间映射和 grooming等机制, 在光网络层创建承载 MPLS-TE层 LSP的光通道, 最终得到 MPLS-TE层 LSP的路由、光层通道的路由、 网络链路容量和节点 容量设计结果。
其中, 承载 MPLS-TE的 LSP的光层通道可以是 Wavelength path (波长通道)或 ODUk path (ODUk通道, ODU=Optical Channel Data Unit,光数据单元)。光网络层设备需要支持波 长交换, 可以选用 DWDM设备, 如果需要同时支持 ODUk交换, 则可以选用具有 OTN能 力的 DWDM设备。为了在组网运行后能够实现动态监测节点之间流量的功能, 节点需要具 备支持流量监测的功能。
步骤 105: 为了适应 IP层流量的动态变化, 在网络中预留一定的富余网络资源。
步骤 106: 在 MPLS-TE层实时监测任意两个节点间的 IP层的流量变化。
步骤 107: 对 MPLS-TE层作相应设置, 使其能够根据检测到的任意两个节点间的 IP层 流量变化驱动承载 MPLS— TE层 LSP的光传送层通道的修改,检测到的任意两个 IP节点间 的 IP链路信息不变。
至此得到初始的多层网络结构, 包括全连接的 IP核心网的 IP层网络拓扑, 光层网络资 源部署等。
本实施例使用下述协议栈:
IP协议层: 支持无连接 IP交换;
MPLS-TE层: 支持面向连接的 MPLS-TE交换;
OTN (Optical Transport Network, 光传送网) 协议层 (可选): 支持面向连接的 ODUk 交换
DWDM (Dense Wavelength Devision Multiplexing, 密集波分复用系统) 层: 支持面向 连接的光层波长交换。
图 2为利用本发明实施例提供的网络部署方法得到的网络示意图。其中, PE为 IP网络 边缘节点, 支持 IP和 MPLS-TE协议; P为网络内部节点, 支持 IP和 MPLS-TE协议; CE (Customer Edge Device, 用户边缘设备) 为 IP接入节点, 支持 IP和 MPLS-TE协议; IP 层的 PE节点及 P节点之间建立 MPLS-TE的 LSP, CE节点和 PE节点之间也通过 MPLS-TE 连接。
在 MPLS-TE层实时监测任意两个 IP节点间的 IP层流量变化, 当流量增长或下降超过 一定的阈值时, 动态调整承载 MPLS-TE的 LSP的下层光通道。 例如: 参见图 3, 当 P1和 P3两节点之间的流量增加到一定阈值(接近一个 10G波长的容量) 时, 直接在 P1和 P3之 间建立一个 10G的 Lambda通道, 实现 Optical Bypass 0根据监测到的流量大小和部署策略, 也可以用 OTN或 SDH ( Synchronous Digital Hierarchy, 同步数字体系) 通道作为 Optical Bypass通道。
完成动态 Optical Bypass后, PE2禾 P PE6之间的 MPLS-TE的 LSP 的路由从原来的 PE2-P1-P2-P3-PE6变为 PE2-P1-P3-PE6; 由于在 IP层和光传送层之间建立 MPLS-TE层, 并 且在任意两个 IP节点 (通常为路由器) 之间建立 MPLS-TE的 LSP作为两个节点之间的链 路, 构成一个全连接的 IP核心网, 从而将 IP层和光传送层隔开。 当光传送层变化时, 用来 承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE链路的属性不变, 即 IP层感 受不到 PE2和 PE6之间光层通道的变化, 所以不会引起 IP层的震荡。
综上,本发明实施例提供的方法能够实时监测任意两个节点间的 MPLS-TE层流量变化, 当流量增长或下降超过一定的阈值时,动态调整承载 MPLS-TE的 LSP的下层光通道, 当光 传送层变化时, 用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE (Traffic Engineering, 流量工程) 链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。 实施例 2
参见图 7, 本发明实施例提供了一种网络部署方法, 具体包括:
步骤 201 : 在 IP层和光传送层之间建立具有面向连接的分组传送层, 如 MPLS-TE层。
MPLS-TE层用来承载 IP层, MPLS-TE设置为当 MPLS-TE层发生变化时, IP层不随 MPLS-TE 层变化。 光传送层用来承载 MPLS-TE 层, 当光传送层发生变化时, 会引起 MPLS-TE层发生变化。
具体应用时, MPLS-TE也可以由其他面向连接的分组传送层替代, 例如 PBT, T-MPLS 等。
为了在 IP节点上同时实现 IP和 MPLS交换,可以使用同时支持 IP和 MPLS-TE的路由 器。
在任意两个 IP节点之间建立具有面向连接的分组传送层的通道作为两个 IP节点之间的 链路。
步骤 202: 任意两个 IP节点 (通常为路由器之间) 之间建立具有面向连接的分组传送 层的通道, 具体为一条 MPLS的 LSP, 作为两个 IP节点之间的链路, 构成一个全连接的 IP 核心网。
步骤 203 : 在 MPLS-TE层任意两个节点之间建立一条 MPLS-TE的 LSP。
步骤 204: 将 IP节点之间的 MPLS的 LSP—对一映射到 MPLS-TE层的 LSP。
步骤 205: 收集 IP层网络的初始流量矩阵、 IP节点分布以及光传送层网络的初始拓扑。 其中初始拓扑包括节点、 管道 /光纤等信息。
步骤 206: 通过多层网络联合规划方法或工具, 为 MPLS-TE的 LSP分配路由和带宽, 规划承载 MPLS-TE的 LSP的光层通道和光层网络资源的分配。
其中, 该步骤即通过多层网络联合规划方法或工具进行多层网络规划, 设计出初始的 网络拓扑和容量, 以及业务路由。 具体的设计过程如下: 首先根据初始网络拓扑和节点间 的 LSP需求信息, 在 MPLS— TE层为每条 LSP设计路由, 然后以全网成本最优或资源利用 率最优为设计目标, 使用层间映射和 grooming等机制, 在光网络层创建承载 MPLS-TE层 LSP的光通道, 最终得到 MPLS-TE层 LSP的路由、光层通道的路由、 网络链路容量和节点 容量设计结果。
其中承载 MPLS-TE的 LSP的光层通道可以是 Wavelength path (波长通道) 或 ODUk path。 光网络层设备需要支持波长交换, 可以选用 DWDM设备, 如果需要同时支持 ODUk 交换, 则可以选用具有 OTN能力的 DWDM设备。 为了在组网运行后能够实现动态监测节 点之间流量的功能, 节点需要具备支持流量监测的功能。
步骤 207: 为了适应 IP层流量的动态变化, 在网络中预留一定的富余网络资源。
步骤 208: 在 MPLS-TE层实时监测任意两个节点间的 MPLS层的流量变化。
步骤 209:对 MPLS-TE层作相应设置,使其能够根据检测到的任意两个节点间的 MPLS 层流量变化驱动承载 MPLS— TE层 LSP的光传送层通道的修改,所述检测到的任意两个 IP 节点间的 IP链路信息不变。
至此得到初始的多层网络结构,包括 IP核心网的 IP层网络拓扑,光层网络资源部署等。 本实施例使用下述协议栈:
IP/MPLS协议层: 支持无连接 IP交换和 MPLS交换;
MPLS-TE层: 支持面向连接的 MPLS-TE交换;
OTN协议层 (可选): 支持面向连接的 ODUk交换
DWDM层: 支持面向连接的光层波长交换。
图 5为利用本发明实施例提供的网络部署方法得到的网络示意图。其中, PE为 IP网络 边缘节点,支持 IP、MPLS和 MPLS-TE协议; P为网络内部节点,支持 IP、MPLS和 MPLS-TE 协议; CE为 IP接入节点, 只支持 IP和 MPLS 协议而不支持 MPLS-TE协议; IP网络中的 PE节点及 P节点之间建立 MPLS的 LSP,然后将该 LSP—对一映射到 MPLS-TE层的 LSP。
在 MPLS-TE层实时监测任意两个节点间的 MPLS层流量变化,当流量增长或下降超过 一定的阈值时, 动态调整承载 MPLS-TE的 LSP的下层光通道。 例如: 参见图 6, 当 P1和 P3两节点之间的流量增加到一定阈值(接近一个 10G波长的容量) 时, 直接在 P1和 P3之 间建立一个 10G的 Lambda通道, 实现 Optical Bypass 0根据监测到的流量大小和部署策略, 也可以用 OTN或 SDH通道作为 Optical Bypass通道。
完成动态 Optical Bypass后, PE2禾 P PE6之间的 MPLS-TE的 LSP 的路由从原来的 PE2-P1-P2-P3-PE6变为 PE2-P1-P3-PE6; 由于在 IP层和光传送层之间建立 MPLS-TE层, 并 且在任意两个 IP节点 (通常为路由器) 之间建立一条 MPLS的 LSP作为 IP层链路, 构成 一个全连接的 IP核心网, MPLS-TE层任意两个 IP节点之间建立一条 MPLS-TE的 LSP,将 IP节点之间的 MPLS的 LSP—对一映射到 MPLS-TE的 LSP,从而将 IP层和光传送层隔开, 当光传送层变化时, 用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE链 路的属性不变, 即 IP层感受不到 PE2和 PE6之间光层通道的变化, 所以不会引起 IP层的 震荡。
综上,本发明实施例提供的方法能够实时监测任意两个节点间的 MPLS-TE层流量变化, 当流量增长或下降超过一定的阈值时,动态调整承载 MPLS-TE的 LSP的下层光通道, 当光 传送层变化时, 用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE (Traffic Engineering, 流量工程) 链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。 实施例 3
参见图 2, 本发明实施例提供了一种网络系统, 包括 IP层和位于其下层的光传送层, IP层和光传送层之间增加建立具有面向连接的分组传送层,网络系统包括至少两个 IP节点, 其中, 任一 IP节点用于和另一 IP节点建立具有面向连接的分组传送层的通道, 通道作为任 一 IP节点和另一 IP节点之间的链路。
其中, 任一 IP节点包括连接建立模块, 其中, 连接建立模块具体包括:
带流量工程的多协议标签交换连接建立单元, 用于和另一 IP节点建立一条带流量工程 的多协议标签交换的标签交换路径作为 IP层链路;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测和另一 IP节点间的 IP 层的流量变化;
动态调整单元, 用于根据检测到的和另一 IP节点间的 IP层流量变化, 由带流量工程的 多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路径的光传送层通 道的修改, 检测到的和另一 IP节点间的 IP链路信息不变。
其中 , 上述在 IP层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE 层,也可以由其他面向连接的分组传送层替代,例如, PBT (Provider Backbone Transport, 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议 标签交换) 等。
下面本发明实施例以在 IP 层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE层为例进行说明 , 参见如下。
本发明实施例提供的系统包括由路由器构成的 IP层和位于其下层的由 WDM设备构成 的光传送层, IP层和光传送层之间还包括 MPLS-TE层, 该系统包括至少两个 IP节点, 其 中, 任一 IP节点用于和另一 IP节点建立具有面向连接的分组传送层的通道作为该任一 IP 节点和另一 IP节点之间的链路,本发明实施例提供的该系统中的该任一 IP节点可以包括连 接建立模块, 该连接建立模块用于和上述另一 IP节点之间建立具有面向连接的分组传送层 的通道作为该任一 IP节点和另一 IP节点之间的链路, 具体为:
和另一 IP节点之间建立一条 MPLS-TE的 LSP作为 IP层链路。 WDM设备具体为 DWDM 设备或具有 0TN能力的 DWDM设备。
连接建立模块具体包括:
MPLS-TE连接建立单元, 用于和另一 IP节点之间建立一条 MPLS-TE的 LSP作为 IP 层链路;
流量监测单元, 用于在 MPLS-TE层实时监测和另一节点间的 IP层的流量变化; 动态调整单元, 用于根据检测到和另一 IP节点间的 IP层流量变化, 由 MPLS-TE层驱 动承载 MPLS-TE层的 LSP的光传送层通道的修改,但被检测到的和另一 IP节点间的 IP链 路信息不变。
其中, PE为 IP网络边缘节点, 支持 IP、 MPLS和 MPLS-TE协议; P为网络内部节点, 支持 IP、 MPLS和 MPLS-TE协议; CE为 IP接入节点, 支持 IP和 MPLS-TE协议; IP层 的 PE节点及 P节点之间建立 MPLS-TE 的 LSP,CE节点和 PE节点之间也通过 MPLS-TE连 接。
在 MPLS-TE层实时监测任意两个节点间的 IP层的流量变化, 当流量增长或下降超过 一定的阈值时, 动态调整承载 MPLS-TE的 LSP的下层光通道。
由于在 IP层和光传送层之间建立 MPLS-TE层, 并且在任意两个 IP节点 (通常为路由 器) 之间建立 MPLS-TE的 LSP作为两个节点之间的链路, 构成一个全连接的 IP核心网, 从而将 IP层和光传送层隔开, 当光传送层变化时,用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。
具体应用时, 也可以用 PBT层或 T-MPLS层来代替 MPLS-TE层。
综上,本发明实施例提供的系统能够实时监测任意两个节点间的 MPLS-TE层流量变化, 当流量增长或下降超过一定的阈值时,动态调整承载 MPLS-TE的 LSP的下层光通道, 当光 传送层变化时, 用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE (Traffic Engineering, 流量工程) 链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。 实施例 4
参见图 5,本发明实施例提供了一种网络系统,包括 IP层和位于其下层的光传送层, IP 层和光传送层之间增加建立具有面向连接的分组传送层, 网络系统包括至少两个 IP节点, 其中, 任一 IP节点用于和另一 IP节点建立具有面向连接的分组传送层的通道, 通道作为任 — IP节点和另一 IP节点之间的链路。
其中, 任一 IP节点包括连接建立模块, 连接建立模块具体包括:
多协议标签交换连接建立单元, 用于和另一 IP节点建立一条多协议标签交换的标签交 换路径作为 IP层链路;
带流量工程的多协议标签交换连接建立单元, 用于和另一 IP节点之间建立一条带流量 工程的多协议标签交换的标签交换路径作为带流量工程的多协议标签交换层链路;
映射单元, 用于将和另一 IP节点的多协议标签交换的标签交换路径一对一映射到带流 量工程的多协议标签交换的标签交换路径;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测网络和另一 IP节点间 的多协议标签交换层的流量变化;
动态调整单元, 用于根据检测到的和另一 IP节点间的多协议标签交换层流量变化, 由 带流量工程的多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路径 的光传送层通道的修改, 检测到的和另一 IP节点间的 IP链路信息不变。
