WO2009065373A1 - Vorrichtung zur bearbeitung eines werkstücks mittels paralleler laserstrahlen - Google Patents

Vorrichtung zur bearbeitung eines werkstücks mittels paralleler laserstrahlen Download PDF

Info

Publication number
WO2009065373A1
WO2009065373A1 PCT/DE2008/001762 DE2008001762W WO2009065373A1 WO 2009065373 A1 WO2009065373 A1 WO 2009065373A1 DE 2008001762 W DE2008001762 W DE 2008001762W WO 2009065373 A1 WO2009065373 A1 WO 2009065373A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beams
laser beam
laser
reflection surfaces
reflector
Prior art date
Application number
PCT/DE2008/001762
Other languages
English (en)
French (fr)
Inventor
Matthias Küster
Christian Krieg
Gennadij Kusnezow
Marc Hüske
Original Assignee
Lpkf Laser & Electronics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lpkf Laser & Electronics Ag filed Critical Lpkf Laser & Electronics Ag
Priority to CN200880116974.9A priority Critical patent/CN101878089B/zh
Priority to JP2010534357A priority patent/JP5265695B2/ja
Priority to US12/743,628 priority patent/US8314362B2/en
Publication of WO2009065373A1 publication Critical patent/WO2009065373A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations

Definitions

  • the invention relates to a device for processing a workpiece by means of a plurality of at least approximately parallel laser beams, wherein the device is equipped with at least one focusing optics for focusing each laser beam in a common focusing plane.
  • Such a device serves in practice for the simultaneous, for example, parallel machining of the workpiece by means of the parallel laser beams.
  • a partially transmissive mirror is used as the beam splitter, which is arranged downstream of a reflector in the beam path of at least one laser beam so as to produce a parallel beam path.
  • each laser beam is focused in a common focusing plane on the workpiece.
  • a generic device is known for example from US 61 03 990 A. Furthermore, devices with a beam splitter are also described in EP 06 24 424 A1 and in US 69 27 109 B1.
  • the desired, in particular stepless adjustability of the spacing of the laser beams proves to be problematic.
  • the reflector can be made movable relative to the beam path of the other laser beam so as to produce the desired distance.
  • US 2006/0072207 A1 shows a polarization filter which is split by an electromagnetic radiation into different linearly polarized radiation. After a different number of reflections of the differently polarized radiation, the deflection takes place in the same direction.
  • JP 59218292 A 1 relates to a beam splitter, wherein in the beam path of each sub-beam, a lens and a reflector are arranged for deflecting the respective sub-beam in a common plane parallel to the focusing plane in the direction opposite to each other, arranged between the reflectors deflection.
  • the deflection surfaces are each arranged inclined relative to the focusing plane by an angle of 45 ° and arranged to be movable perpendicular to the focusing plane. In this way, a continuous adjustment of the relative distance of the adjacent laser beams to each other is achieved with an unchanged symmetry axis.
  • the invention is based on the object to provide a simple way to change the distance of the laser beams while avoiding a change in the focusing plane due to the change in distance of the parallel laser beams, so that the control effort can be kept low.
  • a change in distance should be feasible with a single drive.
  • a device in which four laser beams form at least two pairs of laser beams and each laser beam pair is formed by two opposite to an axis of symmetry equally spaced laser beams, wherein for adjusting the relative distance of the adjacent laser beams in the focusing plane each laser beam to reflection surfaces of at least two in the direction the symmetry axis, together with the focusing optics relative to each other, in particular translationally movable reflectors is deflected, wherein the number of reflections of the laser beams of the first laser beam pair corresponds to three times the number of reflections of the laser beams of the second laser beam pair on the movable reflector.
  • the first laser beam pair is related by the outer laser beams with respect to the focusing plane and the second pair of laser beams by the inner laser beams formed on the focal plane. Due to the multiple reflection of the outer pair of laser beams, the change in the distance of the outer laser beams from the symmetry axis for adjusting the changed relative distance of the laser beams is three times as large as the change in the distance of the inner laser beams from the axis of symmetry. In this way, it is possible both to maintain a fixed axis of symmetry and to ensure a matching distance of all laser beams with each other.
  • the reflectors are shifted in the direction of the axis of symmetry relative to each other by at least the reflection surfaces of a reflector are constructed on a common, electromotively movable platform.
  • the reflection surfaces can be made independently adjustable.
  • the different reflection surfaces of a reflector could be combined as separate components to form a reflector functional unit or be connected to each other in a unit.
  • a particularly advantageous embodiment of the present invention is also achieved in that the movable reflecting surfaces are designed such that each laser beam of the first laser beam pair is reflected exactly three times and each laser beam of the second laser beam pair exactly once on the reflection surfaces of the two reflectors.
  • At least one reflector has a plurality of both the first laser beam pair and the second laser beam pair associated reflection surfaces which are movable together by means of a drive.
  • the device could be equipped with a single focusing optical system, wherein the laser beams are generated by means of a beam splitter from a common radiation source.
  • each laser beam is assigned a focusing optics, so that the focal position of each individual laser beam can be adjusted independently of one another.
  • the reflection surfaces of the reflector are arranged to be movable together with the focusing optics associated with the laser beams so as to ensure a constant beam path between the focusing optics and the focusing plane. As a result, the focal position of each laser beam is unchanged, so that a change in distance is also possible without any problems during the machining process of the workpiece.
  • Another, also particularly promising modification is achieved when the reflection surfaces of each reflector and the laser beams associated focusing optics are combined to form a unit. As a result, the common movement of the reflection surfaces for adjusting the respective distance is substantially facilitated.
  • Another, likewise particularly practical embodiment of the present invention is achieved when the reflection surfaces with the focusing plane enclose an angle of 45 °, so that a course of the laser beams from the focusing optics is achieved alternately parallel and perpendicular to the focusing plane or to the axis of symmetry.
  • each reflector at least two relative to each other at an angle of 90 ° enclosing reflection surfaces, so that the laser beam emerging from the focusing and the laser beam deflected to the focusing plane parallel lines follow so as to keep the design effort and the control effort comparatively low.
  • the reflectors each have at least two reflection surfaces which are arranged parallel to reflection surfaces of the other reflector, so that the outer of the incident on the focusing plane laser beams in this area between the reflection surfaces multiple be reflected, without this could make external disturbances noticeable.
  • the reflective surfaces are fixed during use in their respective predetermined position, so as to ensure a precise beam guidance. Nevertheless, the reflection surfaces are designed such that the immovable in use immovable reflection surfaces of each reflector are adjustable.
  • the two reflectors could be movably arranged in opposite directions by means of a common drive.
  • an embodiment in which a reflector is immovable, so as to reduce the design complexity, for example due to the required sliding guides, is particularly advantageous.
  • at least the reflection surfaces of the movable reflector are expediently combined to form a structural unit.
  • Fig. 1 shows a device according to the invention in a first functional position in which four parallel laser beams to each other have a large distance
  • FIG. 2 shows the device shown in FIG. 1 in a second functional position, in which the parallel laser beams are at a small distance from one another.
  • the device 1 according to the invention for machining a workpiece 2 is shown in more detail in two functional positions with reference to FIGS. 1 and 2, in which the parallel laser beams 3 ' , 3 " , 4', 4 " on the one hand have a large one (FIG ( Figure 2) distance a ', a “have.
  • the device 1 has a plurality of in each case a laser beam 3', 3", 4 ', 4 "associated focusing optics 5 for focusing each laser beam 3', 3", 4 ', 4 "in a common focusing plane 6 on the workpiece 2.
  • the laser beams 3 ' , 3 " , 4', 4 " form an outer first laser beam pair 3 and an inner second laser beam pair 4.
  • each laser beam 3 ', 3 " , 4', 4" of each laser beam pair 3, 4 are independent of the respectively set distance a ', a " with respect to a symmetry axis 7 equidistant.
  • each laser beam 3 ', 3 “, 4 ' , 4 " is reflected by reflection surfaces 8 ' , 8 ", 9', 9 " , 10 ', 10", 11 ' , 11 ", 12 ', 12 " deflected by two reflectors 13, 14 ' , 14 " .
  • the reflection surfaces 8 ' , 8 “, 9', 9" of the central immovable reflector 13 form a structural unit, while the reflector 14 ' , 14 " movable in the direction of the arrow x is separated by a functional unit of separate reflection surfaces 10', 10", 11 ', 11 " , 12 ' , 12 " is formed.
  • the laser beams 3', 3 " of the outer first laser beam pair 3 become exactly three times and the laser beams 4 ', 4 "of the inner second laser beam pair 4.
  • each reflection surface 10 ', 10 ", 11', 11", 12 ' , 12 "of the movable reflector 14', 14" associated with this parallel reflection surface 8 ', 8 “, 9', 9” of the other reflector 13 which in each case form an angle of 45 ° with the focusing plane 6, each reflector 13, 14 ', 14 " having at least two reflection surfaces enclosing an angle of 90 ° relative to one another.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung (1) zur Bearbeitung eines Werkstücks (2) mittels mehrerer, zumindest annähernd paralleler Laserstrahlen (3', 3', 4', 4'), die ein äußeres erstes Laserstrahlenpaar (3) und ein inneres zweites Laserstrahlenpaar (4) bilden. An mehreren Reflexionsflächen (8', 8', 9', 9', 10', 10', 11', 11', 12', 12') werden die Laserstrahlen (3', 3') des äußeren ersten Laserstrahlenpaares (3) genau dreimal und die Laserstrahlen (4', 4') des inneren zweiten Laserstrahlenpaares (4) genau einmal abgelenkt. Dieses Reflexionsverhältnis von 3:1 führt dazu, dass der Abstand (a', a') aller Laserstrahlen (3', 3', 4', 4') zu dem jeweils benachbarten Laserstrahl (3', 3', 4', 4') unabhängig von der absoluten, beliebig einstellbaren Position konstant bleibt. Zur Vermeidung einer Verlagerung der Fokussierebene (6) sind dabei auch die den Laserstrahlen (3', 3', 4', 4') jeweils zugeordneten Fokussieroptiken (5) gemeinsam mit den Reflexionsflächen (10', 10', 11', 11', 12', 12') des Reflektors (14', 14') mittels eines einzigen Antriebs gemeinsam beweglich.

Description

Anmelder:
LPKF Laser & Electronics AG Osteriede 7 30827 Garbsen
Unser Zeichen: LPK-119-PCT 31.10.2008
Vorrichtung zur Bearbeitung eines Werkstücks mittels paralleler Laserstrahlen
Die Erfindung betrifft eine Vorrichtung zur Bearbeitung eines Werkstücks mittels mehrerer zumindest annähernd paralleler Laserstrahlen, wobei die Vorrichtung mit zumindest einer Fokussieroptik zum Fokussieren jedes Laserstrahls in eine gemeinsame Fokussierebene ausgestattet ist.
Eine solche Vorrichtung dient in der Praxis der zeitgleichen, beispielsweise parallelen Bearbeitung des Werkstücks mittels der parallelen Laserstrahlen. Bei einer einfachen Bauform wird als Strahlteiler ein teildurchlässiger Spiegel eingesetzt, dem im Strahlengang zumindest eines Laserstrahls ein Reflektor nachgeordnet ist, um so einen parallelen Strahlengang zu erzeugen. Mittels einer Fokussieroptik wird jeder Laserstrahl in eine gemeinsame Fokussierebene auf das Werkstück fokussiert.
Eine gattungsgemäße Vorrichtung ist beispielsweise durch die US 61 03 990 A bekannt. Weiterhin sind Vorrichtungen mit einem Strahlteiler auch in der EP 06 24 424 A1 sowie in der US 69 27 109 B1 beschrieben.
Als problematisch erweist sich in der Praxis die gewünschte, insbesondere stufenlose Einstellbarkeit des Abstands der Laserstrahlen. Hierzu kann der Reflektor gegenüber dem Strahlengang des anderen Laserstrahls verfahrbar ausgeführt sein, um so den gewünschten Abstand zu erzeugen.
Als nachteilig erweist sich bei diesem Lösungsvorschlag die mit der Abstandsänderung zugleich verbundene Änderung der Mittellage der beiden Laserstrahlen, die durch eine überlagerte Bewegung der gesamten Vorrichtung ausgeglichen werden muss. Insbesondere müssen die Laserstrahlen um einen jeweils abweichenden Betrag verfahren werden, was in der Praxis entsprechende separate Antriebe erfordert. Die US 2006/0072207 A1 zeigt einen Polarisationsfilter, der durch eine elektromagnetische Strahlung aufgeteilt wird in unterschiedliche linear polarisierte Strahlung. Nach einer unterschiedlichen Anzahl von Reflexionen der unterschiedlich polarisierten Strahlung erfolgt die Ablenkung in dieselbe Richtung.
Die JP 59218292 A 1 bezieht sich auf einen Strahlteiler, wobei im Strahlengang jedes Teilstrahls eine Linse sowie ein Reflektor angeordnet sind zur Umlenkung des jeweiligen Teilstrahls in eine gemeinsame Ebene parallel zu der Fokussierebene in Richtung aufeinander gegenüberliegende, zwischen den Reflektoren angeordnete Umlenkflächen. Die Umlenkflächen sind jeweils gegenüber der Fokussierebene um einen Winkel von 45° geneigt angeordnet und senkrecht zur Fokussierebene beweglich angeordnet. Auf diese Weise wird eine stufenlose Einstellung des relativen Abstands der benachbarten Laserstrahlen zueinander bei unveränderter Symmetrieachse erreicht.
Der Erfindung liegt die Aufgabe zu Grunde, eine einfache Möglichkeit zur Änderung des Abstands der Laserstrahlen zu schaffen und dabei eine Änderung der Fokussierebene aufgrund der Abstandsänderung der parallelen Laserstrahlen zu vermeiden, sodass der Steuerungsaufwand gering gehalten werden kann. Insbesondere soll eine Abstandsänderung mit einem einzigen Antrieb realisierbar sein.
Diese Aufgabe wird erfindungsgemäß mit einer Vorrichtung gemäß den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche betreffen besonders zweckmäßige Weiterbildungen der Erfindung.
Erfindungsgemäß ist also eine Vorrichtung vorgesehen, bei der vier Laserstrahlen zumindest zwei Laserstrahlenpaare bilden und jedes Laserstrahlenpaar durch zwei gegenüber einer Symmetrieachse gleich beabstandete Laserstrahlen gebildet ist, wobei zur Einstellung des relativen Abstands der benachbarten Laserstrahlen in der Fokussierebene jeder Laserstrahl an Reflexionsflächen von zumindest zwei in Richtung der Symmetrieachse gemeinsam mit der Fokussieroptik relativ zueinander, insbesondere translatorisch beweglichen Reflektoren ablenkbar ist, wobei die Anzahl der Reflexionen der Laserstrahlen des ersten Laserstrahlenpaares dem dreifachen der Anzahl der Reflexionen der Laserstrahlen des zweiten Laserstrahlenpaares auf dem beweglichen Reflektor entspricht. In überraschender Weise wird somit erstmals eine stufenlose Einstellung des relativen Abstands der benachbarten Laserstrahlen zueinander bei unveränderter Symmetrieachse erreicht. Dabei ist das erste Laserstrahlenpaar durch die äußeren Laserstrahlen in Bezug auf die Fokussierebene und das zweite Laserstrahlenpaar durch die inneren Laserstrahlen in Bezug auf die Fokussierebene gebildet. Aufgrund der mehrfachen Reflexion des äußeren Laserstrahlenpaares ist die Abstandsänderung der äußeren Laserstrahlen von der Symmetrieachse zur Einstellung des geänderten Relativabstands der Laserstrahlen untereinander dreimal so groß wie die Abstandsänderung der inneren Laserstrahlen von der Symmetrieachse. Auf diese Weise gelingt es, sowohl eine feste Symmetrieachse einzuhalten als auch einen übereinstimmenden Abstand aller Laserstrahlen untereinander sicherzustellen. Hierzu werden die Reflektoren in Richtung der Symmetrieachse relativ zueinander verschoben, indem zumindest die Reflexionsflächen eines Reflektors auf einer gemeinsamen, elektromotorisch verfahrbaren Plattform aufgebaut sind. Selbstverständlich können die Reflexionsflächen unabhängig voneinander justierbar ausgeführt sein. Weiterhin könnten die verschiedenen Reflexionsflächen eines Reflektors als separate Bauelemente zu einer den Reflektor bildenden Funktionseinheit zusammengefasst sein oder aber in einer Baueinheit miteinander verbunden sein.
Eine besonders vorteilhafte Ausführungsform der vorliegenden Erfindung wird auch dadurch erreicht, dass die beweglichen Reflexionsflächen derart ausgeführt sind, dass jeder Laserstrahl des ersten Laserstrahlenpaares genau dreimal und jeder Laserstrahl des zweiten Laserstrahlenpaares genau einmal an den Reflexionsflächen der beiden Reflektoren reflektiert wird. Hierdurch wird in überraschend einfacher Weise aufgrund der mehrfachen Reflexion der Laserstrahlen eine Verdreifachung der Verlagerung quer zu der Symmetrieachse erreicht, die dem erforderlichen Betrag der Verlagerung zur Einhaltung übereinstimmender Abstände aller Laserstrahlen entspricht.
Eine weitere, besonders zweckmäßige Ausgestaltung der Erfindung wird dadurch erreicht, dass zumindest ein Reflektor mehrere sowohl dem ersten Laserstrahlenpaar als auch dem zweiten Laserstrahlenpaar zugeordnete Reflexionsflächen aufweist, die mittels eines Antriebs gemeinsam beweglich sind. Hierdurch erfolgt insbesondere die Ablenkung aller Laserstrahlen in die Fokussierebene an demselben Reflektor, welcher somit als eine Baueinheit und so zugleich mit einem vergleichsweise geringen Aufwand herstellbar ist.
Grundsätzlich könnte die Vorrichtung mit einer einzigen Fokussieroptik ausgestattet sein, wobei die Laserstrahlen mittels eines Strahlteilers aus einer gemeinsamen Strahlungsquelle erzeugt werden. Besonders praxisgerecht ist es hingegen, wenn jedem Laserstrahl eine Fokussieroptik zugeordnet ist, sodass die Fokuslage jedes einzelnen Laserstrahls unabhängig voneinander justierbar ist. Dabei ist es zudem besonders zweckmäßig, wenn die Reflexionsflächen des Reflektors gemeinsam mit der den Laserstrahlen zugeordneten Fokussieroptik beweglich angeordnet sind, um so einen konstanten Strahlweg zwischen der Fokussieroptik und der Fokussierebene sicherzustellen. Dadurch ist die Fokuslage jedes Laserstrahls unverändert, sodass eine Abstandsänderung auch während des Bearbeitungsprozesses des Werkstücks problemlos möglich ist.
Eine andere, ebenfalls besonders Erfolg versprechende Abwandlung wird dann erreicht, wenn die Reflexionsflächen jedes Reflektors sowie die den Laserstrahlen zugeordnete Fokussieroptik zu einer Baueinheit zusammengefasst sind. Hierdurch wird die gemeinsame Bewegung der Reflexionsflächen zur Einstellung des jeweiligen Abstands wesentlich erleichtert.
Eine andere, ebenfalls besonders praxisgerechte Ausführungsform der vorliegenden Erfindung wird dann erreicht, wenn die Reflexionsflächen mit der Fokussierebene einen Winkel von 45° einschließen, sodass ein Verlauf der Laserstrahlen ausgehend von der Fokussieroptik abwechselnd parallel und senkrecht zur Fokussierebene bzw. zur Symmetrieachse erreicht wird.
Dabei weist jeder Reflektor zumindest zwei relativ zueinander einen Winkel von 90° einschließende Reflexionsflächen auf, sodass der aus der Fokussieroptik austretende Laserstrahl und der auf die Fokussierebene abgelenkte Laserstrahl parallelen Geraden folgen, um so den konstruktiven Aufwand sowie auch den Steuerungsaufwand vergleichsweise gering zu halten.
Eine andere, ebenfalls besonders sinnvolle Abwandlung der vorliegenden Erfindung wird dann erreicht, wenn die Reflektoren jeweils zumindest zwei Reflexionsflächen aufweisen, die zu Reflexionsflächen des jeweils anderen Reflektors parallel angeordnet sind, sodass die äußeren der auf die Fokussierebene auftreffenden Laserstrahlen in diesem Bereich zwischen den Reflexionsflächen mehrfach reflektiert werden, ohne dass sich dabei äußere Störeinflüsse bemerkbar machen könnten.
Die Reflexionsflächen sind während des Gebrauchs in ihrer jeweils vorbestimmten Stellung festgelegt, um so eine exakte Strahlführung zu gewährleisten. Dennoch sind die Reflexionsflächen derart ausgeführt, dass die im Gebrauch zueinander unbeweglichen Reflexionsflächen jedes Reflektors einstellbar sind. Die beiden Reflektoren könnten mittels eines gemeinsamen Antriebs in entgegensetzten Richtungen beweglich angeordnet sein. Besonders vorteilhaft ist demgegenüber eine Ausführungsform, bei der ein Reflektor unbeweglich ausgeführt ist, um so den konstruktiven Aufwand, beispielsweise aufgrund der erforderlichen Schiebeführungen, zu verringern. Dabei werden zweckmäßigerweise zumindest die Reflexionsflächen des beweglichen Reflektors zu einer Baueinheit zusammengefasst.
Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in einer Prinzipskizze
Fig. 1 eine erfindungsgemäße Vorrichtung in einer ersten Funktionsstellung, in der vier parallele Laserstrahlen zueinander einen großen Abstand aufweisen
Fig. 2 die in der Figur 1 gezeigte Vorrichtung in einer zweiten Funktionsstellung, in der die parallelen Laserstrahlen zueinander einen geringen Abstand aufweisen.
Die erfindungsgemäße Vorrichtung 1 zur Bearbeitung eines Werkstücks 2 wird anhand der Figuren 1 und 2 in zwei Funktionsstellungen näher dargestellt, in welchen die parallelen Laserstrahlen 3', 3", 4', 4" zueinander einerseits einen großen (Figur 1), andererseits einen geringen (Figur 2) Abstand a', a" aufweisen. Die Vorrichtung 1 hat mehrere jeweils einem Laserstrahl 3', 3", 4', 4" zugeordnete Fokussieroptiken 5 zum Fokussieren jedes Laserstrahls 3', 3", 4', 4" in eine gemeinsame Fokussierebene 6 auf dem Werkstück 2. Die Laserstrahlen 3', 3", 4', 4" bilden ein äußeres erstes Laserstrahlenpaar 3 und ein inneres zweites Laserstrahlenpaar 4. Die Laserstrahlen 3', 3", 4', 4" jedes Laserstrahlenpaares 3, 4 sind unabhängig von dem jeweils eingestellten Abstand a', a" gegenüber einer Symmetrieachse 7 gleich beabstandet. Bevor die Laserstrahlen 3', 3", 4', 4" ausgehend von der jeweiligen Fokussieroptik 5 auf das Werkstück 2 treffen wird jeder Laserstrahl 3', 3", 4', 4" an Reflexionsflächen 8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12" von zwei Reflektoren 13, 14', 14" abgelenkt. Dabei bilden die Reflexionsflächen 8', 8", 9', 9" des zentralen unbeweglichen Reflektors 13 eine Baueinheit, während der in Pfeilrichtung x bewegliche Reflektor 14', 14" durch eine Funktionseinheit separater Reflexionsflächen 10', 10", 11 ', 11 ", 12', 12" gebildet ist. An den Reflexionsflächen 8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12" werden die Laserstrahlen 3', 3" des äußeren ersten Laserstrahlenpaares 3 genau dreimal und die Laserstrahlen 4', 4" des inneren zweiten Laserstrahlenpaares 4 genau einmal abgelenkt. Dieses Reflexionsverhältnis von 3:1 führt dazu, dass eine Relativbewebung der Reflektoren 13, 14', 14" um den Betrag Δx in Pfeilrichtung x parallel zu der Symmetrieachse 7 zu einer Verlagerung der äußeren Laserstrahlen 3', 3" gegenüber den inneren Laserstrahlen 4', 4" um den dreifachen Betrag führt mit der Folge, dass der Abstand a', a" aller Laserstrahlen 3', 3", 4', 4" zu dem jeweils benachbarten Laserstrahl 3', 3", 4', 4" unabhängig von der absoluten Position in dem Verhältnis von a" = a'+ 2Δx immer konstant bleibt. Zur Vermeidung einer Verlagerung der Fokussierebene 6 sind dabei auch die den Laserstrahlen 3', 3", 4', 4" jeweils zugeordneten Fokussieroptiken 5 gemeinsam mit dem Reflexionsflächen 10', 10", 11 ', 11 ", 12', 12" des Reflektors 14', 14" mittels eines nicht gezeigten Antriebs gemeinsam beweglich. Dabei ist jeder Reflexionsfläche 10', 10", 11 ', 11 ", 12', 12" des beweglichen Reflektors 14', 14" eine zu dieser parallele Reflexionsfläche 8', 8", 9', 9" des anderen Reflektors 13 zugeordnet, die jeweils für sich mit der Fokussierebene 6 einen Winkel von 45° einschließen, wobei jeder Reflektor 13, 14', 14" zumindest zwei relativ zueinander einen Winkel von 90° einschließende Reflexionsflächen aufweist.

Claims

Anmelder:LPKF Laser & Electronics AG Osteriede 7 30827 GarbsenUnser Zeichen: LPK-119-PCT 31.10.2008PATENTANSPRÜC HE
1. Vorrichtung (1) zur Bearbeitung eines Werkstücks (2) mittels mehrerer paralleler Laserstrahlen (3', 3", 4', 4"), wobei die Vorrichtung (1) mit zumindest einer Fokussieroptik
(5) zum Fokussieren jedes Laserstrahls (3', 3", 4', 4") in eine gemeinsame Fokussierebene
(6) ausgestattet ist, dadurch gekennzeichnet, dass die Laserstrahlen (3', 3", 4', 4") zumindest zwei Laserstrahlenpaare (3, 4) bilden und jedes Laserstrahlenpaar (3, 4) durch zwei gegenüber einer Symmetrieachse (7) gleich beabstandete Laserstrahlen (3', 3"und 4', 4") gebildet ist, wobei zur Einstellung des relativen Abstands (a', a") der benachbarten Laserstrahlen (3', 3", 4', 4") in der Fokussierebene (6) jeder Laserstrahl (3', 3", 4', 4") an Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") von zwei in Richtung der Symmetrieachse (7) gemeinsam mit der Fokussieroptik (5) relativ zueinander beweglichen Reflektoren (13, 14', 14") abgelenkt wird, wobei die Anzahl der Reflexionen der Laserstrahlen (3', 3") des ersten Laserstrahlenpaares (3) auf den Reflektoren (13, 14', 14") dem dreifachen der Anzahl der Reflexionen der Laserstrahlen (4', 4") des zweiten Laserstrahlenpaares (4) auf den Reflektoren (13, 14', 14") entspricht, wobei die Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") gegenüber der Symmetrieachse (7) einen Winkel von + 45° oder - 45° aufweisen.
2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass das erste Laserstrahlenpaar (3) durch die äußeren Laserstrahlen (3', 3") in Bezug auf die Fokussierebene (6) und das zweite Laserstrahlenpaar (4) durch die inneren Laserstrahlen (4', 4") in Bezug auf die Fokussierebene (6) gebildet sind.
3. Vorrichtung (1) nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die beweglichen Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") derart ausgeführt sind, dass jeder Laserstrahl (3', 3") des ersten Laserstrahlenpaares (3) genau dreimal und jeder Laserstrahl (4', 4") des zweiten Laserstrahlenpaares (4) genau einmal an den Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") der beiden Reflektoren (13, 14', 14") reflektiert wird.
4. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Reflektor (13, 14', 14") mehrere sowohl dem ersten Laserstrahlenpaar (3) als auch dem zweiten Laserstrahlenpaar (4) zugeordnete Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") aufweist, die mittels eines Antriebs gemeinsam beweglich sind.
5. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass den Laserstrahlen (3', 3", 4', 4") jeweils eine Fokussieroptik (5) zugeordnet ist.
6. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (8', 8", 9', 9") eines der Reflektoren (13, 14', 14") mit der den Laserstrahlen (3', 3", 4', 4") zugeordneten Fokussieroptik (5) verbunden und gemeinsam mit dieser beweglich angeordnet sind.
7. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (10', 10", 11 ', 11 ", 12', 12") der beiden Reflektoren (13, 14', 14") mit der den Laserstrahlen (3', 3", 4', 4") zugeordneten Fokussieroptik (5) verbunden und gemeinsam mit dieser beweglich angeordnet sind.
8. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") jedes Reflektors (13, 14', 14") sowie die den Laserstrahlen (3', 3", 4', 4") zugeordnete Fokussieroptik (5) jeweils zu einer Baueinheit zusammengefasst sind.
9. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") mit der Fokussierebene (6) einen Winkel von + 45° oder - 45° einschließen.
10. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Reflektor (13, 14', 14") zumindest zwei relativ zueinander einen Winkel von 90° einschließende Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") aufweist.
11. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Reflektor (13, 14', 14") zumindest eine Reflexionsfläche (8", 9', 10', 11 ', 12") mit einem Winkel von + 45° und zumindest eine Reflexionsfläche (8', 9", 10", 11 ", 12') mit einem Winkel von - 45° relativ zur Symmetrieachse (7) aufweist.
12. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (8', 9', 11 ', 12') derart ausgeführt sind, dass ein erster Laserstrahl (3') des ersten Laserstrahlenpaares (3) genau einmal an zwei der um
- 45° geneigten Reflexionsflächen (8', 12') und genau zweimal an zwei der um + 45° geneigten Reflexionsflächen (9', 11 ') der Reflektoren (13, 14', 14") reflektiert wird.
13. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsflächen (8", 9", 11 ", 12") derart ausgeführt sind, dass ein zweiter Laserstrahl (3") des ersten Laserstrahlenpaares (3) genau einmal an zwei der um + 45° geneigten Reflexionsflächen (8", 12") und genau zweimal an zwei der um
- 45° geneigten Reflexionsflächen (9", 11 ") der Reflektoren (13, 14', 14") reflektiert wird.
14. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflektoren (13, 14', 14") jeweils zumindest zwei Reflexionsflächen (8', 8", 9', 9") aufweisen, die zu Reflexionsflächen (10', 10", 11 ', 11 ", 12', 12") des jeweils anderen Reflektors (13, 14', 14") parallel angeordnet sind.
15. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die im Gebrauch zueinander unbeweglichen Reflexionsflächen (8', 8", 9', 9", 10', 10", 11 ', 11 ", 12', 12") jedes Reflektors (13, 14', 14") einstellbar sind.
16. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Reflektor (13, 14', 14") unbeweglich ausgeführt ist.
17. Vorrichtung (1) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Symmetrieachse (7) senkrecht zur Bearbeitungsfläche (6) angeordnet ist.
PCT/DE2008/001762 2007-11-21 2008-10-31 Vorrichtung zur bearbeitung eines werkstücks mittels paralleler laserstrahlen WO2009065373A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880116974.9A CN101878089B (zh) 2007-11-21 2008-10-31 用于借助于平行的激光射线加工工件的装置
JP2010534357A JP5265695B2 (ja) 2007-11-21 2008-10-31 平行なレーザー光を用いて加工片を加工するための装置
US12/743,628 US8314362B2 (en) 2007-11-21 2008-10-31 Device for machining a workpiece by means of parallel laser beams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007056254.5 2007-11-21
DE102007056254A DE102007056254B4 (de) 2007-11-21 2007-11-21 Vorrichtung zur Bearbeitung eines Werkstücks mittels paralleler Laserstrahlen

Publications (1)

Publication Number Publication Date
WO2009065373A1 true WO2009065373A1 (de) 2009-05-28

Family

ID=40451410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001762 WO2009065373A1 (de) 2007-11-21 2008-10-31 Vorrichtung zur bearbeitung eines werkstücks mittels paralleler laserstrahlen

Country Status (6)

Country Link
US (1) US8314362B2 (de)
JP (1) JP5265695B2 (de)
CN (1) CN101878089B (de)
DE (1) DE102007056254B4 (de)
TW (1) TWI406730B (de)
WO (1) WO2009065373A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499791A (zh) * 2015-12-22 2016-04-20 中国航空工业集团公司北京航空制造工程研究所 分束激光聚焦同轴熔丝激光头和激光同轴熔丝成形设备
CN112658472A (zh) * 2020-12-15 2021-04-16 华能新能源股份有限公司 一种屋脊式激光分光系统和方法
DE102021102387A1 (de) 2021-02-02 2022-08-04 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
DE102022109318A1 (de) 2022-04-14 2023-10-19 4Jet Microtech Gmbh Laserbearbeitungsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2015813A (en) * 1978-03-03 1979-09-12 Hitachi Ltd Method of treating object by laser beam and apparatus therefor
JPS6340694A (ja) * 1986-08-04 1988-02-22 Toyota Motor Corp レ−ザ−光の形成方法
EP0624424A1 (de) * 1991-11-21 1994-11-17 Japan Tobacco Inc. Vorrichtung zum Bohren von Löchern in eine Papierbahn
US6103990A (en) * 1998-09-21 2000-08-15 International Business Machines Corporation Laser texturing system providing even heating of textured spots on a rotating disk

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218292A (ja) * 1983-05-25 1984-12-08 Mitsubishi Electric Corp レ−ザ加工装置
US6252715B1 (en) * 1997-03-13 2001-06-26 T. Squared G, Inc. Beam pattern contractor and focus element, method and apparatus
JPH10328873A (ja) * 1997-06-04 1998-12-15 Nikon Corp レーザ加工装置
JP4827276B2 (ja) 1999-07-05 2011-11-30 株式会社半導体エネルギー研究所 レーザー照射装置、レーザー照射方法及び半導体装置の作製方法
KR100508329B1 (ko) * 2002-03-28 2005-08-17 미쓰비시덴키 가부시키가이샤 레이저 가공장치
US20060072207A1 (en) * 2004-09-30 2006-04-06 Williams David L Method and apparatus for polarizing electromagnetic radiation
JP2006281268A (ja) * 2005-03-31 2006-10-19 Hitachi Via Mechanics Ltd レーザ加工機
JP2007099587A (ja) * 2005-10-07 2007-04-19 Kyoto Seisakusho Co Ltd 脆性材料の割断加工方法
JP4734101B2 (ja) * 2005-11-30 2011-07-27 株式会社ディスコ レーザー加工装置
DE102006051105B3 (de) * 2006-10-25 2008-06-12 Lpkf Laser & Electronics Ag Vorrichtung zur Bearbeitung eines Werkstücks mittels Laserstrahlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2015813A (en) * 1978-03-03 1979-09-12 Hitachi Ltd Method of treating object by laser beam and apparatus therefor
JPS6340694A (ja) * 1986-08-04 1988-02-22 Toyota Motor Corp レ−ザ−光の形成方法
EP0624424A1 (de) * 1991-11-21 1994-11-17 Japan Tobacco Inc. Vorrichtung zum Bohren von Löchern in eine Papierbahn
US6103990A (en) * 1998-09-21 2000-08-15 International Business Machines Corporation Laser texturing system providing even heating of textured spots on a rotating disk

Also Published As

Publication number Publication date
JP2011505253A (ja) 2011-02-24
DE102007056254A1 (de) 2009-05-28
US8314362B2 (en) 2012-11-20
JP5265695B2 (ja) 2013-08-14
TWI406730B (zh) 2013-09-01
DE102007056254B4 (de) 2009-10-29
US20100320178A1 (en) 2010-12-23
CN101878089A (zh) 2010-11-03
TW200922726A (en) 2009-06-01
CN101878089B (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
DE102013004869B4 (de) Verfahren zur Ausbildung einer Strukturierung an Oberflächen von Bauteilen mit einem Laserstrahl
WO2021259597A1 (de) Bearbeitungsoptik, laserbearbeitungsvorrichtung und verfahren zur laserbearbeitung
DE102018211972B4 (de) Optische Anordnung zur variablen Erzeugung eines Multifoki-Profils, sowie Verfahren zum Betrieb und Verwendung einer solchen Anordnung
DE102019205394A1 (de) Bearbeitungsoptik, Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung
EP2217961A1 (de) Vorrichtung zur strahlformung
DE112013002113B4 (de) Strahlformer
WO2008049389A1 (de) Vorrichtung zur bearbeitung eines werkstücks mittels laserstrahlung
DE102016107052A1 (de) 3D-Druck-Vorrichtung für die Herstellung eines räumlich ausgedehnten Produkts
WO2008138502A1 (de) Optische positionsmesseinrichtung
DE3644354C2 (de)
DE102012111090A1 (de) Vorrichtung zur Änderung der Länge eines Strahlenganges
EP1793269B1 (de) Vorrichtung zur Beeinflussung von Licht
EP3346314B1 (de) Vorrichtung und verfahren zur formung eines laserstrahls durch einen programmierbaren strahlformer
DE102007056254B4 (de) Vorrichtung zur Bearbeitung eines Werkstücks mittels paralleler Laserstrahlen
DE202011110732U1 (de) Optische Anordnung zur Laserinterferenzstrukturierung einer Probe mit Strahlführung gleicher Weglänge
DE102014214839A1 (de) Interferometer
EP1384105B1 (de) Strahlformungsvorrichtung zur aenderung des strahlquerschnitts eines lichtstrahls
WO2022157246A1 (de) Anordnung zur lasermaterialbearbeitung
DE102021101598A1 (de) Vorrichtung und Verfahren zum Laserbearbeiten eines Werkstücks
DE10324111B3 (de) Verfahren und Vorrichtung zur Verteilung der Stromdichte eines Lichtstroms
DE4034744C2 (de) Vorrichtung zur variablen Laserstrahlteilung und Führung der Teilstrahlen
DE3010307C2 (de) Optisches System für ein Diskussionsmikroskop
EP3555687A1 (de) Vorrichtung zur ablenkung und/oder modulation einer laserstrahlung, insbesondere einer mehrzahl von laserstrahlen
DE102009031046B4 (de) Laseroptik sowie Diodenlaser
DE102008053507B4 (de) Vorrichtung zur Bearbeitung eines Werkstücks mittels Laserstrahlen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880116974.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08851367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534357

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PI 2010002486

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 12743628

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08851367

Country of ref document: EP

Kind code of ref document: A1