JP2001357859A - Separator for fuel cell - Google Patents

Separator for fuel cell

Info

Publication number
JP2001357859A
JP2001357859A JP2000177541A JP2000177541A JP2001357859A JP 2001357859 A JP2001357859 A JP 2001357859A JP 2000177541 A JP2000177541 A JP 2000177541A JP 2000177541 A JP2000177541 A JP 2000177541A JP 2001357859 A JP2001357859 A JP 2001357859A
Authority
JP
Japan
Prior art keywords
fuel cell
base material
contact interface
cell separator
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000177541A
Other languages
Japanese (ja)
Inventor
Koretomo Ko
云智 高
Akira Kunimoto
晃 国元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2000177541A priority Critical patent/JP2001357859A/en
Publication of JP2001357859A publication Critical patent/JP2001357859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a metallic fuel cell having excellent corrosion resistance. SOLUTION: This separator is formed of metal base material and has a contact surface to an electrode or a collector, and a reaction gas vent slot. A conductive film containing a metal, an oxide, a nitride, a carbide or carbon as a main constituent is formed on the contact surface. The structure or the function of the conductive film is continuously changed between the contact interface with the metal base material and the contact interface with the electrode or the collector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池用セパレー
タに関し、特に自動車の動力用車載燃料電池に使用でき
るセパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator, and more particularly to a separator that can be used in a vehicle-mounted fuel cell for powering an automobile.

【0002】[0002]

【従来の技術】燃料電池は燃料から電気へのエネルギー
変換効率が高く有害物質を排出しないため、次世代の発
電装置として注目されている。特に150℃以下の温度領
域で作動する高分子イオン交換膜型燃料電池は盛んに研
究されており、数年後の実用化が見込まれている。この
燃料電池は比較的低い温度で作動でき、発電の出力密度
が高く、小型化が可能であるため家庭用や車載用の燃料
電池として適している。
2. Description of the Related Art Fuel cells have attracted attention as next-generation power generators because of their high energy conversion efficiency from fuel to electricity and no emission of harmful substances. In particular, polymer ion exchange membrane fuel cells that operate in a temperature range of 150 ° C. or less are being actively studied, and are expected to be put into practical use in several years. This fuel cell can be operated at a relatively low temperature, has a high power generation output density, and can be downsized, so that it is suitable as a home or vehicle fuel cell.

【0003】高分子イオン交換膜型燃料電池は通常、固
体電解質膜の両面に燃料電極及び酸素電極(空気電極)
を固定して単電池(セル)を形成し、これを燃料ガスと
空気を供給する通気溝を設けた板状セパレータを介して
積層することにより構成される。一般に固体電解質膜と
してはスルホン酸基を有するフッ素樹脂系イオン交換膜
等が用いられ、電極はカーボンブラックに撥水材PTFEと
貴金属微粒子触媒を分散したもの等により形成する。水
素−酸素燃料電池が作動する際には、水素ガスが酸化さ
れて生じたプロトンが電解質中に進入し水分子と結合し
てH3O+となり、正極側に移動する。正極側では通気溝か
ら導入された酸素が水素の酸化反応により発生する電子
を得て、電解質中のプロトンと結合し水となる。これら
の反応過程を継続することにより電気エネルギーを連続
的に取り出すことができる。この単電池の理論起電力は
1.2Vであるが、実際には電極の分極、反応ガスのクロス
オーバー(燃料ガスが電解質を透過して空気電極に漏れ
る現象)、電極及び集電体の接触抵抗による電圧降下等
の原因で、出力電圧は0.6〜0.8V程度である。従って、
実用的な出力を得るためには、セパレータを介して数十
の単電池をスタックし直列的に接続する必要がある。
In a polymer ion exchange membrane fuel cell, a fuel electrode and an oxygen electrode (air electrode) are usually provided on both surfaces of a solid electrolyte membrane.
Are fixed to form a unit cell (cell), which is laminated via a plate-shaped separator provided with a ventilation groove for supplying fuel gas and air. In general, a fluororesin-based ion exchange membrane having a sulfonic acid group or the like is used as the solid electrolyte membrane, and the electrode is formed of carbon black in which a water-repellent material PTFE and a noble metal fine particle catalyst are dispersed. When the hydrogen-oxygen fuel cell operates, protons generated by oxidizing hydrogen gas enter the electrolyte, combine with water molecules to form H 3 O + , and move to the positive electrode side. On the positive electrode side, oxygen introduced from the ventilation groove obtains electrons generated by the oxidation reaction of hydrogen and combines with protons in the electrolyte to form water. By continuing these reaction processes, electric energy can be continuously taken out. The theoretical electromotive force of this cell is
Although it is 1.2V, it is actually caused by electrode polarization, reaction gas crossover (phenomenon of fuel gas passing through the electrolyte and leaking to the air electrode), voltage drop due to contact resistance between electrode and current collector, etc. The output voltage is about 0.6-0.8V. Therefore,
To obtain a practical output, it is necessary to stack dozens of cells via a separator and connect them in series.

【0004】前述の発電原理から解るように、電解質中
にはH+が多く存在するので、水又は水蒸気が多量に存在
する電解質内部と電極の近傍では強酸性となる。また正
極側で酸素がH+と結合して水を生成するが、電池の作動
状態によっては過酸化水素が生成する場合がある。セパ
レータはこのような環境下に組み込まれるので、電気伝
導性及び気密性に加えて、高い化学的・電気化学的安定
性(耐食性)を有することが要求される。
As can be understood from the above-described power generation principle, a large amount of H + is present in the electrolyte, so that the electrolyte becomes strongly acidic inside the electrolyte where a large amount of water or water vapor is present and near the electrodes. In addition, oxygen is combined with H + on the positive electrode side to generate water, but hydrogen peroxide may be generated depending on the operation state of the battery. Since the separator is incorporated in such an environment, it is required to have high chemical / electrochemical stability (corrosion resistance) in addition to electric conductivity and airtightness.

【0005】従来の燃料電池用セパレータの多くは黒鉛
板を機械加工したものである。黒鉛セパレータは電気抵
抗が低く耐食性が高い反面、機械強度が低く加工コスト
が高い。車載用燃料電池に用いるセパレータは高い機械
強度を有し低コストで加工可能であることが要求される
ので、現状の黒鉛セパレータをそのまま車載用燃料電池
に適用することは困難である。近年、黒鉛粉末を樹脂と
混合して射出成形し、更に高温焼成することによりセパ
レータを製造する方法が検討されているが、得られる焼
成体の密度が低いため気密性が悪いという問題がある。
このセパレータを樹脂で浸漬し炭化再焼成することによ
って密度を高めることは可能であるが、製造工程が煩雑
になる。加えて、このように製造されたセパレータの接
触電気抵抗は従来の黒鉛セパレータより数倍大きく、電
池の出力電圧低下が避けられない。
Many conventional fuel cell separators are obtained by machining a graphite plate. Graphite separators have low electrical resistance and high corrosion resistance, but have low mechanical strength and high processing costs. Since it is required that a separator used for an in-vehicle fuel cell has high mechanical strength and can be processed at low cost, it is difficult to apply a current graphite separator to an in-vehicle fuel cell as it is. In recent years, a method of manufacturing a separator by mixing graphite powder with a resin, injection molding and firing at a high temperature has been studied, but there is a problem that the density of the obtained fired body is low and airtightness is poor.
It is possible to increase the density by immersing this separator in a resin and carbonizing and refiring, but the manufacturing process becomes complicated. In addition, the contact electric resistance of the separator thus manufactured is several times higher than that of the conventional graphite separator, and a decrease in the output voltage of the battery is inevitable.

【0006】黒鉛セパレータ以外に、金属からなるセパ
レータも検討されている。金属セパレータはバルク電気
抵抗が低く、高い気密性及び機械強度を有し、加工コス
トの低減が容易である。また、セパレータの厚さを薄く
できるので小型化が容易である。更に、アルミニウムの
ような低比重金属材料を用いると燃料電池を一層軽量化
することができる。しかしながら、金属セパレータにお
いては、母材の金属そのものが腐食しやすいという問題
がある。特にアルミニウム母材は非常に腐食速度が大き
いことが報告されている(R. L. Rorup, et al., Mate
r. Res. Soc. Symp. Proc., 393 (1995)等)。また、腐
食により生成した金属イオンが電解質膜に進入すると、
膜のイオン伝導性が低下し電池の性能に影響を与える恐
れがある。
[0006] In addition to the graphite separator, a separator made of metal has been studied. Metal separators have low bulk electrical resistance, high airtightness and mechanical strength, and are easy to reduce processing costs. In addition, since the thickness of the separator can be reduced, miniaturization is easy. Further, when a low specific gravity metal material such as aluminum is used, the weight of the fuel cell can be further reduced. However, the metal separator has a problem that the base metal itself is easily corroded. In particular, it has been reported that the aluminum base metal has a very high corrosion rate (RL Rorup, et al., Mate
r. Res. Soc. Symp. Proc., 393 (1995)). Also, when metal ions generated by corrosion enter the electrolyte membrane,
The ionic conductivity of the membrane may be reduced and affect the performance of the battery.

【0007】特開平11-162478号は、貴金属を金属セパ
レータの全表面にメッキすることにより、耐食性を改善
する手法を開示している。この手法はセパレータ性能に
関しては問題が無いが、高コスト化を招き実用的ではな
い。コスト低減のためには貴金属メッキ層を薄くする必
要があるが、湿式メッキの際に層厚を薄くすると微細な
ピンホールが発生し腐食の原因となり、また乾式メッキ
(蒸着、スパッタ等)では生産効率が悪く、被膜の均一
性も悪化してしまう。
JP-A-11-162478 discloses a method of improving corrosion resistance by plating a noble metal on the entire surface of a metal separator. Although this method has no problem with respect to the separator performance, it is not practical because it increases the cost. In order to reduce costs, it is necessary to reduce the thickness of the noble metal plating layer. However, if the thickness is reduced during wet plating, fine pinholes are generated and cause corrosion, and dry plating (evaporation, sputtering, etc.) produces The efficiency is poor, and the uniformity of the coating is also deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、優れ
た耐食性を有する金属製燃料電池用セパレータを提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metal fuel cell separator having excellent corrosion resistance.

