WO2009042400A1 - Gear oil compositions, methods of making and using thereof - Google Patents
Gear oil compositions, methods of making and using thereof Download PDFInfo
- Publication number
- WO2009042400A1 WO2009042400A1 PCT/US2008/075803 US2008075803W WO2009042400A1 WO 2009042400 A1 WO2009042400 A1 WO 2009042400A1 US 2008075803 W US2008075803 W US 2008075803W WO 2009042400 A1 WO2009042400 A1 WO 2009042400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- viscosity
- gear oil
- pao
- base stock
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 95
- 239000012208 gear oil Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims description 18
- 229920013639 polyalphaolefin Polymers 0.000 claims abstract description 62
- 230000002195 synergetic effect Effects 0.000 claims abstract description 18
- 239000002480 mineral oil Substances 0.000 claims abstract description 16
- 235000010446 mineral oil Nutrition 0.000 claims abstract description 13
- 238000005096 rolling process Methods 0.000 claims abstract description 11
- 239000002199 base oil Substances 0.000 claims description 27
- 239000000654 additive Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 239000002270 dispersing agent Substances 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 239000003963 antioxidant agent Substances 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000003607 modifier Substances 0.000 claims description 4
- 239000003921 oil Substances 0.000 abstract description 31
- -1 polyethylene Polymers 0.000 description 12
- 239000012530 fluid Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 8
- 239000004711 α-olefin Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229940069096 dodecene Drugs 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 150000003014 phosphoric acid esters Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000005069 Extreme pressure additive Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N Nonanedioid acid Natural products OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N Suberic acid Natural products OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N n-Decanedioic acid Natural products OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003017 phosphorus Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 150000003557 thiazoles Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- UAHFGYDRQSXQEB-PWPYQVNISA-N 4-nle-α-msh Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 UAHFGYDRQSXQEB-PWPYQVNISA-N 0.000 description 1
- NBPOOCGXISZKSX-UHFFFAOYSA-N 6-methylheptyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)CCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NBPOOCGXISZKSX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Natural products OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 125000001153 fluoro group Chemical class F* 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229960004232 linoleic acid Drugs 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical compound NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 150000003582 thiophosphoric acids Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
Definitions
- the invention relates generally to compositions suitable for use as lubricants, more particularly for use as gear oils.
- Gear oil is used in industrial applications as well moving equipment such as automobiles, tractors, and the like (collectively referred to as "equipment').
- the gear oil is present as an oil film between the moving parts, e.g., traction drives.
- power is transmitted via the gear oil film.
- a hypoid gear of final reduction gear it is very desirable to form / retain a thick oil film between gears.
- Increased oil film thickness to a sufficient level can protect a friction surface from damages, greatly improving gear and/or bearing fatigue life and load resistance characteristics.
- Traction coefficient is the force required to move a load, divided by the load. The coefficient number expresses the ease with which the lubricant film is sheared. It is desirable for gear oils to have a low traction coefficient as the lower the traction coefficient, the less energy is dissipated due to lubricant shearing.
- the pressure-viscosity coefficient refers to the relationship between the load placed on the oil film (pressure) at the dynamic load zone and the thickness of the oil film (viscosity) at that load, when all other factors (material, temperature, geometry, speed, load) are constant.
- the pressure-viscosity coefficient of a gear oil is a fixed value for an oil film thickness in a given set of conditions (elastohydrodynamic regime, also known as an EHL or EHD regime) based on a mathematical estimation as noted in the American Gear Manufacturers Association (AGMA) Information Sheet AGMA 925-A03. It is desirable for gear oils to have a high PVC value.
- US Patent Publication No. 2007/0027042 discloses a gear oil composition comprising two mineral base oil and / or hydrocarbon-based synthetic oils of different kinematic viscosities, one of 3.5 to 7 mm 2 /s at 100 °C and one of 20- 52 mni 2 /s at 100 0 C.
- US Patent Publication No. 2007/0078070 discloses a gear oil composition comprising at least one Group II base stock and at least one low volatility low viscosity polyalphaolefm base stock.
- the invention relates to a gear oil composition
- a gear oil composition comprising: a) a base oil containing a synergistic mixture of at least a polyalphaolefm base stock with a mineral oil base stock having a kinematic viscosity of 3 to 120 mm 2 /s at 100 0 C.
- a viscosity index of at least 60 b) 0.001 to 30 wt % at least an additive selected from traction reducers, dispersants, viscosity modifiers, pour point depressants, antifoaming agents, antioxidants, rust inhibitors, metal passivators, extreme pressure agents, friction modifiers, and mixtures thereof; wherein the polyalphaolefm is present in a synergistic amount for the gear oil composition to have a traction coefficient at 15 mm 2 /s of 0.030 at a slide to roll ratio of 40 percent or less and a pressure viscosity coefficient of at least 16.0 GPa "1 at 80 °C, 20 Newton load, and 1.1 m/s rolling speed.
- the invention in another aspect, relates to a method for improving the traction coefficient property of a gear oil, the method comprises adding to a base oil typically used for preparing the gear oil a synergistic amount of at least a polyalphaolefm for the gear oil to have a traction coefficient at 15 mm 2 /s. of 0.030 or less.
- the sufficient amount of the polyalphaolefm to be added to the base oil matrix ranges from 5 to 48 wt. % based on the total weight of the gear oil composition.
- Figure 1 is a graph comparing the pressure-viscosity coefficients of the gear compositions of Examples 1-5 at different temperatures.
- Figure 2 is a graph comparing the film thickness of the gear compositions of Examples 1-5 at different temperatures.
- Kinematic viscosity is a measurement in mm 2 /s of the resistance to flow of a fluid under gravity, determined by ASTM D445-06.
- Viscosity index (VI) is an empirical, unit-less number indicating the effect of temperature change on the kinematic viscosity of the oil. The higher the VI of an oil, the lower its tendency to change viscosity with temperature. Viscosity index is measured according to ASTM D 2270-04.
- CCS VIS Cold-cranking simulator apparent viscosity
- Brookf ⁇ eld viscosity is used to determine the internal fluid-friction of a lubricant during cold temperature operation, which can be measured by ASTM D 2983-04.
- "Pour point” is a measurement of the temperature at which a sample of base oil will begin to flow under certain carefully controlled conditions, which can be determined as described in ASTM D 5950-02.
- Auto ignition temperature is the temperature at which a fluid will ignite spontaneously in contact with air, which can be determined according to ASTM 659-78.
- Traction coefficient is an indicator of intrinsic lubricant properties, expressed as the dimensionless ratio of the friction force F and the normal force N, where friction is the mechanical force which resists movement or hinders movement between sliding or rolling surfaces. Traction coefficient can be measured with an
- Molecular weights are determined by ASTM D2503-92(Reapproved 2002). The method uses thermoelectric measurement of vapour pressure (VPO). In circumstances where there is insufficient sample volume, an alternative method of ASTM D2502-04 may be used; and where this has been used it is indicated.
- VPO vapour pressure
- Density is determined by ASTM D4052-96 (Reapproved 2002). The sample is introduced into an oscillating sample tube and the change in oscillating frequency caused by the change in the mass of the tube is used in conjunction with calibration data to determine the density of the sample.
- Component A - Group V Polyalphaolefins (“P AOs'”): Component A of the base oil matrix is a Group IV base oil or a mixture of different Group IV base oils.
- Group IV base stocks consist of polyalphaolefins (“PAOs”), offering superior volatility, thermal stability, oxidative stability and pour point characteristics compared to those of the Group II and III oils with less reliance on additives.
- PAOs comprise a class of hydrocarbons manufactured by the catalytic oligomerization (polymerization to low-molecular-weight products) of linear ⁇ -olefins typically ranging from 1-octene to 1-dodecene, although polymers of lower olefins such as ethylene and propylene can also be used, including copolymers of ethylene with higher olefins.
- High viscosity PAOs may be conveniently made by the polymerization of an ⁇ -olefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- the PAO used is predominantly ⁇ -olefin, that is, linear terminal olefin. By predominantly is meant that the PAO contains over about 50 mole percent of ⁇ -olef ⁇ ns.
- the PAO is a high viscosity PAO, comprising hydrogenated polymers or oligomers of ⁇ -olefins.
- the ⁇ -olefins include, but are not limited to, C 2 to about C 32 ⁇ -olefins, e.g., 1-octene, 1-decene, 1- dodecene and the like.
- the PAO is a ⁇ -olefins selected from the group of poly- 1-octene, poly- 1-decene, and poly- 1-dodecene.
- the PAO products for use in the composition can have a wide range of viscosities, varying from highly mobile fluids of low- viscosity, about 2 mm 2 /s., at 100 °C to higher molecular weight, viscous materials which have viscosities exceeding 1000 mm 2 /s (cSt.) at 100 °C.
- the PAO products have a viscosity ranging from 40 to 500 mm 2 /s (cSt.) at 40 0 C.
- the PAO for use as component A has a viscosity of greater than or equal to about 80 mm 2 /s at 40 0 C and less than or equal to about 20 mm 2 /s at 100 0 C.
- the PAO base stock has a kinematic viscosity @40 °C. in the range of 80-110 mm 2 /s. and a kinematic viscosity @100 °C. of 10-16 mm /s. and a viscosity index of 140-160.
- the PAO base stock is a blend of different PAOs, one having a viscosity of ranging from 30 - 60 mm 2 /s at 40 °C. and the other having a viscosity of 300 - 600 mm 2 /s at 40 0 C, for a PAO blend having a viscosity of 100 mm 2 /s at 40 °C.
- Component B is a mineral oil or mixtures of mineral oils.
- the mineral oil can be any of paraffinic and naphthenic oils, or mixtures thereof.
- Mineral oils can be obtained by subjecting a lubricating oil fraction produced by atmospheric- or vacuum-distilling a crude oil, to one or more refining processes such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid treating, and clay treatment.
- the mineral oil used as Component B may contain an amount of synthetic oils such as poly- ⁇ -olef ⁇ ns, ethylene- ⁇ -olefins copolymer, and ester-based synthetic oils, in an amount of 50 wt. % or less of the total weight of the gear oil composition.
- synthetic oils such as poly- ⁇ -olef ⁇ ns, ethylene- ⁇ -olefins copolymer, and ester-based synthetic oils
- Component B is a mineral oil (or blends of mineral oils and/or hydrocarbon-based synthetic oils) having a kinematic viscosity of 3 to 120 mm 2 /s at 100 °C. and a viscosity index of at least 60.
- Component B is a mineral oil having a kinematic viscosity of 2.3 to 3.4 mm 2 /s at 100 0 C. and a % Cp defined by ASTM D 3238 (R2000) is 70 or higher, ASTM D 3238 is a standard test method for calculation of Carbon distribution and structural group analysis of petroleum oils by the ndM method.
- Component B is a base oil matrix having a kinematic viscosity of less than 80 mm 2 /s at 40 °C, comprising a mixture of: a "low viscosity" mineral or and / or a synthetic oil having and a kinematic viscosity of 3.5 to 7 mm 2 /s at 100 0 C; and a "high viscosity" mineral-based oil and/or hydrocarbon-based synthetic oil having a kinematic viscosity of 20 to 52 mm 2 /s at 100 0 C.
- the base oil matrix contains sufficient amounts of mineral and PAO oils for the base oil matrix to have a kinematic viscosity at 100 0 C. between 10 mm 2 /s and 15 mm 2 /s; a kinematic viscosity at 40 °C. between 95 mm 2 /s and 110 mm /s; and a viscosity index between 95 and 175.
- traction reducers e.g., from 0.5 to 10 wt. %
- traction reducers include ExxonMobil's NorparTM fluids (comprising normal paraffins), IsoparTM fluids (comprising isoparaffins), ExxsolTM fluids (comprising dearomatized hydrocarbon fluids), VarsolTM fluids (comprising aliphatic hydrocarbon fluids), and mixtures thereof.
- the gear oil composition comprises 0.01 to 30 wt. % of one or more additives selected from dispersants, viscosity index improvers, pour point depressants, antifoaming agents, antioxidants, rust inhibitors, metal passivators, extreme pressure agents, friction modifiers, etc., in order to satisfy diversified characteristics, e.g., those related to friction, oxidation stability, cleanness and defoaming, etc.
- dispersants include those based on polybutenyl succinic acid imide, polybutenyl succinic acid amide, benzylamine, succinic acid ester, succinic acid ester-amide and a boron derivative thereof.
- ashless dispersants are typically employed in an amount of 0.05 to 7 wt. %.
- the dispersant are selected from the products of reaction of a polyethylene polyamine, e.g. triethylene tetraamine pentaamine, with a hydrocarbon- substituted anhydride made by the reaction of a polyolefin, having a molecular weight of about 700-1400 with an unsaturated polycarboxylic acid or anhydride, e.g. maleic anhydride.
- Examples of metallic detergent include those containing a sulfonate, phenate, salicylate of calcium, magnesium, barium or the like. Metallic detergents when used, are typically incorporated in an amount of 0.05 to 5 wt. %.
- antioxidants include but are not limited to amine-based ones, e.g., alkylated diphenylamine, phenyl- ⁇ -naphtylamine and alkylated phenyl-x- naphtylamine; phenol-based ones, e.g., 2,6-di-t-butyl phenol, 4,4'-methylenebis-(2,6- di-t-butyl phenol) and isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate; sulfur- based ones, e.g., dilauryl-3,3'-thiodipropionate; and zinc dithiophosphate. When used, antioxidants are incorporated in an amount from 0.05 to 5wt.%. [036] Defoaming agents can be optionally incorporated in an amount of 10-
- defoaming agents include but are not limited to dimethyl polysiloxane, polyacrylate and a fluorine derivative thereof, and poerfluoropolyether.
- Rust inhibitors can be used in an amount from 0 to 30 wt. %. Examples include a fatty acid, alkenylsuccinic acid half ester, fatty acid soap, alkylsulfonate, polyhydric alcohol/fatty acid ester, fatty acid amine, oxidized paraffin and alkylpolyoxyethylene ether.
- Friction modifiers can be incorporated in an amount from 0.05 to 5 wt. %.
- examples include but are not limited to organomolybdenum-based compounds, fatty acids, higher alcohols, fatty acid esters, sulfided esters, phosphoric acid ester, acid phosphoric acid esters, acid phosphorous acid esters and amine salt of phosphoric acid ester.
- Anti-wear and / or extreme pressure agents can be incorporated in an amount from 0.1 to 10 wt. %.
- anti-wear and / or extreme pressure agents include metal-free sulfur containing species including sulfurized olefins, dialkyl polysulfides, diarylpolysulfides, sulfurized fats and oils, sulfurized fatty acid esters, trithiones, sulfurized oligomers of C2-C8 monoolefins, thiophosphoric acid compounds, sulfurized terpenes, thiocarbamate compounds, thiocarbonate compounds, sulfoxides, thiol sulfinates, and the like.
- the composition comprises an acid phosphate as an anti-wear agent, with the agent having the formula RiO(R 2 O)P(O)OH, where R 1 is hydrogen or hydrocarbyl and R 2 is hydrocarbyl.
- Pour point depressant can be incorporated in an amount ranging from 0.05 to 10 wt. %.
- Examples include but are not limited to ethylene/vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkyl styrene, chlorinated wax- naphthalene condensate, vinyl acetate-fumarate ester copolymer, and the like.
- the composition further comprises at least one of a polyoxyalkylene glycol, polyoxyalkylene glycol ether, and an ester as a solubilizing agent in an amount from 10 to 25 wt. %.
- esters of a dibasic acid e.g., phthalic, succinic, alkylsuccinic, alkenylsuccinic, maleic, azelaic, suberic, sebacic, fumaric or adipic acid, or linolic acid dimmer
- alcohol e.g., butyl, hexyl, 2-ethylhexyl, dodecyl alcohol, ethylene glycol, diethylene glycol monoether or propylene glycol
- esters of a monocarboxylic acid of 5 to 18 carbon atoms and polyol e.g., neopentyl glycol, trimethylolpropane, pentaerythritol, dipent
- the composition further comprises at least a metal passivator, and sometimes specifically a copper passivator.
- thiazoles include thiazoles, triazoles, and thiadizoles.
- Specific examples of the thiazoles and thiadiazoles include 2-mercapto-l,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio- 1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-l,3,4-thiadiazoles, 2,5-bis- (hydrocarbylthio)-l,3,4-thiadiazoles, and 2, 5-bis-(hydrocarbyldithio)- 1,3,4- thiadiazoles.
- Other suitable inhibitors of copper corrosion include imidazolines, described above, and the like.
- the composition further comprises at least a viscosity modifier in an amount of 0.50 to 10 wt. %.
- viscosity modifiers include but are not limited to the group of polymethacrylate type polymers, ethylene-propylene copolymers, styrene-isoprene copolymers, hydrated styrene-isoprene copolymers, polyisobutylene, and mixtures thereof.
- the viscosity modifier is a blend of a polymethacryalte having a weight average molecular weight of 25,000 to 150,000 and a shear stability index less than 5 and a polymethacryate having a weight average molecular weight of 500,000 to 1,000,000 and a shear stability index of 25 to 60.
- the gear oil composition of the invention is characterized has having a synergistic amount of mineral and PAO base stock for the composition to have a low traction coefficient, a high pressure-viscosity coefficient, and optimal film thickness properties.
- this synergistic amount of PAO base stock ranges from 5 to 48% (based on the total weight of the gear oil composition).
- the synergistic amount of PAO base stock ranges from 15 to 40 wt. %.
- the synergistic amount of PAO base stock ranges from 25 - 30 wt. %.
- the synergistic amount of PAO base stock is at least 40 wt. %.
- the synergistic amount of PAO base stock ranges from 10 to 35 wt. %.
- the gear oil comprises a blend of 5 to 48 wt. % (based on the total weight of the gear oil composition) of a PAO base stock having a kinematic viscosity at 40 0 C. of 70-120 mm 2 /s., a kinematic viscosity at 100 0 C. of 12 to 18 mm 2 /s., and a viscosity index of 130-160; and 25-75 wt. % of a group II neutral base oil having a kinematic viscosity at 40 0 C. of 40-120 mm 2 /s., a kinematic viscosity at 100°C. of 8 to 14 mm 2 /s., and a viscosity index of 80-120.
- a PAO base stock having a kinematic viscosity at 40 0 C. of 70-120 mm 2 /s., a kinematic viscosity at 100 0 C. of 12 to 18 mm 2
- the gear oil composition having a synergistic combination of mineral and isomerized base oils has a traction coefficient at 15 mm 2 /s. of 0.030 or less, a pressure viscosity coefficient of greater than 15.0 GPa " 1 at 80 0 C, 20 Newton load, and 1.1 m/s rolling speed., and a film thickness of greater than 175 nm at 80 0 C.
- the gear oil composition has a film thickness of at least 160 nm at 90 0 C. or 130 nm at 100 0 C.
- the gear oil composition has a pressure viscosity coefficient of at least 15.0 GPa "1 at a temperature in the range of 70-100 0 C, 20 Newton load, and 1.1 m/s rolling speed.
- the gear oil composition has a traction coefficient at 15 mm 2 /s. of 0.030 or less, at a slide to roll ratio of 40 percent.
- the composition meets SAE J306 specifications for the designated viscosity grades.
- SAE J306 the measured viscosity at 100 0 C (212 0 F) of an SAE 90 gear oil must exceed 13.5 mm 2 /s after 20 hours of testing.
- the composition meets at least one of industry specifications SAE J2360, API GL-5 and API MT-I, and military specification MIL-PRF-2105E quality level.
- Additives used in formulating the gear oil composition can be blended into base oil blends individually or in various sub- combinations. In one embodiment, all of the components are blended concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
- an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
- the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate.
- the composition is prepared by mixing the base oil and the additive(s) at an appropriate temperature, e.g., 60 °C, until homogeneous.
- the composition is useful in any system that include elements or parts containing gears of any kind and rolling element bearings.
- the composition is used as a gear oil for lubricating industrial gears, e.g., spur and bevel, helical and spiral bevel, hypoid, worm, and the like.
- the composition is used in automotive / mobile equipment applications and parts, including aircraft propulsion systems, aircraft transmissions, wind turbine gears, automotive drive trains, transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery.
- the composition is used in wind turbines, plastic extruder gear boxes, and highly loaded gearboxes used in electricity generating systems, or paper, steel, oil, textile, lumber, cement industries, and the like.
- RLOP is ChevronTM 600R group II heavy neutral oil from Chevron Corporation.
- PAO 8 is a highly branched iso-paraffinic polyalphaolefin commercially available from various sources, including Chevron Phillips as SynfluidTM PAO 8 cSt, with a kinematic viscosity at 100 0 C of about 7.8, a kinematic viscosity at 40 0 C of 46.6, a viscosity index of 138, and a pour point of -57 0 C.
- PAO 40 is a highly branched iso-paraffinic polyalphaolefin commercially available from various sources, including Chevron Phillips as SynfluidTM PAO 40 cSt, with a kinematic viscosity at 100 0 C of about 40, a kinematic viscosity at 4O 0 C of 410, a viscosity index of 145, and a pour point of -34 °C.
- Additive X is an industrial gear sulfurphosphorus containing extreme pressure additive commercially available from various sources.
- the kinematic viscosity, refractive index, and density are properties of the base oil matrix blends, measured using methods known in the art.
- the traction coefficients of the gear oils in the Examples are measured / calculated using methods and devices known in the art, e.g., a traction coefficient measurement device disclosed in US Patent No. 6691551 , or a Twin-Disc machine designed by Santotrac, for measuring in the elastohydrodynamic (EHD) regime under high pressure of at least 300,000 psi.
- EHD elastohydrodynamic
- the EHL film thickness is calculated using methods known in the art, e.g., the American Gear Manufacturers Association (AGMA) Information Sheet AGMA 925 equation 65, wherein the EHL film thickness is established by the operating temperature of the components.
- An oil film thickness is determined by the oil's response to the shape, temperature and velocity of the surfaces at the contact inlet. The thickness depends strongly on entraining velocity and oil viscosity.
- the pressure-viscosity coefficient (“PVC”) quantifies the EHL film-generating capability of a gear oil, which can be measured by known methods.
- the PVC can be measured either directly by assessing viscosity as a function of pressure using high-pressure apparatus, or indirectly by measuring film thickness in an optical interferometer.
- PVC is the slope of the graphs plotting the log of viscosity vs. pressure.
- the data establishes that the incorporation of a synergistic amount of PAO base stock into a base oil matrix of gear oil compositions in the prior art, e.g., a base oil matrix containing mineral oil(s), provides a gear oil composition having desired optimal properties of low traction coefficient (e.g., 0.030 or less) and high pressure viscosity coefficients or PVC (e.g., greater than 15.0 at a temperature of 65 0 C. or higher ⁇ typical temperatures of gear components).
- the addition of excessive amounts of PAO may afford decreased PVC values, with compositions containing 50-75% PAO, for PVC values less than comparable pure PAO or pure mineral compositions. Hence, an antagonistic effect was observed in these cases.
- Figures 1 and 2 are graphs comparing the film thicknesses (refractive index corrected) and the pressure-viscosity coefficients of the gear oil examples as a function of temperature.
- a gear oil composition consisting essentially of a Group II neutral oil in the prior art shows a relatively moderate PVC profile that exhibits a downward trend toward about 14.0 GPa "1 or less at 100 °C.
- a gear oil composition consisting essentially of at least a PAO base stock exhibits lower PVC values than the group II-based oil in the range of 60 - 70 °C; its PVC value is about 15 GPa "1 or less at less than 70 0 C, with a PVC value of 14.4 GPa "1 at about 60 0C.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0817479A BRPI0817479A2 (pt) | 2007-09-27 | 2008-09-10 | composição de óleo de engrenagem, e, método para melhorar as propriedade de tração de uma composição de óleo de engrenagem |
JP2010527012A JP2010540718A (ja) | 2007-09-27 | 2008-09-10 | ギヤ油組成物、その製造方法及び使用方法 |
CN200880115874A CN101855323A (zh) | 2007-09-27 | 2008-09-10 | 齿轮油组合物、其制备和使用方法 |
MX2010003300A MX2010003300A (es) | 2007-09-27 | 2008-09-10 | Composiciones de aceite de engranaje, metodos para elaborar y usar las mismas. |
DE112008002574T DE112008002574T5 (de) | 2007-09-27 | 2008-09-10 | Getriebeöl-Zusammensetzungen, Verfahren zu ihrer Herstellung und Verwendung |
CA2700631A CA2700631A1 (en) | 2007-09-27 | 2008-09-10 | Gear oil compositions, methods of making and using thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/863,068 | 2007-09-27 | ||
US11/863,068 US20090088355A1 (en) | 2007-09-27 | 2007-09-27 | Gear Oil Compositions, Methods of Making and Using Thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009042400A1 true WO2009042400A1 (en) | 2009-04-02 |
Family
ID=40509077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/075803 WO2009042400A1 (en) | 2007-09-27 | 2008-09-10 | Gear oil compositions, methods of making and using thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090088355A1 (communication) |
JP (1) | JP2010540718A (communication) |
CN (1) | CN101855323A (communication) |
BR (1) | BRPI0817479A2 (communication) |
CA (1) | CA2700631A1 (communication) |
DE (1) | DE112008002574T5 (communication) |
MX (1) | MX2010003300A (communication) |
WO (1) | WO2009042400A1 (communication) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014149407A1 (en) * | 2013-03-15 | 2014-09-25 | Exxonmobil Research And Engineering Company | Low traction energy conserving fluids containing base stock blends |
CN108977258A (zh) * | 2018-09-04 | 2018-12-11 | 陕西智诚运势石油化工有限公司 | 一种油田抽油机用低倾点微剪切齿轮油及其制备方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007011462A1 (en) | 2005-07-19 | 2007-01-25 | Exxonmobil Chemical Patents Inc. | Lubricants from mixed alpha-olefin feeds |
DE102015205137A1 (de) | 2015-03-23 | 2016-09-29 | Zf Friedrichshafen Ag | Prüfstandsöl |
WO2017034659A1 (en) | 2015-08-21 | 2017-03-02 | Exxonmobil Chemical Patents Inc. | Lubricant base stock blends |
US10059898B2 (en) | 2015-08-21 | 2018-08-28 | Exxonmobil Chemical Patents Inc. | High-viscosity metallocene polyalpha-olefins with high electrohydrodynamic performance |
US10611980B2 (en) | 2015-10-15 | 2020-04-07 | Exxonmobil Chemical Patents Inc. | Lubricant containing high-viscosity metallocene polyalpha-olefins |
US10351488B2 (en) | 2016-08-02 | 2019-07-16 | Exxonmobil Chemical Patents Inc. | Unsaturated polyalpha-olefin materials |
JP6987510B2 (ja) * | 2017-02-21 | 2022-01-05 | 協同油脂株式会社 | 減速機用潤滑剤組成物及び減速機 |
KR102462295B1 (ko) | 2018-03-06 | 2022-11-03 | 발보린 라이센싱 앤드 인텔렉츄얼 프러퍼티 엘엘씨 | 견인 유체 조성물 |
EP3924453B1 (en) | 2019-03-13 | 2022-06-29 | Valvoline Licensing and Intellectual Property LLC | Traction fluid with improved low temperature properties |
CN109825332B (zh) * | 2019-03-14 | 2021-08-06 | 国家能源投资集团有限责任公司 | 煤直接液化油组合物及其制备方法 |
WO2024200849A1 (en) * | 2023-03-31 | 2024-10-03 | Totalenergies Onetech | Industrial gear oil |
WO2024200848A1 (en) * | 2023-03-31 | 2024-10-03 | Totalenergies Onetech | Industrial gear oil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5315053A (en) * | 1985-06-17 | 1994-05-24 | Chevron Research Company | Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same |
US7045055B2 (en) * | 2004-04-29 | 2006-05-16 | Chevron U.S.A. Inc. | Method of operating a wormgear drive at high energy efficiency |
US20060178279A1 (en) * | 2005-02-04 | 2006-08-10 | Sullivan William T | Lubricating fluids with low traction characteristics |
US20060270568A1 (en) * | 2005-05-24 | 2006-11-30 | Fuji Photo Film Co., Ltd. | Lubricant composition and mechanical element |
US20070191239A1 (en) * | 2004-10-22 | 2007-08-16 | Nippon Oil Corporation | Lubricating oil composition for transmission |
US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2081300A (en) * | 1980-07-29 | 1982-02-17 | Exxon Research Engineering Co | Gear or axle oils |
JPH0692593B2 (ja) * | 1985-09-03 | 1994-11-16 | 出光興産株式会社 | 動力伝達用潤滑油組成物 |
JPH0288697A (ja) * | 1988-09-26 | 1990-03-28 | Mitsubishi Oil Co Ltd | トラクションドライブ用潤滑油 |
JPH08225794A (ja) * | 1995-02-20 | 1996-09-03 | Sumitomo Metal Ind Ltd | ステンレス薄鋼板用水溶性圧延油と圧延方法 |
US6644094B1 (en) | 1999-04-13 | 2003-11-11 | Nsk Ltd. | Traction coefficient measurement device |
JP4768903B2 (ja) * | 2000-06-20 | 2011-09-07 | Jx日鉱日石エネルギー株式会社 | 内燃機関用潤滑油組成物 |
US20040176256A1 (en) * | 2002-11-07 | 2004-09-09 | Nippon Oil Corporation | Lubricating oil composition for transmissions |
WO2005028599A1 (en) * | 2003-09-13 | 2005-03-31 | Exxonmobil Chemical Patents Inc. | Lubricating compositions for automotive gears |
JP4907074B2 (ja) * | 2004-10-22 | 2012-03-28 | Jx日鉱日石エネルギー株式会社 | 変速機用潤滑油組成物 |
US8034754B2 (en) * | 2005-03-31 | 2011-10-11 | The Lubrizol Corporation | Fluids for enhanced gear protection |
JP5062650B2 (ja) * | 2005-07-29 | 2012-10-31 | 東燃ゼネラル石油株式会社 | ギヤ油組成物 |
US7838471B2 (en) * | 2005-09-30 | 2010-11-23 | Exxonmobil Chemical Patents Inc. | Blend comprising group II and group IV basestocks |
US8254977B2 (en) * | 2006-01-27 | 2012-08-28 | Qualcomm Incorporated | Centralized medium access control algorithm for CDMA reverse link |
-
2007
- 2007-09-27 US US11/863,068 patent/US20090088355A1/en not_active Abandoned
-
2008
- 2008-09-10 DE DE112008002574T patent/DE112008002574T5/de not_active Ceased
- 2008-09-10 CA CA2700631A patent/CA2700631A1/en not_active Abandoned
- 2008-09-10 BR BRPI0817479A patent/BRPI0817479A2/pt not_active IP Right Cessation
- 2008-09-10 MX MX2010003300A patent/MX2010003300A/es unknown
- 2008-09-10 JP JP2010527012A patent/JP2010540718A/ja active Pending
- 2008-09-10 WO PCT/US2008/075803 patent/WO2009042400A1/en active Application Filing
- 2008-09-10 CN CN200880115874A patent/CN101855323A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5315053A (en) * | 1985-06-17 | 1994-05-24 | Chevron Research Company | Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same |
US7045055B2 (en) * | 2004-04-29 | 2006-05-16 | Chevron U.S.A. Inc. | Method of operating a wormgear drive at high energy efficiency |
US20070191239A1 (en) * | 2004-10-22 | 2007-08-16 | Nippon Oil Corporation | Lubricating oil composition for transmission |
US20060178279A1 (en) * | 2005-02-04 | 2006-08-10 | Sullivan William T | Lubricating fluids with low traction characteristics |
US20060270568A1 (en) * | 2005-05-24 | 2006-11-30 | Fuji Photo Film Co., Ltd. | Lubricant composition and mechanical element |
US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014149407A1 (en) * | 2013-03-15 | 2014-09-25 | Exxonmobil Research And Engineering Company | Low traction energy conserving fluids containing base stock blends |
CN108977258A (zh) * | 2018-09-04 | 2018-12-11 | 陕西智诚运势石油化工有限公司 | 一种油田抽油机用低倾点微剪切齿轮油及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2700631A1 (en) | 2009-04-02 |
BRPI0817479A2 (pt) | 2017-05-16 |
DE112008002574T5 (de) | 2010-07-15 |
CN101855323A (zh) | 2010-10-06 |
JP2010540718A (ja) | 2010-12-24 |
MX2010003300A (es) | 2010-08-23 |
US20090088355A1 (en) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090088356A1 (en) | Gear Oil Compositions, Methods of Making and Using Thereof | |
US20090088355A1 (en) | Gear Oil Compositions, Methods of Making and Using Thereof | |
US7932217B2 (en) | Gear oil compositions, methods of making and using thereof | |
AU2006266482B2 (en) | HVI-PAO in industrial lubricant and grease compositions | |
US8476205B2 (en) | Chromium HVI-PAO bi-modal lubricant compositions | |
JP5324748B2 (ja) | 潤滑油組成物 | |
US20070293408A1 (en) | Hydraulic Fluid Compositions and Preparation Thereof | |
JP2009500489A5 (communication) | ||
US20090298732A1 (en) | Gear oil compositions, methods of making and using thereof | |
WO2009042396A1 (en) | Tractor hydraulic fluid compositions and preparation thereof | |
US20090062162A1 (en) | Gear oil composition, methods of making and using thereof | |
US8853138B1 (en) | Gear lubricant comprising carbon black | |
US20090062163A1 (en) | Gear Oil Compositions, Methods of Making and Using Thereof | |
CA3031433A1 (en) | Driveline fluids comprising api group ii base oil | |
JP5551330B2 (ja) | 潤滑油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880115874.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08834178 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2700631 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/003300 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010527012 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120080025746 Country of ref document: DE |
|
RET | De translation (de og part 6b) |
Ref document number: 112008002574 Country of ref document: DE Date of ref document: 20100715 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08834178 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: PI0817479 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100326 |