WO2009055957A1 - Moteur à courant continu à aimant permanent sans balai triphasé de type disque - Google Patents

Moteur à courant continu à aimant permanent sans balai triphasé de type disque Download PDF

Info

Publication number
WO2009055957A1
WO2009055957A1 PCT/CN2007/003064 CN2007003064W WO2009055957A1 WO 2009055957 A1 WO2009055957 A1 WO 2009055957A1 CN 2007003064 W CN2007003064 W CN 2007003064W WO 2009055957 A1 WO2009055957 A1 WO 2009055957A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
disc
permanent magnet
motor
Prior art date
Application number
PCT/CN2007/003064
Other languages
English (en)
French (fr)
Inventor
Tiecai Li
Yamei Qi
Wenbin Yang
Zhaoyong Zhou
Feipeng Xu
Original Assignee
Shenzhen Academy Of Aerospace Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Academy Of Aerospace Technology filed Critical Shenzhen Academy Of Aerospace Technology
Priority to PCT/CN2007/003064 priority Critical patent/WO2009055957A1/zh
Publication of WO2009055957A1 publication Critical patent/WO2009055957A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to a disc type three-phase brushless DC permanent magnet motor, and more particularly to a disc type three-phase brushless DC permanent magnet motor composed of a disc type statorless iron core and a disc outer rotor, which can be used for Low speed direct drive and high speed drive are also suitable for low speed and high speed power generation. Background technique
  • the design method of the induction motor or the disk type iron core permanent magnet motor is usually followed.
  • Three sides of the three-phase winding are arranged under each pole.
  • the ends of the windings are large, and the ends of the three-phase windings also have overlapping intersections, as shown in Fig. 1.
  • the ends of the windings are large, and the copper consumption is large; the overlapping ends of the windings cause the ends to become larger and thicker, resulting in higher production costs.
  • the operating efficiency of the conventional permanent magnet motor has not been fully utilized.
  • the number of slots per phase per phase of a conventional three-phase permanent magnet motor is Z/(2Pm) > l/2, where 2P is the number of poles, m is the number of phases, and Z is the number of slots. For example: 8 poles 24 slots and 8 poles 36 slots, and so on.
  • the larger the number of slots per phase per pole the larger the end of the winding. The lower the utilization of the winding, the greater the copper consumption, and the higher the manufacturing cost of such a motor.
  • Japanese Patent Laid-Open No. 9-10474 published on January 17, 1997, is owned by Toshiba Corporation of Japan.
  • the patent proposes a three-phase brushless DC permanent magnet with an outer rotor structure
  • the technical problem to be solved by the present invention is how to minimize the number of windings in a three-phase brushless DC permanent magnet motor, the end of the winding tends to be the smallest, and the utilization of the winding tends to be the highest. Therefore, the iron loss and copper consumption of the motor are minimized, and the production cost of the motor tends to be the lowest.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing a disc type three-phase brushless permanent magnet DC motor, wherein two disc rotors are respectively provided with a plurality of pairs of N and S pole permanent magnets, and The permanent magnet N pole on the first disc rotor faces the permanent magnet S pole on the second disc rotor to generate an axial air gap magnetic field; the three-phase winding is installed in the virtual slot of the iron core disc stator;
  • the three-phase winding coils in the 9N virtual slots of the stator are arranged in the order A- /AA- B- /B- B- C- /C- CA, and are cycled N times in the circumference, where A represents phase A One coil of the winding, /A represents a reverse coil of the A-phase winding, and so on, B, /B, C, /C.
  • each permanent magnet on the disc rotor may be a perfect circle or a normal ellipse, and the respective permanent magnets are evenly distributed along the outer side of the disc rotor, and the permanent magnets N and S on the same rotor are arranged.
  • the gap is 0.
  • each virtual groove of the stator is a perfect circle or a normal ellipse corresponding to each permanent magnet on the disc rotor, and is evenly distributed along the outer side of the disc stator;
  • the center of the 9N coils of the three-phase winding is on a circle having the same radial radius as the center of each permanent magnet on the disc rotor, and each coil is a simple toroidal coil and is filled in the virtual groove.
  • the shape of the permanent magnets on the same rotor is 0. l ⁇ Lmm process gap;
  • the shape of each virtual groove of the stator is a fan shape corresponding to each permanent magnet on the disc rotor, and is evenly distributed along the outer side of the disc stator;
  • the geometric center and the disk of the 9N coils of the three-phase winding Turn
  • the geometric centers of the individual sector-shaped permanent magnets on the sub-shape are on a circle of the same radial radius, each coil being fan-shaped and filled in the virtual groove.
  • the axial physical air gap between each permanent magnet and the stator on the disc rotor is preferably
  • the thickness of the stator is preferably 1 ⁇ 8; the stator center is equipped with a stator shaft, the stator shaft is equipped with bearings on both sides, and the disc rotor is respectively mounted on one of the bearings on.
  • the lead wires of the three-phase winding may pass through the partially hollow stator shaft hole.
  • two linear Hall sensors can be disposed, which are separated from each other by an electrical angle of 90 degrees, and are fixed on the stator through a PCB board; the sensitive direction of the Hall sensor faces the air gap magnetic field formed by the rotor permanent magnet, Sensing the change in the air gap magnetic field.
  • three switch Hall sensors may also be disposed, the three are separated from each other by an electrical angle of 120 degrees, and are fixed on the stator through a PCB board; the sensitive direction of the Hall sensor faces the air gap magnetic field formed by the permanent magnet of the rotor, To sense the change in the air gap magnetic field.
