WO2009034845A1 - Process for producing separator for fuel cell - Google Patents

Process for producing separator for fuel cell Download PDF

Info

Publication number
WO2009034845A1
WO2009034845A1 PCT/JP2008/065345 JP2008065345W WO2009034845A1 WO 2009034845 A1 WO2009034845 A1 WO 2009034845A1 JP 2008065345 W JP2008065345 W JP 2008065345W WO 2009034845 A1 WO2009034845 A1 WO 2009034845A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
separator
fuel cell
specimen
producing
Prior art date
Application number
PCT/JP2008/065345
Other languages
French (fr)
Japanese (ja)
Inventor
Kuroudo Maeda
Masahiro Mizuno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Aisin Takaoka Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007262199A external-priority patent/JP2009087909A/en
Application filed by Toyota Jidosha Kabushiki Kaisha, Aisin Takaoka Co., Ltd. filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009034845A1 publication Critical patent/WO2009034845A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for manufacturing a fuel cell separator, and more particularly, to a method for manufacturing a fuel cell separator that separates gas between adjacent fuel cell cells.
  • Fuel cells have been in the limelight as batteries with high efficiency and excellent environmental characteristics. Fuel cells generally produce electric energy by electrochemically reacting hydrogen, the fuel gas, with oxygen in the air, the oxidant gas. As a result of the electrochemical reaction between hydrogen and oxygen, water is generated.
  • Types of fuel cells include phosphoric acid type, molten carbonate type, solid electrolyte type, alkaline type, and solid polymer type.
  • solid polymer fuel cells that have advantages such as startup at normal temperature and quick startup time are drawing attention.
  • Such a polymer electrolyte fuel cell is used as a power source for a mobile object such as a vehicle.
  • a polymer electrolyte fuel cell is assembled by stacking a plurality of single cells, current collector plates, end plates, and the like.
  • the fuel cell includes an electrolyte membrane, a catalyst layer, a gas diffusion layer, and a separator.
  • Patent Document 1 the use of a fuel cell separator that is surface-treated with a metal made of gold or chromium on a separator base made of stainless steel or titanium prevents corrosion against the corrosive atmosphere of the battery environment. It is described that the performance is improved.
  • Patent Document 2 describes a high corrosion resistance stainless steel used as a separator for a polymer electrolyte fuel cell and a surface treatment method for reducing contact resistance against carbon to titanium, in which a passive metal is polished with a noble metal attached thereto. It describes that a noble metal is adhered to a passive metal immediately after removing the surface oxide film by polishing with a material.
  • Patent Document 3 describes a surface treatment method for a passive metal to carbon with a low contact resistance.
  • An appropriate amount of high-hardness particles partially or entirely coated with a precious metal or its alloy are mixed between the surface to be treated of the passive metal and the precious metal or its alloy facing it, and the surface is hardened by ultrasonic waves. It describes that particles are vibrated and flowed, and a noble metal or an alloy thereof is adhered to a part or all of the surface while removing a surface oxide film of a passive metal by collision of a hard particle with a surface to be treated.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-158441
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-134128
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-134136 Disclosure of Invention
  • an object of the present invention is to provide a method for manufacturing a fuel cell separator capable of suppressing a decrease in conductivity.
  • a method for manufacturing a fuel cell separator according to the present invention is a method for manufacturing a fuel cell separator that separates gas between adjacent fuel cell cells, wherein a titanium substrate is formed by plastically adding a titanium material.
  • the titanium substrate forming step is characterized by rolling and forming a titanium material.
  • the method for manufacturing a fuel cell separator according to the present invention is characterized by having a conductive layer forming step of forming a conductive layer on the surface of the titanium substrate after the removing step.
  • the invention's effect As described above, according to the method for manufacturing a fuel cell separator according to the present invention, since the generation of oxides formed in the fuel cell separator is reduced, the conductivity of the fuel cell separator overnight is reduced. Can be suppressed.
  • FIG. 1 is a diagram showing a cross section of a fuel cell in an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a method for manufacturing a separator overnight in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a method of rolling a titanium material in the embodiment of the present invention.
  • FIG. 4 is a view showing a cross section of the titanium substrate after rolling in the embodiment of the present invention.
  • FIG. 5 is a diagram showing a cross section of the separator evening in the embodiment of the present invention.
  • FIG. 6 is a diagram showing a test apparatus used in the electrochemical high temperature corrosion test in the embodiment of the present invention.
  • FIG. 7 is a diagram showing a corrosion test result in a separate evening specimen in the embodiment of the present invention.
  • FIG. 8 is a diagram showing a method for measuring contact resistance in the embodiment of the present invention.
  • FIG. 9 is a graph showing the measurement results of contact resistance in a separate evening specimen in the embodiment of the present invention. Explanation of symbols
  • FIG. 1 is a cross-sectional view of a fuel cell 10.
  • a fuel cell 10 includes a membrane electrode assembly 18 (Membran e lectrode A sse mb 1) that integrates an electrolyte membrane 12, a catalyst layer 14, and a gas diffusion layer 16 to form a fuel cell electrode.
  • ME A membrane electrode assembly 18
  • an expanded molded body 20 that is a gas flow path structure that forms a gas flow path, and a separator gas that separates fuel gas or oxidant gas between adjacent cells (not shown). And including.
  • the electrolyte membrane 12 has a function of moving hydrogen ions generated on the anode electrode side to the force sword electrode side.
  • a chemically stable fluorine-based resin for example, an ion exchange membrane of perfluorocarpone sulfonic acid is used.
  • the catalyst layer 14 has a function of promoting a hydrogen oxidation reaction on the anode electrode side and an oxygen reduction reaction on the force sword electrode side.
  • the catalyst layer 14 includes a catalyst and a catalyst carrier. In order to increase the electrode area to be reacted, the catalyst is generally used in the form of particles and attached to the catalyst carrier.
  • platinum which is a platinum group element having a smaller activation overvoltage, is used for the oxidation reaction of hydrogen and the reduction reaction of oxygen.
  • a carbon material such as a car pump rack is used as the catalyst carrier.
  • the gas diffusion layer 16 has a function of diffusing hydrogen gas, which is a fuel gas, and air, which is an oxidant gas, into the catalyst layer 14 and a function of moving electrons.
  • the gas diffusion layer 16 is made of carbon fiber woven fabric, force-on-paper, or the like, which is a conductive material.
  • the expanded molded body 20 is laminated on both surfaces of the membrane electrode assembly 18 and has a function as a gas channel structure that forms a gas channel.
  • the expanded molded body 20 is laminated in contact with the gas diffusion layer 16 of the membrane electrode assembly 18 and the separator 22, and is electrically connected to the membrane electrode assembly 18 and the separator 22. Since the expanded molded body 20 has a mesh structure composed of a large number of openings, more fuel gas or the like comes into contact with the membrane electrode assembly 18 to cause a chemical reaction, thereby generating power from the fuel cell 10. Efficiency can be increased.
  • the expanded molded body 20 for example, an expanded metal shown in JISG 3351, a metal lath or a metal porous body shown in JISA 5505, or the like is used.
  • the expanded molded body 20 is preferably molded from titanium, titanium alloy stainless steel or the like. These metal materials, mechanical strength high degree of stable oxide on the surface (T I_ ⁇ , T i 2 ⁇ 3, T I_ ⁇ 2, C R_ ⁇ 2, C R_ ⁇ , C r 2 ⁇ 3 This is because an inert film such as a passive film is formed and thus has excellent corrosion resistance.
  • the stainless steel an austenitic stainless steel, a ferritic stainless steel, or the like can be used.
  • the separate evening 22 is laminated on the expanded molded body 20 and has a function of separating the fuel gas and the oxidant gas in the adjacent cell (not shown).
  • the separator overnight 22 has a function of electrically connecting adjacent cells (not shown).
  • Separate Night 22 is made of pure titanium or a titanium alloy.
  • the titanium material has high mechanical strength and has an excellent corrosion resistance because an inert film such as a passive film made of a stable oxide is formed on the surface thereof.
  • the separate evening 22 includes a titanium substrate 24 formed of a titanium material and a conductive layer 26 formed on the titanium substrate 24.
  • the conductive layer 26 is set to a thickness of 311111 to 2001 m, and has a function of reducing contact resistance between the expanded molded body 20 and the titanium substrate 24.
  • the conductive layer 26 is made of a metal material such as gold (Au), silver (Ag), copper (Cu), platinum (Pt), rhodium (Rh), iridium (Ir), palladium (Pd), etc. It is formed by. Because these metal materials have high electrical conductivity, the contact resistance can be further reduced.
