WO2009040406A2 - Verfahren und anordnung zum redundanten anoden-sputtern mit einer dual-anoden-anordnung - Google Patents
Verfahren und anordnung zum redundanten anoden-sputtern mit einer dual-anoden-anordnung Download PDFInfo
- Publication number
- WO2009040406A2 WO2009040406A2 PCT/EP2008/062881 EP2008062881W WO2009040406A2 WO 2009040406 A2 WO2009040406 A2 WO 2009040406A2 EP 2008062881 W EP2008062881 W EP 2008062881W WO 2009040406 A2 WO2009040406 A2 WO 2009040406A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- arrangement
- anodes
- power supply
- cathode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3438—Electrodes other than cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3444—Associated circuits
Definitions
- the invention relates to a method for redundant anode sputtering with a dual-anode arrangement in which two anodes are alternately operated alternately as an anode of the plasma discharge and as a cathode for self-cleaning during an etching time and the cathode of Plas ⁇ maentladung recurring to reduce static Charge is briefly reversed polarity.
- the invention also relates to an arrangement for redundant anode sputtering with a dual-anode arrangement, comprising a vacuum chamber with a chamber wall and arranged therein a cathode and a first and a second anode, by means of an H-bridge circuit having a first bridge branch and comprises a second bridge branch, whereby both bridge branches together on the one side a plus
- a gas discharge between a cathode and an anode is ignited at a pressure of a few ⁇ bar.
- the material of the target, which forms the exposed to the Gasentla ⁇ dung surface of the cathode is eroded by an intense ion bombardment.
- the sputtering process creates a cloud of material vapor which is deposited on all parts in the vacuum chamber.
- the aim of the construction of sputtering systems is to collect as much of this sputtered material on the substrate and to get as little as possible on the anodes. Since frequently, intentionally or unintentionally, form poorly conducting or insulating materials in the Ab ⁇ divorce, the current flow over the coated anodes ⁇ surface with time is considerably impaired, so that the stability of the gas discharge until complete extinguishment is disturbed.
- PCT application WO2007 / 051461 has described the control of the etching effect.
- This document contains two versions, with a medium-frequency generator or with a DC power supply (DC power supply), which distributes the power in pulses to the cathode and the two anodes.
- DC power supply DC power supply
- one of the solutions with a DC power supply a classic H-bridge circuit of four switches, in particular consisting of Insulated Gate Bipolar Transistors (IGBT) before, on the one hand, a polarity reversal of the anodes (electrodes) and on the other a short-term polarity reversal of the cathode Extracting electrons from the rest of the plasma and cause the discharge.
- IGBT Insulated Gate Bipolar Transistors
- DC power supplies can be operated with the principle of redundant anode sputtering with two anodes (dual anodes).
- this requires the use of switches which effect the controlled switching of the currents at the anodes but are protected against the load by the DC power supplies.
- US Pat. No. 5,427,669 discloses a pulsed DC power supply (pulse power supply) which temporarily reverses the polarity of the cathode so that any charges on the cathode are discharged.
- the short-term polarity reversal of the cathode generates High dv / dt values (voltage gradient) in the circuit create a dangerous load for the semiconductor switches commonly used in jumpers.
- short-term means that the duration of the switching pulse is less than the time until a next switching pulse, ie the time in which the cathode voltage is negative.
- this circuit is also intended for redundant anon sputtering, it is not intended for use with dual anodes.
- the procedural solution of the problem provides that the cathode and the anodes are fed from a pulse power supply, the polarity reversal of the cathode voltage is effected from the pulse power supply, at any time at least one anode at positive potential and temporarily during an etching time, the other anode to negative potential ⁇ tial lies.
- this allows the discharge of the cathode by the power supply and also an anode sputtering with dual anodes.
- the voltage at the cathode is reversed by means of the pulse power supply with a voltage pulse whose pulse duration is less than half the time to the next pulse, preferably of an order of magnitude smaller.
- the coating rate applied to them differs.
- the anodes require different etching rates.
- Criterion for the necessary etching time is the Beschich ⁇ tion of the anodes, which is visible by interference colors on the electrodes, so that in one embodiment of the invention, the etching times of the anodes are stopped when interference colors occur on the anodes.
- the frequency of the change between the etching time and the application of an anode voltage to the anodes is in the order of magnitude of 1 Hz to 10 kHz.
- the frequency for the change between etching and anode action is dictated by the properties of the coating formed at the anode. If it is a case of poorly conducting layers, eg ZnO, then an alternating frequency of a few Hertz is sufficient. If it is a case of highly insulating layers, then work with an alternating frequency in the range of a few 10 kHz. The frequency must be so high that the layer formed on the anode does not yet lead to complete isolation and thus prevents etching. On the other hand entste ⁇ hen with increasing frequency change unnecessary switching losses in the H-bridge circuit. The frequency of 40 kHz is for SiO2 a good compromise.
- the arrangement-side solution of the problem provides that the DC power supply is designed as a pulse power supply and the H-bridge circuit is connected to a clock generator and is so in operative connection with the pulse power supply, that at any time at least one anode is at a positive potential ,
- a center of the first bridge branch with the first anode and a center of the second Brü ⁇ ckenzweiges is connected to the second anode, that the plus terminal of the H-bridge circuit having a positive output of the pulse power supply and the minus terminal of the H-bridge circuit is connected to the minus output of the pulse power supply to provide a voltage effecting a cleaning etching action of the anodes during the etching time.
- a further embodiment provides that the center of the first bridge branch is connected to the first anode via a first inductance and the center of the second bridge branch is connected to the second anode via a second inductance.
- the two inductors serve to dampen any repercussions from the anode plasma into the switches.
- the arrangement according to the invention can also be formed in that from the first anode to the chamber wall, a first series connection of a diode (Vhzhl) and a resistor (Rzhl) and from the second anode to the chamber wall, a second series circuit of a diode (Vhzh2) and a a resistor (Rzh2) is connected.
- the diode resistance combinations Vzhl-Rzhl or Vzh2-Rzh2 serve on the one hand as a starting aid, because a gas discharge in an arrangement with not visible from the cathode anodes ignites bad, and on the other hand together with the inductances L2 and L3 as damping against positive feedback from the plasma.
- the positive output of the pulse power supply is capacitively connected via a capacitor to the vacuum chamber, in particular the chamber wall. This prevents damaging transients (voltage spikes) from occurring in the positive branch.
- Another embodiment provides that between the positive terminal and the minus terminal, a capacitor is connected, wherein the negative terminal is connected via a rectifier chain and an inductance to the negative output of the pulse power supply and between rectifier chain and positive terminal a Series circuit of a capaci ⁇ gate and a resistor is connected, wherein by the inductance, the capacitor (C2) and the resistor, a very rapid voltage changes damping combination is formed.
- the capacitor of the charging is charged to the peak voltage applied to the outputs of the pulse power supply, via a rectifier chain Vll ... Vln.
- the combina ⁇ tion Ll - R2 - C2 is the damping of very fast voltage changes, so that the rectifier chain VIl ... VIn is protected from very rapid voltage changes.
- FIG. 2 shows a voltage-time profile of the arrangement according to FIG. 1
- Fig. 3 is a schematic representation of an inventive arrangement
- an H-bridge circuit (Vl ... V4) with semiconductor switches is used, as they are used today in many converters and power supplies.
- each bridge branch denoted by Al or A2 in FIG. 3, is connected to the first anode 1 and second anode 2 via the inductors L2 and L3.
- the two inductors L2 and L3 serve to dampen any repercussions from the anode plasma into the switches (Vl ... V4).
- the diode-resistor combinations Vzhl-Rzhl or Vzh2-Rzh2 serve on the one hand as a starting aid, because a gas discharge in an arrangement with not visible from the cathode 3 of anodes 1; 2 bad ignites, and on the other hand, together with the inductors L2 and L3 as a damping against positive feedback from the plasma.
- the positive terminal 4 of the H-bridge circuit (Vl ... V4) is connected directly to the positive output 5 of the pulse power supply 6.
- Vl ... V4 The positive terminal 4 of the H-bridge circuit (Vl ... V4) was connected directly to the positive output 5 of the pulse power supply 6.
- the negative terminal 9 of the H-bridge circuit (Vl ... V4) must be supplied with the voltage which is a cleaning of the anodes 1; 2 effected during the etching time. Since it is intended to work without synchronization between the activation of the H-bridge circuit (Vl... V4) and the pulse power supply 6, a storage capacitor C3 was introduced, which is connected to the positive terminal 4 and the negative terminal 9 of the H-bridge circuit (Vl ... V4) was connected. This capacitor C3 is charged via a rectifier chain Vl r ..Vl n to the peak voltage applied to the output terminals of the pulse power supply.
- the combination Ll - R2 - C2 serves to dampen very fast voltage changes, so that the rectifier chain VIl ... VIn is protected against very fast voltage changes.
- the control 13 of the H-bridge circuit (Vl ... V4) has a special feature. . It must, as shown by the timing diagram in Figure 4 will always guarantee that the connection we ⁇ tendonss an anode 1; 2 with the plus output 5 of the pulse ⁇ power supply 6 is ensured.
- the timing diagram shows that just prior to time 1, the second anode 2 ("anode 2") carries the main current of the discharge while the first anode 1 ("anode 1") is at negative potential and thus cleaned. Thus, up to time 1, the switches V2 and V3 are conductive and Vl and V4 are blocked.
- the switch V2 is disabled, so that the negative potential at the first anode 1 ("anode 1") is reduced, because of the now missing electrical connection takes the first anode 1 ("anode 1") briefly a potential which is close to the plasma potential.
- the switch Vl is conductive. Now both the switch Vl and the switch V3 are conductive, so that both anodes 1; 2 are involved in the power supply of the discharge. This is recognizable by the decrease of the anode voltage.
- Anode 2 (“anode 2”) is used. At time 3, the etching of the second anode 2 (“anode 2”) is terminated again by closing switch ⁇ ter V4 and after the switching delay V3 conductive, so again both anodes 1; 2 guide the discharge flow.
- the first anode 1 (“anode 1") is again set to negative potential so that it is etched until time 5.
- the procedure at time 5 corresponds to that of time 1.
- the coating rate applied to them differs.
- the anodes 1; 2 different etching rates.
- the control 13 of the H-bridge circuit is performed so that different etching times time points 2-3 and time ⁇ points 4-5 are set. Because of the switching processes, the maximum etching time is slightly less than the maximum Ano ⁇ denzeit. When the etching time is shortened, the time in which both anodes are connected in parallel as the anode of discharge increases.
- the criterion for the necessary etching time is the coating of the anodes 1; 2, caused by interference colors on the anodes 1; 2 becomes visible.
- complete blank etching is avoided, because there is a risk of ablation of anode material.
- the etch time is adjusted to produce a slight coating that allows stable operation between two maintenance cycles.
- the frequency for the change between etching and anode action is determined by the properties of the anode at the anode 1; 2 resulting coating dictated. If it is poorly conductive layers, eg ZnO, then reaches a Senfre acid sequence from a few hertz. If it is a case of highly insulating layers, then work with an alternating frequency in the range of a few 10 kHz. The frequency must be so high that the on the anode 1; 2 resulting layer does not lead to a complete isolation and thus prevents the etching. On the other hand, with increasing AC frequency unnecessary switching losses occur in the H-bridge. The frequency of 40 kHz is a good compromise for SiO2.
- the vacuum chamber 7 is evacuated via a vacuum pump 14. By means of a gas inlet 15, it can be re-ventilated who ⁇ .
- the substrate 16 to be coated is arranged in the vacuum chamber 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/679,736 US8980072B2 (en) | 2007-09-25 | 2008-09-25 | Method and arrangement for redundant anode sputtering having a dual anode arrangement |
CH00424/10A CH700002B1 (de) | 2007-09-25 | 2008-09-25 | Verfahren und Anordnung zum redundanten Anoden-Sputtern mit einer Dual-Anoden-Anordnung. |
DE112008002242.9T DE112008002242B4 (de) | 2007-09-25 | 2008-09-25 | Verfahren und Anordnung zum redundanten Anoden-Sputtern mit einer Dual-Anoden-Anordnung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007045863 | 2007-09-25 | ||
DE102007045863.2 | 2007-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009040406A2 true WO2009040406A2 (de) | 2009-04-02 |
WO2009040406A3 WO2009040406A3 (de) | 2009-06-04 |
Family
ID=40260843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/062881 WO2009040406A2 (de) | 2007-09-25 | 2008-09-25 | Verfahren und anordnung zum redundanten anoden-sputtern mit einer dual-anoden-anordnung |
Country Status (5)
Country | Link |
---|---|
US (1) | US8980072B2 (de) |
CH (1) | CH700002B1 (de) |
DE (1) | DE112008002242B4 (de) |
PL (1) | PL217715B1 (de) |
WO (1) | WO2009040406A2 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2439763A2 (de) | 2010-10-08 | 2012-04-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung | Magnetron-Vorrichtung und Verfahren zum gepulsten Betreiben einer Magnetron-Vorrichtung |
DE102016116762A1 (de) | 2016-09-07 | 2018-03-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abscheiden einer Schicht mittels einer Magnetronsputtereinrichtung |
US10373811B2 (en) | 2015-07-24 | 2019-08-06 | Aes Global Holdings, Pte. Ltd | Systems and methods for single magnetron sputtering |
US10910203B2 (en) | 2015-04-27 | 2021-02-02 | Advanced Energy Industries, Inc. | Rate enhanced pulsed DC sputtering system |
US11049702B2 (en) | 2015-04-27 | 2021-06-29 | Advanced Energy Industries, Inc. | Rate enhanced pulsed DC sputtering system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9595424B2 (en) * | 2015-03-02 | 2017-03-14 | Lam Research Corporation | Impedance matching circuit for operation with a kilohertz RF generator and a megahertz RF generator to control plasma processes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5427669A (en) * | 1992-12-30 | 1995-06-27 | Advanced Energy Industries, Inc. | Thin film DC plasma processing system |
DE4438463C1 (de) * | 1994-10-27 | 1996-02-15 | Fraunhofer Ges Forschung | Verfahren und Schaltung zur bipolaren pulsförmigen Energieeinspeisung in Niederdruckplasmen |
WO1997042647A1 (en) * | 1996-05-08 | 1997-11-13 | Advanced Energy Industries, Inc. | Pulsed direct current power supply configurations for generating plasmas |
DE19702187A1 (de) * | 1997-01-23 | 1998-07-30 | Fraunhofer Ges Forschung | Verfahren und Einrichtung zum Betreiben von Magnetronentladungen |
WO2007051461A1 (de) * | 2005-11-04 | 2007-05-10 | Von Ardenne Anlagentechnik Gmbh | Verfahren und anordnung zum redundanten anoden-sputtern |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4042289A1 (de) * | 1990-12-31 | 1992-07-02 | Leybold Ag | Verfahren und vorrichtung zum reaktiven beschichten eines substrats |
DE4233720C2 (de) * | 1992-10-07 | 2001-05-17 | Leybold Ag | Einrichtung für die Verhinderung von Überschlägen in Vakuum-Zerstäubungsanlagen |
SE9704607D0 (sv) * | 1997-12-09 | 1997-12-09 | Chemfilt R & D Ab | A method and apparatus for magnetically enhanced sputtering |
US5897753A (en) | 1997-05-28 | 1999-04-27 | Advanced Energy Industries, Inc. | Continuous deposition of insulating material using multiple anodes alternated between positive and negative voltages |
DE19949394A1 (de) * | 1999-10-13 | 2001-04-19 | Balzers Process Systems Gmbh | Elektrische Versorgungseinheit und Verfahren zur Reduktion der Funkenbildung beim Sputtern |
JP3635538B2 (ja) * | 2002-07-05 | 2005-04-06 | 株式会社京三製作所 | プラズマ発生用直流電源装置 |
SG193877A1 (en) | 2005-03-24 | 2013-10-30 | Oerlikon Trading Ag | Hard material layer |
US7517437B2 (en) * | 2006-03-29 | 2009-04-14 | Applied Materials, Inc. | RF powered target for increasing deposition uniformity in sputtering systems |
-
2008
- 2008-09-25 CH CH00424/10A patent/CH700002B1/de not_active IP Right Cessation
- 2008-09-25 DE DE112008002242.9T patent/DE112008002242B4/de not_active Expired - Fee Related
- 2008-09-25 WO PCT/EP2008/062881 patent/WO2009040406A2/de active Application Filing
- 2008-09-25 PL PL391856A patent/PL217715B1/pl unknown
- 2008-09-25 US US12/679,736 patent/US8980072B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5427669A (en) * | 1992-12-30 | 1995-06-27 | Advanced Energy Industries, Inc. | Thin film DC plasma processing system |
DE4438463C1 (de) * | 1994-10-27 | 1996-02-15 | Fraunhofer Ges Forschung | Verfahren und Schaltung zur bipolaren pulsförmigen Energieeinspeisung in Niederdruckplasmen |
WO1997042647A1 (en) * | 1996-05-08 | 1997-11-13 | Advanced Energy Industries, Inc. | Pulsed direct current power supply configurations for generating plasmas |
DE19702187A1 (de) * | 1997-01-23 | 1998-07-30 | Fraunhofer Ges Forschung | Verfahren und Einrichtung zum Betreiben von Magnetronentladungen |
WO2007051461A1 (de) * | 2005-11-04 | 2007-05-10 | Von Ardenne Anlagentechnik Gmbh | Verfahren und anordnung zum redundanten anoden-sputtern |
Non-Patent Citations (1)
Title |
---|
BELKIND A ET AL: "Dual-anode magnetron sputtering" SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, Bd. 163-164, 30. Januar 2003 (2003-01-30), Seiten 695-702, XP002427175 ISSN: 0257-8972 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2439763A2 (de) | 2010-10-08 | 2012-04-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung | Magnetron-Vorrichtung und Verfahren zum gepulsten Betreiben einer Magnetron-Vorrichtung |
DE102010047963A1 (de) | 2010-10-08 | 2012-04-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetron-Vorrichtung und Verfahren zum gepulsten Betreiben einer Magnetron-Vorrichtung |
US10910203B2 (en) | 2015-04-27 | 2021-02-02 | Advanced Energy Industries, Inc. | Rate enhanced pulsed DC sputtering system |
US11049702B2 (en) | 2015-04-27 | 2021-06-29 | Advanced Energy Industries, Inc. | Rate enhanced pulsed DC sputtering system |
US12112931B2 (en) | 2015-04-27 | 2024-10-08 | Advanced Energy Industries, Inc. | Dual reverse pulse sputtering system |
US10373811B2 (en) | 2015-07-24 | 2019-08-06 | Aes Global Holdings, Pte. Ltd | Systems and methods for single magnetron sputtering |
DE102016116762A1 (de) | 2016-09-07 | 2018-03-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abscheiden einer Schicht mittels einer Magnetronsputtereinrichtung |
US10407767B2 (en) | 2016-09-07 | 2019-09-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for depositing a layer using a magnetron sputtering device |
DE102016116762B4 (de) | 2016-09-07 | 2021-11-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abscheiden einer Schicht mittels einer Magnetronsputtereinrichtung |
Also Published As
Publication number | Publication date |
---|---|
PL217715B1 (pl) | 2014-08-29 |
WO2009040406A3 (de) | 2009-06-04 |
PL391856A1 (pl) | 2011-02-28 |
US20100230275A1 (en) | 2010-09-16 |
DE112008002242B4 (de) | 2016-01-14 |
DE112008002242A5 (de) | 2010-08-26 |
US8980072B2 (en) | 2015-03-17 |
CH700002B1 (de) | 2013-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4438463C1 (de) | Verfahren und Schaltung zur bipolaren pulsförmigen Energieeinspeisung in Niederdruckplasmen | |
DE19651811B4 (de) | Vorrichtung zum Belegen eines Substrats mit dünnen Schichten | |
EP0553410B1 (de) | Vorrichtung zum Beschichten eines Substrats, insbesondere mit elektrisch nichtleitenden Schichten | |
EP1121705B1 (de) | Elektrische versorgungseinheit für plasmaanlagen | |
DE4233720C2 (de) | Einrichtung für die Verhinderung von Überschlägen in Vakuum-Zerstäubungsanlagen | |
DE112008002242B4 (de) | Verfahren und Anordnung zum redundanten Anoden-Sputtern mit einer Dual-Anoden-Anordnung | |
DE10015244C2 (de) | Verfahren und Schaltungsanordnung zur pulsförmigen Energieeinspeisung in Magnetronentladungen | |
WO2015022030A1 (de) | Multilevelumrichter | |
DE4127505C2 (de) | Einrichtung zur Unterdrückung von Lichtbögen in Gasentladungsvorrichtungen | |
DE102016110141A1 (de) | Verfahren und Vorrichtung zum Zünden einer Plasmalast | |
DE4239218C2 (de) | Anordnung zum Verhindern von Überschlägen in einem Plasma-Prozeßraum | |
DE2208431A1 (de) | Verfahren und Vorrichtung zum Zünden einer Schaltrohre mit gekreuzten Feldern | |
DE102010047963A1 (de) | Magnetron-Vorrichtung und Verfahren zum gepulsten Betreiben einer Magnetron-Vorrichtung | |
DE102009051056B4 (de) | Verfahren zum Wiederherstellen des Betriebszustandes der Entladung beim Magnetronsputtern und Schaltung zur Durchführung des Verfahrens | |
DE102010038605B4 (de) | Zündschaltung zum Zünden eines mit Wechselleistung gespeisten Plasmas | |
DE4302406A1 (de) | ||
EP0725161B1 (de) | Verfahren zur Plasmabehandlung von Werkstücken | |
EP0317634A1 (de) | Stromversorgung für gasreinigende elektrofilter | |
WO2003105543A2 (de) | Verfahren und einrichtung zur reduzierung der zündspannung von plasmen | |
DE102019218919B3 (de) | Erfassen eines Schaltzustands eines elektromechanischen Schaltelements | |
DE19825056C1 (de) | Schaltungsanordnung und Verfahren zum Einspeisen von Elektroenergie in ein Plasma | |
DE329077C (de) | Schaltung zur Selbstinduktionszuendung elektrischer Gas- oder Dampflampen mit einem im Nebenschluss zur Lampe geschalteten Unterbrecher | |
DE4030184A1 (de) | Hochleistungspulsgenerator geringer impedanz, insbesondere fuer pulslaser und elektronenstrahlquellen | |
WO2015149870A1 (de) | Kommutierungsschaltung | |
DE19826297A1 (de) | Vorrichtung und Verfahren zur Vermeidung von Überschlägen bei Sputterprozessen durch eine aktive Arcunterdrückung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08833244 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 391856 Country of ref document: PL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10201000000424 Country of ref document: CH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12679736 Country of ref document: US |
|
REF | Corresponds to |
Ref document number: 112008002242 Country of ref document: DE Date of ref document: 20100826 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08833244 Country of ref document: EP Kind code of ref document: A2 |