  • the three-phase winding coils are arranged in the order A-/A-A-B-/B-B-C-/C-C-A and are cycled N times in the circumference.
  • a stator can be adapted to two kinds of poles of the magnetic poles, so that the produced motor has a wider rotational speed range and a wider torque range; on the other hand, the motor
  • the stator has no iron core and therefore has no positioning torque and is particularly suitable for use as a generator, which is very efficient.
  • the number of windings tends to be minimized, the ends of the windings tend to be minimized, and the utilization of the windings tends to be the highest, thereby minimizing the iron loss and copper loss of the motor; and at the same time, its winding shape
  • the style and connection method tend to be the simplest and clear, the material utilization rate is high and the structure process is good, and the production cost of the motor tends to be the lowest.
  • FIG. 1 is a schematic view showing a winding structure of a conventional statorless core-type brushless DC permanent magnet motor
  • FIG. 2 is a schematic structural view of a disk-type three-phase brushless permanent magnet DC motor
  • Figure 9 is a schematic diagram of the stator winding structure of a circular magnetic steel, 2P 20 pole or 16 pole, Z 2 18 slot motor;
  • Fig. 2 1 is the stator, 2 is the left rotor disk, 3 is the right rotor disk, 4 is the left rotor disk magnet, 5 is the right rotor disk magnet, 6 is the bearing, 7 is the stator shaft, 8 It is a three-phase winding lead, 9 is a Hall element and a PCB board, and 10 is a motor.
  • the motor of the present invention is arranged 3/8 per phase per phase. Winding coils, or 3/10 winding coils.
  • stator of the motor of the invention has no iron core, there is no positioning torque, and the motor has a large selection of magnetic pole numbers, and is particularly suitable for low speed direct drive and high speed drive, and is suitable for low speed and high speed power generation, and the motor efficiency is very high.
  • the winding coefficient of the motor is 0.946. Since the distribution coefficient is 0.96, the pitch coefficient is 0.985, which makes the line back EMF waveform of the motor winding of the present invention a rather ideal sine wave.
  • FIG. 2 shows a disc type three-phase brushless permanent magnet DC motor 10, the magnetic material of the left side rotor disk 2 to the axial physical air gap of the stator body 1. 15 ⁇ lmm ;
  • the axial body air gap of the stator body 1 to the right rotor disk 3 is also 0. 15 ⁇ lmm ;
  • the center of the disk stator body is the stator shaft 7,
  • Bearings 6 are mounted on both sides of the shaft to support the rotor disk, and a physical air gap is maintained between the stator and the rotor, so that the rotor can be freely rotated, and the three-phase winding lead wires 8 pass through the stator shaft 7.
  • two linear Hall sensors are fixed on the stator 1 through the PCB board 9.
  • the sensitive direction of the Hall sensor is toward the air gap magnetic field formed by the disk rotor magnet, so that the sensitive air gap magnetic field changes, two switches The sensors are separated from each other by an electrical angle of 90 degrees.
  • three switch Hall sensors can also be used to fix the stator on the PCB through the PCB board.
  • the Hall sensor is sensitive to the disk rotor magnet.
  • the resulting air gap magnetic field in order to change the sensitive air gap magnetic field, the three switch Hall sensors are spaced apart from each other
  • the stator corresponding to this rotor is shown in Fig. 3.
  • Three-phase winding The center of the nine coils is on the same radial radius as the center of the rotor magnet.
  • Each winding coil is a simple toroidal coil and is filled in a virtual slot.
  • the order of the three-phase windings is A- /A- A- B- /B- B- C- /C- C- A; where A represents A One coil of the phase winding, /A represents a reverse coil of the A phase winding, B represents a coil of the B phase winding, /B represents a reverse coil of the B phase winding, C represents a coil of the C phase winding, /C Represents a reverse coil of the C-phase winding.
  • the form and connection of the windings are very simple and straightforward, making it easy to automate the winding.
  • the three-phase windings are arranged in the order A- /A- AB- /B- BC-/CCA.
  • Other aspects are the same as the embodiment shown in FIG.
  • each of the perfect circular magnetic steels can also be designed as a normal elliptical magnetic steel, corresponding to each other.
  • the corresponding stator is shown in Fig. 4.
  • the geometric center of the nine sector coils of the three-phase winding is on the same radial radius circle as the geometric center of the rotor sector magnet.
  • Each winding coil is fan-shaped and filled in a virtual slot, and the three-phase windings are arranged in the order A- /A- A- B-/B- B- C-/CCA.
  • Excellent shape of this magnetic steel The point is that it can generate a fundamental wave gap magnetic field and a third harmonic air gap magnetic field component with an amplitude of about 1/6 of the fundamental amplitude.
  • the synthesized air gap magnetic field is a fundamental magnetic field and a third harmonic synthesis gas. Gap magnetic field. This air gap magnetic field injected into the third harmonic component increases the utilization rate of the motor magnetic steel by about 15%, and the output of the motor increases by about 15%. Since the motor is a three-phase motor, the third harmonic magnetic field does not generate electromagnetic torque fluctuations.
  • Each winding coil is fan-shaped, and the three-phase windings are arranged in the order of A- /A- A- B- /B- B- C-/C- C- A.
  • the other aspects are the same as the embodiment shown in FIG.
  • a stator can accommodate two types of poles with a magnetic pole number, so that the produced motor has a wider motor speed range and a wider torque range.
  • the shape of the virtual groove and the magnetic pole is a perfect circle; the stator of FIG. 3 plus the rotor of FIG.
  • N l
  • the invention may have other embodiments, such as:
  • the synchronous speed is n two 3.75f ;

Description

盘式三相无刷永磁直流电机 技术领域
本发明涉及盘式三相无刷直流永磁电机,更具体地说,涉及一种由盘式定 子无铁芯及盘式外转子构成的盘式三相无刷直流永磁电机,它可用于低速直接 驱动和高速驱动, 也可适用于低速和高速发电。 背景技术
传统无定子铁芯盘式无刷直流永磁电机的绕组设计中,通常沿用感应电机 或盘式有铁芯永磁电机的设计方法。每极下布置三相绕组的 3个边, 这种绕组 的端部很大, 三相绕组的端部还产生重叠交叉, 如图 1所示。 绕组的端部大, 铜耗就大; 绕组的端部重叠交叉又使得端部进一步变大和变厚, 导致生产成本 也会变高。 而且传统永磁电机的运行效率也没有被充分发挥。
传统三相永磁电机每极每相槽数 Z/ (2Pm) > l/2, 其中 2P为极数, m为相 数, Z为槽数。 例如: 8极 24槽和 8极 36槽, 等等。 一般来讲, 每极每相槽 数越大的电机, 绕组的端部就会越大, 绕组的利用率越低, 铜耗会越大, 这类 电机的制造成本就越高。
在申请号为 200610024330. X的 "无刷电机槽数与磁钢数组合方案"专利 中, 公开了 21槽 (26极)、 32槽 (38极、 40极)、 39槽 (44极、 46极、 50 极) 等方案, 这些方案中, 三相永磁电机的每极每相槽数 Z/ (2Pm) 1/2。 这 类电机的制造成本比较低,但绕组利用率仍不算最高,其平均绕组系数为 0. 92 左右, 个别绕组线圈(或称元件)的绕组系数低于 0. 9, 且绕组的联接方式也显 复杂。
在公开号为 CN1549432A的 "轴向气隙无刷直流电机"专利中, 公开了 24 极(18槽) 电机的方案, 其中每极每相槽数 q=Z/ (2Pm) 1/2 , 电机的制造成 本比较低。但这种方案的绕组利用率只有 0. 866,且绕组的联接方式也显复杂。
又例如 1997年 1月 17日公开的日本专利 "特开平 9一 10474", 该专利的 持有人是日本东芝株式会社。该专利提出一种外转子结构的三相无刷直流永磁
确认本 电机方案, 该专利齿槽配合为磁极数 2P=24; 槽数 Z=36, 相应的商业产品 B绎: 上市多年, 在减小噪声方面取得了很大的成功。但是, 由于该专利所采用的 子大小槽结构, 电机每极每相槽数又比较大, 使该电机的加工工艺变得颇为复 杂, 生产成本增加很多。 发明内容
针对现有技术的上述缺陷,本发明要解决的技术问题是如何使得三相无刷 直流永磁电机中绕组的数目趋于最少, 绕组的端部趋于最小, 绕组的利用率趋 于最高, 从而使电机的铁耗和铜耗趋于最小, 电机的生产成本趋于最低。
本发明解决其技术问题所采用的技术方案是:构造一种盘式三相无刷永磁 直流电机, 其中, 两个盘式转子上分别装有多对 N、 S极相间的永磁体, 且第 一个盘式转子上的永磁体 N极正对第二个盘式转子上的永磁体 S极以产生轴向 气隙磁场; 无铁芯盘式定子的虚槽中安装有三相绕组; 其特征在于, 所述转子 的磁极数 2P=8N, 或者 2P=10N, 其中 N为正整数; 所述定子的虚槽数 Z=9N, 三相绕组共有 9N个线圈, 每相有 3N个线圈, 所述定子的 9N个虚槽中的三相 绕组线圈的排列次序为 A- /A-A- B- /B- B- C- /C- C-A, 并在圆周内循环 N次, 其 中 A表示 A相绕组的一个线圈, /A表示 A相绕组的一个反接线圈, B、 /B、 C、 /C以此类推。
本发明中, 所述盘式转子上各个永磁体的形状可为正圆、或法向橢圆, 所 述各个永磁体沿盘式转子外侧均布, 同一转子上的永磁体 N、 S极排列间隙为 0. l〜lmm工艺间隙; 所述定子的各个虚槽的形状是与所述盘式转子上各个永 磁体对应的正圆、 或法向橢圆, 并沿盘式定子外侧均布; 所述三相绕组 9N个 线圈的圆心与所述盘式转子上各个永磁体的圆心处于相同的径向半径的圆上, 每个线圈为简单的环型线圈并填充在所述虚槽中。
本发明中,所述盘式转子上各个永磁体的形状还可为扇形,所述各个永磁 体沿盘式转子外侧均布, 同一转子上的永磁体 N、 S 极排列间隙为 0. l〜lmm 工艺间隙;所述定子的各个虚槽的形状是与所述盘式转子上各个永磁体对应的 扇形, 并沿盘式定子外侧均布; 所述三相绕组 9N个线圈的几何中心与盘式转 子上各个扇形永磁体的几何中心处于相同的径向半径的圆上,每个线圈为扇形 并填充在所述虚槽中。
本发明中,所述盘式转子上各个永磁体与定子之间的轴向物理气隙最好是
0. 15〜1腿,所述定子的厚度最好是 1〜8醒; 所述定子中心装有定子轴, 所述 定子轴的两边装有轴承, 所述盘式转子分别装于其中一个轴承上。
本发明中, 所述三相绕组的引线可自局部中空的定子轴孔穿出。
本发明中, 可设置两个线性霍尔传感器, 两者互相间隔 90度电角度, 并 通过 PCB板固定在定子上;所述霍尔传感器的敏感方向朝向转子永磁体形成的 气隙磁场, 以传感气隙磁场的变化。
本发明中, 也可设置三个开关霍尔传感器, 三者互相间隔 120度电角度, 并通过 PCB板固定在定子上;所述霍尔传感器的敏感方向朝向转子永磁体形成 的气隙磁场, 以传感气隙磁场的变化。
本发明可有以下的优选方案, N=l, 即定子有 Z=9 个虚槽, 转子有 2P=8 个磁极, 电机的同步转速为 n=15f; 或者, N=l, 定子有 Z=9个虚槽, 转子有 2P=10个磁极, 电机的同步转速为 n=12f; 或者, N=2, 定子有 Z=18个虚槽, 转子有 2P=16个磁极, 电机的同步转速为 n=7. 5f; 或者, N=2, 定子有 Z=18 个虚槽, 转子有 2P=20个磁极; 电机的同步转速为 n=6f; 或者, N=3, 定子有 Z=27个虚槽, 转子有 2P=24个磁极, 电机的同步转速为 n=5f; 或者, N=3, 定 子有 Z=27个虚槽,转子有 2P=30个磁极, 电机的同步转速为 n=4f;或者, N=4, 定子有 Z=36个虚槽, 转子有 2P=32个磁极, 电机的同步转速为 n=3. 75f; 或 者, N=4,定子有 Z=36个虚槽,转子有 2P=40个磁极, 电机的同步转速为 n=3f; 其中, f 是反电势频率。 在这些优选方案中, 三相绕组线圈的排列次序均为 A-/A-A-B-/B-B-C-/C-C-A , 并在圆周内循环 N次。
由于采取了上述技术方案,本发明中,一种定子可以适配两种磁极数的转 子,从而使所生产的电机具有更宽广的转速范围和更宽广的转矩范围; 另一方 面, 该电机的定子无铁芯, 因此无定位力矩, 特别适合作为发电机使用, 其效 率非常高。 本发明的电机中, 绕组的数目趋于最少, 绕组的端部趋于最小, 绕 组的利用率趋于最高, 从而使电机的铁耗和铜耗趋于最小; 同时, 它的绕组形 式和联接方式趋于最简单明了, 材料利用率高和结构工艺好, 电机的生产成本 趋于最低。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是传统无定子铁芯盘式无刷直流永磁电机的绕组结构示意图; 图 2是盘式三相无刷永磁直流电机的结构示意图;
图 3是圆形磁钢的 2P=10极或 8极, Z二 9槽电机的定子绕组结构示意图; 图 4是扇形磁钢的 2P=10极或 8极, Z=9槽电机的定子绕组结构示意图; 图 5是圆形磁钢的 2P=8极, Z=9槽电机的转子盘结构示意图;.
图 6是圆形磁钢的 2P=10极, Z=9槽电机的转子盘结构示意图;
图 7是扇形磁钢的 2P=8极, Z=9槽电机的转子盘结构示意图;
图 8是扇形磁钢的 2P=10极, Z=9槽电机的转子盘结构示意图;
图 9是圆形磁钢, 2P 20极或 16极, Z二 18槽电机的定子绕组结构示意图; 图 10是圆形磁钢, 2P=16极, Z=18槽电机的转子盘结构示意图; 图 11是圆形磁钢, 2P=20极, Z=18槽电机的转子盘结构示意图。
图 2中, 1是定子, 2是左转子盘, 3是右转子盘, 4是左转子盘磁钢, 5 是右转子盘磁钢, 6是轴承, 7是定子轴, 8是三相绕组引出线, 9是霍尔元件 及 PCB板, 10是电机。 具体实施方式
由前述内容可知,本发明提供了一种盘式三相无刷永磁直流电机,其中转 子的磁极数 2P二 8N,或者 2P=10N,其中 N为正整数;本发明电机的定子无铁芯, 所以定子的槽数 Z又称虚槽数, ,定子的虚槽数 Z=9N。 其中 N=l、 2、 3、 4…… 100。
因此, 这种电机的每极每相槽数为 q二 Z/ (2Pm) =9N/ (8N*3) =3/8, 或者 q=Z/ (2Pm) =9N/ (10N*3) =3/10, 两者均小于 1/2, 故称大极电机或大极集中绕 组电机。 对应于每极每相槽数 3/8、 或 3/10, 本发明电机的每极每相布置 3/8 个绕组线圈、 或 3/10个绕组线圈。 本发明电机仅有 Z个集中绕组, 每相仅有 Z/3=3N个集中绕组, 电机的绕组总数非常少, 大大简化了电机结构和制造工 艺, 降低了成本; 由于无定子铁芯使定位力矩和铁耗趋零, 允许气隙最小化, 使磁密获得提高; 同时绕组端部减少到传统电机的 1/3〜1/6甚至更多, 达到 了最小化, 于是铜耗大幅下降。 由于本发明电机的定子无铁芯, 因此无定位力 矩, 电机磁极数选取范围大, 特别适用于低速直接驱动和高速驱动, 适用于低 速和高速发电, 其电机效率非常高。 其中: 槽距电角度: 《=^^ = ^ = 160, 反相后为 20° 。
^ x 360° _ 5Nx 360°
~ Z ~~一 ~ 9N ~
Figure imgf000007_0001
节距系数: ^, = Sin(^x 90) = 0.985 。 绕组系数: ^^ = ^^ ^ = 0.946 。 本发明中, 电机的绕组系数均为 0.946。 由于分布系数为 0. 96, 节距系数 为 0. 985使得本发明电机绕组的线反电势波形是相当理想的正弦波。
本发明的一个优选实施例如图 2所示,图中示出的是一个盘式三相无刷永 磁直流电机 10, 其左侧转子盘 2的磁钢至定子体 1的轴向物理气隙是 0. 15〜 lmm, 定子体的厚度是 l〜8mm, 定子体 1至右侧转子盘 3磁钢的轴向物理气隙 也是 0. 15〜lmm; 盘式定子体中心是定子轴 7, 轴的两边装有轴承 6, 起到支 撑转子盘的作用, 并使定子与转子间保持物理气隙, 使转子可以自由旋传, 三 相绕组引出线 8从定子轴 7穿出。
本实施例中,两个线性霍尔传感器通过 PCB板 9固定在定子 1上,霍尔传 感器敏感方向朝向盘式转子磁钢形成的气隙磁场, 以便敏感气隙磁场的变化, 两个开关霍尔传感器互相间隔 90度电角度。 具体实施时, 也可采用三个开关 霍尔传感器通过 PCB板固定在定子上,霍尔传感器敏感方向朝向盘式转子磁钢 形成的气隙磁场, 以便敏感气隙磁场的变化, 三个开关霍尔传感器互相间隔
120度电角度。 本发明的一个优选实施例中,盘式三相无刷永磁直流电机的盘式转子上的 永磁体的形状如图 5所示, 其中, 磁极数 2P=8个正圆磁钢(即永磁体)沿盘式 转子外侧均布, N、 S极磁钢相间排列, 排列间隙 0. l〜lmm为工艺间隙。 与这 种转子对应的定子如图 3所示, 定子的 Z=9个虚槽也都呈相似的正圆,沿盘式 定子外侧均布。三相绕组 9个线圈的圆心与转子磁钢的圆心处于相同的径向半 径的圆上。每个绕组线圈为简单的环型线圈并填充在虚槽中,三相绕组排列次 序为 A- /A- A- B- /B- B- C- /C- C- A; 其中 A表示 A相绕组的一个线圈, /A表示 A 相绕组的一个反接线圈, B表示 B相绕组的一个线圈, /B表示 B相绕组的一个 反接线圈, C表示 C相绕组的一个线圈, /C表示 C相绕组的一个反接线圈。它 绕组的形式和联接方式非常简单明了, 容易自动化机绕。本实施例中, 磁钢的 加工比较容易, 环型线圈的加工则更容易, 其线反电势波形更接近理想的正弦 波。 具体实施时, 其中的各个正圆磁钢还可设计为法向橢圆磁钢, 相对应, 此 时定子的 Z=9个虚槽也都呈相似的法向橢圆。
本发明的另一个优选实施例中, 盘式转子上的永磁体的形状如图 6所示,' 其中, 磁极数 2P=10 , 同样采用正圆磁钢; 与之配合的定子如图 3所示。 三相 绕组排列次序为 A- /A- A-B- /B- B-C-/C-C-A。其他方面与图 5所示实施例相同。 具体实施时, 其中的各个正圆磁钢还可设计为法向橢圆磁钢, 相对应, 此时定 子的 Z=9个虚槽也都呈相似的法向橢圆。 · 本发明的另一个优选实施例中, 盘式转子上的永磁体的形状如图 7所示, 其中磁极数 2P=8, 其中采用的是扇形磁钢, N、 S极磁钢相间排列, 排列间隙 0. 1〜1醒为工艺间隙。 与之对应的定子如图 4所示, 定子 Z=9个虚槽也都呈 相似扇形,沿盘式定子外侧均布。三相绕组 9个扇形线圈的几何中心与转子扇 形磁钢的几何中心处于相同的径向半径的圆上。每个绕组线圈为扇形并填充在 虚槽中, 三相绕组排列次序为 A- /A- A- B-/B- B- C-/C-C-A。 这种磁钢形状的优 点是能够产生一个基波气隙磁场和一个幅值为基波幅值 1/6 左右的三次谐波 气隙磁场分量,合成的气隙磁场是一个基波磁场与一个三次谐波合成的气隙磁 场。 这种注入三次谐波分量的气隙磁场使电机磁钢利用率提高了 15%左右, 电 机的出力相应增加了 15%左右。 由于所述电机为三相电机, 三次谐波磁场不会 产生电磁力矩波动。
本发明的另一个优选实施例中, 盘式转子上的永磁体的形状如图 8所示, 其中磁极数 2P=10, 同样采用的是扇形磁钢; 与之对应的如图 4所示。 每个绕 组线圈为扇形, 三相绕组排列次序为 A- /A- A- B- /B- B- C-/C- C- A。 其他方面与 图 7所示实施例相同。 由上述实施例可以看出,一种定子可以适配两种磁极数的转子,从而使所 生产的电机具有更宽广的电机转速范围和更宽广的转矩范围。
前述几个实施例中, 图 3的定子加图 5的转子为一组, 其中 N=l, 即定子 有 Z=9个虚槽,转子有 2P=8个磁极, n=60f/ P=15f,虚槽和磁极的形状为正圆; 图 3的定子加图 6的转子为一组,其中 N=l,即定子有 Z=9个虚槽,转子有 2P=10 个磁极, n=60f/ P=12f, 虚槽和磁极的形状为正圆; 图 4的定子加图 7的转子 为一组, 其中 N=l, 即定子有 Z=9个虚槽, 转子有 2P=8个磁极, n=60f/ P=15f, 虚槽和磁极的形状为扇形; 图 4的定子加图 8的转子为一组, 其中 N=l, 即定 子有 Z=9个虚槽, 转子有 2P=10个磁极, n=60f/ P=12f, 虚槽和磁极的形状为 扇形。
如图 9所示的定子加图 10所示的转子为一组, 其中 N=2, 即定子有 Z=18 个虚槽,转子有 2P=16个磁极,三相绕组排列次序为 A-/A-A- B- /B- B- C- /C-C - A, 共循环 2次, 电机的同步转速为 n=60f/ P=7. 5f, 虚槽和磁极的形状为正圆。
如图 9所示的定子加图 11所示的转子为一组, 其中 N=2, 即定子有 Z=18 个虚槽,转子有 2P=20个磁极,三相绕组排列次序为 A-/A-A-B-/B- B-C- /C- C-A, 共循环 2次, 电机的同步转速为 n=6f, 虚槽和磁极的形状为正圆。
除了这些组合之外, 本发明还可有其他实施方式, 例如:
(1) N=3, 即定子有 Ζ=27个虚槽, 转子有 2Ρ=24个磁极, 三相绕组排列次 序为 A-/A-A- B- /B- B-C- /C- C- A, 共循环 3次, 电机的同步转速为 n=5f;
(2) N=3, 即定子有 Z=27个虚槽, 转子有 2P二 30个磁极, 三相绕组排列次 序为 A- /A-A- B- /B- B- C- /C-C- A, 共循环 3次, 电机的同步转速为 n=4f, f 是 反电势频率;
(3) N=4, 即定子有 Z=36个虚槽, 转子有 2P=32个磁极, 三相绕组排列次 序为 A-/A-A-B-/B- B_C- /C-C-A, 共循环 4次, 电机的同步转速为 n二 3. 75f;
(4) N=4, 即定子有 Z=36个虚槽, 转子有 2P=40个磁极, 三相绕组排列次 序为 A- /A- A- B- /B- B- C- /C-C- A, 共循环 4次, 电机的同步转速为 n=3f。
当然,在满足转子的磁极数 2P=8N或者 2P二 10N且定子的虚槽数 Z=9N这一 前提的条件下, 本发明还可以有其他的组合实施方式。

Claims

权 利 要 求
1、 一种盘式三相无刷永磁直流电机, 其中, 两个盘式转子上分别装有多 对^ S极相间的永磁体, 且第一个盘式转子上的永磁体 N极正对第二个盘式 转子上的永磁体 S极以产生轴向气隙磁场;无铁芯盘式定子的虚槽中安装有三 相绕组;
其特征在于, 所述转子的磁极数 2P=8N, 或者 2P=10N, 其中 N为正整数; 所述定子的虚槽数 Z=9N, 三相绕组共有 9N个线圈, 每相有 3N个线圈, 所述 定子的 9N个虚槽中的三相绕组线圈的排列次序为 A- /A-A-B- /B-B-C-/C-C-A, 并在圆周内循环 N次, 其中 A表示 A相绕组的一个线圈, /A表示 A相绕组的 一个反接线圈, B、 /B、 C, /C以此类推。
2、 根据权利要求 1所述的盘式三相无刷永磁直流电机, 其特征在于, 所 述盘式转子上各个永磁体的形状为正圆、或法向橢圆,所述各个永磁体沿盘式 转子外侧均布, 同一转子上的永磁体 N、 S极排列间隙为 0. l〜lmm工艺间隙; 所述定子的各个虚槽的形状是与所述盘式转子上各个永磁体对应的正圆、或法 向橢圆, 并沿盘式定子外侧均布; 所述三相绕组 9N个线圈的圆心与所述盘式 转子上各个永磁体的圆心处于相同的径向半径的圆上,每个线圈为简单的环型 线圈并填充在所述虚槽中。
3、 根据权利要求 1所述盘式无铁芯外转子三相无刷永磁直流机, 其特征 在于, 所述盘式转子上各个永磁体的形状为扇形,所述各个永磁体沿盘式转子 外侧均布, 同一转子上的永磁体 N、 S极排列间隙为 0. l〜lmm工艺间隙; 所述 定子的各个虚槽的形状是与所述盘式转子上各个永磁体对应的扇形,并沿盘式 定子外侧均布; 所述三相绕组 9N个线圈的几何中心与盘式转子上各个扇形永 磁体的几何中心处于相同的径向半径的圆上,每个线圈为扇形并填充在所述虚 槽中。
4、 根据权利要求 1所述盘式三相无刷永磁直流电机, 其特征在于, 所述 盘式转子上各个永磁体与定子之间的轴向物理气隙是 0. 15〜1匪,所述定子的 厚度是 1〜8匪; 所述定子中心装有定子轴, 所述定子轴的两边装有轴承, 所 述盘式转子分别装于其中一个轴承上。
5、 根据权利要求 4所述盘式三相无刷永磁直流电机, 其特征在于, 所述 三相绕组的引线自局部中空的定子轴孔穿出。
6、 根据权利要求 1所述盘式三相无刷永磁直流电机, 其特征在于, 其中 设有两个线性霍尔传感器, 两者互相间隔 90度电角度, 并通过 PCB板固定在 定子上; 所述霍尔传感器的敏感方向朝向转子永磁体形成的气隙磁场, 以传感 气隙磁场的变化。
7、 根据权利要求 1所述盘式三相无刷永磁直流电机, 其特征在于, 其中 设有三个开关霍尔传感器,三者互相间隔 120度电角度, 并通过 PCB板固定在 定子上;所述霍尔传感器的敏感方向朝向转子永磁体形成的气隙磁场, 以传感 气隙磁场的变化。
8、 根据权利要求 1-7中任一项所述的盘式三相无刷永磁直流电机, 其特 征在于, 其中: N=l, 即定子有 Z=9个虚槽, 转子有 2P=8个磁极, 电机的同步 转速为 n=15f;
或者, N=l, 定子有 Z=9个虚槽, 转子有 2P=10个磁极, 电机的同步转速 为 n=12f;
或者, N=2, 定子有 Z=18个虚槽, 转子有 2P=16个磁极, 电机的同步转速 为 n二 7. 5f;
或者, N=2, 定子有 Z=18个虚槽, 转子有 2P=20个磁极; 电机的同步转速 为 n=6f;
或者, N=3, 定子有 Z=27个虚槽, 转子有 2P=24个磁极, 电机的同步转速 为 n=5f ;
或者, N=3, 定子有 Z=27个虚槽, 转子有 2P=30个磁极, 电机的同步转速 为 n=4f;
或者, 4, 定子有 Z=36个虚槽, 转子有 2P=32个磁极, 电机的同步转速 为 n=3. 75f;
或者, N=4, 定子有 Z=36个虚槽, 转子有 2P=40个磁极, 电机的同步转速 为 n=3f ;
其中, f是反电势频率。
PCT/CN2007/003064 2007-10-29 2007-10-29 Moteur à courant continu à aimant permanent sans balai triphasé de type disque WO2009055957A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003064 WO2009055957A1 (fr) 2007-10-29 2007-10-29 Moteur à courant continu à aimant permanent sans balai triphasé de type disque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003064 WO2009055957A1 (fr) 2007-10-29 2007-10-29 Moteur à courant continu à aimant permanent sans balai triphasé de type disque

Publications (1)

Publication Number Publication Date
WO2009055957A1 true WO2009055957A1 (fr) 2009-05-07

Family

ID=40590503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003064 WO2009055957A1 (fr) 2007-10-29 2007-10-29 Moteur à courant continu à aimant permanent sans balai triphasé de type disque

Country Status (1)

Country Link
WO (1) WO2009055957A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123558A (zh) * 2017-12-31 2018-06-05 苏州英磁新能源科技有限公司 一种无铁芯轴向磁通电机
CN110391723A (zh) * 2019-05-06 2019-10-29 三门峡速达交通节能科技股份有限公司 24槽10极轴向磁通电机及电动车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2324696Y (zh) * 1997-11-25 1999-06-16 湖南省跃进机械厂 电动助力车用盘式永磁直流轮毂式电机
JPH11187635A (ja) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd フラット回転機
JPH11206077A (ja) * 1998-01-16 1999-07-30 Shibaura Mechatronics Corp 扁平形ブラシレス直流モータ
CN1925270A (zh) * 2005-08-31 2007-03-07 北京中科三环高技术股份有限公司 低速大转矩永磁无刷电机的分数槽绕组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2324696Y (zh) * 1997-11-25 1999-06-16 湖南省跃进机械厂 电动助力车用盘式永磁直流轮毂式电机
JPH11187635A (ja) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd フラット回転機
JPH11206077A (ja) * 1998-01-16 1999-07-30 Shibaura Mechatronics Corp 扁平形ブラシレス直流モータ
CN1925270A (zh) * 2005-08-31 2007-03-07 北京中科三环高技术股份有限公司 低速大转矩永磁无刷电机的分数槽绕组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123558A (zh) * 2017-12-31 2018-06-05 苏州英磁新能源科技有限公司 一种无铁芯轴向磁通电机
CN110391723A (zh) * 2019-05-06 2019-10-29 三门峡速达交通节能科技股份有限公司 24槽10极轴向磁通电机及电动车辆
CN110391723B (zh) * 2019-05-06 2024-03-19 三门峡速达交通节能科技股份有限公司 24槽10极轴向磁通电机及电动车辆

Similar Documents

Publication Publication Date Title
CN108448849B (zh) 一种定子永磁型双转子磁场调制电机及其设计方法
CN201118413Y (zh) 盘式三相无刷永磁直流电机
US8183733B2 (en) Two-phase brushless DC motor
TWI429168B (zh) Permanent magnet rotating machine
US9613740B2 (en) Electric apparatus with moving magnetic field generating apparatus
JP2001037133A (ja) ステータ及び電動機
Xu et al. A novel dual-permanent-magnet-excited machine with non-uniformly distributed permanent-magnets and flux modulation poles on the stator
WO2012003638A1 (zh) 三相交流永磁电动机
WO2009055956A1 (fr) Moteur à courant continu à aimant permanent sans balai triphasé à onde carrée
US10916981B2 (en) Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor
CN110224563B (zh) 三相聚磁式双边无源转子横向磁通永磁电机
TW201136105A (en) Permanent-magnet type synchronous motor
CN110086308B (zh) 六相聚磁式内外无源转子横向磁通永磁电机
CN101741223A (zh) 感生变磁交流发电机
WO2016004823A1 (zh) 一种定子及无刷直流电机、三相开关磁阻和罩极电机
WO2011017839A1 (zh) 大极型方波三相无刷永磁直流电动机及其装配方法
US20110248582A1 (en) Switched reluctance machine
CN201156695Y (zh) 单相、三相、以及大功率多相的盘式永磁电机
WO2004091076A1 (fr) Machine a reluctance et distorsion magnetique comportant un circuit magnetique exterieur, pourvue d'aimants permanents
CN102055294A (zh) 永磁倍极开关磁阻电动机发电机
WO2009055957A1 (fr) Moteur à courant continu à aimant permanent sans balai triphasé de type disque
JP5337382B2 (ja) 永久磁石式同期モータ
WO2009065256A1 (fr) Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance
CN113949245A (zh) 一种空间磁阻双凸极励磁风力发电机
CN112615509A (zh) 双永磁体内嵌式永磁同步电机结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07816677

Country of ref document: EP

Kind code of ref document: A1