  • the conductive layer 26 may be formed of an alloy such as gold (Au) or platinum (Pt).
  • FIG. 2 is a flowchart showing a method for manufacturing the separate evening 22.
  • the manufacturing method of Separat 22 includes a titanium substrate forming step (S 10), a cleaning step (S 12), a neutralization step (S 14), a removal step (S 16), and a conductive layer forming step (S 18 ) When, It is comprised including.
  • the titanium substrate forming step (S 10) is a step of forming a titanium substrate 24 by plastic working a titanium material.
  • the titanium substrate 24 is formed by, for example, roll rolling a titanium material.
  • Fig. 3 is a schematic diagram showing a method of rolling a titanium material.
  • pure titanium or a titanium alloy is used for the titanium material 30.
  • the titanium material is hot-rolled at a temperature of 700 to 900 ° C.
  • a rolling apparatus generally used for rolling titanium material can be used.
  • a lubricant containing fats and oils and carbons is used to prevent seizure and the like.
  • the plastic working of the titanium material 30 is not limited to rolling, but may be press working or the like.
  • FIG. 4 is a view showing a cross section of the titanium substrate 24 after rolling.
  • T I_ ⁇ the titanium material 3 0 is a base material was produced by oxidation, T i 2 ⁇ 3, T I_ ⁇ 2 titanium oxides such as 3 2 are formed.
  • T i C, T i C 2 , T i produced by chemical reaction with carbon produced by carbonization of oils and fats contained in the lubricant during the rolling process.
  • Titanium carbide 3 4 such as C 3 is formed.
  • titanium oxide 3 6 such as T i O, T i 2 0 3 , T i 0 2, etc. formed by oxidizing the titanium carbide 3 4 is also formed.
  • the cleaning step (S 1 2) is a step of cleaning the titanium substrate 24 formed by rolling the titanium material 30.
  • the titanium substrate 24 is cleaned by, for example, alkaline immersion degreasing.
  • alkaline immersion degreasing an alkaline solution such as caustic soda is used.
  • alkali dipping degreasing or the like oil or the like adhering to the surface of the titanium substrate 24 is removed.
  • the neutralization step (S 14) is a step of neutralizing and removing the alkali remaining on the cleaned titanium substrate 24.
  • the neutralization treatment is performed by immersing the cleaned titanium substrate 24 in a neutralizing solution.
  • a neutralizing solution sulfuric acid solution, hydrochloric acid solution, nitric acid solution, etc. are used.
  • the titanium substrate 24 taken out from the neutralized solution is washed with deionized water or the like.
  • the removal step (S 1 6) the titanium substrate 24 that has been subjected to the neutralization treatment is pickled to remove the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 from the surface of the titanium substrate 24. It is a process.
  • the productivity of the fuel cell separator can be improved as compared with the step for removal by polishing or the like.
  • the pickling treatment is performed by immersing the titanium substrate 24 in a solution containing fluoride such as a nitric hydrofluoric acid solution or a hydrofluoric acid solution.
  • a solution containing fluoride such as a nitric hydrofluoric acid solution or a hydrofluoric acid solution.
  • the titanium oxide 36, titanium carbide 34, and titanium oxide 32 on the surface of the titanium substrate 24 are etched. Thereby, the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 formed on the titanium substrate 24 are removed.
  • a solution containing a fluoride such as a nitric hydrofluoric acid solution is not used for the pickling solution unless it contains a fluoride.
  • a fluoride such as a nitric hydrofluoric acid solution
  • titanium oxide 3 2, 3 6 And titanium carbide 3 4 cannot be removed.
  • the titanium substrate 24 taken out from the nitric hydrofluoric acid solution or the like is washed with deionized water or the like.
  • the conductive layer forming step (S 1 8) is a step of forming the conductive layer 26 on the titanium substrate 24 that has been pickled.
  • the conductive layer 26 is set to a thickness of 3 nm to 200 nm, and is formed by coating a conductor such as gold (A u).
  • a conductor such as gold (A u) or the like
  • an electrolytic plating method can be used.
  • a general alkaline plating method such as gold (A u) is used. This completes the production of Separe Ichiba 22
  • the separator layer may be manufactured by omitting the conductive layer forming step (S 1 8).
  • FIG. 5 is a view showing a cross section of the manufactured separator 22.
  • the separator 22 has a titanium substrate 24 and a conductive layer 26.
  • the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 are removed in the removal step (S 16). Therefore, generation of titanium oxide due to oxidation of titanium carbide 34 can be prevented during fuel cell power generation.
  • the separate evening may be configured by omitting the conductive layer 26 from the separate evening 22 shown in FIG.
  • Example 1 A method for manufacturing the separate overnight specimen in Example 1 will be described. Pure titanium was used for the titanium material. A pure titanium material was roll-rolled to form a titanium sheet. The titanium sheet was degreased by alkali soaking and washed to remove oil adhering to the titanium sheet. The titanium sheet washed with alkali degreasing was neutralized by dipping in a sulfuric acid solution. Next, the titanium sheet was immersed in a nitric hydrofluoric acid solution and pickled, and titanium oxide and titanium carbide formed on the surface of the titanium sheet were etched and removed. In addition, the manufacturing method of the separator evening specimen in the comparative example 1 which uses what does not form a conductive layer for the separator evening specimen used for the evaluation test is explained.
  • the corrosion test was conducted in accordance with the electrochemical high temperature corrosion test method for metallic materials specified in JISZ 2 2 9 4.
  • Figure 6 shows the test equipment used in the electrochemical hot corrosion test.
  • the test was conducted in an open air system.
  • the solution used for the test was a sulfuric acid solution.
  • the temperature of the test solution was 50 ° C.
  • a corrosion test was performed by applying a constant potential for 50 hours. The corrosion resistance was evaluated by observing the appearance of the separate overnight specimen after the corrosion test.
  • Fig. 7 is a diagram showing the results of a corrosion test on a separate evening specimen.
  • the separate evening specimen of Example 1 was less discolored than the separate evening specimen of Comparative Example 1.
  • the separation overnight specimen of Comparative Example 1 has a lot of discoloration because the titanium oxide and titanium carbide remained on the surface of the separation evening specimen of Comparative Example 1, so that the titanium carbide was oxidized during the corrosion test. This is because the titanium oxide is formed thick.
  • FIG. 8 is a diagram showing a method for measuring contact resistance. After attaching the gas diffusion layer material 4 2 to the metal jig 40, sandwich the separator sample of Example 1 or Comparative Example 1 as the test piece 4 4 between the two gas diffusion layer materials 4 2, A predetermined surface pressure was applied to bring it into close contact. Then, the contact resistance was determined by measuring the voltage between the test piece 44 and the gas diffusion layer material 42 when a current of 1 A was passed.
  • Fig. 9 is a graph showing the measurement results of contact resistance of the separate overnight specimen.
  • the horizontal axis indicates the type of the specimen to be separated
  • the vertical axis indicates the relative value of contact resistance (m ⁇ ⁇ cm 2 )
  • the contact resistance before the corrosion test is indicated by a white square.
  • Corrosion test The contact resistance after 50 hours is indicated by a black square.
  • the contact resistance before the corrosion test and the corrosion resistance after the corrosion test were substantially the same level.
  • the contact resistance after the corrosion test in the separate evening specimen of Comparative Example 1 increased significantly compared to the contact resistance before the corrosion test.
  • Example 1 a separate layer specimen was manufactured by forming a conductive layer (gold or palladium having a thickness of 10 nm) on the separator specimen of Example 1, and the same as in Example 1 and Comparative Example 1. As a result, a corrosion test was performed on a separate specimen and contact resistance was obtained. Although not shown here, the present inventors have confirmed that the corrosion test results and the contact resistance measurement results were better than those in Example 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This invention provides a process for producing a separator for a fuel cell which can separate a gas present between adjacent cells for a fuel cell. In producing a separator for a fuel cell using a metallic material such as titanium, a conductor having a high level of electrical conductivity is generally formed on the surface of the separator to reduce contact resistance between the separator and a gas diffusing layer and the like. However, there has been a possibility that, during power generation in a fuel cell, an oxide is formed on the surface of the separator resulting in lowered electrical conductivity of the separator. The above problem can be solved by a process for producing a separator for a fuel cell, comprising a titanium base forming step of plastically working a titanium material to form a titanium base and a removing step of pickling the titanium base to remove titanium oxide and titanium carbide from the surface of the titanium base.

Description

燃料電池用セパレー夕の製造方法 技術分野 Manufacturing method of fuel cell separator evening
本発明は、 燃料電池用セパレ一夕の製造方法に係り、 特に、 隣設する燃料電池 用セル間のガスを分離する燃料電池用セパレー夕の製造方法に関する。 明  The present invention relates to a method for manufacturing a fuel cell separator, and more particularly, to a method for manufacturing a fuel cell separator that separates gas between adjacent fuel cell cells. Light
背景技術 Background art
 Thread
燃料電池は、 高効率と優れた環境特性を有する電池として近年脚光を浴びてい る。 燃料電池は、 一般的に、 燃料ガスである水素に、 酸化剤ガスである空気中の 酸素を電気化学反応させて、 電気工ネルギを作りだしている。 そして、 水素と酸 素とが電気化学反応した結果、 水が生成される。  In recent years, fuel cells have been in the limelight as batteries with high efficiency and excellent environmental characteristics. Fuel cells generally produce electric energy by electrochemically reacting hydrogen, the fuel gas, with oxygen in the air, the oxidant gas. As a result of the electrochemical reaction between hydrogen and oxygen, water is generated.
燃料電池の種類には、 リン酸型、 溶融炭酸塩型、 固体電解質型、 アルカリ型、 固体高分子型等がある。 この中でも、 常温で起動しかつ起動時間が速い等の利点 を有する固体高分子型の燃料電池が注目されている。 このような固体高分子型の 燃料電池は、 移動体、 例えば、 車両等の動力源として用いられている。  Types of fuel cells include phosphoric acid type, molten carbonate type, solid electrolyte type, alkaline type, and solid polymer type. Among these, solid polymer fuel cells that have advantages such as startup at normal temperature and quick startup time are drawing attention. Such a polymer electrolyte fuel cell is used as a power source for a mobile object such as a vehicle.
固体高分子型の燃料電池は、 複数の単セル、 集電板、 エンドプレー卜等を積層 して組み立てられる。 そして、 燃料電池用セルは、 電解質膜と、 触媒層と、 ガス 拡散層と、 セパレ一夕とを含んで構成される。  A polymer electrolyte fuel cell is assembled by stacking a plurality of single cells, current collector plates, end plates, and the like. The fuel cell includes an electrolyte membrane, a catalyst layer, a gas diffusion layer, and a separator.
特許文献 1には、 ステンレス鋼またはチタンからなるセパレータ基材に、 金ま たはクロムからなる金属により表面処理されてなる燃料電池セパレ一夕を使用す ることにより、 電池環境の腐食雰囲気に対する防食性が向上することが記載され ている。  In Patent Document 1, the use of a fuel cell separator that is surface-treated with a metal made of gold or chromium on a separator base made of stainless steel or titanium prevents corrosion against the corrosive atmosphere of the battery environment. It is described that the performance is improved.
特許文献 2には、 固体高分子型燃料電池用セパレー夕として用いる高耐食ステ ンレス鋼やチタンへの対カーボン低接触抵抗化表面処理法であって、 不働態金属 を、 貴金属を付着させた研磨材で研磨することにより、 不働態金属に、 表面酸化 皮膜を除去した直後に貴金属を付着させることが記載されている。  Patent Document 2 describes a high corrosion resistance stainless steel used as a separator for a polymer electrolyte fuel cell and a surface treatment method for reducing contact resistance against carbon to titanium, in which a passive metal is polished with a noble metal attached thereto. It describes that a noble metal is adhered to a passive metal immediately after removing the surface oxide film by polishing with a material.
特許文献 3には、 不働態金属の対カーボン低接触抵抗化表面処理方法であって 、 不働態金属の被処理面と、 それに対向する貴金属またはその合金の間に、 貴金 属またはその合金で一部または全部を被覆された高硬度粒子を適量配合し、 超音 波により高硬度粒子を振動 ·流動させ、 高硬度粒子の被処理面への衝突により不 働態金属の表面酸化皮膜を除去しながらその一部または全部に貴金属またはその 合金を付着させることが記載されている。 Patent Document 3 describes a surface treatment method for a passive metal to carbon with a low contact resistance. An appropriate amount of high-hardness particles partially or entirely coated with a precious metal or its alloy are mixed between the surface to be treated of the passive metal and the precious metal or its alloy facing it, and the surface is hardened by ultrasonic waves. It describes that particles are vibrated and flowed, and a noble metal or an alloy thereof is adhered to a part or all of the surface while removing a surface oxide film of a passive metal by collision of a hard particle with a surface to be treated.
特許文献 1 :特開 2005— 158441号公報 Patent Document 1: Japanese Patent Laid-Open No. 2005-158441
特許文献 2 :特開 2002— 134128号公報 Patent Document 2: Japanese Patent Laid-Open No. 2002-134128
特許文献 3 :特開 2002— 134136号公報 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 2002-134136 Disclosure of Invention
発明が解決しょうとする課題 Problems to be solved by the invention
ところで、 燃料電池用セパレー夕をチタン等の金属材料で製造する場合には、 一般的に、 電気伝導性の高い導電体を表面に形成して、 ガス拡散層等との間の接 蝕抵抗を低減させている。 ここで、 燃料電池の発電中には、 チタン等の酸化によ りセパレー夕表面に酸化物が生成する。 酸化物は、 一般的に、 電気伝導性が低い ので、 酸化物が厚く形成されるとセパレー夕の導電性が低下する可能性がある。 そこで、 本発明の目的は、 導電性の低下を抑制することができる燃料電池用セ パレー夕の製造方法を提供することである。  By the way, when manufacturing a separator for a fuel cell with a metal material such as titanium, generally, a conductive material having a high electrical conductivity is formed on the surface to reduce the corrosion resistance between the gas diffusion layer and the like. It is reduced. Here, during power generation of the fuel cell, oxides are generated on the surface of the separator due to oxidation of titanium or the like. Since oxides generally have low electrical conductivity, the conductivity of a separator can be reduced if the oxide is formed thick. Accordingly, an object of the present invention is to provide a method for manufacturing a fuel cell separator capable of suppressing a decrease in conductivity.
課題を解決するための手段 Means for solving the problem
本発明に係る燃料電池用セパレー夕の製造方法は、 隣設する燃料電池用セル間 のガスを分離する燃料電池用セパレー夕の製造方法であって、 チタン材を塑性加 ェしてチタン基体を成形するチタン基体成形工程と、 チタン基体を酸洗して、 チ タン基体の表面からチタン酸化物及びチタン炭化物を除去する除去工程と、 を有 することを特徴とする。  A method for manufacturing a fuel cell separator according to the present invention is a method for manufacturing a fuel cell separator that separates gas between adjacent fuel cell cells, wherein a titanium substrate is formed by plastically adding a titanium material. A titanium substrate forming step for forming; and a removal step of pickling the titanium substrate to remove titanium oxide and titanium carbide from the surface of the titanium substrate.
本発明に係る燃料電池用セパレ一夕の製造方法において、 チタン基体成形工程 は、 チタン材を圧延して成形することを特徴とする。  In the method for manufacturing a fuel cell separate according to the present invention, the titanium substrate forming step is characterized by rolling and forming a titanium material.
本発明に係る燃料電池用セパレー夕の製造方法において、 除去工程後に、 チタ ン基体の表面に導電層を形成する導電層形成工程を有することを特徴とする。 発明の効果 上記のように本発明に係る燃料電池用セパレ一夕の製造方法によれば、 燃料電 池用セパレー夕に形成される酸化物の生成が低減されるので、 燃料電池用セパレ 一夕における導電性の低下を抑制することができる。 The method for manufacturing a fuel cell separator according to the present invention is characterized by having a conductive layer forming step of forming a conductive layer on the surface of the titanium substrate after the removing step. The invention's effect As described above, according to the method for manufacturing a fuel cell separator according to the present invention, since the generation of oxides formed in the fuel cell separator is reduced, the conductivity of the fuel cell separator overnight is reduced. Can be suppressed.
図面の簡単な説明 Brief Description of Drawings
図 1は、 本発明の実施の形態において、 燃料電池用セルの断面を示す図である 図 2は、 本発明の実施の形態において、 セパレ一夕の製造方法を示すフローチ ヤー卜である。  FIG. 1 is a diagram showing a cross section of a fuel cell in an embodiment of the present invention. FIG. 2 is a flow chart showing a method for manufacturing a separator overnight in an embodiment of the present invention.
図 3は、 本発明の実施の形態において、 チタン材のロール圧延方法を示す模式 図である。  FIG. 3 is a schematic diagram showing a method of rolling a titanium material in the embodiment of the present invention.
図 4は、 本発明の実施の形態において、 圧延後におけるチタン基体の断面を示 す図である。  FIG. 4 is a view showing a cross section of the titanium substrate after rolling in the embodiment of the present invention.
図 5は、 本発明の実施の形態において、 セパレー夕の断面を示す図である。 図 6は、 本発明の実施の形態において、 電気化学的高温腐食試験で使用した試 験装置を示す図である。  FIG. 5 is a diagram showing a cross section of the separator evening in the embodiment of the present invention. FIG. 6 is a diagram showing a test apparatus used in the electrochemical high temperature corrosion test in the embodiment of the present invention.
図 7は、 本発明の実施の形態において、 セパレー夕供試体における腐食試験結 果を示す図である。  FIG. 7 is a diagram showing a corrosion test result in a separate evening specimen in the embodiment of the present invention.
図 8は、 本発明の実施の形態において、 接触抵抗の測定方法を示す図である。 図 9は、 本発明の実施の形態において、 セパレー夕供試体における接触抵抗の 測定結果を示すグラフである。 符号の説明  FIG. 8 is a diagram showing a method for measuring contact resistance in the embodiment of the present invention. FIG. 9 is a graph showing the measurement results of contact resistance in a separate evening specimen in the embodiment of the present invention. Explanation of symbols
1 0 燃料電池用セル、 1 2 電解質膜、 1 4 触媒層、 1 6 ガス拡散層、 1 8 膜電極接合体、 2 0 エキスパンド成形体、 2 2 セパレー夕、 2 4 チ タン基体、 2 6 導電層、 3 0 チタン材、 3 2 , 3 6 チタン酸化物、 3 4 チタン炭化物、 3 8 チタン酸化物層、 4 0 金属治具、 4 2 ガス拡散層材、 4 4 試験片。 発明を実施するための最良の形態 以下に図面を用いて本発明に係る実施の形態につき、 詳細に説明する。 まず、 燃料電池用セルの構成について説明する。 図 1は、 燃料電池用セル 10の断面を 示す図である。 燃料電池用セル 10は、 電解質膜 12と、 触媒層 14と、 ガス拡 散層 16とを一体化し、 燃料電池の電極を形成する膜電極接合体 18 (Memb r an e E l e c t r o d e A s s e mb 1 y : ME A)と、 ガス流路を形 成するガス流路構造体であるエキスパンド成形体 20と、 隣設するセル (図示せ ず) 間の燃料ガスまたは酸化剤ガスを分離するセパレー夕 22と、 を含んで構成 される。 1 0 Fuel cell, 1 2 Electrolyte membrane, 1 4 Catalyst layer, 1 6 Gas diffusion layer, 1 8 Membrane electrode assembly, 2 0 Expanded molding, 2 2 Separator, 2 4 Titanium substrate, 2 6 Conductive Layer, 30 titanium material, 3 2, 3 6 titanium oxide, 3 4 titanium carbide, 3 8 titanium oxide layer, 40 metal jig, 4 2 gas diffusion layer material, 4 4 specimen. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments according to the present invention will be described below in detail with reference to the drawings. First, the configuration of the fuel cell will be described. FIG. 1 is a cross-sectional view of a fuel cell 10. A fuel cell 10 includes a membrane electrode assembly 18 (Membran e lectrode A sse mb 1) that integrates an electrolyte membrane 12, a catalyst layer 14, and a gas diffusion layer 16 to form a fuel cell electrode. y: ME A), an expanded molded body 20 that is a gas flow path structure that forms a gas flow path, and a separator gas that separates fuel gas or oxidant gas between adjacent cells (not shown). And including.
電解質膜 12は、 アノード極側で発生した水素イオンを力ソード極側まで移動 させる機能等を有している。 電解質膜 12の材料には、 化学的に安定であるフッ 素系樹脂、 例えば、 パーフルォロカ一ポンスルホン酸のイオン交換膜が使用され る。  The electrolyte membrane 12 has a function of moving hydrogen ions generated on the anode electrode side to the force sword electrode side. As the material of the electrolyte membrane 12, a chemically stable fluorine-based resin, for example, an ion exchange membrane of perfluorocarpone sulfonic acid is used.
触媒層 14は、 アノード極側での水素の酸化反応や、 力ソード極側での酸素の 還元反応を促進する機能を有している。 そして、 触媒層 14は、 触媒と、 触媒の 担体とを含んで構成される。 触媒は、 反応させる電極面積をより大きくするため 、 一般的に粒子状にして、 触媒の担体に付着させて使用される。 触媒には、 水素 の酸化反応や酸素の還元反応について、 より小さい活性化過電圧を有する白金族 元素である白金等が使用される。 触媒の担体としては、 カーボン材料、 例えば、 カーポンプラック等が使用される。  The catalyst layer 14 has a function of promoting a hydrogen oxidation reaction on the anode electrode side and an oxygen reduction reaction on the force sword electrode side. The catalyst layer 14 includes a catalyst and a catalyst carrier. In order to increase the electrode area to be reacted, the catalyst is generally used in the form of particles and attached to the catalyst carrier. As the catalyst, platinum, which is a platinum group element having a smaller activation overvoltage, is used for the oxidation reaction of hydrogen and the reduction reaction of oxygen. A carbon material such as a car pump rack is used as the catalyst carrier.
ガス拡散層 16は、 燃料ガスである水素ガス等と、 酸化剤ガスである空気等と を触媒層 14に拡散させる機能や、 電子を移動させる機能等を有している。 そし て、 ガス拡散層 16には、 導電性を有する材料であるカーボン繊維織布、 力一ポ ン紙等が使用される。  The gas diffusion layer 16 has a function of diffusing hydrogen gas, which is a fuel gas, and air, which is an oxidant gas, into the catalyst layer 14 and a function of moving electrons. The gas diffusion layer 16 is made of carbon fiber woven fabric, force-on-paper, or the like, which is a conductive material.
エキスパンド成形体 20は、 膜電極接合体 18の両面に積層され、 ガス流路を 形成するガス流路構造体としての機能を有している。 エキスパンド成形体 20は 、 膜電極接合体 18のガス拡散層 16と、 セパレー夕 22とに接触して積層され 、 膜電極接合体 18とセパレー夕 22とに電気的に接続される。 エキスパンド成 形体 20は、 多数の開口からなるメッシュ構造を備えているので、 より多くの燃 料ガス等が膜電極接合体 18と接触して化学反応し、 燃料電池用セル 10の発電 効率を高めることができる。 The expanded molded body 20 is laminated on both surfaces of the membrane electrode assembly 18 and has a function as a gas channel structure that forms a gas channel. The expanded molded body 20 is laminated in contact with the gas diffusion layer 16 of the membrane electrode assembly 18 and the separator 22, and is electrically connected to the membrane electrode assembly 18 and the separator 22. Since the expanded molded body 20 has a mesh structure composed of a large number of openings, more fuel gas or the like comes into contact with the membrane electrode assembly 18 to cause a chemical reaction, thereby generating power from the fuel cell 10. Efficiency can be increased.
エキスパンド成形体 20には、 例えば、 J I S G 3351に示されるェキ スパンドメタルや、 J I S A 5505に示されるメタルラスまたは金属多孔 体等が使用される。 また、 エキスパンド成形体 20は、 チタン、 チタン合金ゃス テンレス鋼等により成形されることが好ましい。 これらの金属材料は、 機械的強 度が高く、 その表面に安定な酸化物 (T i〇、 T i 23、 T i〇2、 C r〇2、 C r〇、 C r23等) からなる不働態膜等の不活性皮膜が形成されるため、 優 れた耐食性を有するからである。 ステンレス鋼には、 オーステナイト系ステンレ ス鋼ゃフェライ卜系ステンレス鋼等を用いることができる。 As the expanded molded body 20, for example, an expanded metal shown in JISG 3351, a metal lath or a metal porous body shown in JISA 5505, or the like is used. The expanded molded body 20 is preferably molded from titanium, titanium alloy stainless steel or the like. These metal materials, mechanical strength high degree of stable oxide on the surface (T I_〇, T i 23, T I_〇 2, C R_〇 2, C R_〇, C r 23 This is because an inert film such as a passive film is formed and thus has excellent corrosion resistance. As the stainless steel, an austenitic stainless steel, a ferritic stainless steel, or the like can be used.
セパレ一夕 22は、 エキスパンド成形体 20に積層され、 隣設するセル (図示 せず) における燃料ガスと酸化剤ガスとを分離する機能を有している。 また、 セ パレ一夕 22は、 隣設するセル (図示せず) を電気的に接続する機能を有してい る。 セパレ一夕 22は、 純チタンまたはチタン合金で製造される。 チタン材料は 、 上述したように、 機械的強度が高く、 その表面に安定な酸化物からなる不働態 膜等の不活性皮膜が形成されるため、 優れた耐食性を有するからである。  The separate evening 22 is laminated on the expanded molded body 20 and has a function of separating the fuel gas and the oxidant gas in the adjacent cell (not shown). In addition, the separator overnight 22 has a function of electrically connecting adjacent cells (not shown). Separate Night 22 is made of pure titanium or a titanium alloy. As described above, the titanium material has high mechanical strength and has an excellent corrosion resistance because an inert film such as a passive film made of a stable oxide is formed on the surface thereof.
セパレ一夕 22は、 チタン材料で成形されたチタン基体 24と、 チタン基体 2 4に形成される導電層 26とを備えている。 導電層 26は、 3 11111から 2001 mの厚みに設定されており、 エキスパンド成形体 20とチタン基体 24との間の 接触抵抗を低減する機能を有している。 導電層 26は、 導電体である金 (Au) 、 銀 (Ag) 、 銅 (Cu) 、 白金 (P t) 、 ロジウム (Rh) 、 イリジウム (I r) 、 パラジウム (P d) 等の金属材料により形成される。 これらの金属材料は 、 電気伝導率が高いので、 接触抵抗をより小さくすることができるからである。 これらの金属材料の中でも、 金 (Au) は、 耐食性に優れており、 電気伝導率が 大きいので、 導電層 26を形成する金属材料として好ましい。 また、 導電層 26 は、 金 (Au) 、 白金 (P t) 等の合金で形成されてもよい。  The separate evening 22 includes a titanium substrate 24 formed of a titanium material and a conductive layer 26 formed on the titanium substrate 24. The conductive layer 26 is set to a thickness of 311111 to 2001 m, and has a function of reducing contact resistance between the expanded molded body 20 and the titanium substrate 24. The conductive layer 26 is made of a metal material such as gold (Au), silver (Ag), copper (Cu), platinum (Pt), rhodium (Rh), iridium (Ir), palladium (Pd), etc. It is formed by. Because these metal materials have high electrical conductivity, the contact resistance can be further reduced. Among these metal materials, gold (Au) is preferable as a metal material for forming the conductive layer 26 because it is excellent in corrosion resistance and has high electric conductivity. The conductive layer 26 may be formed of an alloy such as gold (Au) or platinum (Pt).
次に、 セパレー夕 22の製造方法について説明する。  Next, a method for manufacturing the separate evening 22 will be described.
図 2は、 セパレー夕 22の製造方法を示すフローチャートである。 セパレー夕 22の製造方法は、 チタン基体成形工程 (S 10) と、 洗浄工程 (S 12) と、 中和工程 (S 14) と、 除去工程 (S 16) と、 導電層形成工程 (S 18) と、 を含んで構成される。 FIG. 2 is a flowchart showing a method for manufacturing the separate evening 22. The manufacturing method of Separat 22 includes a titanium substrate forming step (S 10), a cleaning step (S 12), a neutralization step (S 14), a removal step (S 16), and a conductive layer forming step (S 18 ) When, It is comprised including.
チタン基体成形工程 (S 1 0 ) は、 チタン材を塑性加工してチタン基体 2 4を 成形する工程である。 チタン基体 2 4は、 例えばチタン材をロール圧延加工等す ることにより成形される。 図 3は、 チタン材のロール圧延加工方法を示す模式図 である。 チタン材 3 0には、 上述したように、 純チタンまたはチタン合金が用い られる。 チタン材は、 例えば、 7 0 0 から 9 0 0 °Cの温度で熱間圧延加工され る。 チタン材 3 0を圧延する圧延装置には、 一般的にチタン材料の圧延加工に使 用されている圧延装置を用いることができる。 チタン材 3 0の圧延には、 焼き付 き等を防止するために油脂類等やカーボン類等を含む潤滑剤が使用される。 勿論 、 他の条件次第では、 チタン材 3 0の塑性加工は、 圧延加工に限定されることな く、 プレス加工等でもよい。  The titanium substrate forming step (S 10) is a step of forming a titanium substrate 24 by plastic working a titanium material. The titanium substrate 24 is formed by, for example, roll rolling a titanium material. Fig. 3 is a schematic diagram showing a method of rolling a titanium material. As described above, pure titanium or a titanium alloy is used for the titanium material 30. For example, the titanium material is hot-rolled at a temperature of 700 to 900 ° C. As the rolling apparatus for rolling the titanium material 30, a rolling apparatus generally used for rolling titanium material can be used. In rolling the titanium material 30, a lubricant containing fats and oils and carbons is used to prevent seizure and the like. Of course, depending on other conditions, the plastic working of the titanium material 30 is not limited to rolling, but may be press working or the like.
図 4は、 圧延後におけるチタン基体 2 4の断面を示す図である。 チタン基体 2 4の表面には、 基材であるチタン材 3 0が酸化されて生成した T i〇、 T i 23、 T i〇2等のチタン酸化物 3 2が形成される。 そして、 チタン酸化物 3 2の 上には、 圧延加工時に、 潤滑剤に含まれる油脂類等が炭化されて生成した炭素等 と化学反応して生成した T i C、 T i C 2、 T i C 3等のチタン炭化物 3 4が形 成される。 また、 チタン酸化物 3 2の上には、 チタン炭化物 3 4が酸化されて生 成した T i O、 T i 2 0 3、 T i 02等のチタン酸化物 3 6も形成される。 FIG. 4 is a view showing a cross section of the titanium substrate 24 after rolling. On the surface of the titanium substrate 2 4, T I_〇 the titanium material 3 0 is a base material was produced by oxidation, T i 23, T I_〇 2 titanium oxides such as 3 2 are formed. On the titanium oxide 3 2, T i C, T i C 2 , T i produced by chemical reaction with carbon produced by carbonization of oils and fats contained in the lubricant during the rolling process. Titanium carbide 3 4 such as C 3 is formed. Further, on the titanium oxide 3 2, titanium oxide 3 6 such as T i O, T i 2 0 3 , T i 0 2, etc. formed by oxidizing the titanium carbide 3 4 is also formed.
洗浄工程 (S 1 2 ) は、 チタン材 3 0を圧延して形成したチタン基体 2 4を洗 浄する工程である。 チタン基体 2 4は、 例えば、 アルカリ浸漬脱脂等で洗浄され る。 アルカリ浸漬脱脂には、 苛性ソーダ等のアルカリ性溶液が使用される。 チタ ン基体 2 4をアルカリ浸漬脱脂等で洗浄することにより、 チタン基体 2 4の表面 に付着した油分等が除去される。  The cleaning step (S 1 2) is a step of cleaning the titanium substrate 24 formed by rolling the titanium material 30. The titanium substrate 24 is cleaned by, for example, alkaline immersion degreasing. For alkaline immersion degreasing, an alkaline solution such as caustic soda is used. By washing the titanium substrate 24 with alkali dipping degreasing or the like, oil or the like adhering to the surface of the titanium substrate 24 is removed.
中和工程 (S 1 4 ) は、 洗浄後のチタン基体 2 4に残ったアルカリを中和して 除去する工程である。 中和処理は、 洗浄後のチタン基体 2 4を中和液に浸漬して 行われる。 中和液には、 硫酸溶液、 塩酸溶液、 硝酸溶液等が使用される。 そして 、 中和液から取り出されたチタン基体 2 4は、 脱イオン水等で洗浄される。 除去工程 (S 1 6 ) は、 中和処理等がされたチタン基体 2 4を酸洗して、 チタ ン基体 2 4の表面からチタン酸化物 3 2 , 3 6及びチタン炭化物 3 4を除去する 工程である。 酸洗して除去する除去工程 (S 1 6 ) によれば、 研磨等によって除 去する工程に比して、 燃料電池用セパレー夕の生産性を向上させることができる 。 酸洗処理は、 チタン基体 2 4を硝弗酸溶液または弗酸溶液等の弗化物を含有し た溶液に浸漬して行われる。 チタン基体 2 4が硝弗酸溶液等に浸潰されると、 チ タン基体 2 4の表面上のチタン酸化物 3 6、 チタン炭化物 3 4及びチタン酸化物 3 2がエッチイングされる。 それにより、 チタン基体 2 4の上に形成されたチタ ン酸化物 3 2 , 3 6及びチタン炭化物 3 4が除去される。 ここで、 酸洗液に硝弗 酸溶液等の弗化物を含有した溶液を使用するのは、 弗化物を含有した溶液でない と、 チタン基体 2 4の表面上からチタン酸化物 3 2 , 3 6及びチタン炭化物 3 4 を除去できないからである。 硝弗酸溶液等から取り出されたチタン基体 2 4は、 脱イオン水等で洗浄される。 The neutralization step (S 14) is a step of neutralizing and removing the alkali remaining on the cleaned titanium substrate 24. The neutralization treatment is performed by immersing the cleaned titanium substrate 24 in a neutralizing solution. For the neutralizing solution, sulfuric acid solution, hydrochloric acid solution, nitric acid solution, etc. are used. Then, the titanium substrate 24 taken out from the neutralized solution is washed with deionized water or the like. In the removal step (S 1 6), the titanium substrate 24 that has been subjected to the neutralization treatment is pickled to remove the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 from the surface of the titanium substrate 24. It is a process. According to the removal step (S 16) for removal by pickling, the productivity of the fuel cell separator can be improved as compared with the step for removal by polishing or the like. The pickling treatment is performed by immersing the titanium substrate 24 in a solution containing fluoride such as a nitric hydrofluoric acid solution or a hydrofluoric acid solution. When the titanium substrate 24 is immersed in a nitric hydrofluoric acid solution or the like, the titanium oxide 36, titanium carbide 34, and titanium oxide 32 on the surface of the titanium substrate 24 are etched. Thereby, the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 formed on the titanium substrate 24 are removed. Here, a solution containing a fluoride such as a nitric hydrofluoric acid solution is not used for the pickling solution unless it contains a fluoride. From the surface of the titanium substrate 24, titanium oxide 3 2, 3 6 And titanium carbide 3 4 cannot be removed. The titanium substrate 24 taken out from the nitric hydrofluoric acid solution or the like is washed with deionized water or the like.
導電層形成工程 (S 1 8 ) は、 酸洗処理等がされたチタン基体 2 4に、 導電層 2 6を形成する工程である。 導電層 2 6は、 3 n mから 2 0 0 n mの厚みに設定 されており、 金 (A u ) 等の導電体をコーティングすることにより形成される。 金 (A u ) 等のコーティングには、 例えば、 電解めつき法を用いることができる 。 電解めつき法には、 一般的な金 (A u ) 等のアルカリ性金めつき法等が用いら れる。 以上で、 セパレ一夕 2 2の製造が完了する。 なお、 導電層形成工程 (S 1 8 ) を省略してセパレ一夕を製造してもよい。  The conductive layer forming step (S 1 8) is a step of forming the conductive layer 26 on the titanium substrate 24 that has been pickled. The conductive layer 26 is set to a thickness of 3 nm to 200 nm, and is formed by coating a conductor such as gold (A u). For the coating of gold (A u) or the like, for example, an electrolytic plating method can be used. For the electrolytic plating method, a general alkaline plating method such as gold (A u) is used. This completes the production of Separe Ichiba 22 Note that the separator layer may be manufactured by omitting the conductive layer forming step (S 1 8).
図 5は、 製造されたセパレータ 2 2の断面を示す図である。 セパレー夕 2 2は 、 チタン基体 2 4と、 導電層 2 6と、 を有している。 ここで、 チタン基体 2 4は 、 除去工程 (S 1 6 ) でチタン酸化物 3 2 , 3 6及びチタン炭化物 3 4が除去さ れている。 そのため、 燃料電池の発電中において、 チタン炭化物 3 4の酸化によ るチタン酸化物の生成を防止することができる。 なお、 図 5に示すセパレー夕 2 2から導電層 2 6を省略して、 セパレ一夕を構成してもよい。  FIG. 5 is a view showing a cross section of the manufactured separator 22. The separator 22 has a titanium substrate 24 and a conductive layer 26. Here, in the titanium substrate 24, the titanium oxides 3 2 and 3 6 and the titanium carbide 3 4 are removed in the removal step (S 16). Therefore, generation of titanium oxide due to oxidation of titanium carbide 34 can be prevented during fuel cell power generation. It should be noted that the separate evening may be configured by omitting the conductive layer 26 from the separate evening 22 shown in FIG.
以上、 上記構成によれば、 チタン基体に形成されたチタン酸化物及びチタン炭 化物を除去することにより、 燃料電池の発電中においてチタン炭化物の酸化によ るチタン酸化物の生成を防止することができるので、 エキスパンド成形体とセパ レー夕との間の接触抵抗の増加が抑えられ、 セパレー夕における導電性の低下を 抑制することができる。 (実施例) As described above, according to the above configuration, by removing the titanium oxide and the titanium carbide formed on the titanium substrate, it is possible to prevent the generation of the titanium oxide due to the oxidation of the titanium carbide during power generation of the fuel cell. As a result, an increase in contact resistance between the expanded molded product and the separator is suppressed, and a decrease in conductivity in the separator can be suppressed. (Example)
2種類のセパレー夕供試体を製造し、 耐食性及び導電性について評価試験を行 つた。  Two types of separate specimens were manufactured and evaluated for corrosion resistance and conductivity.
実施例 1におけるセパレ一夕供試体の製造方法について説明する。 チタン材に は、 純チタンを使用した。 純チタン材をロール圧延してチタンシートを成形した 。 チタンシートをアルカリ浸漬脱脂して洗浄し、 チタンシートに付着した油分を 除去した。 アルカリ脱脂洗浄したチタンシートを硫酸溶液中に浸漬して中和した 。 次に、 チタンシートを硝弗酸溶液中に浸漬して酸洗し、 チタンシートの表面に 形成されたチタン酸化物及びチタン炭化物をエツチイングして除去した。 なお、 評価試験に使用したセパレ一夕供試体には、 導電層を形成しないものを使用した 比較例 1におけるセパレー夕供試体の製造方法について説明する。 比較例 1に おけるセパレー夕供試体の製造方法では、 硝弗酸溶液による酸洗を実施しなかつ たこと以外については、 実施例 1におけるセパレ一夕供試体と同様の製造方法で 製造した。 したがって、 比較例 1のセパレー夕供試体では、 表面に形成されたチ 夕ン酸化物及びチタン炭化物を除去しなかつた。  A method for manufacturing the separate overnight specimen in Example 1 will be described. Pure titanium was used for the titanium material. A pure titanium material was roll-rolled to form a titanium sheet. The titanium sheet was degreased by alkali soaking and washed to remove oil adhering to the titanium sheet. The titanium sheet washed with alkali degreasing was neutralized by dipping in a sulfuric acid solution. Next, the titanium sheet was immersed in a nitric hydrofluoric acid solution and pickled, and titanium oxide and titanium carbide formed on the surface of the titanium sheet were etched and removed. In addition, the manufacturing method of the separator evening specimen in the comparative example 1 which uses what does not form a conductive layer for the separator evening specimen used for the evaluation test is explained. In the manufacturing method of the separate evening specimen in Comparative Example 1, it was manufactured by the same manufacturing method as that of the separate evening specimen in Example 1 except that pickling with a nitric hydrofluoric acid solution was not performed. Therefore, the separator oxide specimen of Comparative Example 1 did not remove the titanium oxide and titanium carbide formed on the surface.
次に、 セパレータ供試体の腐食試験方法について説明する。 腐食試験は、 J I S Z 2 2 9 4に規定されている金属材料の電気化学的高温腐食試験方法に準 拠して行った。 図 6は、 電気化学的高温腐食試験で使用した試験装置を示す図で ある。 試験は、 大気開放系にて行った。 試験に用いた溶液は、 硫酸系溶液を使用 した。 試験溶液の温度は、 5 0 °Cとした。 そして、 5 0時間の間、 一定の電位を 与えて腐食試験を行った。 なお、 耐食性の評価は、 腐食試験後のセパレ一夕供試 体を外観観察することにより行った。  Next, the corrosion test method for the separator specimen will be described. The corrosion test was conducted in accordance with the electrochemical high temperature corrosion test method for metallic materials specified in JISZ 2 2 9 4. Figure 6 shows the test equipment used in the electrochemical hot corrosion test. The test was conducted in an open air system. The solution used for the test was a sulfuric acid solution. The temperature of the test solution was 50 ° C. Then, a corrosion test was performed by applying a constant potential for 50 hours. The corrosion resistance was evaluated by observing the appearance of the separate overnight specimen after the corrosion test.
図 7は、 セパレー夕供試体における腐食試験結果を示す図である。 実施例 1の セパレー夕供試体は、 比較例 1のセパレ一夕供試体よりも変色が少なかった。 比 較例 1のセパレ一夕供試体の変色が多いのは、 比較例 1のセパレー夕供試体では 表面にチタン酸化物及びチタン炭化物が残留しているため、 腐食試験中にチタン 炭化物が酸化してチタン酸化物が厚く形成されたことによるからである。  Fig. 7 is a diagram showing the results of a corrosion test on a separate evening specimen. The separate evening specimen of Example 1 was less discolored than the separate evening specimen of Comparative Example 1. The separation overnight specimen of Comparative Example 1 has a lot of discoloration because the titanium oxide and titanium carbide remained on the surface of the separation evening specimen of Comparative Example 1, so that the titanium carbide was oxidized during the corrosion test. This is because the titanium oxide is formed thick.
次に、 上記腐食試験を行ったセパレー夕供試体について、 接触抵抗を測定した 。 図 8は、 接触抵抗の測定方法を示す図である。 金属治具 4 0にガス拡散層材 4 2を取り付けた後、 2つのガス拡散層材 4 2の間に試験片 4 4としての上記実施 例 1または比較例 1のセパレー夕供試体を挟み、 所定の面圧を加えて密着させた 。 そして、 1 Aの電流を流したときの試験片 4 4とガス拡散層材 4 2との間の電 圧を測定し接触抵抗を求めた。 Next, contact resistance was measured for the separate evening specimen subjected to the above corrosion test. . FIG. 8 is a diagram showing a method for measuring contact resistance. After attaching the gas diffusion layer material 4 2 to the metal jig 40, sandwich the separator sample of Example 1 or Comparative Example 1 as the test piece 4 4 between the two gas diffusion layer materials 4 2, A predetermined surface pressure was applied to bring it into close contact. Then, the contact resistance was determined by measuring the voltage between the test piece 44 and the gas diffusion layer material 42 when a current of 1 A was passed.
図 9は、 セパレ一夕供試体における接触抵抗の測定結果を示すグラフである。 図 9に示すように、 横軸にセパレ一夕供試体の種類を取り、 縦軸に接触抵抗 (m Ω · c m2) の相対値を取り、 腐食試験前の接触抵抗を白四角形で示し、 腐食試 験 5 0時間後の接触抵抗を黒四角形で示した。 実施例 1のセパレー夕供試体では 、 腐食試験前の接触抵抗と腐食試験後の接蝕抵抗とは略同じレベルであった。 こ れに対して、 比較例 1のセパレー夕供試体では、 腐食試験後の接触抵抗は、 腐食 試験前の接触抵抗よりも大きく増加した。 実施例 1のセパレー夕供試体の接触抵 抗の増加が抑えられたのは、 チタン酸化物及びチタン炭化物が除去されているた め、 腐食試験中にチタン酸化物の形成が抑制されたことによるからである。 これ に対して、 比較例 1のセパレー夕供試体では、 チタン酸化物及びチタン炭化物が 残留しているため、 腐食試験中にチタン炭化物が酸化してチタン酸化物がより厚 く形成されたことによるからである。 Fig. 9 is a graph showing the measurement results of contact resistance of the separate overnight specimen. As shown in Fig. 9, the horizontal axis indicates the type of the specimen to be separated, the vertical axis indicates the relative value of contact resistance (mΩ · cm 2 ), and the contact resistance before the corrosion test is indicated by a white square. Corrosion test The contact resistance after 50 hours is indicated by a black square. In the separate evening specimen of Example 1, the contact resistance before the corrosion test and the corrosion resistance after the corrosion test were substantially the same level. On the other hand, the contact resistance after the corrosion test in the separate evening specimen of Comparative Example 1 increased significantly compared to the contact resistance before the corrosion test. The increase in contact resistance of the separator evening specimen of Example 1 was suppressed because the formation of titanium oxide during the corrosion test was suppressed because titanium oxide and titanium carbide were removed. Because. In contrast, in the separator evening specimen of Comparative Example 1, because titanium oxide and titanium carbide remained, the titanium carbide was oxidized during the corrosion test, resulting in a thicker titanium oxide. Because.
なお、 実施例 1のセパレー夕供試体に導電層 (厚み 1 0 n mの金またはパラジ ゥム) を形成してセパレ一夕供試体を製造し、 実施例 1及び比較例 1の場合と同 様にして、 セパレー夕供試体の腐食試験を行うと共に、 接触抵抗を求めた。 ここ では、 図示しないが、 本発明者等は腐食試験結果および接触抵抗の測定結果が実 施例 1の場合よりも良好であったことを確認している。  In addition, a separate layer specimen was manufactured by forming a conductive layer (gold or palladium having a thickness of 10 nm) on the separator specimen of Example 1, and the same as in Example 1 and Comparative Example 1. As a result, a corrosion test was performed on a separate specimen and contact resistance was obtained. Although not shown here, the present inventors have confirmed that the corrosion test results and the contact resistance measurement results were better than those in Example 1.

Claims

請 求 の 範 囲 The scope of the claims
1 . 隣設する燃料電池用セル間のガスを分離する燃料電池用セパレー夕の製造方 法であって、 1. A method of manufacturing a fuel cell separator that separates gas between adjacent fuel cell cells,
チタン材を塑性加工してチタン基体を成形するチタン基体成形工程と、 チタン基体を酸洗して、 チタン基体の表面からチタン酸化物及びチタン炭化物 を除去する除去工程と、  A titanium substrate forming step in which a titanium material is plastically processed to form a titanium substrate;
を有することを特徴とする燃料電池用セパレー夕の製造方法。  A method for producing a fuel cell separator.
2 . 請求の範囲第 1項に記載の燃料電池用セパレー夕の製造方法であって、 チタン基体成形工程は、 チタン材を圧延して成形することを特徴とする燃料電 池用セパレータの製造方法。 2. A method for manufacturing a separator for a fuel cell according to claim 1, wherein the titanium substrate forming step includes forming a titanium material by rolling the titanium material. .
3 . 請求の範囲第 1項または請求の範囲第 2項に記載の燃料電池用セパレ一夕の 製造方法であって、 3. A method for producing a fuel cell separator according to claim 1 or claim 2, comprising:
除去工程後に、 チタン基体の表面に導電層を形成する導電層形成工程を有する ことを特徼とする燃料電池用セパレ一夕の製造方法。  A method for manufacturing a separator for a fuel cell, characterized by having a conductive layer forming step of forming a conductive layer on the surface of the titanium substrate after the removing step.
PCT/JP2008/065345 2007-09-14 2008-08-20 Process for producing separator for fuel cell WO2009034845A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-238980 2007-09-14
JP2007238980 2007-09-14
JP2007-262199 2007-10-05
JP2007262199A JP2009087909A (en) 2007-09-14 2007-10-05 Manufacturing method of separator for fuel cell

Publications (1)

Publication Number Publication Date
WO2009034845A1 true WO2009034845A1 (en) 2009-03-19

Family

ID=40451855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065345 WO2009034845A1 (en) 2007-09-14 2008-08-20 Process for producing separator for fuel cell

Country Status (1)

Country Link
WO (1) WO2009034845A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182731A1 (en) * 2014-05-28 2015-12-03 株式会社神戸製鋼所 Fuel cell separator material and method for manufacturing said material
WO2020054072A1 (en) * 2018-09-14 2020-03-19 日本製鉄株式会社 Titanium foil and method for producing same
KR20220029422A (en) * 2020-08-28 2022-03-08 토와 가부시기가이샤 Resin molding apparatus and method for producing resin molded product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012962A (en) * 2000-02-23 2002-01-15 Nippon Steel Corp Titanium hardly generating color change in atmospheric environment and manufacturing method therefor
WO2005019498A2 (en) * 2003-08-11 2005-03-03 General Motors Corporation Composition and method for surface treatment of oxidized metal
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
JP2007073232A (en) * 2005-09-05 2007-03-22 Japan Carlit Co Ltd:The Separator for fuel cell and method of manufacturing same
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal
JP5068537B2 (en) * 2005-01-14 2012-11-07 三菱電機株式会社 Replica combined group shuffle iterative decoder and method of generating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012962A (en) * 2000-02-23 2002-01-15 Nippon Steel Corp Titanium hardly generating color change in atmospheric environment and manufacturing method therefor
WO2005019498A2 (en) * 2003-08-11 2005-03-03 General Motors Corporation Composition and method for surface treatment of oxidized metal
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
JP5068537B2 (en) * 2005-01-14 2012-11-07 三菱電機株式会社 Replica combined group shuffle iterative decoder and method of generating the same
JP2007073232A (en) * 2005-09-05 2007-03-22 Japan Carlit Co Ltd:The Separator for fuel cell and method of manufacturing same
JP2007146250A (en) * 2005-11-29 2007-06-14 Nikko Kinzoku Kk Titanium or titanium alloy material plated with noble metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182731A1 (en) * 2014-05-28 2015-12-03 株式会社神戸製鋼所 Fuel cell separator material and method for manufacturing said material
US10236519B2 (en) 2014-05-28 2019-03-19 Kobe Steel, Ltd. Fuel cell separator material and method for manufacturing said material
WO2020054072A1 (en) * 2018-09-14 2020-03-19 日本製鉄株式会社 Titanium foil and method for producing same
KR20220029422A (en) * 2020-08-28 2022-03-08 토와 가부시기가이샤 Resin molding apparatus and method for producing resin molded product
KR102511018B1 (en) * 2020-08-28 2023-03-15 토와 가부시기가이샤 Resin molding apparatus and method for producing resin molded product
US11999083B2 (en) 2020-08-28 2024-06-04 Towa Corporation Resin molding apparatus and method for producing resin molded product

Similar Documents

Publication Publication Date Title
US8815471B2 (en) Method of manufacturing fuel cell separator, fuel cell separator and fuel cell, including gold plating
CN101971396B (en) Cell for fuel battery, method for producing the same, and gas channel structure for fuel battery
JP4488059B2 (en) Manufacturing method of fuel cell separator
EP1492186A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2008243394A (en) Manufacturing method of cell for fuel cell
JP2010027262A (en) Fuel cell separator and fuel cell
KR20140034181A (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
JP2010097840A (en) Fuel cell separator and method for manufacturing thereof
JP2009087909A (en) Manufacturing method of separator for fuel cell
JP2004139951A (en) Separator for fuel cell and its manufacturing method
WO2009034845A1 (en) Process for producing separator for fuel cell
JP5466269B2 (en) Fuel cell separator and fuel cell
JP4186659B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2009104932A (en) Fuel cell separator and its manufacturing method
JP5497865B2 (en) Manufacturing method of fuel cell separator
JP2003282104A (en) Manufacturing method for electrochemical battery assembly
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell
JP2003272653A (en) Metal separator for fuel cell and its manufacturing method
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP7144251B2 (en) Electrode for hydrogen generation and method for producing the same
WO2003079476A1 (en) Metal member having corrosion-resistant conductive coating and process for producing the same
JP2017152225A (en) Curent collector plate for fuel battery
JP2005183008A (en) Metallic separator for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830630

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08830630

Country of ref document: EP

Kind code of ref document: A1