WO2009028428A1 - Elliptic polarization plate and liquid crystal display device - Google Patents

Elliptic polarization plate and liquid crystal display device Download PDF

Info

Publication number
WO2009028428A1
WO2009028428A1 PCT/JP2008/065058 JP2008065058W WO2009028428A1 WO 2009028428 A1 WO2009028428 A1 WO 2009028428A1 JP 2008065058 W JP2008065058 W JP 2008065058W WO 2009028428 A1 WO2009028428 A1 WO 2009028428A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
anisotropic layer
polarizing plate
optical anisotropic
film
Prior art date
Application number
PCT/JP2008/065058
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Takahashi
Satoru Ikeda
Tetsuya Uesaka
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008013905A external-priority patent/JP2009075533A/en
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to US12/674,799 priority Critical patent/US8179501B2/en
Publication of WO2009028428A1 publication Critical patent/WO2009028428A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate
    • G02F2413/105Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate with varying inclination in thickness direction, e.g. hybrid oriented discotic LC

Definitions

  • the present invention relates to an elliptically polarizing plate including two optically anisotropic layers and a liquid crystal display device having excellent viewing angle characteristics in which the elliptically polarizing plate is disposed, and more particularly to a TN type liquid crystal display device.
  • liquid crystal display hereinafter also referred to as L C D
  • a nematic liquid crystal having an alignment structure in which a helical axis is in the normal direction of the glass substrate between a pair of glass substrates on which transparent electrodes are formed, and the twist angle is about 90 degrees.
  • NW normally white
  • LCD hereinafter also referred to as TN—LCD.
  • NW mode when no voltage is applied, the incident linearly polarized light is emitted by rotating 90 degrees due to the optical rotation of the liquid crystal cell, resulting in a white state.
  • gradation display is performed by using the white state, the black state, and the intermediate state.
  • nematic liquid crystals used in LCDs have a rod-like molecular structure and a positive refractive index anisotropy with a large refractive index in the direction of the molecular axis, and the polarization state of light that passes obliquely through the LCD.
  • the change is different from the normal direction of the LCD due to the phase difference due to the refractive index anisotropy of the liquid crystal.
  • viewing angle characteristics such as a decrease in contrast and gradation inversion that reverses the gradation display.
  • the improvement of the viewing angle characteristics can be achieved mainly by improving the viewing angle characteristics in black display, that is, when a voltage is applied.
  • the viewing angle characteristics can be improved by using a retardation plate having the same positive refractive index anisotropy as that of liquid crystal but having the optical axis inclined from the film normal direction. It has been proposed (Patent Document 5, Patent Document 6, Patent Document 7).
  • Patent Document 8 as a liquid crystal display device combining a retardation film in which liquid crystal molecules having positive refractive index anisotropy are tilted and a uniaxial film, a polarizing plate tilted alignment film / uniaxial film TN liquid crystal cell 1
  • a liquid crystal display device comprising an axial film, a Z-oriented film, and a Z polarizing plate has been proposed.
  • this configuration is not sufficient to completely compensate the viewing angle of the display contrast, and the viewing angle characteristics are only incomplete.
  • the optical compensator used to improve the viewing angle characteristics of TN-LCD has not been found any device that can dramatically improve the total viewing angle characteristics including not only the display contrast but also the gradation inversion, and there is a need for further improvements.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-0 1 5 2 3 9
  • Patent Document 2 Japanese Patent Laid-Open No. 3-10 3 8 2 3
  • Patent Document 3 Japanese Patent Application Laid-Open No. Sho 6 3-2 3 9 4 2 1
  • Patent Document 4 Japanese Patent Laid-Open No. 6-2 1 4 1 1 6
  • Patent Document 5 Japanese Patent Laid-Open No. 5-0 80 3 2 3
  • Patent Document 6 Japanese Patent Application Laid-Open No. 7-3 0 6 4 0 6
  • Patent Document 7 International Publication No. 9 6/1 0 7 7 3 Pamphlet
  • Patent Document 8 Japanese Patent Application Laid-Open No. 10-1 1 2 3 5 0 6
  • an elliptically polarizing plate that can significantly improve the viewing angle characteristics of both contrast and gradation reversal, and by placing it, the contrast is high and the viewing angle dependency is low.
  • An object is to provide a liquid crystal display device.
  • the optically anisotropic layer having an NZ coefficient of 0.8 to 1.6 and a liquid crystalline polymer exhibiting optically positive uniaxiality are substantially used.
  • the second optical anisotropy is a liquid crystal film in which the alignment structure is fixed, and is laminated so that the alignment direction of the second optically anisotropic layer and the absorption axis of the polarizing plate are parallel to each other.
  • D 1 is the thickness [nm] of the first optical anisotropic layer
  • nxl and ny 1 are for light with a wavelength of 550 nm.
  • the main refractive index in the plane of the first optical anisotropic layer, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl.
  • a TN liquid crystal display device comprising at least one elliptically polarizing plate as described in [1] above.
  • the first polarizing plate, the first optically anisotropic layer, the second optically anisotropic layer, the TN liquid crystal cell, the second optically anisotropic layer, and the first optically anisotropic layer A TN liquid crystal display device in which an isotropic layer, a second polarizing plate, and a backlight are arranged in this order, wherein the first optically anisotropic layer includes the following [1] and [2]: The slow axis of the first optical anisotropy layer on the viewer side and the absorption axis of the first polarizing plate are perpendicular to each other, and the slow axis of the first optical anisotropic layer on the backlight side and the second axis
  • the second optically anisotropic layer has an in-plane retardation value of 30 to 150 nm at a wavelength of 550 nm, and is optically laminated.
  • the orientation direction of the anisotropic layer is parallel to the absorption axis of the first polarizing plate, and the orientation direction of the second optical anisotropic layer on the backlight side is parallel to the absorption axis of the second polarizing plate.
  • TN type liquid crystal characterized by being laminated Display device.
  • X d 1 [nm
  • d 1 is the thickness [nm] of the first optical anisotropic layer
  • nxl and ny 1 are wavelengths 550
  • nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm
  • the alignment direction of the liquid crystal molecules on the cell substrate on the viewing side in the TN liquid crystal cell is the nematic hybrid alignment structure of the second optically anisotropic layer on the adjacent viewing side.
  • the alignment direction of the liquid crystal molecules on the cell substrate on the backlight side is the second optical anisotropic layer on the backlight side.
  • the TN type according to any one of the above [4] to [7], wherein the liquid crystal film is fixed in an antiparallel relationship with the alignment direction of the liquid crystal film in which the nematic hybrid alignment structure is fixed. Liquid crystal display device.
  • an elliptically polarizing plate that can greatly improve the viewing angle characteristics of both contrast and gradation reversal, and by placing it, the contrast is high and the viewing angle depends.
  • a liquid crystal display device with less property can be provided.
  • the elliptically polarizing plate of the present invention includes a translucent protective film, a polarizing element, a first optically anisotropic layer having an NZ coefficient of 0.8 to 1.6, and an optically high uniaxial liquid crystallinity. Consists of at least a second optically anisotropic layer composed of a liquid crystal film in which molecules are fixed in a nematic hybrid alignment structure
  • the elliptically polarizing plate of the present invention has a structure in which a polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order.
  • the polarizing plate may have a structure having a translucent protective film on both sides of the polarizing element or a structure having a translucent protective film only on one side of the polarizing element.
  • the first optically anisotropic layer also serves as a protective film for the polarizing element.
  • a translucent protective film may be included between the polarizing element and the first optically anisotropic layer, but it is preferable to directly provide the first optically anisotropic layer from the viewpoint of durability and thickness.
  • the elliptically polarizing plate of the present invention is laminated so that the slow axis of the first optical anisotropic layer and the absorption axis of the polarizing plate are perpendicular to each other, and the slow phase of the second optical anisotropic layer is The axes are laminated so that the absorption axis of the polarizing plate is parallel.
  • the order of lamination of the optically anisotropic layer with respect to the polarizing plate is polarized as shown in Fig. 1 because it suppresses the decrease in contrast and color shift when mounted on a liquid crystal display device. It is preferable to laminate the first optically anisotropic layer and the second optically anisotropic layer in this order from the plate side.
  • the polarizing plate, the first optically anisotropic layer, and the second optically anisotropic layer are laminated via an adhesive layer or an adhesive layer.
  • the pressure-sensitive adhesive layer or the adhesive layer may be a single layer, or may be a superposed form of two or more layers.
  • the structural member used for this invention is demonstrated in order.
  • the polarizing plate used in the present invention has a translucent protective film on both sides or one side of the polarizing element.
  • the polarizing element is not particularly limited, and various types can be used.
  • the polarizing element include hydrophilic polymer films such as polybulal alcohol film, partially formalized polybulal alcohol film, and ethylene / vinyl acetate copolymer partially saponified film.
  • Uniaxially stretched by adsorbing dichroic substances such as reactive dyes, dehydrated polybulal alcohol and dehydrochlorinated polychlorinated blu And the like, and the like.
  • those obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic material are preferably used.
  • the thickness of the polarizing element is not particularly limited, but is generally about 5 to 80 ⁇ .
  • a polarizing element in which a polyvinyl alcohol film is dyed with silicon and uniaxially stretched is prepared by, for example, dyeing polybulal alcohol in an aqueous solution of silicon and stretching it 3 to 7 times the original length. can do. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, non-uniformity such as uneven dyeing can be achieved by swelling the poly alcohol alcohol film. There is also an effect to prevent this.
  • Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be performed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a light-transmitting protective film is provided on both sides or one side of the polarizing element.
  • the light-transmitting protective film is usually preferably one that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like.
  • the material for the translucent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, senorelose polymers such as dicetinoresenorelose and triacetinoresenorelose, and polymethyl methacrylate.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
  • senorelose polymers such as dicetinoresenorelose and triacetinoresenorelose
  • polymethyl methacrylate examples include acryl-based polymers, styrene-based polymers such as polystyrene acrylonitrile, styrene copolymers (AS resins), and polycarbonate-based polymers.
  • cyclic polyolefins having a cycloalkane structure or norbornene structure polyolefin polymers such as polyethylene, polypropylene, ethylene propylene copolymer, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamides, imi Polymer, sulfone polymer, polyether sulfone polymer, polyetheretherketone polymer, polyphenylene norfide polymer, vinylenoreconolole polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer Rimmer, polyoxymethylene polymer, epoxy polymer, or Limer blends are examples of polymers that form translucent protective films.
  • acrylic, urethane, acrylic urethane, epoxy, silicone, and other thermosetting or ultraviolet curable resins can be used.
  • a translucent protective film that can be particularly preferably used in terms of flatness, polarization characteristics, durability, and the like is a triacetyl cellulose film and a cyclic polyolefin having a norbornene structure.
  • the thickness of the protective film can be determined as appropriate, but is generally about 10 to 500 / zm from the viewpoints of workability such as strength and handleability and thin layer properties. 10 to 300 ⁇ m is particularly preferable, and 10 to 200 m is more preferable. Moreover, it is preferable that a translucent protective film has as little color as possible.
  • R th [(nx + ny) / 2-nz] X d (where nx and ny are the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness)
  • a translucent protective film having a retardation value in the film thickness direction represented by the formula of 10 nm to +100 nm is preferably used.
  • the thickness direction retardation value (R t h) is more preferably 10 nm to 10 70 nm, especially 0 ⁇ ⁇ ! ⁇ +50 nm is preferred.
  • the polarizing element and the translucent protective film are usually in close contact with each other through an aqueous adhesive or the like.
  • the water-based adhesive include polybulal alcohol-based adhesive, gelatin-based adhesive, vinyl-based latex, water-based polyurethane, water-based polyester, and the like.
  • the translucent protective film there can be used a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment intended for diffusion or anti-glare.
  • Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a light-cured cured film with an appropriate UV curable resin such as acrylic or silicone is used to transmit light. It can be formed by a method of adding to the surface of the protective film.
  • Antireflection treatment is aimed at preventing reflection of external light on the surface of the polarizing plate. It can be achieved by forming an antireflection film or the like according to the conventional method.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion between adjacent layers.
  • Anti-glare treatment is applied to prevent the external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate.
  • the surface is roughened by the sand plast method or embossing method. It can be formed by providing a fine concavo-convex structure on the surface of the translucent protective film by an appropriate method such as a method or a compounding method of transparent fine particles.
  • the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle diameter of 0.5 to 50 / ⁇ .
  • Transparent fine particles such as inorganic fine particles that may be conductive and organic fine particles composed of a crosslinked or uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expansion function) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • the antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, etc. can be provided on the transparent protective film itself, or can be provided separately from the transparent protective layer as an optical layer. it can.
  • the first optically anisotropic layer used in the present invention is not particularly limited as long as it has excellent transparency and uniformity, but a polymer stretched film or an optical compensation film made of liquid crystal can be preferably used.
  • the stretched polymer film include a uniaxial or biaxial retardation film composed of a cellulose-based, polycarbonate-based, polyarylate-based, polysulfone-based, polyacrylic-based, polyethersulfone-based, or cyclic olefin-based polymer. it can.
  • the first optically anisotropic layer exemplified here may be composed only of a polymer stretched film, may be composed only of an optical compensation film made of liquid crystal, or is composed of a polymer stretched film and liquid crystal.
  • optical compensation films can be used together.
  • cyclic olefin-based celluloses are preferable in terms of cost uniformity, film uniformity, and low birefringence wavelength dispersion characteristics, thereby suppressing color modulation of image quality.
  • the optical compensation film made of liquid crystal various liquid crystalline polymer compounds exhibiting liquid crystallinity of main chain type and side chain type, for example, liquid crystalline polyester, liquid crystalline polycarbonate, liquid crystalline polyacrylate, etc.
  • the retardation value Re1 of the first optically anisotropic layer at a wavelength of 550 nm is adjusted to 120 to 250 nm.
  • d 1 is the thickness of the first optically anisotropic layer [nm]
  • 1 1 and 117 1 are the main refractive indices in the plane of the first optically anisotropic layer for light having a wavelength of 550 nm, and nx 1> nyl. If the value of Re1 is greater than 250 nm or less than 120 nm, the viewing angle improvement effect may be poor.
  • NZ 1 of the first optically anisotropic layer is adjusted to 0.8 to 1.6. Particularly preferred is 1.0 to 1.4.
  • nxl and ny 1 are the main refractive indices in the plane of the first optical anisotropic layer for light with a wavelength of 550 nm
  • nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm
  • nxl> nyl If the value of N Z 1 is greater than 1.6 or less than 0.8, the viewing angle improvement effect may be poor.
  • the first optically anisotropic layer is usually laminated on the opposite side of the polarizing element on which one side of the transparent protective film is laminated (bonded). Although a translucent protective film may be included between the polarizing element and the first optically anisotropic layer, it is preferable to directly provide the first optically anisotropic layer from the viewpoint of durability and thickness.
  • the second optically anisotropic layer used in the present invention is a liquid crystalline polymer that exhibits optically positive uniaxiality, specifically, a liquid crystalline polymer that exhibits optically positive uniaxiality, or at least An optically positive uniaxial liquid crystalline polymer composition containing one kind of the liquid crystalline polymer compound, and the liquid crystalline polymer compound or the liquid crystalline polymer composition formed in a liquid crystal state.
  • This is a layer including at least a liquid crystal film in which a nematic hybrid alignment structure having an average tilt angle of 5 to 50 degrees is fixed.
  • the nematic hybrid alignment referred to in the present invention refers to an alignment form in which liquid crystal molecules are nematically aligned, and the angle between the director of the liquid crystal molecules and the film plane at this time is different between the upper surface and the lower surface of the film. Therefore, the vicinity of the upper interface and the lower interface Since the angle formed by the director and the film plane is different in the vicinity, it can be said that the angle continuously changes between the upper surface and the lower surface of the film.
  • Figure 2 shows a schematic diagram of the nematic hybrid alignment structure.
  • the directors of the liquid crystal molecules are oriented at different angles at all positions in the film thickness direction. Therefore, the film no longer has an optical axis when viewed as a film structure.
  • Such a compensation film in which the nematic hybrid orientation is fixed is not optically equivalent between the upper surface and the lower surface of the film. Therefore, when it is arranged in the TN liquid crystal cell described above, the viewing angle expansion effect is slightly different depending on which side is arranged on the liquid crystal cell side.
  • it is desirable that the surface having the larger angle formed by the director of the liquid crystal polymer and the plane of the film is disposed closest to the liquid crystal cell among the upper and lower surfaces of the compensation film.
  • the average tilt angle as used in the present invention means the average value of the angle formed by the director of the liquid crystal molecule and the film plane in the film thickness direction of the liquid crystal film.
  • the angle formed by the director and the film plane near the one interface of the film is usually 20 to 90 degrees as an absolute value, preferably 40 to 90 degrees, more preferably Has an angle of 70 to 90 degrees, and on the opposite side of the surface, the absolute value is usually 0 to 20 degrees, preferably 0 to 10 degrees, and its average tilt angle Is usually 5 to 50 degrees as an absolute value, preferably 20 to 45 degrees, more preferably 25 to 45 degrees, and most preferably 35 to 45 degrees. If the average tilt angle is out of the above range, it is not desirable because it may cause a decrease in contrast when viewed from an oblique direction.
  • the average tilt angle can be obtained by applying the crystal rotation method.
  • the liquid crystal film constituting the second optically anisotropic layer used in the present invention is optically as long as the nematic hybrid alignment state as described above is fixed and has a specific average tilt angle. It may be formed from any liquid crystal exhibiting positive uniaxiality.
  • the liquid crystal film as used in the present invention does not ask whether the film itself exhibits liquid crystallinity, but means a film obtained by forming a liquid crystal substance such as a low molecular liquid crystal or a liquid crystalline polymer into a film. .
  • the method for producing the liquid crystal film is not limited to these, but the liquid crystal compound or composition described above is developed on a substrate having orientation ability, and the liquid crystal compound or composition is oriented. Thereafter, the alignment state can be fixed by cooling or, if necessary, light irradiation and / or heat treatment. In some cases, the first optical anisotropic layer can be used as a substrate having orientation ability.
  • a method of forming a liquid crystal layer by spreading a liquid crystal compound or composition on a substrate having orientation ability a method of directly applying a liquid crystal compound or composition on a substrate in a molten state, a liquid crystal compound or a composition After applying the solution of the product on the substrate, the coating film is dried and the solvent is distilled off.
  • the coating method is not particularly limited as long as it is a method that ensures the uniformity of the coating film, and is publicly known.
  • the method can be adopted. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
  • a drying step for removing the solvent after the application can be any known method without particular limitation as long as the uniformity of the coating film is maintained.
  • a method such as a heater (furnace) or hot air blowing is used.
  • the liquid crystal layer formed on the substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is fixed by cooling and, if necessary, curing by light irradiation and Z or heat treatment.
  • the liquid crystal composition is heated to the temperature range where the liquid crystal composition is used, whereby the nematic hybrid alignment is performed by the self-alignment ability inherent in the liquid crystal composition.
  • the conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values vary depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal composition to be used, but are usually 10 ° C to 2500 ° C, preferably Heat treatment at a temperature in the range of 30 ° C.
  • the heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the alignment of the liquid crystal may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity will be deteriorated.
  • the substrate is not optically isotropic, or the substrate obtained is opaque in the wavelength range of use of the elliptical polarizing plate that is ultimately intended, or the substrate is too thick, which hinders actual use.
  • a form transferred from the form formed on the substrate to another substrate that does not become an obstacle in the intended use wavelength region or a stretched film having a retardation function can be used.
  • a transfer method a known method can be employed. For example, as described in Japanese Patent Laid-Open No. 4-7570 17 or Japanese Patent Laid-Open No. 5-3 3 3 1 13, the liquid crystal layer is aligned via an adhesive or an adhesive which will be described later. Examples include a method of transferring only the liquid crystal layer by laminating a substrate used for alignment after laminating a substrate different from the substrate used in the above.
  • the film thickness of the elliptical polarizing plate obtained by laminating the liquid crystal films to exhibit a viewing angle improvement effect more suitable for the liquid crystal display device depends on the type of the target liquid crystal cell and various Since it depends on the optical parameters, it cannot be generally stated, but usually 0.2 ⁇ ! To 10 ⁇ m, preferably 0.3 to 5 ⁇ m, particularly preferably 0.5 ⁇ ! It is in the range of ⁇ 2 ⁇ . If the film thickness is less than 0.2 m, sufficient improvement (compensation) effect may not be obtained. If the film thickness exceeds 10 ⁇ , the display may be unnecessarily colored.
  • the in-plane apparent retardation value when viewed from the normal direction of the liquid crystal film is perpendicular to the refractive index in the direction parallel to the director (hereinafter referred to as ne ) in the nematic hybrid oriented film.
  • Refractive index in the direction (hereinafter referred to as no) Force S is different, and when the value obtained by subtracting no from no is the apparent birefringence, the apparent retardation value is the apparent birefringence And the absolute film thickness.
  • This apparent retardation value can be easily obtained by polarization optical measurement such as ellipsometry.
  • the apparent retardation value of the liquid crystal film used as the compensation element is usually 30 nm to 1550 nm, preferably for monochromatic light with a wavelength of 5500 nm, preferably 3 0 ⁇ ⁇ ! ⁇ 13 ° nm, particularly preferably 30 ⁇ ! It is in the range of ⁇ 100 nm.
  • the apparent retardation value is less than 30 nm, there is a possibility that a sufficient viewing angle expansion effect cannot be obtained.
  • it is larger than 150 nm unnecessary coloration may occur in the liquid crystal display when viewed from an oblique direction.
  • the elliptically polarizing plate of the present invention has a laminated form in the order of polarizing plate / first optical anisotropic layer / second optical anisotropic layer (the description of the pressure-sensitive adhesive layer or adhesive layer is omitted).
  • the order of stacking does not matter.
  • a polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in an appropriate order so as to have the above-described configuration.
  • Adhesive layers and adhesive layers used for lamination are used as optically anisotropic layers.
  • adhesives and adhesives are used as optically anisotropic layers.
  • acrylic resin, methacrylic resin, silicone polymer, polyester , Polyurethane, Polyamide, Polyether, Epoxy resin system, Ethylene vinyl acetate copolymer system, Fluorine system, Rubber system, etc. Can do.
  • various reactive types such as a thermosetting type and / or a photocurable type and an electron beam curable type can be exemplified.
  • These adhesives include those having the function of a transparent protective layer for protecting the optically anisotropic layer.
  • those having excellent optical transparency such as acryl-based pressure-sensitive adhesives, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.
  • the adhesive layer can be formed by an appropriate method. As an example, for example, about 10 to 40% by weight of a viscous / adhesive obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate.
  • a solution is prepared, and the solution is applied by an appropriate development method such as a casting method or a coating method.
  • an appropriate development method such as a casting method or a coating method.
  • examples thereof include a method of directly attaching on the optically anisotropic layer, or a method of forming an adhesive layer on the separator according to the above and transferring it onto the optically anisotropic layer.
  • the adhesive / adhesive layer for example, natural or synthetic resins, in particular, tackifier resins, fillers and pigments made of glass fiber, glass beads, metal powder, other inorganic powders, etc. It may contain additives such as colorants and antioxidants. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility.
  • the surface of the optically anisotropic layer is surface-treated to improve the adhesion to the adhesive layer or the pressure-sensitive adhesive layer.
  • the surface treatment means is not particularly limited, and surface treatment methods such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, and plasma treatment that can maintain the transparency of the liquid crystal layer surface can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
  • the liquid crystal cell used in the present invention will be described.
  • the TN-type liquid crystal cells used in the present invention are classified according to the drive system: simple matrix system, TFT (Thin Film Transistor) electrode using active elements as electrodes, MIM (Metal I Insulator Meter) It can be subdivided as in the active matrix method using electrodes and TFD (Thin Fi 1 m diode) electrodes.
  • TFT Thin Film Transistor
  • MIM Metal I Insulator Meter
  • the TN type liquid crystal cell used in the present invention has an in-plane retardation represented by the product of the refractive index anisotropy ( ⁇ n) of the liquid crystal in the liquid crystal cell and the thickness (d) of the liquid crystal layer of the liquid crystal cell.
  • R e) Force Usually 250 ⁇ ⁇ ! ⁇ 520 nm, preferably 300 nm to 500 nm, particularly preferably 350 nm to 450 nm. If it is larger than 520 nm, the viewing angle improvement effect when combined with a compensation film described later may be poor, and the response speed may be slow. On the other hand, if it is smaller than 250 nm, when combined with the compensation film, the viewing angle may be improved, but the front brightness and contrast may be reduced.
  • the TN liquid crystal cell preferably gives a pretilt angle to the liquid crystal molecules in advance in order to reduce alignment defects of the liquid crystal molecules of the nematic liquid crystal.
  • the pretilt angle is usually less than 5 °.
  • the major axis of the nematic liquid crystal in the liquid crystal cell is twisted by about 90 ° between the upper and lower substrates.
  • the incident linearly polarized light is emitted with a 90 ° twist due to its optical rotation.
  • a voltage is applied to the liquid crystal cell, the long axes of the liquid crystal molecules are aligned in the direction of the electric field and the optical rotation disappears.
  • the twist angle of the TN type liquid crystal cell used in the present invention is usually 70 ° to 110 °, preferably 85 ° to 95. It is desirable that The twist direction of the liquid crystal molecules in the liquid crystal cell can be either left or right. A configuration of a TN type liquid crystal display device using the elliptically polarizing plate of the present invention will be described.
  • the TN type liquid crystal display device of the present invention is a liquid crystal display device having at least one elliptically polarizing plate of the present invention, but an arrangement having one each on both sides of the TN type liquid crystal cell is desirable. That is, from the viewing side, “ellipsoidal polarizing plate (polarizing plate first optical anisotropic layer second second optical anisotropic layer order) ZTN liquid crystal cell elliptic polarizing plate (second optical anisotropic layer Z The first optically anisotropic layer is arranged in the order of Z polarizing plate) Z back light.
  • the angle between the pretilt direction of the liquid crystal layer in the liquid crystal cell and the tilt direction of the second optically anisotropic layer made of the liquid crystal film in which the nematic hybrid alignment structure is fixed is in the range of 150 ° to 180 °. More preferably, it is 160 to 180 degrees, and particularly preferably 17 to 180 degrees. If the angle between the two is smaller than 1550 degrees, there is a possibility that a sufficient viewing angle compensation effect cannot be obtained.
  • the angle formed between the slow axis of the first optical anisotropic layer and the tilt direction of the second optical anisotropic layer is preferably in the range of 60 ° to 90 °, more preferably 70 ° to 90 degrees, particularly preferably 80 degrees to 90 degrees. If the angle between the two is less than 60 degrees, there is a risk that a sufficient viewing angle compensation effect cannot be obtained.
  • the angle formed by the absorption axis of the polarizing plate and the slow axis of the first optically anisotropic layer is preferably in the range of 60 ° to 90 °, more preferably 70 ° to 90 °, Particularly preferred is 80 to 90 degrees. If the angle between the two is less than 60 degrees, there is a risk that a sufficient viewing angle compensation effect cannot be obtained.
  • the liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, mainly obtained by stretching a transparent plastic film or sheet Various types of retardation films, films with fixed liquid crystal orientation, light diffusion layers, backlights, light control films, light guide plates, prism sheets, color filters, etc. can be arranged. These can be appropriately selected from conventionally known ones and used.
  • phase difference value (R e) in this example is a value at a wavelength of 550 nm unless otherwise specified.
  • the refractive index and retardation of each optical film are measured by using an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic birefringence meter). KOBRA2 1 ADH).
  • the viewing angle (equal contrast curve) of the liquid crystal display device was measured using a viewing angle measuring device (EZ corn tr a 160 R made by ELD IM).
  • the polybulal alcohol film was immersed in warm water to swell, then dyed with an iodine / calorium oxalate aqueous solution, and then uniaxially stretched in an aqueous boric acid solution to obtain a polarizing element.
  • These polarizing elements were examined for single transmittance, average transmittance, and orthogonal transmittance with a spectrophotometer. As a result, the transmittance was 43.5% and the polarization degree was 99.9%.
  • a 100 ⁇ m-thick norbornene-based unstretched film (Jurton film made by JSR) was stretched biaxially and vertically at 230 ° C.
  • the obtained stretched film had a thickness of 80 ⁇ ⁇ , retardation value R e 1 is approximately 220 nm, NZ coefficient NZ 1 1. was 2.
  • a second optical anisotropy comprising a liquid crystal film having a film thickness of 0.65 / m with a fixed nematic hybrid orientation having an average tilt angle of 44 degrees in the film thickness direction.
  • a layer was made.
  • the phase difference value was 70 nm.
  • Triacetyl cellulose (TAC) film (40 / _ ⁇ , manufactured by Fuji Film Co., Ltd.) is immersed in a 2% by weight aqueous solution of hydroxylated hydrogen for 5 minutes at room temperature, subjected to test treatment, washed in running water, and dried. I let you. An experimental TAC film was bonded to one surface of the polarizing element obtained above using an acrylic adhesive to form a translucent protective layer.
  • a conceptual diagram of a liquid crystal display device in which the elliptically polarizing plate obtained above is arranged will be described with reference to FIG. 3, and its axis configuration will be described with reference to FIG. 3.
  • a transparent electrode 3 made of a material with high transmittance such as ITO is provided on the substrate 1
  • a counter electrode 4 made of a material with high transmittance such as ITO is provided on the substrate 2
  • a liquid crystal layer 5 made of a liquid crystal material exhibiting positive dielectric anisotropy is sandwiched between 3 and the counter electrode 4.
  • an elliptically polarizing plate 1 5 (second optically anisotropic layer 1 1, first optically anisotropic layer 1 2, polarizing element 7 and translucency A protective film 9) and an elliptically polarizing plate 1 6 (second optically anisotropic layer 1 3, first optically different layer) on the opposite side of the surface of the substrate 1 on which the transparent electrode 3 is formed.
  • a backlight 17 is provided on the back side of the translucent protective film 10.
  • the liquid crystal cell 6 used was ZLI-4792 (manufactured by Merck) as the liquid crystal material, and the liquid crystal layer thickness was 4.
  • the pretilt angle at the substrate interface of the liquid crystal layer was 3 degrees, and the Re of the liquid crystal cell was approximately 4 15 nm.
  • the absorption axis of the polarizing element, the slow axis of the first and second optically anisotropic layers, and the pretilt direction at both interfaces of the liquid crystal cell are shown in FIG.
  • Figure 5 shows the contrast ratio from all directions, with the contrast ratio of the transmittance ratio of white display 0V and black display 5V (white display) / (black display).
  • the solid line shows a contrast ratio of 50.
  • Concentric circles represent the same viewing angle and are drawn at intervals of 20 degrees. Therefore, the viewing angle of the outermost circle represents 80 degrees (hereinafter the same).
  • Figure 5 shows that it has good viewing angle characteristics.
  • Example 1 the retardation value R el of the first optical anisotropic layer is 240 nm, the NZ coefficient NZ 1 is 1.0, the average tilt angle of the second optical anisotropic layer is 37 degrees, A liquid crystal display device similar to that of Example 1 was produced, except that the retardation value was 80 nm.
  • Figure 6 shows the contrast ratio from all directions, with the transmittance ratio of white display 0V and black display 5V (white display) Z (black display) as the contrast ratio.
  • Figure 6 shows that it has good viewing angle characteristics.
  • Example 1 a 100 ⁇ m thick TAC film (manufactured by Koni Riki Co., Ltd.) was stretched biaxially and longitudinally at 160 ° C., thickness 50 ⁇ , retardation value A liquid crystal display device similar to that of Example 1 was prepared, except that Re 1 was approximately 220 nm and the NZ coefficient NZ 1 was 1.2.
  • Fig. 7 shows the contrast ratio from all directions, with the contrast ratio of the transmittance of white display 0V and black display 5V (white display) / (black display).
  • Figure 7 shows that it has good viewing angle characteristics.
  • Example 1 the arrangement order of the first optical anisotropic layer 1 2 and the second optical anisotropic layer 1 1 is changed, and the first optical anisotropic layer 14 and the second optical anisotropy are further changed.
  • Figure 8 shows an outline of the liquid crystal display device.
  • the pretilt directions of the polarizing element, the first and second optically anisotropic layers, and the liquid crystal cell interface are the same as in Example 1 (FIG. 4).
  • Figure 9 shows the contrast ratio from all directions, with the contrast ratio of the transmittance ratio of white display 0V and black display 5V (white display) / (black display).
  • Example 1 A liquid crystal display device similar to that of Example 1 was produced, except that in Example 1, the first optically anisotropic layers 12 and 14 were omitted. An outline of the liquid crystal display device is shown in FIG.
  • Figure 11 shows the contrast ratio from all directions, with the contrast ratio of the transmittance of white display 0 V and black display 5 V (white display) / (black display).
  • a laminated structure was the same as that of Comparative Example 2, but liquid crystal display devices with different shaft configurations were produced. That is, the absorption axes of the polarizing elements 7 and 8, the tilt directions of the liquid crystal films 11 and 13 and the pretilt directions of both interfaces of the liquid crystal cell 6 were arranged under the conditions described in FIG. Figure 13 shows the contrast ratio from all directions, with the transmittance ratio of white display OV and black display 5 V (white display) Z (black display) as the contrast ratio.
  • Example 1 Regarding viewing angle characteristics, comparing Example 1 and Comparative Example 3, it can be seen from FIG. 5 and FIG. 13 that the viewing angle characteristics are greatly improved by using the first optically anisotropic layer. I understand.
  • FIG. 1 is a conceptual diagram of the elliptically polarizing plate of the present invention.
  • FIG. 2 is a schematic diagram of the alignment structure of the liquid crystal film constituting the second optically anisotropic layer.
  • FIG. 3 is a cross-sectional view schematically showing the liquid crystal display device of Example 1.
  • FIG. 4 is a plan view showing the angular relationship between the absorption axis of the polarizing plate, the slow axis of the polymer stretched film, the tilt direction of the liquid crystal film, and the pretilt direction of the liquid crystal cell in Example 1.
  • FIG. 5 is a graph showing the contrast ratio when the liquid crystal display device in Example 1 is viewed from all directions.
  • FIG. 6 is a graph showing the contrast ratio when the liquid crystal display device in Example 2 is viewed from all directions.
  • FIG. 7 is a graph showing the contrast ratio when the liquid crystal display device in Example 3 is viewed from all directions.
  • FIG. 8 is a cross-sectional view schematically showing the liquid crystal display device of Comparative Example 1.
  • FIG. 9 is a diagram showing the contrast ratio when the liquid crystal display device in Comparative Example 1 is viewed from all directions.
  • FIG. 10 is a cross-sectional view schematically showing the liquid crystal display devices of Comparative Example 2 and Comparative Example 3.
  • FIG. 11 is a diagram showing the contrast ratio when the liquid crystal display device in Comparative Example 2 is viewed from all directions.
  • FIG. 12 is a plan view showing the angular relationship among the absorption axis of the polarizing plate, the tilt direction of the liquid crystal film, and the pretilt direction of the liquid crystal cell in Comparative Example 3.
  • FIG. 13 is a diagram showing a contrast ratio when the liquid crystal display device in Comparative Example 3 is viewed from all directions.
  • the present invention provides an elliptically polarizing plate that can greatly improve the viewing angle characteristics of both contrast and gradation reversal. By disposing it in a liquid crystal cell, a liquid crystal display device with high contrast and less viewing angle dependency is provided. Industrial value is great because it can be provided.

Abstract

Provided is an elliptic polarization plate having excellent view angle improving effects. In the elliptic polarization plate, a polarization plate, a first optical anisotropic layer and a second optical anisotropic layer are laminated in this order. The first optical anisotropic layer satisfies inequalities of 0.8≤NZ1≤1.6 and 120≤Re1≤250. The layers are laminated so that the slow axis of the first optical anisotropic layer and the absorption axis of the polarization plate orthogonally intersect with each other. The phase difference of the second optical anisotropic layer within a surface with a wavelength of 550nm is 30-150nm. The second optical anisotropic layer is a liquid crystal film composed of a liquid crystalline polymer exhibiting optically positive uniaxial characteristic and has a fixed nematic hybrid orientation structure having a liquid crystal molecule average tilt angle of 5-50°. The orientation direction of the second optical anisotropic layer and the absorption axis of the polarization plate are laminated in parallel, and the elliptic polarization plate is used in a TN type liquid crystal display device by having the second optical anisotropic layer side on the liquid crystal cell side.

Description

楕円偏光板および液晶表示装置  Elliptical polarizing plate and liquid crystal display device
[技術分野] [Technical field]
本発明は、 2枚の光学異方性層を含む楕円偏光板および該楕円偏光板を配置し た視野角特性に優れた液晶表示装置に関し、 特に T N型液晶表示装置に関する。 明  The present invention relates to an elliptically polarizing plate including two optically anisotropic layers and a liquid crystal display device having excellent viewing angle characteristics in which the elliptically polarizing plate is disposed, and more particularly to a TN type liquid crystal display device. Light
[背景技術]  [Background]
液晶表示装置 (以下、 L C Dとも表わす。 ) として現在最もよく用いられてい 田  Currently used most often as a liquid crystal display (hereinafter also referred to as L C D)
るものは、 透明電極を形成した一対のガラス基板の間に、 ガラス基板の法線方向 に螺旋軸を有し、 そのねじれ角度が約 9 0度であるような配向構造を有したネマ チック液晶を挟持した液晶セルが、 吸収軸が直交となるように配置された一対の 直線偏光フィルムの間に挟まれた、 ノーマリホワイ ト (以下、 NWとも表わ す。 ) モードのッイステツドネマチック型 L C D (以下、 T N— L C Dとも表わ す。 ) である。 NWモードの T N—L C Dは、 電圧を印加しない状態では入射し た直線偏光が液晶セルの旋光性により 9 0度回転して出射されるため白状態とな り、 電圧を印加した状態では液晶分子がガラス基板に対して起き上がり、 旋光性 が消失し入射した直線偏光はその状態を保ったまま出射されるため黒状態となる。 また、 この白状態、 黒状態とその中間状態を利用することで、 階調表示を行って いる。 A nematic liquid crystal having an alignment structure in which a helical axis is in the normal direction of the glass substrate between a pair of glass substrates on which transparent electrodes are formed, and the twist angle is about 90 degrees. A normally white (hereinafter also referred to as NW) mode sandwiched between a pair of linearly polarizing films arranged so that their absorption axes are orthogonal to each other. LCD (hereinafter also referred to as TN—LCD). In the NW mode TN-LCD, when no voltage is applied, the incident linearly polarized light is emitted by rotating 90 degrees due to the optical rotation of the liquid crystal cell, resulting in a white state. When a voltage is applied, the liquid crystal molecules Rises with respect to the glass substrate, the optical rotation disappears, and the incident linearly polarized light is emitted while maintaining this state, so that it becomes a black state. In addition, gradation display is performed by using the white state, the black state, and the intermediate state.
しかし、 L C Dに用いられるネマチック液晶は、 分子構造が棒状で、 分子軸方 向の屈折率が大きい正の屈折率異方性を示すものであり、 L C Dを斜めに通過す る光の偏光状態の変化は、 この液晶の屈折率異方性による位相差のために L C D の法線方向とは異なったものとなる。 このため、 L C Dの法線方向から外れた角 度から表示を見た場合、 コントラス トの低下や、 階調表示が逆転する階調反転な どの現象が起こるという視野角特性を示す。 視野角特性の改良は、 主として黒表 示、 即ち電圧印加状態における視野角特性を改良することで、 大きな効果が得ら れる。 電圧印加状態では液晶分子はガラス基板に垂直に近い状態に配向している ことから、 この状態をガラス基板法線方向に光学軸を有する正の屈折率異方体と 見なし、 これを補償する位相差フィルムとして、 フィルム法線方向に光学軸を有 し、 かつ、 負の屈折率異方性を有する位相差フィルムを用いる方法が報告されて いる (特許文献 1、 特許文献 2 ) 。 しかしながら、 実際の L C Dにおいては、 電 圧印加状態にあっても、 ガラス基板付近の液晶分子は基板の配向膜の拘束力に起 因して、 ガラス基板に近い部分では傾斜状態のままであるため、 フィルム法線方 向に光学軸を有し、 かつ、 負の屈折率異方性を有する位相差フィルムでは、 液晶 セルによりもたらされる偏光状態を十分に補償することは難しい。 However, nematic liquid crystals used in LCDs have a rod-like molecular structure and a positive refractive index anisotropy with a large refractive index in the direction of the molecular axis, and the polarization state of light that passes obliquely through the LCD. The change is different from the normal direction of the LCD due to the phase difference due to the refractive index anisotropy of the liquid crystal. For this reason, when viewing the display from an angle deviating from the normal direction of the LCD, it shows viewing angle characteristics such as a decrease in contrast and gradation inversion that reverses the gradation display. The improvement of the viewing angle characteristics can be achieved mainly by improving the viewing angle characteristics in black display, that is, when a voltage is applied. Since the liquid crystal molecules are aligned in a state that is nearly perpendicular to the glass substrate when a voltage is applied, this state is referred to as a positive refractive index anisotropic body having an optical axis in the normal direction of the glass substrate. As a retardation film for compensating for this, a method using a retardation film having an optical axis in the normal direction of the film and having negative refractive index anisotropy has been reported (Patent Document 1, Patent Reference 2). However, in an actual LCD, even when voltage is applied, the liquid crystal molecules in the vicinity of the glass substrate remain tilted near the glass substrate due to the binding force of the alignment film on the substrate. In a retardation film having an optical axis in the normal direction of the film and having negative refractive index anisotropy, it is difficult to sufficiently compensate the polarization state caused by the liquid crystal cell.
このような傾斜状態の液晶分子をも併せて補償するため、 光学軸がフィルム法 線方向から傾斜した方向にあり、 かつ、 負の屈折率異方性を有する円盤状の液晶 フィルムを用いる方法もなども提案されている (特許文献 3、 特許文献 4 ) 。 し かし、 これらの方法では、 電圧印加状態の液晶セルに対する補償状態は改善され るものの、 円盤状液晶分子を合成、 フィルム化するにはコストがかかるほか、 印 加電圧がより低いために傾斜状態の液晶部分が増加してより複雑な配向形態をと る中間階調表示状態においては、 補償が不完全となるため、 表示コントラストの 視野角は改善されるが、 階調反転現象を改善することは困難であり、 結果として 不完全な視野角特性しか得ることができない。  In order to compensate for the liquid crystal molecules in such a tilted state, there is also a method using a disc-shaped liquid crystal film in which the optical axis is in a direction inclined from the normal direction of the film and has negative refractive index anisotropy. Have also been proposed (Patent Literature 3, Patent Literature 4). However, with these methods, although the compensation state for the liquid crystal cell in the voltage application state is improved, it is expensive to synthesize and film the disk-like liquid crystal molecules, and the applied voltage is lower, so the tilt is reduced. In the halftone display state where the liquid crystal part of the state increases and takes a more complicated alignment form, the compensation becomes incomplete, so the viewing angle of the display contrast is improved, but the gradation inversion phenomenon is improved. As a result, only incomplete viewing angle characteristics can be obtained.
また別の方法として、 液晶と同じ正の屈折率異方性を持ちながらも、 光学軸を フィルム法線方向から傾斜させた状態とした位相差板を用いても視野角特性を改 良できることが提案されている (特許文献 5、 特許文献 6、 特許文献 7 ) 。  As another method, the viewing angle characteristics can be improved by using a retardation plate having the same positive refractive index anisotropy as that of liquid crystal but having the optical axis inclined from the film normal direction. It has been proposed (Patent Document 5, Patent Document 6, Patent Document 7).
これらの報告では、 正の屈折率異方性を有し、 かつ、 光学軸をフィルム法線方 向から傾斜させた状態とした位相差板を用いることが液晶セルの階調反転を抑制 するのに有効であることが示されているが、 表示コントラストの視野角に関して は逆に不完全な視野角特性しか得られていない。  In these reports, the use of a retardation plate having a positive refractive index anisotropy and an optical axis inclined from the normal direction of the film suppresses gradation inversion of the liquid crystal cell. However, only the incomplete viewing angle characteristics have been obtained with respect to the viewing angle of the display contrast.
特許文献 8では、 正の屈折率異方性を持つ液晶分子が傾斜配向した位相差板と 1軸性フィルムを組み合わせた液晶表示装置として、 偏光板 傾斜配向フィルム / 1軸フィルムノ T N液晶セル 1軸フィルム Z傾斜配向フィルム Z偏光板から なる液晶表示装置が提案されている。 しかし、 この構成では、 表示コントラス ト の視野角補償を完全にするには十分とは言えず、 視野角特性も不完全なものしか 得られていない。  In Patent Document 8, as a liquid crystal display device combining a retardation film in which liquid crystal molecules having positive refractive index anisotropy are tilted and a uniaxial film, a polarizing plate tilted alignment film / uniaxial film TN liquid crystal cell 1 A liquid crystal display device comprising an axial film, a Z-oriented film, and a Z polarizing plate has been proposed. However, this configuration is not sufficient to completely compensate the viewing angle of the display contrast, and the viewing angle characteristics are only incomplete.
このように T N— L C Dの視野角特性の改良に用いられる光学補償板について は、 表示コントラストのみならず階調反転も合わせたトータルでの視野角特性を 飛躍的に改善できるものは見いだされていない状況にあり、 さらなる改良が求め られてレ Thus, the optical compensator used to improve the viewing angle characteristics of TN-LCD However, there has not been found any device that can dramatically improve the total viewing angle characteristics including not only the display contrast but also the gradation inversion, and there is a need for further improvements.
(1) 特許文献 1 :特開平 2— 0 1 5 2 3 9号公報  (1) Patent Document 1: Japanese Patent Laid-Open No. 2-0 1 5 2 3 9
(2) 特許文献 2 :特開平 3— 1 0 3 8 2 3号公報  (2) Patent Document 2: Japanese Patent Laid-Open No. 3-10 3 8 2 3
(3) 特許文献 3 :特開昭 6 3 ― 2 3 9 4 2 1号公報  (3) Patent Document 3: Japanese Patent Application Laid-Open No. Sho 6 3-2 3 9 4 2 1
(4) 特許文献 4 :特開平 6— 2 1 4 1 1 6号公報  (4) Patent Document 4: Japanese Patent Laid-Open No. 6-2 1 4 1 1 6
(5) 特許文献 5 :特開平 5— 0 8 0 3 2 3号公報  (5) Patent Document 5: Japanese Patent Laid-Open No. 5-0 80 3 2 3
(6) 特許文献 6 :特開平 7— 3 0 6 4 0 6号公報  (6) Patent Document 6: Japanese Patent Application Laid-Open No. 7-3 0 6 4 0 6
(7) 特許文献 7 :国際公開第 9 6 / 1 0 7 7 3号パンフレツト  (7) Patent Document 7: International Publication No. 9 6/1 0 7 7 3 Pamphlet
(8) 特許文献 8 :特開平 1 0一 1 2 3 5 0 6号公報  (8) Patent Document 8: Japanese Patent Application Laid-Open No. 10-1 1 2 3 5 0 6
[発明の開示] [Disclosure of the Invention]
本発明は、 液晶セルに配置した場合、 コントラストと階調反転の両方の視野角 特性を大幅に改善できる楕円偏光板と、 それを配置することにより高コントラス トであり、 視野角依存性の少ない液晶表示装置を提供することを目的とする。 力かる状況に鑑み、 本発明者らが鋭意検討した結果、 N Z係数 0 . 8〜1 . 6 である光学異方性層および光学的に正の一軸性を示す液晶性高分子から実質的に 形成され、 当該液晶性高分子が液晶状態において形成したネマチックハイプリッ ド配向を固定化した構造を有することを特徴とする光学異方性層を組合せ、 これ ら 2種の特性の異なる光学補償層を偏光板と液晶セルに対して特定の順序で積層 して用いることにより、 表示コントラストと階調反転の両方の視野角特性を大幅 に改善できることを見出し、 本発明を完成するに至った。  In the present invention, when placed in a liquid crystal cell, an elliptically polarizing plate that can significantly improve the viewing angle characteristics of both contrast and gradation reversal, and by placing it, the contrast is high and the viewing angle dependency is low. An object is to provide a liquid crystal display device. As a result of intensive studies by the present inventors in view of the powerful situation, the optically anisotropic layer having an NZ coefficient of 0.8 to 1.6 and a liquid crystalline polymer exhibiting optically positive uniaxiality are substantially used. An optical compensation layer formed by combining the two optically anisotropic layers having a structure in which the nematic hybrid alignment formed by the liquid crystalline polymer in the liquid crystal state is fixed. It has been found that the viewing angle characteristics of both display contrast and gradation reversal can be greatly improved by laminating and using the films in a specific order with respect to the polarizing plate and the liquid crystal cell, and the present invention has been completed.
すなわち、 上記課題を解決するための手段は、 以下の通りである。  That is, the means for solving the above problems are as follows.
〔1〕 偏光板、 第 1の光学異方性層、 第 2の光学異方性層がこの順に積層され ている楕円偏光板であって、 前記第 1の光学異方性層が、 以下の [ 1 ] 及び [1] An elliptically polarizing plate in which a polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order, wherein the first optically anisotropic layer is: [1] and
[ 2 ] を満たし、 かつ、 第 1の光学異方性層の遅相軸と偏光板の吸収軸とが直交 になるように積層されており、 前記第 2の光学異方性層が、 波長 5 5 0 n mにお ける面内の位相差値が 3 0〜1 5 O n mであり、 光学的に正の一軸性を示す液晶 性高分子を液晶分子の平均チルト角が 5 ° 〜5 0 ° であるネマチックハイブリツ ド配向構造を固定化した液晶フィルムであり、 かつ、 第 2の光学異方性層の配向 方向と偏光板の吸収軸とが平行になるように積層されており、 第 2の光学異方性 層側が、 液晶セル側になるように、 ッイステツドネマチック (TN) 型液晶表示 装置において用いられることを特徴とする楕円偏光板。 [2], and the slow axis of the first optically anisotropic layer and the absorption axis of the polarizing plate are laminated so that the second optically anisotropic layer has a wavelength The in-plane retardation value at 5 50 nm is 30 to 15 O nm, and the average tilt angle of the liquid crystal molecules is 5 ° to 50 °. Nematic hybrids that are The second optical anisotropy is a liquid crystal film in which the alignment structure is fixed, and is laminated so that the alignment direction of the second optically anisotropic layer and the absorption axis of the polarizing plate are parallel to each other. An elliptically polarizing plate that is used in a twisted nematic (TN) type liquid crystal display device such that the layer side is on the liquid crystal cell side.
[1] 0. 8≤N Z 1≤ 1. 6  [1] 0. 8≤N Z 1≤ 1. 6
[2] 1 20≤R e l≤ 250  [2] 1 20≤R e l≤ 250
(ここで、 NZ 1は、 NZ 1 = (n 1 - n z 1 ) / (n x l — n y l ) である。 また、 R e lは、 R e l = (n x l — n y l ) X d 1 [nm] で定義される第 1 の光学異方性層の面内の位相差値である。 d 1は第 1の光学異方性層の厚さ [n m] であり、 n x l , n y 1は波長 550 nmの光に対する第 1の光学異方性層 面内の主屈折率、 n z 1は波長 550 nmの光に対する厚さ方向の主屈折率であ り、 n x l > n y lである。 )  (Where NZ 1 is NZ 1 = (n 1-nz 1) / (nxl — nyl) and R el is defined by R el = (nxl — nyl) X d 1 [nm] D 1 is the thickness [nm] of the first optical anisotropic layer, and nxl and ny 1 are for light with a wavelength of 550 nm. The main refractive index in the plane of the first optical anisotropic layer, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl.
〔2〕 前記第 1の光学異方性層が、 環状ポリオレフイン樹脂を含有する熱可塑 性高分子からなることを特徴とする上記 〔1〕 に記載の楕円偏光板。  [2] The elliptically polarizing plate according to [1], wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cyclic polyolefin resin.
〔3〕 前記第 1の光学異方性層が、 セルロース系樹脂を含有する熱可塑性高分 子からなることを特徴とする上記 〔1〕 に記載の楕円偏光板。  [3] The elliptically polarizing plate according to [1], wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cellulose resin.
〔4〕 上記 〔1〕 に記載の楕円偏光板を少なくとも 1枚含むことを特徴とする TN型液晶表示装置。  [4] A TN liquid crystal display device comprising at least one elliptically polarizing plate as described in [1] above.
〔5〕 視認側から、 第 1の偏光板、 第 1の光学異方性層、 第 2の光学異方性層、 TN型液晶セル、 第 2の光学異方性層、 第 1の光学異方性層、 第 2の偏光板およ びバックライ トがこの順に配置された TN型液晶表示装置であって、 前記第 1の 光学異方性層が、 以下の [1] 及び [2] を満たし、 視認側の第 1の光学異方性 層の遅相軸と第 1の偏光板の吸収軸とが直交に、 バックライ ト側の第 1の光学異 方性層の遅相軸と第 2の偏光板の吸収軸とが直交になるように積層されており、 前記第 2の光学異方性層が、 波長 550 nmにおける面内の位相差値が 30〜 1 50 n mであり、 光学的に正の一軸性を示す液晶性高分子を液晶分子の平均チル ト角が 5° 〜50° であるネマチックハイブリッド配向構造を固定化した液晶フ イルムであり、 かつ、 視認側の第 2の光学異方性層の配向方向と第 1の偏光板の 吸収軸とが平行に、 バックライ ト側の第 2の光学異方性層の配向方向と第 2の偏 光板の吸収軸とが平行になるように積層されていることを特徴とする TN型液晶 表示装置。 [5] From the viewing side, the first polarizing plate, the first optically anisotropic layer, the second optically anisotropic layer, the TN liquid crystal cell, the second optically anisotropic layer, and the first optically anisotropic layer A TN liquid crystal display device in which an isotropic layer, a second polarizing plate, and a backlight are arranged in this order, wherein the first optically anisotropic layer includes the following [1] and [2]: The slow axis of the first optical anisotropy layer on the viewer side and the absorption axis of the first polarizing plate are perpendicular to each other, and the slow axis of the first optical anisotropic layer on the backlight side and the second axis The second optically anisotropic layer has an in-plane retardation value of 30 to 150 nm at a wavelength of 550 nm, and is optically laminated. Is a liquid crystal film in which a nematic hybrid alignment structure in which the average tilt angle of the liquid crystal molecules is 5 ° to 50 ° is fixed to the liquid crystal polymer exhibiting positive uniaxiality, and the second light on the viewer side The orientation direction of the anisotropic layer is parallel to the absorption axis of the first polarizing plate, and the orientation direction of the second optical anisotropic layer on the backlight side is parallel to the absorption axis of the second polarizing plate. TN type liquid crystal characterized by being laminated Display device.
[1] 0. 8≤N Z 1≤ 1. 6  [1] 0. 8≤N Z 1≤ 1. 6
[2] 1 20≤R e l≤ 250  [2] 1 20≤R e l≤ 250
(ここで、 NZ 1は、 NZ 1 = (n x 1 - n z 1 ) Z (n x 1 - n y 1 ) である。 また、 R e lは、 R e l = (n x 1 - n y 1 ) X d 1 [nm] で定義される第 1 の光学異方性層の面内の位相差値である。 d 1は第 1の光学異方性層の厚さ [n m] であり、 n x l , n y 1は波長 550 nmの光に対する第 1の光学異方性層 面内の主屈折率、 n z 1は波長 550 nmの光に対する厚さ方向の主屈折率であ り、 n x l〉n y lである。 )  (Where NZ 1 is NZ 1 = (nx 1-nz 1) Z (nx 1-ny 1) and R el is R el = (nx 1-ny 1) X d 1 [nm Where d 1 is the thickness [nm] of the first optical anisotropic layer, and nxl and ny 1 are wavelengths 550 The main refractive index in the plane of the first optical anisotropic layer for nm light, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl.
〔6〕 前記第 1の光学異方性層が、 環状ポリオレフイン樹脂を含有する熱可塑 性高分子からなることを特徴とする上記 〔4〕 または 〔5〕 に記載の TN型液晶 表示装置。  [6] The TN liquid crystal display device according to the above [4] or [5], wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cyclic polyolefin resin.
〔7〕 前記第 1の光学異方性層が、 セルロース系樹脂を含有する熱可塑性高分 子からなることを特徴とする上記 〔4〕 または 〔5〕 に記載の TN型液晶表示装 置。  [7] The TN liquid crystal display device according to [4] or [5], wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cellulose resin.
〔8〕 電圧無印加状態において、 TN型液晶セル内の視認側のセル基板上の液 晶分子の配向方向は、 隣接する視認側の第 2の光学異方性層のネマチックハイブ リッド配向構造を固定化した液晶フィルムの配向方向と反平行の関係になるよう に配置されており、 バックライ ト側のセル基板上の液晶分子の配向方向は、 バッ クライ ト側の第 2の光学異方性層のネマチックハイプリッド配向構造を固定化し た液晶フィルムの配向方向と反平行の関係になるように配置されていることを特 徴とする上記 〔4〕 〜 〔7〕 のいずれかに記載の TN型液晶表示装置。  [8] When no voltage is applied, the alignment direction of the liquid crystal molecules on the cell substrate on the viewing side in the TN liquid crystal cell is the nematic hybrid alignment structure of the second optically anisotropic layer on the adjacent viewing side. The alignment direction of the liquid crystal molecules on the cell substrate on the backlight side is the second optical anisotropic layer on the backlight side. The TN type according to any one of the above [4] to [7], wherein the liquid crystal film is fixed in an antiparallel relationship with the alignment direction of the liquid crystal film in which the nematic hybrid alignment structure is fixed. Liquid crystal display device.
[発明の効果] [The invention's effect]
本発明によれば、 液晶セルに配置した場合、 コントラストと階調反転の両方の 視野角特性を大幅に改善できる楕円偏光板と、 それを配置することにより高コン トラス トであり、 視野角依存性の少ない液晶表示装置を提供することができる。  According to the present invention, when arranged in a liquid crystal cell, an elliptically polarizing plate that can greatly improve the viewing angle characteristics of both contrast and gradation reversal, and by placing it, the contrast is high and the viewing angle depends. A liquid crystal display device with less property can be provided.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を詳細に説明する。 本発明の楕円偏光板は、 透光性保護フィルム、 偏光素子、 N Z係数0 . 8〜: 1 . 6である第 1の光学異方性層および光学的に正の一軸性を示す液晶性高分子をネ マチックハイプリッド配向構造に固定化した液晶フィルムからなる第 2の光学異 方性層から少なくとも構成される Hereinafter, the present invention will be described in detail. The elliptically polarizing plate of the present invention includes a translucent protective film, a polarizing element, a first optically anisotropic layer having an NZ coefficient of 0.8 to 1.6, and an optically high uniaxial liquid crystallinity. Consists of at least a second optically anisotropic layer composed of a liquid crystal film in which molecules are fixed in a nematic hybrid alignment structure
本発明の楕円偏光板を、 図 1を参照しながら説明する。 図 1に示すように、 本 発明の楕円偏光板は、 偏光板、 第 1の光学異方性層、 第 2の光学異方性層がこの 順番で積層された構造を有する。 ここで、 偏光板は偏光素子の両側に透光性の保 護フィルムを有する構造でも、 偏光素子の片側のみに透光性の保護フィルムを有 する構造でもよい。 片側のみに透光性の保護フィルムを有する構造の場合は、 前 記第 1の光学異方性層は偏光素子の保護フィルムの機能を兼ねている。 偏光素子 と第 1の光学異方性層の間に透光性保護フィルムを含んでも良いが、 耐久性 ·厚 みの観点から直接第 1の光学異方性層を設けたほうが好ましい。 本発明の楕円偏 光板は、 第 1の光学異方性層の遅相軸と偏光板の吸収軸とが直交になるように積 層されており、 第 2の光学異方性層の遅相軸と偏光板の吸収軸とが平行になるよ うに積層されている。  The elliptically polarizing plate of the present invention will be described with reference to FIG. As shown in FIG. 1, the elliptically polarizing plate of the present invention has a structure in which a polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in this order. Here, the polarizing plate may have a structure having a translucent protective film on both sides of the polarizing element or a structure having a translucent protective film only on one side of the polarizing element. In the case of a structure having a translucent protective film only on one side, the first optically anisotropic layer also serves as a protective film for the polarizing element. A translucent protective film may be included between the polarizing element and the first optically anisotropic layer, but it is preferable to directly provide the first optically anisotropic layer from the viewpoint of durability and thickness. The elliptically polarizing plate of the present invention is laminated so that the slow axis of the first optical anisotropic layer and the absorption axis of the polarizing plate are perpendicular to each other, and the slow phase of the second optical anisotropic layer is The axes are laminated so that the absorption axis of the polarizing plate is parallel.
図 1に示す楕円偏光板において、 偏光板に対する光学異方性層の積層順は、 液 晶表示装置に実装した時に、 コントラストの低下とカラーシフトを抑制する点か ら、 図 1のように偏光板側から、 第 1の光学異方性層、 第 2の光学異方性層の順 に積層するのが好ましい。 なお、 図 1において、 偏光板、 第 1の光学異方性層、 第 2の光学異方性層は粘着剤層または接着剤層を介して積層されている。 粘着剤 層または接着剤層は 1層でもよく、 また 2層以上の重畳形態とすることができる。 以下、 本発明に用いられる構成部材について順に説明する。  In the elliptically polarizing plate shown in Fig. 1, the order of lamination of the optically anisotropic layer with respect to the polarizing plate is polarized as shown in Fig. 1 because it suppresses the decrease in contrast and color shift when mounted on a liquid crystal display device. It is preferable to laminate the first optically anisotropic layer and the second optically anisotropic layer in this order from the plate side. In FIG. 1, the polarizing plate, the first optically anisotropic layer, and the second optically anisotropic layer are laminated via an adhesive layer or an adhesive layer. The pressure-sensitive adhesive layer or the adhesive layer may be a single layer, or may be a superposed form of two or more layers. Hereafter, the structural member used for this invention is demonstrated in order.
まず、 本発明に使用される偏光板は、 偏光素子の両側もしくは片側に透光性保 護フィルムを有するものである。  First, the polarizing plate used in the present invention has a translucent protective film on both sides or one side of the polarizing element.
前記偏光素子は特に制限されず、 各種のものを使用できる。 偏光素子としては、 例えば、 ポリビュルアルコール系フィルム、 部分ホルマール化ポリビュルアルコ ール系フィルム、 エチレン ·酢酸ビニル共重合体系部分ケン化フィルム等の親水 性高分子フィルムに、 ョゥ素ゃ二色性染料等の二色性物質を吸着させて一軸延伸 したもの、 ポリビュルアルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物 等のポリェン系配向フィルム等が挙げられる。 これらのなかでもポリビニルアル コール系フィルムを延伸して二色性材料 (ヨウ素、 染料) を吸着 '配向したもの が好適に用いられる。 偏光素子の厚さも特に制限されないが、 5〜8 0 μ πι程度 が一般的である。 The polarizing element is not particularly limited, and various types can be used. Examples of the polarizing element include hydrophilic polymer films such as polybulal alcohol film, partially formalized polybulal alcohol film, and ethylene / vinyl acetate copolymer partially saponified film. Uniaxially stretched by adsorbing dichroic substances such as reactive dyes, dehydrated polybulal alcohol and dehydrochlorinated polychlorinated blu And the like, and the like. Among these, those obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic material (iodine, dye) are preferably used. The thickness of the polarizing element is not particularly limited, but is generally about 5 to 80 μππι.
ポリビニルアルコール系フィルムをョゥ素で染色し一軸延伸した偏光素子は、 例えば、 ポリビュルアルコールをョゥ素の水溶液に浸漬することによって染色し、 元長の 3〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸や ョゥ化カリゥムなどの水溶液に浸漬することもできる。 さらに必要に応じて染色 の前にポリビュルアルコール系フィルムを水に浸漬して水洗してもよい。 ポリビ ニルアルコール系フィルムを水洗することでポリビュルァノレコール系フィルム表 面の汚れやブロッキング防止剤を洗浄することができるほかに、 ポリビュルアル コール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果も ある。 延伸はヨウ素で染色した後に行っても良いし、 染色しながら延伸してもよ し、 また延伸してからヨウ素で染色してもよレ、。 ホウ酸やヨウ化カリウムなどの 水溶液中や水浴中でも延伸することができる。  A polarizing element in which a polyvinyl alcohol film is dyed with silicon and uniaxially stretched is prepared by, for example, dyeing polybulal alcohol in an aqueous solution of silicon and stretching it 3 to 7 times the original length. can do. If necessary, it can be immersed in an aqueous solution of boric acid or potassium oxalate. Furthermore, if necessary, the polybulal alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, non-uniformity such as uneven dyeing can be achieved by swelling the poly alcohol alcohol film. There is also an effect to prevent this. Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be performed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
偏光素子の両側もしくは片側には、 透光性保護フィルムを有する。 透光性保護 フィルムは、 通常、 透明性、 機械的強度、 熱安定性、 水分遮蔽性、 等方性などに 優れるものが好ましい。 前記透光性保護フィルムの材料としては、 例えばポリエ チレンテレフタレートゃポリエチレンナフタレート等のポリエステル系ポリマ一、 ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系ポリマー、 ポ リメチルメタク リ レート等のァク リル系ポリマー、 ポリスチレンゃァク リ ロニト リル . スチレン共重合体 (A S樹脂) 等のスチレン系ポリマー、 ポリカーボネー ト系ポリマーなどが挙げられる。 また、 シクロアルカン構造やノルボルネン構造 を有する環状ポリオレフイン、 ポリエチレン、 ポリプロピレン、 エチレン ' プロ ピレン共重合体の如きポリオレフイン系ポリマー、 塩化ビニル系ポリマー、 ナイ ロンや芳香族ポリアミ ド等のアミ ド系ポリマー、 イミ ド系ポリマー、 スルフォン 系ポリマー、 ポリエーテルスルフォン系ポリマー、 ポリエーテルエーテルケトン 系ポリマー、 ポリフエ二レンスノレフイ ド系ポリマー、 ビニノレアノレコーノレ系ポリマ 一、 塩化ビニリデン系ポリマー、 ビニルブチラール系ポリマー、 ァリレート系ポ リマー、 ポリオキシメチレン系ポリマー、 エポキシ系ポリマー、 あるいは前記ポ リマーのブレンド物などが透光性保護フィルムを形成するポリマーの例として挙 げられる。 その他、 アクリル系やウレタン系、 アク リルウレタン系やエポキシ系、 シリコーン系等の熱硬化型ないし紫外線硬化型樹脂などをフィルム化したものな どが挙げられる。 A light-transmitting protective film is provided on both sides or one side of the polarizing element. The light-transmitting protective film is usually preferably one that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, isotropic properties, and the like. Examples of the material for the translucent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, senorelose polymers such as dicetinoresenorelose and triacetinoresenorelose, and polymethyl methacrylate. Examples include acryl-based polymers, styrene-based polymers such as polystyrene acrylonitrile, styrene copolymers (AS resins), and polycarbonate-based polymers. In addition, cyclic polyolefins having a cycloalkane structure or norbornene structure, polyolefin polymers such as polyethylene, polypropylene, ethylene propylene copolymer, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamides, imi Polymer, sulfone polymer, polyether sulfone polymer, polyetheretherketone polymer, polyphenylene norfide polymer, vinylenoreconolole polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer Rimmer, polyoxymethylene polymer, epoxy polymer, or Limer blends are examples of polymers that form translucent protective films. In addition, acrylic, urethane, acrylic urethane, epoxy, silicone, and other thermosetting or ultraviolet curable resins can be used.
平面性、 偏光特性や耐久性などの点より、 特に好ましく用いることができる透 光性保護フィルムは、 トリァセチルセルロースフィルム、 ノルボルネン構造を有 する環状ポリオレフインである。 保護フィルムの厚さは、 適宜に決定しうるが、 一般には強度や取扱性等の作業性、 薄層性などの点より 1 0〜500 /zm程度で ある。 特に 10〜300 μ mが好ましく、 1 0〜 200 m がより好ましい。 また、 透光性保護フィルムは、 できるだけ色付きがないことが好ましい。 した がって、 R t h= [ (n x + n y) / 2 - n z ] X d (ただし、 n x、 n yはフ イルム平面内の主屈折率、 n zはフィルム厚方向の屈折率、 dはフィルム厚みで ある。 ) で表されるフィルム厚み方向の位相差値が一 1 0 nm〜+ 1 00 nmで ある透光性保護フィルムが好ましく用いられる。 かかる厚み方向の位相差値 (R t h) がー 1 0 nm〜十 1 00 nmのものを使用することにより、 透光性保護フ イルムに起因する偏光板の着色 (光学的な着色) をほぼ解消することができる。 厚み方向位相差値 (R t h) は、 さらに好ましくは一 1 0 nm〜十 70 nm、 特 に 0 η π!〜 + 50 n mが好ましい。 また、 R e = (n x— n y) X dで表される フィルム面内位相差値は 20 nm以下が好ましく、 1 0 nm以下がより好ましく、 0 nmに近いほど好ましい。  A translucent protective film that can be particularly preferably used in terms of flatness, polarization characteristics, durability, and the like is a triacetyl cellulose film and a cyclic polyolefin having a norbornene structure. The thickness of the protective film can be determined as appropriate, but is generally about 10 to 500 / zm from the viewpoints of workability such as strength and handleability and thin layer properties. 10 to 300 μm is particularly preferable, and 10 to 200 m is more preferable. Moreover, it is preferable that a translucent protective film has as little color as possible. Therefore, R th = [(nx + ny) / 2-nz] X d (where nx and ny are the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness) A translucent protective film having a retardation value in the film thickness direction represented by the formula of 10 nm to +100 nm is preferably used. By using a film having such a thickness direction retardation value (R th) of −10 nm to about 100 nm, the coloring (optical coloring) of the polarizing plate caused by the translucent protective film can be substantially reduced. Can be resolved. The thickness direction retardation value (R t h) is more preferably 10 nm to 10 70 nm, especially 0 η π! ~ +50 nm is preferred. Further, the in-plane retardation value represented by Re = (nx-ny) Xd is preferably 20 nm or less, more preferably 10 nm or less, and more preferably closer to 0 nm.
前記偏光素子と透光性保護フィルムとは通常、 水系粘着剤等を介して密着して いる。 水系接着剤としては、 ポリビュルアルコール系接着剤、 ゼラチン系接着剤、 ビニル系ラテックス系、 水系ポリウレタン、 水系ポリエステル等を例示できる。 前記透光性保護フィルムとしては、 ハードコート層や反射防止処理、 ステイツ キング防止や、 拡散ないしアンチグレアを目的とした処理を施したものを用いる ことができる。  The polarizing element and the translucent protective film are usually in close contact with each other through an aqueous adhesive or the like. Examples of the water-based adhesive include polybulal alcohol-based adhesive, gelatin-based adhesive, vinyl-based latex, water-based polyurethane, water-based polyester, and the like. As the translucent protective film, there can be used a hard coat layer, an antireflection treatment, an anti-sticking treatment, or a treatment intended for diffusion or anti-glare.
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、 例えばアクリル系、 シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑 り特性等に優れる硬化皮膜を透光性保護フィルムの表面に付加する方式などにて 形成することができる。 反射防止処理は偏光板表面での外光の反射防止を目的に 施されるものであり、 従来に準じた反射防止膜などの形成により達成することが できる。 また、 ステイツキング防止処理は隣接層との密着防止を目的に施される。 またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、 例えばサンドプラスト方式 やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式 にて透光性保護フィルムの表面に微細凹凸構造を付与することにより形成するこ とができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、 例えば 平均粒径が 0 . 5〜5 0 /ί Πΐのシリカ、 アルミナ、 チタニア、 ジルコニァ、 酸化 錫、 酸化インジウム、 酸化カドミウム、 酸化アンチモン等からなる導電性のこと もある無機系微粒子、 架橋又は未架橋のポリマー等からなる有機系微粒子などの 透明微粒子が用いられる。 表面微細凹凸構造を形成する場合、 微粒子の使用量は、 表面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2〜 5 0重 量部程度であり、 5〜 2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光 を拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもの であってもよい。 なお、 前記反射防止層、 ステイツキング防止層、 拡散層やアン チグレア層等は、 透過性保護フィルムそのものに設けることができるほか、 別途 光学層として透明保護層とは別体のものとして設けることもできる。 Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a light-cured cured film with an appropriate UV curable resin such as acrylic or silicone is used to transmit light. It can be formed by a method of adding to the surface of the protective film. Antireflection treatment is aimed at preventing reflection of external light on the surface of the polarizing plate. It can be achieved by forming an antireflection film or the like according to the conventional method. In addition, the anti-sticking treatment is performed for the purpose of preventing adhesion between adjacent layers. Anti-glare treatment is applied to prevent the external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the surface is roughened by the sand plast method or embossing method. It can be formed by providing a fine concavo-convex structure on the surface of the translucent protective film by an appropriate method such as a method or a compounding method of transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle diameter of 0.5 to 50 / ί. Transparent fine particles such as inorganic fine particles that may be conductive and organic fine particles composed of a crosslinked or uncrosslinked polymer are used. In the case of forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine uneven structure, and 5 to 25 Part by weight is preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expansion function) for diffusing the light transmitted through the polarizing plate to expand the viewing angle. The antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, etc. can be provided on the transparent protective film itself, or can be provided separately from the transparent protective layer as an optical layer. it can.
本発明に用いられる第 1の光学異方性層としては、 透明性と均一性に優れたも のであれば特に制限されないが、 高分子延伸フィルムや、 液晶からなる光学補償 フィルムが好ましく使用できる。 高分子延伸フィルムとしては、 セルロース系、 ポリカーボネート系、 ポリアリ レート系、 ポリスルフォン系、 ポリアク リル系、 ポリエーテルスルフォン系、 環状ォレフィン系高分子等からなる一軸又は二軸位 相差フィルムを例示することができる。 ここに例示した第 1の光学異方性層は、 高分子延伸フィルムのみで構成されても良いし、 液晶からなる光学補償フィルム のみで構成されても良いし、 高分子延伸フィルムと液晶からなる光学補償フィル ムの両方を併用することもできる。 中でも環状ォレフィン系ゃセルロース系がコ スト面およびフィルムの均一性、 複屈折波長分散特性が小さいことにより画質の 色変調が抑えられる点等で好ましい。 また、 液晶からなる光学補償フィルムとし ては、 主鎖型および Ζまたは側鎖型の液晶性を示す各種液晶性高分子化合物、 例 えば、 液晶性ポリエステル、 液晶性ポリカーボネート、 液晶性ポリアクリレート 等や配向後架橋等により高分子量化できる反応性基を有する'低分子量の液晶等か らなる光学補償フィルムを挙げることができ、 これらは自立性のある単独フィル ムでも透明支持基板上に形成されたものでもよい。 The first optically anisotropic layer used in the present invention is not particularly limited as long as it has excellent transparency and uniformity, but a polymer stretched film or an optical compensation film made of liquid crystal can be preferably used. Examples of the stretched polymer film include a uniaxial or biaxial retardation film composed of a cellulose-based, polycarbonate-based, polyarylate-based, polysulfone-based, polyacrylic-based, polyethersulfone-based, or cyclic olefin-based polymer. it can. The first optically anisotropic layer exemplified here may be composed only of a polymer stretched film, may be composed only of an optical compensation film made of liquid crystal, or is composed of a polymer stretched film and liquid crystal. Both optical compensation films can be used together. Of these, cyclic olefin-based celluloses are preferable in terms of cost uniformity, film uniformity, and low birefringence wavelength dispersion characteristics, thereby suppressing color modulation of image quality. In addition, as the optical compensation film made of liquid crystal, various liquid crystalline polymer compounds exhibiting liquid crystallinity of main chain type and side chain type, for example, liquid crystalline polyester, liquid crystalline polycarbonate, liquid crystalline polyacrylate, etc. And optical compensation films composed of 'low molecular weight liquid crystals having a reactive group that can be increased in molecular weight by cross-linking after orientation, etc., and these can be formed on a transparent support substrate even by a self-supporting single film. It may be done.
本発明において、 第 1の光学異方性層の波長 550 nmにおける位相差値 R e 1は、 1 20〜250 nmに調整する。 ここで、 R e lは、 R e l = (n x l— n y 1 ) X d 1 [nm] で定義される第 1の光学異方性層の面内の位相差値であ る。 d 1は第 1の光学異方性層の厚さ [nm] であり、 1 1及び117 1は波長 5 50 nmの光に対する第 1の光学異方性層面内の主屈折率であり、 n x 1 >n y lである。 R e 1の値が 250 n mより大きい、 または 1 20 n mより小さい 場合、 視野角改善効果が乏しくなる恐れがある。  In the present invention, the retardation value Re1 of the first optically anisotropic layer at a wavelength of 550 nm is adjusted to 120 to 250 nm. Here, Re1 is an in-plane retardation value of the first optical anisotropic layer defined by Re1 = (nxl−ny1) Xd1 [nm]. d 1 is the thickness of the first optically anisotropic layer [nm], 1 1 and 117 1 are the main refractive indices in the plane of the first optically anisotropic layer for light having a wavelength of 550 nm, and nx 1> nyl. If the value of Re1 is greater than 250 nm or less than 120 nm, the viewing angle improvement effect may be poor.
また、 第 1の光学異方性層の NZ係数 NZ 1は 0. 8〜1. 6に調整する。 特 に好ましくは 1. 0〜1. 4である。 ここで、 NZ 1は、 NZ 1 = (n x l— n z 1 ) / (n x 1 - n y 1 ) である。 n x l及び n y 1は波長 550 nmの光に 対する該第 1の光学異方性層面内の主屈折率、 n z 1は波長 550 n mの光に対 する厚さ方向の主屈折率であり、 n x l >n y lである。 N Z 1の値が 1. 6よ り大きい、 または 0. 8より小さい場合、 視野角改善効果が乏しくなる恐れがあ る。  The NZ coefficient NZ 1 of the first optically anisotropic layer is adjusted to 0.8 to 1.6. Particularly preferred is 1.0 to 1.4. Here, NZ 1 is NZ 1 = (n x l—n z 1) / (n x 1 -ny 1). nxl and ny 1 are the main refractive indices in the plane of the first optical anisotropic layer for light with a wavelength of 550 nm, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl. If the value of N Z 1 is greater than 1.6 or less than 0.8, the viewing angle improvement effect may be poor.