其中 , 上述在 IP层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE 层,也可以由其他面向连接的分组传送层替代,例如, PBT (Provider Backbone Transport, 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议 标签交换) 等。
下面本发明实施例以在 IP 层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE层为例进行说明 , 参见如下。
本发明实施例提供的网络系统, 包括由路由器构成的 IP层和位于其下层的由 WDM设 备构成的光传送层, IP层和光传送层之间还包括 MPLS-TE层,该网络系统包括至少两个 IP 节点, 其中, 任一 IP节点包括连接建立模块, 该连接建立模块用于和任一另一 IP节点之间 建立具有面向连接的分组传送层的通道作为链路, 具体为:
和另一 IP节点之间建立一条 MPLS的 LSP作为 IP层链路;
和另一 IP节点之间建立一条 MPLS-TE的 LSP作为 MPLS-TE层链路;
将 IP节点之间的 MPLS的 LSP—对一映射到 MPLS-TE的 LSP。
WDM设备具体为 DWDM设备或具有 0TN能力的 DWDM设备。 连接建立模块具体包括:
MPLS连接建立单元, 用于和另一 IP节点之间建立一条 MPLS的 LSP作为 IP层链路; MPLS-TE连接建立单元,用于和 IP节点之间建立一条 MPLS-TE的 LSP作为 MPLS-TE 链路;
映射单元, 用于将 IP节点之间的 MPLS的 LSP—对一映射到 MPLS-TE的 LSP;
流量监测单元,用于在 MPLS-TE层实时监测和另一 IP节点间的 MPLS层的流量变化; 动态调整单元,用于根据检测到的和另一 IP节点间的 MPLS层流量变化, 由 MPLS-TE 层驱动承载 MPLS-TE层的 LSP的光传送层通道的修改, 所述检测到的和另一 IP节点间的
IP链路信息不变。
其中, PE为 IP网络边缘节点, 支持 IP、 MPLS和 MPLS-TE协议; P为网络内部节点, 支持 IP、 MPLS和 MPLS-TE协议; CE为 IP接入节点, 支持 IP和 MPLS-TE协议; IP网 络中的 PE节点及 P节点之间建立 MPLS的 LSP,然后将该 LSP—对一映射到 MPLS-TE层 的 LSP, CE节点和 PE节点之间也通过 MPLS-TE连接。
在 MPLS-TE层实时监测任意两个节点间的 MPLS层的流量变化,当流量增长或下降超 过一定的阈值时, 动态调整承载 MPLS-TE的 LSP的下层光通道。
由于在 IP层和光传送层之间建立 MPLS-TE层, 并且在任意两个 IP节点 (通常为路由 器) 之间建立一条 MPLS的 LSP作为 IP层链路, 构成一个全连接的 IP核心网, MPLS-TE 层任意两个 IP节点之间建立一条 MPLS-TE的 LSP,将 IP节点之间的 MPLS的 LSP—对一 映射到 MPLS-TE的 LSP, 从而将 IP层和光传送层隔开, 当光传送层变化时, 用来承载 IP 层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。
综上,本发明实施例提供的系统能够实时监测任意两个节点间的 MPLS-TE层流量变化, 当流量增长或下降超过一定的阈值时,动态调整承载 MPLS-TE的 LSP的下层光通道, 当光 传送层变化时, 用来承载 IP层的 MPLS-TE层随之变化, 由于 MPLS-TE设置为 TE (Traffic Engineering, 流量工程) 链路的属性不变, 即 IP层感受不到 IP节点之间光层通道的变化, 所以不会引起 IP层的震荡。
上述系统内的各 IP节点之间的信息交互、 执行过程等内容, 由于与本发明方法实施例 基于同一构思, 具体内容可参见本发明方法实施例中的叙述, 此处不再赘述。 实施例 5
参见图 8, 本发明实施例提供了一种 IP节点, 该 IP节点位于网络系统中, 其中, 网络 系统包括 IP层和位于 IP层下的光传送层, 且 IP层和光传送层之间增加建立具有面向连接 的分组传送层, 且网络系统包括至少两个 IP节点; 其中, IP节点用于与至少另一个 IP节点 之间建立具有面向连接的分组传送层的通道, 通道作为 IP节点和另一 IP节点之间的链路。
本发明实施例提供的 IP节点包括连接建立模块,用于和另一 IP节点之间建立具有面向 连接的分组传送层的通道作为该 IP节点和另一 IP节点之间的链路。
其中, 连接建立模块具体包括:
MPLS-TE连接建立单元, 用于和另一 IP节点之间建立一条 MPLS-TE的 LSP作为 IP 层链路;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测和另一 IP节点间的 IP 层的流量变化:
动态调整单元, 通过在 MPLS-TE层做相应的设置来实现用于根据检测到的和另一 IP 节点间的 IP层的流量变化,由 MPLS-TE层驱动承载 MPLS-TE的 LSP的光传送层通道的修 改, 所述检测到的和另一 IP节点间的 IP链路信息不变。
