JP2000067881A - Separator for fuel cell - Google Patents

Separator for fuel cell

Info

Publication number
JP2000067881A
JP2000067881A JP10236894A JP23689498A JP2000067881A JP 2000067881 A JP2000067881 A JP 2000067881A JP 10236894 A JP10236894 A JP 10236894A JP 23689498 A JP23689498 A JP 23689498A JP 2000067881 A JP2000067881 A JP 2000067881A
Authority
JP
Japan
Prior art keywords
amorphous carbon
carbon film
gas flow
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10236894A
Other languages
Japanese (ja)
Inventor
Takashi Iwasa
孝 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10236894A priority Critical patent/JP2000067881A/en
Publication of JP2000067881A publication Critical patent/JP2000067881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a fuel cell having excellent electric conductivity, corrosion resistance, high productivity, and inexpensive manufacturing cost. SOLUTION: A separator 2 for a fuel cell forming a gas flow pass 7 in cooperation with a flat plate electrode 6 of a cell 1 consists of a low electric resistance metal plate 9 and an amorphous carbon film 10 constituting a gas flow forming surface (a) by covering the metal plate 9. A hydrogen content CH of the amorphous carbon film 10 is set for 1 atom %<=CH<=20, in order to enhance electric conductivity of the film 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単電池の平板状電
極と協働してガス流路を形成する燃料電池用セパレータ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator which forms a gas flow path in cooperation with a flat electrode of a unit cell.

【0002】[0002]

【従来の技術】この種のセパレータは、良好な電気伝導
性、耐食性等を要求されるため、従来はグラファイトよ
り構成されている。
2. Description of the Related Art This type of separator is required to have good electrical conductivity and corrosion resistance, and is conventionally made of graphite.

【0003】[0003]

【発明が解決しようとする課題】しかしながらグラファ
イトは硬さが高いため機械加工性が悪く、例えば複数の
ガス流路用溝を形成する場合に多くの時間を要し、した
がってセパレータの生産性が低く、生産コストが高い、
という問題があった。
However, graphite is poor in machinability due to its high hardness. For example, it takes a lot of time to form a plurality of gas passage grooves, and therefore, the productivity of the separator is low. , High production cost,
There was a problem.

【0004】[0004]

【課題を解決するための手段】本発明は良好な電気伝導
性および耐食性を有し、また生産性が高く、生産コスト
の安価な前記セパレータを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a separator having good electric conductivity and corrosion resistance, high productivity and low production cost.

【0005】前記目的を達成するため本発明によれば、
単電池の平板状電極と協働してガス流路を形成する燃料
電池用セパレータにおいて、低電気抵抗性金属板と、そ
の金属板を被覆してガス流路形成面を構成する非晶質炭
素膜とよりなり、その非晶質炭素膜の水素含有量CH
1原子%≦CH ≦20原子%である燃料電池用セパレー
タが提供される。
[0005] To achieve the above object, according to the present invention,
In a fuel cell separator which forms a gas flow path in cooperation with a flat electrode of a unit cell, a low electric resistance metal plate and an amorphous carbon which covers the metal plate to form a gas flow path forming surface A fuel cell separator comprising a membrane, wherein the hydrogen content C H of the amorphous carbon membrane is 1 at% ≦ C H ≦ 20 at%.

【0006】前記構成において、金属板は低電気抵抗性
であり、また水素含有量CH を前記のように設定された
非晶質炭素膜の電気抵抗も低い。よって、セパレータは
良好な電気伝導性を有する。また非晶質炭素膜は優れた
耐食性を有するので、それにより金属板を被覆してガス
流路形成面を構成すると、セパレータは良好な耐食性を
示す。さらに金属板は機械加工性が良く、一方、非晶質
炭素膜は各種薄膜形成技術により能率良く形成されるの
で、セパレータの生産性を高め、生産コストを低減し得
る。
[0006] In the arrangement, the metal plate is a low electric resistance, also lower the electric resistance of the amorphous carbon film set the hydrogen content C H as described above. Therefore, the separator has good electric conductivity. In addition, since the amorphous carbon film has excellent corrosion resistance, when the metal plate is coated with the amorphous carbon film to form the gas flow path forming surface, the separator exhibits good corrosion resistance. Further, the metal plate has good machinability, while the amorphous carbon film is efficiently formed by various thin film forming techniques, so that the productivity of the separator can be increased and the production cost can be reduced.

【0007】ただし、水素含有量CH がCH <1原子%
では非晶質炭素膜の電気絶縁性が増し、一方、CH >2
原子%では、非晶質炭素膜に電気伝導性を付与するπ電
子が水素にトラップされるためその電気伝導性が低下す
る。
However, if the hydrogen content CH is CH <1 atomic%.
In this case, the electrical insulation of the amorphous carbon film is increased, while C H > 2
At atomic%, the π electrons imparting electric conductivity to the amorphous carbon film are trapped by hydrogen, so that the electric conductivity decreases.

【0008】[0008]

【発明の実施の形態】図1,2において、積層構造の単
電池1の上、下両側にそれぞれ平板状セパレータ2が配
設され、このような積層物を1ユニットとして、これを
複数段に積み重ねることによりスタック型燃料電池3が
構成される。単電池1は平板状電解質4と、その電解質
4を挟み、且つ電解質4との対向面に触媒5を有する一
対の平板状多孔質電極6とよりなる。各セパレータ2
は、単電池1の各多孔質電極6と協働してガス流路7を
形成すべく、複数の互に平行なガス流路用溝8を備えて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGS. 1 and 2, flat separators 2 are disposed on the upper and lower sides of a unit cell 1 having a laminated structure, respectively. Stacked fuel cells 3 are configured by stacking. The unit cell 1 includes a flat electrolyte 4 and a pair of flat porous electrodes 6 sandwiching the electrolyte 4 and having a catalyst 5 on a surface facing the electrolyte 4. Each separator 2
Is provided with a plurality of mutually parallel gas flow channel grooves 8 to form a gas flow channel 7 in cooperation with each porous electrode 6 of the unit cell 1.

【0009】この燃料電池3においては、一方のセパレ
ータ2によるガス流路7に水素等の燃料を流通させて一
方の多孔質電極6に接触させ、また他方のセパレータ2
によるガス流路7には酸素等の酸化剤を流通させて他方
の多孔質電極6に接触させ、これにより生じる電気化学
反応を利用して電気エネルギを取出すものである。
In this fuel cell 3, a fuel such as hydrogen flows through a gas flow path 7 formed by one of the separators 2 so as to be in contact with one of the porous electrodes 6, and the other separator 2 has
An oxidizing agent such as oxygen is passed through the gas flow path 7 to contact the other porous electrode 6, and electric energy is extracted by utilizing an electrochemical reaction generated by the oxidizing agent.

【0010】各セパレータ2は同一の構造を有し、図3
に示すように、Al合金板等の低電気抵抗性金属板9
と、その金属板9の全表面を被覆してガス流路形成面a
を構成する厚さ0.5〜10μmの非晶質炭素膜10と
よりなる。この場合、金属板9は、複数の互に平行な凹
条11を有し、その凹条形成面bを非晶質炭素膜10に
より被覆してガス流路形成面aを構成すると、そのガス
流路形成面aに、複数の凹条11に対応した複数のガス
流路用溝8を具備させることができる。非晶質炭素膜1
0の水素含有量CH は1原子%≦CH ≦20原子%に設
定される。
Each of the separators 2 has the same structure.
As shown in FIG. 9, a low electric resistance metal plate 9 such as an Al alloy plate
And the gas flow channel forming surface a
And an amorphous carbon film 10 having a thickness of 0.5 to 10 μm. In this case, when the metal plate 9 has a plurality of mutually parallel concave ridges 11 and the concave ridge forming surface b is covered with the amorphous carbon film 10 to form the gas flow channel forming surface a, A plurality of gas flow channel grooves 8 corresponding to the plurality of concave stripes 11 can be provided on the flow channel forming surface a. Amorphous carbon film 1
The hydrogen content C H of 0 is set so that 1 at% ≦ C H ≦ 20 at%.

【0011】前記構成において、金属板9は低電気抵抗
性であり、また水素含有量CH を前記のように設定され
た非晶質炭素膜10の電気抵抗も低い。よって、セパレ
ータ2は良好な電気伝導性を有する。また非晶質炭素膜
10は優れた耐食性を有するので、それにより金属板9
の全表面を被覆することによってセパレータ2は良好な
耐食性を示す。さらに金属板9は機械加工性が良く、一
方、非晶質炭素膜10は各種薄膜形成技術により能率良
く形成されるので、セパレータ2の生産性が高く、生産
コストが安価となる。
[0011] In the arrangement, the metal plate 9 is a low electric resistance, also lower the electric resistance of the amorphous carbon film 10 set the hydrogen content C H as described above. Therefore, the separator 2 has good electric conductivity. Further, since the amorphous carbon film 10 has excellent corrosion resistance,
By covering the entire surface of the separator 2, the separator 2 exhibits good corrosion resistance. Further, the metal plate 9 has good machinability, while the amorphous carbon film 10 is efficiently formed by various thin film forming techniques, so that the productivity of the separator 2 is high and the production cost is low.