【0009】[0009]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者らは、構造又は機能が連続的に変化し
ている導電性被膜を有する金属製燃料電池用セパレータ
は優れた耐食性を示すことを発見し、本発明に想到し
た。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventors have found that a metal fuel cell separator having a conductive coating whose structure or function changes continuously has excellent corrosion resistance. And found the present invention.

【0010】すなわち、本発明の燃料電池用セパレータ
は金属母材からなり、電極又は集電体との接触面及び反
応ガス通気溝を有し、電極又は集電体との接触面上には
金属、酸化物、窒化物、炭化物又はカーボンを主成分と
する導電性被膜が形成されており、該導電性被膜の構造
又は機能が金属母材との接触界面から電極又は集電体と
の接触界面の間で連続的に変化していることを特徴とす
る。
That is, the fuel cell separator of the present invention is made of a metal base material, has a contact surface with an electrode or a current collector and a reactive gas ventilation groove, and has a metal surface on the contact surface with the electrode or the current collector. , An oxide, a nitride, a carbide, or a conductive film mainly containing carbon is formed, and the structure or function of the conductive film is changed from a contact interface with a metal base material to a contact interface with an electrode or a current collector. Characterized by a continuous change between.

【0011】本発明の燃料電池用セパレータの好ましい
実施態様においては、例えば導電性被膜の(A)組成、(B)
結晶構造、又は(C)多孔度が金属母材との接触界面から
電極又は集電体との接触界面の間で連続的に変化してい
る。
In a preferred embodiment of the fuel cell separator of the present invention, for example, the composition (A)
The crystal structure or (C) porosity continuously changes from the contact interface with the metal base material to the contact interface with the electrode or the current collector.

【0012】上記(A)の場合、金属母材との接触界面に
おける導電性被膜の組成が金属母材の構成元素を20重量
%以上含むのが好ましい。また、電極又は集電体との接
触界面における導電性被膜の組成がAu、Pt、Pd、Ir又は
Rhを30重量%以上含むのが好ましい。
In the case of the above (A), the composition of the conductive film at the contact interface with the metal base material preferably contains at least 20% by weight of the constituent elements of the metal base material. Further, the composition of the conductive film at the contact interface with the electrode or current collector is Au, Pt, Pd, Ir or
It is preferable to contain Rh by 30% by weight or more.

【0013】上記(B)の場合、金属母材との接触界面に
おける導電性被膜の結晶構造が非晶質構造又は準非晶質
構造であり、電極又は集電体との接触界面における導電
性被膜の結晶構造が結晶質構造であるのが好ましい。ま
たこの場合では導電性被膜の主成分がカーボンであるの
が好ましく、金属母材との接触界面における導電性被膜
のX線回折パターンの、2θで30〜50°に認められるピー
クの半価幅は5.84°以下であるのが好ましい。
In the case of the above (B), the crystal structure of the conductive film at the contact interface with the metal base material is an amorphous structure or a quasi-amorphous structure, and the conductive film at the contact interface with the electrode or the current collector is formed. Preferably, the crystalline structure of the coating is a crystalline structure. In this case, the main component of the conductive coating is preferably carbon, and the half-value width of the peak observed at 30 to 50 ° in 2θ of the X-ray diffraction pattern of the conductive coating at the contact interface with the metal base material. Is preferably 5.84 ° or less.

【0014】上記(C)の場合、金属母材との接触界面に
おける導電性被膜の多孔度が5%以下であり、電極又は
集電体との接触界面における導電性被膜の多孔度が20%
以上であるのが好ましい。
In the case of (C), the porosity of the conductive film at the contact interface with the metal base material is 5% or less, and the porosity of the conductive film at the contact interface with the electrode or current collector is 20%.
It is preferable that this is the case.

【0015】導電性被膜の厚みは0.5〜30μmであるのが
好ましい。また、上記金属母材はアルミニウム又はアル
ミニウム合金からなる金属板であるのが好ましく、その
場合は上記反応ガス通気溝の表面にアルマイト被膜を形
成するのが好ましい。
The thickness of the conductive film is preferably 0.5 to 30 μm. Further, the metal base material is preferably a metal plate made of aluminum or an aluminum alloy, and in that case, it is preferable to form an alumite film on the surface of the reaction gas ventilation groove.

【0016】[0016]

【発明の実施の形態】本発明の燃料電池用セパレータは
金属母材からなり、電極又は集電体との接触面及び反応
ガス通気溝を有する。セパレータの電極又は集電体との
接触面上には導電性被膜を形成する。本発明のセパレー
タは様々な燃料電池に使用でき、特に自動車の動力用車
載燃料電池に好適に利用できる。以下、本発明の燃料電
池用セパレータを図面を用いて詳述するが、本発明はそ
れらに限定されず本発明の趣旨を変更しない限り種々の
変更を加えることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell separator of the present invention is made of a metal base material, and has a contact surface with an electrode or a current collector and a reactive gas vent groove. A conductive coating is formed on the surface of the separator that contacts the electrode or current collector. INDUSTRIAL APPLICABILITY The separator of the present invention can be used for various fuel cells, and can be particularly suitably used for an in-vehicle fuel cell for driving an automobile. Hereinafter, the fuel cell separator of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited thereto, and various changes can be made without changing the gist of the present invention.

【0017】図1は本発明の燃料電池用セパレータを含
む燃料電池の一例を示す部分概略図である。図1の燃料
電池は固体電解質2とその両側に設けられたアノード3
及びカソード4からなる単電池1を、セパレータ5を介
して積層して構成されている。積層の両端は外部回路
(図示せず)に接続する。電極とセパレータとの間には
集電体を設置してもよい。以下、本発明のセパレータの
各構成要素について説明する。
FIG. 1 is a partial schematic view showing an example of a fuel cell including the fuel cell separator of the present invention. The fuel cell shown in FIG. 1 has a solid electrolyte 2 and anodes 3 provided on both sides thereof.
And a unit cell 1 including a cathode 4 and a separator 5 interposed therebetween. Both ends of the stack are connected to an external circuit (not shown). A current collector may be provided between the electrode and the separator. Hereinafter, each component of the separator of the present invention will be described.

【0018】[1]金属母材 本発明ではセパレータ母材として金属母材を用いる。金
属母材としては炭素鋼板、SUS鋼板等の一般的な金属板
を用いてよい。セパレータを自動車の車載燃料電池に適
用する場合は、金属母材としてアルミニウム、チタニウ
ム、マグネシウム等の軽量で比強度が高い金属又はその
合金からなる金属板を用いるのが好ましい。中でも、ア
ルミニウム又はアルミニウム合金からなる金属板が特に
好ましい。反応ガスのクロスオーバー(燃料ガスが電解
質を透過して空気電極に漏れる現象)を防ぐために、貫
通孔等の欠陥の無い金属板を使用するのが好ましい。金
属母材の厚さは特に限定されないが、車載燃料電池に用
いる場合は0.5〜3mmとするのが好ましい。
[1] Metal Base Material In the present invention, a metal base material is used as a separator base material. A general metal plate such as a carbon steel plate and a SUS steel plate may be used as the metal base material. When the separator is applied to an in-vehicle fuel cell of an automobile, it is preferable to use a metal plate made of a lightweight metal having a high specific strength such as aluminum, titanium, and magnesium, or an alloy thereof as a metal base material. Among them, a metal plate made of aluminum or an aluminum alloy is particularly preferable. In order to prevent the crossover of the reaction gas (the phenomenon in which the fuel gas permeates the electrolyte and leaks to the air electrode), it is preferable to use a metal plate free from defects such as through holes. The thickness of the metal base material is not particularly limited, but is preferably 0.5 to 3 mm when used for an in-vehicle fuel cell.

【0019】[2]電極又は集電体との接触面 本発明のセパレータは電極又は集電体との接触面を有す
る。該接触面の形状は、燃料電池の電極又は一次集電体
のカーボンペーパー、カーボンクロス等と接触するため
に適した形状であればよく、図面により限定されない。
[2] Contact Surface with Electrode or Current Collector The separator of the present invention has a contact surface with the electrode or current collector. The shape of the contact surface may be any shape suitable for contacting the electrode of the fuel cell or the carbon paper or carbon cloth of the primary current collector, and is not limited by the drawings.

【0020】図1に示すように、セパレータ母材の電極
又は集電体との接触面上には導電性被膜7を形成する。
導電性被膜は該接触面のみに形成してもよく、セパレー
タ母材の全表面に形成してもよい。導電性被膜は金属、
酸化物、窒化物、炭化物又はカーボンを主成分とする。
これらの材料を含む混合物を使用してもよい。これらは
導電性を有する材料であればよく特に限定されない。導
電性被膜の材料として使用可能な酸化物としてはITO、Z
nO、SnO2、In2O3等が挙げられる。炭化物としては炭化
ケイ素、炭化ニオブ、炭化タングステン等が使用でき
る。炭化物導電性被膜は接触抵抗が小さく良好な耐食性
及び耐酸化性を有するので、セパレータの保護膜として
も作用する。カーボンとしてはCVDによる黒鉛膜、DLC膜
(ダイヤモンドライクカーボン膜)等が使用できる。ま
た黒鉛粉に撥水剤を添加したものを塗布してもよい。電
極がカーボンブラックに微量のPtを添加したもの等から
なる場合、カーボン被膜を用いると接触なじみが良い。
As shown in FIG. 1, a conductive film 7 is formed on the surface of the separator base material that contacts the electrode or current collector.
The conductive film may be formed only on the contact surface, or may be formed on the entire surface of the separator base material. The conductive coating is metal,
Oxide, nitride, carbide or carbon as a main component.
Mixtures containing these materials may be used. These are not particularly limited as long as they are conductive materials. Oxides that can be used as conductive coating materials include ITO and Z.
nO, SnO 2 , In 2 O 3 and the like. As the carbide, silicon carbide, niobium carbide, tungsten carbide and the like can be used. Since the carbide conductive film has low contact resistance and good corrosion resistance and oxidation resistance, it also acts as a protective film for the separator. As the carbon, a graphite film by CVD, a DLC film (diamond-like carbon film) or the like can be used. Further, graphite powder to which a water repellent is added may be applied. When the electrode is made of carbon black to which a small amount of Pt is added, the use of a carbon coating provides good contact familiarity.

【0021】本発明においては、上記導電性被膜の構造
又は機能が金属母材との接触界面から電極又は集電体と
の接触界面の間で連続的に変化している。即ち、本発明
のセパレータにおいては、導電性被膜の組成、結晶構
造、多孔度等を金属母材側と電極(集電体)側の間で変
化させることにより耐食性、導電性等の機能を変化させ
る。本発明でいう「連続的な変化」には、一部に段階的
な変化を含む準連続的な変化も含まれる。組成等の構成
が連続的に変化した被膜を形成すると、一層ごとに積層
する方式と異なり層間の隙間や腐食等が発生しにくい。
In the present invention, the structure or function of the conductive film continuously changes from the contact interface with the metal base material to the contact interface with the electrode or the current collector. That is, in the separator of the present invention, the functions such as corrosion resistance and conductivity are changed by changing the composition, crystal structure, porosity and the like of the conductive film between the metal base material side and the electrode (current collector) side. Let it. The “continuous change” in the present invention includes a quasi-continuous change including a stepwise change in part. When a film whose composition or the like is continuously changed is formed, unlike the method of laminating one layer at a time, a gap or corrosion between layers is hardly generated.

【0022】導電性被膜の膜厚は0.5〜30μmとするのが
好ましく、1〜20μmとするのがより好ましい。膜厚が
0.5μmより小さいと金属母材の耐食性が不充分となり、
30μmより大きいと被膜が剥離しやすくなるため好まし
くない。以下、本発明によるセパレータの好ましい実施
態様として、導電性被膜の(A)組成、(B)結晶構造、又は
(C)多孔度が金属母材との接触界面から電極又は集電体
との接触界面の間で変化している例を詳細に説明する。
The thickness of the conductive film is preferably 0.5 to 30 μm, more preferably 1 to 20 μm. Film thickness
If it is smaller than 0.5 μm, the corrosion resistance of the metal base material becomes insufficient,
If it is larger than 30 μm, the coating is apt to peel off, which is not preferable. Hereinafter, as a preferred embodiment of the separator according to the present invention, (A) composition of the conductive coating, (B) crystal structure, or
(C) An example in which the porosity changes between the contact interface with the metal base material and the contact interface with the electrode or current collector will be described in detail.

【0023】(A)組成 金属材料同士又は導電性材料同士を接触させると電気抵
抗が生じる。この電気抵抗は各材料のバルク抵抗と接触
界面の接触抵抗を含む。殆どの導電性材料においては、
バルク電気抵抗はあまり高くなく接触界面の電気抵抗が
高い。このことは導電性材料の表面に酸化層が常に存在
すること、異なる材料の表面エネルギーによって電位障
壁が生成すること、表面組成がバルクと異なること等に
由来する。
(A) Composition When metal materials or conductive materials are brought into contact with each other, an electric resistance is generated. This electric resistance includes the bulk resistance of each material and the contact resistance of the contact interface. For most conductive materials,
The bulk electric resistance is not so high and the electric resistance at the contact interface is high. This is because an oxide layer is always present on the surface of the conductive material, a potential barrier is generated by the surface energy of a different material, and the surface composition is different from that of the bulk.

【0024】本発明では、図2に例として示すように導
電性被膜7を金属母材との接触界面側の最下部7a、中間
部7b〜7e、及び電極との接触界面側の最上部7fにより構
成してよい。最下部7a及びその近傍は耐食性に優れた材
料Aを主成分とするのが好ましく、最上部7f及びその近
傍は接触抵抗が低い材料Bを主成分とするのが好まし
い。材料Aの接触抵抗は高くてもよい。また、最下部7a
及びその近傍はセパレータ母材との密着性がよい緻密な
材料により形成するのが、ピンホールや表面欠陥による
母材の腐食を大幅に低減でき、好ましい。このように、
本発明のセパレータに形成する導電性被膜の組成は目的
に応じて様々な材料から適宜選択できるので、耐食性向
上と接触抵抗低減を両立することができる。なお、図2
中では各部7a〜7fが段階的に積層されたように模式的に
示すが、これらは実際にはその組成が金属母材側から電
極又は集電体側の間で連続的に変化している単一の被膜
である。以下、導電性被膜の金属母材と接する部分を
「最下部」、電極又は集電体と接する部分を「最上部」
と称するが、これらは段階的に積層された層を表すもの
ではなく、連続的に構造又は機能が変化した単一の被膜
中の一部分を表す。
In the present invention, as shown in FIG. 2 as an example, the conductive film 7 is provided with a lowermost portion 7a on the contact interface side with the metal base material, intermediate portions 7b to 7e, and an uppermost portion 7f on the contact interface side with the electrode. May be used. It is preferable that the lowermost portion 7a and its vicinity include a material A having excellent corrosion resistance as a main component, and the uppermost portion 7f and its vicinity preferably include a material B having a low contact resistance as a main component. The contact resistance of the material A may be high. Also, the bottom 7a
It is preferable to form the base material and the vicinity thereof from a dense material having good adhesion to the base material of the separator because corrosion of the base material due to pinholes and surface defects can be significantly reduced. in this way,
Since the composition of the conductive film formed on the separator of the present invention can be appropriately selected from various materials depending on the purpose, both improvement in corrosion resistance and reduction in contact resistance can be achieved. Note that FIG.
In the drawings, each part 7a to 7f is schematically shown as if they are stacked stepwise, but in fact, these are simply those whose composition continuously changes from the metal base material side to the electrode or current collector side. One film. Hereinafter, the portion of the conductive film that is in contact with the metal base material is the “bottom”, and the portion that is in contact with the electrode or current collector is the “top”.
, But do not represent layers that are layered in a step-by-step manner, but rather a portion of a single coating that has a continuous change in structure or function.

【0025】前述のように、金属母材に白金族貴金属被
膜をメッキして耐食性を改善する方法が知られている。
この方法においてコストを抑えるためには白金族貴金属
被膜を薄くする必要があるが、一般に貴金属メッキ層を
薄くするとピンホールの発生等によって充分な耐食性が
得られない。即ち、母材表面が貴金属被膜により完全に
被覆されれば貴金属の化学安定性により母材の腐食は抑
えられるが、被膜にピンホールや欠陥等があると、母材
と被膜の電極電位差が大きく貴金属の触媒活性が高いた
めに還元反応が非常に進行しやすく、セパレータの腐食
が避けられない。本発明では、最上部の主成分を貴金属
とし、該最上部と金属母材との間の部分の主成分を耐食
性に優れた材料とすることにより、金属母材と貴金属被
膜の電気化学的電極電位差を緩和し腐食速度を低減でき
る。その結果、ピンホール又は表面欠陥による母材の腐
食を大幅に低減することができる。つまり本発明では、
単に物理的に隔離することにより腐食を抑制するのみな
らず、電気化学的に耐食性を向上させることができる。
As described above, there is known a method of plating a metal base material with a platinum group noble metal coating to improve corrosion resistance.
In this method, it is necessary to reduce the thickness of the platinum group noble metal coating in order to reduce the cost. However, if the noble metal plating layer is thin, sufficient corrosion resistance cannot be obtained due to generation of pinholes. That is, if the base material surface is completely covered with the noble metal film, the corrosion of the base material is suppressed by the chemical stability of the noble metal, but if the film has pinholes or defects, the electrode potential difference between the base material and the film is large. Since the catalytic activity of the noble metal is high, the reduction reaction proceeds very easily, and corrosion of the separator is inevitable. In the present invention, the uppermost main component is a noble metal, and the main component of the portion between the uppermost portion and the metal base material is made of a material having excellent corrosion resistance. The potential difference can be reduced and the corrosion rate can be reduced. As a result, corrosion of the base material due to pinholes or surface defects can be significantly reduced. That is, in the present invention,
Simply by physically isolating, corrosion can be suppressed, and also corrosion resistance can be electrochemically improved.

【0026】上記最下部及びその近傍は、Pd、Ru、Ag、
Zr、Cr、B、Ni、Ti及びSnからなる群から選ばれる金属
又はその合金、酸化物若しくは窒化物、炭化物、或いは
カーボンを主成分とするのが好ましい。このような材料
を用いることにより被膜コストを大幅に低減できる。ま
た、最下部の組成は金属母材の構成元素を20重量%以上
含むのが好ましく、30重量%以上含むのがより好まし
い。これにより導電性被膜の剥離を抑制することがで
き、セパレータ電極接触面の耐食性の向上及び低コスト
化が可能となる。
The lowermost portion and its vicinity are composed of Pd, Ru, Ag,
It is preferable to use a metal selected from the group consisting of Zr, Cr, B, Ni, Ti and Sn or an alloy, oxide, nitride, carbide, or carbon thereof as a main component. By using such a material, the coating cost can be significantly reduced. The lowermost composition preferably contains the constituent elements of the metal base material in an amount of 20% by weight or more, more preferably 30% by weight or more. Thereby, the peeling of the conductive film can be suppressed, and the corrosion resistance of the contact surface of the separator electrode can be improved and the cost can be reduced.

【0027】一方、上記最上部及びその近傍は、電極と
の接触抵抗が低く耐食性に優れた材料を主成分とするの
がより好ましい。そのような材料としては、Au、Pt、P
d、Ir、Ru、Rh及びAgからなる群から選ばれる金属若し
くはその合金、炭化物、カーボン等が挙げられる。最上
部の組成はAu、Pt、Pd、Ir又はRhを20重量%以上含むの
が好ましく、30重量%以上含むのが特に好ましい。
On the other hand, it is more preferable that the uppermost portion and the vicinity thereof contain a material having a low contact resistance with an electrode and a high corrosion resistance as a main component. Such materials include Au, Pt, P
Metals selected from the group consisting of d, Ir, Ru, Rh and Ag, or alloys thereof, carbides, carbons and the like can be mentioned. The uppermost composition preferably contains Au, Pt, Pd, Ir or Rh in an amount of 20% by weight or more, particularly preferably 30% by weight or more.

【0028】導電性被膜の組成が金属母材との接触界面
から電極又は集電体との接触界面の間で連続的に変化し
ているセパレータは、例えば2種以上の被膜組成を含む
浴液中に金属母材を浸漬し、2種以上の析出電解電圧を
サイクリックに印加しデューティ比を変えながら湿式電
解メッキすることで作成できる。またドライプロセスと
しては、膜組成のソース(例えばスパッタリングではタ
ーゲット)からの蒸発量の比率を連続的に変える方法等
が適用できる。
Separators in which the composition of the conductive coating continuously changes from the contact interface with the metal base material to the contact interface with the electrode or current collector may be, for example, a bath solution containing two or more coating compositions. It can be prepared by immersing a metal base material in the inside, and applying wet electrolytic plating while changing the duty ratio by cyclically applying two or more kinds of deposition electrolysis voltages. Further, as the dry process, a method of continuously changing the ratio of the evaporation amount from a source (eg, a target in sputtering) of the film composition can be applied.

【0029】導電性被膜の組成が連続的に変化している
セパレータの特に好ましい実施態様においては、金属母
材がアルミニウムからなり、導電性被膜の最下部のAl含
有率が30重量%以上であり、最上部のAu含有率が30重量
%以上である。このような燃料電池用セパレータによれ
ば、電池セルを小型化及び軽量化でき、加えて電極接触
抵抗の大幅な低減、耐食性の向上及び低コスト化が可能
となる。
In a particularly preferred embodiment of the separator in which the composition of the conductive film is continuously changed, the metal base material is made of aluminum, and the lowermost Al content of the conductive film is 30% by weight or more. The uppermost Au content is 30% by weight or more. According to such a fuel cell separator, the size and weight of the battery cell can be reduced, and in addition, the electrode contact resistance can be significantly reduced, the corrosion resistance can be improved, and the cost can be reduced.

【0030】(B)結晶構造 導電性被膜の結晶構造を金属母材との接触界面から電極
又は集電体との接触界面の間で連続的に変化させる場
合、金属母材との接触界面における導電性被膜の結晶構
造を非晶質構造又は準非晶質構造とし、電極又は集電体
との接触界面における導電性被膜の結晶構造を結晶質構
造とするのが好ましい。なお、本発明では「準非晶質」
とはX線回折パターンにおいて明確な結晶ピークを持た
ないが、幾つかのブロードな回折ピークが得られるもの
を意味する。また、この場合は導電性被膜の主成分がカ
ーボンであるのが好ましい。例えば、最下部及びその近
傍は緻密で導電性がやや低い準非晶質の硬質カーボンに
より形成し、順次結晶性を増し、最上部及びその近傍で
は結晶質黒鉛カーボンとすればよい。このとき、カーボ
ン導電性被膜最下部のX線回折パターンの、2θで30〜50
°に認められるピークの半価幅は5.84°以下であるのが
好ましい。即ち、非晶質又は準非晶質の硬質カーボンに
より耐食性を確保し、最上部を結晶質黒鉛カーボンとす
ることで電極との接触抵抗を低減することができる。
(B) Crystal Structure When the crystal structure of the conductive film is continuously changed between the contact interface with the metal base material and the contact interface with the electrode or current collector, the crystal structure at the contact interface with the metal base material is changed. It is preferable that the crystal structure of the conductive film be an amorphous structure or a quasi-amorphous structure, and the crystal structure of the conductive film at a contact interface with an electrode or a current collector be a crystalline structure. In the present invention, "quasi-amorphous"
Means that there is no clear crystal peak in the X-ray diffraction pattern, but some broad diffraction peaks can be obtained. In this case, the main component of the conductive film is preferably carbon. For example, the lowermost portion and its vicinity may be formed of dense and semi-amorphous hard carbon having slightly lower conductivity, and the crystallinity may be sequentially increased, and the uppermost portion and its vicinity may be made of crystalline graphite carbon. At this time, the X-ray diffraction pattern of the lowermost portion of the carbon conductive film was 30 to 50 at 2θ.
The half width of the peak observed at ° is preferably 5.84 ° or less. That is, the corrosion resistance is secured by amorphous or quasi-amorphous hard carbon, and the contact resistance with the electrode can be reduced by using crystalline graphite carbon at the top.

【0031】このような導電性被膜は、プラズマCVD等
の気相反応の成膜条件を調整することにより形成でき
る。
Such a conductive film can be formed by adjusting film forming conditions for a gas phase reaction such as plasma CVD.

【0032】(C)多孔度 導電性被膜の多孔度を金属母材との接触界面から電極又
は集電体との接触界面の間で連続的に変化させることに
よっても、大きな効果が得られる。即ち、膜欠陥の影響
を避けるために導電性被膜の膜厚を大きくすると膜歪み
により膜の剥離やクラック等が生じやすいが、金属板近
傍では導電性被膜を緻密な構造とし順次多孔質とするこ
とで、膜中に層間界面を生ずること無く膜歪みを抑制す
ることができる。
(C) Porosity The great effect can be obtained also by continuously changing the porosity of the conductive film from the contact interface with the metal base material to the contact interface with the electrode or the current collector. That is, when the thickness of the conductive film is increased to avoid the influence of the film defect, peeling or cracking of the film is likely to occur due to film distortion, but the conductive film has a dense structure in the vicinity of the metal plate and is sequentially made porous. Thus, film distortion can be suppressed without causing an interlayer interface in the film.

【0033】金属母材との接触界面における導電性被膜
の多孔度を5%以下とし、電極又は集電体との接触界面
における導電性被膜の多孔度を20%以上とすると、膜の
歪みからくる膜剥離やクラックの発生を大幅に低減する
ことが可能となり、好ましい。
If the porosity of the conductive film at the contact interface with the metal base material is set to 5% or less and the porosity of the conductive film at the contact interface with the electrode or current collector is set to 20% or more, the distortion of the film is reduced. This is preferable because it can greatly reduce the occurrence of film peeling and cracks.

【0034】このような導電性被膜は、スパッタリング
等の成膜条件を調整することにより形成できる。
Such a conductive film can be formed by adjusting film forming conditions such as sputtering.

【0035】[3]反応ガス通気溝 図1に示すように、本発明の燃料電池用セパレータ5は
反応ガス通気溝8及び9を有する。通常、反応ガス通気
溝9とアノード3により形成される通路には燃料ガスが
供給され、反応ガス通気溝8とカソード4により形成さ
れる通路には酸化剤ガスが供給される。反応ガス通気溝
は機械加工、プレス、精密鋳造、化学研磨(エッチン
グ)、電解研磨等の方法により所定パターンに形成すれ
ばよい。反応ガス通気溝の形状は図中ではコ字型とした
が、電極に接する部分に反応ガス用通路が形成できる形
状であれば特に限定されず、反応ガス通気抵抗が小さ
く、且つ発電効率が高くなるように設定するのが好まし
い。通常、各反応ガス通気溝の深さは0.2〜2mmとする
のが好ましく、幅は0.5〜5mmとするのが好ましい。
[3] Reactive Gas Vent Groove As shown in FIG. 1, the fuel cell separator 5 of the present invention has reactive gas vent grooves 8 and 9. Usually, a fuel gas is supplied to a passage formed by the reaction gas ventilation groove 9 and the anode 3, and an oxidizing gas is supplied to a passage formed by the reaction gas ventilation groove 8 and the cathode 4. The reactive gas ventilation groove may be formed in a predetermined pattern by a method such as machining, pressing, precision casting, chemical polishing (etching), and electrolytic polishing. Although the shape of the reaction gas ventilation groove is U-shaped in the figure, it is not particularly limited as long as the reaction gas passage can be formed in a portion in contact with the electrode, and the reaction gas ventilation resistance is small, and the power generation efficiency is high. It is preferable to set so that Usually, the depth of each reaction gas ventilation groove is preferably 0.2 to 2 mm, and the width is preferably 0.5 to 5 mm.

【0036】図1に示すように、セパレータの耐食性及
び耐酸化性を向上させるために、反応ガス通気溝8及び
9の表面には通気溝保護膜6を形成するのが好ましい。
導電性被膜の上記最下部をセパレータの全面に形成し、
通気溝保護膜としてもよい。通気溝保護膜は金属母材を
酸化したり、耐食性物質を湿式メッキ法、溶射法、スパ
ッタリング法、イオンプレーティング法、CVD法等によ
り積層して形成できる。通気溝保護膜の膜厚は0.5〜20
μmとするのが好ましい。
As shown in FIG. 1, in order to improve the corrosion resistance and oxidation resistance of the separator, it is preferable to form a ventilation groove protective film 6 on the surface of the reactive gas ventilation grooves 8 and 9.
Forming the lowermost part of the conductive film on the entire surface of the separator,
It may be a ventilation groove protective film. The ventilation groove protective film can be formed by oxidizing a metal base material or laminating a corrosion resistant substance by a wet plating method, a thermal spraying method, a sputtering method, an ion plating method, a CVD method, or the like. The thickness of the ventilation groove protective film is 0.5 to 20
It is preferably set to μm.

【0037】金属母材としてアルミニウム又はアルミニ
ウム合金からなる金属板を用いる場合には、上記反応ガ
ス通気溝の表面に通気溝保護膜として化学的及び物理的
に安定なアルマイト被膜を形成するのが好ましい。アル
マイト被膜は陽極酸化法等により形成でき、例えば電解
液としてシュウ酸、硫酸、クロム酸等の水溶液を用いて
電解することにより、γ-アルミナ被膜を母材表面に形
成すればよい。
When a metal plate made of aluminum or an aluminum alloy is used as the metal base material, it is preferable to form a chemically and physically stable alumite film as a ventilation groove protective film on the surface of the above-mentioned reaction gas ventilation groove. . The alumite film can be formed by an anodization method or the like. For example, the γ-alumina film may be formed on the surface of the base material by electrolysis using an aqueous solution of oxalic acid, sulfuric acid, chromic acid or the like as an electrolytic solution.

