WO2009053922A2 - Mascara applicator - Google Patents

Mascara applicator Download PDF

Info

Publication number
WO2009053922A2
WO2009053922A2 PCT/IB2008/054375 IB2008054375W WO2009053922A2 WO 2009053922 A2 WO2009053922 A2 WO 2009053922A2 IB 2008054375 W IB2008054375 W IB 2008054375W WO 2009053922 A2 WO2009053922 A2 WO 2009053922A2
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
core
applicator
longitudinal axis
applicator according
Prior art date
Application number
PCT/IB2008/054375
Other languages
French (fr)
Other versions
WO2009053922A3 (en
Inventor
Jean-Louis Gueret
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to EP08841542.7A priority Critical patent/EP2211663B1/en
Priority to US12/739,338 priority patent/US8777503B2/en
Priority to ES08841542T priority patent/ES2819031T3/en
Priority to CN200880112706A priority patent/CN101835401A/en
Publication of WO2009053922A2 publication Critical patent/WO2009053922A2/en
Publication of WO2009053922A3 publication Critical patent/WO2009053922A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D40/00Casings or accessories specially adapted for storing or handling solid or pasty toiletry or cosmetic substances, e.g. shaving soaps or lipsticks
    • A45D40/26Appliances specially adapted for applying pasty paint, e.g. using roller, using a ball
    • A45D40/262Appliances specially adapted for applying pasty paint, e.g. using roller, using a ball using a brush or the like
    • A45D40/265Appliances specially adapted for applying pasty paint, e.g. using roller, using a ball using a brush or the like connected to the cap of the container
    • A45D40/267Appliances specially adapted for applying pasty paint, e.g. using roller, using a ball using a brush or the like connected to the cap of the container comprising a wiper
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B3/00Brushes characterised by the way in which the bristles are fixed or joined in or on the brush body or carrier
    • A46B3/005Bristle carriers and bristles moulded as a unit
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/02Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
    • A46B9/021Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups arranged like in cosmetics brushes, e.g. mascara, nail polish, eye shadow
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B9/00Arrangements of the bristles in the brush body
    • A46B9/02Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
    • A46B9/028Bristle profile, the end of the bristle defining a surface other than a single plane or deviating from a simple geometric form, e.g. cylinder, sphere or cone
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/10For human or animal care
    • A46B2200/1046Brush used for applying cosmetics
    • A46B2200/1053Cosmetics applicator specifically for mascara
    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B2200/00Brushes characterized by their functions, uses or applications
    • A46B2200/10For human or animal care
    • A46B2200/1046Brush used for applying cosmetics
    • A46B2200/1053Cosmetics applicator specifically for mascara
    • A46B2200/106Cosmetics applicator specifically for mascara including comb like element

