WO2003079476A1 - Metal member having corrosion-resistant conductive coating and process for producing the same - Google Patents

Metal member having corrosion-resistant conductive coating and process for producing the same Download PDF

Info

Publication number
WO2003079476A1
WO2003079476A1 PCT/JP2003/003079 JP0303079W WO03079476A1 WO 2003079476 A1 WO2003079476 A1 WO 2003079476A1 JP 0303079 W JP0303079 W JP 0303079W WO 03079476 A1 WO03079476 A1 WO 03079476A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
resistant conductive
conductive film
metal
metal material
Prior art date
Application number
PCT/JP2003/003079
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Shimada
Ken Ebihara
Hidehiko Ishii
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002299877A external-priority patent/JP2004134310A/en
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to AU2003213371A priority Critical patent/AU2003213371A1/en
Publication of WO2003079476A1 publication Critical patent/WO2003079476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the base material is formed of a metal material such as an aluminum material made of aluminum or an aluminum alloy, a titanium material made of titanium or a titanium alloy, a stainless steel material, and a Ni—Fe alloy material.
  • a fuel cell separator having a conductive film for example, a fuel cell separator interposed between the unit cells when forming a fuel cell by stacking a plurality of unit cells; an electrode of the unit cell forming the fuel cell;
  • the present invention relates to a metal material having a corrosion-resistant conductive film useful for many uses such as an electrode material for a primary battery of a portable device, an electrode material used for electrolytic extraction of metal, and an electroplating method, and a method for producing the same.
  • a fuel cell is composed of a plurality of unit cells composed of a pair of electrodes consisting of an anode and a force source and an electrolyte membrane of a proton conductor interposed between the electrodes, and is made of an acid-resistant, conductive material.
  • the separator is made of a graphite material, etc., which has excellent gas permeability, and reacts with one of the electrodes between each unit cell electrode and the electrode contact surface of each separator in contact with this electrode.
  • a gas flow path is formed, and a fuel gas such as hydrogen is supplied to the anode side of each of the unit cells, and an oxidizing gas such as oxygen and air is supplied to the cathode side, respectively.
  • the anode gas causes an oxidation reaction of the fuel gas to generate protons and electrons.
  • the protons move through the electrolyte membrane and are supplied to the cathode, while the electrons are extracted to an external circuit.
  • Such a fuel cell is capable of converting reaction energy into electric energy with extremely high efficiency, and furthermore, the reaction product is basically water only, and harmful exhaust gas is generated. It is an extremely efficient and clean power generation means, especially for polymer electrolyte fuel cells that use a fluororesin-based ion-exchange membrane as the electrolyte. R & D for higher efficiency power generation performance (high power generation performance), durability for long-term stable output (long-term durability), light weight, low cost, etc. Is being promoted.
  • Separator base made of Ni / SUS clad material, aluminum material made of aluminum or aluminum alloy, titanium material made of titanium or titanium alloy, stainless steel material, Ni-Fe alloy, etc.
  • at least the noble metal such as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd), silver, chromium nitride, platinum group composite oxide, or boron carbide and nickel Metal separator formed by plating a conductive film such as a material selected from the composite of 9
  • Ni / SUS clad material separators have a large contact resistance with the electrode of the unit battery.
  • the dissolved metal ions increase the membrane resistance of the electrolyte membrane and lower the battery output.
  • metal separators have low Balta electric resistance, high airtightness and mechanical strength.
  • the metal of the material is susceptible to corrosion, especially in the case of aluminum material, which has a problem of corrosion that the corrosion rate is high.
  • the thickness of the conductive film is increased in order to solve the problem of corrosion, High cost
  • the film thickness is reduced to reduce cost, pinholes or surface defects occur, making it difficult to solve the corrosion problem.
  • the electrode contact surface where the separator comes into contact with the electrode is partially plated with a thick gold plating by gold plating.
  • a graded Au-Ni composition film in which the Au-Ni composition changes continuously due to electrical plating on the electrode contact surface where the separator comes into contact with the electrode Japanese Patent Application Laid-Open No. 2001-345,109. (Japanese Patent Laid-Open No. 2001-357, 859) has been proposed.
  • the provision of a partially thick gold plating film in the former method has a problem that a masking step is required between the plating steps and the number of steps is increased, and the latter method is difficult.
  • Providing a Ni-graded composition film has the problem that even if 1 ppm of Ni ion is eluted, battery performance will be degraded. It cannot always be said that the high power generation performance, long-term durability, light weight, and low cost, which are particularly required in applications such as power generation equipment for automobiles, can be simultaneously satisfied.
  • Such problems are not limited to the above-described fuel cell separators, but include electrodes of unit cells constituting the fuel cell, electrodes of a primary battery of a portable device, electrode materials used in electrowinning and electroplating of metal, etc. The same is true in the field of use of a metal material having a corrosion-resistant conductive film formed on the surface of a metal substrate.
  • the present inventors have found that, for example, in the case of a noble metal element coating, the thickness of the noble metal element coating is 5 ⁇ m or less, which is much thinner than before, After conducting intensive studies on metal materials that can form a conductive film without surface defects and thereby solve both corrosion and cost problems, we will optimize the surface condition of the metal substrate Thus, the present invention has been completed.
  • the present inventors have developed a fuel cell that can simultaneously satisfy high power generation performance, long-term durability, light weight, and low cost, which are particularly useful for applications such as power generation devices for next-generation electric vehicles.
  • fuel cell separators that are useful in the field.
  • a precious metal stick treatment with a thickness of 0.01 to 1 m is performed, and at least the separator base material is used. thickness on the electrode contact surface 0 by. 0 1 ⁇ 1 ⁇ m and that allowed to electrochemical polarization characteristics evaluation method form forming a polarization current 1 0 ⁇ a / cm 2 or less of the precious metal main luck film measured in a purpose Of the present invention was completed.
  • an object of the present invention is to optimize the surface condition of a metal substrate, Inexpensive and durable, for example, a noble metal element film with a thickness of 5 ⁇ m or less on the surface of the metal substrate is extremely thin compared to the past, and has a conductive film free of pinholes and surface defects.
  • An object of the present invention is to provide a metal material having an excellent corrosion-resistant conductive film.
  • Another object of the present invention is to provide a method for producing a metal material having such a corrosion-resistant conductive film.
  • Another object of the present invention is to provide a fuel cell which can simultaneously achieve high power generation performance, long-term durability, light weight, and low cost, and which is suitable for use as a power generation device for a next-generation electric vehicle, for example. It is an object of the present invention to provide a metal separator for a fuel cell which is useful in production, and a metal material having a corrosion-resistant conductive film which can be used for an electrode of a unit cell constituting the fuel cell. Another object of the present invention is to provide a metal separator for a fuel cell, which is useful in manufacturing a fuel cell capable of simultaneously achieving high power generation performance, long-term durability, light weight, and low cost, and a fuel cell. An object of the present invention is to provide a method for producing a metal material having a corrosion-resistant conductive film that can be used for an electrode of a unit battery to be constituted. Disclosure of the invention
  • the present invention is a metal material having a corrosion-resistant conductive film formed by forming a corrosion-resistant conductive film on the surface of a metal substrate formed of a metal material, and is observed on the surface of the metal substrate.
  • the second phase compound of the metal substrate has a corrosion-resistant conductive film having a maximum length L of 5/6 times or less (L ⁇ 5X6T) the thickness T of the corrosion-resistant conductive film. It is a metal material.
  • a zinc immersion treatment of pickling and then immersing zinc in a metal substrate is repeated four times or more.
  • the present invention also provides a metal substrate formed of a metal material, and a metal substrate formed on the surface of the metal substrate having a film thickness of 0.01 to 5 / im, and a method for evaluating electrochemical polarization characteristics.
  • the present invention provides a metal substrate formed of a metal material, after the metal substrate is subjected to an etching process, a zinc substitution process of performing zinc immersion after pickling is repeated four times or more, and then the surface of the metal substrate is formed.
  • This is a method for producing a metal material having a corrosion-resistant conductive film that forms a corrosion-resistant conductive film having a thickness of 0.11 to 5 ⁇ m.
  • the metal material in the present invention can be used for, for example, a separator used when forming a fuel cell, an electrode of a unit cell constituting the fuel cell, and the like.
  • the separator substrate constituting the separator and the electrode substrate constituting the electrode are collectively referred to as “fuel cell forming material”.
  • fuel cell forming material a metal substrate containing the second phase compound satisfying the above conditions may be used, or a metal substrate not restricted by the second phase compound may be used.
  • a corrosion-resistant conductive film that satisfies the conditions for the above-mentioned film thickness and polarization current may be formed.
  • a corrosion-resistant conductive film that does not satisfy the current conditions may be formed.
  • the metal material in the present invention can be used for a metal separator for a fuel cell, an electrode of a unit cell constituting the fuel cell, and the like.
  • the separator will be described as a specific example, but the same applies to the electrode of the unit battery except where specifically described.
  • the metal material in the present invention includes a separator substrate formed of a metal material and at least a noble electrode contact surface of the separator substrate.
  • the method for producing a metal material according to the present invention includes forming a separator base material from a metal material, etching the separator base material, and immersing in zinc after pickling, followed by zinc substitution treatment four times or more.
  • This is a method for producing a metal separator for a fuel cell, in which at least the electrode contact surface of the separator substrate is subjected to a noble metal plating treatment with a thickness of 0.01 to 1 ⁇ ra.
  • the metal base material constituting the metal material is, for example, a metal material such as an aluminum material made of aluminum or an aluminum alloy, a titanium material made of titanium or a titanium alloy, a stainless steel material, a Ni-Fe alloy material, or the like. It is preferably made of aluminum because of its low electric resistance and light weight.
  • the aluminum material used for this purpose is not particularly limited.
  • various kinds of aluminum such as high-purity aluminum (JISH4170; 1N99), A1100, A5052, and A6063 can be used.
  • Aluminum alloys can be mentioned.
  • the metal material for forming a separator base material constituting such a separator is also, for example, aluminum or aluminum alloy made of aluminum alloy.
  • the aluminum material is not particularly limited. For example, high-purity aluminum (JIS H4170; 1N99) or various aluminum alloys such as A1100, A5052, and A6063 are used.
  • the second phase compound of the metal base means a substance (compound) that forms a phase with a substance other than the base metal in the metal base. Can be used to examine the size and distribution of reflected electrons using a scanning electron microscope (SEM), and to identify compounds by X-ray diffraction.
  • SEM scanning electron microscope
  • the metal base is formed of aluminum material
  • a substance other than aluminum (A1) of the base metal Fe, Si, Cu, Mg, Zn and other impurities
  • compounds such as Al 3 Fe, a AlFeSi, Al 3 Mg 2 , Mg 2 Si, and Al-Mg-Zn compounds.
  • the metal substrate is made of titanium, it contains substances other than titanium (Ti) (A1, Mn, Mo, Ta, Fe, Sn, Zr, and other impurities).
  • Ti titanium
  • Ti titanium
  • the metal base is formed of stainless steel
  • a substance other than iron (Fe) of the material metal Cr, Ni, Mo, Nb, Ti, including C other impurities
  • FeCr, Cr 2 3 C 6, Fe 3 C, MoC, Ru can and Ageruko compounds such as NbC
  • the maximum value L of the major axis L of the second phase compound of the metal substrate observed on the surface is 5/6 times or less the thickness T of the corrosion-resistant conductive film. (L 5/6 T), preferably 2/3 times or less (L ⁇ 2/3 T), and the second phase compound on the surface of the metal substrate is a corrosion-resistant conductive film.
  • the maximum value L of the major axis of the second phase compound, which is observed up to a depth of 5 ⁇ below the surface of the metal substrate, is the starting point for defects such as pinholes in the film.
  • the observed second phase compound of the metal substrate is substantially absent, and likewise, The second phase compound, which is observed up to a depth of 5 IX m below the surface of the metal substrate, should be substantially absent.
  • the above-mentioned maximum value L of the major axis of the second phase compound which is less than or equal to 5 Z 6 times (L ⁇ 5/6 T) of the thickness T of the corrosion-resistant conductive film is, for example, a metal.
  • the maximum value L of the major axis of the second phase compound observed on the surface of the metal base material is 1. 1. ⁇ or less, and in the present invention, when the corrosion-resistant conductive film is a noble metal element film, the target of the film thickness is ⁇ or less, and as a result, it is observed on the surface of the metal substrate.
  • the maximum value L of the major axis of the second phase compound must also be 4.2 ⁇ m or less. If the maximum value L of the major axis of the second phase compound observed on the surface of the metal substrate exceeds 5/6 times the thickness of the corrosion-resistant conductive film, the second phase compound becomes It becomes a starting point for defects such as pinholes, and as a result, surface defects such as pinholes occur.
  • a second phase compound of the metal substrate to be above observations substantially absent the second phase when the microscope observation range of 1 mm 2 in 1 0 0 0 times magnification
  • the major diameter of the second phase compound is substantially equal to 0.05 ⁇ , and the second phase compound below this can be ignored. I do.
  • the number of the second phase compound when the second phase compound is observed on the surface of the metal substrate, is preferably 20 / mm 2 or less, and more preferably. Or 10 or less per mm 2 . If the number of the second phase compounds observed on the surface of the metal substrate exceeds 20 / mm 2 , the adhesion of the corrosion-resistant conductive film is insufficient, and the film in the relevant portion is easily lifted.
  • the metal substrate when the metal substrate is an aluminum material, its chemical composition is preferably magnesium (Mg) of less than 7% by mass, Less than 3% by mass of zinc (Zn), less than 0.01% by mass of silicon (Si), less than 0.01% by mass of iron (Fe), and 0.01% by mass of copper (Cu). /. And the balance is preferably aluminum (A1) and unavoidable impurity elements. This is because, when rolling slabs are manufactured by the normal DC (direct chilling) method, the solidification rate during fabrication is high and solidification occurs in a non-equilibrium state, so unavoidable impurities are forcibly dissolved. However, if the content of the above Mg, Zn, Si, Fe, and Cu exceeds the above regulation value, it may crystallize as a coarse second phase compound.
  • the separator substrate made of a metal material may have a reaction gas flow path formed on an electrode contact surface thereof.
  • the reaction gas flow path may not be formed, the separator base material is formed of a metal material, so that precise machining is easy and the processing cost is low.
  • the separator substrate be a reaction gas flow path formed on the electrode contact surface thereof.
  • a reaction gas flow path is formed on the electrolyte side of the unit battery for the electrode substrate formed of the metal material. It is good to have
  • the corrosion-resistant conductive film formed on the surface of the metal substrate is preferably gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium ( Examples include a metal element film, a nickel film, and a copper film formed using Rh), ruthenium (Ru), or an alloy of these noble metals.
  • the method for forming such a corrosion-resistant conductive film is not particularly limited, and includes various methods such as sputtering and plating. From the viewpoint of the presence or absence of a gas step, it is preferably a plating method.
  • the corrosion-resistant conductive film formed on the surface of the metal substrate is a noble metal plating film formed by a noble metal plating process, particularly, a separator substrate for forming a metal separator for a fuel cell is used.
  • the noble metal plating film formed on the surface of such a metal is made of gold (Au), silver (Ag), or platinum (Pt). , Palladium (Pd), rhodium (Rh), luteuium (Ru), or precious metal plating films formed using alloys of these precious metals. From the viewpoint of being extremely stable, it is preferably a gold-mesh coating.
  • the noble metal plating film may be formed on at least the electrode contact surface of the separator substrate, but is preferably used from the viewpoint of maintaining long-term durability and simplifying the manufacturing process. It is good to be formed on the whole surface. In the case of an electrode substrate for forming an electrode constituting a unit battery, it is preferable that the above-mentioned noble metal plating film is formed on the surface of the electrolyte constituting the unit battery.
  • the corrosion-resistant conductive film is a noble metal element film, it differs depending on the use of the metal material, the type of metal forming the film, and the like, but is usually 0.01 ⁇ l ⁇ or more. It is preferably 5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 5 m or less. If the thickness is less than 0.1 ⁇ , pinholes are likely to occur even on the surface where no second-phase compound is present. Conversely, if the thickness is greater than 5 Xm, the corrosion resistance will increase. Does not change, but it is difficult to achieve cost reduction. This corrosion-resistant conductive film must be completely defect-free with no pinholes or surface defects. If any pinholes or surface defects exist, corrosion starts from these pinholes and surface defects.
  • the corrosion-resistant conductive film preferably has a thickness of 0.01 to 5 ⁇ m and a polarization current measured by an electrochemical polarization characteristic evaluation method of 10 ⁇ Ara / cm 2 or less.
  • the corrosion-resistant conductive film is a noble metal plating film formed by a noble metal plating process, in particular, the noble metal formed on the surface of a separator substrate for forming a metal separator for a fuel cell.
  • the thickness of the noble metal plating film formed on the surface of the separator substrate is from 0.01 / im to 1 / zm, preferably from 0.05 ⁇ to 0.
  • the polarization current is preferably 5 ⁇ or less, and the polarization current measured by the electrochemical polarization property evaluation method is 10 ⁇ A / cm 2 or less, preferably 7 ⁇ A / cm 2 or less. Good. Regarding the film thickness, if it is thinner than 0.01 ⁇ m, there is a problem that pinholes are likely to occur.On the other hand, if it is thicker than 1 ⁇ m, it is possible to achieve low cost. It becomes difficult. If the polarization current is higher than 10 ⁇ A / cm 2 , the obtained noble metal plating film may not be completely defect-free without pinholes. The noble metal plating film must be completely defect-free with no pinholes or surface defects. If any pinholes or surface defects exist, corrosion starts from these pinholes or surface defects, and the battery output A problem of performance degradation occurs.
  • the method of measuring the polarization current is the force performed by the electrochemical polarization characteristic evaluation method, and the specific method is as follows. That is, for example, a sample is placed in an electrolyte solution such as an aqueous acetic acid solution so as to face a platinum counter electrode, and a silver-silver chloride electrode is used as a reference electrode. Immerse in an aqueous solution, connect a saturated potassium chloride aqueous solution and the sample with a salt bridge, connect the sample, platinum counter electrode, and silver-silver chloride electrode to a potentiostat, and apply the sample potential to the silver-silver chloride electrode.
