WO2009039765A1 - Procédé, système et dispositif de résistance aux erreurs de rétroaction - Google Patents

Procédé, système et dispositif de résistance aux erreurs de rétroaction Download PDF

Info

Publication number
WO2009039765A1
WO2009039765A1 PCT/CN2008/072391 CN2008072391W WO2009039765A1 WO 2009039765 A1 WO2009039765 A1 WO 2009039765A1 CN 2008072391 W CN2008072391 W CN 2008072391W WO 2009039765 A1 WO2009039765 A1 WO 2009039765A1
Authority
WO
WIPO (PCT)
Prior art keywords
number information
sequence number
transmission
codeword
module
Prior art date
Application number
PCT/CN2008/072391
Other languages
English (en)
French (fr)
Inventor
Yan Wang
Pengcheng Zhu
Yuanjie Li
Original Assignee
Huawei Technologies Co., Ltd.
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd., Southeast University filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009039765A1 publication Critical patent/WO2009039765A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, system, and apparatus for resisting feedback errors.
  • Multi-antenna technology can effectively utilize space resources and improve the frequency band utilization of the system, thereby improving the bandwidth and power limitations of wireless links existing in existing systems of the network, as well as bottlenecks such as multipath fading, interference and Doppler effects. , which in turn provides the performance of the system. Therefore, multi-antenna technology has become a 3G, 4G core technology.
  • FIG. 1 A block diagram of the forward link of the beamforming system is shown in Figure 1.
  • the information to be transmitted is first encoded and modulated to obtain a scalar symbol s, and after weighting the symbol s, it is transmitted by multiple antennas, and the symbol corresponding to each antenna is The weights are different, and each of the above weights is a complex number, which constitutes a vector, called a beamforming vector, which is recorded at the receiving end of the beamforming system, and each antenna receives the signal sent by the transmitting end, and receives the signal.
  • the signal is first subjected to maximum ratio combining processing, and then the combined signal is demodulated and decoded to obtain the information sent by the transmitting end.
  • the beam to be used at the transmitting end needs to be determined according to CSI (Channel State Information), and in many cases, such as a Frequency Division Dual (FDD) system, The transmitting end cannot directly know the CSI.
  • the beam forming system usually adopts a quantized beamforming technology, so that the transmitting end determines the beam to be used.
  • the receiving end of the beam forming system quantizes the CSI to determine a matching.
  • Beam, and transmitting the beam information to the transmitting end through a low-rate feedback channel, that is, in the quantized beamforming system, the beamforming vector information to be used by the transmitting end is sent by the receiving end to the transmitting through the feedback channel. End.
  • the above process is shown in Figure 2.
  • the receiving end selects a codeword from the code book according to the acquired CSI, and sends the codeword serial number to the transmitting end through the feedback channel.
  • the sender performs a lookup operation according to the sequence number returned, and finds a corresponding codeword as a beamforming vector in the codebook.
  • the inventor finds that in the existing quantized beamforming system, when the receiving end feeds back the codeword sequence number information corresponding to the beam to be used by the transmitting end to the transmitting end, the inevitable transmission channel Fading, causing the above codeword sequence number information to generate a bit error, causing the sender to adopt the current transmission channel
  • the matched error beam carries on the communication service, causing the system performance to deteriorate.
  • the main technical problem to be solved by embodiments of the present invention is to provide a method, system, and apparatus for resisting feedback errors, thereby ensuring that a transmitting end matches a beam matching a current transmission channel, and the performance of the beam forming system is improved.
  • the embodiment of the invention provides a method for resisting feedback error, and the method includes:
  • the receiving end selects a codeword in the code book according to the current transmission channel state information, and determines sequence number information corresponding to the codeword;
  • the receiving end determines the transmission sequence number information corresponding to the sequence number information according to the sequence number information corresponding to the codeword; the receiving end sends the transmission sequence number information to the sending end through the feedback channel.
  • the embodiment of the present invention further provides an anti-feedback error system, where the system includes a receiving end and a transmitting end, where the receiving end includes:
  • the sequence number information determining module 1 is configured to select a codeword from the code book according to the current transmission channel state information, and determine sequence number information corresponding to the codeword;
  • a transmission sequence number information determining module configured to determine the sequence number information determined by the module according to the sequence number information, and determine transmission sequence number information corresponding to the sequence number information
  • a sending module configured to send the transmission sequence number information determined by the transmission sequence number information determining module to the sending end by using a feedback channel.
  • An embodiment of the present invention further provides a correspondence establishing apparatus, where the apparatus includes:
  • a parameter obtaining module configured to acquire a parameter and a ⁇ by theoretical analysis, or a simulation experiment, or an actual measurement, wherein the parameter is a probability that the codeword is selected by a receiving end, and the parameter is an error of the feedback channel Propagation probability, that is, the error propagation probability that the input is ⁇ and the output becomes J;
  • a chord distance acquisition module configured to acquire a chord distance (c t , c,) between each code word in the code book
  • the total error chord minimum acquisition module for transmitting error is used for obtaining the total chord of the transmission error under the condition of arbitrary displacement mapping according to the parameter acquired by the parameter acquisition unit and the ( ⁇ , ( ⁇ ) obtained by the chord distance acquisition module, and acquiring The minimum value of the total chord of the transmission error;
  • a correspondence establishing module configured to acquire a replacement mapping relationship corresponding to a total chord minimum value of the transmission error obtained by the module according to a total error chord minimum value acquisition module, obtain transmission sequence number information, and establish a relationship between the sequence number information and the transmission sequence number information Correspondence.
  • the embodiment of the invention further provides a device, and the device includes:
  • a sequence number information determining module configured to select a codeword from the code book according to current channel state information, and determine Sequence number information corresponding to the codeword
  • a transmission sequence number information determining module configured to determine the sequence number information determined by the module according to the sequence number information, and determine transmission sequence number information corresponding to the sequence number information
  • a sending module configured to send the transmission sequence number information determined by the transmission sequence number information determining module to the sending end by using a feedback channel.
  • the embodiment of the invention further provides a device, and the device includes:
  • a sequence number information determining module configured to receive transmission sequence number information sent by the sender, and determine sequence number information corresponding to the transmission sequence number information
  • a beam determining module configured to determine, according to the sequence number information, the sequence number information determined by the module, determine a corresponding codeword, and further determine a beam corresponding to the codeword;
  • a signal sending module configured to transmit a signal by using a beam determined by the beam determining module.
  • the receiving end selects a codeword from the code book according to the current transmission channel information, and determines a transmission sequence number of the codeword according to the sequence number information of the codeword. Information, and transmitting the transmission sequence number information to the transmitting end; the transmitting end determines the beam to be used according to the received transmission sequence number information, and transmits a signal according to the beam, thereby ensuring that the transmitting end transmits the signal by using a beam matching the current transmission channel, thereby improving System performance.
  • FIG. 1 is a block diagram of a forward link of a beamforming system quantized in the prior art
  • FIG. 2 is a block diagram of a feedback link of a quantized beamforming system in the prior art
  • FIG. 3 is a flowchart of a method for resisting feedback error according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart of the relationship between the created sequence number information and the transmission sequence number information provided by the embodiment of the present invention
  • FIG. 5 is a schematic diagram of the signal-to-noise ratio performance simulation after applying the anti-feedback error method according to the first embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an anti-feedback error system according to Embodiment 2 of the present invention.
  • FIG. 8 is a structural diagram of a device according to Embodiment 3 of the present invention.
  • FIG. 9 is a structural diagram of a device according to Embodiment 4 of the present invention.
  • FIG. 10 is a structural diagram of a device according to Embodiment 5 of the present invention.
  • Embodiment 1 of the present invention provides a new anti-feedback error method in the prior art, because the error caused by the feedback channel fading causes the transmitting end to use the beam that does not match the current transmission channel for communication service.
  • the method performs the replacement mapping operation on the sequence number information corresponding to the codeword in the code book on the basis of the prior art, thereby obtaining the transmission sequence number information corresponding to the sequence number information, and storing the correspondence between the sequence number information and the transmission sequence number information in The receiving end and the transmitting end of the system.
  • the receiving end selects the codeword from the code book according to the current transmission channel information, and determines the sequence number information of the codeword, obtains the serial number information of the selected codeword by querying the corresponding relationship between the serial number information and the transmission sequence number information saved by itself. Corresponding transmission sequence number information, and transmitting the transmission sequence number information to the transmitting end through the feedback channel.
  • the sending end receives the transmission sequence number information sent by the receiving end, and obtains the serial number information corresponding to the received transmission sequence number information by querying the corresponding relationship between the serial number information and the transmission sequence number information saved by the receiving end, and determines the corresponding serial number information according to the restored serial number information.
  • the codeword further determines the beam corresponding to the codeword, and the transmitting end selects the determined beam to transmit the signal. Therefore, the transmitting end transmits the signal at a wave speed matching the current transmission channel, thereby improving the performance of the system.
  • the specific implementation process of the anti-feedback error method provided by the embodiment of the present invention, as shown in FIG. 3, may generally include: Step 1. Construct a codebook.
  • the code book should be designed in advance (:.
  • the code book is a set consisting of ⁇ code words ⁇ ..., ⁇ , . . . , wherein each code word is selected.
  • the beamforming vectors which are unit vectors with a modulus of 1.
  • Each codeword in the codebook corresponds to a sequence number (codewords (the number of the ⁇ is, all the serial numbers form the sequence number ⁇ : ..., ⁇ ,..., ⁇
  • the codebook design can use a variety of existing algorithms, such as [1, 2].
  • both the receiving end and the sending end must save the code book for subsequent operations.
  • Step 2 Create a correspondence between sequence number information and transmission sequence number information.
  • the correspondence between the sequence number information and the transmission sequence number information is a preferred technical feature of the embodiment of the present invention, and the process of creating the correspondence between the sequence number information and the transmission sequence number information can be generally understood as a slave sequence set ⁇ ..., , ..., ⁇ to its own one-to-one mapping ⁇ : ⁇ ⁇ ⁇ process, this mapping is usually called displacement mapping, and in conjunction with FIG. 4, in the embodiment of the present invention, the serial number information and the transmission serial number are created.
  • the process of the correspondence of information is described in detail, and may specifically include:
  • Step 21 get the parameters.
  • PA codeword ( ⁇ the probability of being selected by the receiver;
  • the transmitting end uses 2 antennas
  • the receiving end uses 1 antenna
  • the feedback channel in the feedback link is modeled as an extended binary symmetric channel
  • the previously constructed codebook includes 8 code words
  • Step 22 Acquire a chord distance between each codeword in the codebook.
  • Use the chord distance acquisition formula (C * ' e ' ) ⁇ - ⁇ > to obtain the chord distance between each code word.
  • the letter H represents the Hermite transposition operation on the matrix.
  • Step 23 Obtain the minimum value of the total chord of the transmission error.
  • Step 24 Establish a correspondence according to the minimum value.
  • the transmission sequence number information is obtained according to the permutation mapping relationship corresponding to the minimum value of the total chord of the transmission error, and the correspondence between the sequence number information and the transmission sequence number information is established.
  • the obtained displacement mapping result may be only a suboptimal solution after the above process is completed, the suboptimal solution may also give a more ideal result for practical applications. Therefore, in the embodiment of the present invention, The accuracy of the above process results is not limited.
  • the complete search method may be used to obtain the replacement mapping relationship of the above example, that is, the correspondence between the sequence number information and the transmission sequence number information, which may be as follows: Shown as follows:
  • the correspondence operation between the creation sequence number information and the transmission sequence number information is completed.
  • the corresponding relationship between the created sequence number information and the transmission sequence number information may be stored in the receiving end and the transmitting end of the system to facilitate the use of subsequent operations.
  • Step 3 The receiving end selects the codeword to obtain the serial number information of the codeword.
  • the receiving end needs to select a codeword in the already constructed codebook according to the state information of the current transmission channel, and obtain the serial number information of the selected codeword. For example, after obtaining the status information of the current transmission channel, the receiving end selects the code word whose sequence number information is 3 in the code book as the information that needs to be fed back to the transmitting end, and the receiving end acquires the serial number information 3 of the code word.
  • any existing acquisition manner may be used to obtain the state of the current transmission channel, and the codeword in the codebook may be selected by using any existing method.
  • Step 4 The receiving end determines the transmission sequence number information corresponding to the sequence number information.
  • the receiving end After obtaining the sequence number information of the selected codeword, the receiving end queries the correspondence between the sequence number information and the transmission sequence number information saved by itself, for example, Table 1, and determines the transmission sequence number information corresponding to the sequence number information, for example, 3 corresponds to 6.
  • Step 5 The receiving end sends the determined transmission sequence number information.
  • the receiving end sends the determined transmission sequence number information to the transmitting end through the feedback channel.
  • Step 6 the sender receives the transmission sequence number information, and determines the corresponding sequence number information.
  • the transmitting end of the system After receiving the transmission sequence number information sent by the receiving end, the transmitting end of the system determines the serial number information corresponding to the transmission sequence number information by querying the correspondence between the sequence number information and the transmission sequence number information saved by itself.
  • Step 7 The sender determines the codeword and determines the beam corresponding to the codeword.
  • the transmitting end determines the codeword corresponding to the sequence number information according to the determined sequence number information, and then determines the beam corresponding to the codeword according to the determined codeword.
  • Step 8 The transmitting end transmits the signal by using a determined beam.
  • the method for resisting feedback error provided by the first embodiment of the present invention performs displacement mapping processing on the codeword sequence number information that needs feedback, so that the quantized beamforming system has robustness to feedback error (Robust). , thereby improving the performance of the quantized beamforming system. And in the system work process, the amount of acquisition is small, no redundancy.
  • a second embodiment of the present invention provides a system for resisting feedback errors.
  • a preferred implementation manner of the system includes: a codebook construction device, a correspondence establishing device, a receiving end, and a transmitting end, where:
  • a codebook construction device for constructing a codebook to which the embodiment is applied.
  • the codebook C constructed by the codebook construction apparatus is a set of K codewords ⁇ ..., ⁇ , . . . , wherein each codeword is a beamforming vector to be selected, which are unit vectors of a modulus of 1.
  • Each codeword in the codebook corresponds to a serial number (code The word (the serial number of ⁇ is A), all the serial numbers form the set number ⁇ : ..., ⁇ ,..., ⁇ .
  • the codebook design can use a variety of existing algorithms, such as [1, 2].
  • Correspondence relationship establishing means configured to establish a correspondence between sequence number information and transmission sequence number information.
  • the corresponding relationship establishing device may specifically include:
  • a parameter acquisition module configured to obtain a parameter k, 1, by a theoretical analysis, or a simulation experiment, or an actual measurement
  • the parameter PA is a probability that the code word is selected by the receiving end
  • the parameter j is an error propagation probability of the feedback channel, That is, the input is A and the output becomes the error propagation probability of J.
  • chord distance acquisition module configured to obtain a chord distance d c between each code word in the code book constructed by the code book construction device (c.
  • the transmission error total chord minimum acquisition module is used to obtain the total error of the transmission error in the case of arbitrary displacement mapping according to the ( e , e ') obtained by the parameter acquisition unit and the parameter Ik, 1 and the chord distance acquisition module. Distance, and obtain the minimum value of the total chord of the transmission error.
  • the parameter acquisition module can bring the parameters J and ( e , e') into the formula:
  • the parameter indicates that the sequence number information A is mapped to the transmission sequence number information, and the parameter n ) indicates that the sequence number information J is replaced by the transmission sequence number information.
  • the total error chord minimum acquisition module of the transmission error may adopt a complete search method, a binary switching algorithm, or a simulated annealing algorithm in the process of obtaining the minimum chord minimum of the transmission error. Annealing algorithm) , or other methods to get the minimum value.
  • Correspondence relationship establishing module configured to acquire a replacement mapping relationship corresponding to a total chord distance of the transmission error obtained by the module according to the total chord minimum value of the transmission error, obtain transmission sequence number information, and establish a correspondence relationship between the sequence number information and the transmission sequence number information.
  • the correspondence establishing device may be an independent device, or may be disposed at the receiving end, or the transmitting end, or other devices.
  • the receiving end may specifically include:
  • the sequence number information determining module 1 is configured to select a codeword from the codebook constructed by the codebook construction device according to the current transmission channel state information, and determine the sequence number information corresponding to the codeword.
  • the sequence number information determining module 1 may specifically include:
  • a transmission channel state information acquiring unit configured to acquire state information of a current transmission channel
  • a codeword selection unit configured to select a codeword in the codebook according to the state information of the current transmission channel acquired by the transmission channel state information acquiring unit;
  • the sequence number information determining unit is configured to determine sequence number information corresponding to the codeword selected by the codeword selection unit.
  • the transmission sequence number information determining module is configured to determine the sequence number information determined by the module according to the sequence number information, and determine the transmission sequence number information corresponding to the sequence number information.
  • the transmission sequence number information determining module may specifically determine the transmission sequence number information by querying the correspondence between the sequence number information and the transmission sequence number information created by the corresponding relationship creation device, which is saved by the receiving end.
  • the sending module is configured to send the transmission sequence number information determined by the transmission sequence number information determining module to the sending end through the feedback channel.
  • the sender includes:
  • the sequence number information determining module 2 is configured to receive the transmission sequence number information sent by the sending module, and determine the sequence number information corresponding to the transmission sequence number information.
  • the sequence number information determining module 2 can specifically determine the sequence number information by querying the correspondence between the sequence number information and the transmission sequence number information created by the corresponding relationship creation device, which is saved by the sender.
  • a beam determining module configured to determine sequence number information determined by the module 2 according to the sequence number information, determine a corresponding codeword, and further determine a beam corresponding to the codeword.
  • a signal sending module configured to transmit a signal by using a beam determined by the beam determining module.
  • the anti-feedback error system provided by the second embodiment of the present invention performs the displacement mapping process on the sequence number information of the feedback codeword, so that the quantized beamforming system has robustness to the feedback error, thereby improving the quantized beamforming system. Performance. And in the system work process, the amount of acquisition is small, no redundancy.
  • the third embodiment of the present invention provides a correspondence establishing apparatus for establishing a correspondence between sequence number information and transmission sequence number information.
  • the preferred structure of the correspondence establishing device is as shown in FIG. 8. Specifically, the method may include:
  • the corresponding relationship establishing device may specifically include:
  • a parameter acquisition module for obtaining parameters by theoretical analysis, or simulation experiment, or actual measurement k, i, and the parameter PA is the probability that the codeword is selected by the receiving end, and the parameter j is the error propagation probability of the feedback channel, that is, the error propagation probability that the input is A and the output becomes j.
  • chord distance acquisition module configured to obtain a chord distance d c between each code word in the code book constructed by the code book construction device (c.
  • the transmission error total chord minimum acquisition module is used to obtain the total error of the transmission error in the case of arbitrary displacement mapping according to the ( e , e ') obtained by the parameter acquisition unit and the parameter Ik, 1 and the chord distance acquisition module. Distance, and obtain the minimum value of the total chord of the transmission error.
  • the parameter acquisition module can bring the parameters J and ( e , e') into the formula:
  • the parameter indicates that the sequence number information A is mapped to the transmission sequence number information, and the parameter n c) indicates that the sequence number information J is replaced by the transmission sequence number information.
  • the total error chord minimum acquisition module of the transmission error may use a full search method, a binary switching algorithm, or an simulated annealing algorithm in the process of obtaining the minimum value, or Other methods to get the minimum.
  • Correspondence relationship establishing module configured to acquire a replacement mapping relationship corresponding to a total chord distance of the transmission error obtained by the module according to the total chord minimum value of the transmission error, obtain transmission sequence number information, and establish a correspondence relationship between the sequence number information and the transmission sequence number information.
  • the correspondence establishing device may be an independent device, or may be disposed at the receiving end or the transmitting end or other devices.
  • a fourth embodiment of the present invention provides a device. As shown in FIG. 9, the device may specifically include:
  • the sequence number information determining module is configured to select a codeword from the code book according to the current transmission channel state information, and determine sequence number information corresponding to the codeword.
  • the sequence number information determining module may specifically include: a transport channel state information acquiring unit, configured to acquire state information of the current transport channel;
  • a codeword selection unit configured to acquire, according to the status information of the current transmission channel acquired by the transmission channel state information acquiring unit Interest rate, select the code word in the code book;
  • the sequence number information determining unit is configured to determine sequence number information corresponding to the codeword selected by the codeword selection unit.
  • the transmission sequence number information determining module is configured to determine the sequence number information determined by the module according to the sequence number information, and determine the transmission sequence number information corresponding to the sequence number information.
  • the sending module is configured to send the transmission sequence number information determined by the transmission sequence number information determining module to the sending end through the feedback channel.
  • the device provided by the embodiment of the invention may be disposed at the receiving end of the system.
  • the fifth embodiment of the present invention provides a device. As shown in FIG. 10, the device may specifically include:
  • the sequence number information determining module is configured to receive the transmission sequence number information sent by the sending module, and determine the sequence number information corresponding to the transmission sequence number information.
  • a beam determining module configured to determine sequence number information determined by the module according to the sequence number information, determine a corresponding codeword, and further determine a beam corresponding to the codeword.
  • a signal sending module configured to transmit a signal by using a beam determined by the beam determining module.
  • the device provided by the embodiment of the present invention may be disposed at a transmitting end of the system.
  • the present invention can be implemented by means of software plus a necessary hardware platform, and of course, all can be implemented by hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, all or part of the technical solution of the present invention contributing to the background art may be embodied in the form of a software product, which may be stored in a storage medium such as a ROM/RAM, a magnetic disk, an optical disk, or the like.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)

Description

一种抗反馈误差的方法、 系统及装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种抗反馈误差的方法、 系统及装置。
发明背景
随着人们对高速、广泛的信息接入日益增长的要求, 能提供数据服务的 3G蜂窝网以 及无线局域网等无线接入技术得到了迅猛的发展, 这其中就包括多天线技术。 多天线技 术可以有效地利用空间资源, 提高了系统的频带利用率, 从而改善了网络现有系统存在 的无线链路带宽和功率的限制, 以及多径衰落、 干扰和多普勒效应等瓶颈问题, 进而提 供了系统的性能。 因此, 多天线技术已经成为 3G、 4G核心技术。
在现有的各种多天线技术中, 波束形成技术以实现简单、可以获得较大的信噪比增 益和分集增益等优点, 得到广泛的应用。 波束形成系统前向链路的框图如附图 1所示。 通常, 在波束形成系统的发送端, 待传输的信息先经过编码和调制, 得到标量符号 s, 并在对符号 s进行加权处理后, 由多个天线进行发送, 且每个天线对应的符号所采用权 值不同, 而且, 上述每个权值都是一个复数, 它们组成一个向量, 称波束形成向量, 记 为 在波束形成系统的接收端, 各天线接收发送端发送的信号, 并对接收到的信号先 进行最大比合并处理, 然后再对合并后的信号进行解调和译码处理 , 从而获取了发送 端发送的信息。
但是,在波束形成系统中,发送端所要采用的波束需要根据传输信道状态信息(CSI: Channel State Information)确定, 而在很多情况下, 比如频分双工 (FDD: Frequency Division Dual ) 系统中, 发送端无法直接获知 CSI, 此时, 波束形成系统通常采用量化 的波束形成技术, 从而使发送端确定所要采用的波束, 具体做法是由波束形成系统的接 收端对 CSI进行量化, 确定一个匹配的波束, 并通过一个低速率的反馈信道将此波束信 息发送至发送端, 也就是说, 在量化的波束形成系统中, 发送端所要采用的波束形成向 量信息是由接收端通过反馈信道发送至发送端的。 上述过程如附图 2所示。
需要说明的是, 每次需要接收端反馈 CSI时, 接收端根据获取的 CSI, 从码书中选择 一个码字, 并将码字的序号通过反馈信道送至发送端。发送端根据反馈回的序号进行查 表操作, 在码书中找出对应的码字作为波束形成向量。
发明人在实现本发明的过程中, 发现在现有的量化波束形成系统中, 当接收端将发 送端所要采用的波束对应的码字序号信息反馈至发送端的过程中, 由于不可避免的传输 信道衰落, 造成上述码字序号信息产生误码的情况, 导致发送端采用与当前传输信道不 匹配的错误波束进行通信业务, 造成系统性能的恶化。
发明内容 本发明实施例要解决的主要技术问题是提供一种抗反馈误差的方法、系统及装置, 从而确保了发送端采用与当前传输信道匹配的波束, 改善了波束形成系统的性能。
本发明实施例提供了一种抗反馈误差的方法, 所述方法包括:
接收端根据当前传输信道状态信息在码书中选择码字,并确定所述码字对应的序号 信息;
接收端根据所述码字对应的序号信息, 确定所述序号信息对应的传输序号信息; 接收端将所述传输序号信息通过反馈信道发送至发送端。
本发明实施例还提供了一种抗反馈误差系统, 所述系统包括接收端以及发送端, 其 中, 所述接收端包括:
序号信息确定模块 1, 用于根据当前传输信道状态信息, 从码书中选择码字, 并确 定所述码字对应的序号信息;
传输序号信息确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确 定所述序号信息对应的传输序号信息;
发送模块, 用于将所述传输序号信息确定模块确定的所述传输序号信息, 通过反馈 信道发送至发送端。
本发明实施例还提供了一种对应关系建立装置, 所述装置包括:
参数获取模块,用于通过理论分析、或仿真实验、或实际测量,获取参数 以及 τ^, 其中所述参数 为所述码字被接收端选中的概率,所述参数 为所述反馈信道的误差传 播概率, 即输入为 Α而输出变为 J的误差传播概率;
弦距离获取模块, 用于获取所述码书中各码字间的弦距离 (ct ,c,);
传输误差总弦距最小值获取模块, 用于根据参数获取单元获取的参数 、 以及 弦距离获取模块获取的 (^,(^), 获取任意置换映射情况下的传输误差总弦距, 并获取 所述传输误差总弦距的最小值;
对应关系建立模块,用于根据传输误差总弦距最小值获取模块获取的所述传输误差 总弦距最小值对应的置换映射关系, 获取传输序号信息, 建立所述序号信息与传输序号 信息之间的对应关系。
本发明实施例还提供了一种装置, 所属装置包括:
序号信息确定模块, 用于根据当前传输信道状态信息, 从码书中选择码字, 并确定 所述码字对应的序号信息;
传输序号信息确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确 定所述序号信息对应的传输序号信息;
发送模块, 用于将所述传输序号信息确定模块确定的所述传输序号信息, 通过反馈 信道发送至发送端。
本发明实施例还提供了一种装置, 所属装置包括:
序号信息确定模块, 用于接收发送端发送的传输序号信息, 并确定所述传输序号信 息对应的序号信息;
波束确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确定其对应 的码字, 进而确定所述码字对应的波束;
信号发送模块, 用于采用所述波束确定模块确定的波束发送信号。
由上述本发明实施例提供的技术方案可以看出, 本发明实施例中, 接收端根据当前 传输信道信息,从码书中选择码字,根据该码字的序号信息确定该码字的传输序号信息, 并将传输序号信息发送至发送端; 发送端根据接收的传输序号信息, 确定所要采用的波 束,并根据该波束发送信号,从而确保发送端采用与当前传输信道匹配的波束发送信号, 改善了系统性能。
附图简要说明
图 1为现有技术中量化的波束形成系统前向链路框图;
图 2为现有技术中量化的波束形成系统反馈链路框图;
图 3为本发明实施例一提供的抗反馈误差方法的流程图;
图 4为本发明实施例一提供的创建序号信息与传输序号信息对应关系的流程图; 图 5为应用本发明实施例一提供的抗反馈误差方法后信噪比性能仿真示意图; 图 6为应用本发明实施例一提供的抗反馈误差方法后误码率性能仿真示意图; 图 7为本发明实施例二提供的抗反馈误差系统的结构图;
图 8为本发明实施例三提供的装置结构图;
图 9为本发明实施例四提供的装置结构图;
图 10为本发明实施例五提供的装置结构图。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明作进一步 地详细描述。 本发明实施例一针对现有技术中, 由于反馈信道衰落造成误码, 进而导致发送端采 用与当前传输信道不匹配的波束进行通信业务的情况,提出了一种全新的抗反馈误差方 法。
该方法在现有技术基础上, 通过对码书中码字对应的序号信息进行置换映射操作, 从而获取序号信息对应的传输序号信息,并将序号信息与传输序号信息之间的对应关系 保存在系统的接收端以及发送端。
当接收端根据当前传输信道信息从码书中选择码字, 并确定该码字的序号信息后, 通过查询自身保存的序号信息与传输序号信息的对应关系,获取选定的码字的序号信息 对应的传输序号信息, 并将该传输序号信息通过反馈信道, 发送至发送端。
发送端接收由接收端发送的传输序号信息,通过查询自身保存的序号信息与传输序 号信息的对应关系,获取接收的传输序号信息对应的序号信息,并根据还原的序号信息, 确定该序号信息对应的码字, 进而确定该码字对应的波束, 发送端选择确定的波束发送 信号。从而使发送端采用与当前传输信道相匹配的波速发送信号, 进而改善了系统的性 能。
本发明实施例提供的抗反馈误差方法的具体实现过程如附图 3所示,通常可以包括: 步骤 1, 构建码书。
本发明实施例提供的抗反馈误差方法具体实现过程中, 应事先设计码书 (:。 码书是 由 κ个码字 ^…,^,…, 组成的集合, 其中各码字即为待选的波束形成向量, 它们都是 模为 1的单位向量。码书中每一个码字对应一个序号(码字 (^的序号就是 , 所有的序 号组成序号集合^: …,^,…,^^。而且,码书设计可以采用现有的多种算法, 如 [1,2] 等。
码书构建完成后, 接收端以及发送端都要保存码书, 以便后续操作使用。
步骤 2, 创建序号信息与传输序号信息的对应关系。
通过上述陈述可以看出, 创建序号信息与传输序号信息的对应关系, 是本发明实施 例的一个优选技术特征,而创建序号信息与传输序号信息的对应关系的过程通常可以理 解为从序号集合 ^ …, ,…,^^到其自身的一对一的映射 Π : ΤΤ过程,这种映射通 常称为置换映射, 下面结合附图 4, 对本发明实施例中, 创建序号信息与传输序号信息 的对应关系的过程进行详细表述, 具体可以包括:
步骤 21, 获取参数。
此步骤中, 可以通过采用现有的任一种的理论分析、 或仿真实验、或实际测量的方 式, 获取以下参数:
码字被选中的概率: PA=码字 (^被接收端选中的概率;
反馈信道的误差传播概率: TA, 输入为 A而输出为 J的概率
(k, 1=1, -,Κ) 。
可以理解的是, 在实际应用中, 通过理论分析、 或仿真实验、 或实际测量的方式获 取的上述参数可能为近似值, 但这并不影响本发明所达到的实际效果, 因此, 获取上述 参数的近似值, 在本实施例中是允许的。
比如, 在系统中, 发送端采用 2个天线, 接收端采用 1个天线, 且反馈链路中的反馈 信道建模为扩展的二进制对称信道, 事先构建的码书中包括 8个码字, 则系统将采用 3比 特(23=8)进行序号信息反馈, 那么通过仿真实验可知, 各码字近似等概率的被接收端 选中, 即
Pt «Pt Ap =|, = l,2,-,8. (2) 另外, 扩展的二进制对称反馈信道的误差传播概率为-
Tk = pd- w—1) (1 - pf~d- w—1) k,l = l,---,8 其中, ^_1, 1)表示 ^-i之间的汉明距离; 为 1比特错误概率, 由于实际 应用中 通常很小, 发生多比特错误的概率可以忽略, 于是误差传播概率可以近似为:
(l-j^)3, dR(k-l,l-l) = 0,
p{\-pf, dn{h-\,l-\) = \,
0, dR(k-\,l-\) = 2,3.
(3)
步骤 22, 获取码书中各码字间的弦距离。 采用弦距离获取公式 (C* ' e' ) = ^-\ > 获取各码字间的弦距离。 其中, 字母 H 表示对矩阵的埃尔米特(Hermite)转置操作。
步骤 23, 获取传输误差总弦距中最小值。
获取传输误差总弦距的方式可以采用不同的算法,本发明实施例给出了一种较优的 方案, 即将参数 TA^以及 (cc 带入公式:
Figure imgf000007_0001
求解不同置换映射情况下该公式的值, 即传输误差总弦距, 并获取传输误差总弦距 的最小值。 其中参数 表示序号信息 A置换映射为所述传输序号信息, 参数 n 表示 序号信息 J置换映射为所述传输序号信息。
需要说明的是, 在获取传输误差总弦距最小值的过程中, 可以采用完全搜索方法、 或者二元交换算法 (Binary swi tching algori thm ) 、 或者模拟退火算法 (s imulated anneal ing algori thm) , 或者其它方法来获取最小值。
步骤 24, 根据最小值建立对应关系。
在获取传输误差总弦距最小值后, 根据传输误差总弦距最小值对应的置换映射关 系, 获取传输序号信息, 建立序号信息与传输序号信息之间的对应关系。
可以理解的是,虽然在完成上述过程后,获取的置换映射结果可能只是一个次优解, 但是对于实际应用, 次优解也可以给出比较理想的结果, 因此, 本发明实施例中, 并不 限制上述过程结果的精确度。
那么, 由于上述举例的码书中包含 8个码字, 因此, 可以采用完全搜索的方法, 获 取上述举例的置换映射关系, 即序号信息与传输序号信息之间的对应关系, 具体可以如 下表 1所示:
Figure imgf000008_0001
由此, 完成了创建序号信息与传输序号信息的对应关系操作。 在完成上述操作后, 可以将创建的序号信息与传输序号信息的对应关系, 比如表 1所示, 保存在系统的接收 端以及发送端, 以方便后续操作的使用。
步骤 3, 接收端选择码字, 获取码字的序号信息。
在进行反馈操作流程的初始阶段, 接收端需要根据当前传输信道的状态信息, 在已 经构建的码书中选取码字, 并获取选定的码字的序号信息。 比如, 接收端在获取当前传输信道的状态信息后, 选取码书中序号信息为 3的码字 作为需要反馈至发送端的信息, 则接收端获取该码字的序号信息 3。
本发明实施例中, 可以采用已有的任一种获取方式, 获取当前传输信道的状态, 以 及采用已有的任一种方式, 选取码书中的码字。
步骤 4, 接收端确定序号信息对应的传输序号信息。
接收端在获取选定的码字的序号信息后,通过查询自身保存的序号信息与传输序号 信息的对应关系, 比如表 1, 确定序号信息对应的传输序号信息为, 比如 3对应 6。
步骤 5, 接收端发送确定的传输序号信息。
接收端将确定的传输序号信息通过反馈信道, 发送至发送端。
步骤 6, 发送端接收传输序号信息, 并确定对应的序号信息。
系统中的发送端在接收到接收端发送的传输序号信息后,通过查询自身保存的序号 信息与传输序号信息对应关系, 确定该传输序号信息对应的序号信息。
比如, 表 1中 6对应 3。
步骤 7, 发送端确定码字, 并确定该码字对应的波束。
发送端根据确定的序号信息,确定该序号信息对应的码字,然后,根据确定的码字, 确定该码字对应的波束。
根据码字确定对应的波束的操作为现有技术, 这里不再赘述。
步骤 8, 发送端采用确定的波束发送信号。
通过完成上述操作步骤, 确保了发送端采用与当前传输信道匹配的波束发送信号。 而通过仿真测试的结果, 如下述附图 5、 附图 6可以看出, 在完成上述操作后, 系统的信 噪比以及误码率性能均得到较大的改善。
因此, 可以看出, 本发明实施例一提供的抗反馈误差的方法, 通过对需要反馈的码 字序号信息进行置换映射处理, 使量化的波束形成系统具备对反馈误差的鲁棒性 (Robust ),从而改善了量化的波束形成系统的性能。且在系统工作过程中,获取量小, 无冗余。
本发明实施例二提供了一种抗反馈误差的系统, 如附图 7所示, 该系统较佳的实现 方式包括: 码书构建装置, 对应关系建立装置, 接收端以及发送端, 其中:
(一)码书构建装置, 用于构建本实施例所应用的码书。
码书构建装置构建的码书 C是由 K个码字 ^…,^,…, 组成的集合,其中各码字即为 待选的波束形成向量,它们都是模为 1的单位向量。码书中每一个码字对应一个序号(码 字 (^的序号就是 A), 所有的序号组成序号集合^: …,^,…,^^。而且, 码书设计可以 采用现有的多种算法, 如 [1,2]等。
码书构建完成后, 系统中的接收端以及发送端都要保存码书, 以便后续操作使用。 (二)对应关系建立装置, 用于建立序号信息与传输序号信息之间的对应关系。 对应关系建立装置具体可以包括:
1 ) 参数获取模块, 用于通过理论分析、 或仿真实验、 或实际测量, 获取参数 以 k, 1, 且参数 PA为码字被接收端选中的概率, 参数 j为反馈信道的误差传播概率, 即输入为 A而输出变为 J的误差传播概率。
2 ) 弦距离获取模块, 用于获取码书构建装置构建的码书中各码字间的弦距离 dc(c 。 通常情况下, 弦距离获取模块可以采用公式 (ei'e') = ^H e |2, 来获取码书中 各码字间的弦距离。
3 )传输误差总弦距最小值获取模块,用于根据参数获取单元获取的将参数 Ik, 1 以及弦距离获取模块获取的 (ee'), 获取任意置换映射情况下的传输误差总弦距, 并 获取传输误差总弦距的最小值。 通常情况下, 参数获取模块可以将参数 J以及 (e,e')带入公式:
Figure imgf000010_0001
求解不同置换映射情况下该公式的值, 即传输误差总弦距, 并获取传输误差总弦距 的最小值。 其中参数 表示序号信息 A置换映射为所述传输序号信息, 参数 n )表示 序号信息 J置换映射为所述传输序号信息。
需要说明的是,传输误差总弦距最小值获取模块在获取传输误差总弦距最小值的过 程中, 可以采用完全搜索方法、 或者二元交换算法(Binary switching algorithm) 、 或者模拟退火算法(simulated annealing algorithm) , 或者其它方法来获取最小值。
4)对应关系建立模块, 用于根据传输误差总弦距最小值获取模块获取的传输误差 总弦距最小值对应的置换映射 关系, 获取传输序号信息, 建立序号信息与传输序 号信息的对应关系。
对应关系建立装置可以为独立的装置, 也可以设置于接受端、 或者发送端、或者其 他装置中。 (三)接收端具体可以包括:
6)序号信息确定模块 1, 用于根据当前传输信道状态信息, 从码书构建装置构建的 码书中选择码字, 并确定该码字对应的序号信息。
序号信息确定模块 1具体可以包括:
传输信道状态信息获取单元, 用于获取当前传输信道的状态信息;
码字选择单元,用于根据传输信道状态信息获取单元获取的当前传输信道的状态信 息, 在码书中选择码字;
序号信息确定单元, 用于确定码字选择单元选择的码字所对应的序号信息。
7 )传输序号信息确定模块, 用于根据序号信息确定模块确定的序号信息, 确定该 序号信息对应的传输序号信息。
传输序号信息确定模块具体可以通过查询接收端保存的, 由对应关系创建装置创建 的序号信息与传输序号信息之间的对应关系, 从而确定传输序号信息。
8)发送模块, 用于将传输序号信息确定模块确定的传输序号信息, 通过反馈信道 发送至发送端。
(四)发送端包括:
9)序号信息确定模块 2, 用于接收发送模块发送的传输序号信息, 并确定该传输序 号信息对应的序号信息。
序号信息确定模块 2具体可以通过查询发送端保存的, 由对应关系创建装置创建的 序号信息与传输序号信息之间的对应关系, 从而确定序号信息。
10)波束确定模块, 用于根据序号信息确定模块 2确定的序号信息, 确定其对应的 码字, 进而确定该码字对应的波束。
11 )信号发送模块, 用于采用波束确定模块确定的波束发送信号。
本发明实施例二提供的抗反馈误差的系统,通过对需要反馈码字的序号信息进行置 换映射处理, 使量化的波束形成系统具备对反馈误差的鲁棒性, 从而改善了量化的波束 形成系统的性能。 且在系统工作过程中, 获取量小, 无冗余。
本发明实施例三提供了对应关系建立装置,用于建立序号信息与传输序号信息之间 的对应关系。
对应关系建立装置较佳的结构组成如附图 8所示, 具体可以包括:
对应关系建立装置具体可以包括:
1 ) 参数获取模块, 用于通过理论分析、 或仿真实验、 或实际测量, 获取参数 以 k, i, 且参数 PA为码字被接收端选中的概率, 参数 j为反馈信道的误差传播概率, 即输入为 A而输出变为 j的误差传播概率。
2 ) 弦距离获取模块, 用于获取码书构建装置构建的码书中各码字间的弦距离 dc(c 。 通常情况下, 弦距离获取模块可以采用公式 (ei'e') = >/H e |2, 来获取码书中 各码字间的弦距离。
3 )传输误差总弦距最小值获取模块,用于根据参数获取单元获取的将参数 Ik, 1 以及弦距离获取模块获取的 (ee'), 获取任意置换映射情况下的传输误差总弦距, 并 获取传输误差总弦距的最小值。 通常情况下, 参数获取模块可以将参数 J以及 (e,e')带入公式:
Figure imgf000012_0001
求解不同置换映射情况下该公式的值, 即传输误差总弦距, 并获取其中的最小值。 其中参数 表示序号信息 A置换映射为所述传输序号信息, 参数 nc)表示序号信息 J 置换映射为所述传输序号信息。
需要说明的是, 传输误差总弦距最小值获取模块在获取最小值的过程中, 可以采用 完全搜索方法、 或者二元交换算法(Binary switching algorithm) 、 或者模拟退火算 法 ( simulated annealing algorithm) , 或者其它方法来获取最小值。
4)对应关系建立模块, 用于根据传输误差总弦距最小值获取模块获取的传输误差 总弦距最小值对应的置换映射 关系, 获取传输序号信息, 建立序号信息与传输序 号信息的对应关系。
对应关系建立装置可以为独立的装置,也可以设置于接受端或者发送端或者其他装 置中。
本发明实施例四提供了一种装置, 如附图 9所示, 该装置具体可以包括:
1 ) 序号信息确定模块, 用于根据当前传输信道状态信息, 从码书中选择码字, 并 确定该码字对应的序号信息。
序号信息确定模块具体可以包括- 传输信道状态信息获取单元, 用于获取当前传输信道的状态信息;
码字选择单元,用于根据传输信道状态信息获取单元获取的当前传输信道的状态信 息, 在码书中选择码字;
序号信息确定单元, 用于确定码字选择单元选择的码字所对应的序号信息。
2 ) 传输序号信息确定模块, 用于根据序号信息确定模块确定的序号信息, 确定该 序号信息对应的传输序号信息。
3 ) 发送模块, 用于将传输序号信息确定模块确定的传输序号信息, 通过反馈信道 发送至发送端。
本发明实施例提供的装置, 可以设置于系统的接收端。
本发明实施例五提供了一种装置, 如附图 10所示, 该装置具体可以包括:
1 ) 序号信息确定模块, 用于接收发送模块发送的传输序号信息, 并确定该传输序 号信息对应的序号信息。
2 ) 波束确定模块, 用于根据序号信息确定模块确定的序号信息, 确定其对应的码 字, 进而确定该码字对应的波束。
3 ) 信号发送模块, 用于采用波束确定模块确定的波束发送信号。
本发明实施例提供的装置, 可以设置于系统的发送端。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软 件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施, 但很多情况下前 者是更佳的实施方式。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部 或者部分可以以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 R0M/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备 (可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方 法。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种抗反馈误差的方法, 其特征在于, 所述方法包括:
接收端根据当前传输信道状态信息在码书中选择码字,并确定所述码字对应的序号 信息;
接收端根据所述码字对应的序号信息, 确定所述序号信息对应的传输序号信息; 接收端将所述传输序号信息通过反馈信道发送至发送端。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
发送端接收所述接收端发送的传输序号信息,并确定所述传输序号信息对应的序号 信息;
发送端根据所述确定的序号信息,确定其对应的码字,并确定所述码字对应的波束; 发送端采用所述确定的波束发送信号。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 创建所述序号信息 与所述传输序号信息之间的对应关系, 并将所述对应关系保存在所述接收端及发送端; 所述接收端根据保存的所述对应关系, 确定所述序号信息对应的传输序号信息; 所述发送端根据保存的所述对应关系, 确定所述传输序号信息对应的序号信息。
4、根据权利要求 3所述的方法, 其特征在于, 所述创建所述序号信息与所述传输序 号信息之间对应关系为: 将所述序号信息进行置换映射的过程, 且所述过程包括: 获取参数! ^以及 其中所述参数 P A为所述码字被接收端选中的概率, 所述参数 Ik, J为所述反馈信道的误差传播概率, 即输入为 A而输出变为 J的误差传播概率; 获取所述码书中各码字间的弦距离 (CC'); 根据参数 J以及 , e')获取任意置换映射情况下的传输误差总弦距, 并 获取所述传输误差总弦距的最小值;
根据所述传输误差总弦距最小值对应的置换映射关系, 获取传输序号信息, 建立所 述序号信息与传输序号信息的对应关系。
5、根据权利要求 4所述的方法, 其特征在于, 所述根据参数 k,似及 ' 获取任意置换映射情况下的传输误差总弦距为: c 2(c c ) T P
将参数 以及 , e')带入公式 '=I C nW,n(° A, 求解不同置换 映射情况下该公式的值, 即传输误差总弦距, 其中所述参数 表示所述序号信息 AS 换映射为所述传输序号信息, 所述参数1 ^1)表示所述序号信息 J置换映射为所述传输序 号信息。
6、根据权利要求 4所述的方法, 其特征在于, 所述获取所述传输误差总弦距的最小 值为:
采用完全搜索方法、或二元交换算法、 或模拟退火算法, 获取所述传输误差总弦距 的最小值。
7、 一种抗反馈误差系统, 其特征在于, 所述系统包括接收端以及发送端, 其中, 所述接收端包括- 序号信息确定模块 1, 用于根据当前传输信道状态信息, 从码书中选择码字, 并确 定所述码字对应的序号信息;
传输序号信息确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确 定所述序号信息对应的传输序号信息;
发送模块, 用于将所述传输序号信息确定模块确定的所述传输序号信息, 通过反馈 信道发送至发送端。
8、 根据权利要求 7所述的系统, 其特征在于, 所述发送端包括:
序号信息确定模块 2, 用于接收所述发送模块发送的所述传输序号信息, 并确定所 述传输序号信息对应的序号信息;
波束确定模块, 用于根据所述序号信息确定模块 2确定的所述序号信息, 确定其对 应的码字, 进而确定所述码字对应的波束;
信号发送模块, 用于采用所述波束确定模块确定的所述波束发送信号。
9、 根据权利要求 7所述的系统, 其特征在于, 所述系统中还包括:
对应关系建立装置, 用于建立所述序号信息与所述传输序号信息之间的对应关系, 所述对应关系保存在系统的接收端以及发送端;
所述对应关系建立装置具体包括:
参数获取模块, 用于获取参数 以及 1, 其中所述参数 为所述码字被接收端选 中的概率, 所述参数 J为所述反馈信道的误差传播概率, 即输入为 A而输出变为 J的误 差传播概率; 弦距离获取模块, 用于获取所述码书中各码字间的弦距离 (ee');
传输误差总弦距最小值获取模块, 用于根据参数获取单元获取的参数 k, x 及弦距离获取模块获取的 (ee'), 获取任意置换映射情况下的传输误差总弦距, 并获 取所述传输误差总弦距的最小值;
对应关系建立模块,用于根据传输误差总弦距最小值获取模块获取的所述传输误差 总弦距最小值对应的置换映射关系, 获取传输序号信息, 建立所述序号信息与传输序号 信息之间的对应关系。
10、 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括:
码书构建装置, 用于构建所述接收端以及发送端使用的码书。
11、 一种对应关系建立装置, 其特征在于, 所述装置包括:
参数获取模块, 用于获取参数 以及 1, 其中所述参数 为所述码字被接收端选 中的概率, 所述参数 J为所述反馈信道的误差传播概率, 即输入为 A而输出变为 J的误 差传播概率; 弦距离获取模块, 用于获取所述码书中各码字间的弦距离 (ee');
传输误差总弦距最小值获取模块, 用于根据参数获取单元获取的参数 k, x 及弦距离获取模块获取的 (ee'), 获取任意置换映射情况下的传输误差总弦距, 并获 取所述传输误差总弦距的最小值;
对应关系建立模块,用于根据传输误差总弦距最小值获取模块获取的所述传输误差 总弦距最小值对应的置换映射关系, 获取传输序号信息, 建立所述序号信息与传输序号 信息之间的对应关系。
12、 一种装置, 其特征在于, 所述装置包括:
序号信息确定模块, 用于根据当前传输信道状态信息, 从码书中选择码字, 并确定 所述码字对应的序号信息;
传输序号信息确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确 定所述序号信息对应的传输序号信息;
发送模块, 用于将所述传输序号信息确定模块确定的所述传输序号信息, 通过反馈 信道发送至发送端。
13、 根据权利要求 12所述的装置, 其特征在于, 所述序号信息确定模块包括- 传输信道状态信息获取单元, 用于获取当前传输信道的状态信息;
码字选择单元,用于根据所述传输信道状态信息获取单元获取的当前传输信道的状 态信息, 在码书中选择码字;
序号信息确定单元, 用于确定所述码字选择单元选择的所述码字对应的序号信息。
14、 一种装置, 其特征在于, 所述装置包括: 序号信息确定模块, 用于接收发送端发送的传输序号信息, 并确定所述传输序号信 息对应的序号信息;
波束确定模块, 用于根据所述序号信息确定模块确定的所述序号信息, 确定其对应 的码字, 进而确定所述码字对应的波束;
信号发送模块, 用于采用所述波束确定模块确定的波束发送信号。
PCT/CN2008/072391 2007-09-20 2008-09-17 Procédé, système et dispositif de résistance aux erreurs de rétroaction WO2009039765A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200710151834 CN101394217B (zh) 2007-09-20 2007-09-20 一种抗反馈误差的方法及系统及装置
CN200710151834.2 2007-09-20

Publications (1)

Publication Number Publication Date
WO2009039765A1 true WO2009039765A1 (fr) 2009-04-02

Family

ID=40494324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072391 WO2009039765A1 (fr) 2007-09-20 2008-09-17 Procédé, système et dispositif de résistance aux erreurs de rétroaction

Country Status (2)

Country Link
CN (1) CN101394217B (zh)
WO (1) WO2009039765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092749A (zh) * 2016-11-22 2018-05-29 展讯通信(上海)有限公司 软比特存储方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471713B (zh) * 2007-12-26 2012-07-04 华为技术有限公司 抗反馈误差的码书选择方法和装置
WO2014198037A1 (en) * 2013-06-13 2014-12-18 Qualcomm Incorporated Two-dimensional discrete fourier transform (2d-dft) based codebook for elevation beamforming
WO2016049943A1 (en) * 2014-10-04 2016-04-07 Qualcomm Incorporated Codebook for elevation beamforming

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635727A (zh) * 2004-12-23 2005-07-06 北京北方烽火科技有限公司 Wcdma系统无线网络控制器执行的下行扩频码分配方法
WO2007024214A1 (en) * 2005-08-19 2007-03-01 Mitsubishi Electric Research Laboratories Optimal signaling and selection verification for transmit antenna selection with erroneous feedback
CN1972150A (zh) * 2006-10-10 2007-05-30 中国科学技术大学 一种有限反馈线性离散码的发射与接收方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286663A1 (en) * 2004-06-23 2005-12-29 Intel Corporation Compact feedback for closed loop MIMO systems
CN101039137B (zh) * 2007-04-19 2010-04-14 上海交通大学 Mimo-ofdm系统基于码本搜索减少预编码反馈比特数的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635727A (zh) * 2004-12-23 2005-07-06 北京北方烽火科技有限公司 Wcdma系统无线网络控制器执行的下行扩频码分配方法
WO2007024214A1 (en) * 2005-08-19 2007-03-01 Mitsubishi Electric Research Laboratories Optimal signaling and selection verification for transmit antenna selection with erroneous feedback
CN1972150A (zh) * 2006-10-10 2007-05-30 中国科学技术大学 一种有限反馈线性离散码的发射与接收方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092749A (zh) * 2016-11-22 2018-05-29 展讯通信(上海)有限公司 软比特存储方法及装置
CN108092749B (zh) * 2016-11-22 2021-03-23 展讯通信(上海)有限公司 软比特存储方法及装置

Also Published As

Publication number Publication date
CN101394217B (zh) 2013-08-14
CN101394217A (zh) 2009-03-25

Similar Documents

Publication Publication Date Title
US7697626B2 (en) Method and apparatus for selecting a beam combination in a MIMO wireless communication system
US8594161B2 (en) Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook
CN105703816B (zh) 波束成形反馈格式
TWI294723B (en) Compact feedback for closed loop mimo systems
TWI285480B (en) Spatial puncturing apparatus, method, and system
US8699978B1 (en) Increasing the robustness of channel estimates derived through sounding for WLAN
US20060111148A1 (en) Low complexity beamformers for multiple transmit and receive antennas
US20110159866A1 (en) Method and system for communicating feedback information in a multiple user multiple input multiple output (mu-mimo) communication system
JP5275514B2 (ja) 閉ループmimoビーム形成のための差分フィードバックスキーム
WO2009003423A1 (fr) Procédé pour un renvoi d'information d'état de canal et émetteur-récepteur sans fil
BRPI0809746A2 (pt) Método e aparelho de validação de informações de codificação prévia eficiente para comunicação mimo.
WO2008083576A1 (fr) Procédé de communication, procédé de transmission, procédé de réception et dispositif associé
CN102763447A (zh) 用于采用了多输入多输出(mimo)传输的无线通信系统中的信道状态信息反馈的系统和方法
WO2008157620A2 (en) Constant modulus mimo precoding for constraining transmit antenna power for differential feedback
US20110158189A1 (en) Methods and Apparatus for Multi-Transmitter Collaborative Communications Systems
JP2012533966A (ja) 無線通信システムにおける周波数選択性チャネルのmimoビーム形成の手法
WO2018127067A1 (zh) 一种发射分集的方法、终端和基站
WO2011026428A1 (zh) 一种多输入多输出系统中的预编码方法和装置
WO2009039765A1 (fr) Procédé, système et dispositif de résistance aux erreurs de rétroaction
JP2011501606A (ja) マルチアンテナ通信方法およびシステム
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
JP2017063447A (ja) 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
WO2023246618A1 (zh) 信道矩阵处理方法、装置、终端及网络侧设备
CN110247686B (zh) 一种基于码本轮转的有限反馈量化方法
CN111756416B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800886

Country of ref document: EP

Kind code of ref document: A1