【0012】なお、非晶質炭素膜10により金属板9の
全表面を被覆することは必須要件ではなく、例えば凹条
形成面bのみを被覆するようにしてもよい。また各電極
6がガス流路用溝を有する場合には、各セパレータ2
は、溝無しの平板状に形成される。
It is not essential that the entire surface of the metal plate 9 is covered with the amorphous carbon film 10, and, for example, only the concave stripe forming surface b may be covered. When each electrode 6 has a gas channel groove, each separator 2
Are formed in a flat plate shape without grooves.

【0013】非晶質炭素膜10には、SP2構造とSP
3構造が混在すると考えられ、図4に示すラマンスペク
トルにおいて、1550cm-1付近のGバンドと1400
cm-1付近のDバンドを中心にブロードなラマンバンドが
観測される。1400cm-1付近のラマンバンドは格子振
動の状態密度のピークの極大の一つに対応し、格子の乱
れにより波数ベクトルの保存則が緩和されるために生ず
るものと解釈されており、それぞれのラマン強度比、つ
まりG/D比はSP2構造とSP3構造の存在比率によ
り変化する。1400cm-1付近のラマンバンドはSP2
構造の乱れにより増加するラマンバンドで、このバンド
の減少はSP3比率の増加を表すものと考えられてい
る。つまり、G/D比はSP3比率の増加と共に大きな
値を示す。
The amorphous carbon film 10 has an SP2 structure and an SP2 structure.
3 thought structure are mixed, in the Raman spectrum shown in FIG. 4, and G band near 1550 cm -1 1400
A broad Raman band is observed around the D band near cm -1 . The Raman band around 1400 cm -1 corresponds to one of the peaks of the density of states of lattice vibration, and is interpreted as being caused by relaxation of the wave vector conservation law due to lattice disorder. The intensity ratio, that is, the G / D ratio changes depending on the existence ratio of the SP2 structure and the SP3 structure. Raman band near 1400cm -1 is SP2
A Raman band that increases due to structural disturbances, and a decrease in this band is believed to represent an increase in the SP3 ratio. That is, the G / D ratio shows a large value as the SP3 ratio increases.

【0014】そこで、非晶質炭素膜10のラマン分光分
析によるG/D比は、0.1≦G/D比≦2.0に設定
される。このG/D比は非晶質炭素膜10のSP3性を
示すものであり、これを前記のように設定することによ
って非晶質炭素膜10に良好な電気伝導性を持たせるこ
とができる。
Therefore, the G / D ratio of the amorphous carbon film 10 by Raman spectroscopy is set to 0.1 ≦ G / D ratio ≦ 2.0. This G / D ratio indicates the SP3 property of the amorphous carbon film 10. By setting the G / D ratio as described above, the amorphous carbon film 10 can have good electric conductivity.

【0015】ただし、G/D比<0.1では、非晶質炭
素膜10のSP2性が高くなって、その膜質が劣化し剥
離等を生じるおそれがある。一方、G/D比>2.0で
は、非晶質炭素膜10のSP3性が高くなって、その膜
10が電気絶縁体となる。
However, when the G / D ratio is less than 0.1, the SP2 property of the amorphous carbon film 10 becomes high, and the quality of the film may be deteriorated and peeling may occur. On the other hand, when the G / D ratio is> 2.0, the SP3 property of the amorphous carbon film 10 is increased, and the film 10 becomes an electric insulator.

【0016】以下、具体例について説明する。Hereinafter, specific examples will be described.

【0017】先ず、JIS A5052よりなるAl合
金板より、縦、横30mm、厚さ3mmで、且つ幅2mm、深
さ0.5mmの凹条11を7本持つ金属板9を複数製作し
た。
First, a plurality of metal plates 9 having seven concave stripes 11 of 30 mm in length, 30 mm in width, 3 mm in thickness, 2 mm in width and 0.5 mm in depth were manufactured from an Al alloy plate according to JIS A5052.