  • an electrolyte solution such as an aqueous acetic acid solution so as to face a platinum counter electrode
  • a silver-silver chloride electrode is used as a reference electrode.
  • Immerse in an aqueous solution connect a saturated potassium chloride aqueous solution and the sample with a salt bridge, connect the sample, platinum counter electrode
  • the peak current flowing through the sample electrode is measured as the polarization current.
  • the maximum value B of the major axis of the second phase compound observed on the surface is as small as possible, or It is preferred to prepare a metal substrate that is substantially free of the observed second phase compound.
  • Methods for producing such a metal substrate include, for example, dissolving a high-purity aluminum base metal, adding an alloy element as necessary, adjusting the components, and then forming an aluminum alloy having a desired component composition. After the alloy is melted and further DC-formed to produce an ingot, it is rolled to a predetermined thickness by hot rolling and cold rolling, and further annealed under controlled conditions, if necessary.
  • a method of performing a grinding process for example, see Japanese Patent Application Laid-Open No. 9-235,640; see Japanese Patent Application Laid-Open No. 4-341,536).
  • the maximum value of the major axis L of the second phase compound of the metal substrate, which is observed on the surface of the metal substrate is set to 1 It is preferable to form a corrosion-resistant conductive film having a film thickness T of 2 times or more, preferably 1. 5 times or more, preferably, a surface polishing treatment prior to forming a corrosion-resistant conductive film. It is preferable to perform a zinc immersion treatment in which zinc is immersed after etching, pickling and the like.
  • the surface roughness ⁇ JIS B 0601 (2001) ⁇ is preferably 0.02 to 0.3; um, more preferably 0.03 to 0.2. it is better to adjust to the range of m. If the surface roughness of the metal substrate at this time is greater than 0.3 zm, pinholes and surface defects are likely to occur in the formed corrosion-resistant conductive film due to recesses on the surface of the metal substrate. As a result, the corrosion resistance is reduced, and if the corrosion resistance is smaller than 0.02 ⁇ m, the adhesion between the formed corrosion-resistant conductive film and the surface of the metal substrate is reduced, and In some cases, the peeling of the film occurs locally when the used metal material is used.
  • the surface roughness of the metal substrate is expressed in the range of 0.02 to 0.
  • the method for the surface polishing treatment is not particularly limited, but usually, a method such as electrolytic polishing, mechanical polishing, puff polishing, blast polishing, barrel polishing, or the like is employed, preferably electrolytic polishing. Processing.
  • the surface polishing treatment of the metal base material may be performed using only one of the above-described processing methods in consideration of the material of the metal base material or the like, or may be performed in combination of two or more processing methods.
  • the above-mentioned etching treatment is usually performed by immersing the degreased metal base material in an etching treatment liquid.
  • the etching solution used for this purpose is usually an aqueous solution of sodium hydroxide such as sodium hydroxide, potassium hydroxide, sodium carbonate, or sulfuric acid-phosphoric acid.
  • An aqueous acid solution such as a mixed aqueous solution is used.
  • concentration is 20 g / L or more and 200 g / L or less, preferably 50 g / L or more and 150 g / L or less.
  • the immersion temperature is from 30 ° C to 70 ° C, preferably from 40 ° C to 60 ° C, and the immersion time is from 0.5 minutes to 5 minutes. Preferably, it is 1 minute or more and 3 minutes or less.
  • the concentration of the sulfuric acid is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more. Phosphoric acid concentration of 10 g / L or more at 0 g / L or less
  • the immersion temperature is usually 30 ° C or more and 110 ° C as the processing conditions. C or less, preferably 55 ° C or more and 75 ° C or less, and immersion time of 0.5 minutes or more
  • the pickling bath is an acid such as nitric acid, sulfuric acid, hydrochloric acid, etc., and the concentration is 5 wt ° /. More than 5
  • An aqueous acid solution of the following preferably an acid aqueous solution having an acid concentration of 10 wt% / 0 to 40 wt%, more preferably nitric acid having a concentration of 25 to 30 wt%.
  • the immersion temperature is 15 ° C or more and 30 ° C or less
  • the immersion time is preferably from 20 ° C to 25 ° C, and the immersion time is preferably from 5 seconds to 120 seconds, preferably from 15 seconds to 60 seconds.
  • the zinc immersion bath has a zinc oxide concentration of 1.5 g / L or more and 60 g / L or less, preferably 3.5 g / L or more and 50 g or more. / L or less, and the alkaline concentration of alkaline such as sodium hydroxide and hydroxylating bead 40 g / L or more and 400 g / L or less, preferably 80 g / L
  • the immersion time is preferably 5 seconds or more and 120 seconds or less, more preferably 15 seconds or more and 50 seconds or less.
  • the zinc oxide concentration in the zinc immersion bath is lower than 1.5 g / L, there is a problem that the substituted zinc layer becomes non-uniform.
  • the zinc oxide concentration is higher than 60 g / L, the gold plating film will There is a problem of non-uniformity, and if the alkali concentration is lower than 40 g / L, there is a problem that the adhesion of the substituted zinc layer is reduced, and conversely, it is higher than 400 g / L. This causes a problem that the surface roughness of the metal substrate increases.
  • the zinc substitution treatment of immersing in zinc after the above pickling is preferably repeated at least four times or more. If this zinc substitution treatment is performed up to three times, pinholes and surface defects may occur in the corrosion-resistant conductive film, and a completely defect-free noble metal plating film without pinholes and surface defects may be formed. And it becomes difficult.
  • the surface of the metal substrate is polished, then subjected to an etching process, and further subjected to zinc substitution treatment four times or more.
  • a corrosion-resistant conductive film having a thickness of 0.01 to 5 m.
  • a plating treatment die Although a method such as a putting treatment can be used, preferably, a plating treatment is used.
  • a plating treatment is used.
  • an electroless plating (Me-ELP), a substitution plating (Me-SP), an electrolytic plating ( A plating treatment method such as Me-EP) or electrolytic strike plating (Me-EPS) can be used, and a plating bath having the same bath composition as the conventional plating bath can be used.
  • the same processing conditions as in the past can be used for this plating process, and the processing conditions vary depending on the type of plating metal used.
  • the temperature is about 50 to 75 ° C, and the current density is about 0.1 to 0.5 A / dm 2 .
  • a completely defect-free corrosion-resistant conductive film having no pinholes and no surface defects is formed on the surface of a metal substrate, although the film is as thin as possible. Therefore, even when an expensive precious metal corrosion-resistant conductive film is formed, its thickness can be reduced as much as possible, and it is inexpensive and has excellent durability.
  • Metal materials with a corrosion-resistant conductive film useful in many applications such as electrodes for unit cells constituting fuel cells, electrodes for primary batteries of mobile devices, and electrode materials used in electrowinning and electroplating of metals Can be easily manufactured.
  • a metal material having a corrosion-resistant conductive film having a thickness of 0.01 to 5 ⁇ m as described above and a polarization current of 10 ⁇ A / cm 2 or less measured by an electrochemical polarization property evaluation method is manufactured.
  • a metal separator with a film thickness of 0.01 to 1 ⁇ m and a polarization current of 10 ⁇ A / cm 2 or less measured by the electrochemical polarization characteristic evaluation method First, a separator substrate is formed from a metal material, and after the separator substrate is subjected to an etching treatment, a zinc substitution treatment of pickling and immersing in zinc is repeated four times or more. Perform precious metal plating treatment of ⁇ 1 ⁇ .
  • the etching of the separator substrate is usually performed by a degreasing treatment. This is performed by immersing the separated separator substrate in an etching solution.
  • the etching solution used for this purpose is usually an aqueous solution of sodium hydroxide, such as sodium hydroxide, sodium hydroxide or sodium carbonate, or a mixture of sulfuric acid and phosphoric acid.
  • An aqueous acid solution such as an aqueous solution is used.
  • concentration is from 20 g / L to 200 g / L, preferably from 5 Og / L to 15 Og / L.
  • the immersion temperature is 30 ° C to 70 ° C, preferably 40 ° C to 60 ° C, and the immersion time is 0.5 minutes to 5 minutes. It is preferably 1 minute or more and 3 minutes or less.
  • the concentration of the sulfuric acid is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more.
  • the concentration of phosphoric acid is 10 g / L or more and 1200 g / L or less, preferably 30 g / L or more and 500 g / L or less.
  • the immersion temperature is 30 ° C or more and 110 ° C or less, preferably 55 ° C or more and 75 ° C or less, and the immersion time is 0.5 minute or more and 15 minutes or less. It is preferably 1 minute or more and 6 minutes or less.
  • the acid is a nitric acid, a sulfuric acid, a hydrochloric acid, or the like, and the concentration is 5 wt% or more.
  • An aqueous acid solution of 50 or less preferably an acid aqueous solution having an acid concentration of 10 wt% or more and 40 wt% or less, more preferably a nitric acid solution of 25 wt% or more and 30 wt% or less.
  • the immersion temperature is 15 ° C or more and 30 ° C or less, preferably 20 ° C or more and 25 ° C or less, and the immersion time is 5 seconds or more and 120 seconds or less, preferably It is better to do it for 15 seconds or more and 60 seconds or less.
  • the zinc immersion bath is provided with a zinc oxide concentration of 1.5 g / L or more and 60 g / L or less, preferably 3.5 g / L or less. 50 g / L or less, and alkaline concentration of alkaline such as sodium hydroxide and potassium hydroxide 40 g / L or more and 400 g / L or less, preferably Use an aqueous zinc oxide solution of 80 g / L or more and 200 g / L or less, and immersion temperature of 15 ° (30 ° ⁇ or more, preferably 20 ° C or more and 25 ° C or less) The immersion time should be 5 seconds or more and 120 seconds or less, preferably 15 seconds or more and 50 seconds or less.
  • the zinc oxide concentration in the zinc immersion bath should be 1.5 g / L.
  • the substituted zinc layer will be non-uniform. Conversely, if it is higher than 60 g / L, if the gold plating film becomes non-uniform, there will be problems with the re-emission and the alkali concentration If it is lower than 400 g / L, the adhesion of the substituted zinc layer will be reduced.On the other hand, if it is higher than 400 g / L, the roughness of the aluminum surface will increase. Occurs.
  • the present invention for producing a metal material having a corrosion-resistant conductive film having a film thickness of 0.01 to 5 m and a polarization current of 10 ⁇ A / cm 2 or less measured by the electrochemical polarization characteristic evaluation method, thickness 0.0 1 when manufacturing the polarization current 1 0 ⁇ ⁇ / cm 2 or less of metallic separator made measured in l / zm and electrical chemical polarization characteristic evaluation method, zinc after said pickling It is preferable to repeat the zinc substitution treatment for immersion at least four times or more. When the zinc substitution treatment is performed up to three times, when the number of pinholes generated in the noble metal plating film is measured, it depends on the thickness of the noble metal plating film. It is difficult to form a completely defect-free noble metal plating film without pinholes or surface defects.
  • the separator substrate is etched in this way, and then zinc-substituted four or more times, followed by a noble metal plating process with a thickness of 0.01 to 1 ⁇ m.
  • This noble metal plating treatment includes, for example, electroless plating (Me-ELP), substitution plating (Me-SP), electrolytic plating (Me-EP), electrolytic strip plating (Me-EPS), etc.
  • the method of masking can be mentioned.
  • the plating bath having the same bath composition as the conventional bath can be used.
  • the processing conditions for the precious metal plating process can be the same as those used in the past, and vary depending on the type of noble metal used.
  • the current density is about 0.1 to 0.5 A / dm 2 at about 0 to 75 ° C.
  • a metal material having a corrosion-resistant conductive film having a thickness of 0.01 to 5 ⁇ m and a polarization current of 10 ⁇ A / cm 2 or less measured by an electrochemical polarization characteristic evaluation method is manufactured.
  • the method of the present invention is particularly necessary when manufacturing a metal separator having a film thickness of 0.1 to 1 ⁇ m and a polarization current of 10 nA / cm 2 or less measured by an electrochemical polarization characteristic evaluation method.
  • the surface of the separator base material before the etching treatment is subjected to a polishing treatment to obtain a surface roughness of ⁇ JIS B 0601 (2001) ⁇ , preferably from 0.02 to 0.3 ⁇ , more preferably.
  • the surface roughness is set to the range of 0.02 to 0.3.
  • the method is not particularly limited as long as the method can be adjusted to a range of ⁇ m, but usually, methods such as electrolytic polishing, mechanical polishing, buff polishing, plastic polishing, barrel polishing, etc. are employed, and preferably, electrolytic polishing is performed. It is.
  • the surface polishing treatment of the separator base material In consideration of the material of the substrate, etc., the treatment may be performed using only one of the above-described treatment methods, or may be performed using a combination of two or more treatment methods.
  • electrochemical polarization property evaluation is performed on a surface of a separator substrate formed of a metal material and a surface defect of an electrode substrate that cannot be detected by a normal pinhole detection method. It is possible to form a thin and defect-free noble metal plating film as much as possible by detecting the polarization current by the polarization method. Combined with excellent performance, it is possible to manufacture a metal separator / unit cell electrode that can simultaneously satisfy the high power generation performance, long-term durability, light weight, and low cost of a fuel cell.
  • DC was manufactured to produce aluminum slabs (slab lumps).
  • the aluminum ingot was soaked at 300 to 550 ° C., hot-rolled, and then cold-rolled to prepare a 5.5 mm-thick aluminum plate.
  • This aluminum plate is cut into a size of 100 mm X 100 mm, and is subjected to grinding with a grinding wheel to obtain a size of 5 mm X 100 mm X 100 ram.
  • An aluminum substrate was prepared.
  • Reactor gas channels having a depth of 0.8 mm and a width of 0.8 mm were formed on both sides of each of the 5 mm-thick aluminum base materials obtained above by press caulking, and In a degreasing bath having a composition of 25 g / L sodium, 25 g / L sodium carbonate, 25 g / L sodium phosphate, and 1.5 g / L surfactant. After degreased at 60 ° C and a immersion time of 5 minutes, rinsed with water, and then immersed in 50 g / sodium hydroxide solution as an etching solution at 50 ° C. Etching was performed under the conditions of 3 minutes and immersion time.
  • the etched aluminum base material obtained in this manner is 30wt /.
  • -Use nitric acid aqueous solution as pickling bath add sodium hydroxide 100 g / L, zinc oxide 50 g / L, ferric chloride 1 g / L, and mouth shell salt 10 g / L
  • a zinc immersion bath having the following composition, the zinc substitution treatment of immersing for 30 seconds at room temperature and then immersing in zinc for 30 seconds at room temperature is performed four times, followed by electrolytic gold plating bath ( Te "click, using a 'service Co.
  • the temperature was raised to 70 ° C using an electrolytic silver plating bath (Te, Kalsa Alta, Alna CF).
  • Current density 5 0 A / dm performed in electrolytic Ginme luck process 2 conditions, electrolytic Ginme Tsu ratio of the maximum value L of the major axis of the thickness T and the second phase compounds of key film (T / L) pixels
  • T / L second phase compounds of key film
  • the zinc-substituted separator substrate was heated to a temperature of 40 ° C and a current density of 40 ° C by using an electrolytic platinum plating bath (Te, K-Sulfur® K).
  • Te, K-Sulfur® K an electrolytic platinum plating bath
  • Each prototype separator thus produced was immersed in a 20 g / L aqueous solution of copper sulfate at room temperature for 5 minutes, the copper deposition was counted, and the number of pinholes (pcs / cm) was measured. 2 ) was measured.
  • an aqueous acetic acid solution of pH 3 was used as the test solution
  • a silver-silver chloride electrode was used as the reference electrode
  • the scanning potential was 0 to: L 0 OmV vs Ag / AgClCl.
  • the polarization current (/ A / cm 2 ) was measured by the electrochemical polarization characteristic evaluation method.
  • an aluminum substrate was prepared in which the maximum length L of the second phase compound on the surface and the maximum length L of the second phase compound up to 5 ⁇ ra below the surface had the values shown in Table 4. Then, apply the noble metal plating treatment shown in Table 4 to determine the thickness T of the noble metal plating film and the maximum major axis length L of the second phase compound on the surface or the maximum major axis length of the second phase compound up to 5 ⁇ m below the surface.
  • a prototype of an aluminum separator was produced in the same manner as in Experimental Example 1 except that a noble metal plating film having a ratio to L (T / L) was formed. Polarization current ( ⁇ A / cm 2 ) and separator life (hrs.) Were measured for each of the obtained separator prototypes in the same manner as in Experimental Example 1, and the results are shown in Table 4.
  • a 5 mm thick aluminum substrate (1N99) is used to cut out a separator base material of size 5111 [11 s 100 111 1 111 s 100 mm], and both sides of this separator base are pressed by pressing.
  • Reactant gas channels having a depth of 0.8 mm and a width of 0.8 mm were formed respectively, and then sodium hydroxide 25 g / L, sodium carbonate 25 g / L, and sodium phosphate
  • Etching was performed using a 50 g / L aqueous solution of sodium hydroxide as an etching solution at an immersion temperature of 50 ° C and an immersion time of 3 minutes.
  • a 30 wt% aqueous solution of nitric acid was used as an pickling bath, sodium hydroxide 100 g / L, zinc oxide 50 g / L.
  • a zinc immersion bath having a composition of 1 g / L of ferric chloride and 1 Og / L of Rochelle salt, immerse for 30 seconds at room temperature. 1 to 6 times (zinc replacement times: 1 to 6 times), followed by 10 g / L of potassium cyanide and 30 g / L of potassium cyanide.
  • a gold plating bath having a composition of 30 g / L of carbon dioxide roll and 30 g / L of potassium phosphate, the bath temperature was 55 ° C and the current density was 0.5 A / dm.
  • the electroless gold plating was performed by controlling the processing time under the conditions of 2 , and the thickness of the separator base material at each number of zinc substitution treatments was 0.01 m, 0.1 ⁇ and 0.1 1.
  • a prototype of an aluminum separator with a ⁇ gold film was fabricated.
  • a unit battery was assembled using the membrane electrode assembly described above, and hydrogen gas and air were supplied to the reaction gas flow path of the separator prototype, and a battery power generation test was continuously performed.
  • the time during which the battery electromotive force at the time of the power generation test decreased by 10% compared to the electromotive force at the start of power generation was measured and defined as the separator life.
  • Electroless noble metal plating (Me-ELP), substituted noble metal plating (Me-SP),
  • the degreasing-treated separator substrate obtained in the same manner as in Experimental Example 2 was subjected to a surface polishing treatment by the following method before the etching treatment, and then As in Experimental Example 2, an aluminum separator having a 0.1-meter-thick gold plating film on the surface was subjected to etching treatment, four zinc substitution treatments, and gold plating treatment shown in Table 10. Prototype was made.
  • Electropolishing treatment was performed for 5 minutes under the condition of 1 OA / dm 2 , followed by washing with water and drying.
  • a cotton buff was used as a puff, and alumina fine powder (particle size: P2500) was used as an abrasive.
  • a mixture of fine glass beads (particle size FOO) was sprayed at an air pressure of 2 kg / cra 2 , washed with water after polishing, and dried.
  • the surface state of the metal substrate is optimized, and the thickness of the precious metal element film on the surface of the metal substrate is, for example, 5 ⁇ m or less, which is much thinner than the conventional one, It is possible to provide a metal material having an inexpensive and highly durable corrosion-resistant conductive film formed with a conductive film free of defects and surface defects.
  • the metal separator for a fuel cell obtained by the present invention can simultaneously achieve high power generation performance, long-term durability, light weight, and low cost. It is extremely useful in producing suitable fuel cells.

Abstract

A metal member comprising a metal base and, superimposed on its surface, a corrosion-resistant conductive coating wherein the maximum (L) of major diameters of second-phase compounds observed at the surface of metal base is 5/6-fold or less of the thickness of corrosion-resistant conductive coating (T) (L ≤ 5/6 T); and a process for producing a metal member which comprises subjecting a metal base to a zinc immersion treatment wherein zinc immersion is carried out after acid cleaning four times or more and thereafter forming a corrosion-resistant conductive coating on a surface of the metal base. In particular, a metal member having a corrosion-resistant conductive coating that can be used in a metal separator for fuel cell or an electrode of fuel cell, these being useful for fuel cell production; and a process for producing the same.

Description

明 細 書 耐食導電性皮膜を有する金属材及ぴその製造方法 技 術 分 野  Description Metallic material with corrosion-resistant conductive film and its manufacturing method
この発明は、 基材がアルミニウム又はアルミニウム合金からなる アルミニウム材、 チタン又はチタン合金からなるチタン材、 ステン レス鋼材、 Ni - Fe 合金材等の金属材料で形成され、 この金属基材の 表面に耐食導電性皮膜を有し、 例えば、 複数の単位電池を積層して 燃料電池を構成する際に各単位電池間に介装される燃料電池用セパ レータ、 この燃料電池を構成する単位電池の電極、 携帯機器の一次 電池の電極、 金属の電解採取や電解メ ツキ等において用いられる電 極材料等の多く の用途に有用な耐食導電性皮膜を有する金属材及び その製造方法に関する。 技 術 背 景  According to the present invention, the base material is formed of a metal material such as an aluminum material made of aluminum or an aluminum alloy, a titanium material made of titanium or a titanium alloy, a stainless steel material, and a Ni—Fe alloy material. A fuel cell separator having a conductive film, for example, a fuel cell separator interposed between the unit cells when forming a fuel cell by stacking a plurality of unit cells; an electrode of the unit cell forming the fuel cell; The present invention relates to a metal material having a corrosion-resistant conductive film useful for many uses such as an electrode material for a primary battery of a portable device, an electrode material used for electrolytic extraction of metal, and an electroplating method, and a method for producing the same. Technology background
例えば、 燃料電池は、 アノー ド及び力ソー ドからなる一対の電極 とこれらの電極間に介装されるプロ トン伝導体の電解質膜とで構成: された複数の単位電池を、 耐酸性、 導電性に優れたガス不浸透性め 黒鉛材料等で形成されたセパレータで仕切ると共に、 これら各単位 電池の電極とこの電極に接触する各セパレータの電極接触面との間 にはそのいずれか一方に反応ガス流路を形成して構成され- おり、 そして、上記各単位電池のァノ一ド側に水素等の燃料ガスを、また、 カソード側に酸素や空気等の酸化剤ガスをそれぞれ供給し、 ァノー ド側で燃料ガスの酸化反応をさせてプロ ト ンと電子とを生成せしめ、 プロ ト ンについては電解質膜中を移動させてカソー ド側に供給する と共に、 電子については外部回路に取り 出し、 また、 力ソー ド側で は電解質膜中を移動してきたプロ トン、 外部回路から供給される電 子、 及び酸化剤ガスを反応させるもので、 アノード側で外部回路に 取り 出した電子が電流と して仕事をするよ うになつている。 For example, a fuel cell is composed of a plurality of unit cells composed of a pair of electrodes consisting of an anode and a force source and an electrolyte membrane of a proton conductor interposed between the electrodes, and is made of an acid-resistant, conductive material. The separator is made of a graphite material, etc., which has excellent gas permeability, and reacts with one of the electrodes between each unit cell electrode and the electrode contact surface of each separator in contact with this electrode. A gas flow path is formed, and a fuel gas such as hydrogen is supplied to the anode side of each of the unit cells, and an oxidizing gas such as oxygen and air is supplied to the cathode side, respectively. The anode gas causes an oxidation reaction of the fuel gas to generate protons and electrons.The protons move through the electrolyte membrane and are supplied to the cathode, while the electrons are extracted to an external circuit. , , In the power source de side Is a reaction between the protons that have moved through the electrolyte membrane, the electrons supplied from the external circuit, and the oxidizing gas, so that the electrons taken out to the external circuit on the anode side work as current. I'm sorry
このよ う な燃料電池は、 非常に高い効率で反応エネルギーを電気 エネルギーに変換することが可能であり、 しかも、 反応生成物は原 理的には水だけであって有害な排気ガスの発生がなく 、 極めて高効 率でク リーンな発電手段であり、 特に電解質と してフッ素樹脂系の イオン交換膜を用いる固体高分子形燃料電池については、 次世代の 電気自動車用発電装置と しても期待されていることから、 より高効 率の発電性能 (高発電性能)、 長期安定的に出力を得るための耐久性 (長期耐久性)、軽量化、低コス ト化等のための研究開発が進められ ている。  Such a fuel cell is capable of converting reaction energy into electric energy with extremely high efficiency, and furthermore, the reaction product is basically water only, and harmful exhaust gas is generated. It is an extremely efficient and clean power generation means, especially for polymer electrolyte fuel cells that use a fluororesin-based ion-exchange membrane as the electrolyte. R & D for higher efficiency power generation performance (high power generation performance), durability for long-term stable output (long-term durability), light weight, low cost, etc. Is being promoted.
そして、 このよ うな燃料電池に用いるセパレータについてはこれ まで主と して黒鉛材料が用いられていたが、 この黒鉛製セパレータ には、 その材料自体が高価であるばかりでなく 、 セパレータ側に反 応ガス流路が形成される場合には靭性に乏しくて脆い材質の黒鉛材 料に精密な機械加工が必要になって加工コス トが高く なり、しかも、 耐衝撃性や対振動性等にも乏しく 、 また、 リサイクルも困難である という問題があった。  Until now, graphite materials have been mainly used as separators for such fuel cells. However, such graphite separators are not only expensive but also react to the separator side. When a gas flow path is formed, precise machining is required for graphite material, which is poor in toughness and brittle, which increases the processing cost, and also has poor impact resistance and vibration resistance. There was also a problem that recycling was difficult.
そこで、近年においては、このよ うな黒鉛製セパレータに替えて、 In recent years, instead of such graphite separators,
Ni /SUSクラッ ド材製のセパレータゃ、 アルミニウム又はアルミニゥ ム合金からなるアルミニウム材、 チタン又はチタ ン合金からなるチ タ ン材、 ステンレス鋼材、 Ni - Fe 合金等の金属材料でセパレータ基 材を形成し、 その少なく と も電極接触面に金 (Au)、 銀 (Ag)、 白金 ( Pt ) パラジウム (Pd) 等の貴金属や、 銀、 窒化ク ロム、 白金族の 複合酸化物あるいは炭化ホウ素とニッケルの複合物から選ばれた材 料等の導電性皮膜をメ ツキによ り形成せしめた金属製セパレータが 9 Separator base made of Ni / SUS clad material, aluminum material made of aluminum or aluminum alloy, titanium material made of titanium or titanium alloy, stainless steel material, Ni-Fe alloy, etc. In addition, at least the noble metal such as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd), silver, chromium nitride, platinum group composite oxide, or boron carbide and nickel Metal separator formed by plating a conductive film such as a material selected from the composite of 9
提案されている (例えば、 特開平 10-228, 9 14号、 特開平 1 1 - 162, 478 号、 特開 2000- 106, 197号、 特開 2001 - 15, 126号等の各公報)。 It has been proposed (for example, JP-A-10-228,914, JP-A-11-162,478, JP-A-2000-106,197, JP-A-2001-15,126, etc.).
し力 しながら、このよ う な Ni /SUS クラ ッ ド材製セパレータや金属 製セノ レータにおいても、 例えば、 Ni /SUS ク ラ ッ ド材製セパレータ には単位電池の電極との接触抵抗が大き く 、 溶出金属イオンが電解 質膜の膜抵抗を増大させ、電池出力を低下させる という 問題があり、. また、 金属製セパレータには、 バルタ電気抵抗が低い、 高い気密性 及び機械的強; を有して加工コス トの低減が図れる、 薄型化が可能 で小型化や軽量化が容易である、 アルミニウム材を用いた場合には 一層の軽量化が可能である等の利点がある反面、 基材の金属が腐食 し易く 、 特にアルミニウム材の場合にはその腐食速度が大きいとい う腐食の問題があり 、 しかも、 この腐食の問題を解決するために導 電性皮膜の膜厚を厚く する と コス トが高く なり 、 反対に、 コス トを 抑えるために膜厚を薄くする と ピンホール又は表面欠陥が発生して 腐食の問題を解決することが困難になる。  However, even in such Ni / SUS clad material separators and metal seolators, for example, Ni / SUS clad material separators have a large contact resistance with the electrode of the unit battery. In addition, there is a problem that the dissolved metal ions increase the membrane resistance of the electrolyte membrane and lower the battery output. In addition, metal separators have low Balta electric resistance, high airtightness and mechanical strength. Although it has the advantages of being able to reduce the processing cost due to having it, it is possible to make it thinner, it is easy to make it smaller and lighter, and if aluminum material is used, it is possible to make it even lighter. The metal of the material is susceptible to corrosion, especially in the case of aluminum material, which has a problem of corrosion that the corrosion rate is high. In addition, if the thickness of the conductive film is increased in order to solve the problem of corrosion, High cost Conversely, if the film thickness is reduced to reduce cost, pinholes or surface defects occur, making it difficult to solve the corrosion problem.
そこで、従来においても、金属製セパレータにおける上述した種々 の問題を解決するために、 例えば、 セパレータが電極と接触する電 極接触面に金メ ツキ処理によ り部分的に厚肉の金メ ッキ皮膜を設け たり (特開 2001 - 345 , 109号公報)、 あるいは、 セパレータが電極と 接触する電極接触面に電気メ ツキにより Au- Ni組成が連続的に変化 する Au- Ni傾斜組成皮膜を設けること (特開 2001 -357, 859号公報) が提案されている。  Therefore, conventionally, in order to solve the above-mentioned various problems in the metal separator, for example, the electrode contact surface where the separator comes into contact with the electrode is partially plated with a thick gold plating by gold plating. Or a graded Au-Ni composition film in which the Au-Ni composition changes continuously due to electrical plating on the electrode contact surface where the separator comes into contact with the electrode (Japanese Patent Application Laid-Open No. 2001-345,109). (Japanese Patent Laid-Open No. 2001-357, 859) has been proposed.
しかしながら、 前者の部分的に厚肉の金メ ツキ皮膜を設けるこ と には、 メ ツキ工程間にマスキング工程を必要と して工程数が増加す る という問題があり 、 また、 後者の Au- Ni傾斜組成皮膜を設けるこ とには Niイ オンの溶出が 1 ppmでも発生する と電池性能が低下して しま う という問題があって、 いずれの場合も、 例えば次世代の電気 自動車用発電装置等の用途において特に要求される高発電性能、 長 期耐久性、 軽量化、 及び低コス ト化を必ずしも同時に満足できるも のとはいえない。 However, the provision of a partially thick gold plating film in the former method has a problem that a masking step is required between the plating steps and the number of steps is increased, and the latter method is difficult. Providing a Ni-graded composition film has the problem that even if 1 ppm of Ni ion is eluted, battery performance will be degraded. It cannot always be said that the high power generation performance, long-term durability, light weight, and low cost, which are particularly required in applications such as power generation equipment for automobiles, can be simultaneously satisfied.
このよ うな問題は、 上記燃料電池用セパレータの場合に限らず、 燃料電池を構成する単位電池の電極、 携帯機器の一次電池の電極、 金属の電解採取や電解メ ツキ等において用いられる電極材料等にお いても全く 同様であり、 金属基材の表面に耐食導電性皮膜を形成し てなる金属材を用いる分野で共通する問題になっている。  Such problems are not limited to the above-described fuel cell separators, but include electrodes of unit cells constituting the fuel cell, electrodes of a primary battery of a portable device, electrode materials used in electrowinning and electroplating of metal, etc. The same is true in the field of use of a metal material having a corrosion-resistant conductive film formed on the surface of a metal substrate.
そこで、 本発明者らは、 金属基材の表面に、 例えば貴金属元素皮 膜の場合その膜厚が 5 μ m 以下であって従来よ り も膜厚が非常に薄 く、しかも、ピンホールや表面欠陥のない導電性皮膜を形成せしめ、 これによつて腐食の問題とコス ト の問題とを同時に解決することが できる金属材について鋭意検討した結果、 金属基材の表面状態を最 適化することによ り解決できることを見出し、 本発明を完成した。  Therefore, the present inventors have found that, for example, in the case of a noble metal element coating, the thickness of the noble metal element coating is 5 μm or less, which is much thinner than before, After conducting intensive studies on metal materials that can form a conductive film without surface defects and thereby solve both corrosion and cost problems, we will optimize the surface condition of the metal substrate Thus, the present invention has been completed.
また、 本発明者らは、 例えば次世代の電気自動車用発電装置等の 用途において特に有用な高発電性能、 長期耐久性、 軽量化、 及び低 コス ト化を同時に満足できる燃料電池を製造する上で有用な燃料電 池用セパレータゃ単位電池の電極を開発すべく鋭意検討した結果、 例えば、 セパレータ基材の材質と して高発電性能、,,軽量化、 及び低 コス ト化を進める上で有利な金属材料を採用し、 このセパレータ基 材にエツチング処理及び所定の亜鉛置換処理を施した後、 膜厚 0 . 0 1 〜 1 m の貴金属メ ッキ処理を行い、 セパレータ基材の少なく とも電極接触面に膜厚 0 . 0 1 〜 1 μ m 及び電気化学的分極特性評 価法で測定した分極電流 1 0 μ A/ cm 2以下の貴金属メ ツキ皮膜を形 成せしめることにより、 目的を達成できることを見出し、 本発明を 完成した。 In addition, the present inventors have developed a fuel cell that can simultaneously satisfy high power generation performance, long-term durability, light weight, and low cost, which are particularly useful for applications such as power generation devices for next-generation electric vehicles. Of fuel cell separators that are useful in the field. As a result of intensive studies to develop electrodes for unit cells, for example, in order to promote high power generation performance, light weight, and low cost as the material of the separator base material, After adopting an advantageous metal material and subjecting the separator base to etching treatment and a predetermined zinc substitution treatment, a precious metal stick treatment with a thickness of 0.01 to 1 m is performed, and at least the separator base material is used. thickness on the electrode contact surface 0 by. 0 1 ~ 1 μ m and that allowed to electrochemical polarization characteristics evaluation method form forming a polarization current 1 0 μ a / cm 2 or less of the precious metal main luck film measured in a purpose Of the present invention Was completed.
従って、 本発明の目的は、 金属基材の表面状態を最適化し、 この 金属基材の表面に例えば貴金属元素皮膜の場合その膜厚が 5 μ m 以 下と従来よ り も非常に薄く 、 しかも、 ピンホールや表面欠陥のない 導電性皮膜を形成せしめた安価で耐久性に優れた耐食導電性皮膜を 有する金属材を提供することにある。 Therefore, an object of the present invention is to optimize the surface condition of a metal substrate, Inexpensive and durable, for example, a noble metal element film with a thickness of 5 μm or less on the surface of the metal substrate is extremely thin compared to the past, and has a conductive film free of pinholes and surface defects. An object of the present invention is to provide a metal material having an excellent corrosion-resistant conductive film.
また、 本発明の他の目的は、 このよ うな耐食導電性皮膜を有する 金属材を製造するための方法を提供することにある。  Another object of the present invention is to provide a method for producing a metal material having such a corrosion-resistant conductive film.
更に、 本発明の他の目的は、 高発電性能、 長期耐久性、 軽量化、 及び低コス ト化を同時に達成でき、 例えば次世代の電気自動車用発 電装置等の用途に適した燃料電池を製造する上で有用な燃料電池用 金属製セパレータゃ、 燃料電池を構成する単位電池の電極に用いる ことができる耐食導電性皮膜を有する金属材を提供することにある。 また、 本発明の他の目的は、 高発電性能、 長期耐久性、 軽量化、 及び低コス ト化を同時に達成できる燃料電池を製造する上で有用な 燃料電池用金属製セパレータゃ、 燃料電池を構成する単位電池の電 極に用いることができる耐食導電性皮膜を有する金属材の製造方法 を提供することにある。 発 明 の 開 示  Further, another object of the present invention is to provide a fuel cell which can simultaneously achieve high power generation performance, long-term durability, light weight, and low cost, and which is suitable for use as a power generation device for a next-generation electric vehicle, for example. It is an object of the present invention to provide a metal separator for a fuel cell which is useful in production, and a metal material having a corrosion-resistant conductive film which can be used for an electrode of a unit cell constituting the fuel cell. Another object of the present invention is to provide a metal separator for a fuel cell, which is useful in manufacturing a fuel cell capable of simultaneously achieving high power generation performance, long-term durability, light weight, and low cost, and a fuel cell. An object of the present invention is to provide a method for producing a metal material having a corrosion-resistant conductive film that can be used for an electrode of a unit battery to be constituted. Disclosure of the invention
すなわち、 本発明は、 金属材料で形成された金属基材の表面に耐 食導電性皮膜を形成してなる耐食導電性皮膜を有する金属材であり、 上記金属基材の表面に'観察される当該金属基材の第二相化合物は、 その長径の最大値 Lが上記耐食導電性皮膜の膜厚 Tの 5 / 6倍以下 ( L≤ 5 X 6 T ) である、 耐食導電性皮膜を有する金属材である。 また、 本発明は、 このよ うな耐食導電性皮膜を有する金属材を製 造するに際し、 金属基材に対して、 酸洗後に亜鉛浸漬を行う亜鉛浸 漬処理を 4回以上繰り返し、 次いで金属基材の表面に耐食導電性皮 膜を形成せしめる、 耐食導電性皮膜を有する金属材の製造方法であ る。 That is, the present invention is a metal material having a corrosion-resistant conductive film formed by forming a corrosion-resistant conductive film on the surface of a metal substrate formed of a metal material, and is observed on the surface of the metal substrate. The second phase compound of the metal substrate has a corrosion-resistant conductive film having a maximum length L of 5/6 times or less (L≤5X6T) the thickness T of the corrosion-resistant conductive film. It is a metal material. In addition, in the present invention, when producing a metal material having such a corrosion-resistant conductive film, a zinc immersion treatment of pickling and then immersing zinc in a metal substrate is repeated four times or more. A method for producing a metal material having a corrosion-resistant conductive film, wherein a corrosion-resistant conductive film is formed on the surface of the material. You.
また、 本発明は、 金属材料で形成された金属基材と、 この金属基 材の表面に形成され、 膜厚が 0 . 0 1〜 5 /i m であって、 電気化学 的分極特性評価法で測定した分極電流が 1 0 μ A/cm 2以下である耐 食導電性皮膜とを有する、 耐食導電性皮膜を有する金属材である。 The present invention also provides a metal substrate formed of a metal material, and a metal substrate formed on the surface of the metal substrate having a film thickness of 0.01 to 5 / im, and a method for evaluating electrochemical polarization characteristics. A metal material having a corrosion-resistant conductive film having a measured corrosion current of 10 μA / cm 2 or less.
また、 本発明は、 金属材料で金属基材を形成し、 この金属基材を ェツチング処理した後、 酸洗後に亜鉛浸漬を行う亜鉛置換処理を 4 回以上繰り返し、 次いでこの金属基材の表面に膜厚 0 · 0 1〜 5 μ m の耐食導電性皮膜を形成せしめる、 耐食導電性皮膜を有する金属材 の製造方法である。  Further, the present invention provides a metal substrate formed of a metal material, after the metal substrate is subjected to an etching process, a zinc substitution process of performing zinc immersion after pickling is repeated four times or more, and then the surface of the metal substrate is formed. This is a method for producing a metal material having a corrosion-resistant conductive film that forms a corrosion-resistant conductive film having a thickness of 0.11 to 5 μm.