Definitions

  • the present invention relates to an applicator for combing keratinous fibers, in particular the eyelashes and/or the eyebrows, and/or for applying a cosmetic, makeup, or a care product, e.g. mascara, thereto.
  • the invention also relates to a packaging device comprising such an applicator.
  • the invention also relates to a cosmetic treatment.
  • Applicators for applying mascara to the eyelashes comprising a molded applicator member with a core and teeth that extend outwards from the core, all around the core, are known.
  • Applicators with an outside diameter of 8 mm and teeth that are 2.4 mm in length, the teeth having a diameter of 0.68 mm at their bases.
  • Patent US 3998232 discloses an applicator with an adjustable applicator member. Existing applicators are not entirely satisfactory, in particular for applying makeup to the short eyelashes such as the eyelashes of Asian users, for example.
  • the invention provides an applicator for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member, comprising:
  • teeth that extend outwards from the core the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm; the applicator member having a greatest transverse dimension, measured perpendicularly to the longitudinal axis of the core, that is less than or equal to 6 mm, over at least 70% of its length.
  • the applicator member may have a greatest transverse dimension, measured perpendicularly to the longitudinal axis of the core, that is strictly less than 6 mm, better less than or equal to 5.95 mm, better less than or equal to 5.9 mm, better less than or equal to 5.7 mm, better still less than or equal to 5.5 mm.
  • the greatest transverse dimension may be as defined above over at least 70% of the length of the applicator member, better over 80% of its length, better over 90%, or even over its whole length.
  • the applicator of the invention comprises teeth that are relatively short, thereby making it easier to apply composition to short eyelashes.
  • Such an applicator can also make it possible to apply makeup in relatively accurate manner, in particular on people having eyelashes or eyebrows that are relatively short, so that such an applicator may suit a wide variety of users.
  • a smaller applicator makes it easier to apply composition to the eyelashes or the eyebrows, while avoiding masking too great a portion of the field of vision, and thus improving the accuracy with which makeup is applied.
  • the invention also provides an applicator for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member, comprising:
  • the thickness may for example be of the order of 0.45 mm .
  • the teeth are relatively fine and may also be relatively flexible when the material from which they are made is a flexible material.
  • the teeth are thicker and may be more rigid.
  • the thickness of the teeth could be selected as a function of the type of makeup effect desired and/or the nature of the eyelashes to be treated and/or the rheology of the composition, for example.
  • the applicator may comprise a majority of teeth, or even only teeth having thickness lying in the range
  • teeth having a certain thickness may be mixed together with teeth having another thickness, or, in a variant, the teeth having a certain thickness may be grouped together in a first portion of the applicator member, while the teeth having another thickness are grouped together in a second portion of the applicator member, e.g. opposite the first.
  • the teeth of length lying in the range 0.5 mm to 1.8 mm may be distributed uniformly over the applicator member or they may be grouped together on at least one portion thereof. More than half of the teeth may have a length as defined above, better at least 60%, or even 70%, better still 80% of the teeth.
  • the applicator may be made so that the teeth presenting a length lying in the range 0.5 mm to 1.8 mm are distributed all around the core over at least a fraction of the length thereof, thereby defining a combing surface having properties that are substantially constant all around the core over at least a fraction of the length of the applicator member.
  • the teeth having a length as defined above may be situated at least in the central portion of the applicator member, in particular between the first fourth and the last fourth of the length of the applicator member.
  • All of the teeth of the applicator member may have the same length, except possibly the teeth situated in the vicinity of each of the two axial ends of the applicator member.
  • the term "longitudinal axis" of the core should be understood as the line that joins the centers of gravity (barycenters) of the cross-sections of the core.
  • the longitudinal axis may be a central axis, or even an axis of symmetry for the core, in particular when the core presents a cross-section that has the general shape of a regular polygon or a circle.
  • the longitudinal axis may be rectilinear or curved.
  • teeth is used to designate an element that projects individually, the term being synonymous with "bristle” in the context of the present invention.
  • the majority of the teeth may have thickness lying in the range 0.2 mm to 0.5 mm, better in the range 0.2 mm to 0.45 mm, e.g. in the range 0.2 mm to 0.39 mm, or, in a variant, strictly greater than 0.5 mm and less than 0.65 mm.
  • the majority of the teeth may have a length lying in the range 0.5 mm to 1.49 mm, e.g. in the range 0.5 mm to 0.99 mm, or in the range 1.2 mm to 1.7 mm, being for example of the order of 1.65 mm.
  • the term “thickness of a tooth” is used to designate the greatest cross-section of the tooth in section that is perpendicular to its longitudinal direction.
  • the term “length of a tooth” is used to designate the distance measured along the longitudinal direction of the tooth between the free end of the tooth and its base via which it is connected to the core. The length of a tooth is measured from the core of the applicator member.
  • the applicator may comprise between 150 and 500 teeth, for example.
  • the teeth may be disposed in rows extending along the longitudinal axis of the core.
  • the term "row” is used to designate a succession of teeth that are generally situated on the same side of the core, and that succeed one another along the core.
  • the applicator may comprise at least three rows of teeth extending along the longitudinal axis, e.g. between 3 and 20 rows of teeth, better between 4 and 18 rows, better still between 6 and 10 rows.
  • the number of teeth may lie in the range about 6 to 60, in particular in the range about 10 to 50. At least one row of teeth may extend along a rectilinear axis that may optionally be parallel to the longitudinal axis of the core.
  • At least two teeth of at least one row may present lengths that are different or identical.
  • a row of teeth extending along the longitudinal axis may have at least three teeth of the same length.
  • At least two teeth of at least one row may present shapes that are different or identical.
  • At least one tooth of at least one row may present a general shape that tapers towards its free end.
  • At least one tooth may be of tapered, frustoconical, or pyramid shape.
  • at least one tooth of one of the rows may present a shape that is different from a tooth of another row.
  • at least one tooth of a row may present a length that is different from the length of another tooth of the row, in particular of a consecutive tooth within the row.
  • two teeth of a row may extend at their bases in directions that form a first angle between them, and two teeth of another row may extend at their bases in directions that form a second angle between them, the first and second angles being equal or different.
  • the teeth may be spaced-apart evenly along the longitudinal axis of the row, or they may be grouped together in groups of two or more teeth, the spacing between the teeth of one group along the longitudinal axis of the row being less than the spacing between two adjacent groups of teeth of said row.
  • the applicator member may comprise teeth, e.g. at least one row of teeth, having a length that is greater than 1.8 mm, without going beyond the ambit of the present invention.
  • the ends of the teeth of length that is less than 1.8 mm may belong to a first surface of cross-section that is circular, e.g. cylindrical, but the cross-section of the envelope surface defined by the free ends of all of the teeth need not be circular.
  • Two rows of teeth may be made out of different respective materials.
  • the teeth of a single row of teeth may be made out of different materials, e.g. of different hardness or color.
  • a first row of teeth may comprise teeth having a first length, a second row of teeth comprising teeth having a second length that is different from the first.
  • At least two successive teeth of a row may optionally be touching at their base, all of the teeth of the row respectively being non-touching or touching at their bases.
  • the spacing between the teeth, measured at the bases of the teeth may lie in the range 0 to 1.2 mm within a row, e.g. in the range 0.01 mm and 1 mm. When the teeth are touching at their base, the spacing between the teeth measured at the base of the teeth is zero.
  • At least two teeth may define a V-shaped groove. Teeth of one row and teeth of another row may extend in different directions.
  • the teeth of a row may have bases that are substantially in alignment, i.e. the centers of the bases of three consecutive teeth are situated substantially on a single straight line.
  • the teeth of at least one row may be connected to a corresponding longitudinal face of the core on the same side of a middle longitudinal line of the longitudinal face .
  • the teeth may have bases that are not centered on the longitudinal face of the core to which they are connected.
  • the bases of the teeth in a row may be in alignment, or they may be disposed in a staggered configuration.
  • a staggered configuration a plurality of consecutive teeth of the row may be offset at least in part, alternately on opposite sides of a geometrical separation surface.
  • the consecutive teeth may be offset completely, alternately on opposite sides of the geometrical separation surface.
  • offset completely should be understood as the geometrical separation surface not passing through the teeth, being a tangent to said teeth at the closest.
  • All of the teeth of each row may be offset alternately on opposite sides of a geometrical separation surface that is associated with the row.
  • the teeth may be offset on opposite sides of the separation surface, not alternately, but in groups of teeth, e.g. in groups of two or three teeth.
  • the teeth may be offset not on opposite sides of a surface, but disposed in a pattern that is repeated along the longitudinal axis of the row, each pattern comprising three or four teeth, for example, in alignment along a line that extends obliquely relative to the axis of the row, for example.
  • Two consecutive teeth of a row need not be images of each other that are merely shifted in translation, in particular when the cross-sections of the teeth are non- circular in shape.
  • At least two consecutive teeth of a row of teeth may have first faces both having a common first shape, e.g. plane, in particular at least at the bottom portion of the tooth, and second faces both having a common second shape, e.g. not plane, in particular rounded.
  • the first faces may all face in the same direction around the core, i.e. they may all face in the same clockwise or counter- clockwise direction, when the core is observed along its longitudinal axis.
  • the first faces of two consecutive teeth may face in a direction that is different for each tooth.
  • the first faces of two consecutive teeth may alternately face in opposite directions when the core is observed along its longitudinal axis.
  • the first faces of the teeth in particular when they are plane, may be connected substantially perpendicularly to the corresponding face of the core, at least for some teeth in the row. At least one tooth, or even each tooth, may present a plane face that is parallel to its long direction.
  • the cross-section of at least one tooth, or even of each tooth may be of substantially semi-circular or semi-elliptical in shape, e.g. generally D-shaped, or it may be of still some other shape.
  • At least one tooth may present a cross-section that is: circular; polygonal, in particular triangular, square, rectangular, octagonal, parallelogram-shaped, lozenge-shaped; or oval. At least one tooth may present at least one portion in relief. Such a characteristic may improve the adherence of the composition to the tooth. Without changing in shape, the cross-section of the tooth may decrease on going away from the core, e.g. over more than half of the length of the tooth.
  • the teeth may optionally be rectilinear, e.g. each extending along a long axis for the tooth that is rectilinear, or else they may be curved, or they may even be undulating.
  • the term "long axis of the tooth” is used to mean an axis that passes via the centers of gravity of the cross-sections of the tooth.
  • the free ends of the teeth may define an envelope surface that extends along a longitudinal axis that forms a non-zero angle with the longitudinal axis of the core.
  • the envelope surface defined by the free ends of the teeth of the applicator is not cone shaped.
  • the envelope surface may be of greatest transverse dimension, e.g. of diameter, that is substantially constant over at least a fraction of the length of the applicator member.
  • the envelope surface may be in the general shape of a peanut, an American football, frustoconical, or joining two half-shapes selected from amongst the above-mentioned shapes and fitted together along a diametral plane containing the core, e.g.
  • Each of the rows of teeth may extend on the core along a longitudinal axis of the row.
  • the longitudinal axis of a row is an axis for the bases of the teeth of the row, being the straight line passing via the centers of the bases of the teeth for teeth that are rigorously in alignment, or the axis passing via the separation surface for teeth that are in a staggered configuration.
  • two longitudinal axes of two successive rows, around the longitudinal axis of the core may be separated angularly by an angle that is less than 80°, e.g. about 60°, or even less than 50°, e.g. about 45° or less.
  • the distribution of the longitudinal axes of the rows at the surface of the core may be substantially regular, with spacing between them that is substantially constant and equal to a predefined value ⁇ 20%, better ⁇ 10%, better still ⁇ 5%.
  • the applicator member may comprise a zone that does not have teeth. It is not beyond the ambit of the present invention for the "longitudinal axis of a row" to be replaced by "longitudinal axis of a group of close-together rows", a group of close-together rows comprising a plurality of rows, e.g. two, three, or four, a tooth of a row being separated from the closest tooth of an adjacent row within the group by a distance that is less than 0.8 mm, better less than 0.6 mm, better still less than 0.4 mm, e.g. by a distance that is less than the thickness of the teeth at their bases.
  • the rows of a group of rows are preferably parallel to one another.
  • the implantation and the distribution of the teeth on the core may be relatively regular, or even substantially constant.
  • Teeth may be situated along the core, around the longitudinal axis of the core, at intervals of about one every 360°/n, for example, with n. lying in the range 3 to 20, better in the range 4 to 16, better still in the range 6 to 10.
  • a relatively regular disposition of the teeth around the longitudinal axis of the core can enable the applicator to be used starting from any position.
  • the applicator member should not comprise a toothless region that extends angularly over more than one eighth of a turn, thereby making it easier to use since the user does not need to orientate the applicator too precisely relative to the eye.
  • the teeth may extend in at least six different directions around the longitudinal axis of the core.
  • the applicator may comprise a large number of teeth, the teeth being close together so as to avoid too much composition being loaded between them, as would result from spacing that is too great.
  • the teeth may extend along a long direction that is perpendicular to the surface of the core to which they are connected, or, in a variant, that is not perpendicular, forming a non-zero angle with the normal to the core at the base of the tooth.
  • the teeth are made with the core by molding or by overmolding.
  • the applicator may be made with a disposition of teeth on the core that makes it easier for the eyelashes to come into contact with the core, which may present a surface state that is perfectly defined, which is not always true of a conventional brush having a twisted core .
  • the eyelashes may be loaded with composition that is in contact with the core.
  • the core may thus participate in active manner in applying composition to the eyelashes, thereby offering more freedom in the choice and the arrangement of the teeth.
  • At least one tooth of a row may extend, at least at its portion that is connected to the core, or even over its entire length, along a first direction Zl, perpendicular to the longitudinal face of the core to which the tooth is connected, or forming a small angle with the normal, e.g. less than 10°, better 5°.
  • a consecutive tooth of the row may extend from the same face of the core along a second direction Z 2 , at least at the portion that is connected to the core, or even over its entire length, forming an angle ⁇ with the first direction, when the core is observed along its longitudinal axis.
  • Substantially half of the teeth of a row may extend parallel to the first direction Z 1 .
  • the angle ⁇ between the directions Z 1 and Z 2 may lie in the range 5° to 80°.
  • the applicator member need not have teeth that are oriented obliquely in opposite directions around the core. For example, when the core is observed from its distal end, all of the teeth that extend obliquely may be oriented in the clockwise direction.
  • the core may comprise at least one longitudinal face that is plane.
  • the core may comprise at least one longitudinal face that is not plane, e.g. being concave or convex, at least in part.
  • the core When observed perpendicularly to its longitudinal axis, the core may present a profile that varies. In particular, the core may present a transverse dimension that reaches a minimum in a central portion of the core, along its longitudinal axis.
  • the core may present a cross-section that is: circular; polygonal, in particular square, rectangular, pentagonal, hexagonal, octagonal; or oval.
  • the cross-section may have a polygon shape that is optionally regular, preferably regular, the sides correspond to the longitudinal faces of the core possibly being straight or slightly concave or convex.
  • the core may thus present a cross-section that is not circular over the major portion of its length.
  • At least one tooth, better each tooth, of a row or of the applicator may extend from a corresponding longitudinal non-plane face of the core in manner that is substantially perpendicular to a plane that is tangent to the core at the tooth.
  • the teeth may extend radially.
  • the core may present a longitudinal face that is concave or convex in cross-section, and that has concavity or convexity that may vary along the longitudinal axis of the core.
  • the core may present at least one face from which teeth extend that presents a width that varies along the longitudinal axis of the core.
  • the core may present a cross-section that is substantially constant, at least over a fraction of its length.
  • the core may also present a cross-section that varies.
  • the cross-section of the core may pass through an extremum, e.g. that is substantially mid-way along the core, the extremum being a minimum, for example. This may impart increased flexibility to the core, and makes it possible to define an envelope surface of section that varies along the applicator member, in particular when the teeth in a row are of the same length, at least over a fraction of the applicator member.
  • the length of the teeth may vary along the row, such that the cross-section of the core and the cross-section of the envelope surface of the applicator member defined by the free ends of the teeth are not geometrically similar.
  • the envelope surface of the applicator member may present, at a first location along the longitudinal axis of the applicator member, a first cross-section that is substantially polygonal, and, at a second location along the longitudinal axis, a second cross-section that is substantially polygonal, at least a first vertex of the first cross-section being connected to at least a second vertex and to a third vertex of the second cross-section via respective edges, the first and second vertices being offset angularly around the longitudinal axis of the applicator member, at least one of the first and second cross-sections being centered on the longitudinal axis of the applicator member.
  • the core may present a longitudinal face that is twisted.
  • the applicator member may present a helical distribution of the teeth on the core, oriented clockwise or counter-clockwise on going towards the distal end of the applicator member.
  • the applicator may comprise a single row of teeth per longitudinal face of the core.
  • the length of the applicator member may lie in the range about 10 mm to 48 mm, in particular in the range 15 mm to 38 mm, or even in the range 20 mm to 35 mm, e.g. being about 27 mm.
  • the length of the applicator member may be defined as the length of the envelope surface defined by the free ends of the teeth measured along the longitudinal axis.
  • the length of a row may lie in the range about 10 mm to 45 mm, in particular in the range 15 mm to 35 mm, or even in the range 20 mm to 30 mm, e.g. being about 25 mm.
  • the core When the core is observed along its longitudinal axis, it is possible to pass from one row to the others by turning the core about its longitudinal axis through an integer sub-multiple of 360°, e.g. turning through 360°/n, where n. is an integer that lies in the range 3 to 20, for example.
  • the core may present axial symmetry, in particular around its longitudinal axis.
  • the core may extend along a longitudinal axis that, at at least one point along its length, forms an angle with the longitudinal axis of a stem to which the core is fastened.
  • the core may be bent where it connects to the stem.
  • the core may comprise a recess in which there is engaged a support portion, e.g. made of metal or plastics material.
  • the core may be configured to be fastened to the support, or it may be free to turn or to move in translation relative to the support.
  • the portion of the core that supports the teeth may be solid.
  • the core may comprise a housing at one of its ends only, so as to enable it to be fastened to a stem connected to a handle.
  • the core may have a greatest transverse dimension, measured perpendicularly to its longitudinal axis, e.g. a diameter, lying in the range 1.2 mm to 5 mm, better in the range 1.4 to 3 mm, or even substantially 1.8 mm.
  • the core and the teeth may be molded out of a single material, or, in a variant, may be made out of at least two different materials.
  • a portion of the core and of the teeth may be made out of a first material, and another portion of the core and of the teeth may be made out of a second material.
  • the teeth may be made integrally with the core, e.g. by molding, in particular by injection-molding.
  • the teeth may be formed by mono-injecting material or by over-injecting, preferably using a thermoplastic material which may be elastomeric.
  • the applicator member may be made by dual-injecting two materials simultaneously into a single mold.
  • the teeth may be made of a material that is more rigid or less rigid than a material that is used to make the stem of the applicator to which the core is connected. At least one of the core and a tooth may present magnetic properties.
  • the magnetic properties may result from a filler of magnetic particles, e.g. of ferrites, that are dispersed in the plastics material of the core and/or of the tooth.
  • At least one of the core and a tooth may be flocked and/or may comprise a filler for improving sliding, for example .
  • the applicator member may comprise two opposite longitudinal portions, e.g. two halves, each comprising teeth and a core portion, e.g. each extending through about 180° around the longitudinal axis of the core.
  • the teeth of each of the two portions may differ from each other by at least one of their length, thickness, shape, arrangement on the core, spacing in the row, and material .
  • the applicator may comprise a stem at a first end of which the applicator member is fastened.
  • the core may be constituted by a separate piece that is fitted to the stem of the applicator.
  • the core may be fastened to the stem of the applicator by inserting an endpiece that extends the visible portion of the core into a housing formed at the end of the stem.
  • the core may comprise a housing that extends longitudinally, and into which the stem is inserted.
  • the core may be made integrally with the stem of the applicator by molding a plastics material.
  • the core may be formed of a plastics material that is more flexible or less flexible than the plastics material that is used to make the stem of the applicator.
  • the diameter of the stem may lie in the range 1.5 mm to 5 mm or even in the range 3 mm to 3.5 mm.
  • the diameter of the stem may also for example be equal to 2.5 mm .
  • the stem may be connected to a handle at a second end remote from the first, which handle may be configured to close, in leaktight manner, a receptacle containing the composition to be applied.
  • the receptacle may comprise a wiper member that may be adapted to wipe the stem and the applicator member.
  • the applicator may be free of any metal, thereby making it possible to put it in a microwave oven.
  • the core may have a hollow inside, and it may comprise at least one channel via which the composition can pass through the applicator member .
  • the invention also provides a packaging and applicator device for applying a composition to keratinous fibers, in particular the eyelashes or the eyebrows, the device comprising an applicator as defined above, and a receptacle containing the composition.
  • the handle of the applicator may constitute a closure cap for closing the receptacle.
  • the composition may be a mascara, e.g. a water-resistant mascara.
  • the invention also provides a method of applying makeup to the eyelashes or the eyebrows by means of an applicator as defined above.
  • Figure 1 is a diagrammatic and fragmentary longitudinal section view in elevation showing an example of a device made in accordance with the invention
  • Figure 2 is a side view of the Figure 1 applicator member shown in isolation;
  • Figure 3 is a cross-section on III-III in Figure 2;
  • Figure 4 is a view similar to Figure 3 showing another variant embodiment; • Figure 5 is a cross-section on V-V in Figure 4;
  • Figures 6, 6a, and 7 are diagrammatic and fragmentary cross-sections of variant embodiments; • Figures 10, 11a, lie, lie, Hg, 12, 12a, 12b, 13, 13b, and 13c are diagrammatic and fragmentary views showing arrangements of teeth; • Figures 11, Hb, Hd and Hf are fragmentary perspective views of variant embodiments;
  • Figure 13a is a diagrammatic and fragmentary side view of a variant embodiment
  • Figures 14 to 18 are cross-sections of teeth
  • Figure 19 is a perspective view of a variant embodiment
  • Figures 20 and 21a are views similar to Figure 2 showing other variants
  • Figure 35 is a cross-section on XXXV of Figure 34;
  • Figure 36 shows another example of envelope surface
  • Figure 37 shows the possibility of having different numbers of teeth on either side of the core
  • Figures 38 and 39 are face views of various embodiments of the applicator member.
  • Figure 40 is a diagrammatic cross-section of a variant embodiment of the applicator member
  • Figure 41 is a diagram showing the envelope surface of a variant embodiment of the applicator member
  • Figures 42 to 44 are diagrammatic longitudinal sections showing various embodiments of the applicator member
  • Figure 50 is a fragmentary longitudinal section of a variant embodiment
  • Figures 51 to 53 show variant embodiments of teeth
  • Figure 54 is a diagrammatic and fragmentary cross- section of a variant embodiment of the wiper member
  • Figures 55 and 56 show details of variant embodiments of the stem.
  • Figure 1 shows a packaging and applicator device made in accordance with the invention, the device comprising an applicator 2 and an associated receptacle 3 containing a composition P for application to the eyelashes and/or the eyebrows, e.g. mascara or a care product.
  • a composition P for application to the eyelashes and/or the eyebrows e.g. mascara or a care product.
  • the receptacle 3 comprises a threaded neck 4, and the applicator 2 comprises a closure cap 5 that is arranged to be fastened on the neck 4 so as to close the receptacle 3 in leaktight manner when not in use, the closure cap 5 also constituting a handle for the applicator 2.
  • the applicator 2 comprises a stem 7 of longitudinal axis Y, which stem is connected at its top end to the closure cap 5, and at its bottom end to an applicator member 8.
  • the receptacle 3 also comprises a wiper member 6 that is inserted in the neck 4.
  • the wiper member 6, that may be of any type, comprises a lip 9 that is arranged to wipe the stem 7 and the applicator member 8 while the applicator 2 is being removed from the receptacle 3.
  • the lip 9 defines a wiper orifice of diameter that is adapted to the diameter of the stem.
  • the stem 7 presents a cross-section that is circular, but it is would not be beyond the ambit of the present invention for the stem 7 to present some other section, the cap 5 thus possibly being fastened on the receptacle 3 other than by screw- fastening, if necessary.
  • the wiper member 6 could be adapted to the shape of the stem 7 and to the shape of the applicator member 8, where appropriate.
  • the longitudinal axis Y of the stem 7 is rectilinear and coincides with the longitudinal axis of the receptacle 3 when the applicator 2 is in place thereon, but would not be beyond the ambit of the present invention for the stem 7 to be non-rectilinear, e.g. forming a bend.
  • the stem 7 may comprise an annular narrowing at its portion that comes to be positioned facing the lip 9 of the wiper member 6, so that said wiper member is not mechanically stressed unduly during storage.
  • the applicator member 8 comprises a core 10 of elongate shape, extending along a longitudinal axis X of greatest transverse dimension A, measured perpendicularly to its longitudinal axis, lying in the range 1.2 mm and 3 mm.
  • the core 10 presents a cross- section that is polygonal, having sides that define longitudinal faces 15 that are substantially plane.
  • the longitudinal axis X is central.
  • a single row 17 of teeth 18 is connected to each of the longitudinal faces 15.
  • the teeth 18 are made integrally with the core 10 by molding thermoplastic material.
  • thermoplastic material that is optionally relatively rigid, e.g. styrene-ethylene- butylene-styrene (SEBS) ; a silicone rubber; latex rubber; butyl rubber; ethylene-propylene-terpolymer rubber (EPDM) ; a nitrile rubber; a thermoplastic elastomer; a polyester, polyamide, polyethylene, or vinyl elastomer; a polyolefin such as polyethylene (PE) or polypropylene (PP) ; polyvinyl chloride (PVC) ; ethyl vinyl acetate (EVA) ; polystyrene (PS) ; polyethylene terephthalate (PET) ; polyoxymethylene (POM) ; polyamide (PA) ; or polymethyl methacrylate (PMMA) .
  • SEBS styrene-ethylene- butylene-styrene
  • EPDM ethylene-propylene-terpolymer rubber
  • the applicator member 8 may also be made by molding or by machining a metal.
  • the teeth and the core may be made out of different materials .
  • the applicator member 8 may comprise a head that tapers forwards so as to make it easier to put the applicator 2 back into the receptacle 3.
  • the height of the teeth 18 may decrease on going towards the head 12, along a distal transition portion 13a, as shown in Figure 2.
  • the height of the teeth 18 may also decrease along a proximal transition portion 13b on going towards the stem 7, so as to make it easier for the applicator member to pass through the wiper member 6 while the applicator 2 is being removed.
  • the head 12 may be circularly symmetrical, or it may comprise radial fins, as shown in Figure 2.
  • the core 10 is extended from its proximal end by a cylindrical endpiece 14 that enables it to be fastened onto the stem 7.
  • fastening may be performed by force- fitting, snap-fastening, adhesive, heat-sealing, or crimping in a housing provided at the end of the stem.
  • the stem may be inserted into a housing provided in the core.
  • the core 10 may also be molded integrally with the stem 7.
  • the longitudinal faces 15 are four in number, as can be seen in Figure 3, the cross-section of the core being substantially square.
  • Each row 17 of teeth 18 comprises a first set 20 of first teeth that are connected to the corresponding face 15 of the core 10 while forming an angle ⁇ Z i relative to the normal thereto, and a second set 30 of teeth that are connected to the face 15 obliquely, forming an angle ⁇ Z 2 relative to said normal.
  • the teeth 18 of the first set 20 of teeth are straight, extending along a direction ⁇ Z i that is substantially perpendicular to the face 15, the angle ⁇ Z i being relatively small, e.g. less than 10°, or even less than 5°.
  • the teeth 18 of the second set 30 of teeth are also straight in the embodiment under consideration, extending along a direction Z 2 , forming an angle ⁇ with the direction Zi.
  • the angle ⁇ may lie in the range 20° to 80°.
  • each row comprises teeth having a face that is connected perpendicularly to the corresponding longitudinal face 15.
  • the teeth 18 of each row 17 are disposed in a staggered configuration. Two consecutive teeth 18 of each row 17 are offset alternately on opposite sides of a separation surface S, the surface S being a bisector plane of the angle ⁇ .
  • the teeth of the first set 20 are disposed on one side of the separation surface S, while the teeth of the second set 30 are disposed on the other side of said separation surface, when the core 10 is observed along its longitudinal axis.
  • the bases of the teeth of the first set 20 and the bases of the teeth of the second set 30 are not in alignment, since they are respectively situated entirely on opposite sides of the separation surface S .
  • the teeth of the first set 20 and of the second set 30 do not overlap, when the applicator member is observed from the side along a direction that is perpendicular to the axis X, as shown in Figure 2.
  • the directions Zi and Z 2 of the teeth 18 of the first and second sets 20 and 30 of teeth do not intersect the longitudinal axis X of the core, the teeth being excentric relative to the axis.
  • each tooth 18 of the first set 20 of a row 17 may be associated with a respective tooth of the first set 20 of another row 17, substantially occupying the same axial position along the axis X of the core, the passage from one tooth to another being performed by turning about the axis X through a sub-multiple of 360°, in this event 90°.
  • each tooth 3 comprises a first longitudinal face 18 of plane shape and a second longitudinal face 40 of rounded shape, in particular of convex shape.
  • the teeth have a length £ that is less than 1.8 mm and greater than 0.5 mm, at least for more than half of them. They have a greatest thickness e lying in the range 0.2 mm to 0.65 mm. In a embodiment, the thickness of the teeth is 0.45 mm.
  • the greatest transverse dimension D of the applicator member may be less than or equal to 7 mm, better less than or equal to 6 mm, better less than or equal to 5.7 mm.
  • the core may comprise any number of longitudinal faces, with it being possible for any of the above- described characteristics to apply regardless of the number of longitudinal faces.
  • Figures 4 and 5 show a variant embodiment in which the core 10 is of hexagonal cross-section and comprises six longitudinal faces 15, a single row 17 of teeth 18 are connected to each of the longitudinal faces 15, such that the applicator comprises six rows 17 in all.
  • the rows of teeth are rows within which the teeth are situated alternately on opposite sides of a mid-plane for the row.
  • each of the teeth 18 of the first set of teeth 20 comprises a plane face 40 that extends perpendicularly to the corresponding longitudinal face 15 of the core, but that does not extend in the plane of an adjacent longitudinal face 15.
  • the core may present a cross- section that is circular, as shown in Figure 6, or oval, as shown in Figure 6a, or even triangular, octagonal, or pentagonal, as shown in Figures 7, 8, and 9 respectively.
  • An applicator member 8 of the invention may comprise more than two visible teeth per longitudinal face, when the core is observed along its longitudinal axis, and, in addition to the first and second teeth 18 of the sets 20 and 30, may comprise one or more additional teeth 18, e.g. forming an angle that is greater than ⁇ with the direction Zi, or even extending perpendicularly to the face of the corresponding core.
  • the teeth of the second set 30 of teeth not to slope relative to the longitudinal face 15 of the core to which they are connected, and for the directions Z 1 and Z 2 to be parallel for each row 17.
  • the teeth of the first and second sets 20 and 30 of teeth 18 are disposed in a staggered configuration, with their bases not being in alignment.
  • the teeth present a plane face and a rounded face.
  • the plane faces are oriented in the same direction all along the row.
  • the plane faces are oriented in different manner alternately along the row.
  • two consecutive teeth of a row may define a V-shaped groove, as shown in Figure 11.
  • two consecutive teeth of a row may also form a V-shape, as shown in Figure 11a.
  • the applicator may comprise patterns of four teeth, of which the middle teeth form a V-shape.
  • the four teeth succeed one another along the longitudinal axis of the row .
  • the row 17 comprises patterns of three consecutive teeth, of which two teeth form a V-shape with a tooth between them.
  • Two consecutive teeth of a row may cross when the row is observed along its longitudinal axis L, as shown in Figure Hf.
  • two consecutive teeth of a row may cross when the row is observed perpendicularly to its longitudinal axis L, as shown in Figure Hg, the two crossing teeth then being directed respectively towards the proximal end and towards the distal end of the applicator member.
  • two rows 17 of teeth of an applicator member 8 of the invention may comprise teeth that are spaced-apart from by the same spacing, as shown in Figure 12, or, on the contrary, by spacing that varies, as shown in Figure 13.
  • the consecutive teeth 18 may present respective first faces 101 that are substantially plane.
  • the opposite faces 102 of the teeth may be in the form of half a cone or half a pyramid, for example.
  • the teeth 18 may be oriented in alternation with their faces 101 facing towards the midplane of the row and outwards from the row, as shown in Figure 12a.
  • Such a disposition of the teeth can make it easier to mold the row of teeth, since all of the teeth having their faces 101 facing in a given direction are molded by the same mold shell, while all of the other teeth of the row, having their faces 101 facing in the opposite direction are molded by another mold shell. These two mold shells come into contact with each other.
  • the teeth 18 may touch to a greater or lesser extent within the row, as shown in Figures 12a and 12b.
  • the teeth 18 may be substantially touching as shown in Figure 12a, i.e. in contact or with small spacing between one another, e.g. spacing less than or equal to 0.1 mm at their bases.
  • the disposition of the bases of the teeth shown in Figures 12a and 12b may be applied to all of the applicator members described in the present application.
  • the teeth could be grouped together, e.g. in groups of two.
  • the teeth could be grouped together other than in pairs, the spacing between the groups of teeth within the same row optionally being uniform, and in particular greater than the average spacing between the teeth within a group .
  • an applicator member may comprise rows of teeth having profiles, defined by their free ends, that are identical, as shown in Figures 1 to 5, or that are different, as shown in Figure 13a.
  • the two rows of teeth 17 have different profiles, one being in the shape of a camel's back, presenting a central concavity, and the other presenting a central flat.
  • a plurality of rows of sufficiently close-together teeth may form a group of close-together rows, extending along a longitudinal axis G that is parallel to the longitudinal axes L of each of the rows, and that is central relative to said rows.
  • Figure 13b shows two groups of two close- together rows
  • Figure 13c shows one group of three close-together rows.
  • the closest teeth of two adjacent rows of the same group may be spaced-apart by a distance d that may be less than 0.8 mm, the distance d being less than the thickness of a tooth, or even zero, the teeth of the two close-together rows thus being touching.
  • the teeth of two different groups of close-together rows may be spaced-apart by a distance d' that is much greater than d, e.g. more that twice, or even three times d.
  • At least one tooth may have a cross-section that is circular, as shown in Figure 14, or even triangular, as shown in Figure 15, or lozenge-shaped, as shown in
  • Figure 16 or even formed of two different-size adjacent triangles, as shown in Figure 17, or triangular with a groove, as shown in Figure 18.
  • the longitudinal faces 15 of the core 10 need not be plane, e.g. being concave or convex over at least a fraction of their length, as in the embodiment in Figure 4.
  • the core 10 comprises longitudinal faces 15 that are concave at least in part, the concave shapes being centered on a mid-plane of the core 10, e.g. intersecting said core substantially halfway along.
  • the concave shapes of the longitudinal faces 15 may be formed by a narrowing of the cross-section of the core 10.
  • the longitudinal faces 15 of the core 10 are twisted, as shown in Figure 19, i.e. the corresponding side turns through at least one turn towards the distal end of the core.
  • the core 10 may be deformed on unmolding by turning the endpiece 14, or, in a variant, it may be deformed in the mold.
  • the longitudinal axis X of the core 10 may coincide with the longitudinal axis Y of the stem 7, but it would not be beyond the ambit of the present invention for this to be otherwise, and, by way of example, Figure 20 shows a variant embodiment in which the longitudinal axis X of the core 10 forms an angle ⁇ i with the longitudinal axis Y of the stem. By way of example, such a configuration may improve application by making it easier to manipulate the applicator .
  • the core may extend along a longitudinal axis X that is not rectilinear.
  • Figure 21 shows a variant embodiment in which the core extends along a longitudinal axis X that is curved.
  • the envelope surface E When observed in longitudinal section, as in Figure 21, the envelope surface E may, on one side of the axis X, present a convex first outline 54 substantially in the same direction as the axis X, and, on the opposite side of the axis X, a second outline 55 that possibly presents a concave curve substantially in the same direction as the axis X.
  • the distal end of the envelope surface may optionally be aligned with the longitudinal axis of the stem.
  • Figure 21a there can be seen the possibility for the distal end of the envelope surface E to be in alignment with the longitudinal axis Y of the stem 7.
  • the envelope surface E presents two opposite outlines 54 and 55, of which one 54 is straight.
  • the applicator member may present a variety of shapes for its envelope surface E.
  • the envelope surface E presents a cross- section that passes via a minimum.
  • the axis X coincides with the axis Y.
  • the longitudinal axis X of the core 10 is rectilinear, and the envelope surface E presents an ovoid shape.
  • the free ends of the teeth 18 define an envelope surface E that extends generally along a longitudinal axis W that forms an angle Y2 with the longitudinal axis X of the core 10, where such an applicator member could be said to be excentric .
  • the Figure 26 variant differs from the Figure 25 variant in the shape of the envelope surface E that presents a cross-section that passes via a minimum.
  • the longitudinal axis X of the core 10 may be rectilinear and may form an angle with the longitudinal axis Y of the stem 7, as shown in Figure 27, the envelope surface E having, for example, a cross-section that is not constant, e.g. passing via a minimum.
  • the envelope surface E may be generally peanut-shaped, as shown in Figure 28.
  • the envelope surface may in particular present two portions of larger cross-section in the vicinities of its proximal and distal ends, with an intermediate portion of smaller cross-section.
  • zones z p and z d are portions of larger cross-section with a maximum transverse dimension greater than or equal to 6 mm, these zones respectively lying between the proximal end of the envelope surface and the first quarter of its length and the distal end of the envelope surface and the first quarter of its length going towards the proximal end.
  • the zones z p and z d may for example be of diameter greater than or equal to a value d 0 that is equal to 6 mm, for example.
  • the diameter of the envelope passes via a maximum having a value of 6.4 mm, and via a minimum in the central portion of 5.4 mm.
  • the cumulative length of the portions z x , z y , and z z inscribed in a cylinder having a diameter of 6 mm occupies more than 70% of the total length L of the applicator member.
  • the maximum diameter in the zones z p , z d is equal to 6.4 mm, for example, and the minimum diameter in the central portion is equal to 5.4 mm, for example.
  • the applicator member may have an envelope surface of varying cross-section, with two portions close to the proximal and distal ends that are not surfaces of revolution about the longitudinal axis of the core.
  • an applicator member that, when observed from the side along arrow XXVIII in Figure 29 presents, by way of example, the shape shown in Figure 28, and when it is observed from above presents a flat shape as shown in Figure 29.
  • the core 10 may be centered relative to the envelope surface E or it may be off-center relative thereto, as shown in Figures 30 and 31.
  • the envelope surface E presents a shape in cross-section in a section plane perpendicular to the longitudinal axis X that is generally flat with two opposite faces that are plane and parallel and interconnected by two faces that are outwardly convex.
  • the core 10 is closer to one of the plane faces of the envelope surface than to the other plane face, as shown in Figure 30, or in a variant it is closer to one of the convex faces of the envelope surface than to the other, as shown in Figure 31.
  • the applicator member may present an envelope surface E that is generally frustoconical in shape, as shown in Figures 32 to 34.
  • the envelope surface E may have a larger diameter of 7 mm, at its proximal end and a smaller diameter of 4.5 mm at its distal end.
  • the envelope surface E may be centered on the longitudinal axis X of the applicator member core, as shown in Figure 32, which axis may also coincide with the longitudinal axis Y of the stem 7, as also shown in this figure.
  • the core 10 may also be generally frustoconical in shape, as can be seen in Figures 32 and 33, or it may be in the form of a cylindrical body of revolution as shown in Figure 34, or it may have some other shape.
  • Figure 33 shows the possibility of the axis of the envelope surface E not coinciding with the axis of the core, e.g. being parallel thereto.
  • the envelope surface E is of rectangular cross-section, and it presents four longitudinal edges.
  • the rectangle formed by the distal end face is offset by 90° relative to the rectangle formed by the proximal end face, such that the rectilinear edges interconnect the two long sides of the rectangle formed by the distal end face to the two short sides of the rectangle formed by the proximal end face, and vice versa.
  • the rows of teeth carried on one side A of the applicator member may have a number of teeth within the row that differs from the number of teeth within rows of teeth carried by side B of the applicator member, as shown in Figure 37.
  • Figure 38 there can be seen the possibility of having one or more rows of teeth that are missing compared with a regular arrangement of rows of teeth.
  • Figure 38 shows that a row of teeth is missing.
  • the rows 17 are spaced apart from one another at an angular pitch that is constant, except that two of them are spaced apart at twice that angular pitch, for example.
  • Figure 39 shows an applicator member for which the teeth on one side A are all parallel, whereas on the opposite side B, the rows of teeth extend in different directions. This figure also shows that the length of the teeth respectively associated with the sides A and B are different. The same may apply to the numbers of teeth within each row 17 and to the thicknesses of the teeth, or indeed to the materials from which the teeth are made .
  • the rows may not only have different numbers of teeth per row, but the teeth may also be of different heights and/or thicknesses, as also shown in said figure.
  • the applicator member may present side surfaces 110 that do not have any teeth between the faces A and B, as shown in Figure 40.
  • the angular extent ⁇ of a side surface 110 lies for example in the range 0 to 60°, not comprising the limit of 0. . In such a disposition of the teeth there may be at least one mold shell molding no tooth.
  • Figures 41 to 49 relate to applicators for applying a composition to keratinous fibers, in particular the eyelashes and/or the eyebrows, the applicators comprised a molded applicator member, comprising:
  • teeth carried by the core the distal end of the applicator being defined by the core or by at least one tooth
  • teeth extending in at least three different directions around the core and defining an envelope surface that grows to a maximum and then decreases in cross-section towards the free end of the applicator.
  • such applicators may present different application faces A and B, e.g. differing in number of teeth, e.g. in number of teeth per row, in tooth thickness, in tooth material, and/or in tooth length.
  • the total length q max along the longitudinal axis of the envelope surface may be less or equal to twice the greatest diameter d max of the cross-section of the envelope surface, better 1.75 times the maximum diameter, better still 1.5 times or 1.25 times.
  • the angle CC formed by the slope of the envelope surface in at least one longitudinal section on either side of the maximum may be greater than or equal to 120°, better 130°, better still 135°.
  • d max should be understood as meaning the transverse dimension of the envelope surface, even if the cross-section does not present an outline that is circular.
  • total length q max should be understood as the total length of the envelope surface as defined by the teeth, and as measured along the longitudinal axis of the core.
  • the angle ⁇ is the angle formed by the slopes of the envelope surface on either side of the maximum, as shown in Figure 45. These slopes may be straight lines providing the best fit to the envelope surface on either side of the maximum. They may be tangential to a portion of the envelope surface adjacent to the maximum, this portion extending for example over a length as is measured along the longitudinal axis of the core that is equal to 1 mm. The slopes may also be straight lines passing through the maximum and intersecting the envelope surface at a distance from the maximum as measured along the longitudinal axis of the core that is equal to 1 mm.
  • Such a relatively short applicator may be used to act on the eyelashes or the eyebrows with the stem in a multitude of orientations relative to the row of eyelashes, because of the shape of the envelope surface which defines a ball or a ball-like shape.
  • the multitude of orientations may comprise orientations that are spaced apart by 180° or even more, e.g. by more than 300° in one or more planes.
  • the user can then easily select an orientation and/or a hand movement that is most appropriate for obtaining the desired makeup effect.
  • the user may apply makeup by turning the applicator about its axis while moving it in contact with the eyelashes as though it were running along them.
  • the applicator may be used on its own, e.g. in order to finish off making up the eyelashes or eyebrows onto which a composition has already been applied, or after loading the application element with a composition, loading being performed either by placing the composition on the teeth or by bringing the teeth into contact with a cake of composition or by dipping the applicator into a receptacle containing the composition.
  • the shape of the applicator may lead to unequal wiping that may be used to advantage when applying makeup.
  • the zone of greatest diameter of the applicator will be more thoroughly wiped and will be better at separating and extending the eyelashes.
  • the end zone of the applicator may be more heavily loaded with the composition and may be used, for example, to make patches, because it is possible to use the applicator in a multitude of orientations .
  • the applicator can make it possible to use up excess composition that is often to be found at the end of the brush as a result of the non-zero section of the wiper orifice, and that constitutes an impediment with conventional brushes. All of the above-mentioned differences between the way teeth are implanted on the two sides A and B of the applicator member may be applied to the examples where the envelope surface is generally of a ball or ball-like shape. For example, the number of rows and/or the number of teeth per row may be greater on one side than on the other .
  • the applicator may comprise at least one tooth that is not perpendicular to the core.
  • the portion of the core carrying the teeth may be of elongate shape along the longitudinal axis of the applicator.
  • the core may extend along a longitudinal axis that is rectilinear or curved. When the longitudinal axis of the core is curved, its orientation may vary by less than 90°.
  • d core corresponds to the diameter of the circle in which the cross-section of the core is inscribed.
  • d core is greater than or equal to 2 mm and less than or equal to 3 mm, e.g. d core less than or equal to 2.5 mm.
  • d max may lie in the range 6 mm to 12 mm, e.g. lying in the range 8 mm to 9 mm.
  • the generally spherical shape of the applicator may be associated with teeth of varying length, rather than with variation in the diameter of the core supporting them, said variation being observed along the longitudinal axis of the applicator.
  • the core 10 may be made in such a manner that its outer surface is situated in line with the outer surface of the stem 7, once the core is in place on the stem. This makes it possible to avoid having extra thickness present between the core and the stem.
  • the diameter d stem lies in the range 2.5 mm to 3 mm.
  • the core may be held in a housing in the stem as a force-fit, by adhesive, and/or by die stamping the stem onto an endpiece that is made integrally with the core.
  • the longitudinal axis of the core need not be fully contained in line with the longitudinal axis of the stem. Advantage should be taken of the fact that the teeth extend over a relatively short length along the longitudinal axis of the applicator to lengthen the stem and thus make the applicator easier to handle.
  • the relative lengthening in stem length can also serve to improve the extent to which the teeth are impregnated, since they can be moved over a greater distance inside the receptacle prior to being withdrawn therefrom. It is possible to obtain a greater proportion of teeth that are well loaded with the composition, in particular for receptacles that were not initially 100% full, as is common practice to avoid a problem of pistoning while the applicator is being withdrawn.
  • the depth P receptacle of the receptacle is defined as being the distance between the top of the receptacle with no applicator, i.e. the top end of the neck when it has such a neck, and the inside surface at the bottom of the receptacle, with the distance being measured along the longitudinal axis of the receptacle.
  • R 4 d max /d f (where d f is the distance between the inside face of the bottom and the bottom end of the wiper member) that is likewise greater than or equal to 3.
  • the receptacle used may be of any kind, and in particular it may have two portions that are movable relative to each other, with one of the portions being turned relative to the other in order to increase the volume of one chamber defined inside the receptacle between the two portions and decrease the volume of another chamber, thereby causing the composition to pass between those two chambers. This passage takes place through a central portion of the receptacle in which the applicator member is housed. Such a receptacle is described for example in application EP 1 584 260.
  • the envelope surface may define a cross-section of outline that is circular, at least in part, e.g. having an outline that is circular over at least 180° around the core, or even completely circular, at at least one point along the length of the core, and in particular in the vicinity of the maximum 130, or over at least a fraction of the length of the core, e.g. over the entire length of the fraction of the core that carries the bristles.
  • the cross-section may have an aspect ratio greater than 0.7, at least in the plane where the radius r max is at its maximum.
  • the envelope surface need not have any notches or outwardly concave faces, e.g. in the plane where the radius r max is at its maximum.
  • the envelope surface may define at least one radius of length that varies in non-linear manner between the proximal end of the envelope surface and the maximum, e.g. varying along a circular arc or along any other curve other than a straight line.
  • the term "radius" is used to designate the straight line segment going from the core perpendicularly to its axis and terminating in the envelope surface.
  • the envelope surface may define a radius that varies in non-radial manner between the maximum and the distal end of the envelope surface, e.g. varying along a circular arc. Beside the maximum, e.g. towards the proximal or distal end of applicator, the envelope surface need not be conical.
  • the slope on one side of the maximum may vary, e.g. with increasing inclination relative to the longitudinal axis on going towards the distal or proximal end.
  • the envelope surface may increase and then decrease over at least 180° around the core, better 270° around the core, e.g. 360° around the core.
  • the envelope surface When seen from the side, i.e. perpendicularly to the axis of the core, the envelope surface may present a profile that is rounded on either side of the maximum.
  • the envelope surface E is a surface of revolution presenting a cross-section that varies, e.g. having two portions 123 and 126 going towards the distal end of the core 10, which portions are substantially hemispherical and joined via an edge 130 defining a maximum where the radius r, i.e. the distance between the envelope surface E and the axis X of the core 10 is the greatest for the entire envelope surface E.
  • the cross-section of the brush may increase and then decrease on going from the proximal end towards the distal end of the envelope surface along at least two mutually perpendicular axes Xl and X2, as shown in Figure 41.
  • the radius r_ increases, reaches the maximum r max , and then decreases.
  • the longitudinal section planes containing the respective axes Xl and X2 may be planes of symmetry for the envelope surface.
  • the distance j_ between the transverse plane containing the edge 130 and the maximum and the distal end of the envelope surface may be about 5 mm, for example .
  • the angle ⁇ formed between the slopes 140 and 141 of the envelope surface, and situated respectively on either side of the edge at the maximum 130 may be considerably greater than 120°, as can be seen in Figure 45.
  • each slope 140 or 141 is defined by the straight line passing through the maximum of the envelope surface E and fitting as closely as possible to the outline of the envelope surface in a longitudinal section plane over a distance of 1 mm along the axis X, on the corresponding side of the maximum.
  • the slopes are respectively the slopes of the two conical portions.
  • the angle ⁇ is closer to 180°.
  • the aspect ratio of the brush in the transverse plane containing the edge at the maximum 130 is equal to 1, the envelope surface E presenting a circular outline centered on the axis X of the core 10.
  • the aspect ratio is defined by r min /r max , where r max designates the maximum ratio in the cross-section under consideration, i.e. the greatest distance from the axis X of the core 10 to the envelope surface E, and where r min designates the minimum radius, i.e. the shortest distance from the axis X of the core 10 to the envelope surface E in the section plane.
  • the envelope surface is substantially biconical in shape.
  • the angle ⁇ between the slopes at the maximum is nevertheless relatively large, in particular greater than 120°, so as to approximate to the shape of a ball.
  • the radius r_ need not decrease down to zero at the ends of the envelope surface.
  • the diameter of the envelope surface E at the distal end may be greater than or equal to 4 mm, for example.
  • the envelope surface E may be symmetrical on either side of a midplane containing the maximum 130.
  • the envelope surface E presents a shape in longitudinal section that is generally lenticular.
  • the cross-section defined by the envelope surface E increases for example from a proximal end where the radius r_ is substantially zero up to the maximum 130, and then decreases to an end where the radius r_ may again be substantially zero.
  • the maximum 130 may be defined by an edge, as shown in the above examples. In a variant, the maximum 130 may extend over a certain distance along the axis X, as shown in Figure 48.
  • the envelope surface E defines a maximum cross-section of radius r max over a distance t. prior to decreasing going towards the free end of the core. The middle of this portion of radius r max is situated, by way of example, at a distance £ from the free end which is such that the ratio £/r max is less than 1.5.
  • the length t. may be greater than or equal to 1 mm, for example.
  • the envelope surface E in particular in the plane where the cross-section is at its maximum, may present a shape that is not a surface of revolution.
  • the envelope surface may present an outline that is substantially semicircular on one side of the core and substantially triangular on the other side of the core, as shown in Figure 49.
  • the maximum radius r max may be defined by the substantially semicircular portion or by the substantially triangular portion.
  • the envelope surface may be spherical to within 20%, at least over its portion extending from a plane where the transverse dimension defined by the envelope surface E is at a maximum, all the way to the distal end.
  • the applicator may have teeth that point towards the proximal end of the applicator.
  • the applicator may comprise teeth that extend in more than four directions around the axis of the core, better that extend in at least eight directions around the axis X of the core, and in particular in more than eight directions.
  • the core 10 and the envelope surface E may both pass through a respective maximum cross-section at the same axial position along the axis X.
  • the teeth may present a height that varies such that their free ends define the profile desired for the envelope surface E.
  • the core 10 may be elongate in shape, e.g. cylindrical, and the envelope surface may be generally ball-shaped.
  • the radius r of the envelope surface E may vary by less than 50% between one-fourth and one-half of the distance between the plane containing the maximum 130 and the distal end of the applicator.
  • the teeth of the applicator may bend towards the distal end while the applicator is being withdrawn in certain embodiments. Some of the teeth may be long enough and close enough to the distal end for them, on bending, to cover the shorter teeth situated closer to the distal end. While bending on passing through the wiper member, the free ends of some of the teeth may come substantially level with the distal end of the core along the axis X.
  • the core comprises a recess in which there is engaged a support portion 60, e.g. made of metal or plastics material.
  • the core may be configured to be fastened to the support 60, or it may be free to turn or to move in translation relative to the support 60.
  • the teeth of at least one row could present different heights, passing through an extremum between the extreme teeth of the row, for example.
  • At least one of the teeth 18 of the rows 17 could present a surface state that is not smooth, e.g. having ridges as a result of molding or roughness linked to the presence of a filler in the plastics material, for example.
  • the applicator member could be made with a plastics material that comprises magnetic particles.
  • the magnetic field created by such particles that could be magnetizable and/or magnetized, could, for example, exert an effect on the eyelashes and/or interact with magnetic fibers or pigments that are present in the composition.
  • the applicator member could be made with flocking, said flocking extending over the teeth only, for example.
  • the teeth could present respective portions in relief or a particular shape, e.g. a fork, a hook, or a bead, as shown in Figures 51 to 53.
  • the hook could extend transversally, parallel, or obliquely relative to the longitudinal axis X of the core.
  • the rows 17 could comprise different numbers of teeth, with one of the rows being shorter than another, for example.
  • All of the teeth could be connected to the core along a direction that is contained in a plane that is perpendicular to the axis X. This could be otherwise, and teeth could slope towards the distal or proximal end.
  • the wiper member could be made in some other way, e.g. it could comprise a block of foam that could be slotted.
  • the wiper member could also be as described in patent applications or US patents Nos. 2005/0028834, 6328495, 6375374, 2004/0258453, and 2005/0175394 for example .
  • the wiper lip 9 could advantageously be undulating, having a radially-inner free edge defining an orifice 122 through which the applicator member can pass, as shown in Figure 54.
  • the wiper lip 9 could comprise undulations 120 that extend around the orifice 122.
  • the wiper member 9 may comprise a number of undulations 120 lying in the range 3 to 12, for example.
  • the wiper lip 9 could extend generally along a cone that converges towards the bottom of the receptacle, and that has a generator line G forming an angle i_ with the axis X of the receptacle. In a variant, the wiper lip 9 could extend generally along a mid-plane that is perpendicular to the axis X, or it could even extend generally along a cone that converges towards the outlet of the receptacle.
  • the wiper member could also be adjustable, where appropriate .
  • the stem 7 to which the core is fastened could be flexible at least in part, and in particular could be entirely flexible, in particular in the proximity of the applicator member.
  • the stem could comprise at least one flexible element 80, as shown in Figure 55, or at least one elastomer element, for example, or it could present a shape that imparts flexibility, e.g. at least one notch 81 as shown in Figure 56.
  • the flexible or elastomer element could be flocked and/or could also be used for applying the composition.
  • the user can unscrew the closure cap 5 and remove the applicator member 8 from the receptacle 3.
  • a certain quantity of composition remains between the rows 17 and between the teeth 18 of the rows, and can be applied to the eyelashes or the eyebrows by the user.
  • the relatively large number of teeth and their disposition on the applicator member make it possible to apply makeup neatly, in particular to short eyelashes.
  • the wiping movement used to apply makeup to the eyelashes or the eyebrows can possibly be accompanied by the applicator member being turned about the axis X. In the presence of teeth that are oriented obliquely on the applicator member, said teeth can be directed towards the eyelashes when applying makeup.
  • vibration could be applied to the applicator member during application, combing, or while taking the composition, e.g. as described in application WO 2006/090343.
  • Such an applicator may also present at least one of the characteristics of the applicators described with reference to the figures of the present application.
  • the invention is not limited to the above-described embodiments, the characteristics of which may be combined together within variants not shown.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Brushes (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to an applicator (2) for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member (8), comprising: • a core having a longitudinal axis; and • teeth that extend outwards from the core, the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm; the applicator member (8) having a greatest transverse dimension, measured perpendicularly to the longitudinal axis of the core, that is strictly less than 6 mm, on at least 70% of the length of the applicator member.

Description

AN APPLICATOR FOR COMBING THE EYELASHES OR THE EYEBROWS OR FOR APPLYING A COMPOSITION THERETO
The present invention relates to an applicator for combing keratinous fibers, in particular the eyelashes and/or the eyebrows, and/or for applying a cosmetic, makeup, or a care product, e.g. mascara, thereto.
The invention also relates to a packaging device comprising such an applicator.
The invention also relates to a cosmetic treatment. Applicators for applying mascara to the eyelashes, comprising a molded applicator member with a core and teeth that extend outwards from the core, all around the core, are known.
Applications DE 101 02 219 and EP 1 665 952 thus disclose applicators with an outside diameter of 8 mm and teeth that are 2.4 mm in length, the teeth having a diameter of 0.68 mm at their bases.
Other applicators comprising a molded applicator member are disclosed in publications WO 2006/125122, US 4565205, GB 2071558, US 2007/0033759, EP 1632149, US 4403624, DE 25 59 273, FR 2564712, EP 1342428, EP 1611817, EP 1649777, amongst others.
Patent US 3998232 discloses an applicator with an adjustable applicator member. Existing applicators are not entirely satisfactory, in particular for applying makeup to the short eyelashes such as the eyelashes of Asian users, for example. In one of its aspects, the invention provides an applicator for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member, comprising:
a core having a longitudinal axis; and
teeth that extend outwards from the core, the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm; the applicator member having a greatest transverse dimension, measured perpendicularly to the longitudinal axis of the core, that is less than or equal to 6 mm, over at least 70% of its length.
The applicator member may have a greatest transverse dimension, measured perpendicularly to the longitudinal axis of the core, that is strictly less than 6 mm, better less than or equal to 5.95 mm, better less than or equal to 5.9 mm, better less than or equal to 5.7 mm, better still less than or equal to 5.5 mm.
The greatest transverse dimension may be as defined above over at least 70% of the length of the applicator member, better over 80% of its length, better over 90%, or even over its whole length.
The applicator of the invention comprises teeth that are relatively short, thereby making it easier to apply composition to short eyelashes.
Such an applicator can also make it possible to apply makeup in relatively accurate manner, in particular on people having eyelashes or eyebrows that are relatively short, so that such an applicator may suit a wide variety of users.
By means of the invention, it is possible to obtain an applicator that is compact, without further decreasing the section of the core, thereby avoiding increasing its flexibility too much and decreasing performance with regard to the quality of the resulting makeup effect.
In addition, a smaller applicator makes it easier to apply composition to the eyelashes or the eyebrows, while avoiding masking too great a portion of the field of vision, and thus improving the accuracy with which makeup is applied.
In another of its aspects, the invention also provides an applicator for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member, comprising:
a core having a longitudinal axis; and teeth that extend outwards from the core, the majority of the teeth having firstly length lying in the range 0.5 mm to 1.8 mm, and secondly thickness either lying in the range 0.2 mm to 0.5 mm, or else strictly greater than 0.5 mm and less than 0.65 mm.
The thickness may for example be of the order of 0.45 mm .
In the first instance, i.e. when the thickness lies in the range 0.2 mm to 0.5 mm, the teeth are relatively fine and may also be relatively flexible when the material from which they are made is a flexible material. In the second instance, i.e. when the thickness lies in the range 0.5 mm to 0.65 mm, the teeth are thicker and may be more rigid. The thickness of the teeth could be selected as a function of the type of makeup effect desired and/or the nature of the eyelashes to be treated and/or the rheology of the composition, for example.
The applicator may comprise a majority of teeth, or even only teeth having thickness lying in the range
0.2 mm to 0.5 mm, or, in a variant, a majority of teeth, or even only teeth having thickness that is strictly greater than 0.5 mm and less than 0.65 mm, or it may even comprise both. By way of example, teeth having a certain thickness may be mixed together with teeth having another thickness, or, in a variant, the teeth having a certain thickness may be grouped together in a first portion of the applicator member, while the teeth having another thickness are grouped together in a second portion of the applicator member, e.g. opposite the first.
The teeth of length lying in the range 0.5 mm to 1.8 mm may be distributed uniformly over the applicator member or they may be grouped together on at least one portion thereof. More than half of the teeth may have a length as defined above, better at least 60%, or even 70%, better still 80% of the teeth.
The applicator may be made so that the teeth presenting a length lying in the range 0.5 mm to 1.8 mm are distributed all around the core over at least a fraction of the length thereof, thereby defining a combing surface having properties that are substantially constant all around the core over at least a fraction of the length of the applicator member.
By way of example, the teeth having a length as defined above may be situated at least in the central portion of the applicator member, in particular between the first fourth and the last fourth of the length of the applicator member.
All of the teeth of the applicator member may have the same length, except possibly the teeth situated in the vicinity of each of the two axial ends of the applicator member. The term "longitudinal axis" of the core should be understood as the line that joins the centers of gravity (barycenters) of the cross-sections of the core. In some circumstances, the longitudinal axis may be a central axis, or even an axis of symmetry for the core, in particular when the core presents a cross-section that has the general shape of a regular polygon or a circle. The longitudinal axis may be rectilinear or curved.
The term "tooth" is used to designate an element that projects individually, the term being synonymous with "bristle" in the context of the present invention. The majority of the teeth may have thickness lying in the range 0.2 mm to 0.5 mm, better in the range 0.2 mm to 0.45 mm, e.g. in the range 0.2 mm to 0.39 mm, or, in a variant, strictly greater than 0.5 mm and less than 0.65 mm. The majority of the teeth may have a length lying in the range 0.5 mm to 1.49 mm, e.g. in the range 0.5 mm to 0.99 mm, or in the range 1.2 mm to 1.7 mm, being for example of the order of 1.65 mm.
The term "thickness of a tooth" is used to designate the greatest cross-section of the tooth in section that is perpendicular to its longitudinal direction. The term "length of a tooth" is used to designate the distance measured along the longitudinal direction of the tooth between the free end of the tooth and its base via which it is connected to the core. The length of a tooth is measured from the core of the applicator member.
The applicator may comprise between 150 and 500 teeth, for example.
The teeth may be disposed in rows extending along the longitudinal axis of the core. The term "row" is used to designate a succession of teeth that are generally situated on the same side of the core, and that succeed one another along the core.
The applicator may comprise at least three rows of teeth extending along the longitudinal axis, e.g. between 3 and 20 rows of teeth, better between 4 and 18 rows, better still between 6 and 10 rows.
Within a row of teeth, the number of teeth may lie in the range about 6 to 60, in particular in the range about 10 to 50. At least one row of teeth may extend along a rectilinear axis that may optionally be parallel to the longitudinal axis of the core.
At least two teeth of at least one row may present lengths that are different or identical. A row of teeth extending along the longitudinal axis may have at least three teeth of the same length.
At least two teeth of at least one row may present shapes that are different or identical.
At least one tooth of at least one row may present a general shape that tapers towards its free end.
At least one tooth may be of tapered, frustoconical, or pyramid shape. When the applicator comprises a plurality of rows of teeth, at least one tooth of one of the rows may present a shape that is different from a tooth of another row. By way of example, at least one tooth of a row may present a length that is different from the length of another tooth of the row, in particular of a consecutive tooth within the row.
When the core is observed along its longitudinal axis, two teeth of a row may extend at their bases in directions that form a first angle between them, and two teeth of another row may extend at their bases in directions that form a second angle between them, the first and second angles being equal or different.
Within each row, the teeth may be spaced-apart evenly along the longitudinal axis of the row, or they may be grouped together in groups of two or more teeth, the spacing between the teeth of one group along the longitudinal axis of the row being less than the spacing between two adjacent groups of teeth of said row. By adapting the shape of the teeth and their spacing, it is possible to establish cavities of greater or smaller size between the teeth, such cavities being suitable for being loaded with composition. It is thus possible to make a row of teeth that is capable of being loaded with a substantial quantity of composition, but without the row of teeth losing its capacity to grip the eyelashes .
The applicator member may comprise teeth, e.g. at least one row of teeth, having a length that is greater than 1.8 mm, without going beyond the ambit of the present invention.
The ends of the teeth of length that is less than 1.8 mm may belong to a first surface of cross-section that is circular, e.g. cylindrical, but the cross-section of the envelope surface defined by the free ends of all of the teeth need not be circular. Two rows of teeth may be made out of different respective materials.
The teeth of a single row of teeth may be made out of different materials, e.g. of different hardness or color.
A first row of teeth may comprise teeth having a first length, a second row of teeth comprising teeth having a second length that is different from the first.
At least two successive teeth of a row may optionally be touching at their base, all of the teeth of the row respectively being non-touching or touching at their bases. The spacing between the teeth, measured at the bases of the teeth may lie in the range 0 to 1.2 mm within a row, e.g. in the range 0.01 mm and 1 mm. When the teeth are touching at their base, the spacing between the teeth measured at the base of the teeth is zero.
When the applicator is observed from the side, perpendicularly to its longitudinal axis, at least two teeth may define a V-shaped groove. Teeth of one row and teeth of another row may extend in different directions.
The teeth of a row may have bases that are substantially in alignment, i.e. the centers of the bases of three consecutive teeth are situated substantially on a single straight line.
The teeth of at least one row may be connected to a corresponding longitudinal face of the core on the same side of a middle longitudinal line of the longitudinal face . The teeth may have bases that are not centered on the longitudinal face of the core to which they are connected.
The bases of the teeth in a row may be in alignment, or they may be disposed in a staggered configuration. For a staggered configuration, a plurality of consecutive teeth of the row may be offset at least in part, alternately on opposite sides of a geometrical separation surface. The consecutive teeth may be offset completely, alternately on opposite sides of the geometrical separation surface. The term "offset completely" should be understood as the geometrical separation surface not passing through the teeth, being a tangent to said teeth at the closest.
All of the teeth of each row may be offset alternately on opposite sides of a geometrical separation surface that is associated with the row. In a variant, the teeth may be offset on opposite sides of the separation surface, not alternately, but in groups of teeth, e.g. in groups of two or three teeth.
Still in a variant, the teeth may be offset not on opposite sides of a surface, but disposed in a pattern that is repeated along the longitudinal axis of the row, each pattern comprising three or four teeth, for example, in alignment along a line that extends obliquely relative to the axis of the row, for example.
Two consecutive teeth of a row need not be images of each other that are merely shifted in translation, in particular when the cross-sections of the teeth are non- circular in shape.
At least two consecutive teeth of a row of teeth may have first faces both having a common first shape, e.g. plane, in particular at least at the bottom portion of the tooth, and second faces both having a common second shape, e.g. not plane, in particular rounded. The first faces may all face in the same direction around the core, i.e. they may all face in the same clockwise or counter- clockwise direction, when the core is observed along its longitudinal axis.
In another embodiment, the first faces of two consecutive teeth may face in a direction that is different for each tooth. By way of example, the first faces of two consecutive teeth may alternately face in opposite directions when the core is observed along its longitudinal axis. The first faces of the teeth, in particular when they are plane, may be connected substantially perpendicularly to the corresponding face of the core, at least for some teeth in the row. At least one tooth, or even each tooth, may present a plane face that is parallel to its long direction.
The cross-section of at least one tooth, or even of each tooth, may be of substantially semi-circular or semi-elliptical in shape, e.g. generally D-shaped, or it may be of still some other shape.
At least one tooth may present a cross-section that is: circular; polygonal, in particular triangular, square, rectangular, octagonal, parallelogram-shaped, lozenge-shaped; or oval. At least one tooth may present at least one portion in relief. Such a characteristic may improve the adherence of the composition to the tooth. Without changing in shape, the cross-section of the tooth may decrease on going away from the core, e.g. over more than half of the length of the tooth. The teeth may optionally be rectilinear, e.g. each extending along a long axis for the tooth that is rectilinear, or else they may be curved, or they may even be undulating. The term "long axis of the tooth" is used to mean an axis that passes via the centers of gravity of the cross-sections of the tooth.
The free ends of the teeth may define an envelope surface that extends along a longitudinal axis that forms a non-zero angle with the longitudinal axis of the core. In an embodiment of the invention, the envelope surface defined by the free ends of the teeth of the applicator is not cone shaped. The envelope surface may be of greatest transverse dimension, e.g. of diameter, that is substantially constant over at least a fraction of the length of the applicator member. The envelope surface may be in the general shape of a peanut, an American football, frustoconical, or joining two half-shapes selected from amongst the above-mentioned shapes and fitted together along a diametral plane containing the core, e.g. one portion in the shape of half an American football adjacent to a portion that is semi-frustoconical . Each of the rows of teeth may extend on the core along a longitudinal axis of the row. The longitudinal axis of a row is an axis for the bases of the teeth of the row, being the straight line passing via the centers of the bases of the teeth for teeth that are rigorously in alignment, or the axis passing via the separation surface for teeth that are in a staggered configuration.
Since the longitudinal axis of a row is considered at the surface of the core, two longitudinal axes of two successive rows, around the longitudinal axis of the core, may be separated angularly by an angle that is less than 80°, e.g. about 60°, or even less than 50°, e.g. about 45° or less. The distribution of the longitudinal axes of the rows at the surface of the core may be substantially regular, with spacing between them that is substantially constant and equal to a predefined value ± 20%, better ± 10%, better still ± 5%.
It is possible to omit some rows of teeth. The applicator member may comprise a zone that does not have teeth. It is not beyond the ambit of the present invention for the "longitudinal axis of a row" to be replaced by "longitudinal axis of a group of close-together rows", a group of close-together rows comprising a plurality of rows, e.g. two, three, or four, a tooth of a row being separated from the closest tooth of an adjacent row within the group by a distance that is less than 0.8 mm, better less than 0.6 mm, better still less than 0.4 mm, e.g. by a distance that is less than the thickness of the teeth at their bases. The rows of a group of rows are preferably parallel to one another. The implantation and the distribution of the teeth on the core may be relatively regular, or even substantially constant.
Teeth may be situated along the core, around the longitudinal axis of the core, at intervals of about one every 360°/n, for example, with n. lying in the range 3 to 20, better in the range 4 to 16, better still in the range 6 to 10.
A relatively regular disposition of the teeth around the longitudinal axis of the core can enable the applicator to be used starting from any position.
The applicator member should not comprise a toothless region that extends angularly over more than one eighth of a turn, thereby making it easier to use since the user does not need to orientate the applicator too precisely relative to the eye.
By way of example, the teeth may extend in at least six different directions around the longitudinal axis of the core. The applicator may comprise a large number of teeth, the teeth being close together so as to avoid too much composition being loaded between them, as would result from spacing that is too great.
The teeth may extend along a long direction that is perpendicular to the surface of the core to which they are connected, or, in a variant, that is not perpendicular, forming a non-zero angle with the normal to the core at the base of the tooth.
In embodiments of the invention, the teeth are made with the core by molding or by overmolding.
The applicator may be made with a disposition of teeth on the core that makes it easier for the eyelashes to come into contact with the core, which may present a surface state that is perfectly defined, which is not always true of a conventional brush having a twisted core . In an embodiment of the invention, the eyelashes may be loaded with composition that is in contact with the core. The core may thus participate in active manner in applying composition to the eyelashes, thereby offering more freedom in the choice and the arrangement of the teeth.
At least one tooth of a row may extend, at least at its portion that is connected to the core, or even over its entire length, along a first direction Zl, perpendicular to the longitudinal face of the core to which the tooth is connected, or forming a small angle with the normal, e.g. less than 10°, better 5°. A consecutive tooth of the row may extend from the same face of the core along a second direction Z2, at least at the portion that is connected to the core, or even over its entire length, forming an angle α with the first direction, when the core is observed along its longitudinal axis.
Substantially half of the teeth of a row may extend parallel to the first direction Z1. The angle α between the directions Z1 and Z2 may lie in the range 5° to 80°. The applicator member need not have teeth that are oriented obliquely in opposite directions around the core. For example, when the core is observed from its distal end, all of the teeth that extend obliquely may be oriented in the clockwise direction.
The core may comprise at least one longitudinal face that is plane. In a variant, the core may comprise at least one longitudinal face that is not plane, e.g. being concave or convex, at least in part.
When observed perpendicularly to its longitudinal axis, the core may present a profile that varies. In particular, the core may present a transverse dimension that reaches a minimum in a central portion of the core, along its longitudinal axis.
Over at least a fraction of its length, the core may present a cross-section that is: circular; polygonal, in particular square, rectangular, pentagonal, hexagonal, octagonal; or oval. The cross-section may have a polygon shape that is optionally regular, preferably regular, the sides correspond to the longitudinal faces of the core possibly being straight or slightly concave or convex. The core may thus present a cross-section that is not circular over the major portion of its length.
At least one tooth, better each tooth, of a row or of the applicator may extend from a corresponding longitudinal non-plane face of the core in manner that is substantially perpendicular to a plane that is tangent to the core at the tooth. For example, for a cylindrical core of circular cross-section, the teeth may extend radially. The core may present a longitudinal face that is concave or convex in cross-section, and that has concavity or convexity that may vary along the longitudinal axis of the core.
The core may present at least one face from which teeth extend that presents a width that varies along the longitudinal axis of the core.
The core may present a cross-section that is substantially constant, at least over a fraction of its length. The core may also present a cross-section that varies. The cross-section of the core may pass through an extremum, e.g. that is substantially mid-way along the core, the extremum being a minimum, for example. This may impart increased flexibility to the core, and makes it possible to define an envelope surface of section that varies along the applicator member, in particular when the teeth in a row are of the same length, at least over a fraction of the applicator member.
In a variant, the length of the teeth may vary along the row, such that the cross-section of the core and the cross-section of the envelope surface of the applicator member defined by the free ends of the teeth are not geometrically similar. The envelope surface of the applicator member may present, at a first location along the longitudinal axis of the applicator member, a first cross-section that is substantially polygonal, and, at a second location along the longitudinal axis, a second cross-section that is substantially polygonal, at least a first vertex of the first cross-section being connected to at least a second vertex and to a third vertex of the second cross-section via respective edges, the first and second vertices being offset angularly around the longitudinal axis of the applicator member, at least one of the first and second cross-sections being centered on the longitudinal axis of the applicator member.
The core may present a longitudinal face that is twisted. The applicator member may present a helical distribution of the teeth on the core, oriented clockwise or counter-clockwise on going towards the distal end of the applicator member.
The applicator may comprise a single row of teeth per longitudinal face of the core.
The length of the applicator member may lie in the range about 10 mm to 48 mm, in particular in the range 15 mm to 38 mm, or even in the range 20 mm to 35 mm, e.g. being about 27 mm. The length of the applicator member may be defined as the length of the envelope surface defined by the free ends of the teeth measured along the longitudinal axis.
The length of a row may lie in the range about 10 mm to 45 mm, in particular in the range 15 mm to 35 mm, or even in the range 20 mm to 30 mm, e.g. being about 25 mm.
When the core is observed along its longitudinal axis, it is possible to pass from one row to the others by turning the core about its longitudinal axis through an integer sub-multiple of 360°, e.g. turning through 360°/n, where n. is an integer that lies in the range 3 to 20, for example. In a cross-section plane, the core may present axial symmetry, in particular around its longitudinal axis.
The core may extend along a longitudinal axis that, at at least one point along its length, forms an angle with the longitudinal axis of a stem to which the core is fastened. The core may be bent where it connects to the stem.
The core may comprise a recess in which there is engaged a support portion, e.g. made of metal or plastics material. The core may be configured to be fastened to the support, or it may be free to turn or to move in translation relative to the support.
In a variant, the portion of the core that supports the teeth may be solid. The core may comprise a housing at one of its ends only, so as to enable it to be fastened to a stem connected to a handle.
The core may have a greatest transverse dimension, measured perpendicularly to its longitudinal axis, e.g. a diameter, lying in the range 1.2 mm to 5 mm, better in the range 1.4 to 3 mm, or even substantially 1.8 mm.
The core and the teeth may be molded out of a single material, or, in a variant, may be made out of at least two different materials. By way of example, a portion of the core and of the teeth may be made out of a first material, and another portion of the core and of the teeth may be made out of a second material.
The teeth may be made integrally with the core, e.g. by molding, in particular by injection-molding. The teeth may be formed by mono-injecting material or by over-injecting, preferably using a thermoplastic material which may be elastomeric.
The applicator member may be made by dual-injecting two materials simultaneously into a single mold.
The teeth may be made of a material that is more rigid or less rigid than a material that is used to make the stem of the applicator to which the core is connected. At least one of the core and a tooth may present magnetic properties. By way of example, the magnetic properties may result from a filler of magnetic particles, e.g. of ferrites, that are dispersed in the plastics material of the core and/or of the tooth.
At least one of the core and a tooth may be flocked and/or may comprise a filler for improving sliding, for example .
The applicator member may comprise two opposite longitudinal portions, e.g. two halves, each comprising teeth and a core portion, e.g. each extending through about 180° around the longitudinal axis of the core. The teeth of each of the two portions may differ from each other by at least one of their length, thickness, shape, arrangement on the core, spacing in the row, and material .
The applicator may comprise a stem at a first end of which the applicator member is fastened. The core may be constituted by a separate piece that is fitted to the stem of the applicator. The core may be fastened to the stem of the applicator by inserting an endpiece that extends the visible portion of the core into a housing formed at the end of the stem. In a variant, the core may comprise a housing that extends longitudinally, and into which the stem is inserted. Still in a variant, the core may be made integrally with the stem of the applicator by molding a plastics material.
The core may be formed of a plastics material that is more flexible or less flexible than the plastics material that is used to make the stem of the applicator.
The diameter of the stem may lie in the range 1.5 mm to 5 mm or even in the range 3 mm to 3.5 mm. The diameter of the stem may also for example be equal to 2.5 mm . The stem may be connected to a handle at a second end remote from the first, which handle may be configured to close, in leaktight manner, a receptacle containing the composition to be applied. The receptacle may comprise a wiper member that may be adapted to wipe the stem and the applicator member.
The applicator may be free of any metal, thereby making it possible to put it in a microwave oven.
Where appropriate, the core may have a hollow inside, and it may comprise at least one channel via which the composition can pass through the applicator member . The invention also provides a packaging and applicator device for applying a composition to keratinous fibers, in particular the eyelashes or the eyebrows, the device comprising an applicator as defined above, and a receptacle containing the composition. The handle of the applicator may constitute a closure cap for closing the receptacle.
The composition may be a mascara, e.g. a water- resistant mascara.
The invention also provides a method of applying makeup to the eyelashes or the eyebrows by means of an applicator as defined above.
The invention can be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:
Figure 1 is a diagrammatic and fragmentary longitudinal section view in elevation showing an example of a device made in accordance with the invention;
Figure 2 is a side view of the Figure 1 applicator member shown in isolation;
• Figure 3 is a cross-section on III-III in Figure 2;
Figure 4 is a view similar to Figure 3 showing another variant embodiment; • Figure 5 is a cross-section on V-V in Figure 4;
Figures 6, 6a, and 7 are diagrammatic and fragmentary cross-sections of variant embodiments; Figures 10, 11a, lie, lie, Hg, 12, 12a, 12b, 13, 13b, and 13c are diagrammatic and fragmentary views showing arrangements of teeth; Figures 11, Hb, Hd and Hf are fragmentary perspective views of variant embodiments;
Figure 13a is a diagrammatic and fragmentary side view of a variant embodiment;
Figures 14 to 18 are cross-sections of teeth;
Figure 19 is a perspective view of a variant embodiment;
Figures 20 and 21a are views similar to Figure 2 showing other variants;
Figures 21 to 27 are diagrams of envelope surfaces of other variant embodiments; • Figures 28 to 34 show other examples of envelope surfaces;
• Figure 35 is a cross-section on XXXV of Figure 34;
Figure 36 shows another example of envelope surface • Figure 37 shows the possibility of having different numbers of teeth on either side of the core;
Figures 38 and 39 are face views of various embodiments of the applicator member.
Figure 40 is a diagrammatic cross-section of a variant embodiment of the applicator member;
Figure 41 is a diagram showing the envelope surface of a variant embodiment of the applicator member;
Figures 42 to 44 are diagrammatic longitudinal sections showing various embodiments of the applicator member;
Figure 45 shows an embodiment detail;
Figures 46 to 49 show other examples of envelope surfaces for the applicator member;
Figure 50 is a fragmentary longitudinal section of a variant embodiment;
Figures 51 to 53 show variant embodiments of teeth; Figure 54 is a diagrammatic and fragmentary cross- section of a variant embodiment of the wiper member; and
Figures 55 and 56 show details of variant embodiments of the stem. Figure 1 shows a packaging and applicator device made in accordance with the invention, the device comprising an applicator 2 and an associated receptacle 3 containing a composition P for application to the eyelashes and/or the eyebrows, e.g. mascara or a care product.
In the embodiment under consideration, the receptacle 3 comprises a threaded neck 4, and the applicator 2 comprises a closure cap 5 that is arranged to be fastened on the neck 4 so as to close the receptacle 3 in leaktight manner when not in use, the closure cap 5 also constituting a handle for the applicator 2.
The applicator 2 comprises a stem 7 of longitudinal axis Y, which stem is connected at its top end to the closure cap 5, and at its bottom end to an applicator member 8.
The receptacle 3 also comprises a wiper member 6 that is inserted in the neck 4.
In the embodiment under consideration, the wiper member 6, that may be of any type, comprises a lip 9 that is arranged to wipe the stem 7 and the applicator member 8 while the applicator 2 is being removed from the receptacle 3. The lip 9 defines a wiper orifice of diameter that is adapted to the diameter of the stem. In the embodiment shown, the stem 7 presents a cross-section that is circular, but it is would not be beyond the ambit of the present invention for the stem 7 to present some other section, the cap 5 thus possibly being fastened on the receptacle 3 other than by screw- fastening, if necessary. The wiper member 6 could be adapted to the shape of the stem 7 and to the shape of the applicator member 8, where appropriate. In the embodiment under consideration, the longitudinal axis Y of the stem 7 is rectilinear and coincides with the longitudinal axis of the receptacle 3 when the applicator 2 is in place thereon, but would not be beyond the ambit of the present invention for the stem 7 to be non-rectilinear, e.g. forming a bend.
Where appropriate, the stem 7 may comprise an annular narrowing at its portion that comes to be positioned facing the lip 9 of the wiper member 6, so that said wiper member is not mechanically stressed unduly during storage.
With reference to Figures 2 and 3, it can be seen that the applicator member 8 comprises a core 10 of elongate shape, extending along a longitudinal axis X of greatest transverse dimension A, measured perpendicularly to its longitudinal axis, lying in the range 1.2 mm and 3 mm.
In the embodiment under consideration, over the majority of its length L, the core 10 presents a cross- section that is polygonal, having sides that define longitudinal faces 15 that are substantially plane. The longitudinal axis X is central.
In the embodiment shown, a single row 17 of teeth 18 is connected to each of the longitudinal faces 15. In the embodiment under consideration, the teeth 18 are made integrally with the core 10 by molding thermoplastic material.
In order to mold the applicator member 8, it is possible to use a thermoplastic material that is optionally relatively rigid, e.g. styrene-ethylene- butylene-styrene (SEBS) ; a silicone rubber; latex rubber; butyl rubber; ethylene-propylene-terpolymer rubber (EPDM) ; a nitrile rubber; a thermoplastic elastomer; a polyester, polyamide, polyethylene, or vinyl elastomer; a polyolefin such as polyethylene (PE) or polypropylene (PP) ; polyvinyl chloride (PVC) ; ethyl vinyl acetate (EVA) ; polystyrene (PS) ; polyethylene terephthalate (PET) ; polyoxymethylene (POM) ; polyamide (PA) ; or polymethyl methacrylate (PMMA) . In particular, it is possible to use materials known under the trade names Hytrel®, Cariflex®, Alixine®, Santoprene®, Pebax®, this list not being limiting.
Where appropriate, the applicator member 8 may also be made by molding or by machining a metal.
The teeth and the core may be made out of different materials . At its distal end 12, the applicator member 8 may comprise a head that tapers forwards so as to make it easier to put the applicator 2 back into the receptacle 3. The height of the teeth 18 may decrease on going towards the head 12, along a distal transition portion 13a, as shown in Figure 2.
The height of the teeth 18 may also decrease along a proximal transition portion 13b on going towards the stem 7, so as to make it easier for the applicator member to pass through the wiper member 6 while the applicator 2 is being removed.
The head 12 may be circularly symmetrical, or it may comprise radial fins, as shown in Figure 2.
In the embodiment under consideration, the core 10 is extended from its proximal end by a cylindrical endpiece 14 that enables it to be fastened onto the stem 7. In particular, fastening may be performed by force- fitting, snap-fastening, adhesive, heat-sealing, or crimping in a housing provided at the end of the stem. In a variant, the stem may be inserted into a housing provided in the core.
The core 10 may also be molded integrally with the stem 7.
In the embodiment described, the longitudinal faces 15 are four in number, as can be seen in Figure 3, the cross-section of the core being substantially square.
Each row 17 of teeth 18 comprises a first set 20 of first teeth that are connected to the corresponding face 15 of the core 10 while forming an angle αZi relative to the normal thereto, and a second set 30 of teeth that are connected to the face 15 obliquely, forming an angle αZ2 relative to said normal. The teeth 18 of the first set 20 of teeth are straight, extending along a direction αZi that is substantially perpendicular to the face 15, the angle αZi being relatively small, e.g. less than 10°, or even less than 5°. The teeth 18 of the second set 30 of teeth are also straight in the embodiment under consideration, extending along a direction Z2, forming an angle α with the direction Zi.
By way of example, the angle α may lie in the range 20° to 80°.
In Figure 3, it can be seen that each row comprises teeth having a face that is connected perpendicularly to the corresponding longitudinal face 15.
In the embodiment described, the teeth 18 of each row 17 are disposed in a staggered configuration. Two consecutive teeth 18 of each row 17 are offset alternately on opposite sides of a separation surface S, the surface S being a bisector plane of the angle α.
The teeth of the first set 20 are disposed on one side of the separation surface S, while the teeth of the second set 30 are disposed on the other side of said separation surface, when the core 10 is observed along its longitudinal axis.
Within each row 17, the bases of the teeth of the first set 20 and the bases of the teeth of the second set 30 are not in alignment, since they are respectively situated entirely on opposite sides of the separation surface S .
In the embodiment shown, the teeth of the first set 20 and of the second set 30 do not overlap, when the applicator member is observed from the side along a direction that is perpendicular to the axis X, as shown in Figure 2.
In addition, the directions Zi and Z2 of the teeth 18 of the first and second sets 20 and 30 of teeth do not intersect the longitudinal axis X of the core, the teeth being excentric relative to the axis.
In the embodiments shown, it can be seen in Figures 2 and 3 that each tooth 18 of the first set 20 of a row 17 may be associated with a respective tooth of the first set 20 of another row 17, substantially occupying the same axial position along the axis X of the core, the passage from one tooth to another being performed by turning about the axis X through a sub-multiple of 360°, in this event 90°. The same applies for each tooth 18 of the second set 30.
The oblique teeth 18 of the various rows face in the same direction around the core, i.e. the clockwise direction in Figure 3. In addition, in the embodiment of Figure 3, each tooth 3 comprises a first longitudinal face 18 of plane shape and a second longitudinal face 40 of rounded shape, in particular of convex shape. The teeth have a length £ that is less than 1.8 mm and greater than 0.5 mm, at least for more than half of them. They have a greatest thickness e lying in the range 0.2 mm to 0.65 mm. In a embodiment, the thickness of the teeth is 0.45 mm.
In addition, the greatest transverse dimension D of the applicator member may be less than or equal to 7 mm, better less than or equal to 6 mm, better less than or equal to 5.7 mm.
The core may comprise any number of longitudinal faces, with it being possible for any of the above- described characteristics to apply regardless of the number of longitudinal faces.
Figures 4 and 5 show a variant embodiment in which the core 10 is of hexagonal cross-section and comprises six longitudinal faces 15, a single row 17 of teeth 18 are connected to each of the longitudinal faces 15, such that the applicator comprises six rows 17 in all. The rows of teeth are rows within which the teeth are situated alternately on opposite sides of a mid-plane for the row.
This embodiment also differs from the embodiment shown in Figures 1 to 3 by the fact that each of the teeth 18 of the first set of teeth 20 comprises a plane face 40 that extends perpendicularly to the corresponding longitudinal face 15 of the core, but that does not extend in the plane of an adjacent longitudinal face 15.
Still in a variant, the core may present a cross- section that is circular, as shown in Figure 6, or oval, as shown in Figure 6a, or even triangular, octagonal, or pentagonal, as shown in Figures 7, 8, and 9 respectively. An applicator member 8 of the invention may comprise more than two visible teeth per longitudinal face, when the core is observed along its longitudinal axis, and, in addition to the first and second teeth 18 of the sets 20 and 30, may comprise one or more additional teeth 18, e.g. forming an angle that is greater than α with the direction Zi, or even extending perpendicularly to the face of the corresponding core. It would not be beyond the ambit of the present invention for the teeth of the second set 30 of teeth not to slope relative to the longitudinal face 15 of the core to which they are connected, and for the directions Z1 and Z2 to be parallel for each row 17. In the embodiments described above, the teeth of the first and second sets 20 and 30 of teeth 18 are disposed in a staggered configuration, with their bases not being in alignment.
As shown in Figure 10, this could be otherwise and the bases of the teeth 18 could be in alignment, on a common line L that is parallel to the longitudinal axis X of the core 10 intersecting all of the bases of the aligned teeth of the row, the line constituting the longitudinal axis L of the row.
In Figure 10a the teeth present a plane face and a rounded face. The plane faces are oriented in the same direction all along the row. In Figure 10b the plane faces are oriented in different manner alternately along the row.
When the applicator is observed perpendicularly to its longitudinal axis, two consecutive teeth of a row may define a V-shaped groove, as shown in Figure 11.
When the applicator member is observed along its longitudinal axis, two consecutive teeth of a row may also form a V-shape, as shown in Figure 11a.
It can be seen in Figures lib and lie that, within a row, the applicator may comprise patterns of four teeth, of which the middle teeth form a V-shape. The four teeth succeed one another along the longitudinal axis of the row .
In the embodiment shown in Figures Hd and He, the row 17 comprises patterns of three consecutive teeth, of which two teeth form a V-shape with a tooth between them.
Two consecutive teeth of a row may cross when the row is observed along its longitudinal axis L, as shown in Figure Hf. In a variant, two consecutive teeth of a row may cross when the row is observed perpendicularly to its longitudinal axis L, as shown in Figure Hg, the two crossing teeth then being directed respectively towards the proximal end and towards the distal end of the applicator member.
In addition, two rows 17 of teeth of an applicator member 8 of the invention may comprise teeth that are spaced-apart from by the same spacing, as shown in Figure 12, or, on the contrary, by spacing that varies, as shown in Figure 13.
Within a row 17, the consecutive teeth 18 may present respective first faces 101 that are substantially plane. The opposite faces 102 of the teeth may be in the form of half a cone or half a pyramid, for example. The teeth 18 may be oriented in alternation with their faces 101 facing towards the midplane of the row and outwards from the row, as shown in Figure 12a. Such a disposition of the teeth can make it easier to mold the row of teeth, since all of the teeth having their faces 101 facing in a given direction are molded by the same mold shell, while all of the other teeth of the row, having their faces 101 facing in the opposite direction are molded by another mold shell. These two mold shells come into contact with each other.
The teeth 18 may touch to a greater or lesser extent within the row, as shown in Figures 12a and 12b. In particular, the teeth 18 may be substantially touching as shown in Figure 12a, i.e. in contact or with small spacing between one another, e.g. spacing less than or equal to 0.1 mm at their bases. The disposition of the bases of the teeth shown in Figures 12a and 12b may be applied to all of the applicator members described in the present application. Within each row, the teeth could be grouped together, e.g. in groups of two. Naturally, the teeth could be grouped together other than in pairs, the spacing between the groups of teeth within the same row optionally being uniform, and in particular greater than the average spacing between the teeth within a group .
In addition, when observed perpendicularly to the longitudinal axis of the core, an applicator member may comprise rows of teeth having profiles, defined by their free ends, that are identical, as shown in Figures 1 to 5, or that are different, as shown in Figure 13a.
In the Figure 13a embodiment, the two rows of teeth 17 have different profiles, one being in the shape of a camel's back, presenting a central concavity, and the other presenting a central flat. Furthermore, a plurality of rows of sufficiently close-together teeth may form a group of close-together rows, extending along a longitudinal axis G that is parallel to the longitudinal axes L of each of the rows, and that is central relative to said rows. By way of example, Figure 13b shows two groups of two close- together rows, and Figure 13c shows one group of three close-together rows.
The closest teeth of two adjacent rows of the same group may be spaced-apart by a distance d that may be less than 0.8 mm, the distance d being less than the thickness of a tooth, or even zero, the teeth of the two close-together rows thus being touching. The teeth of two different groups of close-together rows may be spaced-apart by a distance d' that is much greater than d, e.g. more that twice, or even three times d.
In a variant, and whatever the implantation of the teeth, at least one tooth may have a cross-section that is circular, as shown in Figure 14, or even triangular, as shown in Figure 15, or lozenge-shaped, as shown in
Figure 16, or even formed of two different-size adjacent triangles, as shown in Figure 17, or triangular with a groove, as shown in Figure 18.
The longitudinal faces 15 of the core 10 need not be plane, e.g. being concave or convex over at least a fraction of their length, as in the embodiment in Figure 4. In this embodiment, the core 10 comprises longitudinal faces 15 that are concave at least in part, the concave shapes being centered on a mid-plane of the core 10, e.g. intersecting said core substantially halfway along.
The concave shapes of the longitudinal faces 15 may be formed by a narrowing of the cross-section of the core 10. In a variant embodiment, the longitudinal faces 15 of the core 10 are twisted, as shown in Figure 19, i.e. the corresponding side turns through at least one turn towards the distal end of the core.
In order to make such a shape, the core 10 may be deformed on unmolding by turning the endpiece 14, or, in a variant, it may be deformed in the mold.
The longitudinal axis X of the core 10 may coincide with the longitudinal axis Y of the stem 7, but it would not be beyond the ambit of the present invention for this to be otherwise, and, by way of example, Figure 20 shows a variant embodiment in which the longitudinal axis X of the core 10 forms an angle γi with the longitudinal axis Y of the stem. By way of example, such a configuration may improve application by making it easier to manipulate the applicator . The core may extend along a longitudinal axis X that is not rectilinear. Figure 21 shows a variant embodiment in which the core extends along a longitudinal axis X that is curved. When observed in longitudinal section, as in Figure 21, the envelope surface E may, on one side of the axis X, present a convex first outline 54 substantially in the same direction as the axis X, and, on the opposite side of the axis X, a second outline 55 that possibly presents a concave curve substantially in the same direction as the axis X. The distal end of the envelope surface may optionally be aligned with the longitudinal axis of the stem. In Figure 21a, there can be seen the possibility for the distal end of the envelope surface E to be in alignment with the longitudinal axis Y of the stem 7. In the variant shown in Figure 22, the envelope surface E presents two opposite outlines 54 and 55, of which one 54 is straight.
The applicator member may present a variety of shapes for its envelope surface E. In a variant shown in Figure 23, the envelope surface E presents a cross- section that passes via a minimum. The axis X coincides with the axis Y. In the variant shown in Figure 24, the longitudinal axis X of the core 10 is rectilinear, and the envelope surface E presents an ovoid shape.
In another variant, shown in Figure 25, the free ends of the teeth 18 define an envelope surface E that extends generally along a longitudinal axis W that forms an angle Y2 with the longitudinal axis X of the core 10, where such an applicator member could be said to be excentric . The Figure 26 variant differs from the Figure 25 variant in the shape of the envelope surface E that presents a cross-section that passes via a minimum.
The longitudinal axis X of the core 10 may be rectilinear and may form an angle with the longitudinal axis Y of the stem 7, as shown in Figure 27, the envelope surface E having, for example, a cross-section that is not constant, e.g. passing via a minimum. The envelope surface E may be generally peanut-shaped, as shown in Figure 28. The envelope surface may in particular present two portions of larger cross-section in the vicinities of its proximal and distal ends, with an intermediate portion of smaller cross-section.
For example, it is possible to have portions of larger cross-section with a maximum transverse dimension greater than or equal to 6 mm in zones zp and zd, these zones respectively lying between the proximal end of the envelope surface and the first quarter of its length and the distal end of the envelope surface and the first quarter of its length going towards the proximal end. When the envelope surface is a surface of revolution, the zones zp and zd may for example be of diameter greater than or equal to a value d0 that is equal to 6 mm, for example.
In a variant, the diameter of the envelope passes via a maximum having a value of 6.4 mm, and via a minimum in the central portion of 5.4 mm. By way of example, the cumulative length of the portions zx, zy, and zz inscribed in a cylinder having a diameter of 6 mm occupies more than 70% of the total length L of the applicator member. The maximum diameter in the zones zp, zd is equal to 6.4 mm, for example, and the minimum diameter in the central portion is equal to 5.4 mm, for example.
The applicator member may have an envelope surface of varying cross-section, with two portions close to the proximal and distal ends that are not surfaces of revolution about the longitudinal axis of the core. In Figure 29, there can be seen an applicator member that, when observed from the side along arrow XXVIII in Figure 29 presents, by way of example, the shape shown in Figure 28, and when it is observed from above presents a flat shape as shown in Figure 29.
The core 10 may be centered relative to the envelope surface E or it may be off-center relative thereto, as shown in Figures 30 and 31. In these examples, it can be seen that the envelope surface E presents a shape in cross-section in a section plane perpendicular to the longitudinal axis X that is generally flat with two opposite faces that are plane and parallel and interconnected by two faces that are outwardly convex. By way of example, the core 10 is closer to one of the plane faces of the envelope surface than to the other plane face, as shown in Figure 30, or in a variant it is closer to one of the convex faces of the envelope surface than to the other, as shown in Figure 31. In addition to the shape described above, the applicator member may present an envelope surface E that is generally frustoconical in shape, as shown in Figures 32 to 34.
The envelope surface E may have a larger diameter of 7 mm, at its proximal end and a smaller diameter of 4.5 mm at its distal end. The envelope surface E may be centered on the longitudinal axis X of the applicator member core, as shown in Figure 32, which axis may also coincide with the longitudinal axis Y of the stem 7, as also shown in this figure.
The core 10 may also be generally frustoconical in shape, as can be seen in Figures 32 and 33, or it may be in the form of a cylindrical body of revolution as shown in Figure 34, or it may have some other shape. Figure 33 shows the possibility of the axis of the envelope surface E not coinciding with the axis of the core, e.g. being parallel thereto.
In the example of Figure 33, by way of example, beside the face A there are teeth that are longer than the teeth beside the face B.
In the example of Figure 34, and as can also be seen in Figure 35, it is possible to have a larger number of rows of teeth beside the face B, e.g. with teeth beside the face B being finer than the teeth beside the face A, there being a larger number of teeth within each row, for example .
In the embodiment of Figure 36, the envelope surface E is of rectangular cross-section, and it presents four longitudinal edges. The rectangle formed by the distal end face is offset by 90° relative to the rectangle formed by the proximal end face, such that the rectilinear edges interconnect the two long sides of the rectangle formed by the distal end face to the two short sides of the rectangle formed by the proximal end face, and vice versa.
In accordance with one of the aspects of the invention, the rows of teeth carried on one side A of the applicator member may have a number of teeth within the row that differs from the number of teeth within rows of teeth carried by side B of the applicator member, as shown in Figure 37. In Figure 38, there can be seen the possibility of having one or more rows of teeth that are missing compared with a regular arrangement of rows of teeth.
Figure 38 shows that a row of teeth is missing. The rows 17 are spaced apart from one another at an angular pitch that is constant, except that two of them are spaced apart at twice that angular pitch, for example.
Figure 39 shows an applicator member for which the teeth on one side A are all parallel, whereas on the opposite side B, the rows of teeth extend in different directions. This figure also shows that the length of the teeth respectively associated with the sides A and B are different. The same may apply to the numbers of teeth within each row 17 and to the thicknesses of the teeth, or indeed to the materials from which the teeth are made .
The rows may not only have different numbers of teeth per row, but the teeth may also be of different heights and/or thicknesses, as also shown in said figure. The applicator member may present side surfaces 110 that do not have any teeth between the faces A and B, as shown in Figure 40. By way of example, the angular extent γof a side surface 110 lies for example in the range 0 to 60°, not comprising the limit of 0. . In such a disposition of the teeth there may be at least one mold shell molding no tooth.
Figures 41 to 49 relate to applicators for applying a composition to keratinous fibers, in particular the eyelashes and/or the eyebrows, the applicators comprised a molded applicator member, comprising:
• a stem;
a core that extends along a longitudinal axis;
teeth carried by the core, the distal end of the applicator being defined by the core or by at least one tooth; and
teeth extending in at least three different directions around the core and defining an envelope surface that grows to a maximum and then decreases in cross-section towards the free end of the applicator.
In accordance with the invention, such applicators may present different application faces A and B, e.g. differing in number of teeth, e.g. in number of teeth per row, in tooth thickness, in tooth material, and/or in tooth length.
The total length qmax along the longitudinal axis of the envelope surface may be less or equal to twice the greatest diameter dmax of the cross-section of the envelope surface, better 1.75 times the maximum diameter, better still 1.5 times or 1.25 times.
The angle CC formed by the slope of the envelope surface in at least one longitudinal section on either side of the maximum may be greater than or equal to 120°, better 130°, better still 135°.
The term "diameter dmax" should be understood as meaning the transverse dimension of the envelope surface, even if the cross-section does not present an outline that is circular.
The term "total length qmax" should be understood as the total length of the envelope surface as defined by the teeth, and as measured along the longitudinal axis of the core. The angle α is the angle formed by the slopes of the envelope surface on either side of the maximum, as shown in Figure 45. These slopes may be straight lines providing the best fit to the envelope surface on either side of the maximum. They may be tangential to a portion of the envelope surface adjacent to the maximum, this portion extending for example over a length as is measured along the longitudinal axis of the core that is equal to 1 mm. The slopes may also be straight lines passing through the maximum and intersecting the envelope surface at a distance from the maximum as measured along the longitudinal axis of the core that is equal to 1 mm.
Such a relatively short applicator may be used to act on the eyelashes or the eyebrows with the stem in a multitude of orientations relative to the row of eyelashes, because of the shape of the envelope surface which defines a ball or a ball-like shape.
By way of example, the multitude of orientations may comprise orientations that are spaced apart by 180° or even more, e.g. by more than 300° in one or more planes. The user can then easily select an orientation and/or a hand movement that is most appropriate for obtaining the desired makeup effect. Where appropriate, the user may apply makeup by turning the applicator about its axis while moving it in contact with the eyelashes as though it were running along them.
The applicator may be used on its own, e.g. in order to finish off making up the eyelashes or eyebrows onto which a composition has already been applied, or after loading the application element with a composition, loading being performed either by placing the composition on the teeth or by bringing the teeth into contact with a cake of composition or by dipping the applicator into a receptacle containing the composition.
When the applicator is used in association with a receptacle having a wiper member, the shape of the applicator may lead to unequal wiping that may be used to advantage when applying makeup. For example, the zone of greatest diameter of the applicator will be more thoroughly wiped and will be better at separating and extending the eyelashes. The end zone of the applicator may be more heavily loaded with the composition and may be used, for example, to make patches, because it is possible to use the applicator in a multitude of orientations .
The applicator can make it possible to use up excess composition that is often to be found at the end of the brush as a result of the non-zero section of the wiper orifice, and that constitutes an impediment with conventional brushes. All of the above-mentioned differences between the way teeth are implanted on the two sides A and B of the applicator member may be applied to the examples where the envelope surface is generally of a ball or ball-like shape. For example, the number of rows and/or the number of teeth per row may be greater on one side than on the other .
The applicator may comprise at least one tooth that is not perpendicular to the core. The portion of the core carrying the teeth may be of elongate shape along the longitudinal axis of the applicator.
The core may extend along a longitudinal axis that is rectilinear or curved. When the longitudinal axis of the core is curved, its orientation may vary by less than 90°.
In embodiments, the ratio R1 = dmax/dcore is greater than or equal to 2.5, better greater than or equal to 3. dcore corresponds to the diameter of the circle in which the cross-section of the core is inscribed. By way of example, dcore is greater than or equal to 2 mm and less than or equal to 3 mm, e.g. dcore less than or equal to 2.5 mm. For example dmax may lie in the range 6 mm to 12 mm, e.g. lying in the range 8 mm to 9 mm.
The generally spherical shape of the applicator may be associated with teeth of varying length, rather than with variation in the diameter of the core supporting them, said variation being observed along the longitudinal axis of the applicator. dstem designates the diameter of the stem 7, and in the examples of the invention the ratio R2 = dmax/dstem is greater than or equal to 2.5, and better greater than or equal to 3.
The core 10 may be made in such a manner that its outer surface is situated in line with the outer surface of the stem 7, once the core is in place on the stem. This makes it possible to avoid having extra thickness present between the core and the stem. By way of example, the diameter dstem lies in the range 2.5 mm to 3 mm. The core may be held in a housing in the stem as a force-fit, by adhesive, and/or by die stamping the stem onto an endpiece that is made integrally with the core.
The longitudinal axis of the core need not be fully contained in line with the longitudinal axis of the stem. Advantage should be taken of the fact that the teeth extend over a relatively short length along the longitudinal axis of the applicator to lengthen the stem and thus make the applicator easier to handle.
The relative lengthening in stem length can also serve to improve the extent to which the teeth are impregnated, since they can be moved over a greater distance inside the receptacle prior to being withdrawn therefrom. It is possible to obtain a greater proportion of teeth that are well loaded with the composition, in particular for receptacles that were not initially 100% full, as is common practice to avoid a problem of pistoning while the applicator is being withdrawn.
This can make it possible to use receptacles of relatively shallow depth, e.g. sample receptacles, without that shallow depth of the receptacle causing the applicator to be insufficiently loaded with composition. For example, it is possible to have R3 = dmax/preceptacle greater than or equal to 3.
The depth Preceptacle of the receptacle is defined as being the distance between the top of the receptacle with no applicator, i.e. the top end of the neck when it has such a neck, and the inside surface at the bottom of the receptacle, with the distance being measured along the longitudinal axis of the receptacle.
Preferably, R4 = dmax/df (where df is the distance between the inside face of the bottom and the bottom end of the wiper member) that is likewise greater than or equal to 3. The receptacle used may be of any kind, and in particular it may have two portions that are movable relative to each other, with one of the portions being turned relative to the other in order to increase the volume of one chamber defined inside the receptacle between the two portions and decrease the volume of another chamber, thereby causing the composition to pass between those two chambers. This passage takes place through a central portion of the receptacle in which the applicator member is housed. Such a receptacle is described for example in application EP 1 584 260.
The envelope surface may define a cross-section of outline that is circular, at least in part, e.g. having an outline that is circular over at least 180° around the core, or even completely circular, at at least one point along the length of the core, and in particular in the vicinity of the maximum 130, or over at least a fraction of the length of the core, e.g. over the entire length of the fraction of the core that carries the bristles. The cross-section may have an aspect ratio greater than 0.7, at least in the plane where the radius rmax is at its maximum. The envelope surface need not have any notches or outwardly concave faces, e.g. in the plane where the radius rmax is at its maximum. The envelope surface may define at least one radius of length that varies in non-linear manner between the proximal end of the envelope surface and the maximum, e.g. varying along a circular arc or along any other curve other than a straight line. The term "radius" is used to designate the straight line segment going from the core perpendicularly to its axis and terminating in the envelope surface.
The envelope surface may define a radius that varies in non-radial manner between the maximum and the distal end of the envelope surface, e.g. varying along a circular arc. Beside the maximum, e.g. towards the proximal or distal end of applicator, the envelope surface need not be conical.
The slope on one side of the maximum may vary, e.g. with increasing inclination relative to the longitudinal axis on going towards the distal or proximal end.
The envelope surface may increase and then decrease over at least 180° around the core, better 270° around the core, e.g. 360° around the core. When seen from the side, i.e. perpendicularly to the axis of the core, the envelope surface may present a profile that is rounded on either side of the maximum.
In the example of Figure 65, the envelope surface E is a surface of revolution presenting a cross-section that varies, e.g. having two portions 123 and 126 going towards the distal end of the core 10, which portions are substantially hemispherical and joined via an edge 130 defining a maximum where the radius r, i.e. the distance between the envelope surface E and the axis X of the core 10 is the greatest for the entire envelope surface E.
The cross-section of the brush may increase and then decrease on going from the proximal end towards the distal end of the envelope surface along at least two mutually perpendicular axes Xl and X2, as shown in Figure 41.
In the longitudinal section plane containing the axis Xl that is perpendicular to the axis X, the radius r_ increases, reaches the maximum rmax, and then decreases. The same applies in the longitudinal section plane containing the axis X2. The longitudinal section planes containing the respective axes Xl and X2 may be planes of symmetry for the envelope surface.
The distance j_ between the transverse plane containing the edge 130 and the maximum and the distal end of the envelope surface may be about 5 mm, for example . The angle α formed between the slopes 140 and 141 of the envelope surface, and situated respectively on either side of the edge at the maximum 130 may be considerably greater than 120°, as can be seen in Figure 45. As shown in Figure 45, each slope 140 or 141 is defined by the straight line passing through the maximum of the envelope surface E and fitting as closely as possible to the outline of the envelope surface in a longitudinal section plane over a distance of 1 mm along the axis X, on the corresponding side of the maximum.
In the example of a biconical envelope surface, the slopes are respectively the slopes of the two conical portions. In the example of an envelope surface that is spherical, being symmetrical about the plane containing the maximum 130, the angle α is closer to 180°.
In the example of Figure 41, the aspect ratio of the brush in the transverse plane containing the edge at the maximum 130 is equal to 1, the envelope surface E presenting a circular outline centered on the axis X of the core 10.
The aspect ratio is defined by rmin/rmax, where rmax designates the maximum ratio in the cross-section under consideration, i.e. the greatest distance from the axis X of the core 10 to the envelope surface E, and where rmin designates the minimum radius, i.e. the shortest distance from the axis X of the core 10 to the envelope surface E in the section plane.
In the example of Figure 46, the envelope surface is substantially biconical in shape. The angle α between the slopes at the maximum is nevertheless relatively large, in particular greater than 120°, so as to approximate to the shape of a ball.
The radius r_ need not decrease down to zero at the ends of the envelope surface. Whether in this example or in others, the diameter of the envelope surface E at the distal end may be greater than or equal to 4 mm, for example. Where appropriate, the envelope surface E may be symmetrical on either side of a midplane containing the maximum 130.
In the example of Figure 47, the envelope surface E presents a shape in longitudinal section that is generally lenticular. The cross-section defined by the envelope surface E increases for example from a proximal end where the radius r_ is substantially zero up to the maximum 130, and then decreases to an end where the radius r_ may again be substantially zero.
The maximum 130 may be defined by an edge, as shown in the above examples. In a variant, the maximum 130 may extend over a certain distance along the axis X, as shown in Figure 48. In the example of this figure, the envelope surface E defines a maximum cross-section of radius rmax over a distance t. prior to decreasing going towards the free end of the core. The middle of this portion of radius rmax is situated, by way of example, at a distance £ from the free end which is such that the ratio £/rmax is less than 1.5. The length t. may be greater than or equal to 1 mm, for example.
The envelope surface E, in particular in the plane where the cross-section is at its maximum, may present a shape that is not a surface of revolution.
For example, in a longitudinal section plane over its portion where the cross-section varies, the envelope surface may present an outline that is substantially semicircular on one side of the core and substantially triangular on the other side of the core, as shown in Figure 49.
By way of example, the maximum radius rmax may be defined by the substantially semicircular portion or by the substantially triangular portion. In certain embodiments, the envelope surface may be spherical to within 20%, at least over its portion extending from a plane where the transverse dimension defined by the envelope surface E is at a maximum, all the way to the distal end.
As shown in Figures 43 to 44, the applicator may have teeth that point towards the proximal end of the applicator.
The applicator may comprise teeth that extend in more than four directions around the axis of the core, better that extend in at least eight directions around the axis X of the core, and in particular in more than eight directions.
As shown in Figures 42 to 44, the core 10 and the envelope surface E may both pass through a respective maximum cross-section at the same axial position along the axis X. The teeth may present a height that varies such that their free ends define the profile desired for the envelope surface E. By way of example the core 10 may be elongate in shape, e.g. cylindrical, and the envelope surface may be generally ball-shaped. By way of example, the radius r of the envelope surface E may vary by less than 50% between one-fourth and one-half of the distance between the plane containing the maximum 130 and the distal end of the applicator. When the applicator is loaded with composition by being inserted into a receptacle through a wiper member, the teeth of the applicator may bend towards the distal end while the applicator is being withdrawn in certain embodiments. Some of the teeth may be long enough and close enough to the distal end for them, on bending, to cover the shorter teeth situated closer to the distal end. While bending on passing through the wiper member, the free ends of some of the teeth may come substantially level with the distal end of the core along the axis X. In the variant embodiment shown in Figure 50, the core comprises a recess in which there is engaged a support portion 60, e.g. made of metal or plastics material. The core may be configured to be fastened to the support 60, or it may be free to turn or to move in translation relative to the support 60.
The teeth of at least one row could present different heights, passing through an extremum between the extreme teeth of the row, for example.
At least one of the teeth 18 of the rows 17 could present a surface state that is not smooth, e.g. having ridges as a result of molding or roughness linked to the presence of a filler in the plastics material, for example.
The applicator member could be made with a plastics material that comprises magnetic particles. The magnetic field created by such particles, that could be magnetizable and/or magnetized, could, for example, exert an effect on the eyelashes and/or interact with magnetic fibers or pigments that are present in the composition. The applicator member could be made with flocking, said flocking extending over the teeth only, for example.
At their free ends, the teeth could present respective portions in relief or a particular shape, e.g. a fork, a hook, or a bead, as shown in Figures 51 to 53. By way of example, the hook could extend transversally, parallel, or obliquely relative to the longitudinal axis X of the core. In order to obtain the beads, it is possible to heat the applicator member in such a manner as to melt the ends of the teeth, for example. In order to obtain the forks or the hooks, it is possible to abrade the applicator member, for example.
The rows 17 could comprise different numbers of teeth, with one of the rows being shorter than another, for example.
All of the teeth could be connected to the core along a direction that is contained in a plane that is perpendicular to the axis X. This could be otherwise, and teeth could slope towards the distal or proximal end.
The wiper member could be made in some other way, e.g. it could comprise a block of foam that could be slotted. The wiper member could also be as described in patent applications or US patents Nos. 2005/0028834, 6328495, 6375374, 2004/0258453, and 2005/0175394 for example . The wiper lip 9 could advantageously be undulating, having a radially-inner free edge defining an orifice 122 through which the applicator member can pass, as shown in Figure 54. The wiper lip 9 could comprise undulations 120 that extend around the orifice 122. The wiper member 9 may comprise a number of undulations 120 lying in the range 3 to 12, for example.
The wiper lip 9 could extend generally along a cone that converges towards the bottom of the receptacle, and that has a generator line G forming an angle i_ with the axis X of the receptacle. In a variant, the wiper lip 9 could extend generally along a mid-plane that is perpendicular to the axis X, or it could even extend generally along a cone that converges towards the outlet of the receptacle. The wiper member could also be adjustable, where appropriate .
The stem 7 to which the core is fastened could be flexible at least in part, and in particular could be entirely flexible, in particular in the proximity of the applicator member. By way of example, the stem could comprise at least one flexible element 80, as shown in Figure 55, or at least one elastomer element, for example, or it could present a shape that imparts flexibility, e.g. at least one notch 81 as shown in Figure 56. By way of example, the flexible or elastomer element could be flocked and/or could also be used for applying the composition.
In order to use the device 1, the user can unscrew the closure cap 5 and remove the applicator member 8 from the receptacle 3.
After the applicator member 8 has passed through the wiper member 6, a certain quantity of composition remains between the rows 17 and between the teeth 18 of the rows, and can be applied to the eyelashes or the eyebrows by the user.
The relatively large number of teeth and their disposition on the applicator member make it possible to apply makeup neatly, in particular to short eyelashes.
The wiping movement used to apply makeup to the eyelashes or the eyebrows can possibly be accompanied by the applicator member being turned about the axis X. In the presence of teeth that are oriented obliquely on the applicator member, said teeth can be directed towards the eyelashes when applying makeup.
Still in a variant, vibration could be applied to the applicator member during application, combing, or while taking the composition, e.g. as described in application WO 2006/090343.
Such an applicator may also present at least one of the characteristics of the applicators described with reference to the figures of the present application. Naturally, the invention is not limited to the above-described embodiments, the characteristics of which may be combined together within variants not shown.
The term "comprising a" should be understood as being synonymous with the term "comprising at least one" unless specified to the contrary.
The expression "lying in the range" should be construed as including the limits of the range, unless specified to the contrary.

Claims

1. An applicator (2) for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member (8), comprising:
a core (10) having a longitudinal axis (X); and
teeth (18) that extend outwards from the core, the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm . the applicator member (8) having a greatest transverse dimension (D) , measured perpendicularly to the longitudinal axis (X) of the core, that is strictly less than 6 mm, on at least 70% of the length of the applicator member.
2. An applicator according to claim 1, in which the applicator member (8) has a greatest transverse dimension (D) , measured perpendicularly to the longitudinal axis
(X) of the core, that is strictly less than 6 mm, on the whole length of the applicator member.
3. An applicator according to claim 1 or claim 2, in which a majority of the teeth have a thickness (e) lying in the range 0.2 mm to 0.5 mm, or a majority of the teeth have a thickness that is strictly greater than 0.5 mm and less than 0.65 mm.
4. An applicator (2) for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member (8), comprising :
a core (10) having a longitudinal axis (X); and
teeth (18) that extend outwards from the core, the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm, and a thickness lying in the range 0.2 mm to 0.5 mm.
5. An applicator (2) for combing the eyelashes and/or the eyebrows and/or for applying a composition thereto, the applicator comprising a molded applicator member (8), comprising: • a core (10) having a longitudinal axis (X) ; and
teeth (18) that extend outwards from the core, the majority of the teeth having a length lying in the range 0.5 mm to 1.8 mm, and a thickness that is strictly greater than 0.5 mm and less than 0.65 mm.
6. An applicator according to any preceding claim, in which the applicator member has a greatest transverse dimension (D) , measured perpendicularly to the longitudinal axis of the core, that is less than or equal to 6 mm on at least 70% of the length of the applicator member .
7. An applicator according to any preceding claim, in which the majority of the teeth has a length lying in the range 0.5 mm to 1.49 mm.
8. An applicator according to any preceding claim, comprising between 150 and 500 teeth.
9. An applicator according to any preceding claim, comprising a zone that does not have teeth.
10. An applicator according to any preceding claim, in which the teeth are disposed in rows (17) extending along the longitudinal axis of the core.
11. An applicator according to any preceding claim, comprising between 6 and 10 rows of teeth.
12. An applicator according to any one of claims 10 and 11, in which at least two successive teeth of a row are touching at their bases.
13. An applicator according to any one of claims 10 to
12, in which each of two consecutive teeth of a row extends along a respective direction from the core, the two directions forming an angle between them.
14. An applicator according to any one of claims 10 to
13, in which a row of teeth comprises a succession of teeth that extend alternately on opposite sides of a separation surface.
15. An applicator according to any preceding claim, in which at least one tooth (18), better all of the teeth, present at least one plane face (40) that is parallel to their long direction.
16. An applicator according to any preceding claim, comprising a row of teeth that extends along the longitudinal axis, and having at least three teeth of the same length.
17. An applicator according to any preceding claim, in which two rows of teeth are made out of different respective materials.
18. An applicator according to any preceding claim, in which a first row of teeth comprises teeth having a first length, and a second row of teeth comprises teeth having a second length that is different from the first.
19. An applicator according to any preceding claim, in which at least two successive teeth of a row are non- touching at their bases.
20. An applicator according to any preceding claim, in which, when the applicator is observed perpendicularly to its longitudinal axis, at least two teeth define a V- shaped groove.
21. An applicator according to any preceding claim, in which the teeth of a row have bases that are substantially in alignment.
22. An applicator according to any preceding claim, in which at least one tooth (18) presents a cross-section that is circular, semi-circular, semi-elliptical, polygonal, triangular, square, rectangular, octagonal, parallelogram-shaped, lozenge-shaped, or oval.
23. An applicator according to any preceding claim, in which the longitudinal axis (X) of the core is rectilinear .
24. An applicator according to any one of claims 1 to 22, in which the longitudinal axis (X) of the core is curved.
25. An applicator according to any preceding claim, in which the applicator member (8) has a greatest transverse dimension (D) , measured perpendicularly to the longitudinal axis (X) of the core, that is strictly less than 5.95 mm.
26. An applicator according to the preceding claim, in which the applicator member (8) has a greatest transverse dimension (D) , measured perpendicularly to the longitudinal axis (X) of the core, that is less than or equal to 5.9 mm.
27. An applicator according to any preceding claim, in which the core comprises a recess in which there is engaged a support portion (60) .
28. An applicator according to any one of claims 1 to 23, in which the portion of the core that supports the teeth is solid.
29. An applicator according to any preceding claim, in which the core has a greatest transverse dimension (A) , measured perpendicularly to its longitudinal axis, lying in the range 1.2 mm to 5 mm, better in the range 1.4 to 3, better substantially 1.8 mm.
30. An applicator according to any one of claims 1 to 16, in which the core and the teeth are molded out of a single material.
31. An applicator according to any one of claims 1 to 29, in which the core and the teeth are made out of at least two different materials.
32. An applicator according to any preceding claim, in which over at least a fraction of its length, the core (10) presents a cross-section that is circular, polygonal, triangular, square, rectangular, pentagonal, hexagonal, octagonal, or oval.
33. An applicator according to any preceding claim, in which the core presents a cross-section that passes via a minimum along the longitudinal axis of the core.
34. An applicator according to any preceding claim, in which the core (10) comprises at least one face (15) from which teeth extend, the face presenting a width that varies along the longitudinal axis of the core.
35. An applicator according to any preceding claim, comprising a stem at a first end of which the applicator member is fastened.
36. An applicator according to the preceding claim, in which the stem (7) is connected, at a second end opposite the first, to a handle (5) .
37. A packaging and applicator device for applying a cosmetic or a care product to the eyelashes and/or the eyebrows, the device comprising an applicator (2) as defined in any preceding claim, and a receptacle (3) containing a composition for application to the eyelashes and/or the eyebrows.
38. A device according to the preceding claim, in which the handle of the applicator constitutes a closure cap for closing the receptacle.
39. A device according to any one of the two preceding claims, comprising a wiper member (6) for wiping the applicator member.
PCT/IB2008/054375 2007-10-23 2008-10-23 Mascara applicator WO2009053922A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08841542.7A EP2211663B1 (en) 2007-10-23 2008-10-23 Mascara applicator
US12/739,338 US8777503B2 (en) 2007-10-23 2008-10-23 Applicator for combing the eyelashes or the eyebrows or for applying a composition thereto
ES08841542T ES2819031T3 (en) 2007-10-23 2008-10-23 Mask applicator
CN200880112706A CN101835401A (en) 2007-10-23 2008-10-23 Be used for comb up eyelash or eyebrow or be used for squeegee to its brushing composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR0758528A FR2922421B1 (en) 2007-10-23 2007-10-23 APPLICATOR TO COMBINE OR APPLY A PRODUCT TO EYELASHES OR EYEBROWS
FR0758528 2007-10-23
US98510207P 2007-11-02 2007-11-02
US60/985,102 2007-11-02
US10263208P 2008-10-03 2008-10-03
US61/102,632 2008-10-03

Publications (2)

Publication Number Publication Date
WO2009053922A2 true WO2009053922A2 (en) 2009-04-30
WO2009053922A3 WO2009053922A3 (en) 2009-07-02

Family

ID=39469306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/054375 WO2009053922A2 (en) 2007-10-23 2008-10-23 Mascara applicator

Country Status (6)

Country Link
US (1) US8777503B2 (en)
EP (1) EP2211663B1 (en)
CN (1) CN101835401A (en)
ES (1) ES2819031T3 (en)
FR (1) FR2922421B1 (en)
WO (1) WO2009053922A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045770A1 (en) 2009-10-15 2011-04-21 L'oreal A device for applying a composition to the eyelashes or the eyebrows
WO2013088418A1 (en) * 2011-12-16 2013-06-20 L'oreal Applicator for applying a cosmetic product to the eyelashes or eyebrows, comprising a molded applicator member
WO2014203196A1 (en) 2013-06-19 2014-12-24 L'oreal Applicator for applying a product to eyelashes or eyebrows
FR3018436A1 (en) * 2014-03-17 2015-09-18 Albea Services APPLICATOR FOR COSMETIC PRODUCT AND ASSOCIATED APPLICATOR ASSEMBLY

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713686B1 (en) * 2009-10-09 2011-06-29 花王株式会社 Lip cosmetic application equipment
KR101228154B1 (en) * 2010-12-17 2013-01-31 홍정욱 Making method of mascara brush-hair, it's mold and mascara brush new-made by that
JP2013090725A (en) * 2011-10-25 2013-05-16 Panasonic Corp Hair shaping device
DK2931080T3 (en) * 2012-12-14 2019-01-14 Henkel Ag & Co Kgaa Using Tools
FR3003737B1 (en) * 2013-03-29 2016-01-08 Oreal DEVICE FOR PACKAGING AND APPLYING A COSMETIC PRODUCT
FR3004905B1 (en) * 2013-04-26 2016-02-12 Oreal APPLICATOR FOR APPLYING A PRODUCT ON THE LASHES AND / OR THE EYE
FR3006565B1 (en) * 2013-06-06 2017-02-24 Oreal APPLICATOR FOR APPLYING A PRODUCT ON THE LASHES AND / OR THE EYE
FR3017781B1 (en) * 2014-02-24 2017-08-18 Albea Services APPLICATOR FOR COSMETIC PRODUCT AND ASSOCIATED APPLICATOR ASSEMBLY
US9955770B2 (en) * 2014-06-30 2018-05-01 Zen Design Solutions Limited Flocked applicator
KR101569806B1 (en) * 2014-09-12 2015-11-19 이혜원 mascara brush
FR3030203B1 (en) * 2014-12-23 2018-07-13 L'oreal APPLICATOR OF A COSMETIC, MAKE-UP OR CARE PRODUCT, ON LASHES AND / OR EYEBROWS
USD790863S1 (en) 2015-04-15 2017-07-04 Brivaplast S.R.L. Mascara brush
USD812380S1 (en) * 2015-04-15 2018-03-13 Brivaplast S.R.L. Mascara brush
USD780462S1 (en) * 2015-08-04 2017-03-07 Brivaplast S.R.L. Mascara brush
IT201600077961A1 (en) * 2016-07-25 2018-01-25 Pennelli Faro S R L BRUSH FOR APPLICATION OF FLUID PRODUCTS, PARTICULARLY FOR POWDER, CREAM, LIQUID OR SIMILAR PRODUCTS
FR3068221B1 (en) * 2017-06-29 2019-12-20 L'oreal APPLICATOR BRUSH
CN208192513U (en) * 2018-05-08 2018-12-07 汕头市京华塑胶有限公司 A kind of silica gel brush velvet apple head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561456A (en) 1981-05-18 1985-12-31 The Joint Stock Company "L'oreal" Eyelash brush and method and apparatus for manufacturing same
WO2002056726A2 (en) 2001-01-19 2002-07-25 Beiersdorf Ag Applicator for liquid or paste-like media, in particular decorative cosmetics such as mascara
EP1752067A1 (en) 2005-08-11 2007-02-14 Geka Brush Gmbh Applicator brush for cosmetics

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892248A (en) * 1974-03-15 1975-07-01 Plough Eyelash-cosmetic applicator
US3998232A (en) * 1974-10-31 1976-12-21 Smith Avery B Filtering tobacco smoke
US3998235A (en) * 1975-11-24 1976-12-21 Plough, Inc. Adjustable mascara applicator
DE2559273A1 (en) 1975-12-31 1977-07-07 Werner Blankschein Round plastic eyelash brush with bristles integral with carrier - includes handle shaft over which elastically deformable bristle carrier is fitted
GB2071558B (en) 1980-02-21 1983-08-10 Cole W E Moulding brushes
EP0075051B1 (en) 1981-09-22 1986-11-26 Cole, Rodney David Apparatus for making at least part of a miniature make-up brush
US4403624A (en) * 1981-09-25 1983-09-13 Montgomery Robin M Cosmetic applicator and container system
US4565205A (en) * 1983-03-18 1986-01-21 Super Brush Co., Inc. Molded mascara applicator
US4660582A (en) * 1983-03-18 1987-04-28 Super Brush Co., Inc. Molded mascara application
US4635659A (en) * 1984-01-05 1987-01-13 Spatz Laboratories, Inc. Mascara applicator
GB2159699B (en) 1984-05-23 1988-06-02 Rodney David Cole An applicator for the application of cosmetic products
GB8512801D0 (en) * 1985-05-21 1985-06-26 Cole R D Cosmetic applicator & wiper
FR2605505B1 (en) * 1986-10-24 1989-06-02 Oreal BRUSH FOR THE APPLICATION OF COSMETICS
GB8707086D0 (en) * 1987-03-25 1987-04-29 Cole R D Cosmetics applicator
AU1516695A (en) 1993-12-30 1995-07-17 Procter & Gamble Company, The Cosmetic applicator brush having variable bristle density
FR2749489B1 (en) * 1996-06-07 1998-08-07 Oreal PLAN-CONVEX PROFILE BRUSH
DE19911763A1 (en) * 1999-03-16 2000-09-21 Coronet Werke Gmbh Applicator brush for liquid or pasty agents, especially for decorative cosmetics such as mascara
FR2792618B1 (en) * 1999-04-23 2001-06-08 Oreal DEVICE FOR PACKAGING AND APPLYING A PRODUCT HAVING A SPIN-OUT MEMBER COMPRISING A SLOT
FR2793218B1 (en) * 1999-05-07 2001-07-13 Oreal DEVICE FOR PACKAGING AND APPLYING A PRODUCT, IN PARTICULAR A COSMETIC PRODUCT
FR2796529B1 (en) * 1999-07-21 2001-09-21 Oreal DEVICE FOR CONDITIONING AND APPLYING A PRODUCT TO EYELASHES OR EYEBROWS
CA2343020C (en) 1999-07-21 2005-07-12 L'oreal Comb for applying a product on keratinous fibres, application set equipped therewith and use of said set
CA2344203C (en) 1999-07-21 2005-02-15 L'oreal Device for applying a product on keratinous fibres, in particular eyelashes or eyebrows
FR2796530B1 (en) * 1999-07-21 2001-09-21 Oreal DEVICE FOR COMBING EYELASHES OR EYEBROWS AND CONDITIONING AND APPLYING DEVICE THEREOF
FR2796528B1 (en) * 1999-07-21 2001-09-21 Oreal DEVICE FOR CONDITIONING AND APPLYING A PRODUCT TO EYELASHES OR EYEBROWS
FR2796527B1 (en) * 1999-07-21 2001-09-28 Oreal DEVICE FOR CONDITIONING AND APPLYING A PRODUCT TO EYELASHES OR EYEBROWS
FR2809938B1 (en) 2000-06-09 2002-09-06 Oreal DEVICE FOR APPLYING A PRODUCT TO KERATINIC FIBERS, IN PARTICULAR TO EYELASHES OR EYEBROWS
FR2811525B1 (en) * 2000-07-12 2002-09-06 Oreal DEVICE FOR APPLYING A PRODUCT, IN PARTICULAR MAKEUP OR CARE, TO KERATINIC FIBERS, IN PARTICULAR EYELASHES OR EYEBROWS
CA2382142C (en) * 2000-07-12 2005-08-23 L'oreal Device for packaging and/or applying a product containing fibres comprising at least a magnetised or magnetizable element
US6408857B1 (en) * 2000-07-19 2002-06-25 Color Access, Inc. Combination cosmetic applicator brush and comb
US6260558B1 (en) * 2000-07-21 2001-07-17 Color Access, Inc. Flocked ring mascara applicator and method of making the same
JP3606182B2 (en) * 2000-09-13 2005-01-05 花王株式会社 Mascara makeup tools
FR2821536B1 (en) * 2001-03-01 2003-05-16 Oreal BRUSH FOR APPLYING A PRODUCT ON KERATINIC FIBERS
EP1304058A1 (en) * 2001-10-17 2003-04-23 Crown Cork & Seal Technologies Corporation Mascara brush
FR2831032B1 (en) * 2001-10-19 2004-02-20 Coty Sa PROFILE SYSTEM FOR APPLYING A COSMETIC PRODUCT, METHOD FOR PRODUCING SUCH A SYSTEM, AS WELL AS APPLICATOR ASSEMBLY, AND METHOD FOR ASSEMBLING SUCH AN ASSEMBLY
FR2836347B1 (en) * 2002-02-25 2004-04-23 Coty Sa COSMETIC APPLICATOR BRUSH CUTTING METHOD, GUIDE TUBE AND IMPLEMENTATION MACHINE, AS WELL AS BRUSH, APPLICATOR SYSTEM AND COSMETIC PRODUCT THEREOF
BR0300549A (en) 2002-03-05 2003-11-11 Oreal Devices for combing the eyelashes and / or eyebrows and / or applying a product on the eyelashes, for applying a product on the eyelashes and / or the eyebrows and for wrapping and applying a product on the eyelashes and / or the eyebrows; eyelash and / or eyebrow makeup, making a brush and applying a product on the eyelashes and / or eyebrows and brush for applying a product on the eyelashes and / or eyebrows
US7789094B2 (en) * 2002-03-05 2010-09-07 L'oreal S.A. Device for combing and/or brushing eyelashes and/or eyebrows, and/or for applying makeup thereto
DE10211780A1 (en) * 2002-03-16 2003-09-25 Geka Brush Gmbh Mascara brush
US7261483B2 (en) * 2002-04-30 2007-08-28 L'ORéAL S.A. Device, system, and method for applying a product
FR2838936B1 (en) 2002-04-30 2004-12-24 Oreal DEVICE FOR APPLYING A PRODUCT, ESPECIALLY COSMETIC, COVERED WITH A FLOCK OF DIFFERENT TYPES OF FIBERS
US7231926B2 (en) * 2003-05-09 2007-06-19 Rnd Group Llc Mascara brush
US7967519B2 (en) * 2003-05-27 2011-06-28 L'oreal Device for packaging and applying a substance, the device including a wiper member
US7234472B2 (en) * 2003-06-30 2007-06-26 L'oreal Comb capable of being used to separate locks of hair
FR2865911B1 (en) * 2004-02-06 2008-01-25 Oreal PACKAGING AND APPLICATION DEVICE HAVING A SPINNING BODY
FR2868669B1 (en) * 2004-04-09 2007-07-20 Oreal DEVICE FOR PACKAGING AND APPLYING A PRODUCT.
US7670524B2 (en) * 2004-05-24 2010-03-02 International Automotive Components Group North America Method of over-molding TPE components using zero gate
DE102004027098B4 (en) 2004-06-01 2013-10-10 Geka Gmbh Applicator for liquid or pasty media, in particular decorative cosmetics such as mascara
FR2872394B1 (en) 2004-07-01 2007-04-20 Oreal DEVICE FOR APPLYING A PRODUCT TO KERATIN FIBERS
US8127777B2 (en) * 2004-09-03 2012-03-06 L'oreal S.A. Applicator for applying a substance
FR2874798B1 (en) * 2004-09-03 2007-01-19 Oreal APPLICATOR FOR APPLICATION OF A PRODUCT ON LACQUERS OR EYEBROWS
US20060070635A1 (en) * 2004-10-01 2006-04-06 The Procter & Gamble Company Cosmetic brush comprising bristles having external depressions
FR2876890B1 (en) 2004-10-21 2007-06-22 Oreal DEVICE FOR PACKAGING AND APPLYING A PRODUCT TO EYELASHES OR EYEBROOPS, IN PARTICULAR MASCARA.
DE102004058980A1 (en) * 2004-12-06 2006-06-08 Beiersdorf Ag Applicator for liquid or pasty media, in particular decorative cosmetics such as mascara
FR2882506B1 (en) 2005-02-25 2007-05-18 Oreal MAKE-UP PROCESS USING A VIBRANT APPLICATOR
US20060260633A1 (en) 2005-05-19 2006-11-23 Wyatt Peter J Cosmetic composition system with thickening benefits
FR2886113B1 (en) * 2005-05-24 2007-10-05 Oreal APPLICATOR FOR APPLYING A PRODUCT ON THE LASHES AND / OR THE EYE
US7762269B2 (en) * 2005-06-02 2010-07-27 The Procter & Gamble Company Cosmetic applicator
ATE483376T1 (en) * 2005-08-11 2010-10-15 Geka Gmbh APPLICATOR WITH COLLAR-LIKE HOLDING PROJECTIONS, ESPECIALLY FOR MASCARA OR SIMILAR COSMETICS
PL1752066T3 (en) * 2005-08-11 2009-07-31 Geka Gmbh Applicator brush for cosmetic materials
FR2891708B1 (en) * 2005-10-10 2010-12-17 Oreal DEVICE FOR PACKAGING AND APPLYING A PRODUCT.
JP4684080B2 (en) 2005-10-31 2011-05-18 株式会社吉野工業所 Brush with comb
FR2895886B1 (en) * 2006-01-11 2008-05-30 Techpack Int Sa APPLICATOR BRUSH OF A COSMETIC PRODUCT COMPRISING A TWISTED METAL WIRE TEXTURED SOUL
FR2897762A1 (en) 2006-02-28 2007-08-31 Alcan Packaging Beauty Serv Cosmetic product e.g. mascara, applicator, has axial part with product application unit and product retention unit which has application material to retain and apply product, and another axial part with axial row of teeth
US20080115798A1 (en) * 2006-06-08 2008-05-22 Donald Frank Rainey Ultra-size cosmetic applicator having enhanced surface area
FR2902984B1 (en) * 2006-06-28 2009-03-20 Oreal DEVICE FOR APPLYING A PRODUCT ON LACQUERS OR EYEILS.
US8096306B2 (en) * 2006-07-12 2012-01-17 Albea Services Molded plastic mascara brush
FR2906115B1 (en) 2006-09-26 2011-04-01 Alcan Packaging Beauty Serv TYPICALLY SPHERICAL APPLICATOR TIP FOR APPLICATION OF COSMETIC PRODUCTS
FR2891709B1 (en) 2006-10-12 2008-06-13 Oreal APPLICATOR FOR APPLICATION OF A PRODUCT ON LACQUERS OR EYEBROWS
KR100820076B1 (en) * 2007-01-28 2008-04-07 (주)씨피아이케이알 Mascara brush
USD573349S1 (en) * 2007-03-14 2008-07-22 Geka Brush Gmbh Cosmetic brush
FR2913572B1 (en) * 2007-03-16 2009-06-05 Chanel Parfums Beaute Soc Par APPLICATOR FOR APPLYING A PRODUCT ON THE LASHES
FR2914163B1 (en) 2007-04-02 2009-06-05 Oreal APPLICATOR FOR APPLYING A COMPOSITION ON THE CILES
FR2914162B1 (en) * 2007-04-02 2010-10-29 Oreal APPLICATOR FOR APPLYING A COMPOSITION ON THE CILES
DE202007008147U1 (en) 2007-06-11 2007-10-25 Shya Hsin Plastic Works Co., Ltd. Applicator for mascara
FR2917585B1 (en) * 2007-06-22 2010-10-15 Oreal APPLICATOR FOR APPLYING A PRODUCT ON THE LASHES AND / OR THE EYE.
US8056569B2 (en) * 2007-09-11 2011-11-15 Albea Services Typically spherical applicator tip for application of cosmetic products
US20090114239A1 (en) * 2007-11-06 2009-05-07 Yih Tai Glass Industrial Co., Ltd. Eyelash brush
EP2084987B1 (en) * 2008-02-01 2013-05-01 GEKA GmbH Small cosmetic brush with bristles arranged on a base plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561456A (en) 1981-05-18 1985-12-31 The Joint Stock Company "L'oreal" Eyelash brush and method and apparatus for manufacturing same
WO2002056726A2 (en) 2001-01-19 2002-07-25 Beiersdorf Ag Applicator for liquid or paste-like media, in particular decorative cosmetics such as mascara
US20050034740A1 (en) 2001-01-19 2005-02-17 Lorenz Eckers Applicator for liquid or paste-like media, in particular decorative cosmetics such as mascara
EP1752067A1 (en) 2005-08-11 2007-02-14 Geka Brush Gmbh Applicator brush for cosmetics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045770A1 (en) 2009-10-15 2011-04-21 L'oreal A device for applying a composition to the eyelashes or the eyebrows
FR2951359A1 (en) * 2009-10-15 2011-04-22 Oreal DEVICE FOR APPLYING A PRODUCT TO EYELASHES OR EYCILS.
US9723911B2 (en) 2009-10-15 2017-08-08 L'oreal Device for applying a composition to the eyelashes or the eyebrows
EP2488061B1 (en) * 2009-10-15 2023-12-20 L'oreal A device for applying a composition to the eyelashes or the eyebrows
WO2013088418A1 (en) * 2011-12-16 2013-06-20 L'oreal Applicator for applying a cosmetic product to the eyelashes or eyebrows, comprising a molded applicator member
FR2984091A1 (en) * 2011-12-16 2013-06-21 Oreal APPLICATOR FOR APPLYING A COSMETIC PRODUCT TO EYELASHES OR EYCILS, COMPRISING A MOLDING APPLICATION.
WO2014203196A1 (en) 2013-06-19 2014-12-24 L'oreal Applicator for applying a product to eyelashes or eyebrows
US20160143418A1 (en) * 2013-06-19 2016-05-26 L'oreal Applicator for applying a product to eyelashes or eyebrows
US11206913B2 (en) * 2013-06-19 2021-12-28 L'oreal Applicator for applying a product to eyelashes or eyebrows
FR3018436A1 (en) * 2014-03-17 2015-09-18 Albea Services APPLICATOR FOR COSMETIC PRODUCT AND ASSOCIATED APPLICATOR ASSEMBLY
WO2015140123A1 (en) * 2014-03-17 2015-09-24 Albea Services Applicator for cosmetic product and associated applicator assembly

Also Published As

Publication number Publication date
US8777503B2 (en) 2014-07-15
FR2922421B1 (en) 2010-01-29
US20100303533A1 (en) 2010-12-02
US20120039658A9 (en) 2012-02-16
ES2819031T3 (en) 2021-04-14
WO2009053922A3 (en) 2009-07-02
CN101835401A (en) 2010-09-15
EP2211663A2 (en) 2010-08-04
EP2211663B1 (en) 2020-07-01
FR2922421A1 (en) 2009-04-24

Similar Documents

Publication Publication Date Title
US8777503B2 (en) Applicator for combing the eyelashes or the eyebrows or for applying a composition thereto
US8944714B2 (en) Applicator for combing the eyelashes and/or eyebrows or for applying a composition thereto
US9427075B2 (en) Applicator for combing the eyelashes or the eyebrows or for applying a composition thereto
EP2207455B1 (en) Applicator for cosmetics
EP2488061B1 (en) A device for applying a composition to the eyelashes or the eyebrows
US9277800B2 (en) Applicator for applying a composition to the eyelashes
US9125474B2 (en) Applicator for applying a composition to the eyelashes or the eyebrows
EP2299866B1 (en) An applicator for combing the eyelashes or the eyebrows, or for applying a composition thereto
US6591842B2 (en) Device and method for applying product to keratinous fibers
US7581898B2 (en) Device for applying a substance
US20100192968A1 (en) Applicator for applying a composition to keratinous materials
EP2355676B1 (en) An applicator for applying a cosmetic, makeup, or care product composition to keratinous materials
WO2010013213A2 (en) Applicator for combing and/or applying a product on eyelashes and/or eyebrows
WO2011161584A1 (en) An applicator for applying a cosmetic, makeup, or care product composition to the eyelashes or the eyebrows.
WO2014174423A1 (en) Device for applying a cosmetic product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880112706.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841542

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008841542

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12739338

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0817793

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0817793

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100422