其中 , 上述在 IP层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE 层,也可以由其他面向连接的分组传送层替代,例如, PBT (Provider Backbone Transport, 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议 标签交换) 等。 实施例 6
参见图 9, 本发明实施例提供了一种 IP节点, 该 IP节点位于网络系统中, 其中, 网络 系统包括 IP层和位于 IP层下的光传送层, 且 IP层和光传送层之间增加建立具有面向连接 的分组传送层, 且网络系统包括至少两个 IP节点; 其中, IP节点用于与至少另一个 IP节点 之间建立具有面向连接的分组传送层的通道, 通道作为 IP节点和另一 IP节点之间的链路。
该 IP节点包括连接建立模块,该连接建立模块用于在另一 IP节点之间建立具有面向连 接的分组传送层的通道作为和另一 IP节点之间的链路。
其中, 连接建立模块具体包括:
MPLS连接建立单元, 用于和另一 IP节点之间建立一条 MPLS的 LSP作为 IP层链路; MPLS-TE连接建立单元, 用于和另一 IP节点之间建立一条 MPLS-TE的 LSP, 该 LSP 作为在 MPLS-TE层链路;
映射单元,用于将和另一 IP节点之间的 MPLS的 LSP—对一映射到 MPLS-TE的 LSP; 流量监测单元, 用于在带流量工程的多协议标签交换层实时监测和另一 IP节点间的多 协议标签交换层的流量变化;
动态调整单元, 通过在 MPLS-TE层做相应的设置来实现用于根据检测到的和另一 IP 节点间的 MPLS层的流量变化, 由 MPLS-TE层驱动承载 MPLS-TE层的 LSP的光传送层通 道的修改, 所述检测到的和另一 IP节点间的 IP链路信息不变。
其中, 上述在 IP层和光传送层之间建立具有面向连接的分组传送层可以为 MPLS-TE 层,也可以由其他面向连接的分组传送层替代,例如, PBT (Provider Backbone Transport, 运营商骨干网传输), T-MPLS ( Transport Multi-protocol Label Switching, 传输多协议 标签交换) 等。
上述 IP节点内的各单元之间的信息交互、 执行过程等内容, 由于与本发明方法实施例 基于同一构思, 具体内容可参见本发明方法实施例中的叙述, 此处不再赘述。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明可借助软件 加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施, 但很多情况下前者是 更佳的实施方式。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部或者部 分可以以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例或者实施例的某些部分所述的方法。
以上仅为本发明的具体实施例, 并不用以限制本发明, 凡在本发明的原则之内, 所作 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种网络部署方法, 所述网络包括 IP层和光传送层, 其特征在于, 所述方法包括: 在所述 IP层和光传送层之间建立具有面向连接的分组传送层;
在任意两个 IP节点之间建立所述具有面向连接的分组传送层的通道作为所述两个 IP节 点之间的链路。
2. 根据权利要求 1所述的一种网络部署方法, 其特征在于, 所述具有面向连接的分组 传送层具体为带流量工程的多协议标签交换层。
3. 根据权利要求 2所述的一种网络部署方法, 其特征在于, 所述在任意两个 IP节点之 间建立所述具有面向连接的分组传送层的通道作为所述两个 IP节点之间的链路,具体包括: 任意两个 IP节点之间建立一条带流量工程的多协议标签交换的标签交换路径作为 IP层 链路;
通过多层网络联合规划方法或工具, 为带流量工程的多协议标签交换的标签交换路径 分配路由和带宽, 规划承载带流量工程的多协议标签交换的标签交换路径的光传送层通道 和光传送层网络资源的分配。
4. 根据权利要求 3所述的一种网络部署方法, 其特征在于, 所述在任意两个 IP节点之 间建立链路之后, 所述方法还包括:
在带流量工程的多协议标签交换层实时监测网络中任意两个 IP节点间的 IP层的流量变 化;
根据检测到的任意两个 IP节点间的 IP层流量变化,由带流量工程的多协议标签交换层 驱动承载带流量工程的多协议标签交换层的标签交换路径的光传送层通道的修改, 所述检 测到的任意两个 IP节点间的 IP链路信息不变。
5. 根据权利要求 2所述的一种网络部署方法, 其特征在于, 所述在任意两个 IP节点之 间建立所述具有面向连接的分组传送层的通道作为所述两个 IP节点之间的链路,具体包括: 任意两个 IP节点之间建立一条多协议标签交换的标签交换路径作为 IP层链路; 所述任意两个 IP节点之间建立一条带流量工程的多协议标签交换的标签交换路径作为 带流量工程的多协议标签交换层链路;
将所述任意 IP节点之间的多协议标签交换的标签交换路径一对一映射到带流量工程的 多协议标签交换的标签交换路径;