【0018】次いで、それら金属板9を用い、表1,2
に示す条件で、それらの全表面に非晶質炭素膜10を形
成して複数のセパレータ2を得た。
Next, using these metal plates 9,
An amorphous carbon film 10 was formed on the entire surface under the conditions shown in (1) to obtain a plurality of separators 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】次に、非晶質炭素膜10の例1〜8につい
て、水素含有量CH 、G/D比および電気抵抗を調べた
ところ、表3の結果を得た。
Next, the hydrogen content C H , G / D ratio, and electric resistance of Examples 1 to 8 of the amorphous carbon film 10 were examined, and the results shown in Table 3 were obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】表3から明らかなように、非晶質炭素膜1
0の電気伝導性を高めるためには、例3〜7のごとく、
水素含有量CH を1原子%≦CH ≦20原子%に設定す
ることが必要である。一方、G/D比は、非晶質炭素膜
10の耐剥離性を向上させるためにはG/D比≧0.1
に設定することが必要であり、またその膜10の電気伝
導性を考慮すると、G/D比≦2.0であることが望ま
しい、と言える。
As is clear from Table 3, the amorphous carbon film 1
In order to increase the electrical conductivity of 0, as in Examples 3 to 7,
It is necessary to set the hydrogen content C H so that 1 at% ≦ C H ≦ 20 at%. On the other hand, in order to improve the peeling resistance of the amorphous carbon film 10, the G / D ratio should be G ≧ D ≧ 0.1.
In consideration of the electrical conductivity of the film 10, it can be said that it is desirable that the G / D ratio ≤ 2.0.

【0024】薄膜形成技術としては、金属板9に対する
隠蔽性、膜厚の均一性等の点から、イオンビーム蒸着法
の方がP−CVD法よりも優れていることが判明した。
As a thin film forming technique, it has been found that the ion beam evaporation method is superior to the P-CVD method in terms of the concealing property with respect to the metal plate 9 and the uniformity of the film thickness.

【0025】次に、非晶質炭素膜10の例6を有するセ
パレータ2を、pH3の濃硫酸に72時間浸漬し、その
後非晶質炭素膜10の腐食減量を求めたところ、それは
0.001gと極めて少なく、したがって例6は、優れ
た耐食性を有することが判明した。比較のため、セラミ
ックスであるCrN、TiNおよびZrNについて前記
同様のテストを行ってそれらの腐食減量を求めたとこ
ろ、それぞれ0.173g、0.066g、0.023
gであり、これらセラミックスは非晶質炭素膜10に比
べて耐食性が大幅に低いことが判明した。
Next, the separator 2 having the amorphous carbon film 10 of Example 6 was immersed in concentrated sulfuric acid at pH 3 for 72 hours, and the corrosion loss of the amorphous carbon film 10 was determined to be 0.001 g. And thus Example 6 was found to have excellent corrosion resistance. For comparison, the same tests were performed on the ceramics CrN, TiN, and ZrN to determine the corrosion weight loss of the ceramics, which were 0.173 g, 0.066 g, and 0.023 g, respectively.
g, indicating that these ceramics have significantly lower corrosion resistance than the amorphous carbon film 10.

【0026】[0026]

【発明の効果】請求項1記載の発明によれば、前記のよ
うに構成することによって、良好な電気伝導性および耐
食性を有し、また生産性が高く、生産コストの安価な燃
料電池用セパレータを提供することができる。
According to the first aspect of the present invention, a fuel cell separator having good electrical conductivity and corrosion resistance, high productivity, and low production cost can be provided by the above-described structure. Can be provided.

【0027】請求項2記載の発明によれば、前記効果に
加えて、非晶質炭素膜の耐剥離性を向上させた燃料電池
用セパレータを提供することができる。
According to the second aspect of the present invention, it is possible to provide a fuel cell separator in which the amorphous carbon film has improved peeling resistance in addition to the above effects.

【0028】請求項3記載の発明によれば、前記諸効果
を全て備え、その上、均一な厚さを有し、且つ隠蔽性の
優れた非晶質炭素膜を持つ燃料電池用セパレータを提供
することができる。
According to the third aspect of the present invention, there is provided a fuel cell separator having an amorphous carbon film having all of the above-mentioned effects, a uniform thickness, and excellent concealing properties. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スタック型燃料電池の要部正面図である。FIG. 1 is a front view of a main part of a stack type fuel cell.

【図2】ユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the unit.

【図3】図2の3−3線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line 3-3 of FIG. 2;

【図4】ラマンスペクトル図である。FIG. 4 is a Raman spectrum diagram.

【符号の説明】[Explanation of symbols]

1 単電池 2 セパレータ 6 電極 7 ガス流路 9 金属板 10 非晶質炭素膜 11 凹条 a ガス流路形成面 b 凹条形成面 DESCRIPTION OF SYMBOLS 1 Single cell 2 Separator 6 Electrode 7 Gas flow path 9 Metal plate 10 Amorphous carbon film 11 Concave stripe a Gas flow path formation surface b Concave stripe formation surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単電池(1)の平板状電極(6)と協働
してガス流路(7)を形成する燃料電池用セパレータ
(2)において、低電気抵抗性金属板(9)と、その金
属板(9)を被覆してガス流路形成面(a)を構成する
非晶質炭素膜(10)とよりなり、その非晶質炭素膜
(10)の水素含有量CH が1原子%≦C H ≦20原子
%であることを特徴とする燃料電池用セパレータ。
1. Cooperating with a flat electrode (6) of a unit cell (1)
Cell Separator Forming Gas Flow Path (7)
In (2), a low electric resistance metal plate (9) and its gold
Cover the metal plate (9) to form the gas flow path forming surface (a)
An amorphous carbon film (10);
(10) Hydrogen content CHIs 1 atomic% ≦ C H≤20 atoms
% Of the fuel cell separator.
【請求項2】 前記非晶質炭素膜(10)のラマン分光
分析によるG/D比が、0.1≦G/D比≦2.0であ
る、請求項1記載の燃料電池用セパレータ。
2. The fuel cell separator according to claim 1, wherein the G / D ratio of the amorphous carbon film (10) by Raman spectroscopy is 0.1 ≦ G / D ratio ≦ 2.0.
【請求項3】 単電池(1)の平板状電極(6)と協働
してガス流路(7)を形成する燃料電池用セパレータ
(2)において、複数のガス流路用溝(8)を得るため
の複数の凹条(11)を備えた低電気抵抗性金属板
(9)と、前記金属板(9)の凹条形成面(b)を被覆
してガス流路形成面(a)を構成すべく、イオンビーム
蒸着法により形成された非晶質炭素膜(10)とよりな
り、その非晶質炭素膜(10)の水素含有量CH が1原
子%≦CH ≦20原子%であり、また前記非晶質炭素膜
(10)のラマン分光分析によるG/D比が、0.1≦
G/D比≦2.0であることを特徴とする燃料電池用セ
パレータ。
3. A plurality of gas flow channel grooves (8) in a fuel cell separator (2) forming a gas flow channel (7) in cooperation with a flat electrode (6) of a unit cell (1). A low electrical resistance metal plate (9) provided with a plurality of concave stripes (11) for obtaining a gas flow path, and a gas flow passage forming surface (a) covering the concave stripe forming surface (b) of the metal plate (9). ), An amorphous carbon film (10) formed by an ion beam evaporation method, wherein the hydrogen content C H of the amorphous carbon film (10) is 1 atomic% ≦ C H ≦ 20. Atomic%, and the G / D ratio of the amorphous carbon film (10) by Raman spectroscopy was 0.1 ≦
A fuel cell separator, wherein the G / D ratio satisfies 2.0.
JP10236894A 1998-08-24 1998-08-24 Separator for fuel cell Pending JP2000067881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236894A JP2000067881A (en) 1998-08-24 1998-08-24 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236894A JP2000067881A (en) 1998-08-24 1998-08-24 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2000067881A true JP2000067881A (en) 2000-03-03

Family

ID=17007349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236894A Pending JP2000067881A (en) 1998-08-24 1998-08-24 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2000067881A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357859A (en) * 2000-06-13 2001-12-26 Riken Corp Separator for fuel cell
WO2001028019A3 (en) * 1999-10-08 2002-03-14 Allied Signal Inc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
JP2002216793A (en) * 2001-01-15 2002-08-02 Toyota Motor Corp Jig and method for analyzing high temperature behavior of fuel cell electrolyte membrane
WO2007136131A1 (en) 2006-05-22 2007-11-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, method for forming amorphous carbon film, electroconductive member comprising amorphous carbon film, and separator for fuel battery
US7364814B2 (en) 2002-06-05 2008-04-29 Toyota Jidosha Kabushiki Kaisha Separator of a fuel cell and a manufacturing method thereof
WO2009157557A1 (en) 2008-06-26 2009-12-30 住友金属工業株式会社 Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
US20100028743A1 (en) * 2008-07-29 2010-02-04 Gm Global Technology Operations, Inc. Amorphous carbon coatings for fuel cell bipolar plates
WO2010041694A1 (en) 2008-10-07 2010-04-15 住友金属工業株式会社 Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
WO2010061696A1 (en) * 2008-11-25 2010-06-03 日産自動車株式会社 Conductive member and solid state polymer fuel cell using same
JP2010129394A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Conductive member, its manufacturing method, separator for fuel cell using the same, and solid polymer fuel cell
JP2010129395A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Laminated structural body, its manufacturing method, and fuel cell using the same
JP2010129393A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using the same
JP2010153353A (en) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd Conductive member, manufacturing method thereof, as well as fuel cell separator and solid polymer fuel cell using the same
WO2011077755A1 (en) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 Separator for fuel cell and method for producing same
US20110305912A1 (en) * 2006-07-13 2011-12-15 Dennis Teer Coating apparatus and method
JP2013063539A (en) * 2011-09-16 2013-04-11 Taiyo Kagaku Kogyo Kk Amorphous carbon film laminated member and method for manufacturing the same
JP2013222617A (en) * 2012-04-17 2013-10-28 Kobe Steel Ltd Fuel cell separator and method for manufacturing the same
US10283785B2 (en) 2012-01-30 2019-05-07 Toyota Jidosha Kabushiki Kaisha Amorphous carbon film, process for forming amorphous carbon film, electrically conductive member and fuel cell bipolar plate having amorphous carbon film
CN110808384A (en) * 2019-10-11 2020-02-18 浙江锋源氢能科技有限公司 Metal bipolar plate, preparation method thereof and fuel cell

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028019A3 (en) * 1999-10-08 2002-03-14 Allied Signal Inc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
US6649031B1 (en) 1999-10-08 2003-11-18 Hybrid Power Generation Systems, Llc Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
US7482083B2 (en) 1999-10-08 2009-01-27 General Electric Company Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities
JP2001357859A (en) * 2000-06-13 2001-12-26 Riken Corp Separator for fuel cell
JP4691786B2 (en) * 2001-01-15 2011-06-01 トヨタ自動車株式会社 Jig and method for analyzing high temperature behavior of fuel cell electrolyte membrane
JP2002216793A (en) * 2001-01-15 2002-08-02 Toyota Motor Corp Jig and method for analyzing high temperature behavior of fuel cell electrolyte membrane
US7364814B2 (en) 2002-06-05 2008-04-29 Toyota Jidosha Kabushiki Kaisha Separator of a fuel cell and a manufacturing method thereof
WO2007136131A1 (en) 2006-05-22 2007-11-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, method for forming amorphous carbon film, electroconductive member comprising amorphous carbon film, and separator for fuel battery
EP2784024A2 (en) 2006-05-22 2014-10-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel cell separator and process for its production
US8119242B2 (en) 2006-05-22 2012-02-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, process for forming amorphous carbon film, conductive member provided with amorphous carbon film, and fuel cell separator
EP2784024A3 (en) * 2006-05-22 2014-12-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel cell separator and process for its production
EP2361882A1 (en) 2006-05-22 2011-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive member provided with amorphous carbon film, process for its manufacture and fuel cell separator
US20110305912A1 (en) * 2006-07-13 2011-12-15 Dennis Teer Coating apparatus and method
US8440301B2 (en) * 2006-07-13 2013-05-14 Teer Coatings Limited Coating apparatus and method
US9312546B2 (en) 2008-06-26 2016-04-12 Nippon Steel & Sumitomo Metal Corporation Stainless steel material for a separator of a solid polymer fuel cell and a solid polymer fuel cell using the separator
WO2009157557A1 (en) 2008-06-26 2009-12-30 住友金属工業株式会社 Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
US20100028743A1 (en) * 2008-07-29 2010-02-04 Gm Global Technology Operations, Inc. Amorphous carbon coatings for fuel cell bipolar plates
US8497050B2 (en) * 2008-07-29 2013-07-30 GM Global Technology Operations LLC Amorphous carbon coatings for fuel cell bipolar plates
US8956785B2 (en) 2008-07-29 2015-02-17 GM Global Technology Operations LLC Amorphous carbon coatings for fuel cell bipolar plates
US20130302531A1 (en) * 2008-07-29 2013-11-14 GM Global Technology Operations LLC Amorphous carbon coatings for fuel cell bipolar plates
WO2010041694A1 (en) 2008-10-07 2010-04-15 住友金属工業株式会社 Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
US9680162B2 (en) 2008-10-07 2017-06-13 Nippon Steel & Sumitomo Metal Corporation Stainless steel sheet for a separator for a solid polymer fuel cell and a solid polymer fuel cell employing the separator
WO2010061696A1 (en) * 2008-11-25 2010-06-03 日産自動車株式会社 Conductive member and solid state polymer fuel cell using same
JP2010153353A (en) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd Conductive member, manufacturing method thereof, as well as fuel cell separator and solid polymer fuel cell using the same
JP2010129393A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, its manufacturing method, and fuel cell using the same
JP2010129394A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Conductive member, its manufacturing method, separator for fuel cell using the same, and solid polymer fuel cell
JP2010129395A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Laminated structural body, its manufacturing method, and fuel cell using the same
WO2011077755A1 (en) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 Separator for fuel cell and method for producing same
US8993197B2 (en) 2009-12-25 2015-03-31 Toyota Jidosha Kabushiki Kaisha Bipolar plate for fuel cell and method for producing the same
DE112010004990T5 (en) 2009-12-25 2013-03-07 Toyota Jidosha K.K. Bipolar plate for a fuel cell and method for producing the same
DE112010004990B4 (en) 2009-12-25 2020-01-16 Toyota Jidosha Kabushiki Kaisha Bipolar plate for a fuel cell and method for producing the same
JP2013063539A (en) * 2011-09-16 2013-04-11 Taiyo Kagaku Kogyo Kk Amorphous carbon film laminated member and method for manufacturing the same
US10283785B2 (en) 2012-01-30 2019-05-07 Toyota Jidosha Kabushiki Kaisha Amorphous carbon film, process for forming amorphous carbon film, electrically conductive member and fuel cell bipolar plate having amorphous carbon film
JP2013222617A (en) * 2012-04-17 2013-10-28 Kobe Steel Ltd Fuel cell separator and method for manufacturing the same
CN110808384A (en) * 2019-10-11 2020-02-18 浙江锋源氢能科技有限公司 Metal bipolar plate, preparation method thereof and fuel cell

Similar Documents

Publication Publication Date Title
JP2000067881A (en) Separator for fuel cell
US8524050B2 (en) Stainless steel separator for fuel cell having M/MNx and MOyNz layer and method for manufacturing the same
CN101617428B (en) Fuel cell separator, fuel cell separator manufacturing method and fuel cell
JP5234711B2 (en) Fuel cell separator and method for producing the same
JP2007165275A (en) Separator, manufacturing method of separator and solid polymer fuel cell using the same,
US20120009496A1 (en) Fuel cell separator material, fuel cell separator using same, fuel cell stack, and method for producing fuel cell separator material
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
US20130330654A1 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
JPH11162478A (en) Separator for fuel cell
EP1231655A1 (en) Separator for solid polymer electrolytic fuel battery
JP5880798B1 (en) Titanium material for separator of polymer electrolyte fuel cell, separator using the same, and polymer electrolyte fuel cell provided with the same
JP6870470B2 (en) Fuel cell separator
JPS61216257A (en) Separator for fuel cell
CA2503030C (en) Stainless steel for proton-exchange membrane fuel cell separator and proton-exchange membrane fuel cell using the same
Lee et al. Application of carbon felt as a flow distributor for polymer electrolyte membrane fuel cells
WO2007018183A1 (en) Positive electrode collector for lead acid storage battery and method for producing same
JP6108042B2 (en) Titanium material, separator, polymer electrolyte fuel cell, and method for producing titanium material
JP3917442B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4919107B2 (en) Corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
WO2020049851A1 (en) Metal porous body, fuel cell, and production method for metal porous body
JPH11273693A (en) Separator for low temperature type fuel cell
JP2005002411A (en) Corrosion-resistant metallic clad material for separator, and manufacturing method therefor
US20090145781A1 (en) Method of treating nanoparticles using a proton exchange membrane and liquid electrolyte cell
JP2019160737A (en) Separator, cell, and fuel cell
JP2003187817A (en) Separator for fuel cell