【0038】[0038]

【実施例】以下、実施例により本発明をより詳細に説明
するが、本発明はそれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0039】実施例1 表1に示す各セパレータ母材(1mm×150mm×150mm)
に、プレス加工により深さ1.0mm及び幅3.0mmの反応ガス
通気溝を形成した。次にこれを脱脂・洗浄し、前処理等
の工程を経た後、電解電圧及び電解パルスのデューティ
比を調整しながら電解メッキすることにより、Au/Niの
重量比を0/100(最下部)から100/0(最上部)に連続的
に変化させたAu-Ni傾斜組成被膜を形成し、本発明のセ
パレータを作成した。Au-Ni傾斜組成被膜の厚みは約5
μmであった。なお、本実施例においてはセパレータの
ガス通気溝内面にも同様にAu-Ni傾斜組成被膜を形成し
た。
Example 1 Each separator base material shown in Table 1 (1 mm × 150 mm × 150 mm)
Then, a reaction gas ventilation groove having a depth of 1.0 mm and a width of 3.0 mm was formed by pressing. Next, this is degreased and washed, and after passing through steps such as pre-treatment, the weight ratio of Au / Ni is adjusted to 0/100 (bottom) by performing electroplating while adjusting the electrolysis voltage and the duty ratio of the electrolysis pulse. From 100 to 0/0 (uppermost) to form a gradient composition coating of Au-Ni, thereby producing a separator of the present invention. The thickness of the Au-Ni gradient composition coating is about 5
μm. In this example, an Au—Ni gradient composition coating was similarly formed on the inner surface of the gas vent groove of the separator.

【0040】100重量部のカーボンブラックに15重量部
のPtペースト(Pt:90重量%)を添加し、更に15重量部
のテフロン(登録商標)粒子(平均粒径:0.2μm)を撥
水剤として添加して電極用ペーストを調製した。この電
極用ペーストをプロトン伝導性高分子固体電解質膜(Na
fion)に塗布し乾燥した。これをカーボンクロスで挟
み、更に2枚の上記セパレータで挟み込んで、本発明の
セパレータを含む燃料電池(単電池)1a及び1bをそれぞ
れ作製した。セパレータの締め付け圧力は10kg/cm2とし
た。
15 parts by weight of Pt paste (Pt: 90% by weight) was added to 100 parts by weight of carbon black, and 15 parts by weight of Teflon (registered trademark) particles (average particle size: 0.2 μm) were further added to a water repellent. To prepare a paste for an electrode. This electrode paste is mixed with a proton-conductive polymer solid electrolyte membrane (Na
fion) and dried. This was sandwiched between carbon cloths, and further sandwiched between the two separators, to produce fuel cells (unit cells) 1a and 1b each containing the separator of the present invention. The tightening pressure of the separator was 10 kg / cm 2 .

【0041】上記Au-Ni傾斜組成被膜に換えて、重量比A
u/Niがそれぞれ0/100、25/75、50/50、75/25、100/0のA
u-Ni層を母材側から順に積層したAu-Ni積層被膜を形成
したこと以外は上記燃料電池1a及び1bと同様に、比較用
の燃料電池1a'及び1b'を作製した。また、従来の黒鉛セ
パレータ(導電性被膜なし)を用いた比較用燃料電池1
c'も同様に作製した。
In place of the Au-Ni gradient composition coating, the weight ratio A
u / Ni is 0/100, 25/75, 50/50, 75/25, 100/0 A
Fuel cells 1a 'and 1b' for comparison were produced in the same manner as the above fuel cells 1a and 1b, except that an Au-Ni laminated film in which u-Ni layers were sequentially laminated from the base material side was formed. In addition, a comparative fuel cell 1 using a conventional graphite separator (without conductive coating)
c ′ was similarly prepared.

【0042】得られた燃料電池に対して、アノード側の
反応ガス通気溝に加湿した模擬燃料ガス(70%H2、15%
CO2、15%H2O)を供給し、カソード側通気溝に酸化剤と
して空気を供給して発電性能安定性を評価した。本実施
例では燃料電池セルを2時間作動後1時間停止するサイ
クルで駆動し、評価は約25日間行った。各燃料電池のセ
パレータ母材、導電性被膜の種類、初期発電電圧、25日
間作動後の発電電圧、及び25日間作動後のセパレータ電
極接触面の耐腐食状況を表1に併せて示す。
With respect to the obtained fuel cell, a simulated fuel gas (70% H 2 , 15%
CO 2 , 15% H 2 O) was supplied, and air was supplied as an oxidant to the cathode side ventilation groove to evaluate the power generation performance stability. In this example, the fuel cell was driven in a cycle of stopping for one hour after operating for two hours, and the evaluation was performed for about 25 days. Table 1 also shows the separator base material, the type of conductive film, the initial power generation voltage, the power generation voltage after 25 days of operation, and the corrosion resistance of the separator electrode contact surface after 25 days of operation for each fuel cell.

【0043】[0043]

【表1】 [Table 1]

【0044】表1より、組成の異なる層を積層した導電
性被膜を有するセパレータ(燃料電池1a'及び1b')には
腐食や膜の剥離がみられたのに対して、導電性被膜の組
成を連続的に変化させた本発明のセパレータは良好な耐
食性を示し、該セパレータを用いた燃料電池1a及び1b
は、従来の黒鉛セパレータを用いた燃料電池1c'と同等
の優れた発電性能を有することがわかる。
From Table 1, it can be seen that the separator (fuel cells 1a 'and 1b') having a conductive film in which layers having different compositions were laminated showed corrosion and peeling of the film, whereas the composition of the conductive film The separator of the present invention in which is continuously changed shows good corrosion resistance, and the fuel cells 1a and 1b using the separator
It can be seen that has excellent power generation performance equivalent to that of the fuel cell 1c 'using the conventional graphite separator.

【0045】実施例2 純度99.6%のアルミニウム金属板(1mm×150mm×150m
m)に、プレス加工により深さ1.0mm及び幅3.0mmの反応
ガス通気溝を形成した。これをシュウ酸水溶液中、陽極
酸化し、次いで沸騰水に30分間浸漬し、乾燥して母材表
面に通気溝保護膜として膜厚12μmのアルマイト被膜を
形成した。次にセパレータの電極接触面の平坦度を向上
させるために、電極接触面をラッピング研磨し、洗浄し
た。この工程により電極接触面上に形成された絶縁性ア
ルマイト被膜は除去された。続いて、上記燃料電池1a及
び1bに用いたセパレータの場合と同様の方法により電極
接触面のみに表2に示す導電性被膜を形成し、本発明の
セパレータをそれぞれ作製した。ただし、炭化物、酸化
物又はカーボンを用いた場合は、ターゲットを用いたRF
スパッタリング法により導電性被膜を形成した。なお、
表2中で例えば「最下部:Ni、最上部:Au」と示す場合
は、導電性被膜のアルミニウム母材に接する部分の組成
がNiであり、電極接触界面に近づくにつれてNiの組成比
が連続的に減少し、同時にAuの組成比が連続的に増加
し、電極に接する部分では被膜の組成がAuであることを
表す。得られた本発明のセパレータを用いて、上記実施
例1と同様に燃料電池2a〜2pを作製した。
Example 2 An aluminum metal plate having a purity of 99.6% (1 mm × 150 mm × 150 m
m), a reaction gas ventilation groove having a depth of 1.0 mm and a width of 3.0 mm was formed by press working. This was anodized in an oxalic acid aqueous solution, then immersed in boiling water for 30 minutes, and dried to form a 12 μm-thick alumite film as a ventilation groove protective film on the surface of the base material. Next, in order to improve the flatness of the electrode contact surface of the separator, the electrode contact surface was lapped and polished and washed. By this step, the insulating alumite film formed on the electrode contact surface was removed. Subsequently, the conductive films shown in Table 2 were formed only on the electrode contact surfaces by the same method as in the case of the separators used in the fuel cells 1a and 1b, and the separators of the present invention were produced. However, when using carbide, oxide or carbon, RF using target
A conductive film was formed by a sputtering method. In addition,
In Table 2, for example, when "lower part: Ni, uppermost part: Au" is indicated, the composition of the portion of the conductive film in contact with the aluminum base material is Ni, and the composition ratio of Ni is continuous as approaching the electrode contact interface. At the same time, the Au composition ratio continuously increases, and the composition of the coating in the portion in contact with the electrode is Au. Using the obtained separator of the present invention, fuel cells 2a to 2p were produced in the same manner as in Example 1 above.

【0046】得られた燃料電池2a〜2pの発電性能安定性
を上記実施例1と同様に評価した。ただし、評価は14日
間行った。各燃料電池の最下部の組成、最上部の組成、
初期発電電圧、14日間作動後の発電電圧、及び14日間作
動後のセパレータの耐腐食状況を表2に併せて示す。
The stability of the power generation performance of the obtained fuel cells 2a to 2p was evaluated in the same manner as in Example 1. However, the evaluation was performed for 14 days. The composition at the bottom of each fuel cell, the composition at the top,
Table 2 also shows the initial generated voltage, the generated voltage after 14 days of operation, and the corrosion resistance of the separator after 14 days of operation.

【0047】[0047]

【表2】 [Table 2]

【0048】表2より、セパレータ母材としてアルミニ
ウム金属板を用いた場合にも本発明のセパレータは優れ
た耐食性を示し、該セパレータを用いた燃料電池は高い
発電性能を有することがわかる。
From Table 2, it can be seen that the separator of the present invention shows excellent corrosion resistance even when an aluminum metal plate is used as the base material of the separator, and that the fuel cell using the separator has high power generation performance.

【0049】実施例3 表3に示す最下部におけるAl含有率及び最上部における
Au含有率を有するAl-Auからなる導電性被膜を形成した
こと以外は上記実施例2と同様に、本発明のセパレータ
を含む燃料電池3a〜3pをそれぞれ作製した。ただし、Al
-Au導電性被膜はAlターゲットとAuターゲットの2元同
時RFスパッタリングにより形成した。このとき、個々の
ターゲットの成膜パワー及びT/S距離を変えることで、
組成が連続的に変化するように制御した。スパッタガス
としては純アルゴンガスを用いた。形成された導電性被
膜の組成は、別基板に同時に成膜した被膜を溶解し、プ
ラズマ発光分光分析により決定した。
Example 3 Table 3 shows the Al content at the lowermost part and the Al content at the uppermost part.
Fuel cells 3a to 3p each including the separator of the present invention were produced in the same manner as in Example 2 except that a conductive film made of Al-Au having an Au content was formed. However, Al
The -Au conductive film was formed by dual simultaneous RF sputtering of an Al target and an Au target. At this time, by changing the deposition power and T / S distance of each target,
The composition was controlled so as to change continuously. Pure argon gas was used as a sputtering gas. The composition of the formed conductive film was determined by dissolving the film simultaneously formed on another substrate and performing plasma emission spectroscopy.

【0050】得られた燃料電池3a〜3pの発電性能安定性
を上記実施例1と同様に評価した。ただし、評価は15日
間行った。各燃料電池の、導電性被膜最下部のAl含有
率、最上部のAu含有率、初期発電電圧、15日間作動後の
発電電圧、及び15日間作動後のセパレータの耐腐食状況
を表3に併せて示す。
The stability of the power generation performance of the obtained fuel cells 3a to 3p was evaluated in the same manner as in Example 1. However, the evaluation was performed for 15 days. Table 3 shows the Al content at the bottom of the conductive coating, the Au content at the top, the initial voltage, the voltage generated after 15 days of operation, and the corrosion resistance of the separator after 15 days of operation for each fuel cell. Shown.

【0051】[0051]

【表3】 [Table 3]

【0052】表3より、母材としてアルミニウム金属板
を用いた本発明のセパレータにおいては、導電性被膜の
最下部のAl含有率が好ましくは16.81重量%以上、より
好ましくは28.90重量%以上であると、良好な密着性が
得られることがわかる。また、最上部のAu含有率は29.4
8重量%以上とすると、良好な発電性能安定性が得られ
非常に好ましいことがわかる。
According to Table 3, in the separator of the present invention using an aluminum metal plate as the base material, the Al content at the lowermost portion of the conductive film is preferably at least 16.81% by weight, more preferably at least 28.90% by weight. It can be seen that good adhesion can be obtained. The Au content at the top was 29.4
When the content is 8% by weight or more, good power generation performance stability can be obtained, and it is understood that it is very preferable.

【0053】実施例4 表4に示す多孔度を有するPt-Ir(30重量%)導電性被膜
を上記実施例3と同様にRFスパッタリング法により形成
したこと以外は上記実施例2と同様に、本発明のセパレ
ータを含む燃料電池4a〜4d及び比較用の燃料電池4a'を
それぞれ作製した。ただし、例えば表4中「0〜45%」
と示す場合(燃料電池4a)は、Pt-Ir導電性被膜の最下
部を多孔度0%とし、スパッタガス圧と温度を調節する
ことにより多孔度を連続的に変化させ、最上部を多孔度
45%としたことを表す。比較用の燃料電池4a'に用いた
セパレータでは、Pt-Ir導電性被膜最下部の多孔度を23
%に一定とした。
Example 4 A Pt-Ir (30% by weight) conductive film having the porosity shown in Table 4 was formed in the same manner as in Example 2 except that the conductive film was formed by the RF sputtering method as in Example 3. Fuel cells 4a to 4d including the separator of the present invention and a fuel cell 4a 'for comparison were produced, respectively. However, for example, in Table 4, "0-45%"
(Fuel cell 4a), the lowermost part of the Pt-Ir conductive film is made to have a porosity of 0%, and the porosity is continuously changed by adjusting the sputtering gas pressure and the temperature.
It represents 45%. In the separator used for the fuel cell 4a 'for comparison, the porosity of the lowermost part of the Pt-Ir conductive coating was set to 23.
%.

【0054】得られた燃料電池4a〜4d及び4a'の発電性
能安定性を上記実施例1と同様に評価した。ただし、評
価は14日間行った。各燃料電池のセパレータに形成した
導電性被膜の組成、導電性被膜の多孔度、初期発電電
圧、14日間作動後の発電電圧、及び14日間作動後のセパ
レータの耐腐食状況を表4に併せて示す。
The power generation performance stability of the obtained fuel cells 4a to 4d and 4a 'was evaluated in the same manner as in Example 1. However, the evaluation was performed for 14 days. Table 4 shows the composition of the conductive coating formed on the separator of each fuel cell, the porosity of the conductive coating, the initial power generation voltage, the power generation voltage after 14 days of operation, and the corrosion resistance of the separator after 14 days of operation. Show.

【0055】[0055]

【表4】 [Table 4]

【0056】表4より、導電性被膜の多孔度を連続的に
変化させた本発明のセパレータは優れた耐食性を示し、
該セパレータを用いた燃料電池4a〜4dは高い発電性能を
有することがわかる。
From Table 4, it can be seen that the separator of the present invention in which the porosity of the conductive coating was continuously changed exhibited excellent corrosion resistance.
It can be seen that the fuel cells 4a to 4d using the separator have high power generation performance.

【0057】実施例5 導電性被膜として、表5に示す結晶構造を有するカーボ
ン被膜を形成したこと以外は上記実施例2と同様に、本
発明のセパレータを含む燃料電池5a並びに比較用燃料電
池5a'及び5b'をそれぞれ作製した。ただし、カーボン被
膜はプラズマCVD装置を使用し、カーボン源としてCH4
用いて形成した。なお、燃料電池4aに用いた本発明のセ
パレータにおいては、導電性被膜の最下部は導電性には
劣るが緻密で硬質の準非晶質構造とし、その結晶構造を
連続的に変化させ、最上部は導電性の高い結晶質黒鉛カ
ーボン膜とした。
Example 5 A fuel cell 5a including the separator of the present invention and a comparative fuel cell 5a were formed in the same manner as in Example 2 except that a carbon film having a crystal structure shown in Table 5 was formed as the conductive film. 'And 5b' were prepared respectively. However, the carbon film was formed using a plasma CVD apparatus and using CH 4 as a carbon source. In the separator of the present invention used for the fuel cell 4a, the lowermost portion of the conductive film has a poorer conductivity but has a dense and hard quasi-amorphous structure, and its crystal structure is continuously changed. The upper part was a highly conductive crystalline graphite carbon film.

【0058】得られた燃料電池5a、5a'及び5b'の発電性
能安定性を上記実施例1と同様に評価した。ただし、評
価は25日間行った。各燃料電池の、カーボン導電性被膜
の結晶構造、初期発電電圧、25日間作動後の発電電圧、
及び25日間作動後のセパレータの電極接触面耐腐食状況
を表5に併せて示す。
The stability of the power generation performance of the obtained fuel cells 5a, 5a 'and 5b' was evaluated in the same manner as in Example 1. However, the evaluation was performed for 25 days. For each fuel cell, the crystal structure of the carbon conductive coating, the initial power generation voltage, the power generation voltage after 25 days of operation,
Table 5 also shows the electrode contact surface corrosion resistance of the separator after 25 days of operation.

【0059】[0059]

【表5】 [Table 5]

【0060】表5より、緻密な非晶質カーボン膜を形成
したセパレータを含む燃料電池5a'ではカーボン被膜の
導電性が低いために発電性能が悪化しており、黒鉛結晶
構造を持つカーボン被膜を形成したセパレータ(燃料電
池5b')は膜強度と密度が低いために母材の腐食が発生
しているのに対し、カーボン導電性被膜の結晶構造を準
非晶質構造から結晶質構造に変化させた本発明のセパレ
ータは優れた耐食性を示し、該セパレータを用いた燃料
電池5aは高い発電性能を有することがわかる。
From Table 5, it can be seen that in the fuel cell 5a 'including the separator on which the dense amorphous carbon film was formed, the power generation performance was deteriorated due to the low conductivity of the carbon film. The formed separator (fuel cell 5b ') has a low film strength and low density, which causes corrosion of the base material, whereas the crystalline structure of the carbon conductive coating changes from a quasi-amorphous structure to a crystalline structure The thus-formed separator of the present invention exhibits excellent corrosion resistance, and it can be seen that the fuel cell 5a using the separator has high power generation performance.

【0061】本実施例で得た非晶質カーボン被膜と黒鉛
結晶(Graphite)被膜のX線回折パターンを図3に示
す。2θで26〜27゜付近にみられる黒鉛結晶構造カーボ
ン膜の(003)面の回折ピークに比べ、非晶質カーボン
膜の回折ピーク(2θで40゜近傍)は非常にブロードで
ある。従って、結晶性の低いカーボン被膜は電子伝導度
が低いので、導電性被膜として用いるためには適度な結
晶性を持つ(即ち適度な電子伝導性を有する)ことが必
要である。上記燃料電池5aに用いた本発明のセパレータ
においては、最下部に適度な電子伝導性を持つ硬質カー
ボン膜を形成し、最上部に近づくにつれ電極との接触抵
抗が極めて小さい黒鉛結晶構造膜に連続的に変化させる
ことで、良好な耐食性と電極接触抵抗の低減が共に可能
となった。
FIG. 3 shows the X-ray diffraction patterns of the amorphous carbon film and the graphite crystal (Graphite) film obtained in this example. The diffraction peak of the amorphous carbon film (around 40 ° at 2θ) is much broader than the diffraction peak of the (003) plane of the graphite crystal structure carbon film seen around 26 to 27 ° at 2θ. Therefore, since a carbon film having low crystallinity has low electron conductivity, it is necessary that the carbon film has appropriate crystallinity (that is, has appropriate electron conductivity) in order to be used as a conductive film. In the separator of the present invention used in the above fuel cell 5a, a hard carbon film having an appropriate electron conductivity is formed at the lowermost portion, and as the uppermost portion is approached, the contact resistance with the electrode is continuously reduced to an extremely small graphite crystal structure film. In this case, good corrosion resistance and reduction of electrode contact resistance can both be achieved.

【0062】実施例6 プラズマ成膜条件を調節することにより導電性被膜最下
部の結晶構造を変え、膜厚約6μmのカーボン導電性被
膜を形成したこと以外は上記燃料電池5aの場合と同様
に、本発明のセパレータを含む燃料電池6a〜6fをそれぞ
れ作製した。ここで、各燃料電池に用いたセパレータの
導電性被膜最下部の結晶性は、表6に示す粉末X線回折
(Cu-kα)により得られた回折ピークの半価幅により評
価した。
Example 6 The same as the fuel cell 5a except that the crystal structure at the bottom of the conductive film was changed by adjusting the plasma film forming conditions, and a carbon conductive film having a film thickness of about 6 μm was formed. Then, fuel cells 6a to 6f each including the separator of the present invention were produced. Here, the crystallinity of the lowermost part of the conductive film of the separator used in each fuel cell was evaluated by the half width of the diffraction peak obtained by powder X-ray diffraction (Cu-kα) shown in Table 6.

【0063】得られた燃料電池6a〜6fの発電性能安定性
を上記実施例1と同様に評価した。ただし、評価は25日
間行った。各燃料電池の、導電性被膜最下部の粉末X線
回折ピークの半価幅、初期発電電圧、25日間作動後の発
電電圧、及び25日間作動後のセパレータの電極接触面耐
腐食状況を表6に併せて示す。
The stability of power generation performance of the obtained fuel cells 6a to 6f was evaluated in the same manner as in Example 1 above. However, the evaluation was performed for 25 days. Table 6 shows the half width of the powder X-ray diffraction peak at the bottom of the conductive film, the initial power generation voltage, the power generation voltage after 25 days of operation, and the electrode contact surface corrosion resistance of the separator after 25 days of operation for each fuel cell. Are shown together.

【0064】[0064]

【表6】 [Table 6]

【0065】表6より、結晶構造が連続的に変化してい
るカーボン導電性被膜を形成する場合は、導電性被膜最
下部の粉末X線回折ピークの半価幅が5.84°以下である
のが好ましく、5.25°以下であるのがより好ましいこと
がわかる。
As shown in Table 6, when a carbon conductive film having a continuously changing crystal structure is formed, the half value width of the powder X-ray diffraction peak at the bottom of the conductive film is 5.84 ° or less. It is understood that the angle is preferably 5.25 ° or less.

【0066】[0066]

【発明の効果】以上詳述したように、本発明の燃料電池
用セパレータは金属板を母材として用いるため、従来の
黒鉛セパレータに比べ非常に軽量であり、量産性が高く
加工コストを低減できる。加えて本発明においては、電
極又は集電体との接触面上に金属母材との接触界面から
電極又は集電体との接触界面の間で構造又は機能が連続
的に変化している導電性被膜を形成することにより、低
コストで優れた耐食性を有するセパレータを得ることが
できる。本発明のセパレータを用いた燃料電池は高い発
電性能安定性を有する。
As described above in detail, the fuel cell separator of the present invention uses a metal plate as a base material, and therefore is much lighter than conventional graphite separators, has high mass productivity, and can reduce processing costs. . In addition, in the present invention, on the contact surface with the electrode or the current collector, the conductive or conductive structure whose structure or function continuously changes from the contact interface with the metal base material to the contact interface with the electrode or the current collector By forming the functional coating, a separator having excellent corrosion resistance at low cost can be obtained. The fuel cell using the separator of the present invention has high power generation performance stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による燃料電池用セパレー
タを含む燃料電池の一例を示す部分概略図である。
FIG. 1 is a partial schematic view showing an example of a fuel cell including a fuel cell separator according to one embodiment of the present invention.

【図2】 本発明の他の実施例による燃料電池用セパレ
ータを示す概略図、及びその導電性被膜の構造を示す部
分拡大図である。
FIG. 2 is a schematic view showing a fuel cell separator according to another embodiment of the present invention, and a partially enlarged view showing the structure of a conductive film thereof.

【図3】 本発明のセパレータの導電性被膜として使用
できるカーボン被膜のX線回折パターンの例を示す模式
図である。
FIG. 3 is a schematic diagram showing an example of an X-ray diffraction pattern of a carbon film that can be used as a conductive film of the separator of the present invention.

【符号の説明】[Explanation of symbols]

1・・・単電池 2・・・固体電解質 3・・・アノード 4・・・カソード 5・・・セパレータ 6・・・通気溝保護膜 7・・・導電性被膜 7a・・・最下部 7b、7c、7d、7e・・・中間部 7f・・・最上部 8、9・・・反応ガス通気溝 DESCRIPTION OF SYMBOLS 1 ... Single cell 2 ... Solid electrolyte 3 ... Anode 4 ... Cathode 5 ... Separator 6 ... Ventilation groove protective film 7 ... Conductive film 7a ... Lowermost 7b, 7c, 7d, 7e: middle part 7f: top part 8, 9: reaction gas vent groove

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 金属母材からなり、電極又は集電体との
接触面及び反応ガス通気溝を有する燃料電池用セパレー
タにおいて、前記接触面上には金属、酸化物、窒化物、
炭化物又はカーボンを主成分とする導電性被膜が形成さ
れており、前記導電性被膜の構造又は機能が前記金属母
材との接触界面から電極又は集電体との接触界面の間で
連続的に変化していることを特徴とする燃料電池用セパ
レータ。
1. A fuel cell separator comprising a metal base material and having a contact surface with an electrode or a current collector and a reactive gas ventilation groove, wherein a metal, an oxide, a nitride,
A conductive film containing carbide or carbon as a main component is formed, and the structure or function of the conductive film is continuously between a contact interface with the metal base material and a contact interface with an electrode or a current collector. A fuel cell separator characterized by a change.
【請求項2】 請求項1に記載の燃料電池用セパレータ
において、前記導電性被膜の組成が前記金属母材との接
触界面から前記電極又は集電体との接触界面の間で連続
的に変化していることを特徴とする燃料電池用セパレー
タ。
2. The fuel cell separator according to claim 1, wherein a composition of the conductive film continuously changes from a contact interface with the metal base material to a contact interface with the electrode or the current collector. A fuel cell separator, comprising:
【請求項3】 請求項2に記載の燃料電池用セパレータ
において、前記金属母材との接触界面における前記導電
性被膜の組成が前記金属母材の構成元素を20重量%以上
含むことを特徴とする燃料電池用セパレータ。
3. The fuel cell separator according to claim 2, wherein a composition of the conductive film at a contact interface with the metal base material includes at least 20% by weight of a constituent element of the metal base material. Fuel cell separator.
【請求項4】 請求項2又は3に記載の燃料電池用セパ
レータにおいて、前記電極又は集電体との接触界面にお
ける前記導電性被膜の組成がAu、Pt、Pd、Ir又はRhを30
重量%以上含むことを特徴とする燃料電池用セパレー
タ。
4. The fuel cell separator according to claim 2, wherein the composition of the conductive film at the contact interface with the electrode or the current collector is Au, Pt, Pd, Ir, or Rh.
A separator for a fuel cell, characterized in that the separator contains not less than% by weight.
【請求項5】 請求項1に記載の燃料電池用セパレータ
において、前記導電性被膜の結晶構造が前記金属母材と
の接触界面から前記電極又は集電体との接触界面の間で
連続的に変化していることを特徴とする燃料電池用セパ
レータ。
5. The fuel cell separator according to claim 1, wherein the crystal structure of the conductive coating is continuously between a contact interface with the metal base material and a contact interface with the electrode or the current collector. A fuel cell separator characterized by a change.
【請求項6】 請求項5に記載の燃料電池用セパレータ
において、前記金属母材との接触界面における前記導電
性被膜の結晶構造が非晶質構造又は準非晶質構造であ
り、前記電極又は集電体との接触界面における前記導電
性被膜の結晶構造が結晶質構造であることを特徴とする
燃料電池用セパレータ。
6. The fuel cell separator according to claim 5, wherein a crystal structure of the conductive film at a contact interface with the metal base material is an amorphous structure or a quasi-amorphous structure, and A fuel cell separator, wherein the crystal structure of the conductive coating at the contact interface with the current collector is a crystalline structure.
【請求項7】 請求項6に記載の燃料電池用セパレータ
において、前記導電性被膜がカーボンを主成分とするこ
とを特徴とする燃料電池用セパレータ。
7. The fuel cell separator according to claim 6, wherein the conductive coating contains carbon as a main component.
【請求項8】 請求項7に記載の燃料電池用セパレータ
において、前記金属母材との接触界面における前記導電
性被膜のX線回折パターンの、2θで30〜50°に認められ
るピークの半価幅が5.84°以下であることを特徴とする
燃料電池用セパレータ。
8. The fuel cell separator according to claim 7, wherein the X-ray diffraction pattern of the conductive coating at the contact interface with the metal base material has a half value of a peak observed at 30 to 50 ° in 2θ. A fuel cell separator having a width of 5.84 ° or less.
【請求項9】 請求項1に記載の燃料電池用セパレータ
において、前記導電性被膜の多孔度が前記金属母材との
接触界面から前記電極又は集電体との接触界面の間で連
続的に変化していることを特徴とする燃料電池用セパレ
ータ。
9. The fuel cell separator according to claim 1, wherein the porosity of the conductive coating is continuously between a contact interface with the metal base material and a contact interface with the electrode or the current collector. A fuel cell separator characterized by a change.
【請求項10】 請求項9に記載の燃料電池用セパレータ
において、前記金属母材との接触界面における前記導電
性被膜の多孔度が5%以下であり、前記電極又は集電体
との接触界面における前記導電性被膜の多孔度が20%以
上であることを特徴とする燃料電池用セパレータ。
10. The fuel cell separator according to claim 9, wherein a porosity of the conductive coating at a contact interface with the metal base material is 5% or less, and a contact interface with the electrode or the current collector. Wherein the porosity of the conductive coating is 20% or more.
【請求項11】 請求項1〜10のいずれかに記載の燃料電
池用セパレータにおいて、前記導電性被膜の厚みが0.5
〜30μmであることを特徴とする燃料電池用セパレー
タ。
11. The fuel cell separator according to claim 1, wherein the conductive coating has a thickness of 0.5.
A separator for a fuel cell, wherein the thickness is up to 30 μm.
【請求項12】 請求項1〜11のいずれかに記載の燃料電
池用セパレータにおいて、前記金属母材がアルミニウム
又はアルミニウム合金からなる金属板であり、前記反応
ガス通気溝の表面にはアルマイト被膜が形成されている
ことを特徴とする燃料電池用セパレータ。
12. The fuel cell separator according to claim 1, wherein the metal base material is a metal plate made of aluminum or an aluminum alloy, and an alumite film is formed on a surface of the reaction gas ventilation groove. A fuel cell separator characterized by being formed.
JP2000177541A 2000-06-13 2000-06-13 Separator for fuel cell Pending JP2001357859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177541A JP2001357859A (en) 2000-06-13 2000-06-13 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177541A JP2001357859A (en) 2000-06-13 2000-06-13 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2001357859A true JP2001357859A (en) 2001-12-26

Family

ID=18679113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177541A Pending JP2001357859A (en) 2000-06-13 2000-06-13 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2001357859A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079476A1 (en) * 2002-03-15 2003-09-25 Nippon Light Metal Company, Ltd. Metal member having corrosion-resistant conductive coating and process for producing the same
WO2005045971A1 (en) * 2003-11-11 2005-05-19 Nitta Corporation Separator and production method for separator
JP2006344432A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Separator, fuel cell, fuel cell stack, manufacturing method of separator, and manufacturing method of separator assembly
JP2007128908A (en) * 2007-01-15 2007-05-24 Riken Corp Cell unit of solid polymer electrolyte fuel cell
JP2008204876A (en) * 2007-02-22 2008-09-04 Toyota Motor Corp Fuel cell separator, manufacturing method of fuel cell separator and fuel cell
JP2009501422A (en) * 2005-07-12 2009-01-15 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Coated steel bipolar plate
JP2010129462A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Fuel cell stack, and vehicle with fuel cell stack
JP2011222130A (en) * 2010-04-02 2011-11-04 Hitachi Ltd Laminated fuel cell and method of manufacturing the same
JP2012160382A (en) * 2011-02-01 2012-08-23 Univ Of Fukui Separator for fuel cell and method for manufacturing the same
US8252475B2 (en) 2003-12-09 2012-08-28 Nitta Corporation Separator comprising a metal sheet and a resin
JP2013016263A (en) * 2011-06-30 2013-01-24 Kemitsukusu:Kk Fuel battery, drive system therefor, and fuel battery assembling kit
JP2018171877A (en) * 2017-03-31 2018-11-08 株式会社Flosfia Crystalline laminate structure
JP2021061199A (en) * 2019-10-08 2021-04-15 株式会社豊田中央研究所 Fuel cell stack

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040537A1 (en) * 1997-03-10 1998-09-17 United Technologies Corporation Graded metal hardware component for an electrochemical cell
WO1999013522A1 (en) * 1997-09-05 1999-03-18 Ceramic Fuel Cells Limited Electrical conductivity in a fuel cell assembly
JPH11126624A (en) * 1997-08-19 1999-05-11 Daimler Benz Ag Current collector for fuel cell and its manufacture
JPH11144744A (en) * 1997-11-11 1999-05-28 Nisshin Steel Co Ltd Separator for low temperature type fuel cell and manufacture thereof
JPH11162478A (en) * 1997-12-02 1999-06-18 Aisin Seiki Co Ltd Separator for fuel cell
JP2000021418A (en) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd Solid high polymer electrolyte fuel cell
JP2000067881A (en) * 1998-08-24 2000-03-03 Honda Motor Co Ltd Separator for fuel cell
JP2000106197A (en) * 1998-09-30 2000-04-11 Aisin Takaoka Ltd Fuel cell and separator for fuel cell
JP2000123850A (en) * 1998-10-15 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
WO2001022513A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040537A1 (en) * 1997-03-10 1998-09-17 United Technologies Corporation Graded metal hardware component for an electrochemical cell
JPH11126624A (en) * 1997-08-19 1999-05-11 Daimler Benz Ag Current collector for fuel cell and its manufacture
WO1999013522A1 (en) * 1997-09-05 1999-03-18 Ceramic Fuel Cells Limited Electrical conductivity in a fuel cell assembly
JPH11144744A (en) * 1997-11-11 1999-05-28 Nisshin Steel Co Ltd Separator for low temperature type fuel cell and manufacture thereof
JPH11162478A (en) * 1997-12-02 1999-06-18 Aisin Seiki Co Ltd Separator for fuel cell
JP2000021418A (en) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd Solid high polymer electrolyte fuel cell
JP2000067881A (en) * 1998-08-24 2000-03-03 Honda Motor Co Ltd Separator for fuel cell
JP2000106197A (en) * 1998-09-30 2000-04-11 Aisin Takaoka Ltd Fuel cell and separator for fuel cell
JP2000123850A (en) * 1998-10-15 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2000353531A (en) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd Separator for solid high polymer fuel cell and manufacture thereof
WO2001022513A1 (en) * 1999-09-17 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079476A1 (en) * 2002-03-15 2003-09-25 Nippon Light Metal Company, Ltd. Metal member having corrosion-resistant conductive coating and process for producing the same
US8034505B2 (en) 2003-11-11 2011-10-11 Nitta Corporation Fuel cell separator that is excellent in workability and corrosion resistance
WO2005045971A1 (en) * 2003-11-11 2005-05-19 Nitta Corporation Separator and production method for separator
CN100391038C (en) * 2003-11-11 2008-05-28 新田株式会社 Separator and production method for separator
US8252475B2 (en) 2003-12-09 2012-08-28 Nitta Corporation Separator comprising a metal sheet and a resin
JP2006344432A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Separator, fuel cell, fuel cell stack, manufacturing method of separator, and manufacturing method of separator assembly
JP2009501422A (en) * 2005-07-12 2009-01-15 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Coated steel bipolar plate
JP2007128908A (en) * 2007-01-15 2007-05-24 Riken Corp Cell unit of solid polymer electrolyte fuel cell
JP2008204876A (en) * 2007-02-22 2008-09-04 Toyota Motor Corp Fuel cell separator, manufacturing method of fuel cell separator and fuel cell
JP4702304B2 (en) * 2007-02-22 2011-06-15 トヨタ自動車株式会社 Fuel cell separator, fuel cell separator manufacturing method, and fuel cell
WO2008114561A1 (en) * 2007-02-22 2008-09-25 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, fuel cell separator manufacturing method and fuel cell
US8906571B2 (en) 2007-02-22 2014-12-09 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method of the fuel cell separator, and fuel cell
JP2010129462A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Fuel cell stack, and vehicle with fuel cell stack
JP2011222130A (en) * 2010-04-02 2011-11-04 Hitachi Ltd Laminated fuel cell and method of manufacturing the same
JP2012160382A (en) * 2011-02-01 2012-08-23 Univ Of Fukui Separator for fuel cell and method for manufacturing the same
JP2013016263A (en) * 2011-06-30 2013-01-24 Kemitsukusu:Kk Fuel battery, drive system therefor, and fuel battery assembling kit
JP2018171877A (en) * 2017-03-31 2018-11-08 株式会社Flosfia Crystalline laminate structure
JP7014353B2 (en) 2017-03-31 2022-02-01 株式会社Flosfia Crystalline laminated structure
JP2021061199A (en) * 2019-10-08 2021-04-15 株式会社豊田中央研究所 Fuel cell stack
JP7088154B2 (en) 2019-10-08 2022-06-21 株式会社豊田中央研究所 Fuel cell stack

Similar Documents

Publication Publication Date Title
JP7092076B2 (en) Titanium base material, manufacturing method of titanium base material, electrode for water electrolysis, water electrolysis device
JP6615682B2 (en) Anode for alkaline water electrolysis and method for producing anode for alkaline water electrolysis
KR100964131B1 (en) Bipolar plate for fuel cell and method for production thereof
KR100670995B1 (en) Bipolar plate for fuel cells
JP2001351642A (en) Separator for fuel cell
US20050123816A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2008204876A (en) Fuel cell separator, manufacturing method of fuel cell separator and fuel cell
JP6952664B2 (en) Laminated electrolyte membrane, membrane electrode composite, water electrolysis cell, stack, water electrolyzer and hydrogen utilization system
JP2005327732A (en) Reformer for fuel cell system, its manufacturing method, and fuel cell including this
JP2001357859A (en) Separator for fuel cell
JPH11162478A (en) Separator for fuel cell
WO2008059950A1 (en) Fuel cell separator and method for producing the same
US20230143743A1 (en) Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis apparatus
KR20100127577A (en) Graphene-coating separator of fuel cell and fabricating method thereof
CN114481048A (en) High-conductivity corrosion-resistant amorphous/nanocrystalline composite coexistent coating and preparation method and application thereof
US7691770B2 (en) Electrode structure and methods of making same
JP3387046B2 (en) Fuel cell separator
JP6345663B2 (en) ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP5045911B2 (en) Manufacturing method of membrane electrode assembly
JP2001338653A (en) Separator for fuel cell
KR20240124989A (en) Porous transport layer for use in a polymer electrolyte membrane electrolytic cell, an electrolytic cell comprising the porous transport layer, a method for obtaining the porous transport layer, and a method for electrolyzing water using the porous transport layer
JP2000182640A (en) On-vehicle fuel cell
JP2001338658A (en) Separator for fuel cell
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
JP6939747B2 (en) Electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120229