本発明における金属材は、 例えば、 燃料電池を形成する際に用い られるセパレータゃ、 燃料電池を構成する単位電池の電極等に用い るこ とができる。 このよ う なセパレータゃ電極に用いる際、 セパレ ータを構成するセパレータ基材や電極を構成する電極基材 (セパレ 一タ基材及び電極基材をあわせて 「燃料電池形成材」 という) を形 成する場合、 上記のよ うな条件を満たした第二相化合物を含む金属 基材を使用してもよく 、 第二相化合物の制約を受けない金属基材を 使用してもよい。 また、 本発明における金属材を燃料電池以外の用 途に用いる場合、 上記のよ う な膜厚及び分極電流に係る条件を満た した耐食導電性皮膜を形成してもよく、 上記膜厚及び分極電流の条 件を満たさない耐食導電性皮膜を形成してもよい。  The metal material in the present invention can be used for, for example, a separator used when forming a fuel cell, an electrode of a unit cell constituting the fuel cell, and the like. When used for such a separator / electrode, the separator substrate constituting the separator and the electrode substrate constituting the electrode (the separator substrate and the electrode substrate are collectively referred to as “fuel cell forming material”). When forming, a metal substrate containing the second phase compound satisfying the above conditions may be used, or a metal substrate not restricted by the second phase compound may be used. When the metal material according to the present invention is used for applications other than a fuel cell, a corrosion-resistant conductive film that satisfies the conditions for the above-mentioned film thickness and polarization current may be formed. A corrosion-resistant conductive film that does not satisfy the current conditions may be formed.
本発明における金属材は、 燃料電池用金.属製セパレータゃ、 燃料 電池を構成する単位電池の電極等に用いるこ とができるのは上述の とおりである。以下、具体例と してセパレータに係る説明をするが、 特に説明する個所以外は単位電池の電極の場合も同様である。  As described above, the metal material in the present invention can be used for a metal separator for a fuel cell, an electrode of a unit cell constituting the fuel cell, and the like. Hereinafter, the separator will be described as a specific example, but the same applies to the electrode of the unit battery except where specifically described.
具体的には、 本発明における金属材は、 金属材料で形成されたセ パレータ基材と、 このセパレータ基材の少なく とも電極接触面に貴 金属メ ッキ処理によ り形成され、膜厚が 0 . 0 1 〜 1 111であって、 電気化学的分極特性評価法で測定した分極電流が 1 0 μ A/ cm 2以下 である貴金属メ ツキ皮膜とを有する、 燃料電池用金属製セパレータ である。 Specifically, the metal material in the present invention includes a separator substrate formed of a metal material and at least a noble electrode contact surface of the separator substrate. A noble metal film formed by metal plating and having a film thickness of 0.01 to 1111, and a polarization current of 10 μA / cm 2 or less measured by the electrochemical polarization characteristic evaluation method. It is a metal separator for a fuel cell having a luster film.
具体的には、 本発明における金属材の製造方法は、 金属材料でセ パレータ基材を形成し、 このセパレータ基材をエッチング処理した 後、 酸洗後に亜鉛浸漬を行う亜鉛置換処理を 4回以上繰り 返し、 次 いでこのセパレータ基材の少なく と も電極接触面に膜厚 0 . 0 1 〜 1 μ ra の貴金属メ ツキ処理を行う、 燃料電池用金属製セパレータの 製造方法である。  Specifically, the method for producing a metal material according to the present invention includes forming a separator base material from a metal material, etching the separator base material, and immersing in zinc after pickling, followed by zinc substitution treatment four times or more. This is a method for producing a metal separator for a fuel cell, in which at least the electrode contact surface of the separator substrate is subjected to a noble metal plating treatment with a thickness of 0.01 to 1 μra.
本発明において、 金属材を構成する金属基材は、 例えば、 アルミ ニゥム又はアルミェゥム合金からなるアルミ ニウム材、 チタン又は チタ ン合金からなるチタ ン材、 ステンレス鋼材、 Ni -Fe 合金材等の 金属材料で形成され、 電気抵抗が低く て軽量である こ とから、 好ま しく はアルミニウム材で形成される。 この目的で用レ、られるアルミ 二ゥム材については、 特に制限される ものではなく 、 例えば、 高純 度ァノレミニゥム ( JI S H4 170 ; 1N99 ) や、 A 1 100、 A5052、 A6063等の 種々のアルミニウム合金を挙げるこ とができる。  In the present invention, the metal base material constituting the metal material is, for example, a metal material such as an aluminum material made of aluminum or an aluminum alloy, a titanium material made of titanium or a titanium alloy, a stainless steel material, a Ni-Fe alloy material, or the like. It is preferably made of aluminum because of its low electric resistance and light weight. The aluminum material used for this purpose is not particularly limited. For example, various kinds of aluminum such as high-purity aluminum (JISH4170; 1N99), A1100, A5052, and A6063 can be used. Aluminum alloys can be mentioned.
また、 本発明における金属材を燃料電池用金属製セパレータに用 いる場合、 このよ うなセパレータを構成するセパレータ基材を形成 するための金属材料についても、 例えば、 アルミニウム又はアルミ ニゥム合金からなるアルミ ニウム材、 チタン又はチタン合金からな るチタン材、ステンレス鋼材、 Ni -Fe合金材等を挙げるこ とができ、 特に加工性に優れたアルミ ニウム材が好ま しい。 そ して、 このアル ミニゥム材については、 特に制限される ものではなく 、 例えば、 高 純度アルミ ニウム (JIS H4170 ; 1N99) や、 A 1 100、 A5052、 A6063等 の種々のアルミ二ゥム合金を挙げる こ とができる。 そ して、 この金属基材の第二相化合物とは、 金属基材中において その素材金属以外の物質によ り相を形成している物質 (化合物) を 意味し、 この第二相化合物については、 走査型電子顕微鏡 (SEM) の 反射電子像を利用 してその大き さや分布状態を調べる ことができ、 また、 X線回折によって化合物を同定するこ と もできる。 Further, when the metal material of the present invention is used for a metal separator for a fuel cell, the metal material for forming a separator base material constituting such a separator is also, for example, aluminum or aluminum alloy made of aluminum alloy. Materials, titanium materials made of titanium or a titanium alloy, stainless steel materials, Ni-Fe alloy materials, etc., and aluminum materials, which are particularly excellent in workability, are preferred. The aluminum material is not particularly limited. For example, high-purity aluminum (JIS H4170; 1N99) or various aluminum alloys such as A1100, A5052, and A6063 are used. Can be mentioned. The second phase compound of the metal base means a substance (compound) that forms a phase with a substance other than the base metal in the metal base. Can be used to examine the size and distribution of reflected electrons using a scanning electron microscope (SEM), and to identify compounds by X-ray diffraction.
この金属基材の第二相化合物と しては、 具体的には、 例えば金属 基材がアルミ二ゥム材で形成されている場合には、 その素材金属の アルミニウム(A1)以外の物質 (Fe, Si, Cu, Mg, Znその他の不純物) を含む、 例えば Al3 Fe、 a AlFeSi, Al 3 Mg 2、 Mg 2 S i、 Al- Mg - Zn化合 物等の化合物を挙げることができ、 また、 金属基材がチタン材で形 成されている場合には、 その素材金属のチタン(Ti)以外の物質 (A1, Mn, Mo, Ta, Fe, Sn, Zr その他の不純物) を含む、 例えば Ti 3Al、 TiMn、 TiFe、 Ti 3 Sn 等の化合物を挙げることができ、 更に、 金属基 材がステンレス鋼材で形成されている場合には、 その素材金属の鉄 (Fe)以外の物質 (Cr, Ni, Mo, Nb, Ti, Cその他の不純物) を含む、 例えば FeCr、 Cr2 3 C6、 Fe3 C、 MoC、 NbC等の化合物を挙げるこ とが でき る。 As the second phase compound of the metal base, specifically, for example, when the metal base is formed of aluminum material, a substance other than aluminum (A1) of the base metal ( Fe, Si, Cu, Mg, Zn and other impurities), for example, compounds such as Al 3 Fe, a AlFeSi, Al 3 Mg 2 , Mg 2 Si, and Al-Mg-Zn compounds. If the metal substrate is made of titanium, it contains substances other than titanium (Ti) (A1, Mn, Mo, Ta, Fe, Sn, Zr, and other impurities). For example, compounds such as Ti 3 Al, TiMn, TiFe, and Ti 3 Sn can be mentioned. Further, when the metal base is formed of stainless steel, a substance other than iron (Fe) of the material metal ( Cr, Ni, Mo, Nb, Ti, including C other impurities), for example FeCr, Cr 2 3 C 6, Fe 3 C, MoC, Ru can and Ageruko compounds such as NbC
そ して、 本発明で用いる金属基材は、 その表面に観察される当該 金属基材の第二相化合物の長径の最大値 Lが上記耐食導電性皮膜の 膜厚 Tの 5 / 6倍以下( L 5 / 6 T)、好ま しく は 2 / 3倍以下( L ≤ 2 / 3 T) であるのがよ く 、 また、 金属基材表層にある第二相化 合物は耐食導電性皮膜のピンホール等の欠陥が生じる起点となるこ とから、 金属基材の表面下 5 μ ηι の深さまでの間に観察される第二 相化合物の長径の最大値 Lが耐食導電性皮膜の膜厚の 5 / 6倍以下 ( L≤ 5 Ζ 6 Τ )、 好ま しく は 2 / 3倍以下 ( L≤ 2 / 3 Τ ) である のがよ く 、 更に、 よ り好ま しく は、 その表面に観察される当該金属 基材の第二相化合物が実質的に存在しないのがよく 、 また同様に、 金属基材の表面下 5 IX m の深さまでの間に観察される第二相化合物 . が実質的に存在しないのがよい。 In the metal substrate used in the present invention, the maximum value L of the major axis L of the second phase compound of the metal substrate observed on the surface is 5/6 times or less the thickness T of the corrosion-resistant conductive film. (L 5/6 T), preferably 2/3 times or less (L ≤ 2/3 T), and the second phase compound on the surface of the metal substrate is a corrosion-resistant conductive film. The maximum value L of the major axis of the second phase compound, which is observed up to a depth of 5 μηι below the surface of the metal substrate, is the starting point for defects such as pinholes in the film. It is preferably no more than 5/6 times the thickness (L≤5Ζ6Τ), preferably no more than 2/3 times (L≤2 / 3 更 に), and more preferably on its surface. Preferably, the observed second phase compound of the metal substrate is substantially absent, and likewise, The second phase compound, which is observed up to a depth of 5 IX m below the surface of the metal substrate, should be substantially absent.
ここで、 上記の観察される第二相化合物の長径の最大値 Lが上記 耐食導電性皮膜の膜厚 Tの 5 Z 6倍以下 ( L ≤ 5 / 6 T ) である と は、 例えば、 金属基材の表面に形成される耐食導電性皮膜の膜厚が 1 . 2 ,i m である場合にはこの金属基材の表面に観察される第二相 化合物の長径の最大値 Lが 1 . Ο μ ιη 以下であるこ とを意味し、 本 発明において耐食導電性皮膜が貴金属元素皮膜の場合にはその膜厚 の目標が δ ιη 以下であるので、 結果と して金属基材の表面に観察 される第二相化合物の長径の最大値 Lも 4 . 2 μ m 以下である必要 がある。 この金属基材の表面に観察される第二相化合物の長径の最 大値 Lが耐食導電性皮膜の膜厚丁の 5 / 6倍を超える と、 この第二 相化合物が耐食導電性皮膜のピンホール等の欠陥が生じる起点とな り、 結果と してピンホール等の表面欠陥が生じる。  Here, the above-mentioned maximum value L of the major axis of the second phase compound which is less than or equal to 5 Z 6 times (L ≤ 5/6 T) of the thickness T of the corrosion-resistant conductive film is, for example, a metal. When the thickness of the corrosion-resistant conductive film formed on the surface of the base material is 1.2 or im, the maximum value L of the major axis of the second phase compound observed on the surface of the metal base material is 1. 1. μιη or less, and in the present invention, when the corrosion-resistant conductive film is a noble metal element film, the target of the film thickness is διη or less, and as a result, it is observed on the surface of the metal substrate. The maximum value L of the major axis of the second phase compound must also be 4.2 μm or less. If the maximum value L of the major axis of the second phase compound observed on the surface of the metal substrate exceeds 5/6 times the thickness of the corrosion-resistant conductive film, the second phase compound becomes It becomes a starting point for defects such as pinholes, and as a result, surface defects such as pinholes occur.
また、 上記の観察される当該金属基材の第二相化合物が実質的に 存在しないとは、 1 mm2の範囲を 1 0 0 0倍の拡大倍率で顕微鏡観 察をした場合に第二相化合物を肉眼で確認できないという意味で、 これは、 実質的に第二相化合物の長径 0 . 0 5 μ πι を最低の大き さ と し、 これ以下の第二相化合物は無視できるこ とを意味する。 Further, a second phase compound of the metal substrate to be above observations substantially absent, the second phase when the microscope observation range of 1 mm 2 in 1 0 0 0 times magnification In the sense that the compound cannot be seen with the naked eye, this means that the major diameter of the second phase compound is substantially equal to 0.05 μππ, and the second phase compound below this can be ignored. I do.
本発明において、 金属基材の表面に第二相化合物が観察される場 合、 この第二相化合物の数については好ま しく は 2 0個/ mm2以下で あるのがよ く 、 よ り好ま しく は 1 0個/ mm2以下である。 金属基材の 表面に観察される第二相化合物の数が 2 0個/ mm2を超えると、 耐食 導電性皮膜の付着力が不足し、 当該部分の皮膜が浮き上がり易く な る。 In the present invention, when the second phase compound is observed on the surface of the metal substrate, the number of the second phase compound is preferably 20 / mm 2 or less, and more preferably. Or 10 or less per mm 2 . If the number of the second phase compounds observed on the surface of the metal substrate exceeds 20 / mm 2 , the adhesion of the corrosion-resistant conductive film is insufficient, and the film in the relevant portion is easily lifted.
本発明において、 金属基材がアルミニウム材である場合、 その化 学組成については、 好ま しく は、 マグネシウム(Mg)が 7質量%未満、 亜鉛(Zn)が 3質量%未満、 ケィ素(Si)が 0 . 0 1質量%未満、 鉄(Fe) が 0. 0 1質量%未満、 及び銅(Cu)が 0. 0 1 質量。/。未満であって、 残部がアルミニウム(A1)及び不可避不純物元素であるのがよい。 こ れは、 通常の D C (Direct chilling) 法によ り圧延用スラブを製造 する と、 その铸造時の凝固速度が大き く て非平衡状態で固化するた め、 不可避不純物は強制固溶されるが、 上記の Mg、 Zn、 Si、 Fe、 Cu はその含有量が上記の規制値を超える と粗大な第二相化合物と して 晶出する場合があるからである。 In the present invention, when the metal substrate is an aluminum material, its chemical composition is preferably magnesium (Mg) of less than 7% by mass, Less than 3% by mass of zinc (Zn), less than 0.01% by mass of silicon (Si), less than 0.01% by mass of iron (Fe), and 0.01% by mass of copper (Cu). /. And the balance is preferably aluminum (A1) and unavoidable impurity elements. This is because, when rolling slabs are manufactured by the normal DC (direct chilling) method, the solidification rate during fabrication is high and solidification occurs in a non-equilibrium state, so unavoidable impurities are forcibly dissolved. However, if the content of the above Mg, Zn, Si, Fe, and Cu exceeds the above regulation value, it may crystallize as a coarse second phase compound.
また、 本発明における金属材を燃料電池用金属製セパレータに用 いる場合、 金属材料で形成されるセパレータ基材については、 その 電極接触面に反応ガス流路が形成されているものであっても、また、 反応ガス流路が形成されていないものであってもよいが、 セパレー タ基材が金属材料で形成されていて精密な機械加工が容易であって 加工コス トが安価であ り、燃料電池全体の製造コス トを考慮する と、 好ま しく はその電極接触面に反応ガス流路が形成されているセパレ 一タ基材であるのが望ま しい。  In addition, when the metal material according to the present invention is used for a metal separator for a fuel cell, the separator substrate made of a metal material may have a reaction gas flow path formed on an electrode contact surface thereof. Although the reaction gas flow path may not be formed, the separator base material is formed of a metal material, so that precise machining is easy and the processing cost is low. In consideration of the manufacturing cost of the entire fuel cell, it is preferable that the separator substrate be a reaction gas flow path formed on the electrode contact surface thereof.
また、 本発明における金属材を燃料電池の構成に用いる単位電池 の電極とする場合、 金属材料で形成される電極基材については、 単 位電池を構成する電解質側に反応ガス流路が形成されているのがよ い  In the case where the metal material of the present invention is used as an electrode of a unit cell used in the construction of a fuel cell, a reaction gas flow path is formed on the electrolyte side of the unit battery for the electrode substrate formed of the metal material. It is good to have
本発明において、 上記金属基材の表面に形成される耐食導電性皮 膜については、 好ま しく は、 金 (Au)、 銀 (Ag)、 白金 (Pt)、 パラジ ゥム (Pd)、 ロジウム (Rh)、 ルテェゥム (Ru) 又はこれらの貴金属 の合金を用いて形成される賁金属元素皮膜や、 ニッケル皮膜、 又は 銅皮膜を挙げる こ とができる。 そして、 このよ うな耐食導電性皮膜 を形成する方法については、 特に制限されず、 スパッタ リ ング、 メ ツキ等の種々の方法が挙げられるが、 皮膜の物理的強度が高い、 脱 ガス工程の有無等の観点から、 好ま しく はメ ツキ方法である。 In the present invention, the corrosion-resistant conductive film formed on the surface of the metal substrate is preferably gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium ( Examples include a metal element film, a nickel film, and a copper film formed using Rh), ruthenium (Ru), or an alloy of these noble metals. The method for forming such a corrosion-resistant conductive film is not particularly limited, and includes various methods such as sputtering and plating. From the viewpoint of the presence or absence of a gas step, it is preferably a plating method.
また、 金属基材の表面に形成される耐食導電性皮膜が貴金属メ ッ キ処理によ り形成される貴金属メ ツキ皮膜の場合、 特に、 燃料電池 用金属製セパレータを形成するためのセパレータ基材の表面に形成 される貴金属メ ツキ皮膜の場合、 このよ う な金属製のセパレータ基 材の表面に形成される貴金属メ ツキ皮膜については、金(Au)、銀(Ag)、 白金 (Pt)、 パラジウム (Pd)、 ロジウム (Rh)、 ルテユウム (Ru ) 又 はこれらの貴金属の合金を用いて形成される貴金属メ' ツキ皮膜を挙 げるこ とができ、 接触抵抗が低い、 化学的に極めて安定である等の 観点から、 好ま しく は金メ ッキ皮膜である。 そして、 この貴金属メ ツキ皮膜については、 セパレータ基材の少なく と も電極接触面に形 成されていればよいが、 長期耐久性の維持、 製瑋工程の簡素化等の 観点から、 好ま しく は表面全面に形成されているのがよい。 尚、 単 位電池を構成する電極を形成するための電極基材の場合は、 単位電 池を構成する電解質側の表面に上記のよ う な貴金属メ ツキ皮膜が形 成されるのがよい。  In addition, when the corrosion-resistant conductive film formed on the surface of the metal substrate is a noble metal plating film formed by a noble metal plating process, particularly, a separator substrate for forming a metal separator for a fuel cell is used. In the case of a noble metal plating film formed on the surface of a metal, the noble metal plating film formed on the surface of such a metal separator base is made of gold (Au), silver (Ag), or platinum (Pt). , Palladium (Pd), rhodium (Rh), luteuium (Ru), or precious metal plating films formed using alloys of these precious metals. From the viewpoint of being extremely stable, it is preferably a gold-mesh coating. The noble metal plating film may be formed on at least the electrode contact surface of the separator substrate, but is preferably used from the viewpoint of maintaining long-term durability and simplifying the manufacturing process. It is good to be formed on the whole surface. In the case of an electrode substrate for forming an electrode constituting a unit battery, it is preferable that the above-mentioned noble metal plating film is formed on the surface of the electrolyte constituting the unit battery.
そして、 この耐食導電性皮膜の膜厚については、 それが貴金属元 素皮膜である場合、 金属材の用途や皮膜を形成する金属の種類等に よっても異なるが、通常 0 . 0 1 μ ιη以上 5 μ m以下、好ま しく は 0 . 0 5 μ ηι以上 5 m以下であるのがよい。 この膜厚が、 0 . Ο ΐ μ πι よ り薄いと、 第二相化合物が存在しない表面であってもピンホール が生じ易く なり 、 反対に、 5 X m よ り厚く なる と、 その耐食特性は 変わらないが、 低コス ト化を達成することが困難になる。 この耐食 導電性皮膜については、 ピンホールや表面欠陥の無い完全無欠陥で ある必要があり 、 少しでも ピンホールや表面欠陥が存在する と、 こ れら ピンホールや表面欠陥から腐食が始ま り 、 ひいては皮膜の剥離 とい う問題を生じる。 また、 耐食導電性皮膜については、 膜厚 0 . 0 1 〜 5 μ m である と 共に電気化学的分極特性評価法で測定した分極電流が 1 0 μ Ara/cm 2以下であるのがよい。 この耐食導電性皮膜が貴金属メ ッキ処 理によ り形成される貴金属メ ツキ皮膜の場合、 特に、 燃料電池用金 属製セパ レータを形成するためのセパレータ基材の表面に形成され る貴金属メ ツキ皮膜の場合、 セパレータ基材の表面に形成される貴 金属メ ツキ皮膜は、 その膜厚が 0 . 0 1 /i m以上 1 /z m以下、 好ま し く は 0 . 0 5 μ ιη以上 0 . 5 μ ιη以下であるのがよく 、 また、 電気化 学的分極特性評価法で測定した分極電流が 1 0 μ A/cm 2以下、 好ま しく は 7 μ A/cm 2以下であるのがよい。 膜厚については、 0 . 0 1 β m よ り 薄いと、 ピンホールが生じ易く なる という問題があり 、 反 対に、 1 μ m よ り厚く なる と、 低コス ト化を達成する こ とが困難に なる。 また、 分極電流については、 1 0 μ A/cm 2よ り 高い値である と、 得られた貴金属メ ツキ皮膜がピンホールの無い完全無欠陥であ る といえなく なる場合が生じる。 貴金属メ ツキ皮膜については、 ピ ンホールや表面欠陥の無い完全無欠陥である必要があ り 、 少しでも ピンホールや表面欠陥が存在する と、 これら ピンホールや表面欠陥 から腐食が始ま り 、 電池出力性能の低下という問題を生じる。 When the corrosion-resistant conductive film is a noble metal element film, it differs depending on the use of the metal material, the type of metal forming the film, and the like, but is usually 0.01 μlη or more. It is preferably 5 μm or less, more preferably 0.05 μm or more and 5 m or less. If the thickness is less than 0.1 μππι, pinholes are likely to occur even on the surface where no second-phase compound is present. Conversely, if the thickness is greater than 5 Xm, the corrosion resistance will increase. Does not change, but it is difficult to achieve cost reduction. This corrosion-resistant conductive film must be completely defect-free with no pinholes or surface defects. If any pinholes or surface defects exist, corrosion starts from these pinholes and surface defects. As a result, the problem of peeling of the film occurs. The corrosion-resistant conductive film preferably has a thickness of 0.01 to 5 μm and a polarization current measured by an electrochemical polarization characteristic evaluation method of 10 μAra / cm 2 or less. In the case where the corrosion-resistant conductive film is a noble metal plating film formed by a noble metal plating process, in particular, the noble metal formed on the surface of a separator substrate for forming a metal separator for a fuel cell. In the case of a plating film, the thickness of the noble metal plating film formed on the surface of the separator substrate is from 0.01 / im to 1 / zm, preferably from 0.05 μιη to 0. The polarization current is preferably 5 μιη or less, and the polarization current measured by the electrochemical polarization property evaluation method is 10 μA / cm 2 or less, preferably 7 μA / cm 2 or less. Good. Regarding the film thickness, if it is thinner than 0.01 βm, there is a problem that pinholes are likely to occur.On the other hand, if it is thicker than 1 μm, it is possible to achieve low cost. It becomes difficult. If the polarization current is higher than 10 μA / cm 2 , the obtained noble metal plating film may not be completely defect-free without pinholes. The noble metal plating film must be completely defect-free with no pinholes or surface defects. If any pinholes or surface defects exist, corrosion starts from these pinholes or surface defects, and the battery output A problem of performance degradation occurs.
こ こで、 分極電流の測定方法については、 電気化学的分極特性評 価法で行う 力 、 その具体的方法については以下の通り である。 すな わち、 例えば酢酸水溶液等の電解質溶液中で、 試料を白金対極に対 向させて設置し、 照合電極と して銀塩化銀電極を使用 し、 この照合 電極を飽和塩化力 リ ゥム水溶液に浸漬し、 飽和塩化カ リ ゥム水溶液 と試料との間を塩橋で結び、 試料、 白金対極、 及び銀塩化銀電極を ポテンシォスタ ツ トに接続し、 試料の電位を銀塩化銀電極に対して 自然電極電位から酸素発生電位までアノー ド側に走査させた際に試 料電極に流れるピーク電流を分極電流と して測定する方法である。 本発明において、 耐食導電性皮膜を有する金属材を製造するに際 しては、 先ず、 表面に観察される第二相化合物の長径の最大値乙が 可及的に小さいか、 あるいは、 表面に観察される第二相化合物が実 質的に存在しない金属基材を調製するのが好ま しい。 Here, the method of measuring the polarization current is the force performed by the electrochemical polarization characteristic evaluation method, and the specific method is as follows. That is, for example, a sample is placed in an electrolyte solution such as an aqueous acetic acid solution so as to face a platinum counter electrode, and a silver-silver chloride electrode is used as a reference electrode. Immerse in an aqueous solution, connect a saturated potassium chloride aqueous solution and the sample with a salt bridge, connect the sample, platinum counter electrode, and silver-silver chloride electrode to a potentiostat, and apply the sample potential to the silver-silver chloride electrode. On the other hand, when scanning from the natural electrode potential to the oxygen generation potential toward the anode, the peak current flowing through the sample electrode is measured as the polarization current. In the present invention, when producing a metal material having a corrosion-resistant conductive film, first, the maximum value B of the major axis of the second phase compound observed on the surface is as small as possible, or It is preferred to prepare a metal substrate that is substantially free of the observed second phase compound.
このよ う な金属基材を製造する方法については、 例えば、 高純度 アルミ二ゥム地金を溶解し、 必要によ り合金元素を添加して成分調 整を した後に所望の成分組成のアルミニゥム合金を溶製し、 更に D C鎵造して铸塊を製造した後、 熱間圧延と冷間圧延によ り所定の板 厚に圧延し、 更に制御された条件で焼鈍し、 必要によ り グライ ンデ イ ング加工を行う等の方法 (例えば、 特開平 9- 235, 640号公報ゃ特 開平 4 - 341, 536号公報参照) が挙げられる。  Methods for producing such a metal substrate include, for example, dissolving a high-purity aluminum base metal, adding an alloy element as necessary, adjusting the components, and then forming an aluminum alloy having a desired component composition. After the alloy is melted and further DC-formed to produce an ingot, it is rolled to a predetermined thickness by hot rolling and cold rolling, and further annealed under controlled conditions, if necessary. For example, a method of performing a grinding process (for example, see Japanese Patent Application Laid-Open No. 9-235,640; see Japanese Patent Application Laid-Open No. 4-341,536).
本発明においては、このよ う にして製造された金属基材の表面に、 この金属基材の表面に観察される当該金属基材の第二相化合物の長 径の最大値 Lよ り も 1 . 2倍以上、 好ま しく は 1. 5倍以上の膜厚 Tを有する耐食導電性皮膜を形成するのがよ く 、 好ま しく は、 耐食 導電性皮膜を形成するのに先駆けて、 表面研磨処理、 エッチング処 理、 酸洗後に亜鉛浸漬を行う亜鉛浸漬処理等を行うのがよい。  In the present invention, the maximum value of the major axis L of the second phase compound of the metal substrate, which is observed on the surface of the metal substrate, is set to 1 It is preferable to form a corrosion-resistant conductive film having a film thickness T of 2 times or more, preferably 1. 5 times or more, preferably, a surface polishing treatment prior to forming a corrosion-resistant conductive film. It is preferable to perform a zinc immersion treatment in which zinc is immersed after etching, pickling and the like.
この 目的で行う上記表面研磨処理においては、 表面粗さ {JIS B 0601 (2001) }を好ま しく は 0. 0 2〜 0. 3 ; u m、 よ り好ま しく は 0. 0 3〜 0. 2 ; m の範囲に調整するのがよい。 この際の金属基材の 表面粗さが 0. 3 z m よ り 大きいと形成された耐食導電性皮膜にこ の金属基材の表面の凹部に起因してピンホールや表面欠陥が発生し 易く なり 、 結果と して耐食性が低下し、 また、 0. 0 2 μ m よ り 小 さ く なる と、 形成された耐食導電性皮膜と金属基材の表面との間の 密着性が低下し、 製造された金属材の使用時に局部的に皮膜剥離が 生じる場合がある。  In the surface polishing treatment performed for this purpose, the surface roughness {JIS B 0601 (2001)} is preferably 0.02 to 0.3; um, more preferably 0.03 to 0.2. it is better to adjust to the range of m. If the surface roughness of the metal substrate at this time is greater than 0.3 zm, pinholes and surface defects are likely to occur in the formed corrosion-resistant conductive film due to recesses on the surface of the metal substrate. As a result, the corrosion resistance is reduced, and if the corrosion resistance is smaller than 0.02 μm, the adhesion between the formed corrosion-resistant conductive film and the surface of the metal substrate is reduced, and In some cases, the peeling of the film occurs locally when the used metal material is used.
ここで、 金属基材の表面粗さを 0. 0 2〜 0. の範囲に表 面研磨処理するための方法については、 特に制限される ものではな いが、 通常は電解研磨、 機械研磨、 パフ研磨、 ブラス ト研磨、 バレ ル研磨等の方法が採用され、 好ま しく は電解研磨処理である。 金属 基材の表面研磨処理は、 金属基材の材質等を考慮し、 上記のいずれ か 1種の処理方法のみで行つても よいほか、 2種以上の処理方法を 組み合わせて行ってもよい。 Here, the surface roughness of the metal substrate is expressed in the range of 0.02 to 0. The method for the surface polishing treatment is not particularly limited, but usually, a method such as electrolytic polishing, mechanical polishing, puff polishing, blast polishing, barrel polishing, or the like is employed, preferably electrolytic polishing. Processing. The surface polishing treatment of the metal base material may be performed using only one of the above-described processing methods in consideration of the material of the metal base material or the like, or may be performed in combination of two or more processing methods.
また、 上記エッチング処理については、 通常、 脱脂処理された金 属基材をェッチング処理液に浸漬して行われる。 この目的で用いら れるエッチング処理液と しては、 通常、 水酸化ナ ト リ ウム、 水酸化 カ リ ゥム、 炭酸ナ ト リ ゥム等のアル力 リ水溶液、 又は、 硫酸-リ ン酸 混合水溶液等の酸水溶液が用いられる。 そして、 アルカ リ水溶液を 用いる場合には、 その濃度は 2 0 g/L以上 2 0 0 g/L以下、 好ま しく は 5 0 g/L以上 1 5 0 g /L以下であって、 処理条件と しては、 通常、 浸漬温度が 3 0 °C以上 7 0 °C以下、 好ま しく は 4 0 °C以上 6 0 °C以 下であって、 浸漬時間が 0 . 5分以上 5分以下、 好ま しく は 1 分以 上 3分以下である。 また、 酸水溶液と して硫酸-リ ン酸混合水溶液を 用いる場合には、その濃度は硫酸濃度が 1 0 g/L以上 5 0 0 g /L以下、 好ま しく は 3 0 g/L以上 3 0 0 g/L以下でリ ン酸濃度が 1 0 g /L以上 In addition, the above-mentioned etching treatment is usually performed by immersing the degreased metal base material in an etching treatment liquid. The etching solution used for this purpose is usually an aqueous solution of sodium hydroxide such as sodium hydroxide, potassium hydroxide, sodium carbonate, or sulfuric acid-phosphoric acid. An aqueous acid solution such as a mixed aqueous solution is used. When an aqueous alkaline solution is used, its concentration is 20 g / L or more and 200 g / L or less, preferably 50 g / L or more and 150 g / L or less. Usually, the immersion temperature is from 30 ° C to 70 ° C, preferably from 40 ° C to 60 ° C, and the immersion time is from 0.5 minutes to 5 minutes. Preferably, it is 1 minute or more and 3 minutes or less. When a sulfuric acid-phosphoric acid mixed aqueous solution is used as the acid aqueous solution, the concentration of the sulfuric acid is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more. Phosphoric acid concentration of 10 g / L or more at 0 g / L or less
1 2 0 0 g/ L 以下、 好ま しく は 3 0 g/ L 以上 5 0 0 g/L 以下であ り 、 処理条件と しては、 通常、 浸漬温度が 3 0 °C以上 1 1 0 °C以下、 好 ま しく は 5 5 °C以上 7 5 °C以下であって、 浸漬時間が 0 . 5分以上120 g / L or less, preferably 30 g / L or more and 500 g / L or less, and the immersion temperature is usually 30 ° C or more and 110 ° C as the processing conditions. C or less, preferably 55 ° C or more and 75 ° C or less, and immersion time of 0.5 minutes or more
1 5分以下、 好ま しく は 1分以上 6分以下である。 15 minutes or less, preferably 1 minute or more and 6 minutes or less.
更に、 上記亜鉛置換処理については、 その酸洗工程では、 その酸 洗浴と して、 酸が硝酸、 硫酸、 塩酸等であって、 濃度が 5 wt°/。以上 5 Further, in the above zinc substitution treatment, in the pickling step, the pickling bath is an acid such as nitric acid, sulfuric acid, hydrochloric acid, etc., and the concentration is 5 wt ° /. More than 5
O wt。/。以下の酸水溶液、 好ま しく は酸が硝酸であって濃度が 1 0 wt°/0 以上 4 0 wt%以下の酸水溶液、 よ り好ま しく は 2 5 %以上 3 0 wt% 以下の濃度の硝酸水溶液を用い、浸漬温度が 1 5 °C以上 3 0 °C以下、 好ま しく は 2 0 °C以上 2 5 °C以下であって、 浸漬時間が 5秒以上 1 2 0秒以下、 好ま しく は 1 5秒以上 6 0秒以下の条件で行うのがよ い。 このよ うな酸洗浴を用いてこのよ う な条件で酸洗を行う こ とに よ り 、 置換亜鉛層を効果的に除去できる。 O wt. /. An aqueous acid solution of the following, preferably an acid aqueous solution having an acid concentration of 10 wt% / 0 to 40 wt%, more preferably nitric acid having a concentration of 25 to 30 wt%. Using an aqueous solution, the immersion temperature is 15 ° C or more and 30 ° C or less, The immersion time is preferably from 20 ° C to 25 ° C, and the immersion time is preferably from 5 seconds to 120 seconds, preferably from 15 seconds to 60 seconds. By performing pickling under such conditions using such a pickling bath, the substituted zinc layer can be effectively removed.
また、亜鉛置換処理の亜鉛浸漬工程では、その亜鉛浸漬浴と して、 酸化亜鉛濃度 1 . 5 g/L以上 6 0 g/L以下、 好ま しく は 3 . 5 g/L以 上 5 0 g/L 以下、 及び、 水酸化ナ ト リ ウム、 水酸化力 リ ゥム等のァ ルカ リ のアル力 リ濃度 4 0 g/L以上 4 0 0 g/L以下、好ま しく は 8 0 g/L以上 2 0 0 g/L以下の酸化亜鉛アル力 リ水溶液を用い、浸漬温度 が 1 5 °C以上 3 0 °C以下、 好ま しく は 2 0 °C以上 2 5 °C以下であつ て、 浸漬時間が 5秒以上 1 2 0秒以下、 好ま しく は 1 5秒以上 5 0 秒以下の条件で行うのがよい。 亜鉛浸漬浴の酸化亜鉛濃度が 1 . 5 g/L よ り 低いと置換亜鉛層が不均一になる とい う問題があり 、 反対 に、 6 0 g/L よ り高いと金メ ッキ皮膜が不均一になる という問題が 生じ、 また、 アルカ リ濃度が 4 0 g/L よ り低いと置換亜鉛層の密着 性が低下する という問題があり、 反対に、 4 0 0 g/L よ り高いと金 属基材の表面の粗さが増大する という問題が生じる。  Also, in the zinc immersion step of the zinc substitution treatment, the zinc immersion bath has a zinc oxide concentration of 1.5 g / L or more and 60 g / L or less, preferably 3.5 g / L or more and 50 g or more. / L or less, and the alkaline concentration of alkaline such as sodium hydroxide and hydroxylating bead 40 g / L or more and 400 g / L or less, preferably 80 g / L Use an aqueous zinc oxide solution of L to 200 g / L and an immersion temperature of 15 to 30 ° C, preferably 20 to 25 ° C. The immersion time is preferably 5 seconds or more and 120 seconds or less, more preferably 15 seconds or more and 50 seconds or less. If the zinc oxide concentration in the zinc immersion bath is lower than 1.5 g / L, there is a problem that the substituted zinc layer becomes non-uniform.On the other hand, if the zinc oxide concentration is higher than 60 g / L, the gold plating film will There is a problem of non-uniformity, and if the alkali concentration is lower than 40 g / L, there is a problem that the adhesion of the substituted zinc layer is reduced, and conversely, it is higher than 400 g / L. This causes a problem that the surface roughness of the metal substrate increases.
本発明においては、 好ま しく は上記の酸洗後に亜鉛浸漬を行う亜 鉛置換処理を少なく と も 4回以上繰り返して行うのがよい。 この亜 鉛置換処理が 3回までである と、 耐食導電性皮膜にピンホールや表 面欠陥が発生する虞があり 、 ピンホールや表面欠陥の無い完全無欠 陥の貴金属メ ツキ皮膜を形成するこ とが困難になる。  In the present invention, the zinc substitution treatment of immersing in zinc after the above pickling is preferably repeated at least four times or more. If this zinc substitution treatment is performed up to three times, pinholes and surface defects may occur in the corrosion-resistant conductive film, and a completely defect-free noble metal plating film without pinholes and surface defects may be formed. And it becomes difficult.
このよ う にして金属基材を表面研磨処理し、 次いでエツチング処 理し、 更に 4回以上の亜鉛置換処理を行った後、 金属基材の表面に 所定の膜厚、 例えば貴金属元素皮膜の場合には膜厚 0 . 0 1 〜 5 m の耐食導電性皮膜を形成する。  In this way, the surface of the metal substrate is polished, then subjected to an etching process, and further subjected to zinc substitution treatment four times or more. To form a corrosion-resistant conductive film having a thickness of 0.01 to 5 m.
この耐食導電性皮膜を形成する方法については、 メ ツキ処理ゃス パッタ リ ング処理等の方法を挙げることができるが、 好ましく はメ ッキ処理であり、例えば無電解メ ッキ(Me - ELP)、置換メ ッキ(Me-SP)、 電解メ ッキ(Me - EP)、電解ス トライクメ ツキ(Me- EPS)等のメ ツキ処理 法を挙げることができ、 また、 そのメ ツキ浴についても従来と同様 の浴組成のものを用いることができる。 また、 このメ ツキ処理にお ける処理条件についても従来と同様の処理条件を採用することがで き、 採用するメ ツキ金属の種類によっても異なるが、 例えば電解金 メ ツキ処理の場合には浴温度が 5 0〜 7 5 °C程度で、電流密度が 0 . 1〜 0 . 5 A/ dm 2程度である。 Regarding the method of forming this corrosion-resistant conductive film, a plating treatment die Although a method such as a putting treatment can be used, preferably, a plating treatment is used. For example, an electroless plating (Me-ELP), a substitution plating (Me-SP), an electrolytic plating ( A plating treatment method such as Me-EP) or electrolytic strike plating (Me-EPS) can be used, and a plating bath having the same bath composition as the conventional plating bath can be used. In addition, the same processing conditions as in the past can be used for this plating process, and the processing conditions vary depending on the type of plating metal used. The temperature is about 50 to 75 ° C, and the current density is about 0.1 to 0.5 A / dm 2 .
上述した本発明の方法によれば、 金属基材の表面に、 可及的に薄 膜であるにもかかわらず、 ピンホールや表面欠陥のない完全無欠陥 の耐食導電性皮膜を形成せしめるこ とができるので、 高価な貴金属 製の耐食導電性皮膜を形成した場合であってもその膜厚を可及的に 薄くするこ とができ、 安価でしかも耐久性に優れており、 燃料電池 用セパレータ、 燃料電池を構成する単位電池の電極、 携帯機器の一 次電池の電極、 金属の電解採取や電解メ ツキ等において用いられる 電極材料等の多く の用途に有用な耐食導電性皮膜を有する金属材を 容易に製造するこ とができる。  According to the above-described method of the present invention, a completely defect-free corrosion-resistant conductive film having no pinholes and no surface defects is formed on the surface of a metal substrate, although the film is as thin as possible. Therefore, even when an expensive precious metal corrosion-resistant conductive film is formed, its thickness can be reduced as much as possible, and it is inexpensive and has excellent durability. Metal materials with a corrosion-resistant conductive film useful in many applications, such as electrodes for unit cells constituting fuel cells, electrodes for primary batteries of mobile devices, and electrode materials used in electrowinning and electroplating of metals Can be easily manufactured.
また、 上述した膜厚 0 . 0 1〜 5 μ m 及び電気化学的分極特性評 価法で測定した分極電流 1 0 μ A/ cm 2以下の耐食導電性皮膜を有す る金属材を製造する場合、 特に、 膜厚 0 . 0 1〜 1 μ m 及び電気化 学的分極特性評価法で測定した分極電流 1 0 μ A/cm 2以下の金属製 セパ レータを製造する場合、 基本的には、 先ず、 金属材料でセパ レ 一タ基材を形成し、 このセパ レータ基材をエッチング処理した後、 酸洗後に亜鉛浸漬を行う亜鉛置換処理を 4回以上繰り返し、 次いで 膜厚 0 . 0 1〜 1 μ ιηの貴金属メ ツキ処理を行う。 In addition, a metal material having a corrosion-resistant conductive film having a thickness of 0.01 to 5 μm as described above and a polarization current of 10 μA / cm 2 or less measured by an electrochemical polarization property evaluation method is manufactured. In particular, when manufacturing a metal separator with a film thickness of 0.01 to 1 μm and a polarization current of 10 μA / cm 2 or less measured by the electrochemical polarization characteristic evaluation method, First, a separator substrate is formed from a metal material, and after the separator substrate is subjected to an etching treatment, a zinc substitution treatment of pickling and immersing in zinc is repeated four times or more. Perform precious metal plating treatment of ~ 1 μιη.
ここで、 セパ レータ基材のエッチング処理は、 通常、 脱脂処理さ れたセパレータ基材をエッチング処理液に浸漬して行われる。 この 目的で用いられるエッチング処理液と しては、 通常、 水酸化ナ ト リ ゥム、水酸化力 リ ウム、炭酸ナ ト リ ゥム等のアル力 リ水溶液、又は、 硫酸-リ ン酸混合水溶液等の酸水溶液が用いられる。 そして、 アル力 リ水溶液を用いる場合には、その濃度は 2 0 g/L以上 2 0 0 g/L以下、 好ま しく は 5 O g/L以上 1 5 O g/L以下であって、処理条件と しては、 通常、 浸漬温度が 3 0 °C以上 7 0 °C以下、 好ま しく は 4 0 °C以上 6 0 °C以下であって、 浸漬時間が 0 . 5分以上 5分以下、 好ましく は 1分以上 3分以下である。 また、 酸水溶液と して硫酸-リ ン酸混合水 溶液を用いる場合には、 その濃度は硫酸濃度が 1 O g/L 以上 5 0 0 g/L以下、 好ま しく は 3 0 g/L以上 3 0 0 g/L以下でリ ン酸濃度が 1 0 g/L以上 1 2 0 0 g/L以下、 好ましくは 3 0 g/L以上 5 0 0 g/L以 下であり、処理条件と しては、通常、浸漬温度が 3 0 °C以上 1 1 0 °C 以下、 好ま しく は 5 5 °C以上 7 5 °C以下であって、 浸漬時間が 0 . 5分以上 1 5分以下、 好ましく は 1分以上 6分以下である。 Here, the etching of the separator substrate is usually performed by a degreasing treatment. This is performed by immersing the separated separator substrate in an etching solution. The etching solution used for this purpose is usually an aqueous solution of sodium hydroxide, such as sodium hydroxide, sodium hydroxide or sodium carbonate, or a mixture of sulfuric acid and phosphoric acid. An aqueous acid solution such as an aqueous solution is used. In the case of using an aqueous alkaline solution, its concentration is from 20 g / L to 200 g / L, preferably from 5 Og / L to 15 Og / L. Usually, the immersion temperature is 30 ° C to 70 ° C, preferably 40 ° C to 60 ° C, and the immersion time is 0.5 minutes to 5 minutes. It is preferably 1 minute or more and 3 minutes or less. When a sulfuric acid-phosphoric acid mixed aqueous solution is used as the acid aqueous solution, the concentration of the sulfuric acid is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more. At a concentration of 300 g / L or less, the concentration of phosphoric acid is 10 g / L or more and 1200 g / L or less, preferably 30 g / L or more and 500 g / L or less. Generally, the immersion temperature is 30 ° C or more and 110 ° C or less, preferably 55 ° C or more and 75 ° C or less, and the immersion time is 0.5 minute or more and 15 minutes or less. It is preferably 1 minute or more and 6 minutes or less.
また、 このエッチング処理の後に亜鉛置換処理を行うが、 この亜 鉛置換処理の酸洗工程では、 その酸洗浴と して、 酸が硝酸、 硫酸、 塩酸等であって、 濃度が 5 wt%以上 5 0 以下の酸水溶液、 好まし く は酸が硝酸であって濃度が 1 0 wt%以上 4 0 wt%以下の酸水溶液、 より好ましく は 2 5 wt%以上 3 0 wt%以下の濃度の硝酸水溶液を用い、 浸漬温度が 1 5 °C以上 3 0 °C以下、 好ま しく は 2 0 °C以上 2 5 °C以 下であって、 浸漬時間が 5秒以上 1 2 0秒以下、 好ましく は 1 5秒 以上 6 0秒以下の条件で行うのがよい。 このよ うな酸洗浴を用いて このよ うな条件で酸洗を行う ことにより、 置換亜鉛層を効果的に除 去できる。 After the etching treatment, a zinc substitution treatment is performed. In the pickling step of the zinc substitution treatment, the acid is a nitric acid, a sulfuric acid, a hydrochloric acid, or the like, and the concentration is 5 wt% or more. An aqueous acid solution of 50 or less, preferably an acid aqueous solution having an acid concentration of 10 wt% or more and 40 wt% or less, more preferably a nitric acid solution of 25 wt% or more and 30 wt% or less. Using an aqueous solution, the immersion temperature is 15 ° C or more and 30 ° C or less, preferably 20 ° C or more and 25 ° C or less, and the immersion time is 5 seconds or more and 120 seconds or less, preferably It is better to do it for 15 seconds or more and 60 seconds or less. By performing pickling under such conditions using such a pickling bath, the substituted zinc layer can be effectively removed.
更に、亜鉛置換処理の亜鉛浸漬工程では、その亜鉛浸漬浴と して、 酸化亜鉛濃度 1 . 5 g/L以上 6 0 g/L以下、 好ま しく は 3 . 5 g/L以 上 5 0 g/L 以下、 及ぴ、 水酸化ナ ト リ ウム、 水酸化カ リ ウム等のァ ルカ リ のアル力 リ濃度 4 0 g/L以上 4 0 0 g/L以下、好ま しく は 8 0 g/L以上 2 0 0 g/L以下の酸化亜鉛アル力 リ水溶液を用い、浸漬温度 が 1 5 °( 以上 3 0 °〇以下、 好ま しく は 2 0 °C以上 2 5 °C以下であつ て、 浸漬時間が 5秒以上 1 2 0秒以下、 好ま しく は 1 5秒以上 5 0 秒以下の条件で行うのがよい。 亜鉛浸漬浴の酸化亜鉛濃度が 1 . 5 g/L よ り低いと置換亜鉛層が不均一になる という問題があ り、 反対 に、 6 0 g/L よ り 高いと金メ ツキ皮膜が不均一になる とレヽぅ問題が 生じ、 また、 アルカ リ濃度が 4 0 g/L よ り低いと置換亜鉛層の密着 性が低下する という問題があ り、 反対に、 4 0 0 g/L よ り 高いとァ ルミ ユウム表面の粗さが増大する という問題が生じる。 Furthermore, in the zinc immersion step of the zinc substitution treatment, the zinc immersion bath is provided with a zinc oxide concentration of 1.5 g / L or more and 60 g / L or less, preferably 3.5 g / L or less. 50 g / L or less, and alkaline concentration of alkaline such as sodium hydroxide and potassium hydroxide 40 g / L or more and 400 g / L or less, preferably Use an aqueous zinc oxide solution of 80 g / L or more and 200 g / L or less, and immersion temperature of 15 ° (30 ° 以上 or more, preferably 20 ° C or more and 25 ° C or less) The immersion time should be 5 seconds or more and 120 seconds or less, preferably 15 seconds or more and 50 seconds or less.The zinc oxide concentration in the zinc immersion bath should be 1.5 g / L. If it is too low, the substituted zinc layer will be non-uniform. Conversely, if it is higher than 60 g / L, if the gold plating film becomes non-uniform, there will be problems with the re-emission and the alkali concentration If it is lower than 400 g / L, the adhesion of the substituted zinc layer will be reduced.On the other hand, if it is higher than 400 g / L, the roughness of the aluminum surface will increase. Occurs.
上述した膜厚 0 . 0 1 〜 5 m 及び電気化学的分極特性評価法で 測定した分極電流 1 0 μ A/cm 2以下の耐食導電性皮膜を有する金属 材を製造する本発明において、 特に、 膜厚 0 . 0 1 ~ l /z m 及び電 気化学的分極特性評価法で測定した分極電流 1 0 μ Α/ cm 2以下の金 属製セパレータを製造する場合には、 上記の酸洗後に亜鉛浸漬を行 う亜鉛置換処理を少なく と も 4回以上繰り返して行う こ と が好ま し い。 この亜鉛置換処理が 3回までである と、 貴金属メ ツキ皮膜に発 生する ピンホールの個数を測定した場合、 貴金属メ ツキ皮膜の膜厚 によって異なるが、 ピンホールが数個の範囲で残存し、 ピンホール や表面欠陥の無い完全無欠陥の貴金属メ ツキ皮膜を形成するこ とが 困難である。 In the present invention for producing a metal material having a corrosion-resistant conductive film having a film thickness of 0.01 to 5 m and a polarization current of 10 μA / cm 2 or less measured by the electrochemical polarization characteristic evaluation method, thickness 0.0 1 when manufacturing the polarization current 1 0 μ Α / cm 2 or less of metallic separator made measured in l / zm and electrical chemical polarization characteristic evaluation method, zinc after said pickling It is preferable to repeat the zinc substitution treatment for immersion at least four times or more. When the zinc substitution treatment is performed up to three times, when the number of pinholes generated in the noble metal plating film is measured, it depends on the thickness of the noble metal plating film. It is difficult to form a completely defect-free noble metal plating film without pinholes or surface defects.
このよ う にしてセパレータ基材をエッチング処理し、 次いで 4回 以上の亜鉛置換処理を行つた後、 膜厚 0 . 0 1 〜 1 μ m の貴金属メ ツキ処理を行う。 この貴金属メ ツキ処理については、 例えば無電解 メ ツキ(M e - ELP)、 置換メ ツキ(Me - SP)、 電解メ ツキ(Me - EP)、 電解ス トライ タメ ツキ(Me - EPS )等のメ ッキ処理法を挙げるこ とができ、 ま た、 そのメ ツキ浴についても従来と同様の浴組成のものを用いる こ とができ る。 また、 この貴金属メ ツキ処理における処理条件につい ても従来と同様の処理条件を採用するこ とができ、 採用する貴金属 の種類によっても異なるが、 例えば金メ ツキ処理の場合には浴温度 が 5 0〜 7 5 °C程度で、 電流密度が 0 . 1 〜 0 . 5 A/dm2程度であ る。 The separator substrate is etched in this way, and then zinc-substituted four or more times, followed by a noble metal plating process with a thickness of 0.01 to 1 μm. This noble metal plating treatment includes, for example, electroless plating (Me-ELP), substitution plating (Me-SP), electrolytic plating (Me-EP), electrolytic strip plating (Me-EPS), etc. The method of masking can be mentioned. In addition, the plating bath having the same bath composition as the conventional bath can be used. The processing conditions for the precious metal plating process can be the same as those used in the past, and vary depending on the type of noble metal used. The current density is about 0.1 to 0.5 A / dm 2 at about 0 to 75 ° C.
また、 上述した膜厚 0 . 0 1〜 5 μ m 及び電気化学的分極特性評 価法で測定した分極電流 1 0 μ A/cm2以下の耐食導電性皮膜を有す る金属材を製造する本発明方法において、 特に、 膜厚 0 . 0 1 〜 1 μ m 及び電気化学的分極特性評価法で測定した分極電流 1 0 n A/cm 2以下の金属製セパレータ を製造する場合には、 必要によ り エッチ ング処理前のセパレータ基材について表面研磨処理を行い、 その表 面粗さ { JIS B 0601 (2001) } を好ま しく は 0 . 0 2〜 0 . 3 μ πι、 よ り好ま しく は 0 . 0 3〜 0 . 2 /x ra の範囲に調整するのがよい。 こ のエッチング処理前のセパレータ基材の表面粗さが 0 . 3 μ m よ り 大きいと形成された導電性皮膜にこのセパレータ基材の表面の凹部 に起因してピンホールや表面欠陥が発生し易く なり 、 結果と して耐 食性が低下し、 また、 0 . 0 2 μ m よ り小さ く なる と、 形成された 導電性皮膜とセパレータ基材の表面との間の密着性が低下し、 セパ レータ使用時に電池の電極と接触させた際に局部的に皮膜剥離が生 じる場合がある。 In addition, a metal material having a corrosion-resistant conductive film having a thickness of 0.01 to 5 μm and a polarization current of 10 μA / cm 2 or less measured by an electrochemical polarization characteristic evaluation method is manufactured. The method of the present invention is particularly necessary when manufacturing a metal separator having a film thickness of 0.1 to 1 μm and a polarization current of 10 nA / cm 2 or less measured by an electrochemical polarization characteristic evaluation method. The surface of the separator base material before the etching treatment is subjected to a polishing treatment to obtain a surface roughness of {JIS B 0601 (2001)}, preferably from 0.02 to 0.3 μππι, more preferably. Should be adjusted in the range of 0.03 to 0.2 / xra. If the surface roughness of the separator substrate before this etching treatment is larger than 0.3 μm, pinholes and surface defects may occur in the formed conductive film due to the concave portions on the surface of the separator substrate. When the thickness is smaller than 0.02 μm, the adhesion between the formed conductive film and the surface of the separator substrate is reduced. When the separator comes into contact with the battery electrode when using the separator, film peeling may occur locally.
ここで、 エッチング処理前のセパレータ基材の表面粗さを 0 . 0 2〜 0 . 3 μ ηι の範囲に表面研磨処理するための方法については、 表面粗さを 0 . 0 2〜 0 . 3 μ m の範囲に調整できる方法であれば 特に制限されるものではないが、 通常は電解研磨、 機械研磨、 バフ 研磨、 プラス ト研磨、 バレル研磨等の方法が採用され、 好ま しく は 電解研磨処理である。 セパレータ基材の表面研磨処理は、 セパレー タ基材の材質等を考慮し、 上記のいずれか 1種の処理方法のみで行 つてもよいほか、 2種以上の処理方法を組み合わせて行ってもよい。 上述した本発明の方法によれば、 金属材料で形成したセパレータ 基材ゃ電極基材の表面に、 通常のピンホール検出法では検出できな いよ うなピンホールや表面欠陥を電気化学的分極特性評価法による 分極電流により検出し、 可及的に薄膜であって無欠陥の貴金属メ ッ キ皮膜を形成せしめることができるので、 金属材料それ自体が軽量 化に優れた材質であると共に加工性ゃ電導性に優れていること と相 俟つて、 燃料電池の高発電性能、 長期耐久性、 軽量化、 及び低コス ト化を同時に満足できる金属製セパ レータゃ単位電池の電極を製造 することができる。 発明を実施するための最良の形態 Here, regarding the method for polishing the surface of the separator base material before the etching treatment to the range of 0.02 to 0.3 μηι, the surface roughness is set to the range of 0.02 to 0.3. The method is not particularly limited as long as the method can be adjusted to a range of μm, but usually, methods such as electrolytic polishing, mechanical polishing, buff polishing, plastic polishing, barrel polishing, etc. are employed, and preferably, electrolytic polishing is performed. It is. The surface polishing treatment of the separator base material In consideration of the material of the substrate, etc., the treatment may be performed using only one of the above-described treatment methods, or may be performed using a combination of two or more treatment methods. According to the above-described method of the present invention, electrochemical polarization property evaluation is performed on a surface of a separator substrate formed of a metal material and a surface defect of an electrode substrate that cannot be detected by a normal pinhole detection method. It is possible to form a thin and defect-free noble metal plating film as much as possible by detecting the polarization current by the polarization method. Combined with excellent performance, it is possible to manufacture a metal separator / unit cell electrode that can simultaneously satisfy the high power generation performance, long-term durability, light weight, and low cost of a fuel cell. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実験例、 実施例及び比較例に基づいて、 本発明の好適な実 施の形態を具体的に説明する。  Hereinafter, preferred embodiments of the present invention will be specifically described based on experimental examples, examples, and comparative examples.
実験例 1  Experimental example 1
〔アルミ二ゥム基材の調製〕  [Preparation of aluminum base material]
アルミェゥム (1N99 ) を溶解し、 添加元素を溶解した後、 D C铸 造し、 アルミニウム铸塊 (スラブ塊) を製造した。 次にこのアルミ 二ゥム铸塊を 3 0 0 ~ 5 5 0 °Cで均熱処理し、 熱間圧延したのち、 更に冷間圧延して板厚 5 . 5 mmのアルミニウム板を調製した。 この アルミ ニ ウム板を 1 0 0 mm X 1 0 0 mmの大きさに切り出し、 研削砥 石によ り グラインディ ング加工を行い、 5 mm X 1 0 0 mm X 1 0 0 ram の大き さのアルミニウム基材を調製した。  After dissolving aluminum (1N99) and dissolving additional elements, DC was manufactured to produce aluminum slabs (slab lumps). Next, the aluminum ingot was soaked at 300 to 550 ° C., hot-rolled, and then cold-rolled to prepare a 5.5 mm-thick aluminum plate. This aluminum plate is cut into a size of 100 mm X 100 mm, and is subjected to grinding with a grinding wheel to obtain a size of 5 mm X 100 mm X 100 ram. An aluminum substrate was prepared.
このよ うにして得られたアルミニゥム基材について、 その表面に 観察される第二相化合物を S E Mの反射電子像を利用して観察した 結果、 8個/ 2の第二相化合物が観察され、 その長径の最大値 (表 面の第二相化合物の長径最大値) Lは 2 . 5 つ であった。 また、 深さ方向の第二相化合物について、 アルミニウム基材を 5 0 g/L 水 酸化ナ ト リ ウム水溶液中に温度 5 0 °Cの条件で浸漬し、 段階的にェ ツチングするこ とによって表面下 5 μ m までの深さにある第二相化 合物の長径の最大値を調べた結果、 最大値は 3 . Ο μ πιであった。 〔燃料電池用の.アルミ製セパレータ の調製〕 ' For Aruminiumu substrate obtained Te this good Unishi, the results of the second phase compounds observed was observed using reflected electron image of SEM on the surface, the second phase compounds eight / 2 is observed, Maximum value of the major axis (Table The maximum value of the major axis of the second phase compound on the surface) L was 2.5. For the second phase compound in the depth direction, the aluminum substrate was immersed in a 50 g / L sodium hydroxide aqueous solution at a temperature of 50 ° C, and stepwise etched. Examination of the maximum value of the major axis of the second phase compound at a depth of 5 μm below the surface revealed that the maximum value was 3. Ομπι. (Preparation of aluminum separator for fuel cell) ''
上で得られた板厚 5 mm の各アルミ ニゥム基材の両面にプレスカロ ェによ り深さ 0 . 8 mm及び幅 0 . 8 mmの反応ガス流路をそれぞれ形 成し、 次いで水酸化ナ ト リ ウム 2 5 g/L、 炭酸ナ ト リ ゥム 2 5 g/L、 燐酸ナ ト リ ウム 2 5 g/L、 及び界面活性剤 1 . 5 g/L の組成を有する 脱脂浴中に、浸漬温度 6 0 °C及び浸漬時間 5分の条件で脱脂処理し、 次いで水洗した後、 50 g/い水酸化ナ ト リ ゥム水溶液をエッチング処 理液と して浸漬温度 5 0 °C及び浸漬時間 3分の条件でェッチング処 理した。  Reactor gas channels having a depth of 0.8 mm and a width of 0.8 mm were formed on both sides of each of the 5 mm-thick aluminum base materials obtained above by press caulking, and In a degreasing bath having a composition of 25 g / L sodium, 25 g / L sodium carbonate, 25 g / L sodium phosphate, and 1.5 g / L surfactant. After degreased at 60 ° C and a immersion time of 5 minutes, rinsed with water, and then immersed in 50 g / sodium hydroxide solution as an etching solution at 50 ° C. Etching was performed under the conditions of 3 minutes and immersion time.
このよ う にして得られたエッチング処理済のアルミ ユウム基材に ついて、 30wt°/。-硝酸水溶液を酸洗浴と し、 また、 水酸化ナ ト リ ウム 1 0 0 g/L , 酸化亜鉛 5 0 g/L, 塩化第二鉄 1 g/L、 及び口 ッシェル塩 1 0 g/L の組成を有する亜鉛浸漬浴を用い、 室温下に 3 0秒浸漬す る酸洗後に室温下に 3 0秒浸漬する亜鉛浸漬を行う亜鉛置換処理を 4回行い、 次いで電解金メ ッキ浴 (テ"ク、'サ社製アウルナ 59 1 ) を用いて、 温度 5 0 °C、 電流密度 0 . 5 A/dm 2及び金析出量 2 mg/クーロ ンの条 件で処理時間を制御して電解金メ ツキ処理を行い、 電解金メ ツキ皮 膜の膜厚 T と第二相化合物の長径の最大値 L との比 (T/L) がそれぞ れ 0 . 5、 1 . 0、 1 . 2、 1 . 5及び 2 . 0である 5種類のアル ミ製セパレータの試作品を作製した。 The etched aluminum base material obtained in this manner is 30wt /. -Use nitric acid aqueous solution as pickling bath, add sodium hydroxide 100 g / L, zinc oxide 50 g / L, ferric chloride 1 g / L, and mouth shell salt 10 g / L Using a zinc immersion bath having the following composition, the zinc substitution treatment of immersing for 30 seconds at room temperature and then immersing in zinc for 30 seconds at room temperature is performed four times, followed by electrolytic gold plating bath ( Te "click, using a 'service Co. Auruna 59 1), the temperature 5 0 ° C, current density 0.5 by controlling the a / dm 2 and gold precipitation amount 2 mg / coulomb condition in processing time Electrolytic gold plating was performed, and the ratio (T / L) between the thickness T of the electrolytic gold plating skin and the maximum value L of the major axis of the second phase compound was 0.5, 1.0, and 1 respectively. Prototypes of five types of aluminum separators, 2, 1.5 and 2.0, were produced.
また、 上記と同じ 4回の亜鉛置換処理をしたセパレータ基材につ いて、 電解銀メ ツキ浴 (テ、 'ク"サ社製アルタ、 'ナ CF) を用いて温度 7 0 °C、 電流密度 5 0 A/dm2の条件で電解銀メ ツキ処理を行い、 電解銀メ ッ キ皮膜の膜厚 Tと第二相化合物の長径の最大値 L との比 (T/L) がそ れぞれ 0. 5、 1. 0、 1 . 2、 1 . 5及び 2. 0である 5種類の アルミ製セパレータの試作品を作製した。 In addition, for the same four-time zinc-substituted separator substrate as above, the temperature was raised to 70 ° C using an electrolytic silver plating bath (Te, Kalsa Alta, Alna CF). Current density 5 0 A / dm performed in electrolytic Ginme luck process 2 conditions, electrolytic Ginme Tsu ratio of the maximum value L of the major axis of the thickness T and the second phase compounds of key film (T / L) pixels Prototypes of five types of aluminum separators, 0.5, 1.0, 1.2, 1.5 and 2.0, respectively, were produced.
更に、 上記と同じ 4回の亜鉛置換処理をしたセパレータ基材につ いて、 電解白金メ ツキ浴 (テ、 'ク"サ社製フ°ラチナ K) を用いて温度 4 0 °C、 電流密度 1 . O A/dm2の条件で電解白金メ ッキ処理を行い、 電解白 金メ ツ キ皮膜の膜厚 T と 第二相化合物の長径の最大値 L と の比Furthermore, for the same four times as above, the zinc-substituted separator substrate was heated to a temperature of 40 ° C and a current density of 40 ° C by using an electrolytic platinum plating bath (Te, K-Sulfur® K). 1. performs electrolytic platinum main Tsu key process in the conditions of OA / dm 2, the ratio between the maximum value L of the major axis of the thickness T and the second phase compounds of the electrolytic white gold-edge tool key film
(T/L) がそれぞれ 0. 5、 1 . 0、 1 . 2、 1 . 5及び 2. 0であ る 5種類のアルミ製セパレータの試作品を作製した。 Prototypes of five types of aluminum separators with (T / L) of 0.5, 1.0, 1.2, 1.5 and 2.0 were prepared.
〔皮膜ピンホール数の測定〕  [Measurement of film pinhole number]
このよ う にして作製した各セパレータ試作品について、 硫酸銅 2 0 g/L の水溶液中に室温下で 5分間浸漬し、 銅の析出部分をカ ウン ト し、 ピンホールの個数(個/ cm2 )を測定した。 Each prototype separator thus produced was immersed in a 20 g / L aqueous solution of copper sulfate at room temperature for 5 minutes, the copper deposition was counted, and the number of pinholes (pcs / cm) was measured. 2 ) was measured.
結果を表 1 に示す。  Table 1 shows the results.
表 1 table 1
ピンホールの個数(個/ cm2) Number of pinholes (pcs / cm 2 )
Figure imgf000024_0001
また、 上記各セパレータ試作品について、 試験液と して p H 3 の 酢酸水溶液を用い、 参照極と して銀塩化銀電極を用い、 走査電位を 0〜 : L 0 0 O mV vs Ag/AgCl と し、 電気化学的分極特性評価法によ り 分極電流(/ A/cm2)を測定した。
Figure imgf000024_0001
In addition, for each of the above separator prototypes, an aqueous acetic acid solution of pH 3 was used as the test solution, a silver-silver chloride electrode was used as the reference electrode, and the scanning potential was 0 to: L 0 OmV vs Ag / AgClCl. The polarization current (/ A / cm 2 ) was measured by the electrochemical polarization characteristic evaluation method.
結果を表 2に示す。 表 2 Table 2 shows the results. Table 2
分極電流( μ A/cm 2 ) Polarization current (μA / cm 2 )
Figure imgf000025_0001
更に、 上記各セパレータ試作品について、 膜電極接合体を用いて 単位電池を組み立て、 セパレータ試作品の反応ガス流路に水素ガス 及び空気を供給して電池発電試験を連続して行い、 発電試験時の電 池起電力が発電開始時の起電力と比較して 1 0 %低下する時間を測 定し、 セパレータ寿命(hrs . )と した。
Figure imgf000025_0001
In addition, for each of the separator prototypes above, a unit battery was assembled using the membrane electrode assembly, hydrogen gas and air were supplied to the reaction gas flow path of the separator prototype, and a battery power generation test was performed continuously. The time during which the battery electromotive force of the battery was 10% lower than the electromotive force at the start of power generation was measured and defined as the separator life (hrs.).
結果を表 3に示す。  Table 3 shows the results.
表 3 Table 3
セパレータ寿命 (hr s . )  Separator life (hrs.)
Figure imgf000025_0002
この実験例 1 によれば、 表 1の結果から明らかなよ うに、 メ ツキ 皮膜の膜厚 Tとアルミ -ゥム基材の表面に観察される第二相化合物 の長径の最大値 Lとの比 ( T/L ) が 1 . 2以上の時にメ ツキ皮膜のピ ンホールが観測されなく なり、 また、 表 2に示す分極電流でみても T Z Lの値が 1 . 2以上で略完全に飽和し、 表面欠陥の無い無欠陥 のメ ツキ皮膜が得られており、 更に、 表 3に示すセパレータ寿命を みても、 T Z Lの値が 1 . 2以上で 3 0 0 0時間以上に到達し、 ァ ルミ製セパレータと しての性能が充分に引き出されることが判明し た。
Figure imgf000025_0002
According to Experimental Example 1, as is clear from the results in Table 1, the thickness T of the plating film and the maximum value L of the major axis L of the second phase compound observed on the surface of the aluminum-base material were determined. When the ratio (T / L) is 1.2 or more, pinholes in the plating film are no longer observed, and the polarization current shown in Table 2 indicates that the TZL value is almost completely saturated when the TZL value is 1.2 or more. In addition, a defect-free paint film having no surface defects was obtained.Furthermore, the separator life shown in Table 3 shows that when the TZL value was 1.2 or more, it reached 30000 hours or more. It was found that the performance as a Lumi separator was fully exploited.
実施例 1 〜 1 2及び比較例 1〜 4  Examples 1 to 12 and Comparative Examples 1 to 4
上記実験例 1 と同様にして、 表面の第二相化合物の長径最大値 L 及び表面下 5 μ ra までの第二相化合物の長径最大値 Lが表 4に示す 値を有するアルミニウム基材を調製し、 次いで表 4に示す貴金属メ ツキ処理を行って貴金属メ ツキ皮膜の膜厚 Tと表面の第二相化合物 の長径最大値 L又は表面下 5 μ m までの第二相化合物の長径最大値 Lとの比 (T/L) を有する貴金属メ ツキ皮膜を形成した以外は、 上記 実験例 1 と同様にして、 アルミ製セパレータの試作品を作製した。 得られた各セパレータ試作品について、 上記実験例 1の場合と同 様にして分極電流(μ A/cm 2 )とセパレータ寿命(hrs . )とを測定した, 結果を表 4に示す。 In the same manner as in Experimental Example 1 above, an aluminum substrate was prepared in which the maximum length L of the second phase compound on the surface and the maximum length L of the second phase compound up to 5 μra below the surface had the values shown in Table 4. Then, apply the noble metal plating treatment shown in Table 4 to determine the thickness T of the noble metal plating film and the maximum major axis length L of the second phase compound on the surface or the maximum major axis length of the second phase compound up to 5 μm below the surface. A prototype of an aluminum separator was produced in the same manner as in Experimental Example 1 except that a noble metal plating film having a ratio to L (T / L) was formed. Polarization current (μA / cm 2 ) and separator life (hrs.) Were measured for each of the obtained separator prototypes in the same manner as in Experimental Example 1, and the results are shown in Table 4.
アルミ二ゥム基材 T/ L セ ハ レ Aluminum base material T / L
貴金属メ ツキ  Precious metal plating
L s値 L u値 処理(*4) と膜 流  L s value Lu value processing (* 4) and membrane flow
Ύ/ Ls Ύ / Lu  Ύ / Ls Ύ / Lu
(*2) (μ m) (*3) (μ m) 厚 T m) μ A/cm- (* 2) (μm) (* 3) (μm) Thickness T m) μA / cm-
^n s.リ^ n s.
1N99 2. 5 3.0 All 1.4 1. π1N99 2.5 3.0 All 1.4 1.π
9 3wt%Mg A丄 2.7 3.0 1. 1.1 υυ u owt oMg~0. 3wt%Zn - AJL 2. 7 3.0 ,,― / 1. 1. y u u u9 3wt% Mg A 丄 2.7 3.0 1.1.1 υυ u owt oMg ~ 0.3wt% Zn-AJL 2.7 7 ,, - / 1. 1.y u u u
4 丄 iy U Τ7Γ 丄, \ 0 4 丄 iy U Τ7Γ 丄, \ 0
実 5 丄 J y y ん U / «_> 丄 . 厶 \ o  Real 5 丄 J y y U U / «_> 丄.
o  o
6 1W99 2. 5 3.0 r Q / ο . Ό 1. 1. I 0 \ A un un u 施  6 1W99 2. 5 3.0 r Q / ο. 1. 1. I 0 \ A un un u
7 丄 wyy ん b 0. U η / . ο 丄 . 乙 \ nn n 7 丄 wyy b b 0. U η /. 丄 丄 乙 \ nn n
CO 例 8 1N99 2.5 3.0 U iir / Ό 1.4 1.2 \ D \ , π UΠU ΠU CO Example 8 1N99 2.5 3.0 U iir / Ό 1.4 1.2 \ D \, π UΠU ΠU
9 1N99 2.5 3.0 Ir-EP/3. 6 1.4 1.2 ぐ 6 >3 000 9 1N99 2.5 3.0 Ir-EP / 3.6 1.4 1.2g 6> 3 000
10 1N99 2. 5 3.0 Au, Ag-ELP/3. 6 1.4 1.2 <6 〉3, 00010 1N99 2.5 3.0 Au, Ag-ELP / 3. 6 1.4 1.2 <6〉 3,000
11 1N99 2. 5 3.0 Au-EP/4. 5 1.8 1. 5 <6 >3, 00011 1N99 2.5 3.0 Au-EP / 4. 5 1.8 1.5 <6> 3,000
12 1N99 2. 5 3.0 Au-EP/5. 0 2.0 1.7 ぐ 6 >3, 00012 1N99 2.5 3.0 Au-EP / 5.0 2.0 1.7 1.7 6> 3,000
1 1N99 2.5 3.0 Au-EP/2. 5 1.0 0.8 170 1, 050 比 1 1N99 2.5 3.0 Au-EP / 2.5 1.0 0.8 170 1,050 ratio
2 3wt%Mg-Al 2.7 3.0 Au-EP/3. 0 1. 1 1. 0 580 50 較  2 3wt% Mg-Al 2.7 3.0 Au-EP / 3.01.1.10 580 50
3  Three
例 1N99 2. 5 3.0 Ag-ELP/2. 5 - 1.0 0.8 180 900  Example 1N99 2.5 3.0 Ag-ELP / 2.5-1.0 0.8 180 900
4 1N99 2. 5 3.0 Au-EP/1. 0 0.4 0. 3 565 80 4 1N99 2.5 3.0 Au-EP / 1.0 0.4 0.3 0.3565 80
(注) *1:高純度アルミニウム(1N99) 3wt°/。Mg含有アルミニウム(3wtMg-Al) (Note) * 1: High purity aluminum (1N99) 3wt ° /. Aluminum containing Mg (3wtMg-Al)
3wt g&0. 3wt%Zri含有ァノレミニゥム (3wt Mg-0. 3wt Zn-Al)  3wt g & 0.3wt% Zri containing anoremium (3wt Mg-0.3wt Zn-Al)
*2:表面の第二相化合物の長径の最大値 (L s値)  * 2: Maximum value of the major axis of the second phase compound on the surface (Ls value)
*3:表面下 5 mまでの第二相化合物の長径の最大値 ( L u値)  * 3: Maximum value of the major axis of the second phase compound up to 5 m below the surface (Lu value)
*4:電解貴金属メ ツキ(Me_EP)、 無電解貴金属メ ツキ(Me- ELP)  * 4: Electrolytic noble metal plating (Me_EP), electroless precious metal plating (Me-ELP)
04 また、 金属材料と してアルミニウム材を用いてアルミ製セパレー タを試作し、 得られたセパレータ試作品を用いて行った別の実験例 に基づいて、 本発明の好適な実施の形態を具体的に説明する。 04 Further, a preferred embodiment of the present invention was specifically described based on another experimental example in which an aluminum separator was experimentally manufactured using an aluminum material as a metal material and the obtained separator prototype was used. Will be described.
実験例 2 '  Experiment 2 ''
板厚 5 mm のアルミ ニウム材 ( 1N99) カ ら 5 111[11ズ 1 0 0111111ズ 1 0 0 mmの大きさのセパレータ基材を切り 出し、 このセパレータ基材の両 面にプレス加工によ り深さ 0 . 8 mm及び幅 0 . 8 mmの反応ガス流路 をそれぞれ形成し、 次いで水酸化ナト リ ゥム 2 5 g/L、 炭酸ナ ト リ ゥ ム 2 5 g/L、 燐酸ナ ト リ ウム 2 5 g/L、 及び界面活性剤 1 . 5 g/L の 組成を有する脱脂浴中に、 浸漬温度 6 0 °C及び浸漬時間 5分の条件 で脱脂処理し、 次いで水洗した後、 50g/L -水酸化ナト リ ウム水溶液 をエッチング処理液と して浸漬温度 5 0 °C及び浸漬時間 3分の条件 でエッチング処理した。  A 5 mm thick aluminum substrate (1N99) is used to cut out a separator base material of size 5111 [11 s 100 111 1 111 s 100 mm], and both sides of this separator base are pressed by pressing. Reactant gas channels having a depth of 0.8 mm and a width of 0.8 mm were formed respectively, and then sodium hydroxide 25 g / L, sodium carbonate 25 g / L, and sodium phosphate After degreasing in a degreasing bath with a composition of 25 g of lithium and 1.5 g / L of surfactant at an immersion temperature of 60 ° C and an immersion time of 5 minutes, and then washing with water, Etching was performed using a 50 g / L aqueous solution of sodium hydroxide as an etching solution at an immersion temperature of 50 ° C and an immersion time of 3 minutes.
このよ う にして得られたエッチング処理済めセパレータ基材につ いて、 30wt% -硝酸水溶液を酸洗浴と し、 また、 水酸化ナト リ ウム 1 0 0 g/L、 酸化亜鉛 5 0 g/L、 塩化第二鉄 1 g/L、 及びロッシェル塩 1 O g/L の組成を有する亜鉛浸漬浴を用い、 室温下に 3 0秒浸 ¾する 酸洗後に室温下に 3 0秒浸漬する亜鉛浸漬を行う亜鉛置換処理を 1 回から 6回 (亜鉛置換処理回数 : 1 〜 6回) の範囲で行い、 次いで シアン金カ リ ウム 1 0 g/L、 シアン化カ リ ゥム 3 0 g/L、 炭酸力 リ ゥ ム 3 0 g/L、 及び第二燐酸カリ ゥム 3 O g/L の組成を有する金メ ツキ 浴を用い、 浴温度 5 5 °C及び電流密度 0 . 5 A/dm2の条件で処理時 間を制御して無電解金メ ッキ処理を行い、 各亜鉛置換処理回数のセ パレータ基材についてその表面全面に膜厚 0 . 0 1 m、 0 . 1 β ία 及び 1 . Ο μ ηι の金メ ッキ皮膜を有するアルミ製セパレータの試作 品を作製した。 With respect to the thus-etched separator base material thus obtained, a 30 wt% aqueous solution of nitric acid was used as an pickling bath, sodium hydroxide 100 g / L, zinc oxide 50 g / L. Using a zinc immersion bath having a composition of 1 g / L of ferric chloride and 1 Og / L of Rochelle salt, immerse for 30 seconds at room temperature. 1 to 6 times (zinc replacement times: 1 to 6 times), followed by 10 g / L of potassium cyanide and 30 g / L of potassium cyanide. Using a gold plating bath having a composition of 30 g / L of carbon dioxide roll and 30 g / L of potassium phosphate, the bath temperature was 55 ° C and the current density was 0.5 A / dm. The electroless gold plating was performed by controlling the processing time under the conditions of 2 , and the thickness of the separator base material at each number of zinc substitution treatments was 0.01 m, 0.1 βία and 0.1 1. A prototype of an aluminum separator with a μηι gold film was fabricated.
このよ う にして作製した各セパレータ試作品について、 硫酸銅 2 0 g/L の水溶液中に室温下で 5分間浸漬し、 銅の析出部分をカウン ト し、 ピンホールの個数を測定した。 For each separator prototype manufactured in this way, copper sulfate 2 It was immersed in a 0 g / L aqueous solution at room temperature for 5 minutes, the copper deposition was counted, and the number of pinholes was measured.
結果を表 5に示す。  Table 5 shows the results.
表 5 Table 5
Figure imgf000029_0001
また、 上記各セパレータ試作品について、 試験液と して p H 3 の 酢酸水溶液を用い、 参照極と して銀塩化銀電極を用い、 走査電位を 0〜 ; L 0 0 0 raV vs Ag/AgC l と し、 電気化学的分極特性評価法によ り分極電流を測定した。
Figure imgf000029_0001
In addition, for each of the above separator prototypes, an aqueous acetic acid solution of pH 3 was used as a test solution, a silver-silver chloride electrode was used as a reference electrode, and the scanning potential was 0 to; For l, the polarization current was measured by the electrochemical polarization property evaluation method.
結果を表 6に示す。  Table 6 shows the results.
表 6 Table 6
Figure imgf000029_0002
更に、 上記各セパレータ試作品について、 膜電極接合体 (ジャパ ンゴァテ ッ ク ス社製) を用いて単位電池を組み立て、 セパレータ試 作品の反応ガス流路に水素ガス及び空気を供給して電池発電試験を この発電試験時の電池起電力を測定した。 結果を表 7 示す。
Figure imgf000029_0002
Furthermore, for each of the separator prototypes above, a unit battery was assembled using a membrane electrode assembly (manufactured by Japangotechs Co., Ltd.), and hydrogen gas and air were supplied to the reaction gas flow path of the separator prototype to produce a battery power generation test. To The battery electromotive force during this power generation test was measured. Table 7 shows the results.
表 7 Table 7
Figure imgf000030_0001
更にまた、 上記各セパレータ試作品について、 上記の膜電極接合 体を用いて単位電池を組み立て、 セパレータ試作品の反応ガス流路 に水素ガス及び空気を供給して電池発電試験を連続して行い、 発電 試験時の電池起電力が発電開始時の起電力と比較して 1 0 %低下す る時間を測定し、 セパレータ寿命と した。
Figure imgf000030_0001
Furthermore, for each of the separator prototypes, a unit battery was assembled using the membrane electrode assembly described above, and hydrogen gas and air were supplied to the reaction gas flow path of the separator prototype, and a battery power generation test was continuously performed. The time during which the battery electromotive force at the time of the power generation test decreased by 10% compared to the electromotive force at the start of power generation was measured and defined as the separator life.
結果を表 8に示す。  Table 8 shows the results.
表 8 Table 8
Figure imgf000030_0002
Figure imgf000030_0002
この実験例 2によれば、表 5 の結果から亜鉛置換処理回数が 1回、 2回、 3回と増すごとに発生するピンホールの個数が飛躍的に低減 しているが、 3回の亜鉛置換処理では依然と して数個のピンホール が残存し、 4回以上の亜鉛置換処理で完全にピンホールの認められ ない金メ ツキ皮膜が得られることが判明した。 これを表 6に示す分 極電流でみると、 3回の亜鉛置換処理では分極電流が 1 0 0 n A/ c m 2以上であったものが、 4回以上の亜鉛置換処理では略完全に飽和 しており 、 表面欠陥も無い無欠陥の金メ ツキ皮膜が得られている。 そして、 表 7に示す電池起電力や表 8に示すセパレータ寿命をみ ても、 3回の亜鉛置換処理では依然と して完全には満足できないも のであったものが、 4回以上の亜鉛置換処理で完全に飽和し、 アル ミ製セパレータと しての性能が充分に引き出されることが判明した。 実験例 3 According to Experimental Example 2, the number of pinholes generated by the number of zinc substitution treatments increased by one, two, and three times from the results in Table 5 was dramatically reduced. The replacement process still has several pinholes It was found that gold plating films with no pinholes were obtained after four or more zinc substitution treatments. Looking at the polarization current shown in Table 6, the polarization current was 100 nA / cm 2 or more in the three zinc substitution treatments, but was almost completely saturated in the four or more zinc substitution treatments. As a result, a defect-free gold plating film having no surface defects is obtained. Also, looking at the battery electromotive force shown in Table 7 and the separator life shown in Table 8, three zinc substitution treatments were still not completely satisfactory, but four or more zinc substitution treatments were not enough. It was found that it was completely saturated by the treatment, and the performance as an aluminum separator was sufficiently brought out. Experiment 3
表 9に示すアルミニウム材を用い、 2回、 3回又は 4回の亜鉛置 換処理を行い、 表 9に示す貴金属メ ツキ処理を行ってセパレ一タ基 材の表面に表 9に示す膜厚の貴金属メ ツキ皮膜を形成した以外は、 上記実験例 2 と同様にして、 アルミ製セパレータの試作品を作製し た。  Using the aluminum material shown in Table 9, two, three, or four zinc replacement treatments were performed, and the noble metal plating treatment shown in Table 9 was performed to apply the film thickness shown in Table 9 to the surface of the separator base material. A prototype of an aluminum separator was produced in the same manner as in Experimental Example 2 except that the noble metal plating film was formed.
得られた各セパレータ試作品について、 上記実験例 2 の場合と同 様にして分極電流と電池起電力とを測定した。  The polarization current and the battery electromotive force of each of the obtained separator prototypes were measured in the same manner as in Experimental Example 2 above.
結果を表 9に示す。 Table 9 shows the results.
Figure imgf000032_0001
Figure imgf000032_0001
5wt%Mg含有アルミ-ゥム (5wt%Mg'Al)  Aluminum containing 5wt% Mg (5wt% Mg'Al)
*2:無電解貴金属メツキ (Me-ELP)、 置換貴金属メッキ (Me-SP)、  * 2: Electroless noble metal plating (Me-ELP), substituted noble metal plating (Me-SP),
電解貴金属メツキ (Me-EP)、 電解貴金属ス メツキ (Me -EPS) 実験例 4 Electrolytic precious metal plating (Me-EP), electrolytic precious metal plating (Me-EPS) Experiment 4
表 1 0に示すアルミニウム材を用い、 実験例 2 と同様にして得ら れた脱脂処理後のセパレータ基材について、 エッチング処理する前 に、 以下に示す方法によ り表面研磨処理を行い、 次いで実験例 2 と 同様に、 エッチング処理、 4回の亜鉛置換処理、 及び表 1 0に示す 金メ ツキ処理を行い、 表面に膜厚 0 . 1 m の金メ ツキ皮膜を有す るアルミ製セパレータの試作品を作製した。  Using the aluminum material shown in Table 10, the degreasing-treated separator substrate obtained in the same manner as in Experimental Example 2 was subjected to a surface polishing treatment by the following method before the etching treatment, and then As in Experimental Example 2, an aluminum separator having a 0.1-meter-thick gold plating film on the surface was subjected to etching treatment, four zinc substitution treatments, and gold plating treatment shown in Table 10. Prototype was made.
〔電解研磨〕  (Electropolishing)
過塩素酸 2 2 0 ml/L 及び無水酢酸 7 8 0 ml /L の電解研磨浴を用 い、この電解研磨浴中に脱脂処理した上記セパレータ基材を浸漬し、 このセパレータ基材を陽極に、 また、 白金板を陰極にして電流密度 Using an electropolishing bath of 220 ml / L perchloric acid and 780 ml / L acetic anhydride, immerse the degreased separator substrate in this electrolytic polishing bath, and use this separator substrate as the anode. The current density is determined by using a platinum plate as the cathode.
1 O A/dm 2の条件で 5分間電解研磨処理を施し、 その後に水洗し、 乾燥した。 Electropolishing treatment was performed for 5 minutes under the condition of 1 OA / dm 2 , followed by washing with water and drying.
〔化学研磨〕  [Chemical polishing]
リ ン酸 7 5。/。、硝酸.2 0。/。及び水 5。/。の組成を有する化学研磨浴を用 い、 9 0 °Cで 5分間浸漬し、 次いで水洗して乾燥した。  Phosphoric acid 75. /. , Nitric acid .20. /. And water5. /. It was immersed in a chemical polishing bath having the following composition at 90 ° C. for 5 minutes, then washed with water and dried.
〔パフ研磨〕  (Puff polishing)
パフと して綿バフを用い、また、研磨材と してアルミナ微粉末(粒 度 P2500 ) を使用し、 研磨後に水洗し乾燥した。  A cotton buff was used as a puff, and alumina fine powder (particle size: P2500) was used as an abrasive.
〔ブラス ト研磨〕  (Blast polishing)
ガラスビーズ微粉末 (粒度 F OO) 混合液を空気圧 2 kg/cra 2で吹 き付け、 研磨後に水洗し乾燥した。 A mixture of fine glass beads (particle size FOO) was sprayed at an air pressure of 2 kg / cra 2 , washed with water after polishing, and dried.
〔機械研磨〕  (Mechanical polishing)
# 6 0 0 のェメ リー研磨紙を用いて研磨した後、 再び # 2 5 0 0 のェメ リ一研磨紙を用いて仕上げ研磨を行い、 次いで水洗して乾燥 した。  After polishing using # 600 emery polishing paper, final polishing was again performed using # 250 emery polishing paper, followed by washing with water and drying.
得られた各セパレータ試作品について、 表面研磨処理後のセパレ 一タ基材の表面粗さを測定する と共に、 上記実験例 2 の場合と同様 にして分極電流、 電池起電力及ぴセパレータ寿命を測定した。 Separation after surface polishing treatment for each of the obtained separator prototypes In addition to measuring the surface roughness of the base material, the polarization current, the battery electromotive force, and the separator life were measured in the same manner as in Experimental Example 2 above.
結果を表 1 0 に示す。  The results are shown in Table 10.
表 1 0 Table 10
Figure imgf000034_0001
Figure imgf000034_0001
(注) *1:高純度アルミニウム (1N99)、 3wt%Mg含有アルミ二ゥム (3wt%Mg-Al)、 5wt%Mg含有アルミ二ゥム (5wt%Mg-Al)  (Note) * 1: High purity aluminum (1N99), aluminum containing 3wt% Mg (3wt% Mg-Al), aluminum containing 5wt% Mg (5wt% Mg-Al)
*2:電解金メツキ (ΑιτΕΡ)、 無電解金メツキ (Au•ELP) * 2: Electrolytic gold plating (ΑιτΕΡ), electroless gold plating (Au • ELP)
産業上の利用可能性 Industrial applicability
本発明によれば、 金属基材の ¾面状態を最適化し、 この金属基材 の表面に例えば貴金属元素皮膜の場合その膜厚が 5 μ m 以下と従来 より も非常に薄く 、 しかも、 ピンホールや表面欠陥のない導電性皮 膜を形成せしめた安価で耐久性に優れた耐食導電性皮膜を有する金 属材を提供する こ とができる。  According to the present invention, the surface state of the metal substrate is optimized, and the thickness of the precious metal element film on the surface of the metal substrate is, for example, 5 μm or less, which is much thinner than the conventional one, It is possible to provide a metal material having an inexpensive and highly durable corrosion-resistant conductive film formed with a conductive film free of defects and surface defects.
また、 本発明によって得られる燃料電池用金属製セパレータは、 高発電性能、 長期耐久性、 軽量化、 及び低コス ト化を同時に達成で き、 例えば次世代の電気自動車用発電装置等の用途に適した燃料電 池を製造する上で極めて有用なものである。  In addition, the metal separator for a fuel cell obtained by the present invention can simultaneously achieve high power generation performance, long-term durability, light weight, and low cost. It is extremely useful in producing suitable fuel cells.

Claims

求 の 範 囲 Range of request
(1) 金属材料で形成された金属基材の表面に耐食導電性皮膜を形 成してなる耐食導電性皮膜を有する金属材であり、 上記金属基材の 表面に観察される当該金属基材の第二相化合物は、 その長径の最大 値 Lが上記耐食導電性皮青膜の膜厚 Tの 5 / 6倍以下( L≤ 5 / 6 T ) であることを特徴とする耐食導電性皮膜を有する金属材。 (1) A metal material having a corrosion-resistant conductive film formed by forming a corrosion-resistant conductive film on the surface of a metal substrate formed of a metal material, wherein the metal substrate is observed on the surface of the metal substrate. Wherein the maximum value L of the major axis is not more than 5/6 times (L≤5 / 6T) the thickness T of the corrosion-resistant conductive skin blue film. Metal material having.
(2) 金属基材の表面に観察される当該金属基材の第二相化合物が 実質的に存在しない請求項 1 に記載の耐食導電性皮膜を有する金属 材。  (2) The metal material having a corrosion-resistant conductive film according to claim 1, wherein the second phase compound of the metal substrate observed on the surface of the metal substrate is substantially absent.
(3) 金属基材の表面下 5 μ mの深さまでの間に観察される第二相 化合物は、 その長径の最大値 Lが耐食導電性皮膜の膜厚丁の 5 / 6 倍以下 ( L≤ 5 / 6 T) である請求項 1又は 2に記載の耐食導電性 皮膜を有する金属材。  (3) The second phase compound observed up to a depth of 5 μm below the surface of the metal substrate has a maximum major axis L of 5/6 or less times the thickness of the corrosion-resistant conductive film (L The metal material having a corrosion-resistant conductive film according to claim 1 or 2, wherein ≤ 5/6 T).
(4) 金属基材の表面下 5 μ mの深さまでの間に観察される第二相 化合物が実質的に存在しない請求項 1 ~ 3のいずれかに記載の耐食 導電性皮膜を有する金属材。  (4) The metal material having a corrosion-resistant conductive film according to any one of claims 1 to 3, wherein substantially no second phase compound is observed up to a depth of 5 μm below the surface of the metal substrate. .
(5) 金属基材の表面で観察される第二相化合物の数が 2 0個/ ram 2以下である請求項 1又は 3に記載の耐食導電性皮膜を有する金属 材。 (5) The metal material having a corrosion-resistant conductive film according to claim 1 or 3, wherein the number of the second phase compounds observed on the surface of the metal substrate is 20 / ram 2 or less.
(6) 金属基材が、 アルミ ニウム又はアルミ二ゥム合金からなるァ ルミニゥム材である請求項 1 〜 5のいずれかに記載の耐食導電性皮 膜を有する金属材。  (6) The metal material having a corrosion-resistant conductive film according to any one of claims 1 to 5, wherein the metal substrate is an aluminum material made of aluminum or an aluminum alloy.
(7) アルミニウム材の化学組成が、 マグネシウム(Mg)が 7質量% 未満、 亜鉛(Zn)が 3質量%未満、 ケィ素(Si)が 0. 0 1質量%未満、 鉄(Fe)が 0 . 0 1質量%未満、 及び銅(Cu)が◦ . 0 1質量 °/。未満であ つて、 残部がアルミニウム(A1)及び不可避不純物元素である請求項 6に記載の耐食導電性皮膜を有する金属材。 (7) The chemical composition of the aluminum material is less than 7% by mass of magnesium (Mg), less than 3% by mass of zinc (Zn), less than 0.01% by mass of silicon (Si), and less than 0% by mass of iron (Fe). Less than 1% by mass and copper (Cu) ◦. And the balance is aluminum (A1) and unavoidable impurity elements. 7. A metal material having the corrosion-resistant conductive film according to 6.
(8) 耐食導電性皮膜が、 貴金属元素皮膜、 ニッケル皮膜又は銅皮 膜である請求項 1 〜 7のいずれかに記載の耐食導電性皮膜を有する 金属材。  (8) The metal material having a corrosion-resistant conductive film according to any one of claims 1 to 7, wherein the corrosion-resistant conductive film is a noble metal element film, a nickel film, or a copper film.
(9) 耐食導電性皮膜の膜厚が、 0 . 0 1 μ m以上 5 μ m以下の貴 金属元素皮膜である請求項 8 に記載の耐食導電性皮膜を有する金属 材。  (9) The metal material having a corrosion-resistant conductive film according to claim 8, wherein the corrosion-resistant conductive film is a noble metal element film having a thickness of 0.01 μm or more and 5 μm or less.
(10) 貴金属元素皮膜が貴金属メ ツキ処理によ り形成される請求 項 8又は 9 に記載の耐食導電性皮膜を有する金属材。  (10) The metal material having a corrosion-resistant conductive film according to claim 8 or 9, wherein the noble metal element film is formed by a noble metal plating treatment.
(11) 貴金属メ ツキ処理が金メ ッキ処理であ り、 貴金属メ ツキ皮 膜が金メ ツキ皮膜である請求項 1 0に記載の耐食導電性皮膜を有す る金属材。  (11) The metal material having a corrosion-resistant conductive film according to claim 10, wherein the noble metal plating treatment is a gold plating treatment, and the noble metal plating film is a gold plating film.
(12) 貴金属メ ツキ処理が白金メ ッキ処理であり 、 貴金属メ ツキ 皮膜が白金メ ツキ皮膜である請求項 1 0 に記載の耐食導電性皮膜を 有する金属材。  (12) The metal material having a corrosion-resistant conductive film according to claim 10, wherein the noble metal plating treatment is a platinum plating treatment, and the noble metal plating film is a platinum plating film.
(13) 貴金属メ ツキ処理が白金ロジウムメ ツキ処理であり、 貴金 属メ ツキ皮膜が白金ロジウムメ ッキ皮膜である請求項 1 0に記載の 耐食導電性皮膜を有する金属材。  (13) The metal material having a corrosion-resistant conductive film according to claim 10, wherein the noble metal plating treatment is a platinum rhodium plating treatment, and the noble metal plating film is a platinum rhodium plating film.
(14) 耐食導電性皮膜が、 膜厚 0 . 0 1 〜 5 μ πι である と共に電 気化学的分極特性評価法で測定した分極電流が 1 0 μ Am/cra2以下 である請求項 1 〜 1 3 に記載の耐食導電性皮膜を有する金属材。(14) The corrosion-resistant conductive film has a thickness of 0.01 to 5 μπι and a polarization current of 10 μAm / cra 2 or less measured by an electrochemical polarization characteristic evaluation method. 13. A metal material having the corrosion-resistant conductive film according to 13.
(15) 金属基材が、 複数の単位電池を積層 して燃料電池を構成す る際に各単位電池間に介装されてこれら各単位電池間を仕切るセパ レータを形成するためのセパ レータ基材である請求項 1 〜 1 4に記 載の耐食導電性皮膜を有する金属材。 (15) A separator base for forming a separator that is interposed between the unit cells when a plurality of unit cells are stacked to form a fuel cell and forms a separator between the unit cells. A metal material having a corrosion-resistant conductive film according to any one of claims 1 to 14, which is a material.
(16) 請求項 1 〜 1 5 のいずれかに記載の耐食導電性皮膜を有す る金属材を製造するに際し、 金属基材に対して、 酸洗後に亜鉛浸漬  (16) In producing a metal material having a corrosion-resistant conductive film according to any one of claims 1 to 15, zinc is immersed in the metal substrate after pickling.
35 35
訂正された用紙 (規則 91) を行う亜鉛浸漬処理を 4回以上繰り返し、 次いで金属基材の表面に 耐食導電性皮膜を形成せしめることを特徴とする耐食導電性皮膜を 有する金属材の製造方法。 Corrected form (Rule 91) A method for producing a metal material having a corrosion-resistant conductive film, characterized by repeating a zinc immersion treatment at least four times, and then forming a corrosion-resistant conductive film on the surface of the metal substrate.
(17) 金属基材に対して、 亜鉛浸漬処理の前にエッチング処理を 行う請求項 1 6 に記載の耐食導電性皮膜を有する金属材の製造方法。  (17) The method for producing a metal material having a corrosion-resistant conductive film according to claim 16, wherein the metal substrate is subjected to an etching treatment before the zinc immersion treatment.
(18) 金属基材がアルミ ニウム又はアルミ ニウム合金からなるァ ルミ ェゥム材であ り、 また、 耐食導電性皮膜が貴金属メ ツキ処理に よ り形成された膜厚 0 . 0 1 〜 5 μ ιη の貴金属メ ツキ皮膜である請 求項 1 6又は 1 7 に記載の耐食導電性皮膜を有する金属材の製造方 法。  (18) The metal substrate is an aluminum material made of aluminum or an aluminum alloy, and the film thickness of the corrosion-resistant conductive film formed by precious metal plating is from 0.01 to 5 μιη. The method for producing a metal material having a corrosion-resistant conductive film according to claim 16 or 17, which is a noble metal plating film.
(19) エッチング処理前の金属基材が、 表面研磨処理によ り その 表面粗さが 0 . 0 2〜 0 . 3 μ ηι の範囲に調整されている請求項 1 7又は 1 8 に記載の耐食導電性皮膜を有する金属材の製造方法。 (19) The metal substrate according to claim 17 or 18, wherein the surface roughness of the metal substrate before the etching treatment is adjusted to a range of 0.02 to 0.3 μηι by a surface polishing treatment. A method for producing a metal material having a corrosion-resistant conductive film.
(20) 金属材料で形成された金属基材と、 この金属基材の表面に 形成され、 膜厚が 0 . 0 1〜 5 μ π! であって、 電気化学的分極特性 評価法で測定した分極電流が 1 0 a A/cm2以下である耐食導電性皮 膜と を有するこ とを特徴とする耐食導電性皮膜を有する金属材。 (20) A metal substrate formed of a metal material and a film formed on the surface of the metal substrate and having a thickness of 0.01 to 5 μπ !, which was measured by an electrochemical polarization property evaluation method. A metal material having a corrosion-resistant conductive film, comprising: a corrosion-resistant conductive film having a polarization current of 10 aA / cm 2 or less.
(21) 金属基材が、 燃料電池を形成する際に用いられる燃料電池 形成材であ り 、 耐食導電性皮膜が、 貴金属メ ツキ処理によ り形成さ れた貴金属メ ッキ皮膜である請求項 2 0 に記載の耐食導電性皮膜を 有する金属材.。  (21) The metal substrate is a fuel cell forming material used for forming a fuel cell, and the corrosion-resistant conductive film is a noble metal plating film formed by a noble metal plating process. Item 20. A metal material having a corrosion-resistant conductive film according to Item 20.
(22) 燃料電池形成材が、 複数の単位電池を積層して燃料電池を 構成する際に互いに隣接する各単位電池の電極間に介装されてこれ ら各単位電池間を仕切るセパレータを形成するためのセパレータ基 材であり、 このセパレータ基材には少なく と も電極接触面に貴金属 メ ツキ皮膜が形成されている請求項 2 1 に記載の耐食導電性皮膜を 有する金属材。 (22) The fuel cell forming material is interposed between the electrodes of each unit cell adjacent to each other when forming a fuel cell by stacking a plurality of unit cells to form a separator that separates these unit cells. 22. The metal material having a corrosion-resistant conductive film according to claim 21, wherein a noble metal plating film is formed on at least the electrode contact surface of the separator substrate.
( 23 ) セパレータ基材は、 その電極接触面に反応ガス流路が形成 されている請求項 2 2に記載の耐食導電性皮膜を有する金属材。(23) The metal material having a corrosion-resistant conductive film according to claim 22, wherein the separator substrate has a reaction gas flow path formed on an electrode contact surface thereof.
( 24) 燃料電池形成材が、 燃料電池を構成する単位電池の電極基 材であり、 この電極基材には単位電池の電解質側の表面に貴金属メ ツキ皮膜が形成されている請求項 2 1に記載の耐食導電性皮膜を有 する金属材。 (24) The fuel cell forming material is an electrode substrate of a unit cell constituting the fuel cell, and the electrode substrate has a noble metal plating film formed on a surface of the unit cell on the electrolyte side. A metal material having a corrosion-resistant conductive film according to (1).
( 25 ) 電極基材は、 単位電池を形成する電解質との接触面に反応 ガス流路が形成されている請求項 2 4に記載の耐食導電性皮膜を有 する金属材。  (25) The metal material having a corrosion-resistant conductive film according to claim 24, wherein the electrode substrate has a reaction gas flow path formed on a contact surface with an electrolyte forming a unit battery.
( 26 ) 燃料電池形成材が、 アルミ ウム又はアルミ ウム合金か らなるアルミニゥム材で形成されている請求項 2 1 〜 2 5に記載の 耐食導電性皮膜を有する金属材。  (26) The metal material having a corrosion-resistant conductive film according to any one of claims 21 to 25, wherein the fuel cell forming material is formed of an aluminum material made of aluminum or an aluminum alloy.
( 27 ) 貴金属メ ツキ皮膜は、 燃料電池形成材の表面全面に形成さ れている請求項 2 1〜 2 6のいずれかに記載の耐食導電性皮膜を有 する金属材。  (27) The metal material having a corrosion-resistant conductive film according to any one of claims 21 to 26, wherein the noble metal plating film is formed on the entire surface of the fuel cell forming material.
( 28) 貴金属メ ツキ処理が金メ ッキ処理であり、 貴金属メ ツキ皮 膜が金メ ッキ皮膜である請求項 2 1 〜 2 7のいずれかに記載の耐食 導電性皮膜を有する金属材。  (28) The metal material having a corrosion-resistant conductive film according to any one of claims 21 to 27, wherein the noble metal plating process is a gold plating process, and the noble metal plating film is a gold plating film. .
( 29) 貴金属メ ツキ処理が白金メ ッキ処理であり、 貴金属メ ツキ 皮膜が白金メ ッキ皮膜である請求項 2 1 〜 2 7のいずれかに記載の 耐食導電性皮膜を有する金属材。  (29) The metal material having a corrosion-resistant conductive film according to any one of claims 21 to 27, wherein the noble metal plating treatment is a platinum plating treatment, and the noble metal plating film is a platinum plating film.
( 30) 貴金属メ ツキ処理が白金ロジウムメ ツキ処理であり、 貴金 属メ ツキ皮膜が白金ロジウムメ ツキ皮膜である請求項 2 1 〜 2 7の いずれかに記載の耐食導電性皮膜を有する金属材。  (30) The metal material having a corrosion-resistant conductive film according to any one of claims 21 to 27, wherein the noble metal plating treatment is a platinum rhodium plating treatment, and the noble metal plating film is a platinum rhodium plating film.
( 31 ) 金属材料で金属基材を形成し、 この金属基材をエッチング 処理した後、 酸洗後に亜鉛浸漬を行う亜鉛置換処理を 4回以上繰り 返し、 次いでこの金属基材の表面に膜厚 0 . 0 1 〜 5 ra の耐食導  (31) A metal substrate is formed from a metal material, and after the metal substrate is subjected to an etching treatment, a zinc substitution treatment in which zinc is immersed after pickling is repeated four times or more. 0.0 1 to 5 ra corrosion resistance
37 訂正された用紙 (規則 91) 電性皮膜を形成せしめることを特徴とする耐食導電性皮膜を有する 金属材の製造方法。 37 Corrected Form (Rule 91) A method for producing a metal material having a corrosion-resistant conductive film, characterized by forming an electroconductive film.
( 32 ) 金属基材が、 燃料電池を形成する際に用いられる燃料電池 形成材であり、 耐食導電性皮膜が、 貴金属メ ツキ処理によ り形成さ れた貴金属メ ツキ皮膜である請求項 3 1 に記載の耐食導電性皮膜を 有する金属材の製造方法。  (32) The metal substrate is a fuel cell forming material used when forming a fuel cell, and the corrosion-resistant conductive film is a noble metal plating film formed by a noble metal plating process. 2. The method for producing a metal material having a corrosion-resistant conductive film according to 1.
( 33 ) 燃料電池形成材が、 複数の単位電池を積層して燃料電池を 構成する際に互いに隣接する各単位電池の電極間に介装されてこれ ら各単位電池間を仕切るセパレータを形成するためのセパレータ基 材であり、 このセパレータ基材には少なく と も電極接触面に貴金属 メ ツキ皮膜が形成される請求項 3 2に記載の耐食導電性皮膜を有す る金属材の製造方法。  (33) The fuel cell forming material is interposed between the electrodes of each unit cell adjacent to each other when forming a fuel cell by stacking a plurality of unit cells to form a separator that separates these unit cells. 33. The method for producing a metal material having a corrosion-resistant conductive film according to claim 32, wherein a noble metal plating film is formed on at least the electrode contact surface of the separator substrate.
( 34) セパレータ基材は、 その電極接触面に反応ガス流路が形成 されている請求項 3 3 に記載の耐食導電性皮膜を有する金属材の製 造方法。  (34) The method for producing a metal material having a corrosion-resistant conductive film according to claim 33, wherein the separator substrate has a reaction gas flow path formed on an electrode contact surface thereof.
( 35 ) 燃料電池形成材が、 燃料電池を構成する単位電池の電極基 材であり、 この電極基材には単位電池の電解質側の表面に金属メ ッ キ皮膜が形成される請求項 3 2に記載の耐食導電性皮膜を有する金 属材の製造方法。  (35) The fuel cell-forming material is an electrode substrate of a unit cell constituting the fuel cell, and a metal plating film is formed on the electrode substrate on the electrolyte side surface of the unit cell. 3. The method for producing a metal material having a corrosion-resistant conductive film according to claim 1.
( 36 ) 電極基材は、 単位電池を形成する電解質との接触面に反応 ガス流路が形成されている請求項 3 5に記載の耐食導電性皮膜を有 する金属材の製造方法。  (36) The method for producing a metal material having a corrosion-resistant conductive film according to claim 35, wherein the electrode substrate has a reaction gas flow path formed on a contact surface with an electrolyte forming a unit battery.
( 37 ) 亜鉛置換処理の酸洗は、 5〜 5 0 wt°/。濃度の硝酸水溶液から なる酸洗浴に室温下に 5〜 1 2 0秒間浸漬して行う請求項 3 1 〜 3 6のいずれかに記載の耐食導電性皮膜を有する金属材の製造方法。 (37) Pickling of zinc substitution treatment is 5-50 wt ° /. The method for producing a metal material having a corrosion-resistant conductive film according to any one of claims 31 to 36, wherein the method is performed by immersing in a pickling bath made of a concentrated nitric acid aqueous solution at room temperature for 5 to 120 seconds.
( 38 ) 亜鉛置換処理の亜鉛浸漬は、 酸化亜鉛濃度 1 . 5〜 6 0 g/L 及びアルカ リ濃度 4 0〜 4 0 0 g/L の酸化亜鉛アル力 リ水溶液から ' なる亜鉛浸漬浴に室温下に 5〜 1 2 0秒間浸漬して行う請求項 3 1 〜 3 7のいずれかに記載の耐食導電性皮膜を有する金属材の製造方 法。 (38) Zinc immersion in the zinc substitution treatment was performed using an aqueous zinc oxide solution with a zinc oxide concentration of 1.5 to 60 g / L and an alkaline concentration of 40 to 400 g / L. The method for producing a metal material having a corrosion-resistant conductive film according to any one of claims 31 to 37, wherein the metal material is immersed in a zinc immersion bath at room temperature for 5 to 120 seconds.
(39) 燃料電池形成材が、 アルミ ニウム又はアルミ ニウム合金か らなるアルミ ニ ウム材で形成される請求項 3 2〜 3 8 のいずれかに 記載の耐食導電性皮膜を有する金属材の製造方法。  (39) The method for producing a metal material having a corrosion-resistant conductive film according to any one of claims 32 to 38, wherein the fuel cell forming material is formed of an aluminum material made of aluminum or an aluminum alloy. .
(40) 貴金属メ ツキ皮膜は、 燃料電池形成材の表面全面に形成さ れている請求項 3 2〜 3 9のいずれかに記載の耐食導電性皮膜を有 する金属材の製造方法。  (40) The method for producing a metal material having a corrosion-resistant conductive film according to any one of claims 32 to 39, wherein the noble metal plating film is formed on the entire surface of the fuel cell forming material.
(41) 貴金属メ ツキ処理が金メ ッキ処理であり、 貴金属メ ツキ皮 膜が金メ ツキ皮膜である請求項 3 2〜 4 0のいずれかに記載の耐食 導電性皮膜を有する金属材の製造方法。  (41) The precious metal plating treatment is a gold plating treatment, and the precious metal plating skin film is a gold plating film. The metal material having a corrosion-resistant conductive film according to any one of claims 32 to 40, Production method.
(42) 貴金属メ ツキ処理が白金メ ッキ処理であり、 貴金属メ ツキ 皮膜が白金メ ツキ皮膜である請求項 3 2〜 4 0のいずれかに記載の 耐食導電性皮膜を有する金属材の製造方法。  (42) The production of a metal material having a corrosion-resistant conductive film according to any of claims 32 to 40, wherein the noble metal plating treatment is a platinum plating treatment, and the noble metal plating film is a platinum plating film. Method.
(43) 貴金属メ ツキ処理が白金ロジウムメ ツキ処理であり、 貴金 属メ ツキ皮膜が白金ロジウムメ ツキ皮膜である請求項 3 2〜 4 0の いずれかに記載の耐食導電性皮膜を有する金属材の製造方法。  (43) The noble metal plating treatment is a platinum rhodium plating treatment, and the noble metal plating film is a platinum rhodium plating film. Production method.
(44) エッチング処理前の燃料電池形成材が、 表面研磨処理によ りその表面粗さが 0. 0 2〜 0. 3 μ πι の範囲に調整されている請 求項 3 2〜 4 3のいずれかに記載の耐食導電性皮膜を有する金属材 の製造方法。  (44) The fuel cell forming material before the etching treatment has a surface roughness adjusted to a range of 0.02 to 0.3 μπι by surface polishing treatment. A method for producing a metal material having a corrosion-resistant conductive film according to any one of the above.
(45) 表面研磨処理が、 電解研磨処理、 機械研磨処理、 パフ研磨 処理、 及びブラス ト研磨処理から選ばれたいずれか 1種の処理又は 2種以上の処理の組合せである請求項 4 4に記載の耐食導電性皮膜 を有する金属材の製造方法。  (45) The surface polishing treatment according to claim 44, wherein the surface polishing treatment is any one treatment selected from electrolytic polishing treatment, mechanical polishing treatment, puff polishing treatment, and blast polishing treatment, or a combination of two or more treatments. A method for producing a metal material having the corrosion-resistant conductive film according to the above.
39 訂正された用鉞 (規則 91) 39 Corrected Ecchi (Rule 91)
PCT/JP2003/003079 2002-03-15 2003-03-14 Metal member having corrosion-resistant conductive coating and process for producing the same WO2003079476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213371A AU2003213371A1 (en) 2002-03-15 2003-03-14 Metal member having corrosion-resistant conductive coating and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-71780 2002-03-15
JP2002071780 2002-03-15
JP2002-299877 2002-10-15
JP2002299877A JP2004134310A (en) 2002-10-15 2002-10-15 Metal material having anticorrosion conductive film and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2003079476A1 true WO2003079476A1 (en) 2003-09-25

Family

ID=28043723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003079 WO2003079476A1 (en) 2002-03-15 2003-03-14 Metal member having corrosion-resistant conductive coating and process for producing the same

Country Status (2)

Country Link
AU (1) AU2003213371A1 (en)
WO (1) WO2003079476A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046051A (en) * 2012-12-13 2013-04-17 苏州新区化工节能设备厂 Surface corrosion treating method before plating water electrolysis pole plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell
GB2342223A (en) * 1998-09-30 2000-04-05 Aisin Takaoka Ltd Fuel cell and separator for fuel cell
JP2001351642A (en) * 2000-06-08 2001-12-21 Riken Corp Separator for fuel cell
JP2001357859A (en) * 2000-06-13 2001-12-26 Riken Corp Separator for fuel cell
US20020009630A1 (en) * 2000-05-26 2002-01-24 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell
GB2342223A (en) * 1998-09-30 2000-04-05 Aisin Takaoka Ltd Fuel cell and separator for fuel cell
US20020009630A1 (en) * 2000-05-26 2002-01-24 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell
JP2001351642A (en) * 2000-06-08 2001-12-21 Riken Corp Separator for fuel cell
JP2001357859A (en) * 2000-06-13 2001-12-26 Riken Corp Separator for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046051A (en) * 2012-12-13 2013-04-17 苏州新区化工节能设备厂 Surface corrosion treating method before plating water electrolysis pole plate

Also Published As

Publication number Publication date
AU2003213371A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
WO2011016465A1 (en) Titanium material for solid polymer fuel cell separator, and process for production thereof
JP4926730B2 (en) Titanium material for polymer electrolyte fuel cell separator and method for producing the same, separator using the titanium material, and polymer electrolyte fuel cell using the separator
CA2373344A1 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JPWO2003079477A1 (en) Cell unit of solid polymer electrolyte fuel cell
WO2015133296A1 (en) Porous metal body and method for producing porous metal body
CN109983606B (en) Fuel cell and method for producing porous metal body
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2010027262A (en) Fuel cell separator and fuel cell
US11380907B2 (en) Substrate stainless steel sheet for fuel cell separators and production method therefor
US20200280073A1 (en) Metal porous body, fuel cell and method for producing metal porous body
JPWO2020049851A1 (en) Method for manufacturing metal porous body, fuel cell and metal porous body
WO2006022027A1 (en) Titanium based material for fuel cell separator and process for producing same
WO2003079476A1 (en) Metal member having corrosion-resistant conductive coating and process for producing the same
JP2009087909A (en) Manufacturing method of separator for fuel cell
JP2004134310A (en) Metal material having anticorrosion conductive film and its manufacturing method
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
WO2009034845A1 (en) Process for producing separator for fuel cell
JP4186659B2 (en) Metal separator for fuel cell and manufacturing method thereof
EP3181728B1 (en) Metal material and current-carrying component using said metal material
JP4523234B2 (en) Fuel cell separator
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell
WO2020179693A1 (en) Porous body, electrochemical cell, and method for producing porous body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase