JP2005002411A - Corrosion-resistant metallic clad material for separator, and manufacturing method therefor - Google Patents

Corrosion-resistant metallic clad material for separator, and manufacturing method therefor Download PDF

Info

Publication number
JP2005002411A
JP2005002411A JP2003167216A JP2003167216A JP2005002411A JP 2005002411 A JP2005002411 A JP 2005002411A JP 2003167216 A JP2003167216 A JP 2003167216A JP 2003167216 A JP2003167216 A JP 2003167216A JP 2005002411 A JP2005002411 A JP 2005002411A
Authority
JP
Japan
Prior art keywords
clad material
separator
corrosion
core material
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167216A
Other languages
Japanese (ja)
Inventor
Tatsuya Tonoki
達也 外木
Masahiro Kiyofuji
雅宏 清藤
Mineo Wajima
峰生 和島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003167216A priority Critical patent/JP2005002411A/en
Publication of JP2005002411A publication Critical patent/JP2005002411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion-resistant metallic clad material for a separator, which is superior in corrosion resistance and workability, and to provide a manufacturing method therefor. <P>SOLUTION: This metallic clad material comprises a core material 21 made of a ferritic stainless alloy containing 11-20% chromium, and a cladding layer 22 of titanium or a titanium alloy, which covers one side or both sides of the core material 21. The constitution enables the core material to be annealed at a comparatively low temperature, inhibits the formation of an intermetallic compound therein to the minimum, can minimize the formation of cracks in the cladding layer even when the metallic clad material is pressed to form a passage, because of having improved formability, and enables the metallic clad material to form a deep channel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば固体高分子型燃料電池などに用いられるセパレータ用耐食金属クラッド材料及びその製造方法に関し、特に、耐食性及び成形性に優れるセパレータ用耐食金属クラッド材料及びその製造方法に関する。
【0002】
【従来の技術】
図2は、固体高分子型燃料電池の模式的構成を示す。
固体高分子型(PEFC)燃料電池1は、後述する燃料極と空気極を備えた単セルからなり、必要とする出力電圧に相当するセル個数が一列に配置される。各セルの発電出力は、直列に接続して取り出される。1つのセル9は、セル間の仕切りとなるセパレータ2、セル間に配置された固体高分子電解質膜3、この固体高分子電解質膜3の片面に設けられた燃料極(水素極、負極、又は、アノードとも言う)4、固体高分子電解質膜3の他方の面に設けられた空気極(酸素極、正極、又はカソードとも言う)5を備えて構成されている。
【0003】
セパレータ2は水素供給用通路(溝)6を有し、隣接するセパレータ7は酸素供給用通路(溝)8を有している。水素ガス及び酸素ガスは、それぞれ外部から図示せぬ供給路を通して水素供給用通路6及び酸素供給用通路8に導かれ、それぞれ燃料極4及び空気極5に供給される。固体高分子電解質膜3は、パーフロロカーボンスルフォン酸膜等による高分子イオン交換膜が用いられ、その両面には電極(白金系の触媒を添加)が接合されている。燃料極4及び空気極5には、多孔質炭素膜が用いられている。
【0004】
固体高分子型燃料電池1は、水素ガスを燃料、酸素ガスを酸化剤とし、水の電気分解と逆の反応を生じさせて電気エネルギーを生成する。
燃料極4側においては、次式に示す反応が生じる。
→2H+2e (1)
また、空気極5側では、次式に示す反応が生じる。
1/2O +2H+2e→HO (2)
更に、全反応は次式で表される。
+1/2O →HO (3)
【0005】
上式に示すように、燃料極4に水素イオンHが生じるため、セパレータ2,7は耐酸性を有する必要がある。また、セパレータ2,7は、空気極5側において酸素に晒されるため、耐酸化性を有する必要もある。このようにセパレータ2,7には耐食性が要求される。さらに、セパレータ2,7の電気抵抗は、燃料電池の内部抵抗を低く抑えるために、低抵抗であることが望ましい。
【0006】
従来、セパレータ2,7は、黒鉛を切削、又は黒鉛を樹脂モールドして製作されていたが、コストが高いため、プレス加工などで安価に製造できる金属材料のセパレータが望まれている。金属材料の場合、例えば、金属材料のコア材を覆う保護層にTi(チタン)、Ti合金、Cr、Cr合金、Zr(ジルコニウム)、Zr合金、Hf(ハフニウム)、Hf合金、V(バナジウム)、V合金、Nb(ニオブ)、Nb合金、Ta(タンタル)、及びTa合金の窒化物を用いたセパレータが用いられ、前記保護層により、耐食性を向上させたものが提案されている(例えば、特許文献1参照)。
【0007】
或いは、ステンレス鋼を基材とし、この基材表面にTa、Zr、Nb、Ti、Ni−Cr合金のいずれかによる耐酸性皮膜を設け、更に、耐酸性皮膜上にAu(金)、Pt(白金)、Pd(パラジウム)のいずれかによる導電性皮膜を形成してセパレータを製作し、ステンレス基材からの金属イオンの溶出を防止したものも提案されている(例えば、特許文献2参照)。
【0008】
【特許文献1】
特開2001−6694号公報
【特許文献2】
特開2001−93538号公報
【0009】
【発明が解決しようとする課題】
しかし、従来のセパレータ用金属材料によると、耐食層(例えば、Ti)に欠陥があった場合、コア材から金属イオンが溶出し、溶出した金属イオンが固体高分子電解質膜(高分子イオン交換膜)と反応してHイオン伝導性を劣化させ、電池特性を低下させることになる。このため、耐食層に欠陥があることは許されない。しかし、セパレータの製作に際し、水素等の燃料ガスや空気等の酸化ガスを流すための溝(流路)をプレス加工で設けようとすると、その溝が深い場合、耐食層に塑性加工によるクラックを生じることがある。クラックが生じれば、十分な耐食性を確保することは困難になる。
【0010】
コア材にステンレス鋼を用いた場合、クラックが生じても、ある程度耐食性を維持することができる。しかし、耐食性が十分であるとは言えないので、ステンレス鋼のコア材の表面により耐食性に優れたTiを被覆することが考えられる。この場合において、ステンレス鋼は、焼きなまし熱処理温度が一般的に高い。また、Tiクラッドステンレス鋼を所定の板厚まで圧延した場合、プレスを行う前に焼きなまし熱処理が必要になる。例えば、一般的なステンレス鋼であるSUS304をコア材に使用すると、1000℃以上の熱処理温度が必要になる。このような高い温度で熱処理を行った場合、ステンレス鋼の鉄分と被覆層のTiが反応し、界面に金属間化合物の厚い層が生成される。金属間化合物は非常に脆く、金属間化合物が厚く生成した複合材は、プレス時に金属間化合物のクラックを起点として被覆層に多数のクラックを発生する。ステンレス鋼は、Tiよりも耐食性が劣るため多数のクラックが生じれば、Tiで被覆したことの効果が低減することになる。
【0011】
したがって、本発明の目的は、耐食性及び加工性に優れたセパレータ用耐食金属クラッド材料及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、第1の特徴として、クロムを11〜20%含むフェライト系ステンレス合金によるコア材と、前記コア材の少なくとも片面にクラッドされたチタン又はチタン合金による被覆層を備えることを特徴とするセパレータ用耐食金属クラッド材料を提供する。
【0013】
この構成によれば、11〜20%のクロムを含むフェライト系ステンレス合金は、比較的低温度によりコア材を焼きなますことができ、金属間化合物の生成が最小限に抑えられ、成形性が向上することにより、通路を形成するためのプレスを行っても被覆層にクラックを発生させることがない。
【0014】
また、本発明は、上記の目的を達成するため、第2の特徴として、クロムを11〜20%含むフェライト系ステンレス合金の少なくとも片面にチタン又はチタン合金による被覆層を圧延によりクラッドしてクラッド材を作製する工程と、前記クラッド材に700〜850℃で熱処理を施す工程を含むことを特徴とする燃料電池用セパレータの製造方法を提供する。
【0015】
この方法によれば、11〜20%のクロムを含むフェライト系ステンレス合金をコア材とすることにより、その後に実施される通路形成の際、700〜850℃という低温度によりコア材を焼きなますことができるため、金属間化合物の生成が最小限に抑えられ、成形性が向上することにより、通路を形成するためのプレスを行っても被覆層にクラックを発生させることがない。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態に係るセパレータ用耐食金属クラッド材料をプレス加工して製作された燃料電池用セパレータを示す。図1は、図2のセパレータ2を上面方向から見た場合の横断面に相当する。そして、以下においては、図2に示した固体高分子型燃料電池に適用した場合について説明する。
【0017】
セパレータ20は、コア材21と、このコア材21の両面(又は片面)にTiによる被覆層22を設けた複合材となっている。更に、必要に応じて、被覆層22(Ti)の導電性を高めるため、被覆層22にAu(金)等をコーティングする。この複合材は成形によって両面に溝が設けられ、水素供給用通路23及び酸素供給用通路24が形成される。コア材21には、Crを11〜20%含むフェライト系ステンレス合金が用いられる。11〜20%のCrを含むフェライト系ステンレス合金は、オーステナイト系ステンレスに比べ、比較的低温度で焼きなますことができる。なお、Crが11%以下ではステンレスとしての耐食性が十分でなく、また、20%以上では焼きなまし熱処理温度(以下、熱処理温度という)が高くなるため好ましくない。
【0018】
熱処理温度は700〜850℃が最適であり、これにより金属間化合物の生成が最小限に抑えられ、成形性が向上し、プレス時のチタン層のクラックを防止することができる。仮にクラックが発生したとしても、その発生数はオーステナイト系ステンレスのときに比べて大幅に減少するので、溶出量としては小さく高分子イオン交換膜の性能を落とすことがない。700℃以下の温度では、Tiによる被覆層22を十分焼きなますことができず、成形加工が難しくなり、被覆層22に多数のクラックを発生する。また、850℃以上の温度では、金属間化合物が厚く生成するため、700℃以下の場合と同様に多くのクラックが発生する。また、上記温度範囲で複合材を熱処理すれば、ステンレス鋼によるコア材も焼きなますことができる。
【0019】
上記の構成により、本発明の実施の形態に係るセパレータ用耐食金属クラッド材料を用いて製作された燃料電池用セパレータは、以下の特性を備えることが可能になる。
(1)良好な耐食性を有する。
(2)経年による電気抵抗の変化が少ない。
(3)良好な加工性を有する。
(4)低コストが可能。
(5)高い疲労強度及び良好な耐久性を備える。
【0020】
【実施例】
以下、本発明の一実施例について説明する。
本実施例においては、コア材21として、板状のフェライト系ステンレス鋼のSUS430を用いた。冷間圧延法によって50%以上の加工度を加えて純Tiをコア材21の両面にクラッドし、被覆層22を形成した。被覆層22は、更に数回の圧延を行って0.3mmの厚みにした。Ti層:ステンレス層:Ti層の比率は1:8:1とした。このクラッド材を各温度で熱処理した後、プレス法により水素供給用通路23と酸素供給用通路24を成形した。通路23,24の深さは0.6mmとした。更に、このような構成のセパレータ20を用いて図2に示したような固体高分子型燃料電池を構成し、水素及び空気をそれぞれのセパレータ(2,7)に流して発電試験を行うことにより、溶出性のテストを行った。また、比較のため、コア材が純Feとオーステナイト系ステンレスのSUS304によるクラッド材についても同ように製作し、発電試験による溶出性を調査した。なお、Tiクラッド材はそのままでは、すぐに表面に緻密な酸化膜を生じて導電性が低下してしまうため、導電性の確保を目的として約0.1μmのAu層を蒸着により表面に形成した。
【0021】
表1は本発明による効果を調査した結果を示し、表2は比較例による効果を調査した結果を示す。なお、どちらも水素供給用通路23と酸素供給用通路24は深さ0.6mmとした。
【0022】
【表1】

Figure 2005002411
【0023】
表1から明らかなように、本実施例では、コア材21にSUS430のステンレス鋼を用いたことにより、700〜850℃の熱処理温度で焼きなますことができた。このため、金属間化合物の生成が抑えられ、クラックの発生数は1〜2個と非常に少なくすることができた。この程度のクラック数であれば、SUS430自体が備える耐食性によって溶出量を十分に小さくでき、電池特性の低下が抑えられる。
【0024】
【表2】
Figure 2005002411
【0025】
一方、表2から明らかなように、Ti/SUS430/Tiの構成による比較例1では、650℃と900℃で熱処理を行ったが、この温度ではクラックが多数発生し、溶出によって電池特性が大きく低下した。更に、Ti/SUS304/Tiの構成の比較例2は、750℃の熱処理では焼きなますことができず、プレス時に被覆層22に多数のクラックが生じた。また、比較例2において、焼きなましが可能な1000℃で熱処理を行ったところ、厚い金属間化合物層が生じ、比較例2と同ようにプレス時に多数のクラックが生じた。多数のクラックが生じたことによってSUS304の溶出量が多くなり、電池特性の低下が見られた。また、比較例3のTi/Fe/Tiの構成では、750℃の熱処理で焼きなましできるため、金属間化合物の生成も少なく、Ti層のクラック数も少ないが、Feは耐食性に劣るため、僅かなクラック数でも大きな電池特性の低下がおきた。
【0026】
上記の説明においては、導電性を確保するために被覆層22にAuをコーティングしたが、被覆層22(Ti)の導電性が保たれ、かつ、溶出しないコーティングであれば、Pt等の貴金属、TiN、TiB等の導電性セラミック、黒鉛等の炭素であっても構わない。
【0027】
また、上記実施例においては、燃料ガスに水素を使用した固体高分子型燃料電池について説明したが、本発明に係るセパレータは、燃料としてメタノール等の液体を流す構成の燃料電池や他の方式の燃料電池に対しても適用可能である。或いは、酸素供給用通路や水素供給用通路のための溝を必要とするセパレータに適用することができる。
【0028】
【発明の効果】
以上より明らかなように、本発明のセパレータ用耐食金属クラッド材料によれば、11〜20%のクロムを含むフェライト系ステンレス合金をコア材に用いたことにより、比較的低温度によりコア材を焼きなますことが可能になり、金属間化合物の生成が最小限に抑えられ、成形性が向上するため、燃料電池用セパレータのガス通路を形成するためのプレスを行っても被覆層におけるクラックの発生を最小にでき、深い流路の成形が可能になる。また、フェライト系ステンレス合金によるコア材は、耐食性に優れるため、たとえクラックが発生しても金属イオンの溶出が防止され、高分子イオン交換膜の劣化を防止できるため、燃料電池の高寿命化を図ることができる。
【0029】
また、本発明のセパレータ用耐食金属クラッド材料の製造方法によれば、11〜20%のクロムを含むフェライト系ステンレス合金をコア材とし、このコア材にチタン又はチタン合金による被覆層を圧延によりクラッドしてクラッド材を作製し、このクラッド材に700〜850℃で熱処理を施すようにしたので、700〜850℃という低温度によりコア材を焼きなますことができる結果、金属間化合物の生成が最小限に抑えられ、成形性が向上することにより、ガス通路を形成するためのプレス加工を行っても被覆層にクラックの発生を最小にでき、深い流路の成形が可能になる。また、フェライト系ステンレス合金によるコア材は、耐食性に優れるため、たとえクラックが発生しても金属イオンの溶出が防止され、高分子イオン交換膜の劣化を防止できるため、燃料電池の高寿命化が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るセパレータ用耐食金属クラッド材料を用いて製作された燃料電池用セパレータを示す断面図である。
【図2】固体高分子型燃料電池の模式的構成を示す模式図である。
【符号の説明】
1 固体高分子型(PEFC)燃料電池
2 セパレータ
3 固体高分子電解質膜
4 燃料極
5 空気極
6 水素供給用通路
7 セパレータ
8 酸素供給用通路
9 セル
20 セパレータ
21 コア材
22 被覆層
23 水素供給用通路
24 酸素供給用通路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant metal clad material for a separator used in, for example, a polymer electrolyte fuel cell and a method for producing the same, and more particularly to a corrosion-resistant metal clad material for a separator excellent in corrosion resistance and formability and a method for producing the same.
[0002]
[Prior art]
FIG. 2 shows a schematic configuration of a solid polymer fuel cell.
The polymer electrolyte (PEFC) fuel cell 1 is composed of a single cell having a fuel electrode and an air electrode, which will be described later, and the number of cells corresponding to the required output voltage is arranged in a line. The power output of each cell is taken out in series. One cell 9 includes a separator 2 that serves as a partition between cells, a solid polymer electrolyte membrane 3 disposed between the cells, and a fuel electrode (hydrogen electrode, negative electrode, or electrode provided on one side of the solid polymer electrolyte membrane 3. 4), and an air electrode (also referred to as an oxygen electrode, a positive electrode, or a cathode) 5 provided on the other surface of the solid polymer electrolyte membrane 3.
[0003]
The separator 2 has a hydrogen supply passage (groove) 6, and the adjacent separator 7 has an oxygen supply passage (groove) 8. Hydrogen gas and oxygen gas are led from the outside through a supply path (not shown) to the hydrogen supply path 6 and the oxygen supply path 8, respectively, and are supplied to the fuel electrode 4 and the air electrode 5, respectively. As the solid polymer electrolyte membrane 3, a polymer ion exchange membrane such as a perfluorocarbon sulfonic acid membrane is used, and electrodes (platinum-based catalyst added) are joined to both surfaces thereof. A porous carbon membrane is used for the fuel electrode 4 and the air electrode 5.
[0004]
The polymer electrolyte fuel cell 1 uses hydrogen gas as fuel and oxygen gas as an oxidant, and generates electric energy by causing a reaction opposite to the electrolysis of water.
On the fuel electrode 4 side, the reaction shown in the following formula occurs.
H 2 → 2H + + 2e (1)
On the air electrode 5 side, the reaction shown in the following formula occurs.
1 / 2O 2 + 2H + + 2e → H 2 O (2)
Further, the total reaction is represented by the following formula.
H 2 + 1 / 2O 2 → H 2 O (3)
[0005]
As shown in the above equation, since hydrogen ions H + are generated in the fuel electrode 4, the separators 2 and 7 need to have acid resistance. Further, since the separators 2 and 7 are exposed to oxygen on the air electrode 5 side, they need to have oxidation resistance. Thus, the separators 2 and 7 are required to have corrosion resistance. Furthermore, the electrical resistance of the separators 2 and 7 is desirably low in order to keep the internal resistance of the fuel cell low.
[0006]
Conventionally, the separators 2 and 7 have been manufactured by cutting graphite or resin molding graphite. However, since the cost is high, a separator made of a metal material that can be manufactured at low cost by pressing or the like is desired. In the case of a metal material, for example, Ti (titanium), Ti alloy, Cr, Cr alloy, Zr (zirconium), Zr alloy, Hf (hafnium), Hf alloy, V (vanadium) are applied to the protective layer covering the core material of the metal material. , Separators using nitrides of V alloy, Nb (niobium), Nb alloy, Ta (tantalum), and Ta alloy are used, and the protective layer has improved the corrosion resistance (for example, Patent Document 1).
[0007]
Alternatively, stainless steel is used as a base material, and an acid-resistant film made of Ta, Zr, Nb, Ti, or Ni—Cr alloy is provided on the surface of the base material, and Au (gold), Pt ( A separator in which a conductive film made of either platinum) or Pd (palladium) is formed to produce a separator to prevent elution of metal ions from a stainless steel substrate has been proposed (for example, see Patent Document 2).
[0008]
[Patent Document 1]
JP 2001-6694 A [Patent Document 2]
JP 2001-93538 A
[Problems to be solved by the invention]
However, according to conventional metal materials for separators, when a corrosion-resistant layer (for example, Ti) has a defect, metal ions are eluted from the core material, and the eluted metal ions are solid polymer electrolyte membranes (polymer ion exchange membranes). ) To deteriorate the H + ion conductivity and lower the battery characteristics. For this reason, it is not allowed that the corrosion-resistant layer has a defect. However, when manufacturing a separator, if a groove (flow path) for flowing a fuel gas such as hydrogen or an oxidizing gas such as air is to be formed by pressing, if the groove is deep, cracks due to plastic working will occur in the corrosion-resistant layer. May occur. If cracks occur, it becomes difficult to ensure sufficient corrosion resistance.
[0010]
When stainless steel is used for the core material, even if cracks occur, corrosion resistance can be maintained to some extent. However, since it cannot be said that the corrosion resistance is sufficient, it is conceivable to coat Ti with excellent corrosion resistance on the surface of the stainless steel core material. In this case, stainless steel generally has a high annealing heat treatment temperature. Further, when Ti clad stainless steel is rolled to a predetermined thickness, an annealing heat treatment is required before pressing. For example, when SUS304, which is a general stainless steel, is used as a core material, a heat treatment temperature of 1000 ° C. or higher is required. When heat treatment is performed at such a high temperature, the iron content of the stainless steel reacts with the Ti of the coating layer, and a thick layer of intermetallic compound is generated at the interface. An intermetallic compound is very brittle, and a composite material in which an intermetallic compound is formed thickly generates many cracks in the coating layer starting from cracks of the intermetallic compound during pressing. Since stainless steel is inferior in corrosion resistance to Ti, if a large number of cracks occur, the effect of covering with Ti will be reduced.
[0011]
Accordingly, an object of the present invention is to provide a corrosion-resistant metal clad material for a separator excellent in corrosion resistance and workability and a method for producing the same.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides, as a first feature, a core material made of a ferritic stainless alloy containing 11 to 20% chromium, and a coating made of titanium or a titanium alloy clad on at least one surface of the core material. There is provided a corrosion-resistant metal clad material for a separator characterized by comprising a layer.
[0013]
According to this configuration, the ferritic stainless steel alloy containing 11 to 20% chromium can anneal the core material at a relatively low temperature, the generation of intermetallic compounds is minimized, and the formability is reduced. By improving, even if the press for forming a channel | path is performed, a crack is not generated in a coating layer.
[0014]
In order to achieve the above object, the present invention has a second feature in that a clad material is obtained by clad titanium or a coating layer of titanium alloy on at least one surface of a ferritic stainless alloy containing 11 to 20% of chromium by rolling. The manufacturing method of the separator for fuel cells characterized by including the process of producing this, and the process of heat-processing at 700-850 degreeC to the said clad material is provided.
[0015]
According to this method, the core material is annealed at a low temperature of 700 to 850 ° C. at the time of the passage formation performed later by using a ferritic stainless alloy containing 11 to 20% chromium as the core material. Therefore, generation of an intermetallic compound is suppressed to a minimum, and formability is improved, so that cracks are not generated in the coating layer even when a press for forming a passage is performed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a fuel cell separator manufactured by pressing a corrosion-resistant metal clad material for a separator according to an embodiment of the present invention. FIG. 1 corresponds to a cross section when the separator 2 of FIG. 2 is viewed from above. And below, the case where it applies to the polymer electrolyte fuel cell shown in FIG. 2 is demonstrated.
[0017]
The separator 20 is a composite material in which a core material 21 and a coating layer 22 made of Ti are provided on both surfaces (or one surface) of the core material 21. Further, if necessary, the coating layer 22 is coated with Au (gold) or the like in order to increase the conductivity of the coating layer 22 (Ti). The composite material is formed with grooves on both sides by molding to form a hydrogen supply passage 23 and an oxygen supply passage 24. For the core material 21, a ferritic stainless alloy containing 11 to 20% of Cr is used. Ferritic stainless steel alloys containing 11-20% Cr can be annealed at a relatively low temperature compared to austenitic stainless steels. Note that if Cr is 11% or less, the corrosion resistance as stainless steel is not sufficient, and if it is 20% or more, the annealing heat treatment temperature (hereinafter referred to as heat treatment temperature) becomes high.
[0018]
The heat treatment temperature is optimally 700 to 850 ° C., thereby minimizing the formation of intermetallic compounds, improving the formability and preventing cracks in the titanium layer during pressing. Even if cracks occur, the number of occurrences is greatly reduced compared to that of austenitic stainless steel, so the amount of elution is small and the performance of the polymer ion exchange membrane is not degraded. At a temperature of 700 ° C. or lower, the coating layer 22 made of Ti cannot be sufficiently annealed, making the molding process difficult, and a large number of cracks are generated in the coating layer 22. Moreover, since the intermetallic compound is formed thick at a temperature of 850 ° C. or higher, many cracks are generated as in the case of 700 ° C. or lower. Moreover, if the composite material is heat-treated in the above temperature range, the core material made of stainless steel can also be annealed.
[0019]
With the above configuration, the separator for a fuel cell manufactured using the corrosion-resistant metal clad material for a separator according to the embodiment of the present invention can have the following characteristics.
(1) It has good corrosion resistance.
(2) Little change in electrical resistance over time.
(3) It has good workability.
(4) Low cost is possible.
(5) Provide high fatigue strength and good durability.
[0020]
【Example】
Hereinafter, an embodiment of the present invention will be described.
In this embodiment, plate-like ferritic stainless steel SUS430 is used as the core material 21. 50% or more of the workability was added by a cold rolling method, and pure Ti was clad on both surfaces of the core material 21 to form a coating layer 22. The coating layer 22 was further rolled several times to a thickness of 0.3 mm. The ratio of Ti layer: stainless layer: Ti layer was 1: 8: 1. After this clad material was heat-treated at each temperature, a hydrogen supply passage 23 and an oxygen supply passage 24 were formed by a pressing method. The depth of the passages 23 and 24 was 0.6 mm. Furthermore, by using the separator 20 having such a configuration, a polymer electrolyte fuel cell as shown in FIG. 2 is constructed, and hydrogen and air are passed through the respective separators (2, 7) to perform a power generation test. The elution test was conducted. For comparison, a clad material made of SUS304 having a core material of pure Fe and austenitic stainless steel was also manufactured in the same manner, and the elution property by a power generation test was investigated. If the Ti clad material is left as it is, a dense oxide film is formed on the surface immediately and the conductivity is lowered. Therefore, an Au layer of about 0.1 μm is formed on the surface by vapor deposition for the purpose of ensuring conductivity. .
[0021]
Table 1 shows the results of investigating the effects of the present invention, and Table 2 shows the results of investigating the effects of the comparative example. In both cases, the hydrogen supply passage 23 and the oxygen supply passage 24 have a depth of 0.6 mm.
[0022]
[Table 1]
Figure 2005002411
[0023]
As can be seen from Table 1, in this example, SUS430 stainless steel was used for the core material 21, so that annealing could be performed at a heat treatment temperature of 700 to 850 ° C. For this reason, the production | generation of the intermetallic compound was suppressed and the generation | occurrence | production number of the crack was able to be very few with 1-2 pieces. With this number of cracks, the elution amount can be made sufficiently small due to the corrosion resistance of SUS430 itself, and the deterioration of the battery characteristics can be suppressed.
[0024]
[Table 2]
Figure 2005002411
[0025]
On the other hand, as is apparent from Table 2, in Comparative Example 1 having the structure of Ti / SUS430 / Ti, heat treatment was performed at 650 ° C. and 900 ° C., but many cracks were generated at this temperature, and the battery characteristics were large due to elution. Declined. Further, Comparative Example 2 having a structure of Ti / SUS304 / Ti could not be annealed by heat treatment at 750 ° C., and many cracks were generated in the coating layer 22 during pressing. In Comparative Example 2, when heat treatment was performed at 1000 ° C. where annealing was possible, a thick intermetallic compound layer was formed, and many cracks were generated during pressing as in Comparative Example 2. Due to the occurrence of a large number of cracks, the amount of SUS304 eluted was increased, and a decrease in battery characteristics was observed. Further, in the structure of Ti / Fe / Ti in Comparative Example 3, since it can be annealed by heat treatment at 750 ° C., there is little generation of intermetallic compounds and the number of cracks in the Ti layer is small, but Fe is inferior in corrosion resistance, so it is slightly Even with the number of cracks, the battery characteristics deteriorated significantly.
[0026]
In the above description, the coating layer 22 is coated with Au in order to ensure conductivity. However, if the coating of the coating layer 22 (Ti) is maintained and does not elute, a noble metal such as Pt, It may be a conductive ceramic such as TiN or TiB, or carbon such as graphite.
[0027]
In the above embodiment, the polymer electrolyte fuel cell using hydrogen as the fuel gas has been described. However, the separator according to the present invention is a fuel cell having a configuration in which a liquid such as methanol is allowed to flow as a fuel, or other types of fuel cells. The present invention can also be applied to a fuel cell. Alternatively, the present invention can be applied to a separator that requires a groove for an oxygen supply passage or a hydrogen supply passage.
[0028]
【The invention's effect】
As is clear from the above, according to the corrosion-resistant metal clad material for a separator of the present invention, the core material is baked at a relatively low temperature by using a ferritic stainless alloy containing 11 to 20% chromium as the core material. Since the formation of intermetallic compounds is minimized and the moldability is improved, cracks can be generated in the coating layer even if pressing is performed to form gas passages for fuel cell separators. And a deep flow path can be formed. In addition, the core material made of a ferritic stainless steel alloy has excellent corrosion resistance, so that even if cracks occur, the elution of metal ions can be prevented and the polymer ion exchange membrane can be prevented from deteriorating, thus extending the life of the fuel cell. Can be planned.
[0029]
Further, according to the method for manufacturing a corrosion-resistant metal clad material for a separator of the present invention, a ferritic stainless alloy containing 11 to 20% chromium is used as a core material, and a coating layer of titanium or a titanium alloy is clad by rolling on the core material. Thus, the clad material was produced, and the clad material was heat treated at 700 to 850 ° C., so that the core material can be annealed at a low temperature of 700 to 850 ° C. By minimizing the moldability and improving the moldability, it is possible to minimize the generation of cracks in the coating layer even when the press working for forming the gas passage is performed, and a deep flow path can be formed. In addition, the core material made of a ferritic stainless steel alloy has excellent corrosion resistance, so that even if cracks occur, elution of metal ions is prevented, and deterioration of the polymer ion exchange membrane can be prevented, thus extending the life of the fuel cell. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a separator for a fuel cell manufactured using a corrosion-resistant metal clad material for a separator according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of a solid polymer fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid polymer type (PEFC) fuel cell 2 Separator 3 Solid polymer electrolyte membrane 4 Fuel electrode 5 Air electrode 6 Hydrogen supply passage 7 Separator 8 Oxygen supply passage 9 Cell 20 Separator 21 Core material 22 Covering layer 23 Hydrogen supply Passage 24 Oxygen supply passage

Claims (4)

クロムを11〜20%含むフェライト系ステンレス合金によるコア材と、
前記コア材の少なくとも片面にクラッドされたチタン又はチタン合金による被覆層を備えることを特徴とするセパレータ用耐食金属クラッド材料。
A core material made of a ferritic stainless alloy containing 11 to 20% chromium;
A corrosion-resistant metal clad material for a separator, comprising a coating layer made of titanium or a titanium alloy clad on at least one surface of the core material.
前記被覆層は、金、貴金属、導電性セラミック、又は炭素がコーティングされていることを特徴とする請求項1記載のセパレータ用耐食金属クラッド材料。The corrosion-resistant metal clad material for a separator according to claim 1, wherein the coating layer is coated with gold, a noble metal, a conductive ceramic, or carbon. クロムを11〜20%含むフェライト系ステンレス合金の少なくとも片面にチタン又はチタン合金による被覆層を圧延によりクラッドしてクラッド材を作製する工程と、
前記クラッド材に700〜850℃で熱処理を施す工程を含むことを特徴とするセパレータ用耐食金属クラッド材料の製造方法。
A step of producing a clad material by clad rolling a coating layer of titanium or a titanium alloy on at least one surface of a ferritic stainless alloy containing 11 to 20% chromium;
The manufacturing method of the corrosion-resistant metal clad material for separators characterized by including the process of heat-processing at 700-850 degreeC to the said clad material.
前記クラッド材を作製する工程は、前記被覆層表面の酸化物を除去した後に、金、貴金属、導電性セラミック、又は炭素が前記被覆層にコーティングされる処理を含むことを特徴とする請求項3記載のセパレータ用耐食金属クラッド材料の製造方法。The step of producing the clad material includes a process of coating the coating layer with gold, a noble metal, a conductive ceramic, or carbon after removing the oxide on the surface of the coating layer. The manufacturing method of the corrosion-resistant metal clad material for separators of description.
JP2003167216A 2003-06-12 2003-06-12 Corrosion-resistant metallic clad material for separator, and manufacturing method therefor Pending JP2005002411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167216A JP2005002411A (en) 2003-06-12 2003-06-12 Corrosion-resistant metallic clad material for separator, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167216A JP2005002411A (en) 2003-06-12 2003-06-12 Corrosion-resistant metallic clad material for separator, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005002411A true JP2005002411A (en) 2005-01-06

Family

ID=34093082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167216A Pending JP2005002411A (en) 2003-06-12 2003-06-12 Corrosion-resistant metallic clad material for separator, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005002411A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082734A1 (en) * 2005-02-01 2006-08-10 Neomax Materials Co., Ltd. Separator for fuel cell and method for manufacturing same
JP2007311069A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, fuel cell separator, and its manufacturing method
KR100801429B1 (en) 2006-10-16 2008-02-05 현대하이스코 주식회사 The method for manufacturing a metal seperator of fuel cell
JP2009501422A (en) * 2005-07-12 2009-01-15 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Coated steel bipolar plate
WO2009011026A1 (en) * 2007-07-13 2009-01-22 Mitsui Mining & Smelting Co., Ltd. Process for producing composite metal foil, composite metal foil, shaped metal foil and process for producing shaped metal foil
JP2011134653A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Separator for fuel cell, gas passage layer for fuel cell, and method for manufacturing them
US8092951B2 (en) 2006-05-16 2012-01-10 Nissan Motor Co., Ltd. Fuel cell, fuel cell stack and method of manufacturing the same
US8173320B2 (en) 2006-05-16 2012-05-08 Nissan Motor Co., Ltd. Fuel cell stack and method for making the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082734A1 (en) * 2005-02-01 2006-08-10 Neomax Materials Co., Ltd. Separator for fuel cell and method for manufacturing same
US8338058B2 (en) 2005-02-01 2012-12-25 Neomax Materials Co., Ltd. Separator for fuel cell having intermediate layer and method for manufacturing same
JP2009501422A (en) * 2005-07-12 2009-01-15 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Coated steel bipolar plate
JP2007311069A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, fuel cell separator, and its manufacturing method
US8092951B2 (en) 2006-05-16 2012-01-10 Nissan Motor Co., Ltd. Fuel cell, fuel cell stack and method of manufacturing the same
US8173320B2 (en) 2006-05-16 2012-05-08 Nissan Motor Co., Ltd. Fuel cell stack and method for making the same
US8263289B2 (en) 2006-05-16 2012-09-11 Nissan Motor Co., Ltd. Fuel cell stack and method of producing its separator plates
KR100801429B1 (en) 2006-10-16 2008-02-05 현대하이스코 주식회사 The method for manufacturing a metal seperator of fuel cell
WO2009011026A1 (en) * 2007-07-13 2009-01-22 Mitsui Mining & Smelting Co., Ltd. Process for producing composite metal foil, composite metal foil, shaped metal foil and process for producing shaped metal foil
JP2011134653A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Separator for fuel cell, gas passage layer for fuel cell, and method for manufacturing them

Similar Documents

Publication Publication Date Title
JP5226302B2 (en) Manufacturing method of fuel cell separator
AU2006259739B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP5234711B2 (en) Fuel cell separator and method for producing the same
US8133632B2 (en) Metal component for fuel cell and method of manufacturing the same, austenitic stainless steel for polymer electrolyte fuel cell and metal component for fuel cell using the same, polymer electrolyte fuel cell material and method of manufacturing the same, corrosion-resistant conductive component and method of manufacturing the same, and fuel cell
CN100472864C (en) Separator for fuel cell and method for producing same
US20140030632A1 (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
US8232020B2 (en) Interconnector for a fuel cell stack and method for production
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
US8334078B2 (en) Fuel cell separator and method for producing the same
JP2005002411A (en) Corrosion-resistant metallic clad material for separator, and manufacturing method therefor
JP2007134107A (en) Separator for fuel cell, its manufacturing method and fuel cell
EP1735865B1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP2002075399A (en) Separator for solid polymer electrolyte fuel cell
JP5880799B1 (en) Metal material and current-carrying parts using this metal material
JP2005078956A (en) Manufacturing method of gas separating plate for fuel cell
KR100867819B1 (en) Surface layer of metal bipolar plate for fuel cell and method for creating the same
JP2004095472A (en) Solid polymer electrolyte fuel cell material
JP2023122178A (en) Manufacturing method of fuel cell separator
AU2011244954B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP2010086897A (en) Fuel cell separator, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218