WO2009065983A1 - Procedimiento para la fabricación de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporación de polímeros obtenidos por técnicas de electroestirado - Google Patents

Procedimiento para la fabricación de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporación de polímeros obtenidos por técnicas de electroestirado Download PDF

Info

Publication number
WO2009065983A1
WO2009065983A1 PCT/ES2008/000720 ES2008000720W WO2009065983A1 WO 2009065983 A1 WO2009065983 A1 WO 2009065983A1 ES 2008000720 W ES2008000720 W ES 2008000720W WO 2009065983 A1 WO2009065983 A1 WO 2009065983A1
Authority
WO
WIPO (PCT)
Prior art keywords
active
intelligent
improved
materials
passive
Prior art date
Application number
PCT/ES2008/000720
Other languages
English (en)
French (fr)
Other versions
WO2009065983A8 (es
Inventor
José María LAGARON CABELLO
Sergio Torres Giner
María José OCIO ZAPATA
Enrique GIMÉNEZ TORRES
Original Assignee
Nanobiomatter, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanobiomatter, S.L. filed Critical Nanobiomatter, S.L.
Publication of WO2009065983A1 publication Critical patent/WO2009065983A1/es
Publication of WO2009065983A8 publication Critical patent/WO2009065983A8/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants

Definitions

  • the present invention relates to the design of new passive polymeric nanocomposites with improved, active, intelligent and bioactive properties, from the incorporation into materials typically used in e!
  • Packaging design of nanorefers obtained by the electro-stretching technique, for its advantageous application in the manufacture of inclusion materials in packages, packages or coatings.
  • These packages are characterized by the introduction of materials with submicron structures, whose origin is petroleum derived polymers and biopolymers, the latter being understood as long chain chemical structures whose origin is related to living organisms either natural or genetically modified.
  • the nanopr ⁇ sduci ⁇ s contained in the coated packaging material would also contain components of diverse origin, such as modified or unmodified silicated compounds, porous ceramics, compatibilizers, synthetic laminar structures, particles with antirhicrobial properties, metals and / or its " salts, antioxidants, absorbers, marine oils, minerals, vitamins, probiotics, prebiotics or symbiotics and other biological substances such as enzymes, bacteriocins or others that are used or are already being considered for use within the scope of passive containers with properties improved thermal, mechanical and barrier, active, intelligent and bioactive.
  • components of diverse origin such as modified or unmodified silicated compounds, porous ceramics, compatibilizers, synthetic laminar structures, particles with antirhicrobial properties, metals and / or its " salts, antioxidants, absorbers, marine oils, minerals, vitamins, probiotics, prebiotics or symbiotics and other biological substances such as enzymes, bacteriocins or others that are used or are already being considered for use within the
  • Example the development of sensors for defense and security, the engineering of fabrics for biomedicine, the manufacture of membranes and filters for the environment or the production of photovoltaic solar cells for the energy sector (S. Ramakrishna, K. Fujihara, WE .Teo, T. Yong, Z. Ma, R. Ramakrishna, Materials Today, 9, 40, 2006). 5 . . •
  • the electro-stretching technique in its various forms, comprises the creation of a strong electric field on the surface of a liquid or solution in which a polymeric material is generally dissolved (D. Reneker, I. Chun, D. Ertley. US Patent 6382526; A. Barrero Ripoll, A. Ga ⁇ án Calvo, I. González Loscertales,
  • nano-foods have a greater personalization by being able to adapt to the i - nutritional profile and to the health of people, so that they can release appropriate substances and retain others.
  • Another great area of interest is the development of containers with improved properties (called passive) that allow a better conservation of the product.
  • passive containers with improved properties
  • the active and intelligent packaging materials also present a great interest today. These materials a. Unlike passive, they are those that interact directly with the product and / or their environment or alert the manufacturer or the consumer when a deterioration occurs during storage, to increase one or more properties involving quality and safety. In recent years, many new materials and combinations of them have been developed to make traditionally passive packaging active. The objective of this type of package is based on making a positive change in the stored product, that is, an increase in the half-life during storage is generally pursued. This involves very diverse aspects, such as taste, safety, nutritional profile, content, oxidation stability, shelf life and color, among many others.
  • Bioactive packages may be erroneously referred to as active packages in which the components that have been added in order to improve their properties are of natural origin.
  • the main objective of these regardless of the nature of the introduced component, is none other than converting traditional foods into functional foods by incorporating them into the packaging material so that they improve its impact on consumer health.
  • bioactive packages are also commonly known as functional because of their ability to incorporate the desired bioactive principles through the materials incorporated under optimal conditions until their eventual release into food.
  • its release has been patented by its direct introduction into polymeric film coatings on packages (M. Miroslav, K. Eva, S. Vira, D. Jaroslav, V. Michal. International Patent WO2004056214).
  • the release of the component that associates the bioactivity of the package can be carried out either during storage, both quickly and in a controlled manner, or just at the moment of ingesting the food, according to the specificities and / or requirements of the functional product. That is why the main remarkable feature that is considered a bioactive container, with respect to any other type of packaging, is the direct effect that this imparts on the health of the consumer by generating a more beneficial type of food packaging ( A. López-Rubio, R. Gavara, JM. Lagarón. Trenos in Food Science & Technology ⁇ 7, 567, 2006).
  • plastic packaging materials have several limitations both in their thermal, mechanical and barrier properties to gases and electromagnetic radiation (UV, NIR or Vis) or simply lack antioxidant and biocidal properties, etc. to keep them in good condition. conditions the product packed during the storage time and it is therefore desirable to improve these properties and increase the functionality of the packaging materials, as described in the present invention.
  • the present invention relates to new application materials in passive containers and packages with improved, active, intelligent and bioactive properties obtained through the incorporation of polymers produced by electrostimulation techniques in packaging and coating materials and whose application is in the scope of packaging and coating.
  • the present invention defends the design by incorporating in typical packaging materials, functionalized polymeric materials both derived from petroleum " and from natural biological sources and / or obtained by genetic modification of microorganisms and plants, which having been electrostirated, their structure, regardless of their morphology, has a size in diameter typically less than miera (1 ⁇ m).
  • Figure 1 shows an image obtained by scanning electron microscope in which the main morphologies that can be observed in electro-stretched nanocposts according to the present invention are presented.
  • Figure 2 shows an image obtained by electronically transmitted microscope in which the introduction of natural lamellar particles of the phyllosilicate type with thermal and mechanical reinforcing properties and impervious to gases and vapors in an electro-stretched polymeric fiber according to the present is shown invention.
  • Figure 3 shows an image obtained by scanning electron microscopy of zein fibers containing a polysaccharide (5% by weight) with antimicrobial properties in its formulation.
  • Figure 4 shows a scanning electron microscope image of the fibers in Figure 1 incorporated in a matrix of polylactic acid by casting and solvent evaporation techniques.
  • the present invention relates to new application materials in passive, active, intelligent or bioactive containers and containers, obtained by the introduction of nanorefers generated by the electro-stretching technique, the procedure for their production and the use thereof in different industrial sectors
  • a first fundamental aspect of the present invention refers to a process for the elaboration of the new application materials in passive, active, intelligent or bioactive containers and packages. Said procedure comprises the following steps:
  • An electric field, source between 0 and 30 kV, preferably between 5 and 20 kV and more preferably between 10 and 15 kV.
  • a distance to the collector between 1 and 25 cm, preferably between 5 and 20 cm and more preferably between 10 and 15 cm
  • a reduction in the length of the fibers can be carried out by fracture or other techniques.
  • the reduction of the length of the nanofibers will be done through the use of crushing or cutting techniques.
  • This stage although optional, could be interesting or necessary on some occasions if the nanofibers present difficulties of being dispersed inside the plastic matrix.
  • some examples would be the use of particle reduction mills by mechanical effect, such as knife or ball mills, cuts by a microtome or the use of any other cutting system after the electro-stretching or application system during the electro-stretching process itself by incorporating cutting elements in the space between the needle and the collector.
  • a cooling system such as liquid nitrogen or dry ice (cryo-fracture) may be required.
  • a nanofiber dispersing agent is carried out.
  • the use of compatibilizing chemical compounds such as glycerol or polyethylene glycol (PEG) or other compatibilizing agents can collaborate in the adequate dispersion of nanofibers inside the matrix plastic.
  • These agents may be introduced simultaneously with the rest of the components in Ia. conformation of the container (step 3 onwards) or in the previous stage (stage 2) during the manufacture of the nanorefuerzos.
  • a plastic concentrate precipitated from a solution (wet or casting).
  • an enriched granule form obtained by a melt mixing step followed by a granulating or crushing step.
  • the fibers with or without cutting of the polymer are added dry or dispersed in solution, to the polymeric material and in addition any additive that facilitates the processing or confers optimal properties typically used in the industrial processing of plastic matrices or composites.
  • the described procedure can be performed either i) by wet additivation or casting with or without the assistance of dispersive methods such as the use of a homogenizer, an agitator or ultrasound followed by precipitation, drying and crushing of the nanocomposite, ii) by means of dry or melt mixing using proprietary plastics processing technologies (extruders or mixers) followed by a stage of pelletizing or crushing or iii) by means of the combination of the two by adding the nanorefusion dispersed in a solvent to machines of Processing of plastics by melting followed by a mixing stage and a pelletizing or crushing.
  • dispersive methods such as the use of a homogenizer, an agitator or ultrasound followed by precipitation, drying and crushing of the nanocomposite
  • the fibers of the polymers will be directly stretched on the polymer solution with or without agitation, followed by a step evaporation of the solvent and curing by adding any type of additive typically used in the industry to facilitate processing, compatibility or that generates optimum properties in the container. final.
  • the manufacture of the package is preferably carried out by fattening based on the application of successive layers of electrostirated materials and preprocessed matrix layers that will cure or adhere to each other forming multilayer materials.
  • these materials could also be pelleted and / or reprocessed and pelleted and the pellet be processed as described in the next stage.
  • final articles can be manufactured from either the pellet or the concentrate containing the fibers either pure or diluted with virgin matrix material by means of different routes typically used in the processing of plastics incorporating those other additives that help the conformation or processability of the article. Therefore, solvent evaporation or melt mixing routes will generally be used.
  • any standard procedure for the production and manufacture of plastics by mixing and melt processing can be considered valid , rolling, extrusion, coextrusion, reactive extrusion, etc.), how to solidify by solvent loss and curing such as those used in lamination, coating and forming of thermostable materials.
  • the nanofibers may also be incorporated directly as such at any stage of the processing of the plastic article or of the container if a good dispersion is obtained, therefore bypassing the alternative step of adding the dispersing agent (s) .
  • packages with improved mechanical and thermal properties are achieved due to the incorporation of electrostirated reinforcing fibers and barrier in their matrix. It is also possible to improve the barrier, gas barrier, water vapor and organic vapors properties, improve barrier properties or resistance to liquids. ; . On the other hand, the retention and / or controlled release of an active or bioactive component is also achieved and therefore it is achieved that the new packages have an antimicrobial, antioxidant, prebiotic, prebiotic or symbiotic effect.
  • a second fundamental aspect! of the present invention refers to new application materials in passive, active, intelligent or bioactive containers and containers, obtained by means of the procedure described above and in particular by the introduction of nanoreinforces generated by the electro-stretching technique. -. >
  • the nano-reinforcements used for incorporation into packaging or packaging application materials are based on ultra-thin structures of one or more layers (uniaxial or coaxial electrostating) of one or more petroleum-derived polymers as well as biopolymers such as biopolyesters (eg acid poHIáctic ⁇ , polycaprolaetone and polyhydrpxyalkanoates or other biodegradable polyesters or polyesters), polysaccharides, proteins and lipids with or without plasticizing agents, crosslinking agents and / or other additives typically used for processing and shaping these.
  • biopolyesters eg acid poHIáctic ⁇ , polycaprolaetone and polyhydrpxyalkanoates or other biodegradable polyesters or polyesters
  • polysaccharides proteins and lipids with or without plasticizing agents
  • crosslinking agents and / or other additives typically used for processing and shaping these.
  • soluble polymers and more preferably the aforementioned biopolymers will be used.
  • biopolymers generally refer to polymers that have been produced by living organisms, such as those derived from biomass or those obtained by genetic engineering techniques of microorganisms or plants (such as some polyhydroxyalkanoates and polypeptides), exceptionally it also comprises some of them of synthetic origin that are biodegradable and / or that can be formed from solutions such as polycaprolaetone.
  • plastic matrices would be the following:
  • Proteins obtained directly from natural biological sources such as zein, silk fibroin, soy, gluten or collagen.
  • PLA polylactic acid
  • Thermoplastic synthetics such as polyvinylpyrrolidone (PVP), ethylene polyterephthalate (PET), copolymers of ethylene and vinyl alcohol (EVOH), polyolefins and derivatives, other polyesters, polystyrene and thermostable materials such as epoxy resins, polyester and phenolic.
  • PVP polyvinylpyrrolidone
  • PET ethylene polyterephthalate
  • EVOH ethylene and vinyl alcohol
  • polyolefins and derivatives other polyesters
  • polystyrene and thermostable materials such as epoxy resins, polyester and phenolic.
  • porous ceramic materials of the zeolite type phyllosilicates with or without modifying or other synthetic laminar structures such as and without limiting sense double hydroxides with or without modifying and which may act as reinforcers of physical properties, absorbers of unwanted substances (amines or other components responsible for bad odors) or fixers or emitters of active and bioactive substances (such as those described in ii, iii, iv, v)
  • Active components such as antimicrobial agents such as for example and without limitation, plant derivatives, metals such as silver and copper and its salts or derivatives with antimicrobial capacity, compounds, based on extracts of natural substances or biopolymers, or as moisture controllers, antioxidants, ethylene emitters, oxygen absorbers and others.
  • antimicrobial agents such as for example and without limitation, plant derivatives, metals such as silver and copper and its salts or derivatives with antimicrobial capacity, compounds, based on extracts of natural substances or biopolymers, or as moisture controllers, antioxidants, ethylene emitters, oxygen absorbers and others.
  • Metal derivatives with microwave susceptor capacity such as and without limitation those of aluminum.
  • Enzymes such as for example Ia /? -Galactoxidase, to eliminate lactose from milk, or cross-linking enzymes or other transforming enzymes such as lacases.
  • fibers The majority morphology of these reinforcements is that of a tubular fibrillar structure and therefore they are referred to interchangeably as "fibers".
  • the electro-stretch technique will allow to develop different ones, such as the aforementioned laminar fibers (in tape), coaxial tubes or spheres, among others.
  • these fibers will be found forming a network and arranged in a disorderly manner, but by subsequent treatments it will be possible to present them in an orderly manner, in aligned networks, with porous or interlinked characteristics.
  • the technique will also allow us, depending on the biopolymer (s) used, to vary its diameters within limits. Thus the diameter of the fibers may be from a few nanometers to several microns.
  • the diameters of the fibers to be used in the development of the packages will usually be less than the mye, their majority value being close to 300 nanometers, and preferably less than one hundred nanometers. As for its length, since this could be unlimited, the fibers can measure from nanometers to much longer lengths, these being typically above the mye. In this way, the choice of the composition or morphology of the fiber will usually be determined according to the specific function to which the packaging to be developed is directed.
  • nanorefuerzos formed by polymeric nanofibers to which other hybrid components have been added, as already mentioned, will be incorporated into the materials of any layer of the packaging material by lamination or coating techniques and / or by melt mixing. Alternatively they can be introduced into sachets or woven to form sachets that will later be housed or adhered to the inside of the packages that in turn would be manufactured by plastics processing procedures such as those described or of textile products.
  • a third fundamental aspect of the invention refers to the use of these new materials and packages with advantageous application in the coatings and packaging sectors, the latter being understood as the packaging industry for products intended for the storage of products, both semi-finished as elaborated, for any industrial sector.
  • the final package to be developed is properly considered as active, intelligent or bioactive, according to the property that they carry out after introducing the electro-stretched component to the polymer matrix.
  • Example 1 Active packaging of polylactic acid by introduction of mixed electrostirated nanofibers of zein with chitosan with antimicrobial properties.
  • the fibrillar structure obtained was directly electro-stretched on a 5% by weight polylactic acid solution in chloroform and a packaging film was formed by evaporation of the solvent
  • the films were immediately placed in a desiccator to avoid losses due to moisture in their biocidal power (see Figure 4).
  • the antimicrobial assay was performed by plaque counting in contact with S. aureus, bacteria typically present in poor hygiene environments. For this, two different fiber film samples were added: 100 and 200 milligrams. It was observed that for the higher amounts of film there was an absolute death of the bacteria, while the smaller amounts significantly reduced their growth. Therefore, the application of these fibers would be in their high antibacterial activity in relation to the small amount of material used due to their high surface / volume ratio.
  • Example 2 Active packaging of polylactic acid by introduction of electro-stretched zein nanofibers containing lamellar clays with high barrier properties.
  • a mixture of zein was electro-stretched, in an identical manner to that of the previous example, from the following solution: 25% wt of total polymer dissolved in ethanol plus trifluoroacetic acid with the ratio 2 to 1 by weight.
  • Both biopolymer and clay components were dissolved separately in alcohol and then mixed at 37 ° C. These electrostatic conditions were selected: 10 centimeters away from the collector, 14,000 volts and 0.20 milliliters / hour.
  • the fibrillar structure obtained was directly stretched in several layers on films already formed of polylactic acid obtained by extrusion, from the melt.
  • the procedure was that of direct pre-stretching of a 5% solution of PLA by weight in chloroform and containing 15% polyetylenglycol on a solid extruded PLA film.
  • This layer is intended to increase the compatibility between PLA and zeina.
  • the clay-reinforced zein layer described above was electro-stretched and on this layer another layer of direct electro-stretching of a 5% by weight PLA solution in chloroform and containing 15% polyethylene glycol was added. Ie the end assembly is laminated over another film extruded PLA and pressed together by heat in a machine for hot dishes at 13O 0 C for 10 seconds under pressure.
  • its introduction in packaging would be advantageous, since it is a compound that contains one or more layers of Zein fiber with clays that present greater gas impermeability than the PLA matrix and therefore a transparent material with high gas barrier gas barrier would be manufactured. . .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

La presente invención se refiere a un procedimiento para Ia fabricación de nuevos materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante Ia incorporación de nanorefuerzos obtenidos por técnicas de electroestirado a matrices plásticas que comprende las etapas de disolver o disminuir Ia viscosidad en seco por calor de al menos un polímero, electroestirar Ia disolución o fundido obtenido, añadir las fibras electroestiradas a un material polimérico para dar lugar a un concentrado de plástico o a un enriquecido en granza y procesar y conformar el concentrado o el enriquecido en granza para constituir un material de aplicación en envases o un envase. Además Ia invención se refiere al uso de los productos obtenidos mediante el procedimiento de fabricación.

Description

Procedimiento para Ia fabricación de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante Ia incorporación de polímeros obtenidos por técnicas de electroestirado
La presente invención se refiere al diseño de nuevos nanocompuestos poliméricos pasivos con propiedades mejoradas, activos, inteligentes y bioactivos, a partir de Ia incorporación a materiales típicamente usados en e! diseño de envases, de nanorefuerzos obtenidos poMa técnica del electroestirado, para su aplicación ventajosa en Ia fabricación de materiales de inclusión en envases, envases o recubrimientos. Estos envases están caracterizados por Ia introducción de materiales con estructuras submicrométricas, cuyo origen son polímeros derivados del petróleo y biopolímeros, entendiendo por estos últimos, estructuras químicas de cadena larga cuyo origen esté relacionado con organismos vivos bien naturales o bien modificados genéticamente. Los nanoprαduciαs conlenidos en el material de envase a recubrimiento, contendrían del mismo modo en su interior componentes de diverso origen, tales como compuestos silicatados modificados o sin modificar, cerámicos porosos, compatibilizadores, estructuras laminares sintéticas, partículas con propiedades antirhicrobianas, metales y/o sus" sales, antioxidantes, absorbedores, aceites marinos, minerales, vitaminas, probióticos, prebióticos o simbióticos y otras sustancias biológicas como enzimas, bacteriocinas u otras que se emplean o están siendo ya consideradas para su utilización dentro del ámbito de los envases pasivos con propiedades térmicas, mecánicas y barrera mejoradas, activos, inteligentes y bioactivos.
Antecedentes de Ia invención
En el campo de los polímeros, una de las áreas que un mayor interés está generando, es Ia fabricación de nanofibras y nanotubos poliméricos, indistintamente conocida como Ia nanotecnología de las fibras, electrospinning o electroestirado. Aunque el proceso fue patentado hace más de cien años (WJ. Morton. US Patent 705), es más bien recientemente, cuando renace una atención especial sobre esta tecnología. Esto se debe a las nuevas posibilidades que ofrecen estos materiales electroestirados o nanocompuestos por Ia combinación única de su reducido tamaño y alta relación superficie/volumen. De esta forma, en función de las propiedades otorgadas en su origen, éstos poseen numerosas aplicaciones en diferentes campos, como por ejemplo: el desarrollo de sensores para Ia defensa y seguridad, Ia ingeniería de tejidos para Ia biomedicina, Ia fabricación de membranas y filtros para el medioambiente o Ia producción de celdas solares fotovoltaicas para el sector energético (S. Ramakrishna, K. Fujihara, W-E.Teo, T. Yong, Z. Ma, R. Ramakrishna. Materials Today, 9, 40, 2006). 5 . .
La técnica del electroestirado, en sus diversas formas, comprende Ia creación de un fuerte campo eléctrico sobre Ia superficie de un líquido o solución en Ia cual generalmente se encuentra disuelto un material' polimérico (D. Reneker, I. Chun, D. Ertley. US Patent 6382526; A. Barrero Ripoll, A. Gañán Calvo, I. González Loscertales,
10 M. Márquez Sánchez, R. Cortijo Bon. Patente ES 2180405B1). La fuerza eléctrica resultante aplicada, es capaz de generar un chorro p jet del propio líquido, el cual deviene transportador de Ia misma carga eléctrica. De hecho se conoce que dicho chorro realmente es creado por Ia inestabilidad que se produce cuando, por neutralización de cargas, el valor de la fuerza del mismo campo eléctrico se aproxima
15 a Ia tensión superficial de Ia solución resultante (D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse. Journal of Applied Physics, 87, 4531, 2000). Entonces, este chorro es expulsado y puede ser atraído por otros objetos eléctricos, de forma que es recogido en un colector que se encuentra opuestamente cargado. En el transcurso del desplazamiento, el chorro se alarga, endurece. y seca, evaporándose el disolvente
20 para dar como resultado Ia formación de una fibra ultrafina (D. Smith, D. Reneker, A. Mc Manus, H. Schreuder-Gibson, C. Mello, M. Sennett. US Patent 6753454; D. Reneker, D. Smith. International. Patent WO2006116014). No obstante, en función de los parámetros del equipo y/o las características de Ia solución polimérica, diferentes morfologías, algunas de ellas mostradas en Ia Figura 1 , han podido ser observadas,
25 tales como láminas, tubos y esferas (S. Torres-Giner, E. Giménez, J.M., Lagaron. Food Hydrocolloids, doi:10.1Ú16/j.foodhyd.2007.02.005, 2007). Estas fibras pueden, a sú vez, incorporar otros componentes, tales como materiales biológicos que doten a las mismas de nuevas propiedades (D. Reneker, D. Smith. International Patent WO2Q06133118). El equipo también permite ciertas modificaciones, como por ejemplo
30 Ia generación de un chorro coaxial (A. Barrero Ripoll, I: González Loscertales, M. Márquez Sánchez. Patente ES 2245874A1).
La industria alimentaría posee un marcado interés en los beneficios potenciales que puedan aportar los usos de los nuevos materiales fabricados por Ia nanotecnología. En
35. este sentido, se trabaja en el desarrollo de nuevos productos basados en Ia nanociencia, denominados comúnmente nanoproductos, y cuyas características aseguren innovación y seguridad al consumidor. Estos nanoproductos alimentarios o nanoalimentos, pueden dividirse en dos grandes subcategorías, en función de si entran en contacto directo o no con el producto que va a ser ingerido por el consumidor. Por una parte, Ia posibilidad de incluir ciertos nanoproductos directamente a los alimentos permitirá Ia creación productos nutracéuticos a Ia carta. El proce,so consiste en crear cápsulas comestibles basadas en nanoestructuras con Ia finalidad de mejorar ciertos alimentos y crear nuevos (A. Barrero Ripoll, A. Gañán Calvo, I. González Loscertales, R. Cortijo Bon, M: Márquez. US Patent 6989169). Estos nanoalimentos poseen una mayor personalización al poder adaptarse al perfil i - nutricional y a Ia salud de las personas, de forma que puedan liberar sustancias apropiadas y retener otras. Otra gran área de interés es el desarrollo de envases con propiedades mejoradas (denominados pasivos) que permitan una mejor conservación del producto. De- esta forma se -está trabajando en el desarrollo de películas poliméricas que, al introducir los nanoproductos funcionalizados en su interior, las dote de características mejoradas que aseguren una mayor protección de las sustancias ante efectos externos de tipo mecánico, térmico, químico o microbiológico.
Los materiales de envase activo e inteligente también presentan un gran interés en Ia actualidad. Estos materiales a. diferencia de los pasivos, son aquéllos que interactúan directamente con el producto y/o, su medio ambiente o alertan al fabricante o al consumidor cuando se produzca algún deterioro durante el proceso de almacenamiento, para incrementar una o más propiedades que impliquen calidad y seguridad. En los últimos años, muchos materiales nuevos y combinaciones de ellos se han desarrollado para volver activos envases tradicionalmente pasivos. El objetivo de este tipo de envase se basa en efectuar un cambio positivo en el producto almacenado, es decir, generalmente se persigue un incremento de Ia vida media durante su almacenamiento. Esto involucra aspectos muy diversos, tales como el sabor,, seguridad, el perfil nutritivo, el contenido, estabilidad frente a Ia oxidación, Ia vida útil y el color, entre muchos otros. Los envases bioactivos, pueden ser erróneamente referidos como envases activos en los cuales los componentes que se han añadido con el fin de mejorar sus propiedades son de origen natural. Sin embargo, el principal objetivo de éstos, con independencia de Ia naturaleza del componente introducido, no es otro que el de convertir alimentos tradicionales en alimentos funcionales mediante su incorporación en el material de envase de modo que mejoren su impacto en Ia salud del consumidor. De esta forma, los envases bioactivos son también conocidos comúnmente como funcionales por Ia capacidad de éstos de incorporar los principios bioactivos deseados a través de los materiales incorporados en condiciones óptimas hasta su liberación eventual en los alimentos. Así por ejemplo, se ha patentado su liberación mediante su introducción directa en recubrimientos de películas poliméricas sobre envases (M. Miroslav, K. Eva, S. Vira, D. Jaroslav, V. Michal. International Patent WO2004056214). La liberación del componente que asocia Ia bioactividad- del envase puede llevarse a cabo bien durante su almacenamiento, tanto de forma rápida como controlada, o bien justo al momento de ingerir el alimento, según las especificidades y/o requisitos del producto funcional. Es por ello, que Ia principal característica remarcable que se Ie considera a un envase bioactivo, con respecto a cualquier otro tipo de envase, es el efecto directo que éste imparte en Ia salud del consumidor al generar un tipo de envasado de alimentos más beneficioso (A. López-Rubio, R. Gavara, J. M.. Lagarón. Trenos in Food Science & Technology Λ7 , 567, 2006).
Breve descripción de Ia invención \
En Ia actualidad los materiales plásticos de envase presentan varias limitaciones tanto en , sus propiedades térmicas, mecánicas y de barrera a gases y a radiación electromagnética (UV, NIR or Vis) o simplemente carecen de propiedades ántioxidantes y biocida, etc.. para mantener en buenas condiciones el producto envasado durante el tiempo de almacenamiento y es por tanto deseable el mejorar estas propiedades e incrementar Ia funcionalidad de los materiales de envase, como se describe en Ia presente invención.
La presente invención se refiere a nuevos materiales de aplicación en envases y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos obtenidos a través de Ia incorporación de polímeros producidos por técnicas de electroestirado en materiales de envase y recubrimiento y cuya aplicación se encuentre en el ámbito del envasado y recubrimiento.
Más específicamente, Ia presente invención defiende el diseño mediante incorporación en materiales típicos de envase, de materiales poliméricos funcionalizados tanto derivados del petróleo" como provenientes de fuentes biológicas naturales y/o obtenidos por modificación genética de microorganismos y plantas, que habiendo sido electrostirados, su estructura, con independencia de su morfología, posea un tamaño en el diámetro típicamente inferior a Ia miera (1μm). A causa de su reducido tamaño estructural, nanométrico en muchos casos, y de su funcionalidad, su aplicación en materiales de envase resultaría ventajosa, por el hecho de mejorar las propiedades físicas, tanto, barrera, térmica o mecánica en envases pasivos así como de posibilitar Ia incorporación de sustancias activas y bioactivas, tales como antimicrobianos,, antioxidantes, secuestradores, emisores, susceptores de microondas, y bioactivas, como por ejemplo probióticos, prebióticos, simbióticos, enzimas, aceites marinos (ácidos grasos omega 3 y 6), minerales, vitaminas, antioxidantes del organismo, y permitiendo una fijación efectiva al envase o cuando sea necesario Ia liberación controlada de éstas desde las capas interiores del envase o a partir de un recubrimiento. Dichos materiales, en sus diversos diseños existentes, podrían así incorporarse, por diferentes técnicas de procesada típicamente utilizadas en la fabricación de envases', a distintas películas poliméricas para su uso tanto en el envasado de productos de interés para Ia alimentación como para aplicaciones en otros sectores.
Breve descripción de las figuras
A continuación Ia invención se describe adicionalmente con referencia a las figuras adjuntas, en las cuales:
La Figura 1 muestra una imagen obtenida por microscopio de barrido electrónico en Ia cual se presentan las principales morfologías que pueden ser observadas en nanocαmpuestos electroestirados de acuerdo a Ia presente invención.
La Figura 2 muestra una imagen obtenida por microscopio de transmisión electrónica en Ia cual se muestra Ia introducción de partículas laminares naturales del tipo filosilicatos con propiedades reforzantes a nivel térmico y mecánico e impermeables a gases y vapores en una fibra polimérica electroestirada de acuerdo a Ia presente invención. La Figura 3 muestra una imagen obtenida por microscopía de transmisión electrónica de barrido de fibras de zeina conteniendo un polisacarido (5% en peso) con propiedades antimicrobianas en su formulación.
La Figura 4 muestra una imagen por microscopio de barrido electrónico de las fibras en Ia Figura 1 incorporadas en una matriz de acido poliláctico por técnicas casting y evaporación del disolvente.
Descripción detallada de la invención
La presente invención se refiere a nuevos materiales de aplicación en envases y envases pasivos, activos, inteligentes o bioactivos, obtenidos por Ia introducción de nanorefuerzos generados mediante Ia técnica de electroestirado, al procedimiento para su producción y al uso de los mismos en distintos sectores industriales
Un primer aspecto fundamental de Ia presente invención se refiere a un procedimiento para Ia elaboración de los nuevos materiales de aplicación en envases y envases pasivos, activos, inteligentes o bioactivos. Dicho procedimiento comprende las siguientes etapas:
1) Disolver o disminuir Ia viscosidad en seco o incrementar Ia fluidez por ejemplo y sin sentido limitativo, por fundido de uno o más polímeros, y en el caso que sea necesario se añaden sustancias activas, bioactivas y/o híbridas funcionales y otros aditivos adecuados para mejorar el procesado, Ia compatibilidad u otros aditivos que se precisen para optimizar las propiedades finales de las fibras.
2) Electroestirar Ia disolución o el fundido obtenido mediante electroestirado en las siguientes condiciones:
a) Un campo eléctrico, de fuente entre 0 y 30 kV, preferentemente entre 5 y 20 kV y más preferentemente entre 10 y 15 kV. b) Un flujo de bombeó de entre 0,01 - 5 ml_/h, preferentemente entre 0,05 - 1 mL/h y más preferentemente entre 0,1 - 0,5 m!_/h
c) Una distancia al colector de entre 1 y 25 cm, preferentemente entre 5 y 20 cm y más preferentemente entre 10 y 15 cm
d) Una concentración total de polímero cuando se electroestira a partir de una disolución de 0,1 - 90% en peso, preferentemente de 0,5 - 50% en peso y más preferentemente entre 1 y 30% en peso. .
e) Cuando se electroestira á partir de disolución se hará mediante el uso de disolventes puros tipo agua, alcohol, ácidos o otros disolventes orgánicos adecuados para disolver el polímero, si bien preferiblemente se hará uso de un alcohol o ácido disuelto en agua entre 25 - 100% en peso, más preferentemente del 50 - 99% en peso y aún más preferentemente entre 75 y
95% en pesó. .
Alternativamente, durante o tras Ia etapa de electroéstirado se podrá llevar a cabo una reducción en Ia longitud de las fibras mediante fractura u otras técnicas. En el caso en que esta se lleve a cabo, Ia reducción de Ia longitud de las nanofibras se realizará mediante el uso de técnicas de triturado o corte. Esta etapa aunque opcional, podría ser interesante o necesaria en algunas ocasiones si las nanofibras presentaran dificultades de ser dispersadas en el interior de Ia matriz plástica. Dentro de los diferentes métodos, algunos ejemplos serían el empleo de molinos de reducción de partícula por efecto mecánico, como molinos de cuchillas o bolas, cortes mediante un micrótomo o el empleo de cualquier otro sistema de trocear posterior al sistema de electroéstirado o de aplicación durante el propio proceso de electroéstirado mediante Ia incorporación de elementos de corte en el espacio entre Ia aguja y el colector. Frecuentemente podría requerirse el uso de algún sistema refrigerante, como el nitrógeno líquido o hielo seco (crio-fractura).
Alternativamente, se lleva a cabo Ia introducción de un agente dispersante de las nanofibras. El uso de compuestos químicos compatibilizantes tales como glicerol o polietilenglicol (PEG) o de otros agentes compatibilizantes puede colaborar en Ia dispersión adecuada de las nanofibras en el interior del plástico matriz. Estos agentes podrán ser introducidos simultáneamente con el resto de los componentes en Ia . conformación del envase (etapa 3 en adelante) o en Ia etapa anterior (etapa 2) durante Ia fabricación de los nanorefuerzos.
. '
3) Añadir las fibras electroestiradas a un material polimérico para dar lugar a:
- un concentrado plástico precipitado a partir de una disolución (vía húmeda o casting). - un enriquecido en forma de granza obtenido mediante un paso de mezclado en fundido seguido de una etapa de granceado o triturado. Cuando el procedimiento de adición del nanorefuerzo se realiza por mezclado en fundido ' con Ia matriz, las fibras con o sin cortar del polímero son añadidas en seco o dispersas en solución, al material polimérico y además se añadirá cualquier aditivo que facilite el procesado o confiera propiedades óptimas típicamente utilizado en el procesado industrial de matrices plásticas o de composites.
Así, el procedimiento descrito se puede realizar bien i) mediante aditivación vía húmeda o casting con o sin asistencia de métodos dispersivos tales como el uso de un homogenizador, de un agitador o de ultrasonidos seguida'de una precipitación, secado y triturado del nanocompuesto, ii) mediante vía seca o mezclado en fundido utilizando tecnologías propias de procesado de plásticos (e.j. extrusoras o mezcladoras) seguidas de una etapa de granceado o triturado o iii) mediante Ia combinación de las dos por adición del nanorefuerzo disperso en un solvente a maquinas de procesado de plásticos por fundido seguidas de una etapa de mezclado y de un granceado o triturado.
Cuando el proceso de aditivación se realiza "in-situ" sobre Ia disolución del plástico (vía húmeda) que va a hacer de matriz plástica, las fibras dé los polímeros se electroestiran directamente sobre Ia disolución polimérica con o sin agitación, seguida de un paso de evaporación del disolvente y curado añadiendo cualquier tipo de aditivo típicamente usado en Ia industria para facilitar el procesado, Ia compatibilidad o que genere propiedades óptimas en el envase. final.
Cuando este proceso se realiza por electroestirado directo sobre objetos plásticos preconformados o conformados, Ia fabricación del envase se realiza preferencialmente por engorde a base de aplicación de capas sucesivas de materiales electroestirados y capas dé matriz preprocesadas y que curaran o adherirán entre si formando materiales multicapa. Alternativamente, estos materiales podrían también ser granzeados y/o reprocesadbs y granzeados y Ia granza ser procesada tal y como se describe en Ia siguiente etapa.
4) Procesar y conformar el concentrado plástico o el enriquecido en granza para constituir un material de aplicación en envases (e.j. bolsitas o sachets o películas) o un envase.
Sobré Ia base de las etapas anteriores se pueden fabricar artículos finales a partir o de Ia granza o del concentrado conteniendo las fibras bien puros o diluidos con material matriz virgen mediante distintas rutas típicamente utilizadas en el procesado de plásticos incorporando aquellos otros aditivos que ayuden a Ia conformación o a Ia procesabilidad del artículo. Por tanto, se utilizarán de manera general rutas de evaporación del disolvente o de mezclado en fundido. Para Ia producción del producto final o para Ia conformación de Ia granza o del concentrado en un artículo final puede considerarse válido tanto cualquier procedimiento estándar de producción y fabricación de plásticos por mezclado y procesado en fundido (extrusión, termoconformado, soplado, calandrado,, inyección, laminado, extrusión, coextrusión, extrusión reactiva, etc.), cómo casting por solidificación por pérdida de disolvente y curado tales como los usados en laminación, recubrimiento y conformado de materiales termoestables. Independientemente de. Ia ruta preferencial explicada con anterioridad, las nanofibras podrán ser también incorporadas directamente como tales en cualquier fase del procesado del articulo plástico o del, envase si se obtiene una buena dispersión, por tanto obviando el paso alternativo de adición del agente/s dispersante/s.
De esta manera, mediante el procedimiento descrito anteriormente se consiguen envases con propiedades mecánicas y térmicas mejoradas a causa de Ia incorporación de fibras electroestiradas reforzantes y barrera en su matriz. También se consiguen mejorar las propiedades barrera, barrera a gases, vapor de agua y vapores orgánicos, mejorar propiedades barrera o Ia resistencia a líquidos. ; . Por otra parte también se consigue Ia retención y/o liberación controlada de un componente activo o bioactivo y por tanto se consigue que los nuevos envases tengan un efecto antimicrobianό, antioxidante, prebióticα, prebiótico o simbiótico.
Un segundo aspecto fundamenta! de Ia presente invención, se refiere a nuevos materiales de aplicación en envases y envases pasivos, activos, inteligentes o bioactivos, obtenidos mediante el procedimiento descrito anteriormente y en concreto por Ia introducción de nanorefuerzos generados mediante Ia técnica de electroestirado. - . >
Los nanorefuerzos usados para incorporación en los materiales de aplicación en envasado o en envases están basados en estructuras ultrafinas de una o más capas (electrostirado uniaxial o coaxial) de uno o más polímeros derivados del petróleo así como de biopolímeros tales como biopoliesteres (ej. acido poHIácticα, policaprolaetona y polihidrpxialcanoatos u otros biopoliesteres o poliésteres biodegradables), polisacáridos, proteínas y lípidos con o sin agentes plastificantes, reticulantes y/o otros aditivos típicamente usados para el procesado y conformación de estos. Preferiblemente se utilizarán polímeros solubles y más preferiblemente los biopolímeros antes mencionados. Aunque los biopolímeros generalmente hacen referencia a polímeros que han sido producidos por organismos vivos, tales como los derivados de biomasa o los obtenidos por técnicas de ingeniería genética de microorganismos o plantas (tales como algunos polihidroxialcanoatos y polipéptidos), excepcionalmente también comprende algunos de ellos de origen sintético que tengan carácter biodegradable y/o que se puedan conformar a partir de disoluciones tales como Ia policaprolaetona. Algunos ejemplos más específicos, sin sentido limitativo, de los polímeros electroestirados recientemente con objeto de ser introducidos en. matrices plásticas serían los siguientes:
• Proteínas obtenidas directamente de fuentes naturales biológicas, como Ia zeína, Ia fibroína de Ia seda, Ia soja, el gluten o el colágeno.
• Carbohidratos de fuentes naturales como el quitosano y Ia quitina, Ia celulosa, el almidón, carragenatos, agar y alginatos. • Obtenidos a partir del procesado de productos naturales como por ejemplo el ácido poliláctico (PLA) y otros biopoliésteres aislados de biomasa.
• De origen sintético pero que poseen un carácter biodegradable, como el polialcohol de vinílo (PVA ó PVOH) y Ia policaprolactona (PCL)
• Producidos por microorganismos, como Ia familia de polihidroxialcanoatos y derivados (PHAs).
• Fabricados por ingeniería genética, como Ia elastina artificial y los polipéptidos.
' - . • Sintéticos termopíásticos tales como Ia polivinilpirrolidona (PVP), politereftalato de etileno (PET), copolímeros de etileno y alcohol vinílico (EVOH), poliolefinas y derivados, otros poHésteres, poliestireno y materiales termoestables tales como resinas epoxi, poliester y fenólicas.
Dentro de las estructuras electroesti radas de refuerzo, formadas a partir de los polímeros mencionados, diferentes componentes podrán ser a su vez introducidos, como se muestra en las figuras 2 y 3, generando un material biohíbrido, La adición de este otro compuesto no polimérico complementario sería de entre un 0,01 - 30% en peso, más específicamente entre un 0,5 - 20% en peso y preferiblemente entre 1 y 10% en peso. Según Ia naturaleza del componente, éstos quedarán divididos eri los siguientes grupos: • , i) Materiales cerámicos porosos del tipo zeolitas, filosilicatos con o sin modificar u otras estructuras laminares sintéticas tales como y sin sentido limitativo hidróxidos dobles con o sin modificar y que pueden actuar como reforzantes de propiedades físicas, absorbedores de sustancias no deseadas (aminas o otros componentes responsables de malos olores) o fijadores o emisores de sustancias activas y bioactivas (tales como las descritas en ii, iii, iv, v)
ii) Componentes activos tales como agentes antimicrobianos como por ejemplo y sin sentido limitativo, derivados de plantas, metales tales como plata y cobre y sus sales o derivados con capacidad antimicrobiana, compuestos , basados en extractos de sustancias naturales o biopolíméros, o como controladores de humedad, antioxidantes, emisores de etileno, absorbedores de oxigeno y demás.
iii) Derivados metálicos con capacidad susceptora de microondas tales como y sin sentido limitativo los de aluminio.
iv) Componentes alimentarios "funcionales" o bioactivos tales como y sin sentido limitativo aηtioxidantes, prebióticos, prebióticos y simbióticos. .
V) Enzimas tales como por ejemplo Ia /?-galactoxidasa, para eliminar lactosa de Ia leche, o enzimas entrecruzantes o otras enzimas transformantes tales como lacasas.
La morfología mayoritaria de estos refuerzos es Ia de una estructura fibrilar tubular y por tanto son referidos indistintamente como "fibras". Sin embargo, Ia técnica del electroestiradp permitirá desarrollar otras distintas, como las ya mencionadas fibras laminares (en cinta), tubos coaxiales o esferas, entre otras. Generalmente estas fibras se encontrarán formando una red y dispuestas de forma desordenada, pero mediante tratamientos ulteriores será posible presentarlas de un modo ordenado, en redes alineadas, con características porosas o interenlazadas. En Io referente a su tamaño, Ia técnica también nos permitirá, en función del biopolímero(s) empleado(s), variar sus diámetros dentro de unos límites. Así el diámetro de las fibras podrá ser de unos pocos nanómetros hasta varias mieras. Sin embargo, los diámetros de las fibras a emplear en el desarrollo de los envases serán usualmente inferiores a Ia miera, siendo su valor mayoritario próximo a los 300 nanómetros, y preferentemente menores de cien nanómetros. En cuanto a su longitud, dado que ésta podría ser ilimitada, las fibras podrán medir desde los nanómetros hasta longitudes muy superiores, estando éstas típicamente por encima de Ia miera. De esta forma, Ia elección de la composición o morfología de Ia fibra vendrá determinada habitualmente según Ia función específica a Ia cual vaya dirigido el envasé a desarrollar.
Estos nanorefuerzos, formados por las nanofibras poliméricas a las cuales han podido ser añadidos otros componentes híbridos, como ya se ha mencionado, serán incorporados en los materiales de cualquier capa del material de envase mediante técnicas de laminación o recubrimiento (casting) y/o por mezclado en fundido. Alternativamente pueden ser introducidos dentro de bolsitas (sachets) o tejerse para formar bolsitas que posteriormente se alojarán o adherirán al interior de los envases que a su vez se fabricarían por procedimientos de procesado de plásticos tales como los descritos o de productos textiles.
Un tercer aspecto fundamental de Ia invención se refiere al usó de estos nuevos materiales y envases con aplicación ventajosa en los sectores de los recubrimientos y del envase y embalaje, entendiendo por éste último a Ia industria del envasado para productos destinados al almacenamiento de productos, tanto semielaborados como elaborados, para cualquier sector industrial.
Esto se realizará con el objetivo de diseñar nuevos materiales que, no sólo mejoren parámetros de calidad y seguridad de alimentos y otros productos envasados, tales como fármacos, productos de higiene personal u otros, sino también que ejerzan una influencia directa en Ia salud del consumidor. Por tanto el envase final a desarrollar está adecuadamente considerado como activo, inteligente o bioactivo, según Ia propiedad que Ie -otorguen tras introducir el componente electroestirado a Ia matriz polimérica.
A continuación se muestran una serie de ejemplos de realización que en ningún caso se considerarán como limitantes sino para Ia mejor comprensión de Ia invención.
, Ejemplos
Ejemplo 1: Envases activos de ácido poliláctico por introducción de nanofibras electroestiradas mixtas de zeína con quitosán con propiedades antimicrobianas. Una mezcla de zeína, en proporciones desde el 1 al 10% con quitosán, se electroestiró a partir de la disolución siguiente: 25 %wt en peso de polímero total disuelto en'etanol más ácido trifluoroacético con la relación 2 a 1 en peso. Ambos polímeros fueron disueltos por separado, Ia zeína con el alcohol y el quitosán con el ácido, y luego mezclados a 370C. Se seleccionaron estas condiciones de electroestirado: 10 centímetros de distancia al colector, 14.000 voltios y 0,20 mililitros/hora. La estructura fibrilar obtenida se electroestiró directamente sobre una disolución de ácido poliláctico al 5% en peso en cloroformo y se formó una película de envase por evaporación del disolvente. Las películas fueron puestas inmediatamente en un desecador para evitar pérdidas a causa de Ia humedad en su poder biocida (ver Figura 4). El ensayo antimicrobrano se realizó por recuento en placa en contacto con de S. aureus, bacterias típicamente presentes en ambientes de poca higiene. Para ello se añadieron dos diferentes muestras de película con fibra: 100 y 200 miligramos. Se observó que para las cantidades superiores de película hubo una muerte absoluta de las bacterias, mientras que las cantidades menores redujeron considerablemente su crecimiento. Por Io tanto, Ia aplicación de - estas fibras se encontraría en su alta actividad antibacteriana en relación a Ia poca cantidad de material empleado debido a su alta relación superficie/volumen. Así su introducción en envases alimentarios resultaría ventajosa, dado que se trata de un compuesto que no sería nocivo para Ia salud, mejoraría las propiedades de Ia matriz y que en poca cantidad prevendría Ia proliferación de microorganismos responsables del deterioro del producto y Ia asociación de conocidos problemas desalud en el consumidor. ' ,
Ejemplo 2: Envases activos de ácido poliláctico por introducción de nanofibras electroestiradas de zeína conteniendo arcillas laminares con propiedades de alta barrera. Una mezcla de zeína se electroestiró,' de manera idéntica a Ia del ejemplo anterior, a partir de Ia disolución siguiente: 25 %wt de peso de polímero total disuelto en etanol más ácido trifluoroacético con Ia relación 2 a 1 en peso. Ambos componentes biopolímero y arcilla fueron disueltos por separado en alcohol y luego mezclados a 370C. Se seleccionaron estas condiciones de electroestirado: 10 centímetros de distancia al colector, 14.000 voltios y 0,20 mililitros/hora. La estructura fibrilar obtenida se electroestiró directamente en varias capas sobre películas ya formadas de ácido poliláctico obtenido por extrusión, a partir del fundido. El procedimiento fue el de electroestirado previo directo dé una disolución de PLA al 5% en peso en cloroformo y conteniendo un 15% de polyetylenglycol sobre un film sólido extruido de PLA. Esta capa tiene el objeto de incrementar Ia compatibilidad entre PLA y zeina. Sobre esta capa se electroestiró Ia capa de zeina reforzada con arcilla arriba descrita y sobre esta capa se añadió otra capa de electroestirado directo de una disolución de PLA al 5% en peso en cloroformo y conteniendo un 15% de polietilenglicol. Al ensamblado final se Ie laminó por encima otro film de PLA extruido y se prensó el conjunto por calor en una máquina de platos calientes a unos 13O0C durante 10 segundos bajo presión. Así su introducción en envases resultaría ventajosa, dado que se trata de un compuesto que contiene una o varias capas de fibra de zeína con arcillas que presentan mayor impermeabilidad a gases que Ia matriz de PLA y por tanto se fabricaría un material transparente con alta barrera a gases barrera a gases. . .

Claims

Reivindicaciones
1. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos caracterizado porque comprende las siguientes etapas: a) disolver o disminuir Ia viscosidad én seco por calor de al menos un polímero; b) electroestirar Ia disolución o fundido obtenido; c) añadir las fibras electroestiradas a un material polimérico para dar lugar a un concentrado de plástico o a un enriquecido en granza; y d) procesar y conformar el concentrado o el enriquecido en granza para constituir un material de aplicación en envases o un envase.
2. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque Ia etapa c se realiza mediante vía húmeda o cásting.
3. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según la reivindicación 1, caracterizado porqué Ia etapa c se realiza mediante vía seca o mezclado eri fundido.
4. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque se realiza mediante Ia adición del refuerzo dispersó en solución a cualquier etapa del procesado en fundido que se aplica en Ia fabricación de objetos plásticos.
5. Procedimiento para Ia fabricación de materiales y envases pasivos- con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 2, caracterizado porque las fibras de los polímeros se electroestiran in-situ, directamente sobre Ia disolución polimérica con o sin agitación, seguido de un paso de evaporación del disolvente y/o curado y añadiendo cualquier tipo de aditivo típicamente usado en Ia industria para facilitar el procesado, Ia compatibilidad o que genere propiedades óptimas en el envase final. 6. Procedimiento para Ia fabricación de materiales'y envases pasivos con propiedades mejoradas activos, inteligentes y bioactivos según Ia reivindicación 3, caracterizado porque las fibras del polímero son añadidas al material polimérico sin disolver, previo o durante al tratamiento con temperatura, además de añadir cualquier aditivo que facilite el procesado o confiera propiedades óptimas típicamente utilizado en el procesado industrial de matrices plásticas o de composites.
7. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 3, caracterizado porque las fibras son electroestiradas directamente sobre artículos plásticos o textiles preconformados o conformado para posteriormente proceder a Ia formación de materiales de envase finales por engorde a base de aplicación de capas sucesivas de materiales electroestirados y capas de matriz preprocesadas y que curaran o adherirán entre si formando materiales multicapa.
8. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 7, caracterizado porque los materiales multicapa son granzeados y/o reprocesados y granzeados para luego ser procesados utilizando cualquier tecnología típicamente usada en el procesado de plásticos o de textiles.
9. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas,, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizada porque durante Ia etapa de electroestirado se lleva a cabo una reducción en Ia longitud de las fibras mediante cualquier tecnología de corte haciendo uso o no de sistemas de refrigeración complementarios.
10. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque tras Ia etapa de electroestirado se lleva a cabo una reducción en , Ia longitud de las fibras mediante cualquier tecnología de corte haciendo uso o no de "sistemas de refrigeración complementarios.
11. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque durante Ia etapa de electroestirado se lleva a cabo Ia introducción de un agente dispersante o compatibilizante de las nanofibras.
12. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque tras Ia etapa de adición de las fibras electroestiradas a un material polimérico se lleva a cabo Ia introducción de un agente dispersante o compatibilizante de las nanofibras.
13. Procedimiento para Ia fabricación de materiales y envases activos, inteligentes y bioactivos según cualquiera de las reivindicaciones anteriores, caracterizado porque en Ia etapa 1a), se añaden sustancias activas, bioactivas, inteligentes y/o híbridas funcionales y otros aditivos para mejorar el procesado, Ia compatibilidad u otros aditivos para optimizar las propiedades finales de las fibras.
14. Procedimiento para Ia fabricación de materiales y envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos según Ia reivindicación 1 , caracterizado porque el electroestirado se lleva a cabo en las siguientes condiciones:
5 a) un campo eléctrico de fuente entre 0 y 30 kV, preferentemente entre 5 y 20 kV y más preferentemente entre 10 y 15 kV;
b) un flujo de bombeo de entre 0,01 - 5 mL/h, preferentemente entre 0,05 - 1 - mL/h y más preferentemente entre 0,1 - 0,5 mL/h;
10 • ' c) una distancia al colector de entre 1 y 25 cm, preferentemente entre 5 y 20 cm y más preferentemente entre 10 y 15 cm;
d) una concentración total de polímero cuando sé eléctroestira a partir de una 15 ' disolución de 0,1 - 90% en peso, preferentemente de 0,5 - 50% en peso y más preferentemente entre 1 y 30% en peso;
e) Cuando se eléctroestira a partir de disolución se hará mediante el uso de disolventes puros tipo agua, alcohol, ácidos o otros disolventes orgánicos
20 adecuados para disolver el polímero, si bien preferentemente se hará uso de un alcohol o ácido disuelto en agua entre 25 - 100% en peso, más preferentemente del 50 - 99% en peso y aún más preferentemente entre 75 y 95% en peso!
15. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos 25 producidos mediante el procedimiento descrito según cualquiera de las reivindicaciones anteriores 1 a 14, caracterizados porque incorporan fibras electroestiradas sobre su superficie a modo de recubrimiento o como adhesivo para ser laminados a otras estructuras preformadas o formadas.
16. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos 30 producidos según Ia reivindicación 15, caracterizados porque tienen incorporados nanorefuerzos de estructura ultrafina de al menos una capa a modo de recubrimiento o como adhesivo para ser laminados a otras estructuras preformadas o formadas.
17. Envases pasivos con propiedades mejoradas, activos, ..inteligentes y bioactivos producidos según Ia reivindicación 16, caracterizados porque los nanorefuerzos están
35 basados en polímeros derivados del petróleo y/o biopolímeros y agentes plastificantes, reticuϊantés u otros aditivos- usados para procesado y conformación de este tipo de envases. . . .
18. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación 17, caracterizado porque los biopolímeros son del grupo formado y sin sentido limitativo, por biopoliesteres, polisacáridos, proteínas, polipéptidos, lípidos y biopolímeros sintéticos incluidos los derivados de organismos modificados genéticamente. >
19. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según cualquiera de las reivindicaciones anteriores 15 a 18, caracterizados porque adicionalmente pueden incorporar dentro de las nanorefuerzos otros componentes no poliméricos y que preferiblemente serán del grupo formado por materiales cerámicos, componentes activos, derivados metálicos, componentes alimentarios, bacteriocinas y enzimas. 2Q. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos5 producidos según Ia reivindicación 19, caracterizados porque dichos componentes no poliméricos están en una proporción desde 0,01 al 30%, preferentemente desde 0,5 al 20% y más preferentemente desde 1 al 10% en peso.
21. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación 19, caracterizados porque los materiales cerámicos0 son porosos del tipo zeolitas, fijosilicatos con o sin modificar u estructuras laminares sintéticas. i
22. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación 19, caracterizados porque los componentes activos i son agentes antimicrobianos, absorbedores de oxígeno, antioxidantes, absorbedores5 de malos olores, controladores de humedad, emisores o captadores de etileno u otros componentes típicamente considerados como sistemas activos y que funcionan o bien por migración controlada o bien fijados en el matérial de envase.
23. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según la reivindicación 19, caracterizados porque los derivados metálicos0 tienen capacidad susceptora de microondas y/o capacidad antimicrobiana.
24. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación 19, caracterizados porque los componentes alimentarios son funcionales o bioactivos tales como probioticos, prebioti.cos, simbióticos, antioxjdantes del organismo, aceites marinos, minerales, vitaminas y otros5 ingredientes típicamente considerados como positivos para Ia salud humana cuando se añaden a alimentos o a nutraceuticos.
25. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación 13, caracterizado porque las fibras tienen un diámetro dentro del rango desde 1 miera a 300 nanómetros, preferentemente inferiores a 100 nanómetros. , : '
26. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según Ia reivindicación. 13, caracterizados porque las fibras tienen una longitud mayor a 1 miera.
27. Envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos producidos según cualquiera de las reivindicaciones anteriores 15 a 26, caracterizados porque los nanorefuerzos son incorporados mediante técnicas de laminación o recubrimiento o por introducción dentro de' bolsitas o tejidos para formar bolsitas
(sachets) en el interior de los envases bien sueltos o fijados en Ia estructura del envase. . 28. Uso de los materiales y envases según cualquiera de las reivindicaciones anteriores 15 a 27; para su aplicación en el sector del envasado y embalaje industrial.
29. Uso de los materiales y envases según cualquiera de las reivindicaciones anteriores 15 a 27, para su aplicación en recubrimientos para alimentos, y como materiales de envase alimentario incluyendo bebidas. 30. Uso de los materiales y envases según cualquiera de las reivindicaciones anteriores 15 a 27, para su aplicación en envases de productos para uso de higiene personal. .
31. Uso de los materiales y envases según cualquiera de las reivindicaciones anteriores 15 a 27, para su utilización en aplicaciones farmacéuticas y biomédicas. 32. Uso de los. materiales y envases según cualquiera de las reivindicaciones anteriores 15 a 27; para su aplicación en productos textiles.
PCT/ES2008/000720 2007-11-23 2008-11-17 Procedimiento para la fabricación de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporación de polímeros obtenidos por técnicas de electroestirado WO2009065983A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200703101 2007-11-23
ES200703101A ES2320618B1 (es) 2007-11-23 2007-11-23 Procedimiento para la fabricacion de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporacion de polimeros obtenidos por tecnicas de electroestirado.

Publications (2)

Publication Number Publication Date
WO2009065983A1 true WO2009065983A1 (es) 2009-05-28
WO2009065983A8 WO2009065983A8 (es) 2010-01-28

Family

ID=40667154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000720 WO2009065983A1 (es) 2007-11-23 2008-11-17 Procedimiento para la fabricación de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporación de polímeros obtenidos por técnicas de electroestirado

Country Status (2)

Country Link
ES (1) ES2320618B1 (es)
WO (1) WO2009065983A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061378A1 (es) * 2009-11-20 2011-05-26 Consejo Superior De Investigaciones Científicas (Csic) Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas
WO2011138485A1 (es) * 2010-05-04 2011-11-10 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos
WO2013017719A1 (es) * 2011-08-01 2013-02-07 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtencion de una pelicula multicapa con alta barrera, película, material y uso en envases, ingeniería de tejidoso y en un biopoliéster

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382526B1 (en) 1998-10-01 2002-05-07 The University Of Akron Process and apparatus for the production of nanofibers
ES2180405B1 (es) 2001-01-31 2004-01-16 Univ Sevilla Dispositivo y procedimiento para producir chorros liquidos compuestos multicomponentes estacionarios y capsulas multicomponente y/o multicapa de tamaño micro y nanometrico.
US6753454B1 (en) 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor
WO2004056214A2 (en) 2002-12-23 2004-07-08 Institut Of Chemical Technology, Prague Method of preparation of bioactive packaging materials
ES2245874A1 (es) 2004-03-22 2006-01-16 Universidad De Sevilla Procedimiento para generar nanotubos y nanofibras compuestas a partir de chorros coaxiales.
US6989169B2 (en) 2002-01-30 2006-01-24 Kraft Foods Holdings, Inc. Production of capsules and particles for improvement of food products
WO2006116014A2 (en) 2005-04-21 2006-11-02 The University Of Akron Process for producing fibers and their uses
WO2006133118A1 (en) 2005-06-07 2006-12-14 The University Of Akron Nanofiber structures for supporting biological materials
WO2007047662A1 (en) * 2005-10-17 2007-04-26 The University Of Akron Hybrid manufacturing platform to produce multifunctional polymeric films

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382526B1 (en) 1998-10-01 2002-05-07 The University Of Akron Process and apparatus for the production of nanofibers
US6753454B1 (en) 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor
ES2180405B1 (es) 2001-01-31 2004-01-16 Univ Sevilla Dispositivo y procedimiento para producir chorros liquidos compuestos multicomponentes estacionarios y capsulas multicomponente y/o multicapa de tamaño micro y nanometrico.
US6989169B2 (en) 2002-01-30 2006-01-24 Kraft Foods Holdings, Inc. Production of capsules and particles for improvement of food products
WO2004056214A2 (en) 2002-12-23 2004-07-08 Institut Of Chemical Technology, Prague Method of preparation of bioactive packaging materials
ES2245874A1 (es) 2004-03-22 2006-01-16 Universidad De Sevilla Procedimiento para generar nanotubos y nanofibras compuestas a partir de chorros coaxiales.
WO2006116014A2 (en) 2005-04-21 2006-11-02 The University Of Akron Process for producing fibers and their uses
WO2006133118A1 (en) 2005-06-07 2006-12-14 The University Of Akron Nanofiber structures for supporting biological materials
WO2007047662A1 (en) * 2005-10-17 2007-04-26 The University Of Akron Hybrid manufacturing platform to produce multifunctional polymeric films

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. L6PEZ-RUBIO; R. GAVARA; J. M. LAGAR6N, TRENDS IN FOOD SCIENCE & TECHNOLOGY, vol. 17, 2006, pages 567
D. H. RENEKER ET AL., JOURNAL OF APPLIED PHYSICS, vol. 87, 2000, pages 4531
S. RAMAKRISHNA ET AL., MATERIALS TODAY, vol. 9, 2006, pages 40
S. TORRES-GINER; E. GIMENEZ; J.M., LAGARON: "Food Hydrocolloids", DOI.-10.1016/J.FOODHYD.2007.02.005, 2007

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061378A1 (es) * 2009-11-20 2011-05-26 Consejo Superior De Investigaciones Científicas (Csic) Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas
ES2360437A1 (es) * 2009-11-20 2011-06-06 Consejo Superior De Investigaciones Cientificas (Csic) Desarrollo de recubrimientos electroestirados bioactivos para aplicaciones biomédicas.
WO2011138485A1 (es) * 2010-05-04 2011-11-10 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos
ES2369811A1 (es) * 2010-05-04 2011-12-07 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
WO2013017719A1 (es) * 2011-08-01 2013-02-07 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtencion de una pelicula multicapa con alta barrera, película, material y uso en envases, ingeniería de tejidoso y en un biopoliéster
ES2401616A2 (es) * 2011-08-01 2013-04-23 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de una película multicapa con alta barrera
ES2401616R1 (es) * 2011-08-01 2013-07-12 Consejo Superior Investigacion Procedimiento de obtencion de una pelicula multicapa con alta barrera

Also Published As

Publication number Publication date
ES2320618A1 (es) 2009-05-25
WO2009065983A8 (es) 2010-01-28
ES2320618B1 (es) 2010-02-26

Similar Documents

Publication Publication Date Title
ES2277563B1 (es) Procedimiento de fabricacion de materiales nanocompuestos para aplicaciones multisectoriales.
Rostamabadi et al. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations
Zubair et al. Recent advances in protein derived bionanocomposites for food packaging applications
Shoueir et al. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting
Figueroa-Lopez et al. Development of electrospun active films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil
Wu et al. Electrospinning of PLA nanofibers: Recent advances and its potential application for food packaging
Yang et al. Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications
Wang et al. Characterization and antioxidant activity of trilayer gelatin/dextran-propyl gallate/gelatin films: Electrospinning versus solvent casting
Castro-Muñoz et al. Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
de Lima et al. Recent advances on nanohybrid systems constituting clay–chitosan with organic molecules–A review
López-Córdoba et al. Electrospinning and electrospraying technologies and their potential applications in the food industry
Chen et al. Recent developments of electrospun zein nanofibres: Strategies, fabrication and therapeutic applications
ES2320618B1 (es) Procedimiento para la fabricacion de envases pasivos con propiedades mejoradas, activos, inteligentes y bioactivos mediante la incorporacion de polimeros obtenidos por tecnicas de electroestirado.
Aghababaei et al. Electrospun plant protein-based nanofibers in food packaging
Tabarestani et al. Production of food bioactive-loaded nanofibers by electrospinning
ES2369811A1 (es) Procedimiento de obtención de materiales nanocompuestos.
Mary et al. Applications of starch nanoparticles and starch‐based bionanocomposites
Jiménez et al. Antimicrobial nanocomposites for food packaging applications: novel approaches
WO2009065986A1 (es) Nuevos materiales nanocompuestos con propiedades de bloqueo de ia radiación electromagnética infrarroja, ultravioleta y visible y procedimiento para su obtención
Parhi Fabrication and characterization of PVA-based green materials
Cao et al. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review
Vaziri et al. Plant-derived biopolymers in food packaging: current status and market potential
Rastogi et al. Polymer Matrix Nanocomposites: Recent Advancements and Applications
Altay et al. Nanofibre encapsulation of active ingredients and their controlled release
Rajendran et al. Electro-spinning as a Novel Delivery Vehicle for Bioactive Compounds in Food

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08852768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08852768

Country of ref document: EP

Kind code of ref document: A1