WO2009040458A1 - Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente - Google Patents

Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente Download PDF

Info

Publication number
WO2009040458A1
WO2009040458A1 PCT/ES2008/000609 ES2008000609W WO2009040458A1 WO 2009040458 A1 WO2009040458 A1 WO 2009040458A1 ES 2008000609 W ES2008000609 W ES 2008000609W WO 2009040458 A1 WO2009040458 A1 WO 2009040458A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
mesenchymal stem
culture
cells
cell
Prior art date
Application number
PCT/ES2008/000609
Other languages
English (en)
French (fr)
Inventor
Javier Garcia Castro
Daniel Perez Hernandez
René RODRIGUEZ GONZÁLEZ
Manuel MASIP ORDOÑEZ
Ruth Rubio Amador
Original Assignee
Fundacion Progreso Y Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Progreso Y Salud filed Critical Fundacion Progreso Y Salud
Publication of WO2009040458A1 publication Critical patent/WO2009040458A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention falls within the scope of biomedicine. More specifically, it refers to obtaining mesenchymal stem cells by a procedure that uses peripheral blood from mammals or their blood products as a cellular source.
  • Mesenchymal stem cells are a type of adult stem cell with the ability to differentiate into tissues derived from mesoderm and other cell lineages from other embryonic layers.
  • CMM mesenchymal stem cells
  • stromal cells of the MO should be generically referred to as Mesenchymal Stem Cells (reviewed in Beyer Nardi N, da Silva Meirelles L. Experimental Handbook Pharmacology 2006; 174: 249-282).
  • CMMs The differentiation of CMMs is not just a fact described in vitro; in various animal models of tissue damage it has been observed how, in the damaged area, non-hematopoietic cells of the MO or directly CMM appeared, and that these cells were able to differentiate towards the cell lineage of the tissue where they nested (skin, brain, liver, etc ).
  • SP peripheral blood
  • CMM have been detected in total SP although its culture It is also difficult and not very reproducible since only in a small percentage of the samples it is possible to obtain, by traditional methods, and expand for months populations enriched in CMM (Ram ⁇ rez M, Lucia A, Gómez-Gallego F, Esteve-Lanao J, Pérez-Mart ⁇ nez A, Foster C, Andreu AL, Mart ⁇ n MA, Madero L, Arenas J 5 Garc ⁇ a-Castro J. British Journal Sports Medicine 2006; 40: 719-22; Garc ⁇ a-Castro J, Balas A, Ram ⁇ rez M, Pérez- Mart ⁇ nez A, Madero L, González- Vicent M, D ⁇ az MA.
  • CMMs can be obtained similarly from certain body fluids during fetal development, such as amniotic fluid (Tsai MS, Lee JL, Chang YJ, Hwang SM. Human Reproduction.
  • the object of the present invention is a method of obtaining mesenchymal stem cells with pluripotent capacity that uses peripheral blood from mammals or their blood products as a cellular source and that includes the following steps: a) density gradient centrifugation of said peripheral blood or its blood products to obtain mononuclear cells. b) separation of the mononuclear cell fraction obtained in the previous stage and washing it with a saline buffer centrifuging until obtaining a cell pellet. c) resuspension of said cell pellet and cell count d) culture of said cells
  • Said culture is carried out from an initial cell density comprised between 10 6 cells / cm and 5 x 10 6 cells / cm 2 in a chemically defined culture medium derived from the alpha-MEM supplemented with glutamine and with at least 10% of fetal bovine serum and on an extracellular matrix containing integrin ligands.
  • the cellular source is selected from fresh or cryopreserved peripheral blood, fresh or cryopreserved mobilized peripheral blood, mobilized and unmobilized peripheral blood obtained by fresh or cryopreserved apheresis techniques, fresh or cryopreserved CD34-fraction obtained from mobilized peripheral blood or buffy coats.
  • the cellular source is human peripheral blood from an individual who has been given a growth factor capable of mobilizing hematopoietic precursors to peripheral blood (mobilized SP).
  • Said growth factor administered to mobilize hematopoietic precursors is selected from granulocyte colony growth factor (G-CSF) or granulomachophageal colony growth factor (GM-CSF).
  • the steps of density gradient centrifugation, separation of the mononuclear cell fraction and washing with saline buffer as well as resuspension of the cell pellet, all of them prior to culture, are performed in a time range between 5 minutes and 48 hours, preferably between 5 minutes and 6 hours, adding an anticoagulant, preferably heparin, to any of the cellular sources when the pre-culture stages are performed in a period of time greater than 5 minutes.
  • an anticoagulant preferably heparin
  • the mononuclear cell fraction is subjected to cryopreservation before the culture step; in this case, the resuspension of the cell pellet is carried out in a medium composed of 90% fetal bovine serum and 10% of a cryoprotectant, preferably dimethylsulfoxide (DMSO).
  • a cryoprotectant preferably dimethylsulfoxide (DMSO).
  • the chemically defined medium derived from alpha-MEM used for cell culture is selected from DMEM or Stemline Medium (Sigma-Aldrich) supplemented with glutamine and at least 10% fetal bovine serum, preferably using DMEM medium supplemented with 20 % fetal bovine serum, glutamine and antibiotics.
  • the extracellular matrix on which the cell culture is carried out contains receptor ligands with the RGD (arginine-glycine-aspartic) binding motif, being selected from matrigel, fibronectin, vitronectin, Cultrex Basement Membrane Extract or Dextrose-Gelatin-Veronal.
  • the matrix Extracellular on which the cell culture is performed is fibronectin at a concentration between 1 and 10 ⁇ g / cm.
  • the cellular source from which the CMMs are obtained is peripheral blood of fresh mobilized apheresis, the culture being carried out starting at an initial concentration of 1.25x10 cells / cm in DMEM medium supplemented with glutamine and 20% fetal bovine serum and on a fibronectin matrix at a concentration of 6.25 ⁇ g / cm 2 .
  • Table 1 Percentage of efficiency in obtaining CMM of Peripheral Blood according to the culture medium used and the starting cell concentration: 0.25x10 6 cells / cm 2 , 1, 25x10 6 cells / cm 2 or 5x10 6 cells / cm 2 .
  • FIG. 1 A) Adhered cells 48 hours after starting the cultures with Peripheral Blood. It is very common to observe these cell formations with cells of different sizes and morphology. In successful cultures for obtaining CMM, the fibroblast cells on the edges of these "colonies" begin to grow and after two-three passes a homogeneous population of CMM is obtained. B) Cells with a large, elongated and narrow fibroblastoid phenotype, corresponding to the CMM obtained from SP cultures, after obtaining the homogeneous population mentioned above.
  • Figure 2. Flow Cytometry Histograms with expression analysis of CMM markers derived from SP. In each histogram the negative isotype control (filled histogram; red) and two independent CMM samples derived from SP (empty histograms; black and green) markers with the antibody that recognizes the indicated antigen appear.
  • Figure 3. A) Culture of CMM derived from SP subjected to an adipocytic differentiation process. The preadipocytes are observed with the numerous intracellular vacuoles that are stained with the OiI Red solution. B) Culture of CMM derived from SP subjected to an osteogenic differentiation process. The large secretion of extracellular matrix that is typed with the Alizarin Red solution is observed.
  • Figure 4. Percentage of efficiency in obtaining CMM from peripheral blood according to the matrix used to start the culture and the starting cell source: Black, fresh apheresis of mobilized SP; Gray, thawed samples of mobilized SP; White, fresh samples of fraction CD34- obtained from mobilized SP; Scratched black, thawed samples of fraction CD34- obtained from mobilized SP; Striped gray, fresh samples of buffy coats.
  • Black fresh apheresis of mobilized SP
  • Gray thawed samples of mobilized SP
  • White fresh samples of fraction CD34- obtained from mobilized SP
  • Scratched black thawed samples of fraction CD34- obtained from mobilized SP
  • Striped gray fresh samples of buffy coats.
  • the data in this graph are the average of all crops with different media.
  • Figure 5. Percentage of efficiency in obtaining CMM from Peripheral Blood, using DMEM culture medium + 10% FBS, according to the matrix used to start the culture and the starting cell source: Black bars, fresh apheresis of SP mobilized; Gray bars, thawed samples of mobilized SP; White bars, fresh samples of fraction CD34- obtained from mobilized SP; Striped black bars, thawed samples of fraction CD34- obtained from mobilized SP; Gray striped bars, fresh samples of buffy coats.
  • Figure 6. Percentage of efficiency in obtaining CMM from peripheral blood, using DMEM culture medium + 20% FBS, according to the matrix used to start the culture and the starting cell source: Black bars, fresh apheresis of SP mobilized; Gray bars, thawed samples of mobilized SP; White bars, fresh samples of fraction CD34- obtained from mobilized SP; Striped black bars, thawed samples of fraction CD34- obtained from mobilized SP; Gray bars, underlined, fresh samples of buffy coats.
  • Figure 7. Percentage of efficacy in obtaining CMM from peripheral blood, using MSCBM medium (Lonza), according to the matrix used to initiate the culture and of the starting cellular source: Black bars, fresh apheresis of mobilized SP; Gray bars, thawed samples of mobilized SP; White bars, fresh samples of fraction CD34- obtained from mobilized SP; Striped black bars, thawed samples of fraction CD34- obtained from mobilized SP; Gray striped bars, fresh samples of buffy coats.
  • Figure 8. Percentage of efficiency in obtaining peripheral blood CMM, using NH Medium Expansion Medium (Miltenyi), depending on the matrix used to start the culture and the starting cell source: Black bars, fresh apheresis of SP mobilized; Gray bars, thawed samples of mobilized SP; White bars, fresh samples of fraction CD34- obtained from mobilized SP; Striped black bars, thawed samples of fraction CD34- obtained from mobilized SP; Gray striped bars, fresh samples of buffy coats.
  • Black bars fresh apheresis of SP mobilized
  • Gray bars thawed samples of mobilized SP
  • White bars fresh samples of fraction CD34- obtained from mobilized SP
  • Striped black bars thawed samples of fraction CD34- obtained from mobilized SP
  • Gray striped bars fresh samples of buffy coats.
  • Figure 9 Percentage of efficiency in obtaining CMM from peripheral blood, using Stemline medium (Sigma-Aldrich) + 10% FBS, depending on the matrix used to start the culture and the starting cell source: Black bars, fresh apheresis of mobilized SP; Gray bars, thawed samples of mobilized SP; White bars, fresh samples of fraction CD34- obtained from mobilized SP; Striped black bars, thawed samples of fraction CD34- obtained from mobilized SP; Gray striped bars, fresh samples of buffy coats.
  • the invention presents a method for obtaining human mesenchymal stem cells using peripheral blood as a cellular source.
  • the preferred source is fresh mobilized SP
  • the frozen mobilized SP would also be alternative sources, the CD34-obtained fraction of fresh mobilized SP, said frozen fraction, the non-mobilized, fresh and frozen apheresis SP, as well as the buffy coats and the SP without mobilizing.
  • the invention presents a method for obtaining human mesenchymal stem cells with pluripotent capacity comprising:
  • SUBSTITUTE SHEET (RULE 26) 1) Obtaining CMM from peripheral blood samples. This SP is preferable to come from an individual who has been given a growth factor capable of mobilizing SP to hematopoietic precursors (mobilized SP) (Robinson BE, Quesenberry PJ. Am J Med Sci. 1990; 300: 163- 170; US 5199942). Even with the traditional methods of obtaining CMM it has been seen that the probability of obtaining CMM of SP is greater if this blood is mobilized (Lazarus HM, Haynesworth SE, Gerson SL 5 Rosenthal NS, Caplan AI.
  • G-CSF granulocyte colony growth factor
  • CMM Obtaining CMM from peripheral blood samples, preferably without having suffered depletion from other cell populations.
  • Some authors have proposed the positive selection of certain cell populations as a method of obtaining CMM (Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L. Stem Cells. 2005; 23: 1105-1112; Quirici N 5 Soligo D, Bossolasco P, Served F, Lumini C, Deliliers GL. Experimental Hematology 2002; 30: 783-791; Deschaseaux F, Gindraux F, Saadi R 5 Obert L, Chalmers D 5 Herve P.
  • the CD34-fraction has the CMM given the absence of this marker in the CMM (Tondreau T, Lagneaux L 5 Dejeneffe M 5 Delforge A, Massy M 5 Mortier C 5 Bron D. Cytotherapy 2004; 6: 372-379 ; Mageed AS 5 Pietryga DW 5 DeHeer DH 5 West RA. Transplantation. 2007; 83: 1019-1026) so it can be used as an alternative source of CMM.
  • That said culture is preferably carried out on an extracellular matrix.
  • CMMs are found in the MO embedded in a matrix composed of hyaluronic acid and different proteins, some structural such as proteoglycans, collagen or elastin and others more specialized such as fibronectin or laminin. Many cells have specific ligands for each of these components of the extracellular matrix. Little is known about the expression of such ligands in CMM obtained from MO (Docheva D, Popov C, Mutschler W, Schieker M. J CeIl Mol Med. 2007; 11: 21-38; López Ponte A, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J. Stem Cells.
  • That said extracellular matrix is preferably composed of integrin ligands.
  • the CMM of the MO express a large amount of integrins and are capable of growing on substrates coated by ligands of these integrins (Gronthos S, Simmons PJ, Graves SE, Robey PG. Bone. 2001; 28: 174-181).
  • the results obtained indicate that the most optimal matrices to isolate CMM from SP are those that possess receptor ligands with the RGD (arginine-glycine-aspartic) binding motif.
  • That the culture medium is preferably a chemically defined medium derived from alpha-MEM and 9) that said culture medium is supplemented with a percentage greater than 10% of fetal bovine serum.
  • the usual form of CMM growth is alpha-MEM derived media, supplemented with fetal bovine serum in varying percentages, in addition to glutamine and antibiotics.
  • Various attempts have been made to optimize the culture media of CMM, trying to replace the fetal bovine serum with human serum or by the addition of various growth factors (Sotiropoulou PA, Pérez SA, Salagianni M 5 Baxevanis CN, Papamichail M.
  • SP samples were obtained, with prior informed consent, from healthy donors mobilized with G-CSF, whose apheresis were to be used for hematopoietic progenitor transplants in the Hematopoietic Oncohematology and Transplant Service of the Hospital Child Jesus of Madrid.
  • Buffy coat samples were obtained from the Community Transfusion Center of Madrid. Heparinized samples of mobilized SP, or buffy coat, were centrifuged (400 g, 25 minutes, 2O 0 C) in a density gradient using Ficoll-Paque to obtain the mononuclear cell fraction.
  • the mononuclear fraction was washed twice with a saline buffer (centrifuging at 600 g, 5 minutes, room temperature). The cell pellet was resuspended and the number of cells was counted. If the cells were cryopreserved, the cells were resuspended in a 90% solution of fetal bovine serum and 10% DMSO and introduced into cryotubes that were stored in liquid nitrogen. In the case of cultures with "fresh" cells, these cells were seeded in culture jars at a variable initial density according to each case. In the case of experiments where matrices were tested for culture, untreated jars were used for cell culture.
  • the cells were trypsinized (solution with 0.5% trypsin plus 0.2% EDTA), washed (centrifuging at 600 g, 5 minutes, room temperature) and replanted at a concentration of 4x10 3 cells / cm 2 .
  • a homogeneous population of CMM was obtained, which were characterized as set forth below.
  • the concentration of the growth factors was 10 ng / mL of FGF, EGF and HGF.
  • the concentration of the matrices was as follows: 7.5 ⁇ g / cm 2 of matrigel (BD Biosciences, United States) , 6.25 ⁇ g / cm 2 of fibronectin (R&D Systems, United States) ), 6.25 ⁇ g / cm 2 of vitronectin, 0.1 mg / mL of Cultrex Basement Membrane Extract (R&D Systems, United States), 10% Dextrose-Gelatin-Veronal (DGV) (Lonza, Switzerland).
  • the commercial extract "Cultrex Basement Membrane Extract” is a soluble form of purified membrane of Engelbreth-Holm-Swarm tumor. Said extract is gels at 37 ° C to form a reconstituted membrane similar to a physiological stroma.
  • the main components of this extract include laminin I, collagen IV, entactin and heparan sulfate proteoglycan.
  • the commercial buffer Dextrose-Gelatin-Veronal (DGV) is used as a stabilizer for biological samples whose chemical composition is as follows: CaCl 2 20 mg / L MgSO 4 -7H 2 O 120 mg / L NaCl 8,500 mg / L Gelatin 600 mg / L Glucose 10,000 mg / L Veronal sodium 380 mg / L Veronal 580 mg / L
  • CMM of SP In the absence of a specific CMM marker, this cell population is defined by combining various properties that characterize them, such as a defined morphology, a phenotype determined by multiple membrane markers and a marked ability to differentiate into the mesenchymal line using specific means (Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. The International Society for Cellular Therapy position statement Cytotherapy. 2006; 8: 315-317).
  • the characterization of CMM obtained from SP was performed based on the following criteria:
  • CMMs are characterized by having the ability to differentiate, with specific means, towards cell types such as adipocytes, osteocytes and chondriocytes. In order to assess said capacity, confluent cultures of CMM were incubated for two-three weeks in defined media for each type of differentiation consisting of:
  • Adipogenic differentiation IMDM supplemented with 0.5 mM IBMX, 1 ⁇ M hydrocortisone and 0.1 mM indomethacin.
  • Chondrogenic differentiation the micromassage technique was used, the cells were centrifuged at 1,000 rpm for 5 minutes and the supernatant was removed which was replaced by a specific medium composed of DMEM supplemented with 0.1 ⁇ M dexamethasone, 50 ⁇ g / mL proline, 10 ng / ml TGF- ⁇ 1 and 50 mg / mL premix STIs from BD Biosciences (contains BSA, insulin, transferrin and linoleic acid; BD Biosciences, United States).
  • differentiated cultures were analyzed by histological techniques and / or with molecular markers. Histologically, the cells were stained with specific dyes, such as the "Alizarin Red” for the Osteocytes, the “OiI Red O” for the adipocytes and the “Alcian blue” for the chondriocytes.
  • CMM cultures were analyzed by flow cytometry techniques. Basically, the cells in culture were trypsinized for 5 minutes (solution with 0.5% trypsin plus 0.2% EDTA), washed with saline buffer (centrifuging at 600 g, 5 minutes, room temperature) and resuspended in 100 ⁇ L of saline buffer. In different tubes the cells were incubated with 10 ⁇ L of monoclonal antibodies bound to various fluorochromes, such as CD34, CD19, CD14, HLA-DR, CD73, CD90, CD105, CD166 (BD Biosciences, United States).
  • fluorochromes such as CD34, CD19, CD14, HLA-DR, CD73, CD90, CD105, CD166 (BD Biosciences, United States).
  • the cells were incubated with immunoglobulins of the same isotype bound to the same fluorochromes. After 45 minutes incubation at 4 0 C in the dark, cells were washed and resuspended in 200 ⁇ L of saline buffer. The analysis of cell populations was performed on a flow cytometer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

El objeto de la presente invención es un procedimiento de obtención de células madre mesenquimales con capacidad pluripotente que utiliza sangre periférica de mamíferos o sus hemoderivados como fuente celular. Las células madre mesenquimales son un tipo de células madre adultas con capacidad para diferenciarse hacia tejidos derivados del mesodermo y otros linajes celulares de otras capas embrionarias.

Description

TITULO
Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente
SECTOR Y OBJETO DE LA INVENCIÓN
La presente invención se encuadra en el ámbito de la biomedicina. Más específicamente, se refiere a la obtención de células madre mesenquimales mediante un procedimiento que utiliza sangre periférica de mamíferos o sus hemoderivados como fuente celular. Las células madre mesenquimales son un tipo de célula madre adulta con capacidad de diferenciarse hacia tejidos derivados del mesodermo y otros linajes celulares de otras capas embrionarias.
ESTADO DE LA TÉCNICA
Un tipo de célula madre adulta, especialmente prometedor en aplicaciones terapéuticas, son las denominadas células madre mesenquimales (CMM). En 1.974, Friedenstein y colaboradores describieron una población de células, aisladas de la médula ósea (MO), con adherencia innata al plástico y capacidad de diferenciarse en osteoblastos, adipocitos y condrocitos, denominándolas por ello células estromales de la médula ósea (Friedenstein AJ, Chaüakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Transplantation 1974; 17: 331-340). Desde entonces numerosos grupos de investigación han aislado poblaciones celulares de otros tejidos sólidos (tejido adiposo, cartílago, piel, etc..) con características muy similares a las células estromales de la MO e idéntica capacidad de diferenciación hacía tejidos derivados del mesodermo, de ahí que las células estromales de la MO pasasen a denominarse genéricamente Células Madre Mesenquimales (revisado en Beyer Nardi N, da Silva Meirelles L. Handbook Experimental Pharmacology 2006;174:249-282). Posteriormente se ha demostrado que también poseen capacidad de diferenciación hacia linajes celulares de otras capas embrionarias, e incluso presentan capacidad de injertar in vivo en fetos pre-inmunes de ternera y diferenciarse in situ en células maduras de múltiples órganos (Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM5 Deans R, Marshak DR, Flake AW. Nature Medicine 2000; 6: 1282- 12862).
La diferenciación de las CMM no es sólo un hecho descrito in vitro; en diversos modelos animales de daño tisular se ha observado cómo, en la zona dañada, aparecían células no hematopoyéticas de la MO o bien directamente CMM, y que estas células eran capaces de diferenciarse hacía el linaje celular del tejido donde anidaban (piel, cerebro, hígado, etc...)(Prockop DJ, Gregory CA, Spees JL. Proc Nati Acad Sci U S A. 2003; 100:11917-11923). Esto demuestra el potencial de las CMM para reparar y regenerar múltiples órganos gracias a su capacidad de movilizarse desde sus reservónos naturales hasta la sangre periférica (SP) y de ahí extravasarse hacia el lugar donde se localice el daño. Esta movilización implicaría la presencia de CMM en sangre, al menos de forma transitoria. Efectivamente diversos artículos han mostrado la posibilidad de aislar CMM de sangre periférica, de sangre de cordón umbilical e incluso de sangre fetal (Revisado en Zvaifier NJ, Marinova- Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Arthritis Research 2000; 2: 477-488 y en He Q, Wan C, Li G. Stem Cells 2007; 25: 69-77). Además investigadores del Hospital Universitario de Salamanca han aislado CMM de MO de pacientes sometidos a trasplante hematopoyético y en dos casos han observado como un cierto porcentaje de las CMM de MO eran de origen del donante, demostrando indirectamente que éstas se hallaban en la aféresis con la que se realizó el trasplante (Villaron EM, Almeida J, Lopez-Holgado N, Alcoceba M, Sánchez- Abarca LI, Sánchez-Guijo FM, Alberca M, Perez-Simon JA, San Miguel JF, Del Cañizo MC. Haematologica. 2004; 89:1421-1427). Sin embargo, otros autores han sido incapaces de reproducir estos hallazgos de CMM en SP (Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS5 Caplan AI. Bone Marrow Transplantation 1995; 16: 557-564; Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B5 Hows JM. British Journal Haematology 2003; 121: 368-374 y las anteriores revisiones). Al revisar la bibliografía al respecto se observa un punto común en todos los trabajos que es la dificultad de aislar CMM de SP, con los métodos disponibles en la actualidad (revisado en Roufosse CA5 Direkze NC, Otto WR5 Wright NA. International Journal Biochemistry CeIl Biology 2004; 36: 585-597 y las anteriores revisiones). Se han detectado CMM en SP total aunque su cultivo igualmente resulta dificultoso y poco reproducible ya que sólo en un pequeño porcentaje de las muestras se consigue obtener, por los métodos tradicionales, y expandir durante meses poblaciones enriquecidas en CMM (Ramírez M, Lucia A, Gómez-Gallego F, Esteve-Lanao J, Pérez-Martínez A, Foster C, Andreu AL, Martín MA, Madero L, Arenas J5 García-Castro J. British Journal Sports Medicine 2006; 40: 719-22; García-Castro J, Balas A, Ramírez M, Pérez-Martínez A, Madero L, González- Vicent M, Díaz MA. Journal Pediatric Hematology Oncology 2007; 29: 388-392). En la actualidad el proceso de obtención de CMM humanas de diversos tejidos sólidos se basa en el mismo principio, la adherencia innata de las CMM al plástico. En general, tras disgregar el tejido y obtener una muestra celular en suspensión se obtiene una fracción enriquecida en células mononuclares, utilizando gradientes de densidad (ficoll, percoll...). Esta fracción se suele depositar directamente sobre frascos de cultivo celular estándar con medios generalistas a los que se añade suero bovino fetal. Al día siguiente se retiran las células no adheridas y se mantiene el cultivo de células adheridas hasta que este se enriquece en CMM (Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Transplantation 1974; 17: 331-340; WO 0183709; WO 0134775; WO 2005121317; WO 2005015151). Además las CMM se pueden obtener de forma similar a partir de ciertos fluidos corporales durante el desarrollo del feto, tales como líquido amniótico (Tsai MS, Lee JL, Chang YJ, Hwang SM. Human Reproduction. 2004; 19:1450- 1456; In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH. Blood. 2003; 102:1548-1459; WO 2006019357; US 2005118712), sangre fetal (Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Blood. 2001; 98: 2396-2402) y sangre de cordón umbilical (Erices A, Conget P, Minguell JJ. British Journal Haematology 2000; 109: 235-242; Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Blood. 2004; 103: 1669-1675; Bieback K, Kern S, Kluter H, Eichler H. Stem Cells. 2004; 22: 625-634; WO 2006113881; WO 2006121043; WO 2007015546; WO 03070922; US 2007105221). Sin embargo durante la etapa adulta la obtención de CMM de fluidos corporales humanos resulta mucho más complicada y menos reproducible. Con la metodología tradicional, anteriormente comentada, ocasionalmente se puede obtener CMM de sangre periférica movilizada y con mucha menor probabilidad con SP no movilizada (Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Arthritis Research 2000; 2: 477-488; He Q, Wan C, Li G. Stem CeUs. 2007; 25: 69-77; Lazaras HM, Haynesworth SE, Gerson SL5 Rosenthal NS, Caplan AI. Bone Marrow Transplantation 1995; 16: 557-564; Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Ho ws JM. British Journal Haematology 2003; 121 : 368-374; WO 0022097; WO 9901145). Para obtener una mayor cantidad de CMM de SP sería necesario disponer de un sistema que permitiese aislar CMM de una manera reproducible.
EXPLICACIÓN DE LA INVENCIÓN El objeto de la presente invención es un procedimiento de obtención de células madre mesenquimales con capacidad pluripotente que utiliza sangre periférica de mamíferos o sus hemoderivados como fuente celular y que incluye las siguientes etapas: a) centrifugación en gradiente de densidad de dicha sangre periférica o sus hemoderivados para obtener células mononucleares. b) separación de la fracción celular mononuclear obtenida en la etapa anterior y lavado de la misma con un buffer salino centrifugando hasta obtención de un pellet celular. c) resuspensión de dicho pellet celular y recuento de células d) cultivo de dichas células
Dicho cultivo se realiza a partir de una densidad celular inicial comprendida entre 106 células/cm y 5 x 106 células/cm2 en un medio de cultivo químicamente definido derivado del alpha-MEM suplementado con glutamina y con al menos un 10% de suero fetal bovino y sobre una matriz extracelular que contenga ligandos de integrinas. La fuente celular se selecciona entre sangre periférica fresca o criopreservada, sangre periférica movilizada fresca o criopreservada, sangre periférica movilizada y sin movilizar obtenida por técnicas de aféresis fresca o criopreservada, fracción CD34- fresca o criopreservada obtenida de sangre periférica movilizada o buffy coats. Preferentemente, la fuente celular es sangre periférica humana procedente de un individuo al cuál se le ha administrado un factor de crecimiento capaz de movilizar los precursores hematopoyéticos a sangre periférica (SP movilizada). Dicho factor de crecimiento administrado para movilizar los precursores hematopoyéticos se selecciona entre factor de crecimiento de colonias de granulocitos (G-CSF) o factor de crecimiento de colonias granulomacrofágicas (GM-CSF).
Las etapas de centrifugación en gradiente de densidad, separación de la fracción celular mononuclear y lavado con buffer salino así como la resuspensión del pellet celular, todas ellas previas al cultivo, se realizan en un rango de tiempo comprendido entre 5 minutos y 48 horas, preferentemente entre 5 minutos y 6 horas, adicionándose un anticoagulante, preferentemente heparina, a cualquiera de las fuentes celulares cuando las etapas previas al cultivo se realizan en un periodo de tiempo superior a 5 minutos.
En un modo alternativo de realización de la invención, la fracción celular mononuclear se somete a criopreservación antes de la etapa de cultivo; en este supuesto, la resuspensión del pellet celular se lleva a cabo en un medio compuesto por un 90% de suero fetal bovino y un 10% de un crioprotector, preferentemente dimetilsulfóxido (DMSO).
El medio químicamente definido derivado del alpha-MEM utilizado para el cultivo de las células se selecciona entre DMEM o Stemline Médium (Sigma-Aldrich) suplementados con glutamina y al menos un 10% de suero fetal bovino, utilizándose preferentemente medio DMEM suplementado con un 20% de suero fetal bovino, glutamina y antibióticos.
La matriz extracelular sobre la que se realiza el cultivo de las células contiene ligandos de receptores con el motivo de unión RGD (arginina-glicina-aspártico), seleccionándose entre matrigel, fibronectina, vitronectina, Cultrex Basement Membrane Extract o Dextrosa-Gelatina-Veronal. Preferentemente, la matriz extracelular sobre la que se realiza el cultivo de las células es fibronectina a una concentración entre 1 y 10 μg/cm .
En un modo preferente de realización del procedimiento objeto de la presente invención, la fuente celular a partir de la cual se obtienen las CMM es sangre periférica de aféresis movilizada fresca, realizándose el cultivo partiendo de una concentración inicial de 1,25 x 10 células/cm en medio DMEM suplementado con glutamina y un 20% de suero fetal bovino y sobre una matriz de fibronectina a una concentración de 6,25 μg/cm2.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Tabla 1. Porcentaje de eficacia en la obtención de CMM de Sangre Periférica en función del medio de cultivo utilizado y de la concentración celular de partida: 0,25x106 células/cm2, 1 ,25x106 células/cm2 ó 5x106 células/cm2.
Figura 1.- A) Células adheridas a las 48 horas de iniciar los cultivos con Sangre Periférica. Es muy habitual observar estas formaciones celulares con células de diferente tamaño y morfología. En los cultivos exitosos para la obtención de CMM las células fibroblastoides de los bordes de estas "colonias" comienzan a crecer y tras dos-tres pases se obtiene una población homogénea de CMM. B) Células con fenotipo fibroblastoide, alargadas y estrechas, de gran tamaño, que corresponden a las CMM obtenidas de cultivos de SP, tras obtener la población homogénea antes mencionada.
Figura 2.- Histogramas de Citometría de Flujo con análisis de expresión de marcadores de CMM derivadas de SP. En cada histograma aparece el control negativo del isotipo (histograma relleno; rojo) y dos muestras independientes de CMM derivadas de SP (histogramas vacíos; negro y verde) marcadores con el anticuerpo que reconoce el antígeno indicado. Figura 3.- A) Cultivo de CMM derivadas de SP sometidas a un proceso de diferenciación adipocítica. Se observan los preadipocitos con las numerosas vacuolas intracelulares que se tiñen con la solución OiI Red. B) Cultivo de CMM derivadas de SP sometidas a un proceso de diferenciación osteogénica. Se observan la gran secreción de matriz extracelular que se tifie con la solución Alizarin Red.
Figura 4.- Porcentaje de eficacia en la obtención de CMM de sangre periférica en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Negro, aféresis frescas de SP movilizada; Gris, muestras descongeladas de SP movilizada; Blanco, muestras frescas de la fracción CD34- obtenida de SP movilizada; Negro rayado, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Gris rayado, muestras frescas de buffy coats. Los datos de esta gráfica son la media de todos los cultivos con diferentes medios.
Figura 5.- Porcentaje de eficacia en la obtención de CMM de Sangre Periférica, utilizando medio de cultivo DMEM + 10% FBS, en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Barras negras, aféresis frescas de SP movilizada; Barras grises, muestras descongeladas de SP movilizada; Barras blancas, muestras frescas de la fracción CD34- obtenida de SP movilizada; Barras negras rayadas, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Barras grises rayadas, muestras frescas de buffy coats.
Figura 6.- Porcentaje de eficacia en la obtención de CMM de sangre periférica, utilizando medio de cultivo DMEM + 20% FBS, en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Barras negras, aféresis frescas de SP movilizada; Barras grises, muestras descongeladas de SP movilizada; Barras blancas, muestras frescas de la fracción CD34- obtenida de SP movilizada; Barras negras rayadas, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Barras grises.rayadas, muestras frescas de buffy coats.
Figura 7.- Porcentaje de eficacia en la obtención de CMM de sangre periférica, utilizando medio MSCBM (Lonza), en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Barras negras, aféresis frescas de SP movilizada; Barras grises, muestras descongeladas de SP movilizada; Barras blancas, muestras frescas de la fracción CD34- obtenida de SP movilizada; Barras negras rayadas, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Barras grises rayadas, muestras frescas de buffy coats.
Figura 8.- Porcentaje de eficacia en la obtención de CMM de sangre periférica, utilizando medio NH Expansión Médium (Miltenyi), en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Barras negras, aféresis frescas de SP movilizada; Barras grises, muestras descongeladas de SP movilizada; Barras blancas, muestras frescas de la fracción CD34- obtenida de SP movilizada; Barras negras rayadas, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Barras grises rayadas, muestras frescas de buffy coats.
Figura 9.- Porcentaje de eficacia en la obtención de CMM de sangre periférica, utilizando medio Stemline (Sigma-Aldrich) + 10% FBS, en función de la matriz utilizada para iniciar el cultivo y de la fuente celular de partida: Barras negras, aféresis frescas de SP movilizada; Barras grises, muestras descongeladas de SP movilizada; Barras blancas, muestras frescas de la fracción CD34- obtenida de SP movilizada; Barras negras rayadas, muestras descongeladas de la fracción CD34- obtenida de SP movilizada; Barras grises rayadas, muestras frescas de buffy coats.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La invención presenta un método para obtener células madre mesenquimales humanas utilizando sangre periférica como fuente celular. Aunque en dicho método la fuente preferida es SP movilizada fresca, también serían fuentes alternativas la SP movilizada congelada, la fracción CD34-obtenida de SP movilizada fresca, dicha fracción congelada, la SP de aféresis sin movilizar, fresca y congelada, así como los buffy coats y la SP sin movilizar. Más en detalle, la invención presenta un método para obtener células madre mesenquimales humanas con capacidad pluripotente que comprende:
HOJA DE SUSTITUCIÓN (REGLA 26) 1) Obtención de CMM a partir de muestras de sangre periférica. Esta SP es preferible que proceda de un individuo al cuál se le ha administrado un factor de crecimiento capaz de movilizar a SP a los precursores hematopoyéticos (SP movilizada) (Robinson BE, Quesenberry PJ. Am J Med Sci. 1990; 300: 163-170; US 5199942). Incluso con los métodos tradicionales de obtención de CMM se ha visto que la probabilidad de obtener CMM de SP es mayor si esta sangre es movilizada (Lazarus HM, Haynesworth SE, Gerson SL5 Rosenthal NS, Caplan AI. Bone Marrow Transplantation 1995; 16: 557-564; Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. British Journal Haematology 2003; 121: 368-374; Fernandez M, Simón V, Herrera G, Cao C, Del Favero H, Minguell JJ. Bone Marrow Transplantation 1997; 20: 265-271; Kassis I, Zangi L5 Rivkin R5 Levdansky L5 Samuel S5 Marx G, Gorodetsky R. Bone Marrow Transplantation 2006; 37: 967-976; Tondreau T5 Meuleman N5 DeIf orge A, Dejeneffe M5 Leroy R5 Massy M5 Mortier C, Bron D, Lagneaux L. Stem Cells. 2005; 23:1105-1112; WO 0022097; WO 9901145). En la práctica clínica la movilización de los pacientes se realiza habitualmente con el factor de crecimiento de colonias de granulocitos (G-CSF), aunque experimentalmente se ha visto que otros factores de crecimiento podrían teóricamente movilizar CMM a SP (Son BR5 Marquez-Curtis LA5 Kucia M, Wysoczynski M5 Turner AR5 Ratajczak J5 Ratajczak MZ, Janowska-Wieczorek A. Stem Cells. 2006; 24:1254-1264; EP 1779865).
2) Obtención de CMM a partir de muestras de sangre periférica, donde el proceso se realiza preferiblemente entre las seis primeras horas tras la obtención de la SP. Las muestras biológicas en suspensión pueden ser criopreservadas durante años sin sufrir alteraciones en su funcionalidad. Esta propiedad también se da en las CMM congeladas en soluciones que contengan algún agente crioprotector, como por ejemplo el dimetilsulfóxido al 10% (Lee MW5 Choi J5 Yang MS, Moon YJ5 Park JS, Kim HC5 Kim YJ. Biochem Biophys Res Commun. 2004; 320: 273-278; Lee MW, Yang MS5 Park JS5 Kim HC5 Kim YJ5 Choi J. Int J Hematol. 2005; 81: 126-30; WO9739104). Sin embargo la mayor manipulación de la muestra durante el proceso de congelación puede alterar la calidad de la muestra (Almici C5 Carlo-Stella C5 Wagner JE, Rizzoli V. Acta Haematologica 1996; 95: 171-175; Meyer TP, Hofmann B, Zaisserer J, Jacobs VR, Fuchs B5 Rapp S, Weinauer F, Burkhart J. Cytotherapy. 2006; 8: 265-276) y por lo tanto la eficacia de obtención de las CMM.
3) Obtención de CMM a partir de muestras de sangre periférica, preferiblemente sin haber sufrido depleción de otras poblaciones celulares. Algunos autores han propuesto la selección positiva de ciertas poblaciones celulares como método de obtención de CMM (Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L. Stem Cells. 2005; 23:1105-1112; Quirici N5 Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Experimental Hematology 2002; 30: 783-791; Deschaseaux F, Gindraux F, Saadi R5 Obert L, Chalmers D5 Herve P. British Journal Haematology 2003; 122: 506-517; Letchford J5 Cardwell AM, Stewart K, Coogans KK, Cox JP5 Lee M, Beresford JN, Perry MJ, Welham MJ. Journal Immunology Methods 2006; 308: 124-137). Sin embargo ningún otro grupo, ha podido reproducir estos resultados. Por otro lado, en la práctica clínica los trasplantes de progenitores hematopoyéticos en ocasiones se realizan utilizando la subpoblación celular CD34+ que posee la mayor parte de los progenitores hematopoyéticos y ciertas células endoteliales (Demirer T. Adv Exp Med Biol. 2003; 534: 107-118. Asahara T, Kawamoto A. Am J Physiol CeIl Physiol. 2004; 287: 572-579). Por lo tanto, la fracción CD34- posee las CMM dada la ausencia de este marcador en las CMM (Tondreau T, Lagneaux L5 Dejeneffe M5 Delforge A, Massy M5 Mortier C5 Bron D. Cytotherapy 2004; 6: 372-379; Mageed AS5 Pietryga DW5 DeHeer DH5 West RA. Transplantation. 2007; 83: 1019-1026) por lo que puede ser utilizada como fuente alternativa de CMM.
4) Obtención de células mononucleares de SP utilizando gradientes de densidad. La utilización de gradientes de densidad de diferentes productos comerciales (ficoll, percoll, sucrosa, etc) es habitual para obtener células mononucleares como método de obtención de poblaciones celulares enriquecidas en células precursoras, incluyendo las CMM (Pittenger MF5 Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA5 Simonetti DW, Craig S, Marshak DR. Science. 1999; 284: 143-147 ; EP 1767617; JP2006149375; WO 9901145). 5) Cultivo de dichas células mononucleares donde la densidad celular de inicio sea preferentemente mayor de 0,25x106 células/cm2 y menor de 5x106 células/cm2. La concentración celular de inicio en los cultivos es muy variable entre los distintos grupos no existiendo un consenso real sobre la cantidad óptima de partida de células para iniciar un cultivo de CMM, aunque en general se parte de una cantidad muy elevada de células incluso mayor a 10 células/cm (US 5942225).
6) Que dicho cultivo se realice preferentemente sobre una matriz extracelular. Las CMM se encuentran en la MO embebidas en una matriz compuesta por ácido hialurónico y distintas proteínas, algunas estructurales como los proteoglicanos, el colágeno o la elastina y otras más especializadas como la fibronectina o la laminina. Muchas células poseen ligandos específicos de cada uno de estos componentes de la matriz extracelular. Se conoce poco sobre la expresión de dichos ligandos en CMM obtenidas de MO (Docheva D, Popov C, Mutschler W, Schieker M. J CeIl Mol Med. 2007; 11: 21-38; López Ponte A, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J. Stem Cells. 2007: Mar 29) y apenas nada sobre estos ligandos en CMM derivadas de SP. Es obvio pensar que las CMM que circulan por la sangre presenten un perfil de moléculas de adhesión muy diferente a las CMM presentes en tejidos sólidos, donde se encuentran rodeadas de la matriz extracelular. Por ello, para optimizar la obtención de CMM de SP hemos utilizado proteínas que mimeticen una matriz a la que las CMM de SP pudiesen anclarse con más afinidad y así mejorar la adhesión y posterior crecimiento de estas células.
7) Que dicha matriz extracelular esté compuesta preferentemente de ligandos de integrinas. Las CMM de la MO expresan una gran cantidad de integrinas y son capaces de crecer en substratos recubiertos por ligandos de estas integrinas (Gronthos S, Simmons PJ, Graves SE, Robey PG. Bone. 2001; 28: 174-181). Nada se conoce de la expresión de integrinas en CMM obtenidas de SP. Los resultados obtenidos indican que las matrices más óptimas para aislar CMM de SP son aquellas que posean ligandos de receptores con el motivo de unión RGD (arginina-glicina- aspártico). 8) Que el medio de cultivo sea preferentemente un medio químicamente definido derivado del alpha-MEM y 9) que dicho medio de cultivo se suplemente con un porcentaje superior al 10% de suero fetal bovino. La forma habitual de crecimiento de las CMM son medios derivados del alpha-MEM, suplementados con suero fetal bovino en porcentajes variables, además de glutamina y antibióticos. Se han realizado diversos intentos en la optimización de los medios de cultivo de CMM, intentado sustituir el suero fetal bovino por suero humano o por la adición de diversos factores de crecimiento (Sotiropoulou PA, Pérez SA, Salagianni M5 Baxevanis CN, Papamichail M. Stem Cells 2006; 24: 462-471; Berger MG, Veyrat- Masson R, Rapatel C, Descamps S, Chassagne J, Boiret-Dupre N. Stem Cells 2006; 24: 2888-2890; JP 2006325445; US 2005013804; WO 2006022091; WO 9639487) con resultados diversos. Varias casas comerciales venden medios específicos para cultivar CMM. En general estos medios están optimizados para el cultivo de CMM de MO y en los experimentos realizados por los autores de la presente invención han funcionado peor que el medio químicamente definido suplementado con suero bovino, aunque el porcentaje de éste es importante en la reproducibilidad y eficacia del sistema de obtención de CMM de SP.
EXPOSICIÓN DETALLADA DE UN MODO DE REALIZACIÓN DE LA INVENCIÓN
Materiales y métodos.
1.- Obtención de CMM de SP: Las muestras de SP se obtuvieron, previo consentimiento informado, de donantes sanos movilizados con G-CSF, cuyas aféresis iban a ser utilizadas para trasplantes de progenitores hematopoyéticos en el Servicio de Oncohematología y Trasplante Hematopoyético del Hospital Niño Jesús de Madrid. Las muestras de buffy coat se obtuvieron del Centro de Transfusiones de la Comunidad de Madrid. Las muestras heparinizadas de SP movilizada, o los buffy coat, se centrifugaron (400 g, 25 minutos, 2O0C) en un gradiente de densidad utilizando Ficoll-Paque para obtener la fracción de células mononucleares. Una vez obtenida la fracción mononuclear se lavó dos veces con un buffer salino (centrifugando a 600 g, 5 minutos, temperatura ambiente). El pellet celular se resuspendió y se contó el número de células. Si las células se criopreservaron, las células se resuspendieron en una solución al 90% de suero fetal bovino y 10% de DMSO y se introdujo en criotubos que se almacenaron en nitrógeno líquido. En el caso de los cultivos con células "frescas", estas células se sembraron en frascos de cultivo a una densidad inicial variable según cada caso. En el caso de los experimentos donde se ensayaban matrices para el cultivo se utilizaron frascos no tratados para cultivo celular. Se cultivaron en medios específicos para cultivo de CMM comerciales o en Dulbecco's Modified Eagles Médium (DMEM; Sigma, Estados Unidos), con o sin suplementar con suero fetal bovino (FBS; Lonza, Suiza), manteniéndose en un incubador a 370C, en una atmósfera de 5% de CO2 y saturada de humedad. Tras 24 horas de cultivo se eliminaron las células no adheridas a la placa de cultivo y se añadió medio fresco. Los cultivos se lavaron con buffer fosfato y se reemplazó el medio por medio fresco dos veces a la semana. Cuando el cultivo alcanzaba la semiconfluencia (70-80% de la superficie de la placa), las células se tripsinizaron (solución con 0,5% tripsina más 0,2% EDTA), se lavaron (centrifugando a 600 g, 5 minutos, temperatura ambiente) y replaquearon a una concentración de 4x103 células/cm2. En los cultivos donde se obtuvieron CMM a partir del tercer pase se obtenía una población homogénea de CMM, que se caracterizaron como se expone a continuación.
En los cultivos en los que se utilizó, la concentración de los factores de crecimiento fue de 10 ng/mL de FGF, EGF y HGF. En los cultivos en los que se utilizó, la concentración de las matrices fue la siguiente: 7,5 μg/cm2 de matrigel (BD Biosciences, Estados unidos), 6,25 μg/cm2 de fibronectina (R&D Systems, Estados Unidos), 6,25 μg/cm2 de vitronectina, 0,1 mg/mL de Cultrex Basement Membrane Extract (R&D Systems, Estados Unidos), Dextrosa-Gelatina-Veronal (DGV) al 10% (Lonza, Suiza).
El extracto comercial "Cultrex Basement Membrane Extract" es una forma soluble de membrana purificada de tumor Engelbreth-Holm-Swarm. Dicho extracto se gelifica a 37°C para formar una membrana reconstituida similar a un estroma fisiológico. Los principales componentes de este extracto incluyen la laminina I, el colágeno IV, la entactina y el proteoglican heparan-sulfato.
El buffer comercial Dextrosa-Gelatina-Veronal (DGV) se utiliza como un estabilizador de las muestras biológicas cuya composición química es la siguiente: CaCl2 20 mg/L MgSO4-7H2O 120 mg/L NaCl 8.500 mg/L Gelatina 600 mg/L Glucosa 10.000 mg/L Veronal sódico 380 mg/L Veronal 580 mg/L
2.- Caracterización fenotípica y funcional de CMM de SP: Ante la ausencia de un marcador específico de CMM, esta población celular se define combinando diversas propiedades que les caracterizan, como son una morfología definida, un fenotipo determinado por múltiples marcadores de membrana y una marcada capacidad de diferenciación hacia línea mesenquimal utilizando medios específicos (Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8: 315-317). La caracterización de CMM obtenidas de SP se realizó basándose en los siguientes criterios:
- Caracterización morfológica: células con fenotipo fibroblastoide, alargadas y estrechas, de gran tamaño, con mucha eucromatina nuclear y en el citoplasma abundantes lisosomas. Su tiempo de duplicación, aunque variable entre muestras, rondába las 30-35 horas.
- Caracterización por citometría de flujo: el perfil que se obtuvo fue de una población homogénea con el siguiente perfil: células negativas para los antígenos CD34, CD 19, CD14, HLA-DR y positivas para CD73, CD90, CD105, CD166. - Caracterización funcional: las CMM se caracterizan por poseer la capacidad de diferenciarse, con medios específicos, hacia tipos celulares como adipocitos, osteocitos y condriocitos. Con el fin de evaluar dicha capacidad, cultivos confluentes de CMM se incubaron durante dos-tres semanas en medios definidos para cada tipo de diferenciación que consisten en:
* Diferenciación osteogénica: IMDM suplementado con 0,1 μM dexametasona, 10 mM β-glicerolfosfato y 0,2 mM de ácido ascórbico.
* Diferenciación adipogénica: IMDM suplementado con 0,5 mM IBMX, 1 μM hidrocortisona y 0,1 mM indometacina. * Diferenciación condrogénica: se utilizó la técnica de micromasa, se centrifugaron las células a 1.000 rpm durante 5 minutos y se retiró el sobrenadante que fue sustituido por un medio específico compuesto por DMEM suplementado con 0,1 μM dexametasona, 50 μg/mL prolina, 10 ng/ml TGF-βl y 50 mg/mL ITS premix de BD Biosciences (contiene BSA, insulina, transferrina y ácido linoleico; BD Biosciences, Estados Unidos).
Posteriormente, se analizaron los cultivos diferenciados por técnicas histológicas y/o con marcadores moleculares. Histológicamente las células se tiñeron con colorantes específicos, como son el "Alizarin Red" para los Osteocitos, el "OiI Red O" para los adipocitos y el " Alcian blue" para los condriocitos.
3.- Caracterización por Citometría de Flujo: los cultivos de CMM se analizaron por técnicas de citometría de flujo. Básicamente, las células en cultivo se tripsinizaron durante 5 minutos (solución con 0,5% tripsina más 0,2% EDTA), se lavaron con buffer salino (centrifugando a 600 g, 5 minutos, temperatura ambiente) y se resuspendieron en 100 μL de buffer salino. En tubos distintos las células se incubaron con 10 μL de anticuerpos monoclonales unidos a diversos fluorocromos, como son CD34, CD19, CD14, HLA-DR, CD73, CD90, CD105, CD166 (BD Biosciences, Estados Unidos). Como control negativo las células se incubaron con inmunoglobulinas del mismo isotipo unidas a los mismos fluorocromos. Tras 45 minutos de incubación a 40C en oscuridad las células se lavaron y se resuspendieron en 200 μL de buffer salino. El análisis de las poblaciones celulares se realizó en un citómetro de flujo.
Resultados. Para obtener el mejor protocolo de obtención de CMM de SP se realizaron cultivos celulares con las siguientes variables, combinándolas todas ellas:
I) Origen de la muestra: muestras frescas de SP movilizada, muestras frescas de la fracción CD34- obtenida de SP movilizada, muestras descongeladas de SP movilizada, muestras descongeladas de la fracción CD34- obtenida de SP movilizada, muestras de buffy coats frescas y descongeladas.
II) Densidad inicial del cultivo celular: 0,25x106 células/cm2, 1,25x106 células/cm2 ó 5xl06 células/cm2.
III) Medio de cultivo: DMEM + 10%FBS, DMEM + 20%FBS, MSCBM + MSCGM (Lonza, Suiza), NH Expansión Médium (Miltenyi Biotecnology, Alemania) o
Stemline Médium (Sigma-Aldrich, Estados Unidos) + 10% FBS.
IV) Matriz de soporte en la placa: placa con tratamiento estándar (poliestireno tratado con plasma en condiciones de vacío), Cultrex Basement Membrane Extract, DGV, fibronectina, vitronectina o matrigel. V) Suplemento de factores de crecimiento: ninguno, factor de crecimiento de fibroblastos (FGF), factor de crecimiento epitelial (EGF) o factor de crecimiento hepático (HGF).
Para definir que un cultivo había resultado exitoso en la obtención de CMM se siguió el siguiente criterio: obtener un cultivo homogéneo de células con una morfología
(figura 1), fenotipo (figura 2) y capacidad de diferenciación (figura 3) características de las CMM y que se pudiese expandir, al menos, desde un pocilio de cultivo de 2 cm2 hasta un frasco de cultivo de 75 cm2.
Los resultados obtenidos mostraron que la densidad inicial celular es crítica para obtener CMM de SP. Así, los mejores resultados obtenidos, con independencia del medio de cultivo utilizado y de otros parámetros, siempre resultaban con una concentración inicial de 1,25x106 células/cm2 (tabla 1). Es por ello que el resto de los experimentos se realizaron con esta concentración inicial.
Para optimizar la adhesión de las CMM circulantes en la SP se realizaron experimentos con placas de cultivo recubiertas de distintas matrices y partiendo de distintas fuentes celulares. Como se observa en la figura 4, los cultivos en los que se utiliza SP movilizada fresca tienen una mayor eficacia que el resto. Además existía una gran diferencia entre los distintos substratos empleados, mostrándose la más eficaz la matriz de fibronectina. En esta figura 4 se muestra la media de todos los cultivos, con independencia del medio de cultivo empleado. Desglosando los resultados en función del medio de cultivo utilizado se observaron aún diferencias más notorias (figuras 5-9), obteniendo, a igual de tipo de muestra y donante, concentración celular y substrato, eficacias del 100% con DMEM+20%FBS versus 0% con NH Expansión Médium.
Tabla 1.
Dosis \ Nfedio DWBW + 10% FBS DMEM + 20% FBS MSC-BM NH EM Steirfine + 10% FBS
0,25 0 0 0 ND ND 1.2 14,5 30,5 1,5 3,5 16,5 5 0 5,5 1,5 ND ND

Claims

REIVINDICACIONES
1.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente que utiliza sangre periférica de mamíferos o sus hemoderivados como fuente celular y que incluye las siguientes etapas: a) centrifugación en gradiente de densidad de dicha sangre periférica o sus hemoderivados para obtener células mononucleares. b) separación de la fracción celular mononuclear obtenida en la etapa anterior y lavado de la misma con un buffer salino centrifugando hasta obtención de un pellet celular. c) resuspensión de dicho pellet celular y recuento de células d) cultivo de dichas células caracterizado porque dicho cultivo se realiza a partir de una densidad celular inicial comprendida entre 106 células/cm2 y 5 x 106 células/cm2 en un medio de cultivo químicamente definido derivado del alpha-MEM suplementado con glutamina y con al menos un 10% de suero fetal bovino y sobre una matriz extracelular que contenga ligandos de integrinas.
2.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 1, caracterizado porque la fuente celular se selecciona entre sangre periférica fresca o criopreservada, sangre periférica movilizada fresca o criopreservada, sangre periférica movilizada y sin movilizar obtenida por técnicas de aféresis fresca o criopreservada, fracción CD34- fresca o criopreservada obtenida de sangre periférica movilizada o buffy coats
3.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 2, caracterizado porque la fuente celular es preferentemente sangre periférica humana procedente de un individuo al cuál se le ha administrado un factor de crecimiento capaz de movilizar los precursores hematopoy éticos a sangre periférica (SP movilizada).
4.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 3, caracterizado porque el factor de crecimiento administrado para movilizar los precursores hematopoyéticos se selecciona entre factor de crecimiento de colonias de granulocitos (G-CSF) o factor de crecimiento de colonias granulomacrofágicas (GM-CSF) .
5.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 1 a 4, caracterizado porque las etapas de centrifugación en gradiente de densidad, separación de la fracción celular mononuclear y lavado con buffer salino así como la resuspensión del pellet celular, todas ellas previas al cultivo, se realizan en un rango de tiempo comprendido entre 5 minutos y 48 horas, preferentemente entre 5 minutos y 6 horas.
6.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 5, caracterizado porque se adiciona un anticoagulante, preferentemente heparina, a cualquiera de las fuentes celulares cuando las etapas previas al cultivo se realizan en un periodo de tiempo superior a 5 minutos.
7.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 5 y 6, caracterizado porque la fracción celular mononuclear se somete a criopreservación antes de la etapa de cultivo.
8.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 7, caracterizado porque cuando la fracción celular mononuclear se somete a criopreservación antes de la etapa de cultivo, la resuspensión del pellet celular se lleva a cabo en un medio compuesto por un 90% de suero fetal bovino y un 10% de un crioprotector, preferentemente dimetilsulfóxido (DMSO).
9.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 1 a 8, caracterizado porque el medio química- mente definido derivado del alpha-MEM utilizado para el cultivo de las células se selecciona entre DMEM o Stemline Médium (Sigma-Aldrich) suplementados con glutamina y al menos un 10% de suero fetal bovino.
10.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 1-9, caracterizado porque el medio utilizado para el cultivo de las células es DMEM suplementado con un 20% de suero fetal bovino, glutamina y antibióticos.
11.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 1-10, caracterizado porque la matriz extracelular sobre la que se realiza el cultivo de las células contiene ligandos de receptores con el motivo de unión RGD (arginina-glicina-aspártico).
12.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 11, caracterizado porque la matriz extracelular sobre la que se realiza el cultivo de las células se selecciona entre matrigel, fibronectina, vitronectina, Cultrex Basement Membrane Extract o Dextrosa-Gelatina- Veronal.
13.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según la reivindicación 12, caracterizado porque la matriz extracelular sobre la que se realiza el cultivo de las células es fibronectina a una concentración comprendida entre 1 y 10 μg/cm2.
14.- Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente según las reivindicaciones 1-13, caracterizado porque la fuente celular es sangre periférica de aféresis movilizada fresca, realizándose el cultivo partiendo de una concentración inicial de 1,25 x 10 células/cm en medio DMEM suplemen- tado con glutamina y un 20% de suero fetal bovino y sobre una matriz de fibronectina a una concentración de 6,25 μg/cm2.
PCT/ES2008/000609 2007-09-26 2008-09-23 Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente WO2009040458A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702640 2007-09-26
ES200702640A ES2326772B1 (es) 2007-09-26 2007-09-26 Procedimiento de obtencion de celulas madre mesenquimales con capacidad pluripotente.

Publications (1)

Publication Number Publication Date
WO2009040458A1 true WO2009040458A1 (es) 2009-04-02

Family

ID=40510773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000609 WO2009040458A1 (es) 2007-09-26 2008-09-23 Procedimiento de obtención de células madre mesenquimales con capacidad pluripotente

Country Status (2)

Country Link
ES (1) ES2326772B1 (es)
WO (1) WO2009040458A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1020480A5 (nl) * 2012-10-01 2013-11-05 Global Stem Cell Technology Werkwijze voor de isolatie van mesenchymale stamcellen uit bloed van zoogdieren, en gebruik ervan.
CN109644981A (zh) * 2017-10-12 2019-04-19 深圳华云生物科技发展有限公司 间充质干细胞冻存液、制备方法及其冻存方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2384790B1 (es) * 2010-12-10 2013-05-20 Instituto De Salud Carlos Iii Células madre mesenquimales aisladas a partir de sangre periférica.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001145A1 (en) * 1997-07-03 1999-01-14 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
WO2000022097A2 (en) * 1998-10-14 2000-04-20 The Mathilda And Terence Kennedy Institute Of Rheumatology Periferal blood mensenchymal precursor cells
WO2001021766A2 (en) * 1999-09-23 2001-03-29 Cell Science Therapeutics Methods and devices for obtaining non-hematopoietic lineage cells from hematopoietic progenitor cells
US20060171928A1 (en) * 2003-03-18 2006-08-03 Masataka Kuwana Monocyte-origin multipotent cell momc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001145A1 (en) * 1997-07-03 1999-01-14 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
WO2000022097A2 (en) * 1998-10-14 2000-04-20 The Mathilda And Terence Kennedy Institute Of Rheumatology Periferal blood mensenchymal precursor cells
WO2001021766A2 (en) * 1999-09-23 2001-03-29 Cell Science Therapeutics Methods and devices for obtaining non-hematopoietic lineage cells from hematopoietic progenitor cells
US20060171928A1 (en) * 2003-03-18 2006-08-03 Masataka Kuwana Monocyte-origin multipotent cell momc

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KASSIS, I. ET AL.: "Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads.", BONE MARROW TRANSPLANTATION., vol. 37, 2006, pages 967 - 976 *
ZHAO, Y. ET AL.: "A human peripheral blood monocyte-derived subset acts as pluripotent stem cells.", PROC. NAT. ACAD. USA., vol. 100, no. 5, 4 March 2003 (2003-03-04), pages 2426 - 2431 *
ZVAIFLER, N.J. ET AL.: "Mesenchymal precursor cells in the blood of normal individuals.", ARTHRITIS RES., vol. 2, no. 6, 2000, pages 477 - 488 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1020480A5 (nl) * 2012-10-01 2013-11-05 Global Stem Cell Technology Werkwijze voor de isolatie van mesenchymale stamcellen uit bloed van zoogdieren, en gebruik ervan.
WO2014053420A1 (en) * 2012-10-01 2014-04-10 Global Stem Cell Technology Method for the isolation of mesenchymal stem cells from mammalian blood and use thereof
CN109644981A (zh) * 2017-10-12 2019-04-19 深圳华云生物科技发展有限公司 间充质干细胞冻存液、制备方法及其冻存方法

Also Published As

Publication number Publication date
ES2326772B1 (es) 2010-07-26
ES2326772A1 (es) 2009-10-19

Similar Documents

Publication Publication Date Title
ES2535042T3 (es) Identificación y aislamiento de células multipotentes de tejido mesenquimal no osteocondral
Bobis et al. Mesenchymal stem cells: characteristics and clinical applications.
Díaz-Prado et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine
Bieback et al. Mesenchymal stromal cells from umbilical cord blood
Galderisi et al. The gap between the physiological and therapeutic roles of mesenchymal stem cells
JP7571109B2 (ja) 改善された幹細胞組成物
US8945920B2 (en) Method for culturing cells derived from the adipose tissue and uses thereof
CA2563518C (en) Multi-lineage progenitor cells
Abdallah et al. The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives
Bieback et al. Clinical protocols for the isolation and expansion of mesenchymal stromal cells
Pal et al. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow‐derived mesenchymal stem cells before transplantation
WO2011101834A1 (en) A method for obtaining mesenchymal stem cells, media, methods and composition thereof
Hao et al. Mesenchymal stromal cells for cell therapy: besides supporting hematopoiesis
CN101668848A (zh) 来自口腔粘膜的多能自体干细胞和使用方法
Soukup et al. Mesenchymal stem cells isolated from the human bone marrow: cultivation, phenotypic analysis and changes in proliferation kinetics
Stolzing et al. Effect of age and diabetes on the response of mesenchymal progenitor cells to fibrin matrices
ES2326772B1 (es) Procedimiento de obtencion de celulas madre mesenquimales con capacidad pluripotente.
Qin et al. The adipose-derived lineage-negative cells are enriched mesenchymal stem cells and promote limb ischemia recovery in mice
Yelick et al. Mesenchymal stem cells
US20240052313A1 (en) Chondrogenic human mesenchymal stem cell (msc) sheets
Schabort et al. Potential myogenic stem cell populations: sources, plasticity, and application for cardiac repair
Ma et al. Isolation and biological characterization of umbilical cord mesenchymal stem cells derived from goose embryo
Schäfer et al. Basic research and clinical applications of non-hematopoietic stem cells, 4–5 April 2008, Tübingen, Germany
WO2021065971A1 (ja) 凍結保存細胞の希釈用緩衝液
Bosch et al. Mesenchymal stem cells: Applications in cell and gene therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08834251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08834251

Country of ref document: EP

Kind code of ref document: A1