WO2009065314A1 - Système et procédé de modulation optique - Google Patents

Système et procédé de modulation optique Download PDF

Info

Publication number
WO2009065314A1
WO2009065314A1 PCT/CN2008/071802 CN2008071802W WO2009065314A1 WO 2009065314 A1 WO2009065314 A1 WO 2009065314A1 CN 2008071802 W CN2008071802 W CN 2008071802W WO 2009065314 A1 WO2009065314 A1 WO 2009065314A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
pulse
wavelength
amplitude
Prior art date
Application number
PCT/CN2008/071802
Other languages
English (en)
French (fr)
Inventor
Guozhong Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08783795A priority Critical patent/EP2112725A4/en
Priority to JP2009543340A priority patent/JP2010515086A/ja
Publication of WO2009065314A1 publication Critical patent/WO2009065314A1/zh
Priority to US12/497,151 priority patent/US20090268272A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a light modulation system and method. Background technique
  • DWDM Dense Wavelength Division Multiplexed
  • DWDM technology utilizes the bandwidth and low loss characteristics of single-mode fiber, and uses multiple wavelengths as carriers to allow each carrier. The channels are simultaneously transmitted within the fiber.
  • FIG. 1 a schematic diagram of a DWDM system provided by the prior art, wherein an optical transmitter at a transmitting end transmits different wavelengths through a plurality of OTUs (Optic Book Trans Transmitting Units), and the accuracy and stability meet certain requirements.
  • OTUs Optic Book Trans Transmitting Units
  • each optical signal is sent to the optical wavelength multiplexer; multiplexed by the optical wavelength multiplexer and sent to the erbium-doped fiber
  • the power amplifier compensates for the power loss of the optical signal caused by the optical wavelength multiplexer and increases the transmission power of the optical signal; and then transmits the optical signal amplified by the erbium-doped fiber power amplifier to the optical fiber transmission (can be transmitted in the optical fiber according to actual conditions)
  • the optical line amplifier is configured in the middle; for example, the carrier signals of the optical signals with wavelengths of ⁇ , ..., 1 hail can be simultaneously transmitted in the optical fiber, see FIG.
  • optical signal transmission in the DWDM system after transmission through the optical fiber
  • the optical signal reaches the receiving end, and the optical preamplifier amplifies the received optical signal to improve the spirit of the optical signal receiving Degree and extend the transmission distance; transmitting the amplified optical signal to the optical wavelength demultiplexer, various optical signal optical wavelength demultiplexer demultiplexing a wavelength of an original, respectively, «, "the.
  • the control of the stable wavelength is achieved by controlling the wavelength of the laser and controlling the wavelength by using the wavelength and the temperature of the die.
  • the specification is 1. 5 ⁇ ⁇ DFB laser
  • the wavelength temperature coefficient is about 0.02 nm / ° C
  • the wavelength generated in the range of 15 ° C - 35 ° C meets the requirements.
  • this method of temperature feedback control is completely dependent on the die temperature of the DFB laser, and cannot solve the long-term wavelength change caused by the aging of the laser or the like. Summary of the invention
  • embodiments of the present invention provide a light modulation system and method.
  • the technical solution is as follows:
  • a light modulation system comprising:
  • the wavelength sensor (302) is configured to receive a first optical signal in the optical signal generated by the illuminating device (301), and report a wavelength value of the first optical signal;
  • a signal processor configured to receive a wavelength value reported by the wavelength sensor (302), calculate a deviation value between the wavelength value and a preset wavelength value, generate a wavelength control signal according to the deviation value, and send the a wavelength control signal;
  • a controller configured to receive a wavelength control signal sent by the signal processor (303), and adjust an operating parameter of the light emitting device (301) according to the wavelength control signal;
  • An amplitude modulator (307) configured to receive a second optical signal generated by the illumination device (301) and an amplitude driving signal sent by the amplitude modulation driver (306), and modulate the second light according to the amplitude driving signal
  • the signal outputs an intermittent optical signal of a stable wavelength.
  • a light modulation method comprising:
  • the illuminating device can work together to generate a discontinuous wavelength intermittent optical signal or intermittent optical pulse signal by using a combination of a pulse modulation driver and an amplitude modulation driver, and the optical time domain Ref lectometer (0TDR) is satisfied.
  • the time domain reflectometer is used to detect the requirements of the transmitting signal at the transmitting end of the system, and further meets the application requirements of the monitoring system such as the optical cable and the submarine cable.
  • FIG. 1 is a schematic structural view of a DWDM system provided by the prior art
  • FIG. 2 is a schematic diagram of the spectrum of a DWDM system provided by the prior art
  • FIG. 3 is a schematic diagram of a light modulation system according to an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of a light modulation system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a light modulation system according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a light modulation system according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a light modulation system according to Embodiment 3 of the present invention.
  • FIG. 8 is a flow chart of a method of light modulation according to Embodiment 4 of the present invention.
  • Embodiment 9 is a schematic diagram showing the operation timing of applying the method provided in Embodiment 4 of the present invention.
  • Figure 10 is a flow chart showing a method of light modulation according to Embodiment 5 of the present invention. detailed description
  • Embodiments of the present invention provide an optical modulation system capable of generating intermittent optical signals of a stable wavelength to meet the requirements of a detection system such as 0TDR.
  • the system includes:
  • a wavelength sensor (302) configured to receive a first optical signal of the optical signal generated by the light emitting device (301), and report a wavelength value of the first optical signal
  • the signal processor (303) is configured to receive the wavelength value reported by the wavelength sensor (302), calculate a deviation value between the wavelength value and the preset wavelength value, generate a wavelength control signal according to the deviation value, and send the wavelength control signal;
  • a controller (304) configured to receive a wavelength control signal sent by the signal processor (303), and adjust an operating parameter of the illuminating device (301) according to the wavelength control signal;
  • An amplitude modulator (307) is configured to receive the second optical signal generated by the illumination device (301) and the amplitude drive signal sent by the amplitude modulation driver (306), modulate the second optical signal according to the amplitude drive signal, and output an intermittent wavelength of the stable wavelength Optical signal.
  • the optical modulation system further includes:
  • the wavelength sensor (302) is specifically configured to receive the first optical signal separated by the optical splitter (308), and report the wavelength value of the first optical signal to the signal processor (303);
  • the amplitude modulator (307) is specifically configured to receive the second optical signal separated by the optical splitter (308) and the amplitude driving signal sent by the amplitude modulation driver (306), modulate the second optical signal according to the amplitude driving signal, and output an interval of stable wavelength Sexual light signal.
  • the first optical signal of the illuminating device (301) received by the wavelength sensor (302) is specifically a backlight signal generated by the illuminating device;
  • the second optical signal emitted by the illuminating device (301) received by the amplitude modulator (307) is specifically a illuminating device.
  • the system provided by the embodiment of the present invention further includes:
  • a pulse modulation driver (305) for generating a pulse driving signal drives the light emitting device (301) with a pulse driving signal; and the light emitting device (301) generates an optical pulse signal driven by the pulse modulation driver (305).
  • the illuminating device (301) specifically includes: a laser (3011) and a light modulator (3012);
  • a controller (304) configured to receive a wavelength control signal sent by the signal processor (303), and adjust an operating parameter of the laser (3011) according to the wavelength control signal;
  • a pulse modulation driver (305) for generating a pulse drive signal, driving the light modulator with a pulse drive signal (3012); a light modulator (3012) for receiving a pulse drive signal, modulating the laser (3011) according to the pulse drive signal
  • the optical signal outputs an optical pulse signal.
  • the light modulator (3012) is specifically: an acousto-optic modulator, an electroabsorption modulator or a waveguide modulator.
  • the signal processor (303) further includes a pulse control signal generating module (3031) for generating a pulse control signal, and transmitting the pulse control signal to the pulse modulation driver (305);
  • the pulse modulation driver (305) is specifically configured to generate a pulse driving signal according to the pulse control signal sent by the pulse control signal generating module (3031);
  • the signal processor (303) further includes an amplitude control signal generating module (3032) for generating an amplitude control signal, and transmitting the amplitude control signal to the amplitude modulation driver (306); correspondingly, the amplitude modulation
  • the driver (306) is specifically configured to generate an amplitude driving signal according to the amplitude control signal sent by the amplitude control signal generating module (3032), and send the amplitude driving signal to the amplitude modulator (307).
  • the amplitude modulator (307) is specifically an acousto-optic modulator or an electrically adjustable attenuator.
  • Embodiments of the present invention provide a light modulation system in which an optical splitter divides an optical signal generated by a light emitting device into two parts, and uses a part thereof to perform stable wavelength control, thereby finally realizing an intermittent optical pulse signal outputting a stable wavelength.
  • the illuminating device is exemplified by a DFB laser
  • the amplitude modulator is exemplified by an acousto-optic modulator.
  • the system mainly includes: a DFB laser 501, a beam splitter 502, a wavelength sensor 503, a signal processor 504, a controller 505, a pulse modulation driver 506, an amplitude modulation driver 507, and an acousto-optic modulator 508. among them;
  • a DFB laser 501 is used to generate an optical pulse signal.
  • the optical splitter 502 is configured to receive the optical pulse signal of the DFB laser 501, divide the optical pulse signal generated by the received DFB laser 501 into two parts, send a part of the optical pulse signal to the wavelength sensor 503, and send another part of the optical pulse signal To the acousto-optic modulator 508.
  • the part of the optical pulse signal may be defined as a first optical pulse signal, and correspondingly, another part of the optical pulse signal may be defined as a second optical pulse signal.
  • the optical splitter 502 receives the optical pulse signal of the DFB laser 501, and extracts the optical pulse signal of which 1% intensity is sent to the wavelength sensor 503, and the 1% intensity optical pulse signal is the first optical pulse signal;
  • the intensity optical pulse signal is sent to an acousto-optic modulator 508, which is the second optical pulse signal.
  • the wavelength sensor 503 is configured to receive a portion of the optical pulse signal from the DFB laser 501 transmitted by the optical splitter 502, and report the wavelength value of the portion of the optical pulse signal to the signal processor 504.
  • the signal processor 504 is configured to receive a wavelength value of a part of the optical pulse signal reported by the wavelength sensor 503, calculate a deviation value between the wavelength value and the preset wavelength value, and determine whether the deviation value is within a preset deviation value range, and if yes, Then meet the system requirements, no action; otherwise, generate a corresponding wavelength control signal according to the deviation value, and send the wavelength control signal to the controller 505;
  • Signal processor 504 is also operative to generate a pulse control signal and to transmit the pulse control signal to pulse modulation driver 506; and to generate an amplitude control signal and to transmit the amplitude control signal to amplitude modulation driver 507.
  • the controller 505 is configured to receive the wavelength control signal generated by the signal processor 504, and control the operating parameters of the DFB laser 501 according to the wavelength control signal to ensure that the wavelength of the optical pulse signal output by the DFB laser 501 is stable within a certain range.
  • the operating parameters of the DFB laser 501 can be temperature, DFB laser 501 cavity length, and the like.
  • the pulse modulation driver 506 is configured to receive a pulse control signal generated by the signal processor 504, generate a pulse drive signal, and send the pulse drive signal to the DFB laser 501 to drive the DFB laser 501 to generate an optical pulse signal that matches the pulse control signal.
  • the amplitude modulation driver 507 is configured to receive an amplitude control signal generated by the signal processing, generate an amplitude driving signal, and send the amplitude driving signal to the acousto-optic modulator 508, and drive the acousto-optic modulator 508 to perform insertion loss adjustment corresponding to the amplitude control signal. .
  • the signal processor 504 further includes a pulse control signal generating module, the pulse control signal generating module is configured to generate a pulse control signal, and send the pulse control signal to the pulse modulation driver 506;
  • the pulse modulation driver 506 is specifically configured to generate a pulse driving signal according to the pulse control signal sent by the pulse control signal generating module;
  • the signal processor 504 further includes an amplitude control signal generating module, and the amplitude control signal generating module is configured to generate the amplitude a control signal, the amplitude control signal is sent to the amplitude modulation driver 507;
  • the amplitude modulation driver 507 is specifically configured to generate an amplitude driving signal according to the amplitude control signal sent by the amplitude control signal generating module, and send the amplitude driving signal to the amplitude modulator.
  • the pulse modulation driver 506 and the amplitude modulation driver 507 are specifically implemented as a signal amplifier, and the pulse modulation driver 506 is used for intensity-amplifying the received pulse control signal to obtain a pulse capable of driving the DFB laser 501.
  • the amplitude modulation driver 507 is configured to intensify the received amplitude control signal to obtain an amplitude driving signal capable of driving the acousto-optic modulator 508.
  • the acousto-optic modulator 508 is configured to receive another portion of the optical pulse signal of the DFB laser 501 and the amplitude driving signal sent by the amplitude modulation driver 507, and control the insertion loss of the amplitude-driven signal according to the amplitude driving signal to generate a final stable wavelength. Intermittent light pulse signal.
  • the pulse control signal is a constant signal, such as a constant current signal, etc.; when it is required to drive the DFB laser 501 to generate an optical pulse signal, the pulse control signal is a pulse signal, such as a single pulse. Current signal or pulse sequence current signal, etc.
  • the amplitude control signal sent by the signal processor 504 is specifically a low-resistance control signal, and the amplitude modulation driver 507 receives the low-resistance control signal to make the sound and light
  • the modulator 508 adjusts the insertion loss to a low resistance state; when the acousto-optic modulator 508 does not need to output the received optical signal, the amplitude control signal sent by the signal processor 504 is a high resistance control signal, and the amplitude modulation driver 507 receives After the high-resistance control signal, the acousto-optic modulator 508 is driven to adjust the insertion loss to a high-impedance state; wherein, the extinction ratio of the acousto-optic modulator 508 is high (generally greater than 40 dB), when the acousto-optic modulator 508 is inserted When the loss is in the high-imped
  • the DFB laser 501, the optical splitter 502, the wavelength sensor 503, the signal processor 504, and the controller 505 work together to complete the control of the stable wavelength of the output optical signal of the DFB laser 501.
  • the system provided by the embodiment of the invention can control the DFB laser 501 to output an optical signal of a stable wavelength, and drive the acousto-optic modulator 508 to adjust the insertion loss to be in a high resistance state or in a low resistance state, thereby realizing an intermittent optical signal with a final output stable wavelength.
  • the acousto-optic modulator 508 is driven to adjust the insertion loss to be in a high resistance state or in a low resistance state to realize an intermittent optical pulse signal that finally outputs a stable wavelength.
  • acousto-optic modulator 508 in the embodiment of the present invention can also be implemented using an electrically adjustable attenuator and other amplitude modulators.
  • the optical modulation system provided in the embodiment of the present invention performs a stable wavelength control by using a part of the optical pulse signal of the DFB laser 501 of the splitter 502, and cooperates with the devices such as the pulse modulation driver 506 and the amplitude modulation driver 507.
  • the intermittent optical pulse signal with stable wavelength can be finally generated, which satisfies the requirements of the transmitting signal of the transmitting end in the detection system such as 0TDR, and further satisfies the application requirements for the monitoring system such as the optical cable and the submarine cable.
  • Embodiments of the present invention provide a light modulation system that utilizes the characteristics of a DFB laser to control a stable wavelength using a backlight signal thereof, thereby finally achieving an intermittent optical pulse signal outputting a stable wavelength, wherein the light emitting device is DFB.
  • a laser is used as an example.
  • the amplitude modulator is described by taking an acousto-optic modulator as an example.
  • the system mainly includes: a DFB laser 601, a wavelength sensor 602, a signal processor 603, a controller 604, a pulse modulation driver 605, an amplitude modulation driver 606, and an acousto-optic modulator 607. among them,
  • the DFB laser 601 is configured to generate an optical pulse signal. Due to the self-characteristics of the DFB laser 601, the generated optical pulse signal can be divided into a backlight signal and a non-backlight signal, and the backlight signal is sent to the wavelength sensor 602, and the non-backlight signal is It is sent to the acousto-optic modulator 607.
  • the intensity of the optical signal actually emitted by the DFB laser 601 due to the characteristics of the DFB laser 601 itself, 99% of the light intensity is used to generate a non-backlight signal, and 1% of the light intensity produces a backlight signal, wherein the backlight signal and the non-backlight signal Have the same wavelength value.
  • the backlight signal may be referred to as a first optical pulse signal; accordingly, the non-backlight signal may be referred to as a second optical pulse signal.
  • the wavelength sensor 602 is configured to receive the backlight signal and report the wavelength value of the backlight signal to the signal processor 603.
  • the signal processor 603 is configured to receive a wavelength value of the backlight signal reported by the wavelength sensor 602, calculate a deviation value between the wavelength value and the preset wavelength value, and determine whether the deviation value is within a preset deviation value range, and if yes, match System requirements, no action; otherwise, according to the deviation value to generate a corresponding wavelength control signal, and send the wavelength control signal to the controller 604;
  • the signal processor 603 is also used to generate a pulse control signal, which is sent to the pulse modulation driver
  • the amplitude control signal is sent to the amplitude modulation driver 606.
  • the controller 604 is configured to receive the wavelength control signal generated by the signal processor 603, adjust and control the operating parameters of the DFB laser 601 according to the wavelength control signal, and ensure that the wavelength of the optical pulse signal output by the DFB laser 601 is stable within a certain range.
  • the pulse modulation driver 605 is configured to receive a pulse control signal generated by the signal processor 603, generate a pulse drive signal, and send the pulse drive signal to the DFB laser 601 to drive the DFB laser 601 to generate an optical pulse signal that matches the pulse control signal.
  • the amplitude modulation driver 606 is configured to receive an amplitude control signal generated by the signal processing, generate an amplitude driving signal, and send the amplitude driving signal to the acousto-optic modulator 607, and drive the acousto-optic modulator 607 to perform insertion loss adjustment corresponding to the amplitude control signal. .
  • An acousto-optic modulator 607 configured to receive the non-backlight signal and the amplitude driving signal sent by the amplitude modulation driver 606, The amplitude drive signal controls its own insertion loss to produce a final stable wavelength intermittent optical pulse signal.
  • the DFB laser 601, the wavelength sensor 602, the signal processor 603, and the controller 604 work together to complete the control of the stable wavelength of the output optical signal of the DFB laser 601.
  • the system provided by the embodiment of the present invention can control the DFB laser 601 to output an optical signal of a stable wavelength, and drive the acousto-optic modulator 607 to adjust the insertion loss to be in a high resistance state or in a low resistance state, thereby realizing an intermittent optical signal with a final output stable wavelength.
  • the acousto-optic modulator 607 is driven to adjust the insertion loss to be in a high resistance state or in a low resistance state to realize an intermittent optical pulse signal that finally outputs a stable wavelength.
  • the acousto-optic modulator 607 in the embodiments of the present invention can also be implemented using an electrically adjustable attenuator and other amplitude modulators.
  • the optical modulation system provided in the embodiment of the present invention performs the control of the stable wavelength by using the backlight signal of the DFB laser 601, and finally generates the intermittent of the stable wavelength under the cooperation of the devices such as the pulse modulation driver 605 and the amplitude modulation driver 606.
  • the optical pulse signal satisfies the requirements of the transmitting signal of the transmitting end in the detection system such as 0TDR, and further satisfies the application requirements for the monitoring system such as the optical cable and the submarine cable.
  • the present embodiment provides an optical modulation system that utilizes the characteristics of the DFB laser 701 to control the stable wavelength using the backlight signal, and externally modulates the laser to finally realize an intermittent optical pulse signal outputting a stable wavelength.
  • the illuminating device specifically includes a DFB laser 701 and a light modulator 702, and the amplitude modulator is exemplified by an acousto-optic modulator.
  • the system mainly includes: a DFB laser 701, a light modulator 702, a wavelength sensor 703, a signal processor 704, a controller 705, a pulse modulation driver 706, an amplitude modulation driver 707, and an acousto-optic modulator 708. among them,
  • the DFB laser 701 is used to generate an optical signal. Due to the self-characteristics of the DFB laser 701, the generated optical signal can be divided into a backlight signal and a non-backlight signal, the backlight signal is sent to the wavelength sensor 703, and the non-backlight signal is sent to Light modulator.
  • the wavelength sensor 703 is configured to receive the backlight signal and report the wavelength value of the backlight signal to the signal processor 704.
  • the signal processor 704 is configured to receive a wavelength value of the backlight signal reported by the wavelength sensor 703, calculate a deviation value between the wavelength value and the preset wavelength value, and determine whether the deviation value is within a preset deviation value range, and if yes, match System requirements, no action; otherwise, according to the deviation value to generate a corresponding wavelength control signal, and send the wavelength control signal to the controller 705;
  • Signal processor 704 is also operative to generate a pulse control signal and to transmit the pulse control signal to pulse modulation driver 706; and to generate an amplitude control signal and to transmit the amplitude control signal to amplitude modulation driver 707.
  • the controller 705 is configured to receive a wavelength control signal generated by the signal processor 704, and adjust the signal according to the wavelength control signal.
  • the operating parameters of the DFB laser 701 are controlled to ensure that the wavelength of the optical signal output by the DFB laser 701 is stabilized within a certain range.
  • the pulse modulation driver 706 is configured to receive a pulse control signal generated by the signal processor 704, generate a pulse drive signal, and send the pulse drive signal to the light modulator, and drive the light modulator to modulate the received non-backlight signal into and pulse control.
  • the signal matches the optical signal.
  • the optical modulator is configured to receive the non-backlight signal generated by the DFB laser 701 and the pulse driving signal generated by the pulse modulation driver 706, modulate the non-backlight signal into an optical pulse signal according to the pulse driving signal, and transmit the optical pulse signal.
  • the amplitude modulation driver 707 is configured to receive the amplitude control signal generated by the signal processor 704, generate an amplitude driving signal, and send the amplitude driving signal to the acousto-optic modulator 708, and drive the acousto-optic modulator 708 to perform interpolation corresponding to the amplitude control signal. Loss adjustment.
  • the acousto-optic modulator 708 is configured to receive the optical pulse signal sent by the optical modulator and the amplitude driving signal sent by the amplitude modulation driver 707, and control the insertion loss of the amplitude driving signal according to the amplitude driving signal to generate the final stable wavelength intermittent optical pulse signal.
  • the DFB laser 701, the wavelength sensor 703, the signal processor 704, and the controller 705 work together to complete the control of the stable wavelength of the output optical signal of the DFB laser 701.
  • the system provided by the embodiment of the present invention can modulate the optical signal generated by the DFB laser 701 into a stable pulse optical pulse signal, and drive the acousto-optic modulator 708 to adjust the insertion loss to be in a high resistance state or in a low resistance state to achieve stable final output.
  • Intermittent optical pulse signal of wavelength can also modulate the optical signal generated by the DFB laser 701 into a stable wavelength optical signal, and drive the acousto-optic modulator 708 to adjust the insertion loss to a high resistance state or a low resistance state, thereby achieving a final output stability.
  • Intermittent optical signal of wavelength can also modulate the optical signal generated by the DFB laser 701 into a stable wavelength optical signal, and drive the acousto-optic modulator 708 to adjust the insertion loss to a high resistance state or a low resistance state, thereby achieving a final output stability.
  • the system provided by the embodiment of the present invention may further include a beam splitter for splitting the optical signal of the received laser.
  • the backlight signal received by the wavelength sensor 703 in the embodiment of the present invention may also be split. A portion of the optical signal of the optical signal generated by the DFB laser 701 is obtained.
  • optical modulator in the embodiment of the present invention can be implemented using an acousto-optic modulator 708, an electroabsorption modulator, or a waveguide modulator.
  • the acousto-optic modulator 708 of the above-described embodiments of the present invention can also be implemented using an electrically adjustable attenuator and other amplitude modulators.
  • the optical modulation system uses the backlight signal of the DFB laser 701 to perform stable wavelength control, generates a stable wavelength optical signal, and cooperates with the optical modulator, the pulse modulation driver 706, and the amplitude modulation driver 707. Under operation, it can generate intermittent optical pulse signals with stable wavelength, which satisfies the detection system such as 0TDR.
  • the detection system such as 0TDR.
  • an embodiment of the present invention provides a light modulation method, where the method includes:
  • the wavelength control signal is generated by calculating a first optical signal emitted by the light emitting device.
  • an intermittent optical pulse signal is generated as an example.
  • the method provided by the embodiment of the present invention can generate an intermittent optical pulse signal of a stable wavelength, and the system in Embodiment 1 is taken as an example. To explain, the method steps are as follows:
  • Step 101 The DFB laser generates an optical pulse signal and sends it to the optical splitter.
  • Step 102 The optical splitter receives the optical pulse signal generated by the DFB laser, distributes a part of the optical pulse signal to the wavelength sensor, and transmits another part of the optical pulse signal to the acousto-optic modulator.
  • Step 103 The wavelength sensor receives a part of the optical pulse signal of the DFB laser sent by the optical splitter, and sends the wavelength value of the optical pulse signal to the signal processor.
  • Step 104 The signal processor compares the wavelength value of the received optical signal with a preset wavelength value, and determines whether the deviation value is within a preset deviation value range. If yes, step 105 is performed; otherwise, step 106 is performed.
  • Step 105 Meet the system requirements and do not act.
  • Step 106 The signal processor generates a corresponding wavelength control signal according to the deviation value, and sends the signal to the controller.
  • the above steps complete the wavelength lock feedback action, and can control the optical signal generated by the DFB laser to always be a stable wavelength.
  • Step 108 The pulse control signal generated by the signal processor is sent to the pulse modulation driver, and the pulse modulation driver generates a pulse driving signal to drive the DFB laser to generate the optical pulse signal.
  • the DFB laser continues to generate an optical pulse signal that matches the pulse drive signal driven by the pulse drive signal.
  • Step 109 The acousto-optic modulator receives another part of the optical pulse signal sent by the optical splitter, and outputs an intermittent optical pulse signal of a stable wavelength under the modulation of the amplitude driving signal.
  • the step specifically includes: when the acousto-optic modulator needs to output the received optical pulse signal, the amplitude control signal generated by the signal processor is a low resistance control signal, and after receiving the low resistance control signal, the amplitude modulation driver sends a corresponding The amplitude drive signal drives the acousto-optic modulator to adjust the insertion loss to a low impedance state; when the acousto-optic modulator does not need to receive the light When the pulse signal is output, the amplitude control signal generated by the signal processor is a high-resistance control signal, and after receiving the high-resistance control signal, the amplitude modulation driver sends a corresponding amplitude driving signal to drive the acousto-optic modulator to adjust the insertion loss to a high-impedance state.
  • the acousto-optic adjuster has a high extinction ratio (generally >40dB).
  • the leaked optical signal is very weak, which satisfies the working state of 0TDR.
  • the method provided by the embodiment of the invention can also implement a constant optical signal of the acousto-optic modulator outputting a stable wavelength.
  • the pulse driving signal from the pulse modulation driver is a constant signal (such as a constant current signal), and the value thereof may be the same as or different from the value of the optical pulse driving signal for generating the optical pulse, but it is ensured that the wavelength feedback control operation can be realized.
  • the amplitude driving signal can be adjusted to maintain the insertion loss of the acousto-optic modulator in a low-resistance state, so that the acousto-optic modulator outputs a stable optical pulse signal or a constant-wavelength constant optical signal;
  • the signal keeps the insertion loss of the acousto-optic modulator in a high-impedance state, ensuring no light signal output.
  • the DFB laser generates a stable wavelength optical signal in a period from 0 to tl, generates a stable wavelength optical pulse signal from t1 to t2, and recovers a stable wavelength optical signal after t2; correspondingly, the acousto-optic modulator
  • the insertion loss is adjusted from a period of 0 to tl to a high-impedance state, and is adjusted to a low-resistance state during the period from t1 to t2, and is again adjusted to a high-resistance state after t2.
  • the final output of the acousto-optic modulator is: no optical signal output in the period from 0 to tl, and a stable pulse optical pulse signal from the DFB laser in the period from t1 to t2, and no optical signal output after t2.
  • the acousto-optic modulator in the embodiment of the present invention can also be implemented by an electrically adjustable attenuator and other amplitude modulators.
  • the optical modulation method provided in the embodiment of the present invention uses a part of the optical pulse signal of the DFB laser of the splitter to perform stable wavelength control, and can finally be combined by a device such as a pulse modulation driver and an amplitude modulation driver.
  • the intermittent optical pulse signal of stable wavelength is generated, which satisfies the requirements of the transmitting signal of the transmitting end in the detection system such as 0TDR, and further satisfies the application requirements of the monitoring system such as the optical cable and the submarine cable.
  • an embodiment of the present invention provides a light modulation method.
  • the method provided by the embodiment of the present invention can generate intermittent light pulses of a stable wavelength, and the system in Embodiment 3 is taken as an example for description.
  • the method steps are as follows: Step 201:
  • the DFB laser generates an optical signal, and sends the backlight signal to the wavelength.
  • the sensor sends a non-backlight signal to the light modulator.
  • Step 202 The wavelength sensor receives the backlight signal, and sends the received wavelength value of the backlight signal to the signal processor.
  • Step 203 The signal processor compares the wavelength value of the received optical signal with a preset wavelength value to determine the deviation. Whether the value is within the preset deviation value range, if yes, step 204 is performed; otherwise, step 205 is performed.
  • Step 204 Meet the system requirements, no action.
  • Step 205 The signal processor generates a corresponding wavelength control signal according to the deviation value, and sends the signal to the controller.
  • Step 207 The signal processor sends the generated pulse control signal to the pulse modulation driver, and the pulse modulation driver generates a pulse driving signal according to the pulse control signal, and sends the pulse driving signal to the light modulator.
  • Step 208 The optical modulator receives the pulse driving signal, modulates the received non-backlight signal into an optical pulse signal according to the pulse driving signal, and transmits the optical pulse signal to the acousto-optic modulator.
  • Step 209 The acousto-optic modulator receives the optical pulse signal, and outputs an intermittent optical pulse signal of a stable wavelength under the modulation of the amplitude driving signal.
  • the optical modulation method provided in the embodiment of the present invention utilizes the backlight signal of the DFB laser to perform stable wavelength control, and can generate intermittent wavelengths of stable wavelengths under the cooperation of devices such as an optical modulator, a pulse modulation driver, and an amplitude modulation driver.
  • the optical pulse signal satisfies the requirements of the transmitting signal of the transmitting end in the detection system such as 0TDR, and further satisfies the application requirements for the monitoring system such as the optical cable and the submarine cable.
  • the solution provided by the embodiment of the present invention provides a stable wavelength control of the illuminating device by using a wavelength sensor, generates a stable wavelength optical signal, and can generate a stable wavelength under the cooperation of a pulse modulation driver and an amplitude modulation driver.
  • the intermittent optical pulse signal satisfies the requirements of the transmitting signal of the transmitting end in the detection system such as 0TDR, and further satisfies the application requirements of the optical cable monitoring system.
  • the solution provided by the embodiment of the present invention can also solve the problem of returning the backscattered optical signal of the fault detecting optical signal (specifically, the optical pulse signal) in the submarine cable communication. Since the submarine cable monitoring system couples the backscattered optical signal into another reverse transmission link within the relay of the doped fiber power amplifier, the reverse transmission fiber of the reverse transmission link is used as a back direction The return path of the scattered light signal realizes the monitoring of the submarine cable fiber. Therefore, the technical solution provided by the embodiment of the invention can stabilize the wavelength of the probe optical signal within the amplification range of the doped fiber power amplifier, and further detect the optical signal. The wavelength is stable within a few nanometers of zero to avoid the influence on the service signal, and the wavelength of the probe optical signal is guaranteed to be within the filtering range of the optical filter at the receiving end.
  • Some of the steps in the embodiment of the present invention may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

一种光调制系统和方法 技术领域
本发明涉及光通信领域, 特别涉及一种光调制系统和方法。 背景技术
随着科学技术的快速发展, 通信领域的信息传送量大量增多, 在光通信领域, 运营商 说
及设备制造厂家越来越多地关注起 DWDM (Dense Wavelength Division Multiplexed, 密集 波分复用) 技术, DWDM技术利用单模光纤的带宽以及低损耗的特性, 采用多个波长作为载 波, 允许各载波信道在光纤内同时传输。 参见图 1, 为现有技术提供的 DWDM系统构成示意 图, 其中, 发送端的光发射机通过多个 OTU (Optic书al Transmit Unit, 光传送的单元) 发 出波长不同而精度和稳定度满足一定要求的光信号, 其中各路光信号的波长分别为 、 λ,…… Λ„; 将各路光信号发送到光波长复用器中; 经过光波长复用器复用在一起后发送到 掺饵光纤功率放大器弥补由于光波长复用器引起的光信号的功率损失并提高光信号的发送 功率; 再将经过掺饵光纤功率放大器放大后的光信号送入光纤传输 (可以根据实际的情况 在光纤传输中配置光线路放大器); 例如, 波长分别为 ^、 …… 1„的光信号的载波信号在 光纤内可以同时传输, 参见图 2, 为 DWDM系统中光信号传输的光谱示意图, 经过光纤传输 后的光信号到达接收端, 光前置放大器将接收的光信号放大, 提高光信号接收的灵敏度并 延长传输距离; 将放大后的光信号发送到光波长分波器, 光波长分波器解复用出原来的波 长分别为 、 …… „的各路光信号。
由于 DWDM系统的工作波长较为密集, 工作波长之间的波长间隔仅为几个纳米到零点几 个纳米,这要求光发射机中产生光信号的激光器要能够产生满足 DWDM系统标准的工作波长, 并且该工作波长要具有很好的稳定性。在 DWDM系统中, 对于常用的 DFB (Distributed Feed Back, 分布反馈激光器) 激光器, 其控制稳定波长是利用波长和管芯温度对应的特性, 通 过控制激光器管芯温度来控制波长实现的。 例如, 规格为 1. 5 μ πι DFB激光器, 波长温度系 数约为 0. 02nm/°C, 在 15°C_35°C范围内产生的波长符合要求。 但是, 这种温度反馈控制的 方法完全取决于 DFB激光器的管芯温度, 无法解决由于激光器老化等原因引起的长期波长 的变化。 发明内容
为了能够产生稳定波长的间歇性光信号, 本发明实施例提供了一种光调制系统和方法。 所述技术方案如下:
一方面, 提供了一种光调制系统, 所述系统包括:
发光装置 (301 ), 用于产生光信号;
波长敏感器 (302), 用于接收所述发光装置 (301 ) 产生的光信号中的第一光信号, 上 报所述第一光信号的波长值;
信号处理器 (303), 用于接收所述波长敏感器 (302 ) 上报的波长值, 计算所述波长值 与预设波长值的偏差值, 根据所述偏差值产生波长控制信号, 发送所述波长控制信号; 控制器 (304), 用于接收所述信号处理器 (303 ) 发送的波长控制信号, 根据所述波长 控制信号调节所述发光装置 (301 ) 的工作参数;
幅度调制驱动器 (306), 用于产生并发送幅度驱动信号;
幅度调制器 (307), 用于接收所述发光装置 (301 )产生的第二光信号和所述幅度调制 驱动器 (306 ) 发送的幅度驱动信号, 根据所述幅度驱动信号调制所述第二光信号, 输出稳 定波长的间歇性光信号。
另一方面, 提供了一种光调制方法, 所述方法包括:
接收发光装置发出的光信号中的第二光信号, 在幅度驱动信号的调制下输出稳定波长 的间歇性光信号, 其中, 所述光信号为所述发光装置在波长控制信号的控制下产生的稳定 波长的信号, 所述波长控制信号是通过对所述发光装置发出的第一光信号进行计算产生的。 本发明实施例提供的技术方案的有益效果是:
本发明实施例中发光装置通过脉冲调制驱动器和幅度调制驱动器等器件的共同配合工 作,能够最终产生稳定波长的间歇性光信号或间歇性光脉冲信号,满足了 0TDR( Optical Time Domain Ref lectometer, 光时域反射仪) 等检测系统中发射端发射信号的要求, 并进而满 足光缆以及海缆等监控系统的应用要求。 附图说明
图 1是现有技术提供的 DWDM系统的构成示意图;
图 2是现有技术提供的 DWDM系统的光谱示意图;
图 3是本发明实施例提供的光调制系统的示意图;
图 4是本发明实施例提供的光调制系统的另一示意图;
图 5是本发明实施例 1提供的光调制系统示意图; 图 6是本发明实施例 2提供的光调制系统示意图;
图 7是本发明实施例 3提供的光调制系统示意图;
图 8是本发明实施例 4提供的光调制的方法流程图;
图 9是应用本发明实施例 4提供的方法的工作时序示意图;
图 10是本发明实施例 5提供的光调制的方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
本发明实施例提供了一种光调制系统, 该系统能够产生稳定波长的间歇性光信号, 满 足 0TDR等检测系统的要求。 参见图 3, 系统包括:
发光装置 (301 ), 用于产生光信号;
波长敏感器 (302), 用于接收发光装置 (301 ) 产生的光信号中的第一光信号, 上报第 一光信号的波长值;
信号处理器 (303), 用于接收波长敏感器 (302 ) 上报的波长值, 计算波长值与预设波 长值的偏差值, 根据偏差值产生波长控制信号, 发送波长控制信号;
控制器 (304), 用于接收信号处理器 (303 ) 发送的波长控制信号, 根据波长控制信号 调节发光装置 (301 ) 的工作参数;
幅度调制驱动器 (306), 用于产生并发送幅度驱动信号;
幅度调制器(307),用于接收发光装置(301 )产生的第二光信号和幅度调制驱动器(306 ) 发送的幅度驱动信号, 根据幅度驱动信号调制第二光信号, 输出稳定波长的间歇性光信号。
参见图 4, 本发明实施例提供的技术方案中, 该光调制系统还包括:
分光器 (308), 用于对发光装置 (301 ) 产生的光信号进行分光;
相应地, 波长敏感器 (302 ) 具体用于接收分光器 (308 ) 分出的第一光信号, 向信号 处理器 (303 ) 上报第一光信号的波长值;
幅度调制器 (307 ) 具体用于接收分光器 (308 ) 分出的第二光信号和幅度调制驱动器 ( 306 ) 发送的幅度驱动信号, 根据幅度驱动信号调制第二光信号, 输出稳定波长的间歇性 光信号。
其中, 波长敏感器 (302 ) 接收到的发光装置 (301 ) 的第一光信号具体为发光装置产 生的背光信号;
相应地, 幅度调制器 (307 ) 接收的发光装置 (301 ) 发出的第二光信号具体为发光装 置 (301) 产生的非背光信号。
参见图 4, 本发明实施例提供的系统进一步还包括:
脉冲调制驱动器(305),用于产生脉冲驱动信号,用脉冲驱动信号驱动发光装置(301); 发光装置 (301) 在脉冲调制驱动器 (305) 的驱动下产生光脉冲信号。
其中, 发光装置 (301) 具体包括: 激光器 (3011) 和光调制器 (3012);
激光器 (3011), 用于产生光信号;
相应地,
控制器 (304), 用于接收信号处理器 (303) 发送的波长控制信号, 根据波长控制信号 调节激光器 (3011) 的工作参数;
脉冲调制驱动器(305),用于产生脉冲驱动信号,用脉冲驱动信号驱动光调制器(3012); 光调制器 (3012), 用于接收脉冲驱动信号, 根据脉冲驱动信号调制激光器 (3011) 产 生的光信号, 输出光脉冲信号。
其中, 光调制器 (3012) 具体为: 声光调制器、 电吸收调制器或波导调制器。
其中, 信号处理器 (303) 还包括脉冲控制信号产生模块 (3031), 脉冲控制信号产生 模块 (3031) 用于产生脉冲控制信号, 将脉冲控制信号发送到脉冲调制驱动器 (305); 相 应地, 脉冲调制驱动器 (305) 具体用于根据脉冲控制信号产生模块 (3031) 发送的脉冲控 制信号产生脉冲驱动信号;
信号处理器( 303 )还包括幅度控制信号产生模块( 3032 ),幅度控制信号产生模块( 3032 ) 用于产生幅度控制信号, 将幅度控制信号发送到幅度调制驱动器 (306); 相应地, 幅度调 制驱动器 (306) 具体用于根据幅度控制信号产生模块 (3032) 发送的幅度控制信号产生幅 度驱动信号, 将幅度驱动信号发送到幅度调制器 (307)。
上述, 幅度调制器 (307) 具体为声光调制器或电可调衰减器。
在实际应用中, 根据调制方式的不同, 下面分别以 3 个实施例描述该光调制系统的具 体设计。
实施例 1
本发明实施例提供了一种光调制系统, 该系统中分光器将发光装置产生的光信号分成 两部分, 利用其中一部分进行稳定波长的控制, 进而最终实现输出稳定波长的间歇性光脉 冲信号, 其中, 发光装置以 DFB激光器为例, 幅度调制器以声光调制器为例进行说明。 参 见图 5, 系统主要包括: DFB激光器 501、 分光器 502、 波长敏感器 503、 信号处理器 504、 控制器 505、 脉冲调制驱动器 506、 幅度调制驱动器 507以及声光调制器 508。 其中;
DFB激光器 501, 用于产生光脉冲信号。 分光器 502, 用于接收 DFB激光器 501的光脉冲信号, 将接收到的 DFB激光器 501产生 的光脉冲信号分成两部分; 发送其中一部分光脉冲信号到波长敏感器 503, 将另一部分光脉 冲信号发送到声光调制器 508。
其中, 上述一部分光脉冲信号可以定义为第一光脉冲信号, 相应地, 另一部分光脉冲 信号可以定义称为第二光脉冲信号。
例如, 分光器 502接收到 DFB激光器 501的光脉冲信号, 取出其中 1%强度的光脉冲信 号发送到波长敏感器 503, 该 1%强度的光脉冲信号即为第一光脉冲信号; 将 99%强度的光脉 冲信号发送到声光调制器 508中, 该 99%强度的光脉冲信号即为第二光脉冲信号。
波长敏感器 503,用于接收来自分光器 502发送的 DFB激光器 501的一部分光脉冲信号, 向信号处理器 504上报该一部分光脉冲信号的波长值。
信号处理器 504, 用于接收波长敏感器 503上报的一部分光脉冲信号的波长值, 计算该 波长值与预设波长值的偏差值, 判断偏差值是否在预设偏差值范围内, 如果是, 则符合系 统要求, 不进行动作; 否则, 根据偏差值产生相应的波长控制信号, 并将波长控制信号发 送到控制器 505 ;
信号处理器 504还用于产生脉冲控制信号, 并将该脉冲控制信号发送到脉冲调制驱动 器 506 ; 以及用于产生幅度控制信号, 并将该幅度控制信号发送到幅度调制驱动器 507。
控制器 505, 用于接收信号处理器 504产生的波长控制信号, 根据该波长控制信号控制 DFB激光器 501的工作参数,保证 DFB激光器 501输出的光脉冲信号的波长稳定在一定的范 围。
其中, DFB激光器 501的工作参数可以为温度、 DFB激光器 501腔长等。
脉冲调制驱动器 506, 用于接收信号处理器 504产生的脉冲控制信号, 产生脉冲驱动信 号, 并将脉冲驱动信号发送到 DFB激光器 501, 驱动 DFB激光器 501产生与脉冲控制信号相 匹配的光脉冲信号。
幅度调制驱动器 507, 用于接收信号处理产生的幅度控制信号, 产生幅度驱动信号, 并 将幅度驱动信号发送到声光调制器 508,驱动声光调制器 508进行与幅度控制信号相应的插 损调整。
具体的所述信号处理器 504还包括脉冲控制信号产生模块, 所述脉冲控制信号产生模 块用于产生脉冲控制信号, 将所述脉冲控制信号发送到所述脉冲调制驱动器 506 ; 相应地, 所述脉冲调制驱动器 506 具体用于根据所述脉冲控制信号产生模块发送的脉冲控制信号产 生脉冲驱动信号; 所述信号处理器 504还包括幅度控制信号产生模块, 所述幅度控制信号 产生模块用于产生幅度控制信号, 将所述幅度控制信号发送到所述幅度调制驱动器 507 ; 相 应地, 所述幅度调制驱动器 507 具体用于根据所述幅度控制信号产生模块发送的幅度控制 信号产生幅度驱动信号, 将所述幅度驱动信号发送到所述幅度调制器。
其中, 上述脉冲调制驱动器 506和幅度调制驱动器 507在实际应用中, 其功能具体实 现是信号放大器, 脉冲调制驱动器 506 用于将接收到的脉冲控制信号进行强度放大, 得到 能够驱动 DFB激光器 501的脉冲驱动信号; 幅度调制驱动器 507用于将接收到的幅度控制 信号进行强度放大, 得到能够驱动声光调制器 508的幅度驱动信号。
声光调制器 508,用于接收分光器 502发送的 DFB激光器 501的另一部分光脉冲信号和 幅度调制驱动器 507 发送的幅度驱动信号, 根据幅度驱动信号控制自身的插损, 产生最终 的稳定波长的间歇性光脉冲信号。
进一步, 当需要驱动 DFB激光器 501产生恒定光信号时, 脉冲控制信号为恒定信号, 如恒定的电流信号等; 当需要驱动 DFB激光器 501产生光脉冲信号时, 脉冲控制信号为脉 冲信号, 如单个脉冲电流信号或脉冲序列电流信号等。
例如: 当声光调制器 508需要将接收到的光信号输出时, 信号处理器 504发出的幅度 控制信号具体是低阻控制信号, 幅度调制驱动器 507 接收到该低阻控制信号后, 使声光调 制器 508将插损调整为低阻状态; 当声光调制器 508不需要将接收到的光信号输出时, 信 号处理器 504发出的幅度控制信号是高阻控制信号, 幅度调制驱动器 507接收到该高阻控 制信号后, 驱动声光调制器 508将插损调整为高阻状态; 其中, ώ于声光调制器 508的消 光比很高(一般大于 40dB ),当声光调制器 508的插损为高阻状态时, 从声光调制器 508中 泄漏的光信号非常微弱, 满足 0TDR工作要求。
上述本发明实施例中, DFB激光器 501、分光器 502、波长敏感器 503、信号处理器 504、 控制器 505共同工作完成对 DFB激光器 501输出光信号的稳定波长的控制。
本发明实施例提供的系统, 能够控制 DFB激光器 501输出稳定波长的光信号, 通过驱 动声光调制器 508 调整插损处于高阻状态或处于低阻状态, 实现最终输出稳定波长的间歇 性光信号; 在驱动 DFB激光器 501产生光脉冲信号时, 通过驱动声光调制器 508调整插损 处于高阻状态或处于低阻状态, 实现最终输出稳定波长的间歇性光脉冲信号。
进一步, 本发明实施例中的声光调制器 508, 也可以使用电可调衰减器以及其他幅度调 制器实现。
本发明实施例中提供的光调制系统, 利用分光器 502的分出的 DFB激光器 501的一部 分光脉冲信号进行稳定波长的控制, 并在脉冲调制驱动器 506和幅度调制驱动器 507等器 件的共同配合工作下, 能够最终产生稳定波长的间歇性光脉冲信号, 满足了 0TDR等检测系 统中发射端发射信号的要求, 并进而满足对光缆以及海缆等监控系统的应用要求。 实施例 2
本发明实施例提供了一种光调制系统, 该系统利用 DFB激光器自身的特性, 使用其背 光信号进行稳定波长的控制, 进而最终实现输出稳定波长的间歇性光脉冲信号, 其中, 发 光装置以 DFB激光器为例, 幅度调制器以声光调制器为例进行说明。 参见图 6, 系统主要包 括: DFB激光器 601、 波长敏感器 602、 信号处理器 603、控制器 604、 脉冲调制驱动器 605、 幅度调制驱动器 606以及声光调制器 607。 其中,
DFB激光器 601, 用于产生光脉冲信号, 由于 DFB激光器 601的自身特性, 可以将产生 的光脉冲信号分为背光信号和非背光信号, 将背光信号发送到波长敏感器 602, 并将非背光 信号发送到声光调制器 607。
例如, 在 DFB激光器 601实际发出的光信号的强度中, 由于 DFB激光器 601 自身的特 性, 其 99%光强度用于产生非背光信号, 1%光强度产生背光信号, 其中背光信号和非背光信 号具有相同的波长值。
其中, 背光信号可以称为第一光脉冲信号; 相应地, 非背光信号可以称为第二光脉冲 信号。
波长敏感器 602, 用于接收背光信号, 向信号处理器 603上报背光信号的波长值。 信号处理器 603, 用于接收波长敏感器 602上报的背光信号的波长值, 计算该波长值与 预设波长值的偏差值, 判断偏差值是否在预设偏差值范围内, 如果是, 则符合系统要求, 不进行动作; 否则, 根据偏差值产生相应的波长控制信号, 并将波长控制信号发送到控制 器 604;
信号处理器 603 还用于产生脉冲控制信号, 将该脉冲控制信号发送到脉冲调制驱动器
605; 以及用于产生幅度控制信号, 将该幅度控制信号发送到幅度调制驱动器 606。
控制器 604, 用于接收信号处理器 603产生的波长控制信号, 根据该波长控制信号调节 控制 DFB激光器 601的工作参数, 保证 DFB激光器 601输出的光脉冲信号的波长稳定在一 定的范围。
脉冲调制驱动器 605, 用于接收信号处理器 603产生的脉冲控制信号, 产生脉冲驱动信 号, 并将脉冲驱动信号发送到 DFB激光器 601, 驱动 DFB激光器 601产生与脉冲控制信号相 匹配的光脉冲信号。
幅度调制驱动器 606, 用于接收信号处理产生的幅度控制信号, 产生幅度驱动信号, 并 将幅度驱动信号发送到声光调制器 607,驱动声光调制器 607进行与幅度控制信号相应的插 损调整。
声光调制器 607, 用于接收非背光信号和幅度调制驱动器 606发送的幅度驱动信号, 根 据幅度驱动信号控制自身的插损, 产生最终的稳定波长的间歇性光脉冲信号。 上述本发明实施例中, DFB激光器 601、 波长敏感器 602、 信号处理器 603、 控制器 604 共同工作完成对 DFB激光器 601输出光信号的稳定波长的控制。
本发明实施例提供的系统, 能够控制 DFB激光器 601输出稳定波长的光信号, 通过驱 动声光调制器 607 调整插损处于高阻状态或处于低阻状态, 实现最终输出稳定波长的间歇 性光信号; 在驱动 DFB激光器 601产生光脉冲信号时, 通过驱动声光调制器 607调整插损 处于高阻状态或处于低阻状态, 实现最终输出稳定波长的间歇性光脉冲信号。
本发明实施例中的声光调制器 607, 也可以使用电可调衰减器以及其他幅度调制器实 现。
本发明实施例中提供的光调制系统, 利用 DFB激光器 601 的背光信号进行稳定波长的 控制, 并在脉冲调制驱动器 605和幅度调制驱动器 606等器件的共同配合工作下, 能够最 终产生稳定波长的间歇性光脉冲信号, 满足了 0TDR等检测系统中发射端发射信号的要求, 并进而满足对光缆以及海缆等监控系统的应用要求。
实施例 3
本实施例提供了一种光调制系统, 该系统利用 DFB激光器 701 自身的特性, 使用其背 光信号进行稳定波长的控制, 通过对激光器进行外调制, 进而最终实现输出稳定波长的间 歇性光脉冲信号, 其中, 发光装置具体包括 DFB激光器 701和光调制器 702, 幅度调制器以 声光调制器为例进行说明。 参见图 7, 系统主要包括: DFB激光器 701、 光调制器 702、 波 长敏感器 703、 信号处理器 704、 控制器 705、 脉冲调制驱动器 706、 幅度调制驱动器 707 以及声光调制器 708。 其中,
DFB激光器 701, 用于产生光信号, 由于 DFB激光器 701的自身特性, 可以将产生的光 信号分为背光信号和非背光信号, 将背光信号发送到波长敏感器 703, 并将非背光信号发送 到光调制器。
波长敏感器 703, 用于接收背光信号, 向信号处理器 704上报背光信号的波长值。 信号处理器 704, 用于接收波长敏感器 703上报的背光信号的波长值, 计算该波长值与 预设波长值的偏差值, 判断偏差值是否在预设偏差值范围内, 如果是, 则符合系统要求, 不进行动作; 否则, 根据偏差值产生相应的波长控制信号, 并将波长控制信号发送到控制 器 705 ;
信号处理器 704还用于产生脉冲控制信号, 并将该脉冲控制信号发送到脉冲调制驱动 器 706 ; 以及用于产生幅度控制信号, 并将该幅度控制信号发送到幅度调制驱动器 707。
控制器 705, 用于接收信号处理器 704产生的波长控制信号, 根据该波长控制信号调节 控制 DFB激光器 701的工作参数, 保证 DFB激光器 701输出的光信号的波长稳定在一定的 范围。
脉冲调制驱动器 706, 用于接收信号处理器 704产生的脉冲控制信号, 产生脉冲驱动信 号, 并将脉冲驱动信号发送到光调制器, 驱动光调制器将接收到的非背光信号调制为和脉 冲控制信号相匹配的光信号。
光调制器, 用于接收 DFB激光器 701产生的非背光信号以及脉冲调制驱动器 706产生 的脉冲驱动信号, 根据脉冲驱动信号将非背光信号调制成光脉冲信号, 并发送该光脉冲信 号。
幅度调制驱动器 707, 用于接收信号处理器 704产生的幅度控制信号, 产生幅度驱动信 号, 并将幅度驱动信号发送到声光调制器 708, 驱动声光调制器 708进行与幅度控制信号相 应的插损调整。
声光调制器 708,用于接收光调制器发送的光脉冲信号和幅度调制驱动器 707发送的幅 度驱动信号, 根据幅度驱动信号控制自身的插损, 产生最终的稳定波长的间歇性光脉冲信 号。
上述本发明实施例中, DFB激光器 701、 波长敏感器 703、 信号处理器 704、 控制器 705 共同工作完成对 DFB激光器 701输出光信号的稳定波长的控制。
本发明实施例提供的系统, 能够将 DFB激光器 701产生的光信号调制为稳定波长的光 脉冲信号, 通过驱动声光调制器 708 调整插损处于高阻状态或处于低阻状态, 实现最终输 出稳定波长的间歇性光脉冲信号; 还能够将 DFB激光器 701产生的光信号调制为稳定波长 的光信号, 通过驱动声光调制器 708 调整插损处于高阻状态或处于低阻状态, 实现最终输 出稳定波长的间歇性光信号。
本发明实施例提供的系统还可以包括分光器, 用于对接收到的激光器的光信号进行分 光, 相应地, 上述本发明实施例中波长敏感器 703 接收到的背光信号, 还可以是通过分光 器取得的 DFB激光器 701产生的光信号的一部分光信号。
上述本发明实施例中的光调制器可以使用声光调制器 708、电吸收调制器或波导调制器 实现。
上述本发明实施例中的声光调制器 708,也可以使用电可调衰减器以及其他幅度调制器 实现。
本发明实施例中提供的光调制系统利用 DFB激光器 701 的背光信号进行稳定波长的控 制, 产生稳定波长的光信号, 并在光调制器、 脉冲调制驱动器 706 和幅度调制驱动器 707 等器件的共同配合工作下, 能够产生稳定波长的间歇性光脉冲信号, 满足了 0TDR等检测系 统中发射端发射信号的要求, 并进而满足对光缆以及海缆等监控系统的应用要求。
实施例 4
参见图 8, 本发明实施例提供了一种光调制方法, 方法包括:
接收发光装置发出的光信号中的第二光信号, 在幅度驱动信号的调制下输出稳定波长 的间歇性光信号, 其中, 光信号为发光装置在波长控制信号的控制下产生的稳定波长的信 号, 波长控制信号是通过对发光装置发出的第一光信号进行计算产生的。
其中, 光信号为光脉冲信号时, 以产生间歇性光脉冲信号为例进行说明, 本发明实施 例提供的方法能够产生稳定波长的间歇性光脉冲信号, 以采用实施例 1 中的系统为例进行 说明, 方法步骤如下:
步骤 101 : DFB激光器产生光脉冲信号, 发送到分光器。
步骤 102: 分光器接收到 DFB激光器产生的光脉冲信号, 分出一部分光脉冲信号发送到 波长敏感器, 并将另一部分光脉冲信号发送到声光调制器。
步骤 103: 波长敏感器接收分光器发送的 DFB激光器的一部分光脉冲信号, 并将该光脉 冲信号的波长值发送到信号处理器。
步骤 104: 信号处理器将接收到的光信号的波长值与预设的波长值进行比较, 判断偏差 值是否在预设偏差值范围内, 如果是, 执行步骤 105; 否则, 执行步骤 106。
步骤 105: 符合系统要求, 不进行动作。
步骤 106: 信号处理器根据偏差值, 产生相应的波长控制信号, 并发送到控制器。 步骤 107: 控制器接收波长控制信号, 根据波长控制信号控制 DFB激光器的工作参数, 保证 DFB激光器输出的光脉冲信号的波长值和预设的波长值一致。
上述步骤完成了波长锁定反馈动作, 能够控制 DFB激光器产生的光信号始终为稳定波 长。
步骤 108: 信号处理器产生的脉冲控制信号发送到脉冲调制驱动器, 脉冲调制驱动器产 生脉冲驱动信号, 驱动 DFB激光器产生光脉冲信号。
DFB激光器会在该脉冲驱动信号的驱动下,持续产生与脉冲驱动信号相匹配的光脉冲信 号。
步骤 109: 声光调制器接收分光器发送的另一部分光脉冲信号, 在幅度驱动信号的调制 下输出稳定波长的间歇性光脉冲信号。
该步骤具体包括: 当声光调制器需要将接收到的光脉冲信号输出时, 信号处理器产生 的幅度控制信号为低阻控制信号, 幅度调制驱动器接收到该低阻控制信号后, 发出相应的 幅度驱动信号驱动声光调制器将插损调整为低阻状态; 当声光调制器不需要将接收到的光 脉冲信号输出时, 信号处理器产生的幅度控制信号为高阻控制信号, 幅度调制驱动器接收 到该高阻控制信号后, 发出相应的幅度驱动信号驱动声光调制器将插损调整为高阻状态; 其中, 声光调整器的消光比很高 (一般 >40dB), 插损为高阻状态时, 泄漏的光信号非常微 弱, 满足 0TDR等工作状态的。
进一步, 本发明实施例提供的方法还可以实现声光调制器输出稳定波长的恒定光信号。 此时, 脉冲调制驱动器发出的脉冲驱动信号为恒定信号 (如恒定电流信号), 其数值可以和 产生光脉冲的光脉冲驱动信号的值大小相同或不同, 但是要保证能够实现波长反馈控制动 作。
上述本发明实施例中可以通过调节幅度驱动信号, 使声光调制器的插损保持为低阻状 态实现声光调制器输出稳定波长的光脉冲信号或稳定波长的恒定光信号; 通过调节幅度驱 动信号, 使声光调制器的插损保持为高阻状态, 保证无光信号输出。
参见图 9, 为应用本发明实施例提供的方法的工作时序示意图。 其中, DFB激光器在 0 到 tl时间段内产生稳定波长的光信号, 在从 tl到 t2时间段产生稳定波长的光脉冲信号, t2以后恢复产生稳定波长的光信号; 相应地, 声光调制器的插损从 0到 tl的时间段调整为 高阻状态, 在 tl到 t2时间段调整为低阻状态, t2以后再次调整恢复为高阻状态。 于是, 声光调制器的最终输出为: 0到 tl时间段没有光信号输出, tl到 t2时间段输出 DFB激光 器发出的稳定波长的光脉冲信号, t2以后没有光信号输出。
进一步, 本发明实施例中的声光调制器, 也可以通过电可调衰减器以及其他幅度调制 器实现。
本发明实施例中提供的光调制方法利用分光器的分出的 DFB激光器的一部分光脉冲信 号进行稳定波长的控制,, 并在脉冲调制驱动器和幅度调制驱动器等器件的共同配合工作 下, 能够最终产生稳定波长的间歇性光脉冲信号, 满足了 0TDR等检测系统中发射端发射信 号的要求, 并进而满足对光缆以及海缆等监控系统的应用要求。
实施例 5
参见图 10, 本发明实施例提供了一种光调制方法。 本发明实施例提供的方法能够产生 稳定波长的间歇性光脉冲, 以采用实施例 3中的系统为例进行说明, 该方法步骤如下: 步骤 201 : DFB激光器产生光信号, 将背光信号发送到波长敏感器, 并将非背光信号发 送到光调制器。
步骤 202: 波长敏感器接收背光信号, 并将接收到的背光信号的波长值发送到信号处理 器。
步骤 203: 信号处理器将接收到的光信号的波长值与预设的波长值进行比较, 判断偏差 值是否在预设偏差值范围内, 如果是, 执行步骤 204; 否则, 执行步骤 205。
步骤 204: 符合系统要求, 不进行动作。
步骤 205 : 信号处理器根据偏差值, 产生相应的波长控制信号, 并发送到控制器。 步骤 206 : 控制器接收波长控制信号, 根据波长控制信号控制 DFB激光器的工作参数, 保证 DFB激光器输出光信号的波长值和预设的波长值一致。
步骤 207 : 信号处理器将产生的脉冲控制信号发送到脉冲调制驱动器, 脉冲调制驱动器 根据脉冲控制信号产生脉冲驱动信号, 并将脉冲驱动信号发送到光调制器。
步骤 208 : 光调制器接收到脉冲驱动信号, 根据脉冲驱动信号将接收到的非背光信号调 制为光脉冲信号, 并将光脉冲信号发送到声光调制器。
步骤 209 : 声光调制器接收光脉冲信号, 在幅度驱动信号的调制下输出稳定波长的间歇 性光脉冲信号。
本发明实施例中提供的光调制方法利用 DFB激光器的背光信号进行稳定波长的控制, 并在光调制器、 脉冲调制驱动器和幅度调制驱动器等器件的共同配合工作下, 能够产生稳 定波长的间歇性光脉冲信号, 满足了 0TDR等检测系统中发射端发射信号的要求, 并进而满 足对光缆以及海缆等监控系统的应用要求。
上述本发明实施例提供的方案, 利用波长敏感器实现发光装置的稳定波长控制, 产生 稳定波长的光信号, 并在脉冲调制驱动器和幅度调制驱动器等器件的共同配合工作下, 能 够产生稳定波长的间歇性光脉冲信号, 满足了 0TDR等检测系统中发射端发射信号的要求, 并进而满足对光缆监控系统的应用要求。
上述本发明实施例提供的方案还能够解决海缆通信中故障探测光信号 (具体为光脉冲 信号) 的背向散射光信号的返回问题。 由于海缆监控系统是通过在掺饵光纤功率放大器的 中继内将背向散射光信号耦合到另一根反向传输链路中,利用该反向传输链路的反向传输 光纤作为背向散射光信号的返回途径实现对海缆光纤的监测的, 因此, 采用本发明实施例 提供的技术方案可以将探测光信号的波长稳定在掺饵光纤功率放大器的放大范围内, 进一 步将探测光信号的波长稳定在零点几个纳米范围内避免了对业务信号的影响, 并保证了探 测光信号的波长在接收端光滤波器的滤波范围之内。
本发明实施例中的部分步骤, 可以利用软件实现, 相应的软件程序可以存储在可读取 的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的具体实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1.一种光调制系统, 其特征在于, 所述系统包括:
发光装置 (301), 用于产生光信号;
波长敏感器 (302), 用于接收所述发光装置 (301) 产生的光信号中的第一光信号, 上 报所述第一光信号的波长值;
信号处理器 (303), 用于接收所述波长敏感器 (302) 上报的波长值, 计算所述波长值 与预设波长值的偏差值, 根据所述偏差值产生波长控制信号, 发送所述波长控制信号; 控制器 (304), 用于接收所述信号处理器 (303) 发送的波长控制信号, 根据所述波长 控制信号调节所述发光装置 (301) 的工作参数;
幅度调制驱动器 (306), 用于产生并发送幅度驱动信号;
幅度调制器 (307), 用于接收所述发光装置 (301)产生的第二光信号和所述幅度调制 驱动器 (306) 发送的幅度驱动信号, 根据所述幅度驱动信号调制所述第二光信号, 输出稳 定波长的间歇性光信号。
2. 如权利要求 1所述的光调制系统, 其特征在于, 所述系统还包括:
分光器 (308), 用于对所述发光装置 (301) 产生的光信号进行分光;
相应地, 所述波长敏感器 (302) 具体用于接收所述分光器 (308) 分出的第一光信号, 向所述信号处理器 (303) 上报所述第一光信号的波长值;
所述幅度调制器 (307) 具体用于接收所述分光器 (308) 分出的第二光信号和所述幅 度调制驱动器 (306) 发送的幅度驱动信号, 根据所述幅度驱动信号调制所述第二光信号, 输出稳定波长的间歇性光信号。
3. 如权利要求 1 所述的光调制系统, 其特征在于, 所述波长敏感器 (302) 接收到的 所述发光装置 (301) 的第一光信号具体为所述发光装置产生的背光信号;
相应地, 所述幅度调制器 (307) 接收的所述发光装置 (301) 发出的第二光信号具体 为所述发光装置 (301) 产生的非背光信号。
4、 如权利要求 1、 2或 3任一权利要求所述的光调制系统, 其特征在于, 所述系统还 包括:
脉冲调制驱动器 (305), 用于产生脉冲驱动信号, 用所述脉冲驱动信号驱动所述发光 装置 (301);
所述发光装置 (301) 在所述脉冲调制驱动器 (305) 的驱动下产生光脉冲信号。
5.如权利要求 4所述的光调制系统, 其特征在于, 所述发光装置 (301) 具体包括: 激 光器 (3011) 和光调制器 (3012); 所述激光器 (3011 ), 用于产生光信号;
相应地,
所述控制器 (304), 用于接收所述信号处理器 (303 ) 发送的波长控制信号, 根据所述 波长控制信号调节所述激光器 (3011 ) 的工作参数;
所述脉冲调制驱动器 (305), 用于产生脉冲驱动信号, 用所述脉冲驱动信号驱动所述 光调制器 (3012 );
所述光调制器 (3012), 用于接收所述脉冲驱动信号, 根据所述脉冲驱动信号调制所述 激光器 (3011 ) 产生的光信号, 输出光脉冲信号。
6. 如权利要求 5所述的光调制系统, 其特征在于, 所述光调制器 (3012 ) 具体为: 声 光调制器、 电吸收调制器或波导调制器。
7. 如权利要求 4所述的光调制系统, 其特征在于,
所述信号处理器 (303 ) 还包括脉冲控制信号产生模块 (3031 ), 所述脉冲控制信号产 生模块 (3031 ) 用于产生脉冲控制信号, 将所述脉冲控制信号发送到所述脉冲调制驱动器
( 305 ); 相应地, 所述脉冲调制驱动器 (305 ) 具体用于根据所述脉冲控制信号产生模块 ( 3031 ) 发送的脉冲控制信号产生脉冲驱动信号;
所述信号处理器 (303 ) 还包括幅度控制信号产生模块 (3032), 所述幅度控制信号产 生模块 (3032 ) 用于产生幅度控制信号, 将所述幅度控制信号发送到所述幅度调制驱动器
( 306 ); 相应地, 所述幅度调制驱动器 (306 ) 具体用于根据所述幅度控制信号产生模块 ( 3032 ) 发送的幅度控制信号产生幅度驱动信号, 将所述幅度驱动信号发送到所述幅度调 制器 (307)。
8. 如权利要求 1 所述的光调制系统, 其特征在于, 所述幅度调制器 (307 ) 具体为声 光调制器或电可调衰减器。
9. 一种光调制方法, 其特征在于, 所述方法包括:
接收发光装置发出的光信号中的第二光信号, 在幅度驱动信号的调制下输出稳定波长 的间歇性光信号, 其中, 所述光信号为所述发光装置在波长控制信号的控制下产生的稳定 波长的信号, 所述波长控制信号是通过对所述发光装置发出的第一光信号进行计算产生的。
10. 如权利要求 9 所述的光调制方法, 其特征在于, 所述光信号具体为光脉冲信号, 所述光脉冲信号为所述发光装置在波长控制信号和脉冲驱动信号的控制下产生的稳定波长 的光脉冲信号。
11. 如权利要求 10所述的光调制方法, 其特征在于, 所述发光装置在波长控制信号和 脉冲驱动信号的控制下产生稳定波长的光脉冲信号的步骤具体包括: 信号处理器产生波长控制信号和脉冲控制信号, 并将所述波长控制信号发送到控制器, 将所述脉冲控制信号发送到脉冲调制驱动器;
所述控制器收到所述波长控制信号, 根据所述波长控制信号控制所述发光装置的工作 参数;
所述脉冲调制驱动器收到所述脉冲控制信号, 根据所述脉冲控制信号产生脉冲驱动信 号, 将所述脉冲驱动信号发送到所述发光装置;
所述发光装置在所述波长控制信号和所述脉冲驱动信号的控制下产生稳定波长的光脉 冲信号。
12. 如权利要求 10所述的光调制方法, 其特征在于, 所述发光装置具体包括激光器和 光调制器;
相应地, 所述发光装置在波长控制信号和脉冲驱动信号的控制下产生稳定波长的光脉 冲信号的步骤具体包括:
信号处理器产生波长控制信号和脉冲控制信号, 并将所述波长控制信号发送到控制器, 将所述脉冲控制信号发送到脉冲调制驱动器;
所述控制器收到所述波长控制信号, 根据所述波长控制信号控制所述激光器的工作参 数;
所述脉冲调制驱动器收到所述脉冲控制信号, 根据所述脉冲控制信号产生脉冲驱动信 号, 将所述脉冲驱动信号发送到所述光调制器;
所述激光器在所述波长控制信号的控制下产生稳定波长的光信号, 将所述稳定波长的 光信号发送到所述光调制器;
所述光调制器收到所述稳定波长的光信号后, 在所述脉冲驱动信号的控制下产生稳定 波长的光脉冲信号。
13. 如权利要求 10所述的光调制方法, 其特征在于, 所述接收所述发光装置发出的第 二光脉冲信号, 在幅度驱动信号的调制下输出稳定波长的间歇性光脉冲信号的步骤具体包 括:
信号处理器产生幅度控制信号, 并将所述幅度控制信号发送到幅度调制驱动器; 所述幅度调制驱动器收到所述幅度控制信号, 根据所述幅度控制信号产生幅度驱动信 号, 将所述幅度驱动信号发送到幅度调制器;
所述幅度调制器接收所述发光装置发出的第二光脉冲信号, 在所述幅度驱动信号的调 制下输出稳定波长的间歇性光脉冲信号。
PCT/CN2008/071802 2007-11-23 2008-07-29 Système et procédé de modulation optique WO2009065314A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08783795A EP2112725A4 (en) 2007-11-23 2008-07-29 OPTICAL MODULATION SYSTEM AND CORRESPONDING METHOD
JP2009543340A JP2010515086A (ja) 2007-11-23 2008-07-29 光変調のシステム及び方法
US12/497,151 US20090268272A1 (en) 2007-11-23 2009-07-02 System and method of optical modulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710188086.5 2007-11-23
CN2007101880865A CN101442366B (zh) 2007-11-23 2007-11-23 一种光调制系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/497,151 Continuation US20090268272A1 (en) 2007-11-23 2009-07-02 System and method of optical modulation

Publications (1)

Publication Number Publication Date
WO2009065314A1 true WO2009065314A1 (fr) 2009-05-28

Family

ID=40667121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071802 WO2009065314A1 (fr) 2007-11-23 2008-07-29 Système et procédé de modulation optique

Country Status (5)

Country Link
US (1) US20090268272A1 (zh)
EP (1) EP2112725A4 (zh)
JP (1) JP2010515086A (zh)
CN (1) CN101442366B (zh)
WO (1) WO2009065314A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958749B (zh) * 2010-07-24 2012-10-03 桂林聚联科技有限公司 一种光缆在线监测的方法
CN101924962B (zh) * 2010-08-25 2015-06-10 中兴通讯股份有限公司 光纤故障检测的系统及方法
JP5672011B2 (ja) * 2011-01-04 2015-02-18 富士通株式会社 波長選択スイッチおよび波長ずれ補正方法
EP2741432A4 (en) * 2011-12-31 2014-10-29 Huawei Tech Co Ltd OPTICAL TIME DOMAIN REFLECTOMETER AND METHOD FOR OBTAINING MEASUREMENT SIGNALS THEREFOR
DE102016208754B4 (de) * 2016-05-20 2017-12-28 Humedics Gmbh Verfahren zur Regelung der Emissionsfrequenz eines Lasers
CN113037388A (zh) * 2019-12-24 2021-06-25 中兴通讯股份有限公司 一种调制系统和调制方法
CN111200234B (zh) * 2020-01-09 2020-12-25 中国科学院西安光学精密机械研究所 硅酸盐玻璃高增益低非线性全光纤超短脉冲放大器及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354877A (ja) * 1998-06-11 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザの光源波長安定化方法及び光モジュール
US6301280B1 (en) * 1999-01-11 2001-10-09 Agere Systems Optoelectronics Guardian Corp. Apparatus and method for forming a laser control signal, and a laser including the apparatus
CN1442933A (zh) * 2003-03-28 2003-09-17 中国科学院上海光学精密机械研究所 稳定大功率半导体激光器输出波长的方法和装置
US6765938B2 (en) * 2001-04-23 2004-07-20 The Furukawa Electric Co., Ltd. System for controlling wavelength of laser beam
CN2713524Y (zh) * 2004-06-25 2005-07-27 北京邮电大学 喇曼光纤放大器的温度控制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943152A (en) * 1996-02-23 1999-08-24 Ciena Corporation Laser wavelength control device
JP3565313B2 (ja) * 1998-05-25 2004-09-15 富士通株式会社 光送信機並びに該光送信機を有する端局装置及び光通信システム
JP2002084230A (ja) * 2000-06-23 2002-03-22 Hitachi Ltd 光送信器および光伝送システム
US6912361B2 (en) * 2002-10-08 2005-06-28 Finisar Corporation Optical transceiver module with multipurpose internal serial bus
US7013091B2 (en) * 2002-01-16 2006-03-14 Pts Corporation Synchronization of pulse and data sources
JP2004023295A (ja) * 2002-06-13 2004-01-22 Mitsubishi Electric Corp 波長多重光送信装置
US20040202481A1 (en) * 2003-04-11 2004-10-14 Karlquist Richard K. Systems and methods for recovering a clock from optical data
US7042559B1 (en) * 2003-07-01 2006-05-09 At&T Corp. Fault location apparatus and procedures in CWDM business applications using wavelength selective OTDR
US7184671B2 (en) * 2003-09-16 2007-02-27 Opnext, Inc. Optical transmission controller
US7725043B2 (en) * 2004-10-07 2010-05-25 Raytheon Company System and method for reducing interferometric distortion and relative intensity noise in directly modulated fiber optic links

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354877A (ja) * 1998-06-11 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザの光源波長安定化方法及び光モジュール
US6301280B1 (en) * 1999-01-11 2001-10-09 Agere Systems Optoelectronics Guardian Corp. Apparatus and method for forming a laser control signal, and a laser including the apparatus
US6765938B2 (en) * 2001-04-23 2004-07-20 The Furukawa Electric Co., Ltd. System for controlling wavelength of laser beam
CN1442933A (zh) * 2003-03-28 2003-09-17 中国科学院上海光学精密机械研究所 稳定大功率半导体激光器输出波长的方法和装置
CN2713524Y (zh) * 2004-06-25 2005-07-27 北京邮电大学 喇曼光纤放大器的温度控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2112725A4 *

Also Published As

Publication number Publication date
EP2112725A1 (en) 2009-10-28
CN101442366B (zh) 2011-07-20
CN101442366A (zh) 2009-05-27
US20090268272A1 (en) 2009-10-29
EP2112725A4 (en) 2010-02-24
JP2010515086A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2009065314A1 (fr) Système et procédé de modulation optique
CN102907026A (zh) 光子集成式传输器
US7768698B2 (en) Raman amplifier and optical communication system
US10680399B2 (en) Optical module
US9653879B2 (en) Optical module
US8285147B2 (en) Bulk modulation of multiple wavelengths for generation of CATV optical comb
WO2003069812A1 (en) Optical transmission system with raman amplifiers comprising a supervisory system
KR100768641B1 (ko) 공유 시드 광원을 이용하는 파장분할다중화 전송 시스템
US10042191B2 (en) Optical Transmitter
CN109075868A (zh) 为光通信系统生成导频音
WO2003069811A1 (en) Optical transmission system with raman amplifiers comprising a supervisory system
JP2002031786A (ja) コヒーレント多波長信号発生装置
US7848652B2 (en) Wavelength division multiplexing passive optical network system and method of generating optical source
JP2001251254A (ja) 光送信器及び光伝送システム
JP4677426B2 (ja) コヒーレントotdr
JP4134249B1 (ja) コヒーレントotdr
US20070223924A1 (en) Optical transmission apparatus
JP2014138195A (ja) 波長可変バースト送信器
US20190312646A1 (en) Optical communication with wavelength-dependent amplitude pre-compensation
JP2001255209A (ja) 光チャネルモニターリングモジュールの基準波長設定装置
JP4654570B2 (ja) 誘導ブリルアン散乱抑圧装置及びこれを用いた光ファイバ伝送システム
JP2003188827A (ja) 光送信器
JP2004045296A (ja) Spm変調度測定方法及びシステム
JP2000261080A (ja) 高出力光源
JPWO2003103194A1 (ja) 双方向光伝送方式及び光送受信装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2009543340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008783795

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE