WO2009068767A1 - Procede de delivrance de melanges de gaz pour un analyseur - Google Patents

Procede de delivrance de melanges de gaz pour un analyseur Download PDF

Info

Publication number
WO2009068767A1
WO2009068767A1 PCT/FR2008/051977 FR2008051977W WO2009068767A1 WO 2009068767 A1 WO2009068767 A1 WO 2009068767A1 FR 2008051977 W FR2008051977 W FR 2008051977W WO 2009068767 A1 WO2009068767 A1 WO 2009068767A1
Authority
WO
WIPO (PCT)
Prior art keywords
analyzer
mixer
mixture
gas
instrumentation
Prior art date
Application number
PCT/FR2008/051977
Other languages
English (en)
Inventor
Valérie BOSSOUTROT
Joerg Koppel
Séverine LEPIC
Hervé PAOLI
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to BRPI0819670-2A priority Critical patent/BRPI0819670A2/pt
Priority to CN2008801180907A priority patent/CN101878418B/zh
Priority to DE602008006259T priority patent/DE602008006259D1/de
Priority to JP2010535428A priority patent/JP2011505006A/ja
Priority to EP08854981A priority patent/EP2215446B1/fr
Priority to AT08854981T priority patent/ATE505716T1/de
Priority to CA2705601A priority patent/CA2705601C/fr
Priority to US12/745,026 priority patent/US8409504B2/en
Publication of WO2009068767A1 publication Critical patent/WO2009068767A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/716Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited by measuring the radiation emitted by a test object treated by combustion gases for investigating the composition of gas mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air

Definitions

  • the present invention relates to a device for analyzing a fluid and a method for delivering at least one gas mixture to a fluid analyzer.
  • the analyzable fluids can be either gaseous or liquid. They can be obtained by direct sampling from an industrial process for purposes of quality control or sampling in a given atmosphere, for example in ambient air for monitoring or control purposes.
  • Analyzers used to measure low concentrations of chemical species in a fluid sample are sensitive to the characteristics of the pure gases and gas mixtures that feed them. Pure gases or gas mixtures are used to drive the sample to the detector and to achieve a "zero" point during calibration, essential in the field of fluid analysis. They can also be used for the operation of the detector itself. These pure gases or gas mixtures are called instrumentation gases.
  • instrumentation gases are, for example, helium, nitrogen, air, or mixtures such as H 2 / He, H 2 / Ar, CH 4 / Ar, CO 2 / Ar, H 2 / N 2 .
  • the content of impurities present in these instrumentation gases and the specifications of their implementation are parameters which influence the sensitivity of the analyzers and the reproducibility of the analyzes.
  • the levels and nature of the impurities contained in the instrumentation gases make it possible to attain a quality equivalent to a purity of 99.999%.
  • the most common impurities are moisture and hydrocarbons. Carbon oxides (CO, CO 2 ) and oxygen can also be guaranteed.
  • the particular example of the flame ionization detector (FID) as analyzer consists of a flame fed by a hydrogen / helium mixture and by air and a collector plate. The sample to be analyzed passes through a flame that breaks down organic molecules and produces ions. These are recovered on a polarized electrode and thus produce an electrical signal.
  • FID is extremely sensitive and offers a wide dynamic range. FIDs are used for the detection of hydrocarbons such as methane, ethane or acetylene.
  • the sample to be analyzed is premixed with the fuel instrumentation mixture in a preheated zone.
  • the ions and electrons formed in the flame are collected and thus allow a current to flow in an external circuit.
  • the current is proportional to the rate of ions which depends on the hydrocarbon concentration of the fluids to be analyzed.
  • the current is detected by an appropriate electrometer and displayed on an analog output.
  • the FID offers a fast, accurate reading (up to ppb) and continuous hydrocarbon concentration.
  • the FID is powered by two gas mixtures: Hydrogen / Helium
  • H 2 / He in respective well-defined proportions, for example 40% and 60% and Oxygen / Nitrogen (O2 / N2) in respective well-defined proportions, for example 20% and 80%.
  • Variation in deviations from the theoretically predicted achievement of the proportions of the different components from one mixture to another is a source of uncertainty in the results of analyzes performed using FID.
  • the H 2 / He and O 2 / N 2 mixtures known as flame gases, must therefore have stable production accuracies from one mixture to another, thus making it possible to limit the influence of this parameter on the measurements.
  • the content of impurities present in the instrumentation gases is also a factor to be taken into consideration, especially since low levels (less than or equal to one part per million) must be analyzed by FID. These specifications must be improved to ensure the reliability of the analyzes.
  • the flame gases are today supplied in bottles with implementation accuracies of between 1 and 2% absolute for the hydrogen content in the case of the H 2 / He mixture and between 0.5 and 1% absolute. for the Oxygen content in the case of the O2 / N2 mixture.
  • the variation of the composition of these mixtures from one bottle to another is a source of error for the end customer.
  • a variation of 2% absolute on the H2 concentration in the hb / He mixture can generate up to 30% variation of the FID signal obtained for the hydrocarbon analysis.
  • a 2% variation of the oxygen content in the O2 / N2 mixture feeding the FID generates a 10% variation of the FID signal.
  • the impurity content is a critical parameter for the reliability of the analyzes.
  • An impurity concentration of 40 ppb generates a signal increase of 23% when a zero air sample is analyzed by Total FID.
  • the level of impurities usually guaranteed in a mixture prepared in bottle is between 50 and 100 ppbv.
  • the supply of Hb / He and O2 / N2 mixtures in bottles to FID feeders thus has the disadvantage of generating significant uncertainties in the analysis results which will be all the more critical as the analyze will be weak.
  • the supply of such bottled mixtures therefore does not guarantee reproducibility over time, nor their composition, nor their purity.
  • An object of the present invention is to overcome all or part of the disadvantages noted above.
  • the invention consists of a device for analyzing a fluid comprising: - an analyzer, and an instrumentation gas supply system of said analyzer; characterized in that the supply system comprises at least one mixer generating said instrumentation gas and at least one purifier located downstream of said at least one mixer and upstream of the analyzer.
  • the instrumentation gas supply system of said analyzer further comprises at least one scrubber located upstream of at least one mixer.
  • the advantage of having a single scrubber downstream of the mixer is to simplify the entire delivery process.
  • the addition of a scrubber upstream of the mixer makes it possible to remove specific impurities from at least one of the pure gases at the inlet that could not be removed from the final mixture because of technical constraints and / or security.
  • the analyzer is a flame ionization detector.
  • the analyzer can also be selected from the list: katharometer (TCD), electron capture detector (ECD), photo-ionization detector, chemiluminescence detector, electrochemical detector, helium ionization detector, ionizing discharge detector , plasma emission detector, atomic emission detector, reducing gas analyzer.
  • a flame ionization detector is fed by two mixtures of instrumentation gases, one being a hydrogen / helium mixture, the other an oxygen / nitrogen mixture; the feeding system consisting of a first purifier located downstream of a first mixer generating the hydrogen / helium mixture and upstream of the analyzer and a second purifier located downstream of a second mixer generating the oxygen / nitrogen mixture and upstream of the analyzer .
  • the hydrogen / helium mixture has respective proportions of 35% to 45% hydrogen, preferably 40% and 55% to 65% helium, preferably 60%; the oxygen / nitrogen mixture has respective proportions of 15% to 25% oxygen, preferably 20% and 75% to 85% nitrogen, preferably 80%.
  • Said at least one mixer comprises a component chosen from a mass flow regulator, sonic orifices, calibrated orifice barrels of different diameters or control valves.
  • a component chosen from a mass flow regulator, sonic orifices, calibrated orifice barrels of different diameters or control valves The setting of predefined thresholds for mass flow controllers or the use of calibrated orifice barrels of different diameters makes it possible to generate mixtures of different concentrations and / or to vary the total flow rate.
  • Components such as regulators or pressure sensors and pneumatic valves may be integrated into the at least one mixer to ensure optimum operation of the flow control members.
  • Said at least one scrubber can be, depending on the inlet gas and the type of impurity to be eliminated, composed of one or more of the following elements: a particulate filter, a catalyst comprising noble metals and / or metal oxides, a cryogenic trap, one or more adsorbents optionally distributed in several successive beds, such as, for example, activated carbon, activated alumina, or different types of zeolite.
  • said at least one purifier may also include an alarm or a warning such as an audible or visual signal or other message indicating that the purifier has reached the end of the guaranteed lifetime.
  • an alarm or a warning such as an audible or visual signal or other message indicating that the purifier has reached the end of the guaranteed lifetime.
  • the back-up power may consist of either a bottled gas of known composition or a bypass to another purifier.
  • the purification is provided by a purification means which self-regenerates.
  • a purification means is for example a PSA (in English, Pressure Swing Adsorption) or an TSA (in English, Temperature Swing Adsorption).
  • PSA in English, Pressure Swing Adsorption
  • TSA in English, Temperature Swing Adsorption
  • two capacities are placed in parallel on the passage of the gas and filled with an adsorbent (such as activated carbon, activated alumina, zeolite).
  • an adsorbent such as activated carbon, activated alumina, zeolite
  • a pressure regulator is located downstream of said at least one purifier.
  • the invention also relates to an instrumentation gas supply system of a fluid analyzer, consisting of at least one mixer generating said instrumentation gas associated with at least one purifier located downstream of said at least one mixer. Said feed system being integrated in the same fluid analysis device.
  • the invention also relates to an instrumentation gas supply system of a flame ionization detector, consisting of two mixers each generating a mixture of instrumentation gas, each mixer being located upstream of a purifier .
  • the invention also relates to the use of a feed system as described above, for the delivery of at least one instrumentation gas mixture to a fluid analyzer.
  • the invention also relates to a process for delivering at least one gas mixture to a fluid analyzer comprising the steps of: a) mixing at least two pure gases using a mixer, b) purification of the mixture obtained in step a) by means of a scrubber generating an instrumentation gas mixture for said analyzer; characterized in that these steps take place on the same site by means of a single equipment.
  • Such a method may also comprise a step of purifying at least one gas to be mixed, prior to step a).
  • the invention also relates to a method for delivering two gas mixtures to a flame ionization detector comprising the steps of: a) forming a first mixture consisting of 40% hydrogen and 60% helium containing implementing a first mixer and forming a second mixture consisting of 20% oxygen and 80% nitrogen using a second mixer, b) purifying the first mixture obtained in step a) by means of a first purifier generating a first mixture of instrumentation gases for the flame ionization detector and purifying the second mixture obtained in step a) by means of a second purifier generating a second mixture of instrumentation gases for said detector flame ionization; characterized in that these steps take place on the same site by means of a single equipment.
  • FIG. 1 represents a diagram of a device for analyzing a fluid according to the invention.
  • FIG. 2 represents a diagram of a variant of a device for analyzing a fluid according to the invention.
  • FIG. 1 shows a device 1 for analyzing a fluid 2 contained in a reservoir 14.
  • the fluid 2 is, for example, a sample of ambient air or a sample of exhaust gas.
  • the device 1 consists of an equipment 4 or instrumentation gas supply system of an analyzer 3.
  • the equipment 4 here consists of two identical parts, each consisting of a purifier 9 or 10 located downstream. of a mixer 7 or 8.
  • the gases G1 to G4 input are pure gases such as Helium, Nitrogen, Hydrogen, Argon, Methane, or Carbon Dioxide. These pure gases are in particular delivered in the form of bottles or from generators. Their specifications in terms of impurities are compatible with the purification capacities of the purifier 9 or 10 placed upstream of the analyzer 7 or 8.
  • the existing technologies for the mixer 7 or 8 make it possible to generate mixtures 5 or 6 with an uncertainty less than or equal to 0.5% absolute on the concentration of the minority component. These can be mass flow controllers or sonic or control valves.
  • the purifier 9 or 10 makes it possible to reduce the content of critical impurities for the analysis.
  • the purifier may be a catalyst composed of metal oxides for converting the hydrocarbons to CO2 and H 2 O. It may be combined with adsorbents making it possible to trap these impurities in order to limit the impact on the measurement.
  • the object of the present invention which is an alternative to bottle blends, is a means of reducing the contribution of analyzer feed mixtures to analytical uncertainty.
  • the pure gases such as G1 and G2 enter the mixer 7 (respectively 8), the latter supplying a mixture G1 / G2 flowing in a pipe 12 (respectively G3 / G4 flowing in a pipe 13).
  • the purifier 9 (respectively 10) makes it possible to reduce the content of critical impurities of the mixture G1 / G2 (respectively G3 / G4) and thus to provide a mixture (respectively 6).
  • the mixtures 5 and 6 each represent an instrumentation gas for the analysis of the fluid 2 coming from the reservoir 14. Said fluid 2 flows in a pipe 11 to the analyzer 3, to which the instrumentation gases also flow.
  • the equipment 4 is composed of a single section.
  • a section consists of a mixer 7, a purifier 9 and a pipe 12 in which the instrumentation gas 5 circulates.
  • a device according to the invention may also comprise an equipment 4 consisting of more than two sections. If the analyzer 3 is a flame ionization detector, the equipment 4 or instrumentation gas supply system comprises a first purifier 9 located downstream of a first mixer 7, generating a mixture of hydrogen (G1) / Helium (G2) flowing in the pipe 12.
  • a second scrubber 10 is located in downstream of a second mixer 8, generating a mixture 6 Oxygen (G3) / nitrogen (G4) flowing in the pipe 13.
  • This purifier 10 is located upstream of the analyzer 3 for analyzing the fluid 2 from the sample 14, flowing in the pipe 11 and going to the analyzer 3 by the inlet 17.
  • the mixtures 5 and 6 feed the analyzer 3 via the inputs 15 and 16 and lead the fluid 2 of the sample 14 into the part of the analyzer 3 where the measurements will be made. These flame gases 5 and 6 are also used to make a "zero" point during the calibration of the analyzer 3.
  • FIG. 2 shows a device 1 for analyzing a fluid 2 contained in a reservoir 14.
  • the device shown schematically further comprises at least one scrubber, 18, 19, 20, 21 placed upstream of at least one mixer 7 or 8. Therefore at least one of the pure gases to be mixed can be purified before entering the mixer.
  • the addition of a scrubber upstream of the mixer makes it possible to remove specific impurities from at least one of the pure gases G1 to G4 at the inlet that could not be removed from the final mixture because of technical constraints and / or security.
  • a single inlet gas will be purified upstream of at least one mixer 7 and 8, or several inlet gases will be purified before being mixed.
  • all the gases to be mixed will be first cleaned.
  • the solution proposed by the present invention therefore consists firstly of a mixer for generating on site the instrumentation gases and secondly of a purifier placed downstream of the mixer and upstream of analyzer. These two elements are associated and constitute a single equipment.
  • the mixer ensures the stability of the composition of the mixture over time. It can be composed of either mass flow controllers or sonic ports depending on the flow dynamics desired by the customer.
  • the scrubber makes it possible to eliminate the critical impurities that are for example the hydrocarbons by converting them into CO2 and H 2 O, for example according to a catalytic process.
  • This purifier may also comprise an adsorbent in successive beds for trapping these impurities. For example, a first bed of sieve for trapping H 2 O and a second bed of zeolite for trapping CO 2 .
  • the components of the mixer make it possible to obtain a precision of achievement of the mixture less than or equal to 0.5% absolute on the concentration of the minority component.
  • On-site production eliminates the potential fluctuations in the concentrations of the mixtures forming the instrumentation gases.
  • the production on the customer site eliminates the potential fluctuations in the hydrogen concentration in the H 2 / He mixture or that in oxygen in the O2 / N2 mixture.
  • the guarantee of this precision allows the customer to improve the reproducibility of his analyzes.
  • the purifier makes it possible to obtain upstream of the analyzer a level of hydrocarbon impurities lower than that disturbing its analysis. Its continuous operation keeps the analyzer "background" at levels that are satisfactory for low hydrocarbon analysis.
  • the critical impurities are hydrocarbons, for the analysis of 100 ppbv of hydrocarbons, the purifier must allow to reach levels lower than 10 pbbv in hydrocarbons.
  • the complete equipment makes it possible to guarantee the customer a stability of the composition of the mixture over time, by the precision of the mixer, and a constant purity delivered at the point of use, by the performance of the purifier.
  • This solution therefore has the advantage of providing the customer with a mixture whose essential characteristics are stable over time.
  • the proposed solution makes it possible to reduce the contribution of the feed gases of the analyzers to the uncertainty of the analyzes.
  • assembling the mixer and the purifier allows the customer ease of use and speed of implementation advantageous compared to a distribution in bottles.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Dispositif d'analyse d'un fluide comprenant; un analyseur, et un système d'alimentation en gaz d'instrumentation dudit analyseur; caractérisé en ce que le système d'alimentation comprend au moins un mélangeur générant ledit gaz d'instrumentation et au moins un épurateur situé en aval dudit au moins un mélangeur et en amont de l'analyseur.

Description

Procédé de délivrance de mélanges de gaz pour un analyseur
La présente invention concerne un dispositif d'analyse d'un fluide ainsi qu'un procédé de délivrance d'au moins un mélange de gaz vers notamment un analyseur de fluides.
Les fluides analysables peuvent être soit gazeux, soit liquides. Ils peuvent être obtenus par prélèvement direct sur un procédé industriel à des visées de contrôle qualité ou par prélèvement dans une atmosphère donnée par exemple en air ambiant à des fins de surveillance ou de contrôle.
Les analyseurs utilisés pour mesurer de faibles concentrations d'espèces chimiques dans un échantillon de fluide sont sensibles aux caractéristiques des gaz purs et mélanges de gaz qui les alimentent. Les gaz purs ou mélanges de gaz sont mis en œuvre pour conduire l'échantillon jusqu'au détecteur et pour réaliser un point « zéro » lors de l'étalonnage, indispensable dans le domaine des analyses de fluides. Ils peuvent également servir au fonctionnement du détecteur lui-même. Ces gaz purs ou mélanges de gaz sont appelés gaz d'instrumentation.
Ces gaz d'instrumentation sont par exemple, l'hélium, l'azote, l'air, ou des mélanges tels que H2/He, H2/Ar, CH4/Ar, CO2/Ar, H2/N2. La teneur en impuretés présentes dans ces gaz d'instrumentation et les spécifications de réalisation de ceux-ci sont des paramètres qui influent sur la sensibilité des analyseurs et la reproductibilité des analyses.
Les niveaux et la nature des impuretés contenues dans les gaz d'instrumentation permettent d'atteindre une qualité équivalente à une pureté de 99,999%. Les impuretés les plus fréquemment garanties sont l'humidité et les hydrocarbures. Les oxydes de carbone (CO, CO2) et l'oxygène peuvent également faire l'objet de garanties.
Du fait des réglementations toujours plus contraignantes, les laboratoires d'analyse doivent mesurer des concentrations de plus en plus faibles. L'amélioration de la performance des analyseurs est par conséquent focalisée sur leur limite de détection et leur précision. Les garanties aujourd'hui offertes pour les gaz d'instrumentation ne suffisent plus à satisfaire ces exigences aussi bien en termes de pureté que de précision de réalisation. En effet, les impuretés présentes en concentration trop importante vont perturber le bruit de fond des analyseurs dégradant ainsi leur sensibilité. La gamme des impuretés garanties peut être insuffisante et devenir une source d'interférences sur les mesures. Par exemple les impuretés garanties sont l'humidité et l'oxygène, alors que celles qui sont critiques pour l'analyse sont les hydrocarbures, une spécification supplémentaire permettra de limiter les interférences sur les analyses. Enfin, la différence entre les écarts de compositions, d'un mélange à un autre, trop élevée par rapport à la réalisation théoriquement prévue des proportions des différents composants des gaz d'instrumentation sont une source d'imprécision sur les résultats analytiques. L'exemple particulier du détecteur à ionisation de flamme (FID) comme analyseur consiste en une flamme alimentée par un mélange hydrogène/hélium et par de l'air et une plaque collectrice. L'échantillon à analyser passe à travers une flamme qui décompose les molécules organiques et produit des ions. Ceux-ci sont récupérés sur une électrode polarisée et produisent ainsi un signal électrique. Le FID est extrêmement sensible et offre une large gamme dynamique. Les FID sont utilisés pour la détection d'hydrocarbures comme par exemple le méthane, l'éthane ou encore l'acétylène. L'échantillon à analyser est mélangé au préalable avec le mélange d'instrumentation combustible dans une zone préchauffée. Les ions et les électrons formés dans la flamme sont collectés et permettent ainsi à un courant de circuler dans un circuit externe. Le courant est proportionnel au taux d'ions qui dépend de la concentration en hydrocarbures des fluides à analyser. Le courant est détecté par un électromètre approprié et affiché sur une sortie analogique. Ainsi, le FID offre une lecture rapide, précise (jusqu'au ppb) et continue de la concentration en hydrocarbures. Le FID est alimenté par deux mélanges de gaz : Hydrogène / Hélium
(H2/He) dans des proportions respectives bien définies, par exemple de 40% et 60 % et Oxygène / Azote (O2/N2) dans des proportions respectives bien définies, par exemple de 20% et 80 %. La variation des écarts par rapport à la réalisation théoriquement prévue des proportions des différents composants d'un mélange à un autre constitue une source d'incertitudes sur les résultats des analyses réalisées à l'aide de FID. Pour améliorer la fiabilité des analyses réalisées par FID, les mélanges H2/He et O2/N2, dits gaz de flamme, doivent donc présenter des précisions de réalisation stables d'un mélange à un autre permettant ainsi de limiter l'influence de ce paramètre sur les mesures. En outre le contenu en impuretés présentes dans les gaz d'instrumentation est également un facteur à prendre en considération et ce d'autant plus que des faibles teneurs (inférieures ou égales à la partie par million) doivent être analysées par FID. Ces spécifications doivent donc être améliorées pour assurer la fiabilité des analyses.
Par exemple pour les FID, les gaz de flamme sont aujourd'hui fournis en bouteilles avec des précisions de réalisation comprises entre 1 et 2 % absolus pour le contenu en Hydrogène dans le cas du mélange H2/He et entre 0.5 et 1 % absolus pour le contenu en Oxygène dans la cas du mélanges O2/N2. La variation de la composition de ces mélanges d'une bouteille à une autre est une source d'erreur pour le client final. En effet, une variation de 2 % absolus sur la concentration en H2 dans le mélange hb/He peut générer jusqu'à 30 % de variation du signal FID obtenu pour l'analyse d'hydrocarbures. De même une variation de 2 % du contenu en oxygène dans le mélange O2/N2 alimentant le FID, génère une variation de 10 % du signal FID.
En outre le contenu en impuretés est un paramètre critique pour la fiabilité des analyses. Une concentration en impuretés de 40 ppb génère une hausse du signal de 23% lorsqu'un échantillon d'air zéro est analysé par FID Total. Or à ce jour le niveau en impuretés usuellement garanti dans un mélange préparé en bouteille est compris entre 50 et 100 ppbv. Par exemple pour les FID, la fourniture en bouteilles de mélanges hb/He et O2/N2 pour alimenter les FID présente donc l'inconvénient de générer des incertitudes importantes sur les résultats d'analyses qui seront d'autant plus critiques que les teneurs à analyser seront faibles. La fourniture de tels mélanges en bouteille ne garantit donc pas une reproductibilité dans le temps, ni de leur composition, ni de leur pureté.
Cette garantie correspond à un mode de préparation des emballages et de remplissage des mélanges qui permet de réaliser un grand nombre de produits à des coûts économiquement viables. L'évolution des besoins en termes de précision et de niveaux d'impuretés garantis implique que la réalisation de ces mélanges en bouteille nécessiterait une modification des procédés et des installations existants, ce qui entraînerait une augmentation significative des coûts de production. Ainsi, il semble que pour ce types de mélanges, les limites des précisions de réalisation par les centres de conditionnement soient aujourd'hui atteintes ; tout du moins pour fabriquer un grand nombre de ces mélanges. Quant aux impuretés, les niveaux garantis fluctuent selon les sources utilisées, le procédé de préparation des bouteilles de gaz et le procédé de remplissage de ces bouteilles.
Un but de la présente invention est de pallier tout ou partie des inconvénients relevés ci-dessus.
A cette fin, l'invention, consiste en un dispositif d'analyse d'un fluide comprenant : - un analyseur, et un système d'alimentation en gaz d'instrumentation dudit analyseur; caractérisé en ce que le système d'alimentation comprend au moins un mélangeur générant ledit gaz d'instrumentation et au moins un épurateur situé en aval dudit au moins un mélangeur et en amont de l'analyseur. Selon un mode de réalisation de l'invention, le système d'alimentation en gaz d'instrumentation dudit analyseur comprend en outre au moins un épurateur situé en amont d'au moins un mélangeur.
L'avantage d'avoir un seul épurateur en aval du mélangeur est de simplifier l'ensemble du procédé de délivrance. En revanche, l'ajout d'un épurateur en amont du mélangeur permet de retirer des impuretés spécifiques d'au moins un des gaz purs en entrée que l'on ne pourrait pas retirer du mélange final en raison de contraintes techniques et/ou de sécurité.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : - L'analyseur est un détecteur à ionisation de flamme. L'analyseur peut également être choisi parmi la liste : catharomètre (TCD), détecteur à capture d'électrons (ECD), détecteur à photo-ionisation, détecteur à chimiluminescence, détecteur électrochimique, détecteur à ionisation d'hélium, détecteur à décharge ionisante, détecteur à émission de plasma, détecteur à émission atomique, analyseur de gaz réducteur.
- Par exemple un détecteur à ionisation de flamme est alimenté par deux mélanges de gaz d'instrumentation, l'un étant un mélange Hydrogène/Hélium, l'autre un mélange Oxygène/Azote ; le système d'alimentation étant constitué d'un premier épurateur situé en aval d'un premier mélangeur générant le mélange Hydrogène/Hélium et en amont de l'analyseur et d'un deuxième épurateur situé en aval d'un deuxième mélangeur générant le mélange Oxygène/Azote et en amont de l'analyseur. - En particulier, lorsque l'analyseur à alimenter est un détecteur à ionisation de flamme, le mélange Hydrogène/Hélium présente des proportions respectives de 35% à 45% en Hydrogène, de préférence 40% et de 55% à 65% en Hélium, de préférence 60% ; le mélange Oxygène/Azote présente des proportions respectives de 15% à 25% en Oxygène, de préférence 20% et de 75% à 85% en Azote, de préférence 80 %.
Ledit au moins un mélangeur comprend un composant choisi parmi un régulateur de débits massiques, des orifices soniques, des barillets d'orifices calibrés de différents diamètres ou des vannes de régulation. Le paramétrage de seuils prédéfinis pour les régulateurs de débits massiques ou l'utilisation de barillets d'orifices calibrés de différents diamètres permettent de générer des mélanges de concentrations différentes et/ou de faire varier le débit total. Des composants tels que des régulateurs ou des capteurs de pression et vannes pneumatiques peuvent être intégrés dans ledit au moins un mélangeur, pour assurer un fonctionnement optimal des organes de régulation du débit. - Ledit au moins un épurateur peut être, selon le gaz d'entré et le type d'impureté à éliminer, composé d'un ou plusieurs des éléments choisis parmi les éléments suivants: un filtre à particules, un catalyseur comprenant des métaux nobles et/ou des oxydes métalliques, un piège cryogénique, un ou plusieurs adsorbants éventuellement répartis en plusieurs lits successifs, comme par exemple, le charbon actif, l'alumine activée, ou différents types de zéolithe.
Selon un mode de réalisation de l'invention, ledit au moins un épurateur peut également comporter une alarme ou un avertissement tel qu'un signal sonore, visuel, ou autre message signalant que l'épurateur a atteint la fin de la durée de vie garantie. Un tel dispositif permet d'informer l'utilisateur pour qu'il procède soit au changement de l'épurateur soit au basculement sur une alimentation de secours lui offrant les mêmes spécifications. En variante, cette alarme peut être couplée à un arrêt automatique du mélangeur pour éviter que les analyses ne soient erronées à cause de la dégradation des performances de l'épurateur.
L'alimentation de secours peut être constituée soit d'un gaz en bouteille de composition connue, soit d'une dérivation vers un autre épurateur. En variante supplémentaire, l'épuration est assurée par un moyen d'épuration qui s'auto régénère. Un tel moyen d'épuration est par exemple un PSA (en anglais, Pressure Swing Adsorption) ou un TSA (en anglais, Température Swing Adsorption). Dans ces deux derniers exemples, deux capacités sont placées en parallèle sur le passage du gaz et remplies par un adsorbant (tel que le charbon actif, alumine activé, zéolithe). Lorsque la première permet le passage du gaz vers le mélangeur, la seconde est en régénération. Cette régénération peut se faire au moyen d'une variation de pression (PSA) ou d'une augmentation de la température sous flux de gaz (TSA).
Selon un mode de réalisation de l'invention, un régulateur de pression est situé en aval dudit au moins un épurateur.
L'invention a aussi pour objet un système d'alimentation en gaz d'instrumentation d'un analyseur de fluide, constitué d'au moins un mélangeur générant ledit gaz d'instrumentation associé à au moins un épurateur situé en aval dudit au moins un mélangeur. Ledit système d'alimentation étant intégré dans un même dispositif d'analyse de fluide.
L'invention a aussi pour objet un système d'alimentation en gaz d'instrumentation d'un détecteur à ionisation de flamme, constitué de deux mélangeurs générant chacun un mélange de gaz d'instrumentation, chaque mélangeur étant situé en amont d'un épurateur. L'invention a également pour objet l'utilisation d'un système d'alimentation tel que décrit précédemment, pour la délivrance d'au moins un mélange de gaz d'instrumentation vers un analyseur de fluide.
L'invention a encore pour objet un procédé de délivrance d'au moins un mélange de gaz vers un analyseur de fluide comprenant les étapes : a) mélange d'au moins deux gaz purs mettant en œuvre un mélangeur, b) épuration du mélange obtenu à l'étape a) au moyen d'un épurateur générant un mélange de gaz d'instrumentation pour ledit analyseur ; caractérisé par le fait que ces étapes se déroulent sur un même site au moyen d'un unique équipement.
Un tel procédé peut également comprendre une étape, d'épuration d'au moins un gaz à mélanger, antérieure à l'étape a). L'invention a encore pour objet un procédé de délivrance de deux mélanges de gaz vers un détecteur à ionisation de flamme comprenant les étapes : a) formation d'un premier mélange constitué de 40% d'hydrogène et de 60% d'hélium mettant en œuvre un premier mélangeur et formation d'un deuxième mélange constitué de 20% d'oxygène et de 80% d'azote mettant en œuvre un deuxième mélangeur, b) épuration du premier mélange obtenu à l'étape a) au moyen d'un premier épurateur générant un premier mélange de gaz d'instrumentation pour le détecteur à ionisation de flamme et épuration du deuxième mélange obtenu à l'étape a) au moyen d'un deuxième épurateur générant un deuxième mélange de gaz d'instrumentation pour ledit détecteur à ionisation de flamme ; caractérisé par le fait que ces étapes se déroulent sur un même site au moyen d'un unique équipement.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures 1 et 2.
La figure 1 représente un schéma d'un dispositif d'analyse d'un fluide selon l'invention.
- La figure 2 représente un schéma d'une variante d'un dispositif d'analyse d'un fluide selon l'invention. Sur la figure 1 est représenté un dispositif 1 d'analyse d'un fluide 2 contenu dans un réservoir 14. Le fluide 2 est par exemple un prélèvement d'air ambiant ou un échantillon de gaz d'échappement. Le dispositif 1 est constitué d'un équipement 4 ou système d'alimentation en gaz d'instrumentation d'un analyseur 3. L'équipement 4 est ici constitué de deux parties identiques, chacune constituée d'un épurateur 9 ou 10 situé en aval d'un mélangeur 7 ou 8. Les gaz G1 à G4 en entrée sont des gaz purs comme par exemple Hélium, Azote, Hydrogène, Argon, Méthane, ou Dioxyde de Carbone. Ces gaz purs sont notamment délivrés sous forme de bouteilles ou bien à partir de générateurs. Leurs spécifications en termes d'impuretés sont compatibles avec les capacités d'épuration de l'épurateur 9 ou 10 placé en amont de l'analyseur 7 ou 8.
Les technologies existantes pour le mélangeur 7 ou 8 permettent de générer des mélanges 5 ou 6 avec une incertitude inférieure ou égale à 0.5 % absolus sur la concentration du composant minoritaire. Il peut s'agir de régulateurs de débits massiques ou des orifices soniques ou des vannes de régulation.
L'épurateur 9 ou 10 permet de réduire le contenu en impuretés critiques pour l'analyse. Par exemple l'épurateur peut être un catalyseur composé d'oxydes métalliques pour convertir les hydrocarbures en CO2 et en H2O. Il peut être associé à des adsorbants permettant de piéger ces impuretés pour limiter l'impact sur la mesure.
L'ensemble de cet équipement de délivrance de mélange de gaz permet de générer des mélanges précis ayant des teneurs en impuretés faibles. L'objet de la présente invention, qui constitue une alternative aux mélanges en bouteilles, est un moyen de réduire la contribution des mélanges d'alimentation des analyseurs à l'incertitude analytique.
Les gaz purs comme G1 et G2, (ou G3 et G4) entrent dans le mélangeur 7 (respectivement 8), ce dernier fournissant un mélange G1/G2 circulant dans une conduite 12 (respectivement G3/G4 circulant dans une conduite 13). L'épurateur 9 (respectivement 10) permet de réduire le contenu en impuretés critiques du mélange G1/G2 (respectivement G3/G4) et ainsi fournir un mélange 5 (respectivement 6). Les mélanges 5 et 6 représentent chacun un gaz d'instrumentation pour l'analyse du fluide 2 issu du réservoir 14. Ledit fluide 2 circule dans une conduite 11 vers l'analyseur 3, vers lequel circulent aussi les gaz d'instrumentation. Selon un mode particulier de l'invention, l'équipement 4 est composé d'une seule section. Une section est constituée d'un mélangeur 7, d'un épurateur 9 et d'une conduite 12 dans laquelle circule le gaz d'instrumentation 5. Un dispositif selon l'invention peut aussi comporter un équipement 4 constitué de plus de deux sections. Si l'analyseur 3 est un détecteur à ionisation de flamme, l'équipement 4 ou système d'alimentation en gaz d'instrumentation comprend un premier épurateur 9 situé en aval d'un premier mélangeur 7, générant un mélange 5 Hydrogène (G1) / Hélium (G2) circulant dans la conduite 12. Un deuxième épurateur 10 est situé en aval d'un deuxième mélangeur 8, générant un mélange 6 Oxygène (G3) / Azote (G4) circulant dans la conduite 13. Cet épurateur 10 est situé en amont de l'analyseur 3 destiné à analyser le fluide 2 issu de l'échantillon 14, circulant dans la conduite 11 et se dirigeant vers l'analyseur 3 par l'entrée 17. Les mélanges 5 et 6 alimentent l'analyseur 3 via les entrées 15 et 16 et conduisent le fluide 2 de l'échantillon 14 dans la partie de l'analyseur 3 où seront réalisées les mesures. Ces gaz de flamme 5 et 6 servent également à réaliser un point « zéro » lors de l'étalonnage de l'analyseur 3.
Sur la figure 2 est représenté un dispositif 1 d'analyse d'un fluide 2 contenu dans un réservoir 14. A la différence du dispositif représenté sur la figure 1 , le dispositif ici schématisé comporte en outre au moins un épurateur, 18, 19, 20, 21 placé en amont d'au moins un mélangeur 7 ou 8. Par conséquent au moins l'un des gaz purs à mélanger pourra être épuré avant d'entrer dans le mélangeur. L'ajout d'un épurateur en amont du mélangeur permet de retirer des impuretés spécifiques d'au moins un des gaz purs G1 à G4 en entrée que l'on ne pourrait pas retirer du mélange final en raison de contraintes techniques et/ou de sécurité. Selon, les objectifs à atteindre, un seul gaz d'entrée sera épuré en amont d'au moins un mélangeur 7 et 8, ou encore plusieurs gaz d'entrée seront épurés avant d'être mélangés. Enfin, selon un mode de réalisation de l'invention, tous les gaz à mélanger seront en premier lieu épurés.
De manière générale, la solution proposée par la présente invention est donc constituée d'une part d'un mélangeur permettant de générer sur site les gaz d'instrumentation et d'autre part d'un épurateur placé en aval du mélangeur et en amont de l'analyseur. Ces deux éléments sont associés et constituent un seul équipement.
Le mélangeur permet d'assurer la stabilité de la composition du mélange dans le temps. Il peut être composé soit de régulateurs de débits massiques soit d'orifices soniques selon la dynamique de débit souhaitée par le client. L'épurateur permet d'éliminer les impuretés critiques que sont par exemple les hydrocarbures en les convertissant en CO2 et H2O, par exemple selon un procédé catalytique. Cet épurateur pouvant également comprendre un adsorbant en lits successifs permettant de piéger ces impuretés. Par exemple un premier lit de tamis pour piéger H2O et un second lit de zéolithe pour piéger le CO2. Les composants du mélangeur permettent d'obtenir une précision de réalisation du mélange inférieure ou égale à 0.5 % absolus sur la concentration du composant minoritaire. La production sur site client permet de s'affranchir des potentielles fluctuations des concentrations des mélanges formant les gaz d'instrumentation. Par exemple, dans le cas d'un FID, la production sur site client permet de s'affranchir des potentielles fluctuations de la concentration en hydrogène dans le mélange H2/He ou de celle en oxygène dans le mélange O2/N2. La garantie de cette précision permet au client d'améliorer la reproductibilité de ses analyses. L'épurateur permet d'obtenir en amont de l'analyseur un niveau d'impuretés hydrocarbonées inférieures à celle perturbant son analyse. Son fonctionnement continu permet de maintenir le « bruit de fond » de l'analyseur à des niveaux satisfaisants pour l'analyse de basses teneurs en hydrocarbures. Pour les FID les impuretés critiques sont les hydrocarbures, pour l'analyse de 100 ppbv d'hydrocarbures, l'épurateur devra permettre d'atteindre des teneurs inférieures à 10 pbbv en hydrocarbures.
L'équipement complet permet de garantir au client une stabilité de la composition du mélange dans le temps, de par la précision du mélangeur, et une pureté constante délivrée au point d'utilisation, de par les performances de l'épurateur. Cette solution présente donc l'avantage de fournir au client un mélange dont les caractéristiques essentielles sont stables au cours du temps. Ainsi la solution proposée permet de réduire la contribution des gaz d'alimentation des analyseurs à l'incertitude des analyses. En outre le fait d'assembler le mélangeur et l'épurateur permet au client une facilité d'utilisation et une rapidité de mise en œuvre avantageuses par rapport à une distribution en bouteilles.
Il doit être évident que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus.

Claims

REVENDICATIONS
1. Dispositif (1 ) d'analyse d'un fluide (2) comprenant :
- un analyseur (3), et - un système (4) d'alimentation en gaz d'instrumentation (5, 6) dudit analyseur (3) ; caractérisé en ce que le système (4) d'alimentation comprend au moins un mélangeur (7, 8) générant ledit gaz d'instrumentation (5, 6) et au moins un épurateur (9, 10) situé en aval dudit au moins un mélangeur (7, 8) et en amont de l'analyseur (3).
2. Dispositif selon la revendication 1 , dans lequel le système (4) d'alimentation en gaz d'instrumentation (5, 6) dudit analyseur (3) comprend en outre au moins un épurateur (18, 19, 20, 21 ) situé en amont d'au moins un mélangeur (7, 8).
3. Dispositif selon l'une des revendications 1 ou 2, dans lequel l'analyseur (3) est un détecteur à ionisation de flamme.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel le système d'alimentation (4) alimente l'analyseur (3) par deux mélanges de gaz d'instrumentation, l'un (5) étant un mélange Hydrogène/Hélium, l'autre (6) un mélange Oxygène/Azote ; le système d'alimentation (4) étant constitué d'un premier épurateur (9) situé en aval d'un premier mélangeur (7) générant le mélange (5) Hydrogène/Hélium et en amont de l'analyseur (3) et d'un deuxième épurateur (10) situé en aval d'un deuxième mélangeur (8) générant le mélange (6) Oxygène/Azote et en amont de l'analyseur (3).
5. Dispositif selon la revendication 4, dans lequel le système d'alimentation (4) alimente l'analyseur (3) par deux mélanges de gaz d'instrumentation, l'un (5) étant un mélange Hydrogène/Hélium dans des proportions respectives de 40% et 60 %, l'autre (6) un mélange Oxygène/Azote dans des proportions respectives de 20% et 80 %.
6. Dispositif selon l'une quelconque des revendications 1 à 5 caractérisé en ce que ledit au moins un mélangeur (7, 8) comprend au moins un composant choisi parmi un régulateur de débits massiques, des orifices soniques, des barillets d'orifices calibrés de différents diamètres ou des vannes de régulation.
7. Dispositif selon l'une quelconque des revendications 1 à 6 caractérisé en ce que ledit au moins un épurateur (9, 10) comporte un ou plusieurs des éléments choisis parmi les éléments suivants: un filtre à particules, un catalyseur comprenant des métaux nobles et/ou des oxydes métalliques et un piège cryogénique.
8. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel ledit au moins un épurateur (9, 10) comporte également au moins un adsorbant.
9. Dispositif selon l'une quelconque des revendications 1 à 8, dans lequel ledit au moins un épurateur (9, 10) comporte également un moyen d'avertissement de sa fin de durée de vie garantie.
10. Dispositif selon l'une quelconque des revendications 1 à 9 caractérisé en ce qu'un régulateur de pression est situé en aval dudit au moins un épurateur (9, 10).
11. Système (4) d'alimentation en gaz d'instrumentation (5, 6) d'un analyseur (3) de fluide (2), constitué d'au moins un mélangeur (7, 8), générant ledit gaz d'instrumentation (5, 6), associé à au moins un épurateur (9, 10) situé en aval dudit au moins un mélangeur (7, 8), caractérisé en ce qu'il est intégré dans un même dispositif (1 ), tel que défini à l'une des revendications 1 à 10.
12. Système (4) d'alimentation en gaz d'instrumentation (5, 6) d'un analyseur (3) de fluide (2) selon la revendication 11 , comportant en outre au moins un épurateur (18, 19, 20, 21) situé en amont d'au moins un mélangeur (7, 8).
13. Système (4) d'alimentation en gaz d'instrumentation (5, 6) d'un détecteur à ionisation de flamme selon l'une des revendications 11 ou 12, constitué de deux mélangeurs (7, 8) générant chacun un mélange de gaz d'instrumentation (5, 6), chaque mélangeur étant situé en amont d'un épurateur (9, 10).
14. Système (4) d'alimentation en gaz d'instrumentation (5, 6) selon la revendication 13 caractérisé en ce qu'un épurateur (18, 19, 20, 21 ) par gaz d'entrée (G1 à G4) est placé en amont de chaque mélangeur (7, 8).
15. Procédé de délivrance d'au moins un mélange de gaz (5, 6) vers un analyseur (3) de fluide (2) comprenant les étapes : a) mélange d'au moins deux gaz purs mettant en œuvre un mélangeur (7, 8), b) épuration du mélange obtenu à l'étape a) au moyen d'un épurateur (9, 10) générant un mélange de gaz d'instrumentation pour ledit analyseur (3) ; caractérisé en ce que ces étapes se déroulent sur un même site au moyen d'un unique système (4) d'alimentation en gaz d'instrumentation (5, 6) tel que défini à l'une des revendications 11 à 14.
16. Procédé de délivrance d'au moins un mélange de gaz (5, 6) vers un analyseur (3) de fluide (2) selon la revendication 15 comprenant en outre une étape, d'épuration d'au moins un gaz à mélanger, antérieure à l'étape a).
17. Utilisation d'un système d'alimentation (4) en gaz d'instrumentation (5, 6) tel que défini à l'une des revendications 11 à 14, pour la délivrance d'au moins un mélange de gaz d'instrumentation (5, 6) vers un analyseur (3) de fluide (2).
PCT/FR2008/051977 2007-11-27 2008-11-03 Procede de delivrance de melanges de gaz pour un analyseur WO2009068767A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0819670-2A BRPI0819670A2 (pt) 2007-11-27 2008-11-03 Processo de liberação de misturas de gases para um analisador
CN2008801180907A CN101878418B (zh) 2007-11-27 2008-11-03 为分析器供应气体混合物的方法
DE602008006259T DE602008006259D1 (de) 2007-11-27 2008-11-03 Verfahren und vorrichtung zur zufuhr von gasmischungen in ein analysegerät
JP2010535428A JP2011505006A (ja) 2007-11-27 2008-11-03 分析器にガス混合物を供給する方法
EP08854981A EP2215446B1 (fr) 2007-11-27 2008-11-03 Procédé et dispositif de délivrance de mélanges de gaz pour un analyseur
AT08854981T ATE505716T1 (de) 2007-11-27 2008-11-03 Verfahren und vorrichtung zur zufuhr von gasmischungen in ein analysegerät
CA2705601A CA2705601C (fr) 2007-11-27 2008-11-03 Procede de delivrance de melanges de gaz pour un analyseur
US12/745,026 US8409504B2 (en) 2007-11-27 2008-11-03 Method for supplying gas mixtures for an analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759342A FR2924222B1 (fr) 2007-11-27 2007-11-27 Procede de delivrance de melanges de gaz pour un analyseur
FR0759342 2007-11-27

Publications (1)

Publication Number Publication Date
WO2009068767A1 true WO2009068767A1 (fr) 2009-06-04

Family

ID=39523683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051977 WO2009068767A1 (fr) 2007-11-27 2008-11-03 Procede de delivrance de melanges de gaz pour un analyseur

Country Status (11)

Country Link
US (1) US8409504B2 (fr)
EP (1) EP2215446B1 (fr)
JP (1) JP2011505006A (fr)
CN (1) CN101878418B (fr)
AT (1) ATE505716T1 (fr)
BR (1) BRPI0819670A2 (fr)
CA (1) CA2705601C (fr)
DE (1) DE602008006259D1 (fr)
ES (1) ES2364409T3 (fr)
FR (1) FR2924222B1 (fr)
WO (1) WO2009068767A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028211B4 (de) * 2010-04-26 2011-11-24 Carl Von Ossietzky Universität Oldenburg Verfahren und Vorrichtung zur Detektion von Wasserstoff
DE102013008425B3 (de) * 2013-05-16 2014-05-22 Dräger Safety AG & Co. KGaA Verfahren zur Erkennung von Sensorvergiftungen und Teststation zur Durchführung des Verfahrens
US20150177200A1 (en) * 2013-12-19 2015-06-25 Dean John Richards Chromatograph with column engineering for use in oil and gas extraction
JP7029252B2 (ja) * 2017-08-31 2022-03-03 株式会社住化分析センター 水素ガス分析用キット、水素ガス分析方法及び水素ガスの品質管理方法
WO2023030678A1 (fr) 2021-08-30 2023-03-09 Linde Gmbh Procédé de fonctionnement d'un détecteur à ionisation de flamme

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214952A (en) * 1991-08-16 1993-06-01 Praxair Technology, Inc. Calibration for ultra high purity gas analysis
DE19842413C1 (de) * 1998-09-16 1999-10-28 Linde Ag Gasversorgung mit Gasen aus Gasbehältern
US20010032668A1 (en) * 2000-02-04 2001-10-25 Doty Dean L. Apparatus and method for mixing gases

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194353A (ja) * 1992-06-30 1994-07-15 Hideo Ueda キャリアガス生成方法及び装置
CN2200478Y (zh) * 1994-07-21 1995-06-14 上海水产大学 气体比例混合装置
US5524473A (en) * 1995-01-01 1996-06-11 Haskell; Weston W. Gas chromatograph flow calibrator
JPH08262000A (ja) * 1995-03-22 1996-10-11 Sankyo Co Ltd 有機化合物中のハロゲン及び硫黄の自動分析装置と、自動分析方法
FR2752459B1 (fr) * 1996-08-13 1998-10-30 Bon Tech Sa Appareil et procede de chromatographie en phase gazeuse
DE69924682T2 (de) * 1998-09-09 2005-09-29 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zur Herstellung von Wasserstoff
CN100355490C (zh) * 2006-06-01 2007-12-19 上海交通大学 多组分气体混合装置
CN200963572Y (zh) * 2006-11-01 2007-10-24 黄国强 气体混合器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214952A (en) * 1991-08-16 1993-06-01 Praxair Technology, Inc. Calibration for ultra high purity gas analysis
DE19842413C1 (de) * 1998-09-16 1999-10-28 Linde Ag Gasversorgung mit Gasen aus Gasbehältern
US20010032668A1 (en) * 2000-02-04 2001-10-25 Doty Dean L. Apparatus and method for mixing gases

Also Published As

Publication number Publication date
JP2011505006A (ja) 2011-02-17
BRPI0819670A2 (pt) 2015-05-26
EP2215446A1 (fr) 2010-08-11
CN101878418B (zh) 2012-07-25
EP2215446B1 (fr) 2011-04-13
ES2364409T3 (es) 2011-09-01
ATE505716T1 (de) 2011-04-15
DE602008006259D1 (de) 2011-05-26
CA2705601A1 (fr) 2009-06-04
CA2705601C (fr) 2016-03-22
FR2924222B1 (fr) 2009-11-13
CN101878418A (zh) 2010-11-03
FR2924222A1 (fr) 2009-05-29
US20100310419A1 (en) 2010-12-09
US8409504B2 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
EP2215446B1 (fr) Procédé et dispositif de délivrance de mélanges de gaz pour un analyseur
EP1374973B1 (fr) Procédé de régulation d'une unité de traitement, par adsorption à modulation de pression, d'un gaz de charge
US3762878A (en) Apparatus for analyzing ambient air
EP0664449B1 (fr) Procédé et dispositif de fourniture de gaz à un analyseur de traces d'impuretés dans un gaz
Bacquart et al. Hydrogen fuel quality from two main production processes: Steam methane reforming and proton exchange membrane water electrolysis
EP0419357A1 (fr) Procédé et dispositif de dosage d'impuretés dans un gaz par chromatographie en phase gazeuse et utilisation pour la calibration d'impuretés dopantes dans le silane
EP0100281B1 (fr) Appareil d'étalonnage d'analyseurs de gaz
JP4317324B2 (ja) 気体に含有されるh2sを連続的に測定する分析器およびh2sを硫黄に酸化する反応器に注入される空気のフロー率を調整するために分析器を備える装置
JP3725441B2 (ja) 気体流れ中の不純物を分析するための方法
KR100381996B1 (ko) 가스중의 미량 불순물의 분석방법 및 장치
FR2677763A1 (fr) Procede et dispositif de fourniture de gaz a un analyseur a haute sensibilite.
EP3102321B1 (fr) Dispositif d'évaluation d'au moins un critère de performance de catalyseurs hétérogènes
GB2356158A (en) Apparatus and method for analysing impurities in gases
JP5026304B2 (ja) アンモニア含有ガス中の二酸化炭素の分析方法
WO2001067092A2 (fr) Analyseur en continu de compose organiques volatils, dispositif et procede d'evaluation en continu de la qualite de l'air ambiant interieur et utilisation de ce dispositif pour le pilotage d'une installation de ventilation
FR2820505A1 (fr) Procede et dispositif de detection d'hydrocarbures dans un gaz
FR3075383A1 (fr) Dispositif et procede de controle de la purete d'un gaz
FR2835443A1 (fr) Procede et dispositif de melange de gaz
WO2023063300A1 (fr) Procédé et dispositif de mesure de la concentration d'un composant gazeux dans l'eau à l'état de trace
JP2002228636A (ja) ガス中の微量不純物の分析方法
EP1547637B1 (fr) Conditionnement en dynamique de mélanges gazeux à pression élevée, en particulier de mélange N2O/O2
FR3134994A3 (fr) Procédé de séparation avec prélèvement d’un échantillon de gaz pour analyse.
Baptista et al. Experimental study on oxygen and water removal from gaseous streams for future gas systems in LHC detectors
JPH10160696A (ja) 排ガス中の水素濃度連続分析方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118090.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08854981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2705601

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010535428

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12745026

Country of ref document: US

Ref document number: 2008854981

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0819670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100527