WO2009049504A1 - Procédé et dispositif pour coder le code de matrice de générateur à faible densité - Google Patents

Procédé et dispositif pour coder le code de matrice de générateur à faible densité Download PDF

Info

Publication number
WO2009049504A1
WO2009049504A1 PCT/CN2008/071167 CN2008071167W WO2009049504A1 WO 2009049504 A1 WO2009049504 A1 WO 2009049504A1 CN 2008071167 W CN2008071167 W CN 2008071167W WO 2009049504 A1 WO2009049504 A1 WO 2009049504A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
ldgc
length
wgc
code
Prior art date
Application number
PCT/CN2008/071167
Other languages
English (en)
French (fr)
Inventor
Jun Xu
Jin Xu
Zhifeng Yuan
Yuanli Fang
Liujun Hu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to EP08757578.3A priority Critical patent/EP2200182B1/en
Priority to US12/666,454 priority patent/US8291288B2/en
Publication of WO2009049504A1 publication Critical patent/WO2009049504A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3761Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using code combining, i.e. using combining of codeword portions which may have been transmitted separately, e.g. Digital Fountain codes, Raptor codes or Luby Transform [LT] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits

Definitions

  • the present invention relates to the field of communications, and in particular, to a coding method and apparatus for generating a low-density matrix code.
  • An erasure channel is an important channel model. For example, when a file is transmitted over the Internet, it is based on packet communication. Usually, each packet is received by the receiving end without error, or is not received at all. received.
  • the transmission control protocol (TCP) for network packet loss is the error detection retransmission mechanism, which uses the feedback channel from the input to the output to control the packets that need to be retransmitted.
  • a retransmission control signal is generated until the complete data packet is correctly received; and when the receiving end receives the data packet, a reception confirmation signal is also generated.
  • the sender will also track each packet until it receives a feedback signal from the feedback, otherwise it will resend.
  • the data broadcast service based on the flow mode and the file download mode is a point-to-multipoint service. Feedback is not allowed. The traditional error detection and retransmission mechanism cannot be used. Forward Error Correction (FEC) is required to ensure reliable. transmission.
  • Classic application layer FEC codes include Reed-Solomon codes and Fountain codes.
  • the compiled code of the RS code has a high complexity, and a ⁇ : is only applicable when the code length is relatively small.
  • Luby Transform codes and Raptor codes are two practical digital fountain codes.
  • the LT code has linear coding and decoding time, which has an essential improvement over the RS code, and the Raptor code has higher decoding efficiency due to the use of precoding technology.
  • the Raptor code is adopted as the FEC encoding scheme in the 3GPP Multimedia Broadcast I Multicast Service (MBMS) and Digital Video Broadcasting (DVB).
  • MBMS 3GPP Multimedia Broadcast I Multicast Service
  • DVD Digital Video Broadcasting
  • a linear block code is a fixed set of code groups that can be expressed as (n, k) and is typically used for forward error correction. At the time of encoding, k information bits are encoded into n-bit code group lengths.
  • any codeword in the (n, k) block code can be generated by a linear combination of the set of substrates, ie
  • G is a generator matrix of codes. Obviously, for each row of the generator matrix, as long as the linear independence is satisfied (the minimum distance is not considered), and the base of one dimensional space can arbitrarily select a linearly independent vector, the generation matrix G as a code is not unique. But no matter which form they are used, they generate the same subspace, the same (n, k) block code. If the first k bits of the coded word are the same as the information bits, the code is called the system code.
  • the process of encoding is the process of generating n-bit code length from k information bits, and the purpose of error detection and error correction is achieved by adding nk check bits.
  • the LT code is also encoded by the sparsity of the generator matrix, but compared with the ZTE low-density generator matrix code (LDGC code), the LT code does not support the coding method of the system code, so the LT code is difficult to meet some actual FEC coding requirements;
  • the Raptor code supports the system code, but the Raptor code requires a separate precoding process, that is, a precoding matrix is required, so the coding complexity is high, and the LDGC code directly uses the generator matrix coding, and no additional precoding matrix is needed, and LDGC coding uses the back-generation method to solve the upper triangular (or lower triangular) equation, so the coding complexity is much lower than the Raptor code.
  • the advantage of LDGC over LT codes is that it supports system code; the advantage of LDGC over Raptor codes is that the coding complexity is lower.
  • SUMMARY OF THE INVENTION proposes a coding method and apparatus for low density generation matrix codes. According to an aspect of the present invention, an encoding method of a low density generation matrix is provided.
  • LDGC encoding method of an embodiment of the present invention comprises the steps of: constructing lines L, N + LK generator matrix G Wgc columns, wherein the generator matrix G Wgc L rows and the first L columns of the matrix G Wgc (1: L, 1: L) is an upper triangular matrix or a lower triangular matrix, K, L, and N are positive integers, and K ⁇ L ⁇ N; Add LK numbers of information bit sequences of length K that need to be encoded.
  • LK known bits are added in need of The encoded length is K before the information bit sequence.
  • the square matrix G ldgc (1:L, 1:L) composed of the L row and the first L column of the generation matrix G ldgc is the upper right triangular matrix or the lower right triangular matrix
  • LK known bits are added in need of The encoded length is K after the information bit sequence.
  • the column weight of the generation matrix G Wgc can satisfy the degree distribution principle similar to the LT code.
  • the column weight of the generation matrix G Wgc can satisfy the degree distribution principle similar to the LT code.
  • the square matrix G ldgc (1:K, 1:K) composed of the K rows and the first K columns of the generation matrix G ldgc may be an upper left triangular matrix, a lower left triangular matrix, an upper right triangular matrix, or a lower right triangular matrix.
  • an encoding apparatus for a low density generation matrix is provided.
  • An apparatus for encoding a low-density generation matrix code includes: a matrix generation unit that generates a generation matrix G Wgc of L rows, N+LK columns, and outputs a generation matrix G Wgc to a block code encoding unit, and generating a row of the matrix G L Wgc, the first L columns of the matrix G Wgc (1: L, 1 : L) is output to the precoding unit, wherein the generator matrix G ldgc with L rows and the first L columns of the matrix G Ldgc (1 : L, 1: L) is an upper triangular matrix or a lower triangular matrix, K, L, and N are positive integers, and K ⁇ L ⁇ N; bit-filled units for lengths that need to be encoded as K
  • the information bit sequence adds LK known bits, Generating an information bit sequence m of length L, and outputting an information bit sequence m of length L to a precoding unit; a precoding unit for utilizing a
  • the square matrix G Wgc (1:L, 1:L) composed of the L row and the first L column of the generation matrix G Wgc may be an upper left triangular matrix, a lower left triangular matrix, an upper right triangular matrix, or a lower right triangular matrix.
  • the bit stuffing unit fills the LK known bits in It is necessary to encode the length of the information bit sequence before the length K.
  • the bit stuffing unit fills the LK known bits in It is necessary to encode the information bit sequence of length K.
  • the column weight of the generation matrix G ldgc satisfies the degree distribution principle approximate to the LT code.
  • the apparatus for encoding a low-density generation matrix code includes: a matrix generation unit, configured to generate a generation matrix G ldgc of K rows and N columns, wherein a square of the K rows and the first K columns of the matrix G ldgc is generated.
  • the square matrix G ldgc (1:K, 1:K) composed of the K rows and the first K columns of the generation matrix G ldgc may be an upper left triangular matrix, a lower left triangular matrix, an upper right triangular matrix, or a lower right triangular matrix.
  • the column weight of the generator matrix G Wgc satisfies the degree distribution principle approximate to the LT code. With the present invention, better code performance can be obtained while reducing coding complexity.
  • FIG. 1 is a flowchart of an encoding method of an LDGC according to an embodiment of the present invention
  • FIG. 2 is a block diagram of an encoding apparatus of an LDGC according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an LDGC generation matrix
  • 4 is an example of an LDGC code generation matrix of padding bits according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a coding method of an LDGC according to another embodiment of the present invention
  • FIG. 6 is a flowchart according to another embodiment of the present invention.
  • Figure 7 is a block diagram of an LDGC code generation matrix without padding bits according to another embodiment of the present invention;
  • Figure 8 is a precoding in an encoding device of an LDGC according to another embodiment of the present invention;
  • FIG. 9 is a schematic diagram of a packet coding unit in an encoding apparatus of an LDGC according to another embodiment of the present invention.
  • a Low Density Generator Matrix Code is a linear block code whose non-zero elements in a generator matrix are usually sparse.
  • the LDGC code is still a system code, and the square matrix composed of the first k columns in the generator matrix is usually an upper triangular or lower triangular matrix, and the matrix inversion can be completed by an iterative method.
  • the encoding of LDGC is to first obtain the intermediate variable by using the correspondence between the information bits and the intermediate variables in the system code, and then multiply the intermediate variable by the generator matrix to obtain the encoded codeword.
  • the decoding process of the LDGC code is to first obtain the intermediate variable by using the generator matrix, and then obtain the information bit according to the transformation relationship between the information bit and the intermediate variable.
  • the information bit sequence of length K is encoded, and then the output length is The process of processing the encoded codeword bit sequence of N to the subsequent processing unit.
  • the coding method of the LDGC according to the embodiment of the present invention includes the following steps:
  • the padding bits added in step S104 are deleted for the l*(N+d) codeword generated in the above step, and finally an N-bit encoded codeword is obtained and transmitted.
  • the number of elements 1 ie, column weight
  • the square matrix consisting of the first L column and all rows of the generation matrix may be an upper left triangular matrix, a lower left triangular matrix matrix, an upper right triangular matrix, or a lower right triangular matrix (as shown in FIG. 3).
  • G ldgc (1:L, 1:L) is the upper left triangle or the lower left triangle matrix
  • add d LK known padding bits to the front of the K information bit sequence for the information bit sequence of initial length K .
  • G ldgc (l: L, l: L) is an upper right triangle or a lower right triangle matrix
  • d LK known padding bits are added to the K information bit sequence for the information bit sequence of initial length K.
  • the position at which padding bits are added is not limited to the above. Referring to Fig. 2, an encoding apparatus of an LDGC according to an embodiment of the present invention will be described.
  • the encoding device of the LDGC is for encoding the input K-bit binary information bit stream, and then outputting the N-bit binary codeword bit stream to the subsequent processing unit.
  • the encoding device of the LDGC includes: a matrix generating unit 202, configured to generate a generating matrix G Wgc of L rows and N+LK columns.
  • the front L column of the generator matrix and the square matrix of all rows 0 1 ( ⁇ (1 , 1 ) are upper triangles (or Lower triangle) matrix.
  • the matrix generator outputs G ldgc (l:L, l:L) to the following precoding unit, and outputs 01 ⁇ ⁇ (1 , 1 +1 ⁇ -10 to the following block code encoding unit.
  • K, L and ⁇ are given positive integers, and K ⁇ L ⁇ N.
  • Bit filling unit 204, for adding 1*K input information bit stream s to port d LK known padding bits, generating 1*L
  • the information bit stream m is output to the precoding unit.
  • the precoding unit 206 is configured to perform equation calculation on the 1*L information bit stream m, generate an intermediate variable I of 1*L, and output to the block code encoder.
  • the precoding unit can be a unit that solves the upper and/or lower triangular equations, has two inputs, one is G Wg c (l: L, 1: L), and the other is length L
  • the information bit sequence m, the output is an intermediate variable 1).
  • the block code encoding unit 208 is configured to encode the intermediate variable I, generate a l*(N+d) binary codeword bit stream C, and output to the bit deleting unit.
  • the block coding unit can be a matrix multiplication unit with two inputs, one is G ldgc and the other is an intermediate change of length L
  • the quantity I, the output is the coded code word C).
  • the bit deleting unit 210 is configured to delete the d padding bits filled in the bit stuffing unit, and finally obtain an N-bit coded code word, wherein the matrix generating unit is based on the following principles. Determining the generator matrix: In each column of the generator matrix, the number of elements 1 (ie, column weight) must satisfy a certain degree of distribution principle.
  • G ldgc uses a degree distribution criterion similar to the LT code.
  • the upper right triangular matrix is shown in Figure 4 (where black dots represent element 1 and blank locations represent element 0).
  • the information bit stream m (m can be expressed in hexadecimal as D8AB139A0C2C) and output to the precoding unit.
  • the variable I (I can be expressed in hexadecimal as 942DA94E0A24) and output to the block code encoding unit.
  • the present invention provides another coding method for low density generation matrix codes.
  • the coding method differs from the above coding method in that bit stuffing and bit deletion are not performed.
  • a process of encoding an information bit sequence of length K and then outputting the encoded codeword bit sequence of length N to a subsequent processing unit will be described.
  • the LDGC is edited according to another embodiment of the present invention.
  • the code method includes the following steps:
  • (1: K, 1: K) is an upper triangular matrix (or lower triangular) matrix, and the equation is solved to find the 1* ⁇ intermediate variable I.
  • the encoding device of the LDGC includes: a matrix generating unit 602, configured to generate a generating matrix G Wgc of K rows and N columns.
  • the front K column of the generator matrix and the square matrix G ldgc (1:K, 1:K) composed of all rows are upper triangular (or lower triangular) matrices.
  • the matrix generation unit outputs G ldgc (1: ⁇ , 1: ⁇ ) to the subsequent precoding unit, and outputs G Wgc (l: K, l: N) to the following block code encoding unit.
  • K ⁇ N the matrix generating unit 602
  • the precoding unit 604 is configured to perform equation calculation on the input information stream s of 1*K, generate an intermediate variable I of 1* ⁇ , and output to the block code encoding unit (as shown in FIG. 8 , the precoding unit may For a unit that solves the upper and/or lower triangular equations, there are two inputs, one is G Wgc (1: L, 1: L), and the other is the information bit sequence m) of length L.
  • the block code encoding unit 606 is configured to encode the input intermediate variable I, generate a 1*N binary code word C, and send it out (as shown in FIG.
  • the block coding unit may be a matrix multiplication unit, and there are two Input, one is G ldgc and the other is an intermediate variable of length L).
  • the matrix generation unit determines the generation matrix according to the following principles: In each column of the generation matrix, the number of elements 1 (ie, the column weight) must satisfy a certain degree distribution principle.
  • the square matrix consisting of the first K column and all rows of the generator matrix is an upper left triangular matrix, a lower left triangular matrix, and an upper right triangular Matrix, or bottom right triangle matrix (as shown in Figure 3).
  • the upper triangular matrix (or lower triangular matrix) solves the equation, finds the intermediate variable I of 1*K, and outputs it.
  • 1 *N binary codeword stream 1 *N binary codeword stream, and output.
  • G Wgc uses a degree distribution criterion similar to the LT code
  • the front K column of G ldgc and the square matrix G ldgc of all rows (1: ⁇ 1: ) 0 1 ( ⁇ ( 1:24, 1:24 ) Is a top right triangular matrix, as shown in Figure 7 (where black dots represent element 1 and blank positions represent element 0).
  • the intermediate variable I (I can be expressed as ⁇ 4 ⁇ 304 in hexadecimal) and output to the block code encoding unit.
  • G Wgc ( 1:48 , 1:48 ) and G Wgc ( 1:24, 1:24 ) are exemplified by the upper right triangular matrix, but the same applies to other matrix forms. Accordingly, the position at which padding bits are added is not limited to the above. As long as the intermediate vector is obtained by using the characteristics of the system code, and the encoded output is generated by the intermediate vector, the same technical effect can be obtained.
  • the degree distribution of the generator matrix G ldgc in the above embodiment is
  • the degree distribution of the approximation of the LT code is an example, but is not limited thereto, and the same technical effect can be obtained by a low-density generation matrix generated by a certain degree distribution.
  • the present invention can support arbitrary information packet length and arbitrary code rate coding, and similar in performance to the Raptor code, can approach theoretical optimal performance.
  • the above is only the embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalents, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

低密度生成矩阵码的编码方法及装置 技术领域 本发明涉及通信领域,更具体地涉及一种低密度生成矩阵码的编码方法 及装置。 背景技术 擦除信道是一种重要的信道模型, 例如, 文件在因特网上传输时, 是基 于数据包通信的, 通常每个数据包要么无差错地被接收端接收, 要么根本就 没有被接收端接收到。 传输控制协议 ( Transmission Control Protocol, 简称 TCP ) 中针对网络丢包的做法是检错重发机制, 即利用输入端到输出端的反 馈信道控制需要重新传送的数据包。 当接收端检测到丢包时, 产生一个重新 发送控制信号, 直到正确接收到完整数据包; 而当接收端接收到数据包时, 同样要产生一个接收确认信号。 发送端也会跟踪每一个数据包直到接收到反 馈回来的告知信号, 否则就会重新发送。 基于流模式和文件下载模式的数据广播业务是点到多点的业务,不允许 反馈, 传统的检错重发机制无法使用, 需要使用前向纠错 (Forward Error Correction, 简称 FEC ) 来保证可靠传输。 经典的应用层 FEC码包括 RS码 ( Reed-Solomon codes ) 和数字喷泉码 ( Fountain codes ) 等。 RS码的编译码 复杂度较高,一^:只适用于码长比较小的情况。 LT码 ( Luby Transform codes ) 和 Raptor码是两种可实际应用的数字喷泉码。 LT码具有线性的编码和译码 时间, 相对于 RS码有着本质的提高, 而 Raptor码由于采用了预编码技术, 因此具有更高的译码效率。 在 3GPP 的多媒体广播组播业务 (Multimedia Broadcast I Multicast Service, 简称 MBMS )以及数字视频广播 ( Digital Video Broadcasting , 简称 DVB ) 中都采用了 Raptor码作为其 FEC编码方案。 线性分组码是一组固定长度的码组, 可以表示为 (n, k) , 通常用于前向 纠错。 在编码时, k个信息位被编成 n位码组长度。 由于 (n, k)分组码的 2 个 码字组成了一个 A维子空间, 所以该 2 个码字一定可以由 A个线性无关的基 底生成, 若把该^:个基底写成矩阵的形式, 则有 §l,n-l §l,n-2 · · · §1,0
G _ §2,η-1 §2,n-2 ' ' ' §2,0
_Sk,n-l Sk,n-2 ... Sk,0 _ 其中, (n, k)分组码中的任何码字都可以由这组基底的线性组合生成, 即
C = m.G = [ml m2 … mn_k
Figure imgf000004_0001
此处称 G为码的生成矩阵。 显然, 对于生成矩阵的各行来说, 只要满足 线性无关即可 (没有考虑最小距离), 而一个 维空间的基底可以任意选择 个线性无关的矢量, 所以作为码的生成矩阵 G也不是唯一的, 但不论采用哪 一种形式, 它们啫生成相同的子空间, 即同一个 (n, k)分组码。 若编码后码字的前 k位与信息位相同, 则称该码为系统码。 编码的过程 就是由 k个信息位生成 n位码长的过程, 通过增加 n-k个校验位来达到检错 和纠错的目的。
LT码也是利用生成矩阵的稀疏性进行编码, 但是同中兴低密度生成矩 阵码 (LDGC码) 相比, LT码不支持系统码的编码方式, 因此 LT码难以满 足某些实际的 FEC编码需求; Raptor码支持系统码, 但是 Raptor码需要单 独的预编码过程,即需要一个预编码矩阵, 因此编码的复杂度较高,而 LDGC 码是直接利用生成矩阵编码, 不需要另外的预编码矩阵, 且 LDGC编码时利 用了回代法求解上三角(或下三角)方程, 因此编码复杂度远低于 Raptor码。 总而言之,同 LT码相比 LDGC的优势是支持系统码;同 Raptor码相比 LDGC 的优势是编码复杂度更低。 发明内容 为了在降低编码复杂度的同时, 获得较好的码性能, 本发明提出了一种 低密度生成矩阵码的编码方法及装置。 才艮据本发明的一个方面, 提供了一种低密度生成矩阵的编码方法。根据 本发明实施例的低密度生成矩阵码的编码方法包括以下步骤: 构造 L 行、 N+L-K列的生成矩阵 GWgc, 其中, 生成矩阵 GWgc的 L行、 前 L列组成的方 阵 GWgc (1:L,1:L)为上三角矩阵或下三角矩阵, K、 L、 和 N 为正整数, 且 K<L<N; 对需要进行编码的长度为 K的信息比特序列添加 L-K个已知比特, 生成长度为 L的信息比特序列 m; 根据 I X Gidgc (1: L,1:L) = m, 利用生成矩 阵 Gldgc的 L行、 前 L列组成的方阵 Gldgc (1:L,1:L)和长度为 L的信息比特序 列 m生成中间变量 I, 并利用才艮据 C = I X Gidgc 生成矩阵 Gldgc对中间变量 I 进行编码, 生成长度为 N+L-K的编码序列; 从长度为 N+L-K的编码序列中 删除 L-K个已知比特, 生成长度为 N的编码序列。 其中, 在生成矩阵 Gidgc的 L行、 前 L列组成的方阵 GWgc (1:L,1:L)为左 上三角矩阵或左下三角矩阵的情况下, 将 L-K个已知比特添加在需要进行编 码的长度为 K的信息比特序列之前。 在生成矩阵 Gldgc的 L行、 前 L列组成 的方阵 Gldgc (1:L,1:L)为右上三角矩阵或右下三角矩阵的情况下,将 L-K个已 知比特添加在需要进行编码的长度为 K的信息比特序列之后。 其中, 生成矩 阵 GWgc的列重量可以满足与 LT码近似的度分布原则。 才艮据本发明的另一方面, 提供了一种低密度生成矩阵的编码方法。根据 本发明实施例的低密度生成矩阵码的编码方法包括以下步骤: 构造 K行、 N 列的生成矩阵 GWgc, 其中, 生成矩阵 GWgc的 K行、 前 K列组成的方阵 GWgc (1:K,1:K)为上三角矩阵或下三角矩阵, Κ和 Ν为正整数, 且 < 才艮据 IX Gidgc (1: K,l:K) = s, 利用需要进行编码的长度为 K的信息比特序列 s和生成 矩阵 Gldgc的 K行、 前 K列组成的方阵 Gldgc ( 1 :K, 1: Κ)生成中间变量 I; 艮据 C = I X Gidgc , 利用生成矩阵 GWgc对中间变量 I进行编码, 生成长度为 N的 编码码字。 其中, 生成矩阵 GWgc的列重量可以满足与 LT码近似的度分布原 则。 生成矩阵 Gldgc的 K行、 前 K列组成的方阵 Gldgc (1:K,1:K)可以为左上三 角矩阵、 左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。 根据本发明的另一方面, 提供了一种低密度生成矩阵的编码装置。根据 本发明实施例的低密度生成矩阵码的编码装置包括: 矩阵生成单元, 用于生 成 L行、 N+L-K列的生成矩阵 GWgc , 将生成矩阵 GWgc输出至分组码编码单 元, 并将生成矩阵 GWgc的 L行、 前 L列组成的方阵 GWgc (1:L,1:L)输出至预 编码单元, 其中, 生成矩阵 Gldgc的 L行、 前 L列组成的方阵 Gldgc (1 :L, 1: L) 为上三角矩阵或下三角矩阵, K、 L、 和 N为正整数, 且 K<L<N; 比特填充 单元,用于对需要进行编码的长度为 K的信息比特序列添加 L-K个已知比特, 生成长度为 L的信息比特序列 m, 并将长度为 L的信息比特序列 m输出至 预编码单元; 预编码单元, 用于根据 I Gidgc (1: L,1:L) = m, 利用生成矩阵 Gidgc的 L行、 前 L列组成的方阵 Gldgc (1: L,1:L)和长度为 L的信息比特序列 m生成中间变量 I, 并^1中间变量 I输出至分组码编码单元 (该预编码单元 可以为一个解上和 /或下三角方程的单元, 有两个输入, 一个是 Gidgc (1: L,1:L), 另一个是 m, 有一个输出是 I); 分组码编码单元, 用于根据 C = lx Gidgc , 利用生成矩阵 GWgc对中间变量 I进行编码, 生成长度为 N+L-K的编 码序列 C (该分组编码单元可以为一个矩阵乘法的单元, 有两个输入, 分别 是 GWgc 和 I, 有一个输出是 C); 以及比特删除单元, 用于从长度为 N+L-K 的编码序列中删除 L-K个已知比特, 生成长度为 N的编码序列。 其中, 生成矩阵 GWgc的 L行、 前 L列组成的方阵 GWgc (1:L,1:L)可以为 左上三角矩阵、 左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。 在生成矩 阵 GWgc的 L行、 前 L列组成的方阵 GWgc (1:L,1:L)为左上三角矩阵或左下三 角矩阵的情况下, 比特填充单元将 L-K个已知比特填充在需要进行编码的长 度为 K的信息比特序列之前。 在生成矩阵 GWgc的 L行、 前 L列组成的方阵 Gidgc (1:L,1:L)为右上三角矩阵或右下三角矩阵的情况下, 比特填充单元将 L-K个已知比特填充在需要进行编码的长度为 K的信息比特序列之后。 生成 矩阵 Gldgc的列重量满足与 LT码近似的度分布原则。 根据本发明的再一方面, 提供了一种低密度生成矩阵码的编码装置。根 据本发明实施例的低密度生成矩阵码的编码装置包括: 矩阵生成单元, 用于 生成 K行、 N列的生成矩阵 Gldgc, 其中, 生成矩阵 Gldgc的 K行、 前 K列组 成的方阵 Gldgc (1:K,1:K)为上三角矩阵或下三角矩阵, Κ和 Ν为正整数, 且 Κ<Ν; 预编码单元, 用于根据 IxGWgc(l:K,l:K) = s, 利用需要进行编码的长 度为 K的信息比特序列 s和生成矩阵 Gldgc的 K行、 前 K列组成的方阵 Gldgc (1:K,1:K)生成中间变量 I; 以及分组码编码单元, 用于才艮据 C = I GWgc , 利 用生成矩阵 Gldgc对中间变量 I进行编码, 生成长度为 N的编码码字。 其中, 生成矩阵 Gldgc的 K行、 前 K列组成的方阵 Gldgc (1:K,1:K)可以 为左上三角矩阵、 左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。 生成矩 阵 GWgc的列重量满足与 LT码近似的度分布原则。 通过本发明, 可以在降低编码复杂度的同时, 获得较好的码性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例的 LDGC的编码方法的流程图; 图 2是根据本发明实施例的 LDGC的编码装置的框图; 图 3是 LDGC生成矩阵的示意图; 图 4是才艮据本发明实施例的填充比特的 LDGC码生成矩阵的实例; 图 5是根据本发明另一实施例的 LDGC的编码方法的流程图; 图 6是根据本发明另一实施例的 LDGC的编码装置的框图; 图 7是才艮据本发明另一实施例的无填充比特的 LDGC码生成矩阵的实 例; 图 8是根据本发明另一实施例的 LDGC的编码装置中的预编码单元的 示意图; 图 9是根据本发明另一实施例的 LDGC的编码装置中的分组编码单元 的示意图。 具体实施方式 氐密度生成矩阵码 ( Low Density Generator Matrix Code , 简称 LDGC ) 是一种线性分组码, 其生成矩阵中的非零元素通常是稀疏的。 同时, LDGC 码还是一种系统码, 其生成矩阵中的前 k列组成的方阵通常是一个上三角或 下三角矩阵, 该矩阵求逆可以通过迭代的方法完成。 LDGC的编码是先利用 系统码中信息位与中间变量的对应关系求出中间变量, 然后再用中间变量乘 以生成矩阵得到编码后的码字。 LDGC码的译码过程是先利用生成矩阵求得 中间变量, 然后才艮据信息位和中间变量的变换关系求出信息位。 下面参考附 图, 详细说明本发明的具体实施方式。 参考图 1 , 说明对长度为 K的信息比特序列进行编码, 然后输出长度为 N的编码后的码字比特序列给后续处理单元处理的过程。 其中, 校验位长度 为 M=N-K, 码率为 r=K/N。 如图 1所示, 才艮据本发明实施例的 LDGC的编 码方法包括以下步骤:
S102, 构造 L行、 N+L-K列的生成矩阵 Gldgc。 其中, 该生成矩阵的前 L列和所有行构成的方阵01(^ (1:L,1:L)是上三角 (或下三角矩阵), K、 L、 和 N是给定的正整数, 并且 K<L<N。
S104, 对 1*K信息比特序列 s添加 d=L-K个已知填充比特, 构成 1*L 信息比特序列 m。
S106, 由于 LDGC是系统码, 所以有 IxGWge(l: , 1: ) =m。 利用 GWgc(l: L,1:L)是一个上三角矩阵 (或下三角矩阵), 解方程求出 1*L中间变量 I, 并 根据 C = IxG e, 对中间变量 I进行编码, 得到 l*(N+d)的码字。
S108, 对于上述步骤生成的 l*(N+d)码字删除步骤 S104中添加的填充 比特, 最终得到 N比特的编码码字, 发送出去。 其中, 在生成矩阵的每一列中, 元素 1的个数(即, 列重量)必须满足 一定的度分布原则。 生成矩阵的前 L列和所有行组成的方阵可以是一个左上 三角矩阵、 左下三角矩阵矩阵、 右上三角矩阵、 或右下三角矩阵 (如图 3所 示)。 其中, 若 Gldgc (1:L,1:L)是左上三角或左下三角矩阵, 则对于初始长度 为 K的信息比特序列, 添加 d=L-K个已知填充比特到 K个信息比特序列的 前面。 若 Gldgc(l:L,l:L)是右上三角或右下三角矩阵, 则对于初始长度为 K的 信息比特序列, 添加 d=L-K个已知填充比特到 K个信息比特序列的后面。 需 要指出, 添加填充比特的位置不局限于上述情况。 参考图 2, 说明据本发明实施例的 LDGC的编码装置。 该 LDGC的编 码装置用于对输入的 K比特的二进制信息比特流进行编码,然后输出 N比特 的二进制码字比特流给后续的处理单元。 如图 2所示, 该 LDGC的编码装置 包括: 矩阵生成单元 202, 用于生成一个 L行、 N+L-K列的生成矩阵 GWgc。 其中, 该生成矩阵的前 L列和所有行构成的方阵01(^(1 ,1 )是上三角 (或 下三角)矩阵。 矩阵生成器将 Gldgc(l:L,l:L)输出至后面的预编码单元, 并且 将01<^(1 ,1 +1^-10输出至后面的分组码编码单元。 其中, K、 L和 Ν是给 定的正整数, 并且 K<L<N。 比特填充单元 204, 用于对 1*K的输入信息比特流 s添力口 d=L-K个已 知填充比特, 生成 1*L的信息比特流 m, 并且输出到预编码单元。 预编码单元 206, 用于对 1*L的信息比特流 m进行解方程计算, 生成 1*L的中间变量 I, 并且输出到分组码编码器 (如图 8所示, 预编码单元可 以为一个解上和 /或下三角方程的单元, 有两个输入, 一个是 GWgc(l: L,1:L), 另一个是长度为 L的信息比特序列 m, 输出是中间变量 1)。 分组码编码单元 208, 用于对中间变量 I进行编码, 生成 l*(N+d)的二 进制码字比特流 C, 并且输出至比特删除单元 (如图 9所示, 分组编码单元 可以为一个矩阵乘法的单元, 有两个输入, 一个是 Gldgc , 另一个是长度为 L 的中间变量 I , 输出是编码后码字 C )。 比特删除单元 210, 用于删除比特填充单元中填充的 d个填充比特, 最 终得到 N比特的编码码字。 其中, 矩阵生成单元才艮据以下原则确定生成矩阵: 在生成矩阵的每一列 中, 元素 1的个数(即, 列重量) 必须满足一定的度分布原则。 生成矩阵的 前 L列和所有行组成的方阵是一个左上三角矩阵、 左下三角矩阵、 右上三角 矩阵、 或右下三角矩阵 (如图 3所示)。 其中, 在01(^(1 ,1 )是左上三角或左下三角矩阵的情况下, 比特填充 单元将 d=L-K 个已知填充比特填充到 K 个信息比特序列的前面。 在 GWgc (1:L,1:L)是右上三角或右下三角矩阵的情况下, 比特填充单元将 d=L-K个已 知填充比特填充到 K个信息比特序列的后面。 需要指出, 添加填充比特的位 置不局限于上述情况。 其中, 由于 LDGC是系统码, 有 IxGWge(l: , 1: )=m , 所以预编码单元 利用 Gldgc (1: L,1:L)是一个上三角矩阵 (或下三角矩阵) 解方程求出 1*L的 中间变量 I。 其中, 分组码编码单元根据 C = IxGW!¾, 对中间变量 I进行编码, 得到 1 *(N+d)的二进制码字流。 例如, 例如, 有一个 1*K=1*24的二进制信息比特数据流 s (s用 16进 制数可表示为 D8AB13)要通过根据本发明实施例的编码装置编码生成 72 比特的 LDGC编码码字, 所以有 Κ=24, Ν=72。 矩阵生成单元产生一个 L=48行、 N+L-K=96列的生成矩阵 GWgc。其中,
Gldgc采用与 LT码近似的度分布准则, Gldgc的前 L列和所有行组成的方阵 Gldgc (l:L,l:L)=Gldgc (1:48,1:48)是一个右上三角矩阵, 如图 4所示 (其中, 黑点表 示元素 1, 空白位置表示元素 0)。 矩阵生成单元输出 Gidgc (l:L,l:L)=GidgC (1:48,1 :48)到后面的预编码单元, 并且输出 GWgc (1 :L, 1: N+L-K)=GWgc (1:48,1:96) 到后面的分组码编码单元。 比特填充单元在 1*K=1*24的输入信息比特流后面添加 d=L-K=24个已 知填充比特 p ( p用 16进制可表示为 9A0C2C ), 生成 1*L=1*48的信息比特 流 m ( m用 16进制可表示为 D8AB139A0C2C ), 并且输出到预编码单元。 预编码单元才艮据 LDGC码是系统码的特点 (由于 LDGC码是系统码, 所以有1 0^(1:48,1:48) = 111 ), 利用 Gldgc (l:L,l:L)=Gldgc (1:48,1:48)是一个右 上三角矩阵, 对输入的 1*K=1*24 的信息比特流 s 进行解方程计算, 求出 1*L=1*48的中间变量 I ( I用 16进制可表示为 942DA94E0A24 ), 并且输出 到分组码编码单元。 分组码编码单元才艮据 C = IxG , 对输入的中间变量 I进行编码, 生成 l*(N+d)=l*96 的 二 进 制 码 字 c ( c 用 16 进 制 可 表 示 为 D8AB 139A0C2CCD3 AC516ED52 ), 输出到比特删除单元。 比特删除单元将添加的 d=24个填充比特从 l*(N+d)=l*96的二进制码 字 c 中删除, 最终得到 N=72 比特的编码码字 (用 16 进制可表示为 D8AB13CD3AC516ED52 )发送出去。 为了降低编码复杂度, 本发明提供另一种低密度生成矩阵码的编码方 法。 该编码方法区别于上述编码方法的地方在于, 不进行比特填充和比特删 除。 参考图 5, 说明对长度为 K的信息比特序列进行编码, 然后输出长度为 N 的编码后的码字比特序列给后续处理单元的过程。 其中, 校 -睑位长度为 M=N-K, 码率为 r=K/N。 如图 5所示, 才艮据本发明另一实施例的 LDGC的编 码方法包括以下步骤:
S502, 构造 K行、 N列的生成矩阵 GWgc。 其中, 该生成矩阵的前 K列 和所有行构成的方阵 Gldgc (1:K,1:K)是上三角 (或下三角) 矩阵, Κ和 Ν是 给定的正整数, 并且 Κ<Ν。 S504, 由于 LDGC码是系统码, 有 IxGWgc(l: ,1: ) = s , 所以利用 GWgc
(1:K,1:K)是一个上三角矩阵(或下三角)矩阵, 解方程求出 1*Κ中间变量 I。
S506, 才艮据 C = IxGWge, 对中间变量 I进行编码, 得到 1*N的码字。 其中, 在生成矩阵的每一列中, 元素 1的个数(即, 列重量)必须满足 一定的度分布原则; 生成矩阵的前 K列和所有行组成的方阵是一个左上三角 矩阵、 左下三角矩阵矩阵、 右上三角矩阵、 或右下三角矩阵 (如图 3所示)。 参考图 6, 说明根据本发明另一实施例的低密度生成矩阵码的编码装 置。 该编码装置用于对输入的 K比特的二进制信息比特流进行编码, 然后输 出 N 比特的二进制码字比特流给后续的处理单元。 如图 6所示, 该 LDGC 的编码装置包括: 矩阵生成单元 602, 用于产生一个 K行、 N列的生成矩阵 GWgc。 其中, 该生成矩阵的前 K列和所有行组成的方阵 Gldgc (1:K,1:K)是上三角 (或下三 角) 矩阵。 矩阵生成单元将 Gldgc (1:Κ,1:Κ)输出至后面的预编码单元, 并将 GWgc(l:K,l:N)输出至后面的分组码编码单元。 其中, K<N。 预编码单元 604, 用于对输入的 1*K的信息比特流 s进行解方程计算, 生成 1*Κ的中间变量 I, 并且输出到分组码编码单元 (如图 8所示, 预编码 单元可以为一个解上和 /或下三角方程的单元, 有两个输入, 一个是 GWgc (1: L,1:L), 另一个是长度为 L的信息比特序列 m)。 分组码编码单元 606, 用于对输入的中间变量 I进行编码, 生成 1*N的 二进制码字 C, 发送出去 (如图 9所示, 分组编码单元可以为一个矩阵乘法 的单元, 有两个输入, 一个是 Gldgc , 另一个是长度为 L的中间变量 1)。 其中, 矩阵生成单元才艮据以下原则确定生成矩阵: 在生成矩阵的每一列 中, 元素 1的个数(即, 列重量) 必须满足一定的度分布原则。 生成矩阵的 前 K列和所有行组成的方阵是一个左上三角矩阵、 左下三角矩阵、 右上三角 矩阵、 或右下三角矩阵 (如图 3所示)。 其中, 预编码单元才艮据 LDGC码是系统码 (由于 LDGC码是系统码, 所以有 IxGWge(l: ,1: ) = s ), 利用 Gldgc(l:K,l:K)是一个上三角矩阵(或下三 角矩阵) 解方程, 求出 1*K的中间变量 I, 并输出。 其中, 分组码编码单元^ f艮据 C = IxG , 对中间变量 I进行编码, 得到
1 *N的二进制码字流, 并输出。 例如, 有一个 1*K=1*24的二进制信息比特数据流 s ( s用 16进制数可 表示为 D99274)要通过根据本发明另一实施例的编码装置编码生成 72比特 的 LDGC码, 其中 K=24, Ν=72。 矩阵生成单元产生一个 Κ=24行、 Ν=72列的生成矩阵 GWgc。其中, GWgc 采用与 LT码近似的度分布准则, Gldgc的前 K列和所有行组成的方阵 Gldgc (1:^1: )=01(^(1:24,1:24)是一个右上三角矩阵, 如图 7所示(其中, 黑点表 示元素 1, 空白位置表示元素 0)。 矩阵生成单元将 Gidgc (l:K,l:K)=GidgC (1:24, 1 :24)输出至后面的预编码单元, 并且将 Gldgc (1 :K, 1: N)=Gldgc (1:24,1:72) 输出至后面的分组码编码单元。 预编码单元才艮据 LDGC码是系统码, 有 I X G e (1: , 1: ) = s , 利用 Gldgc
(1:K,1:K)= GWgc (1:24, 1:24)是一个右上三角矩阵, 对输入的 1*K信息比特流 s 进行解方程计算, 生成 1*K=1*24 的中间变量 I (I 用 16 进制可表示为 Β4Β304 ), 并且输出到分组码编码单元。 分组码编码单元才艮据 C = IxG 对输入的中间变量 I 进行编码, 生成
1*N=1*72的二进制码字 c ( c用 16进制可表示为 D99274A593CC1AC461 ) 发送出去。 需要指出的是, GWgc (1:48,1 :48)和 GWgc (1:24,1:24)虽然是以右上三角矩 阵为例, 但是对于其他的矩阵形式本发明也同样适用。 相应地, 添加填充比 特的位置也不局限于上述情况。 只要利用了系统码的特点得到中间向量, 并 通过中间向量产生编码输出, 就能获得同样的技术效果。 此夕卜, 还需要指出, 以上实施例中的生成矩阵 Gldgc的度分布虽然以与 LT码近似的度分布为例, 但不局限于此, 只要通过一定的度分布产生的低密 度生成矩阵都能获得同样的技术效果。 纵上所述, 本发明可以支持任意信息分组长度和任意码率编码, 在性能 上与 Raptor码类似, 都能接近理论最优性能。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。

Claims

权 利 要 求 书 一种氏密度生成矩阵码的编码方法, 其特征在于, 包括以下步骤:
构造 L行、 N+L-K列的生成矩阵 GWgc, 其中, 所述生成矩阵 GWgc 的 L行、 前 L列组成的方阵 Gldgc (l :L,l :L)为上三角矩阵或下三角矩阵, K、 L、 和 N为正整数, JL K<L<N;
对需要进行编码的长度为 K的信息比特序列添加 L-K个已知比特, 生成长度为 L的信息比特序列 m;
根据 I X Gidgc (l : L,l :L) = m, 利用所述生成矩阵 GWgc的 L行、 前 L 列组成的方阵 Gldgc (1 : L,1 :L)和所述长度为 L的信息比特序列 m生成中 间变量 I, 并根据 C = I X Gldgc , 利用所述生成矩阵 Gldgc对所述中间变 量 I进行编码, 生成长度为 N+L-K的编码序列; 以及
从所述长度为 N+L-K的编码序列中删除所述 L-K个已知比特, 生 成长度为 N的编码序列。 才艮据权利要求 1所述的编码方法, 其特征在于, 在所述生成矩阵 Gldgc的 L行、 前 L列组成的方阵 GWgc (1 :L,1 :L)为左上三角矩阵或左下三角矩阵 的情况下, 将所述 L-K个已知比特添加在所述需要进行编码的长度为 K 的信息比特序列之前。 才艮据权利要求 1所述的编码方法, 其特征在于, 在所述生成矩阵 Gldgc的 L行、 前 L列组成的方阵 Gldgc (1 :L,1 :L)为右上三角矩阵或右下三角矩阵 的情况下, 将所述 L-K个已知比特添加在所述需要进行编码的长度为 K 的信息比特序列之后。 根据权利要求 1至 3中任一项所述的编码方法, 其特征在于, 所述生成 矩阵 GWgc的列重量满足与 LT码近似的度分布原则。 一种氏密度生成矩阵码的编码方法, 其特征在于, 包括以下步骤:
构造 K行、 N列的生成矩阵 Gldgc, 其中, 所述生成矩阵 Gldgc的 K 行、前 K列组成的方阵 Gldgc (l :K,l :K)为上三角矩阵或下三角矩阵, K和 N为正整数, JL K<N; 根据 I x Gldgc (1: K,l:K) = s, 利用需要进行编码的长度为 K的信息 比特序列 s 和所述生成矩阵 Gidgc的 K行、 前 K 列组成的方阵 GWgc (1:K,1:K)生成中间变量 I; 以及
才艮据 C = I X Gidgc ,利用所述生成矩阵 Gldgc对所述中间变量 I进行 编码, 生成长度为 N的编码码字。 才艮据权利要求 5所述的编码方法, 其特征在于, 所述生成矩阵 Gldg 々 K 行、 前 K列组成的方阵 Gldgc(l:K,l:K)为左上三角矩阵、 左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。 才艮据权利要求 5或 6所述的编码方法, 其特征在于, 所述生成矩阵 Gldgc 的列重量满足与 LT码近似的度分布原则。 一种氏密度生成矩阵码的编码装置, 其特征在于, 包括:
矩阵生成单元, 用于生成 L行、 N+L-K列的生成矩阵 GWgc, 将所 述生成矩阵 Gldgc输出至分组码编码单元, 并将所述生成矩阵 Gldg 々 L 行、 前 L列组成的方阵 GWgc(l:L,l:L)输出至预编码单元, 其中, 所述生 成矩阵 GWgc的 L行、 前 L列组成的方阵 GWgc (1:L,1:L)为上三角矩阵或 下三角矩阵, K、 L、 和 N为正整数, JL K<L<N;
比特填充单元, 用于对需要进行编码的长度为 K 的信息比特序列 添加 L-K个已知比特, 生成长度为 L的信息比特序列 m, 并将所述长度 为 L的信息比特序列 m输出至所述预编码单元;
所述预编码单元, 用于才艮据 I X Gidgc (1: L,1:L) = m, 利用所述生成 矩阵 GWgc的 L行、 前 L列组成的方阵 GWgc (1: L,1:L)和所述长度为 L的 信息比特序列 m生成中间变量 I, 并将所述中间变量 I输出至所述分组 码编码单元; 所述分组码编码单元, 用于才艮据 C = I X Gldge , 利用所述生成矩阵 Gldgc对所述中间变量 I进行编码, 生成长度为 N+L-K的编码序列; 以及 比特删除单元, 用于从所述长度为 N+L-K的编码序列中删除所述 L-K个已 p比特, 生成长度为 N的编码序列。 才艮据权利要求 8所述的编码装置, 其特征在于, 所述生成矩阵 Gldgc的 L 行、 前 L列组成的方阵 Gldgc(l:L,l:L)为左上三角矩阵、 左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。
10. 才艮据权利要求 9所述的编码装置, 其特征在于, 在所述生成矩阵01(^的 L行、 前 L列组成的方阵 GWgc (1 :L,1 :L)为左上三角矩阵或左下三角矩阵 的情况下, 所述比特填充单元将所述 L-K个已知比特填充在所述需要进 行编码的长度为 K的信息比特序列之前。 11. 才艮据权利要求 9所述的编码装置, 其特征在于, 在所述生成矩阵 Gldgc的 L行、 前 L列组成的方阵 GWgc (1 :L,1 :L)为右上三角矩阵或右下三角矩阵 的情况下, 所述比特填充单元将所述 L-K个已知比特填充在所述需要进 行编码的长度为 K的信息比特序列之后。
12. 根据权利要求 8至 11中任一项所述的编码装置, 其特征在于, 所述生成 矩阵 GWgc的列重量满足与 LT码近似的度分布原则。
13. 一种氏密度生成矩阵码的编码装置, 其特征在于, 包括:
矩阵生成单元, 用于生成 K行、 N列的生成矩阵 GWgc, 其中, 所 述生成矩阵 GWgc的 K行、 前 K列组成的方阵 GWgc (1 :K,1 :K)为上三角矩 阵或下三角矩阵, Κ和 Ν为正整数, 且K<N;
预编码单元, 用于根据 I X Gidgc (1 : K,l :K) = s, 利用需要进行编码 的长度为 K的信息比特序列 s和所述生成矩阵 Gldgc的 K行、 前 K列组 成的方阵 Gldgc (1 :K, 1: Κ)生成中间变量 I; 以及
分组码编码单元, 用于根据 C = I X GWgc , 利用所述生成矩阵 GWgc 对所述中间变量 I进行编码, 生成长度为 N的编码码字。 14. 根据权利要求 13所述的编码装置, 其特征在于, 所述生成矩阵 Gldgc的 K行、前 K列组成的方阵 Gidgc (1 :K,1: Κ)为左上三角矩阵、左下三角矩阵、 右上三角矩阵、 或右下三角矩阵。
15. 根据权利要求 13或 14所述的编码装置,其特征在于,所述生成矩阵 Gldgc 的列重量满足与 LT码近似的度分布原则。
PCT/CN2008/071167 2007-10-19 2008-06-02 Procédé et dispositif pour coder le code de matrice de générateur à faible densité WO2009049504A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08757578.3A EP2200182B1 (en) 2007-10-19 2008-06-02 Method and device for coding the low density generator matrix code
US12/666,454 US8291288B2 (en) 2007-10-19 2008-06-02 Method and device for encoding the low density generator matrix code

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101633444A CN101414833B (zh) 2007-10-19 2007-10-19 低密度生成矩阵码的编码方法及装置
CN200710163344.4 2007-10-19

Publications (1)

Publication Number Publication Date
WO2009049504A1 true WO2009049504A1 (fr) 2009-04-23

Family

ID=40566996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071167 WO2009049504A1 (fr) 2007-10-19 2008-06-02 Procédé et dispositif pour coder le code de matrice de générateur à faible densité

Country Status (6)

Country Link
US (1) US8291288B2 (zh)
EP (1) EP2200182B1 (zh)
CN (1) CN101414833B (zh)
HU (1) HUE033653T2 (zh)
RU (1) RU2439792C2 (zh)
WO (1) WO2009049504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008118A1 (en) * 2005-04-05 2012-01-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459430B (zh) * 2007-12-14 2010-12-08 中兴通讯股份有限公司 低密度生成矩阵码的编码方法及装置
WO2010135857A1 (zh) 2009-05-25 2010-12-02 华为技术有限公司 采用线性分组码的编码方法、装置及线性分组码生成方法、装置
CN102142936B (zh) * 2010-02-02 2013-09-25 华为技术有限公司 基于线性分组码的编码方法及装置
US9060252B2 (en) * 2012-07-31 2015-06-16 International Business Machines Corporation Rate adaptive transmission of wireless broadcast packets
CN103746799B (zh) * 2013-12-26 2017-02-15 中南大学 一种差分的非高斯操作放射性连续变量量子密钥分发方法
CN108233946A (zh) * 2016-12-09 2018-06-29 富士通株式会社 极化码的编码装置、方法以及电子设备
CN109951191B (zh) * 2017-12-21 2023-04-18 国广融合(北京)传媒科技发展有限公司 非系统Raptor码的渐进式译码方法及装置
CN111490797B (zh) * 2019-01-29 2022-07-22 华为技术有限公司 编码方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614896A (zh) * 2004-11-25 2005-05-11 上海交通大学 低密度校验码的信道编码方法
CN1732626A (zh) * 2002-12-31 2006-02-08 英特尔公司 编码线性分组码的方法和设备
CN1783730A (zh) * 2004-12-01 2006-06-07 三星电子株式会社 生成低密度奇偶校验码的方法与装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007042C1 (ru) 1991-02-22 1994-01-30 Морозов Андрей Константинович Система для кодирования и декодирования с исправлением ошибок
TWI257085B (en) * 2002-01-21 2006-06-21 Koninkl Philips Electronics Nv Method of encoding and decoding
US6961888B2 (en) 2002-08-20 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for encoding LDPC codes
US7376883B2 (en) * 2003-10-27 2008-05-20 The Directv Group, Inc. Method and system for providing long and short block length low density parity check (LDPC) codes
US7583842B2 (en) 2004-01-06 2009-09-01 Microsoft Corporation Enhanced approach of m-array decoding and error correction
EP1715614B1 (en) * 2004-02-10 2014-05-07 Mitsubishi Electric Corporation Quantum key delivering method and communication device
KR20050118056A (ko) * 2004-05-12 2005-12-15 삼성전자주식회사 다양한 부호율을 갖는 Block LDPC 부호를 이용한이동 통신 시스템에서의 채널부호화 복호화 방법 및 장치
KR100669152B1 (ko) * 2004-11-25 2007-01-15 한국전자통신연구원 저밀도 패리티 검사 코드의 부호화 장치 및 방법
CN100486150C (zh) * 2005-01-23 2009-05-06 中兴通讯股份有限公司 基于非正则低密度奇偶校验码的编译码器及其生成方法
KR20060106132A (ko) * 2005-04-06 2006-10-12 삼성전자주식회사 연접 ldgm 부호 부호화/복호화 방법
JP4622654B2 (ja) * 2005-04-25 2011-02-02 ソニー株式会社 復号装置および復号方法
JP4526450B2 (ja) * 2005-06-30 2010-08-18 ルネサスエレクトロニクス株式会社 復号装置と方法並びにプログラム
US7657816B2 (en) * 2005-07-13 2010-02-02 Leanics Corporation Low-complexity hybrid LDPC code encoder
KR20080033381A (ko) * 2005-08-10 2008-04-16 미쓰비시덴키 가부시키가이샤 검사 행렬 생성 방법, 부호화 방법, 복호 방법, 통신 장치,통신 시스템, 부호화기 및 복호기
KR101351140B1 (ko) * 2005-11-22 2014-01-15 조지아 테크 리서치 코오포레이션 통신 시스템에서 신호 송수신 장치 및 방법
EP1965498B1 (en) * 2005-12-20 2014-06-25 Mitsubishi Electric Corporation Encoding of LDPC codes with an irregular parity check matrix obtained by masking
KR20090003164A (ko) * 2006-01-10 2009-01-09 미쓰비시덴키 가부시키가이샤 검사 행렬 생성 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732626A (zh) * 2002-12-31 2006-02-08 英特尔公司 编码线性分组码的方法和设备
CN1614896A (zh) * 2004-11-25 2005-05-11 上海交通大学 低密度校验码的信道编码方法
CN1783730A (zh) * 2004-12-01 2006-06-07 三星电子株式会社 生成低密度奇偶校验码的方法与装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008118A1 (en) * 2005-04-05 2012-01-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
EP2200182A4 (en) 2013-11-20
US20100185915A1 (en) 2010-07-22
CN101414833B (zh) 2010-08-04
HUE033653T2 (en) 2017-12-28
CN101414833A (zh) 2009-04-22
RU2439792C2 (ru) 2012-01-10
US8291288B2 (en) 2012-10-16
EP2200182A1 (en) 2010-06-23
EP2200182B1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
US8370700B2 (en) Coding method, coding device, decoding method and decoding device for low density generator matrix code
WO2009049504A1 (fr) Procédé et dispositif pour coder le code de matrice de générateur à faible densité
JP5329239B2 (ja) 通信システムのための多体ベース符号の生成器および復号化器
KR101205758B1 (ko) 파일 다운로드 및 스트리밍 시스템
CN101459430B (zh) 低密度生成矩阵码的编码方法及装置
WO2007072721A1 (ja) 検査行列生成方法、符号化方法、通信装置、通信システム、符号化器
CN101013931A (zh) 移动多媒体广播中的信道编码和交织方法及其装置
WO2009043261A1 (fr) Procédé de codage et de décodage, codeur et décodeur
WO2009135368A1 (zh) 一种数据接收方法及装置
TWI328951B (en) A digital communications transmitter,a digital communications receiver,and a computer readable medium
WO2007118378A1 (fr) Procédé et appareil de codage en cascade
CN101286745B (zh) 一种交织编码方法及装置
US8301961B2 (en) Decoding method for low density generator matrix code
WO2009132496A1 (zh) 一种低密度生成矩阵码的译码方法及装置
JP2008035094A (ja) 符号化装置及び復号化装置
CN101471743A (zh) 低密度生成矩阵码的编码方法
Pandya et al. Implementation of AL-FEC RaptorQ code over 3GPP E-MBMS network
Mattoussi Design and optimization of al-fec codes: the gldpc-staircase codes
El-Gohary et al. Study the performance of fountain codes in wireless communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12666454

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2008757578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008757578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 108/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010101145

Country of ref document: RU