通过多层网络联合规划方法或工具, 为带流量工程的多协议标签交换的标签交换路径 分配路由和带宽, 规划承载带流量工程的多协议标签交换的标签交换路径的光传送层通道 和光传送层网络资源的分配。
6. 根据权利要求 5所述的一种网络部署方法, 其特征在于, 所述在任意两个 IP节点之 间建立链路之后, 所述方法还包括:
在带流量工程的多协议标签交换层实时监测网络中任意两个 IP节点间的多协议标签交 换层的流量变化;
根据检测到的任意两个 IP节点间的多协议标签交换层流量变化, 由带流量工程的多协 议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路径的光传送层通道的 修改, 所述检测到的任意两个 IP节点间的 IP链路信息不变。
7. 根据权利要求 1所述的一种网络部署方法, 其特征在于, 所述具有面向连接的分组 传送层具体为运营商骨干网传输层或传输多协议标签交换层。
8. —种网络系统, 包括 IP层和位于其下层的光传送层, 其特征在于, 所述 IP层和光 传送层之间增加建立具有面向连接的分组传送层, 所述网络系统包括至少两个 IP节点, 其 中,
任一 IP节点用于和另一 IP节点建立所述具有面向连接的分组传送层的通道,所述通道 作为所述任一 IP节点和所述另一 IP节点之间的链路。
9. 根据权利要求 8所述的一种网络系统, 其特征在于, 所述具有面向连接的分组传送 层具体为带流量工程的多协议标签交换层。
10. 根据权利要求 9所述的一种网络系统, 其特征在于, 所述任一 IP节点包括连接建 立模块, 其中, 所述连接建立模块具体包括:
带流量工程的多协议标签交换连接建立单元, 用于和所述另一 IP节点建立一条带流量 工程的多协议标签交换的标签交换路径作为 IP层链路;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测和所述另一 IP节点间 的 IP层的流量变化;
动态调整单元, 用于根据检测到的和所述另一 IP节点间的 IP层流量变化, 由带流量工 程的多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路径的光传送 层通道的修改, 所述检测到的和所述另一 IP节点间的 IP链路信息不变。
11. 根据权利要求 9所述的一种网络系统, 其特征在于, 所述 IP节点包括连接建立模 块, 所述连接建立模块具体包括:
多协议标签交换连接建立单元, 用于和另一 IP节点建立一条多协议标签交换的标签交 换路径作为 IP层链路;
带流量工程的多协议标签交换连接建立单元, 用于和所述另一 IP节点之间建立一条带 流量工程的多协议标签交换的标签交换路径作为带流量工程的多协议标签交换层链路; 映射单元, 用于将和所述另一 IP节点的多协议标签交换的标签交换路径一对一映射到 带流量工程的多协议标签交换的标签交换路径;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测网络和所述另一 IP节 点间的多协议标签交换层的流量变化;
动态调整单元,用于根据检测到的和所述另一 IP节点间的多协议标签交换层流量变化, 由带流量工程的多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路 径的光传送层通道的修改, 所述检测到的和所述另一 IP节点间的 IP链路信息不变。
12. 根据权利要求 8 所述的一种网络系统, 其特征在于, 所述具有面向连接的分组传 送层具体为运营商骨干网传输层或传输多协议标签交换层。
13. 一种 IP节点, 其特征在于, 所述 IP节点位于网络系统中, 其中, 所述网络系统包 括 IP层和位于所述 IP层下的光传送层, 且所述 IP层和所述光传送层之间增加建立具有面 向连接的分组传送层, 且所述网络系统包括至少两个 IP节点;
所述 IP节点用于与至少另一个 IP节点之间建立所述具有面向连接的分组传送层的通 道, 所述通道作为所述 IP节点和所述另一 IP节点之间的链路。
14. 根据权利要求 13所述的一种 IP节点, 其特征在于, 所述 IP节点包括连接建立模 块, 所述连接建立模块具体包括:
带流量工程的多协议标签交换连接建立单元, 用于和所述另一 IP节点之间建立一条带 流量工程的多协议标签交换的标签交换路径作为 IP层链路;
流量监测单元, 用于在带流量工程的多协议标签交换层实时监测网络和所述另一 IP节 点间的 IP层的流量变化;
动态调整单元, 用于根据检测到的和所述另一 IP节点间的 IP层流量变化, 由带流量工 程的多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交换路径的光传送 层通道的修改, 所述检测到的和所述另一 IP节点间的 IP链路信息不变。
15. 根据权利要求 13所述的一种 IP节点, 其特征在于, 所述 IP节点包括连接建立模 块具体包括:
多协议标签交换连接建立单元, 用于和所述另一 IP节点之间建立一条多协议标签交换 的标签交换路径作为 IP层链路;
带流量工程的多协议标签交换连接建立单元, 用于和所述另一 IP节点之间建立一条带 流量工程的多协议标签交换的标签交换路径作为所述带流量工程的多协议标签交换层链 路; 映射单元, 用于将和所述另一 IP节点之间的多协议标签交换的标签交换路径一对一映 射到所述带流量工程的多协议标签交换的标签交换路径;
流量监测单元, 用于在所述带流量工程的多协议标签交换层实时监测和所述另一 IP节 点间的多协议标签交换层的流量变化;
动态调整单元, 用于根据检测到的和所述另一 IP节点间的多协议标签交换层的流量变 化, 由带流量工程的多协议标签交换层驱动承载带流量工程的多协议标签交换层的标签交 换路径的光传送层通道的修改, 所述检测到的和所述另一 IP节点间的 IP链路信息不变。
PCT/CN2008/073399 2007-12-14 2008-12-09 网络部署方法和网络系统以及ip节点 WO2009076886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710160974.6 2007-12-14
CN200710160974.6A CN101459574B (zh) 2007-12-14 2007-12-14 网络部署方法和网络系统以及ip节点

Publications (1)

Publication Number Publication Date
WO2009076886A1 true WO2009076886A1 (zh) 2009-06-25

Family

ID=40770213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073399 WO2009076886A1 (zh) 2007-12-14 2008-12-09 网络部署方法和网络系统以及ip节点

Country Status (2)

Country Link
CN (1) CN101459574B (zh)
WO (1) WO2009076886A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142972B (zh) * 2010-01-28 2014-02-19 华为技术有限公司 一种ip网络的组网方法和装置
CN102769605B (zh) * 2011-05-05 2015-04-22 中国移动通信集团设计院有限公司 一种确定中继电路的方法及装置
CN102761478B (zh) * 2012-05-17 2015-01-28 中兴通讯股份有限公司 业务数据的发送方法及系统
CN105429852B (zh) * 2015-11-16 2018-09-28 武汉众邦领创技术有限公司 适用于大容量分组传送系统的自适应消息处理系统
CN107786260B (zh) * 2016-08-24 2021-11-05 中兴通讯股份有限公司 一种业务传输方法和系统
CN107786445A (zh) * 2016-08-31 2018-03-09 南京中兴软件有限责任公司 一种隧道流量的旁路方法和装置
EP3515021B1 (en) * 2016-12-02 2024-06-19 Huawei Technologies Co., Ltd. Joint route establishment method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333090A (ja) * 2002-05-09 2003-11-21 Nippon Telegr & Teleph Corp <Ntt> マルチレイヤ光ネットワークおよび当該ネットワークにおけるトラヒックエンジニアリング方法
CN1479991A (zh) * 2000-10-07 2004-03-03 �����Ӣ��֪ʶ��Ȩ���޹�˾ 在互联网协议网络中启用移动性和特殊业务的通信系统
JP2005252540A (ja) * 2004-03-03 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 光ネットワーク、光ネットワークにおける光パス選択方法および光ネットワークにおける光エッジルータ
CN1757210A (zh) * 2003-01-15 2006-04-05 希尔纳公司 用于在光网络上传输分组数据的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188976C (zh) * 2002-04-02 2005-02-09 上海交通大学 集成智能光电混合路由器
CN100512287C (zh) * 2005-07-21 2009-07-08 上海交通大学 基于通用多协议标签交换协议的无源光网络系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1479991A (zh) * 2000-10-07 2004-03-03 �����Ӣ��֪ʶ��Ȩ���޹�˾ 在互联网协议网络中启用移动性和特殊业务的通信系统
JP2003333090A (ja) * 2002-05-09 2003-11-21 Nippon Telegr & Teleph Corp <Ntt> マルチレイヤ光ネットワークおよび当該ネットワークにおけるトラヒックエンジニアリング方法
CN1757210A (zh) * 2003-01-15 2006-04-05 希尔纳公司 用于在光网络上传输分组数据的方法和装置
JP2005252540A (ja) * 2004-03-03 2005-09-15 Nippon Telegr & Teleph Corp <Ntt> 光ネットワーク、光ネットワークにおける光パス選択方法および光ネットワークにおける光エッジルータ

Also Published As

Publication number Publication date
CN101459574A (zh) 2009-06-17
CN101459574B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
US8335154B2 (en) Method and system for providing fault detection and notification for composite transport groups
Zhu et al. Traffic engineering in multigranularity heterogeneous optical WDM mesh networks through dynamic traffic grooming
US7352758B2 (en) Dynamic bandwidth management using signaling protocol and virtual concatenation
JP4673994B2 (ja) ルーティング方法および光スイッチ
RU2474969C2 (ru) Прозрачный обходной путь и соответствующие механизмы
US20020191247A1 (en) Fast restoration in optical mesh network
WO2009092252A1 (zh) 一种路由计算方法、系统及路径计算单元
WO2009076886A1 (zh) 网络部署方法和网络系统以及ip节点
WO2005034569A2 (en) Using an extended border gateway protocol for routing across optical-burst-switched networks
US7412168B2 (en) MPLS application to optical cross-connect using wavelength as a label
WO2008011771A1 (fr) Procédé, équipement de réseau et système permettant d&#39;établir une voie de commutation dans un réseau internet optique
Ho et al. A framework of scalable optical metropolitan networks for improving survivability and class of service
JP2012248925A (ja) 波長多重通信ネットワークにおける波長パス設定方法および装置
CN101873271B (zh) 多层网络中一种业务驱动的跨层生存性方法
Liu et al. GMPLS-based control plane for optical networks: early implementation experience
Durresi et al. IP over all-optical networks-issues
Cunha et al. Generalized MPLS-an overview
Liu et al. Overlay vs. integrated traffic engineering for IP/WDM networks
Oki et al. Performance of dynamic multi-layer routing schemes in IP+ optical networks
JP2004282572A (ja) パケット通信方法及び通信システム
Martínez et al. Requirements and enhancements for the evolution of the GMPLS control plane of the ADRENALINE testbed to support multi-layer (MPLS-TP/WSON) capabilities
Yoong et al. A GMPLS-controlled optical testbed for distributed storage services
Chen The LSP Protection/Restoration Mechanism in GMPLS
Zhu et al. GMPLS-based dynamic OVPN technique in automatically switched optical network (ASON)
JP3565770B2 (ja) 光通信ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08862505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08862505

Country of ref document: EP

Kind code of ref document: A1