片側に透光性保護フィルムの積層 (貼合) された偏光素子の反対面側には、 通 常、 上記の第 1の光学異方性層が積層される。 偏光素子と第 1の光学異方性層の 間に透光性保護フィルムを含んでも良いが、 耐久性や厚みの観点から直接第 1の 光学異方性層を設けたほうが好ましい。  The first optically anisotropic layer is usually laminated on the opposite side of the polarizing element on which one side of the transparent protective film is laminated (bonded). Although a translucent protective film may be included between the polarizing element and the first optically anisotropic layer, it is preferable to directly provide the first optically anisotropic layer from the viewpoint of durability and thickness.
本発明に用いられる第 2の光学異方性層は、 光学的に正の一軸性を示す液晶性 高分子、 具体的には光学的に正の一軸性を示す液晶性高分子化合物または少なく とも 1種の該液晶性高分子化合物を含有する光学的に正の一軸性を示す液晶性高 分子組成物から成り、 該液晶性高分子化合物または該液晶性高分子組成物が液晶 状態において形成した平均チルト角が 5〜50度のネマチックハイブリッド配向 構造を固定化した液晶フィルムを少なくとも含む層である。  The second optically anisotropic layer used in the present invention is a liquid crystalline polymer that exhibits optically positive uniaxiality, specifically, a liquid crystalline polymer that exhibits optically positive uniaxiality, or at least An optically positive uniaxial liquid crystalline polymer composition containing one kind of the liquid crystalline polymer compound, and the liquid crystalline polymer compound or the liquid crystalline polymer composition formed in a liquid crystal state. This is a layer including at least a liquid crystal film in which a nematic hybrid alignment structure having an average tilt angle of 5 to 50 degrees is fixed.
本発明で言うネマチックハイブリッド配向とは、 液晶分子がネマチック配向し ており、 このときの液晶分子のダイレクターとフィルム平面のなす角がフィルム 上面と下面とで異なった配向形態を言う。 したがって、 上面界面近傍と下面界面 近傍とで該ダイレクターとフィルム平面との成す角度が異なっていることから、 該フィルムの上面と下面との間では該角度が連続的に変化しているものといえる。 ネマチックハイプリッド配向構造の模式図を図 2に示す。 The nematic hybrid alignment referred to in the present invention refers to an alignment form in which liquid crystal molecules are nematically aligned, and the angle between the director of the liquid crystal molecules and the film plane at this time is different between the upper surface and the lower surface of the film. Therefore, the vicinity of the upper interface and the lower interface Since the angle formed by the director and the film plane is different in the vicinity, it can be said that the angle continuously changes between the upper surface and the lower surface of the film. Figure 2 shows a schematic diagram of the nematic hybrid alignment structure.
またネマチックハイプリッド配向状態を固定化したフィルムは、 液晶分子のダ ィレクターがフィルムの膜厚方向のすべての場所において異なる角度を向いてい る。 したがって当該フィルムは、 フィルムという構造体として見た場合、 もはや 光軸は存在しない。 このようなネマチックハイプリッド配向を固定化した補償フ イルムは、 該フィルムの上面と下面とでは光学的に等価ではない。 したがって上 記において説明した T N液晶セルに配置する場合、 どちらの面を該液晶セル側に 配置するかによって視野角拡大効果が多少異なる。 本発明では、 補償フィルムの 上下 2面の内、 液晶性高分子のダイレクターとフィルム平面との成す角度が大き な方の面を液晶セルに最も近接するように配置することが望ましい。  In addition, in the film in which the nematic hybrid alignment state is fixed, the directors of the liquid crystal molecules are oriented at different angles at all positions in the film thickness direction. Therefore, the film no longer has an optical axis when viewed as a film structure. Such a compensation film in which the nematic hybrid orientation is fixed is not optically equivalent between the upper surface and the lower surface of the film. Therefore, when it is arranged in the TN liquid crystal cell described above, the viewing angle expansion effect is slightly different depending on which side is arranged on the liquid crystal cell side. In the present invention, it is desirable that the surface having the larger angle formed by the director of the liquid crystal polymer and the plane of the film is disposed closest to the liquid crystal cell among the upper and lower surfaces of the compensation film.
また本発明でいう平均チルト角とは、 液晶フィルムの膜厚方向における液晶分 子のダイレクターとフィルム平面との成す角度の平均値を意味するものである。 本発明に供される液晶フィルムは、 フィルムの一方の界面付近ではダイレクター とフィルム平面との成す角度が、 絶対値として通常 2 0〜 9 0度、 好ましくは 4 0〜9 0度、 さらに好ましくは 7 0〜 9 0度の角度をなしており、 当該面の反対 においては、 絶対値として通常 0〜 2 0度、 好ましくは 0〜 1 0度の角度を成し ており、 その平均チルト角は、 絶対値として通常 5〜 5 0度、 好ましくは 2 0〜 4 5度、 さらに好ましくは 2 5〜4 5度、 最も好ましくは 3 5〜4 5度である。 平均チルト角が上記範囲から外れた場合、 斜め方向から見た場合のコントラス ト の低下等の恐れがあり望ましくない。 なお平均チルト角は、 クリスタルローテ一 ション法を応用して求めることができる。  The average tilt angle as used in the present invention means the average value of the angle formed by the director of the liquid crystal molecule and the film plane in the film thickness direction of the liquid crystal film. In the liquid crystal film to be used in the present invention, the angle formed by the director and the film plane near the one interface of the film is usually 20 to 90 degrees as an absolute value, preferably 40 to 90 degrees, more preferably Has an angle of 70 to 90 degrees, and on the opposite side of the surface, the absolute value is usually 0 to 20 degrees, preferably 0 to 10 degrees, and its average tilt angle Is usually 5 to 50 degrees as an absolute value, preferably 20 to 45 degrees, more preferably 25 to 45 degrees, and most preferably 35 to 45 degrees. If the average tilt angle is out of the above range, it is not desirable because it may cause a decrease in contrast when viewed from an oblique direction. The average tilt angle can be obtained by applying the crystal rotation method.
本発明に用いられる第 2の光学異方性層を構成する液晶フィルムは、 上記のよ うなネマチックハイブリッド配向状態が固定化され、 かつ、 特定の平均チルト角 を有するものであれば、 光学的に正の一軸性を示す如何様な液晶から形成された ものであっても構わない。 例えば、 低分子液晶物質を液晶状態においてネマチッ クハイプリッド配向に形成後、 光架橋や熱架橋によって固定化して得られる液晶 フィルムや、 液晶性高分子を液晶状態においてネマチックハイプリッド配向に形 成後、 冷却することによって当該配向を固定化して得られる液晶フィルムを用い ることができる。 なお本発明でいう液晶フィルムとは、 フィルム自体が液晶性を 呈するか否かを問うものではなく、 低分子液晶、 液晶性高分子などの液晶物質を フィルム化することによって得られるものを意味する。 The liquid crystal film constituting the second optically anisotropic layer used in the present invention is optically as long as the nematic hybrid alignment state as described above is fixed and has a specific average tilt angle. It may be formed from any liquid crystal exhibiting positive uniaxiality. For example, a liquid crystal film obtained by forming a low-molecular liquid crystal substance in a nematic hybrid alignment in a liquid crystal state and then fixing by photocrosslinking or thermal crosslinking, or a liquid crystalline polymer in a nematic hybrid alignment in a liquid crystal state and then cooling. Using a liquid crystal film obtained by fixing the orientation Can. The liquid crystal film as used in the present invention does not ask whether the film itself exhibits liquid crystallinity, but means a film obtained by forming a liquid crystal substance such as a low molecular liquid crystal or a liquid crystalline polymer into a film. .
次に、 本発明に使用される液晶フィルムの製造方法について説明する。 液晶フ イルムの製造方法としてはこれらに限定されるものではないが、 前述の液晶性化 合物や組成物を配向能を有する基板上に展開し、 当該液晶性化合物や組成物を配 向させた後、 冷却や必要により光照射および または加熱処理することにより当 該配向状態を固定化することにより製造することができる。 なお、 配向能を有す る基板として前記の第 1の光学異方性層が使用できる場合もある。  Next, the manufacturing method of the liquid crystal film used for this invention is demonstrated. The method for producing the liquid crystal film is not limited to these, but the liquid crystal compound or composition described above is developed on a substrate having orientation ability, and the liquid crystal compound or composition is oriented. Thereafter, the alignment state can be fixed by cooling or, if necessary, light irradiation and / or heat treatment. In some cases, the first optical anisotropic layer can be used as a substrate having orientation ability.
液晶性化合物や組成物を配向能を有する基板上に展開して液晶層を形成する方 法としては、 液晶化合物や組成物を溶融状態で直接基板上に塗布する方法や、 液 晶化合物や組成物の溶液を基板上に塗布後、 塗膜を乾燥して溶媒を留去させる方 法が挙げられる。  As a method of forming a liquid crystal layer by spreading a liquid crystal compound or composition on a substrate having orientation ability, a method of directly applying a liquid crystal compound or composition on a substrate in a molten state, a liquid crystal compound or a composition After applying the solution of the product on the substrate, the coating film is dried and the solvent is distilled off.
液晶性化合物や組成物を直接塗布する方法でも、 溶液を塗布する方法でも、 塗 布方法については、 塗膜の均一性が確保される方法であれば、 特に限定されるこ とはなく公知の方法を採用することができる。 例えば、 スピンコート法、 ダイコ ート法、 カーテンコート法、 ディップコート法、 ロールコート法などが挙げられ る。  Regardless of the method of directly applying the liquid crystalline compound or composition, or the method of applying a solution, the coating method is not particularly limited as long as it is a method that ensures the uniformity of the coating film, and is publicly known. The method can be adopted. Examples include spin coating, die coating, curtain coating, dip coating, and roll coating.
液晶性化合物や組成物の溶液を塗布する方法では、 塗布後に溶媒を除去するた めの乾燥工程を入れることが好ましい。 この乾燥工程は、 塗膜の均一性が維持さ れる方法であれば、 特に限定されることなく公知の方法を採用することができる。 例えば、 ヒーター (炉) 、 温風吹きつけなどの方法が挙げられる。  In the method of applying a solution of a liquid crystal compound or composition, it is preferable to include a drying step for removing the solvent after the application. The drying step can be any known method without particular limitation as long as the uniformity of the coating film is maintained. For example, a method such as a heater (furnace) or hot air blowing is used.
続いて、 基板上に形成された液晶層を、 熱処理などの方法で液晶配向を形成し、 冷却や必要により光照射および Zまたは加熱処理で硬化を行い固定化する。 最初 の熱処理では、 使用した液晶性組成物の液晶相発現温度範囲に加熱することで、 該液晶性組成物が本来有する自己配向能によりネマチックハイプリッド配向させ る。 熱処理の条件としては、 用いる液晶性組成物の液晶相挙動温度 (転移温度) により最適条件や限界値が異なるため一概には言えないが、 通常 1 0 °C〜2 5 0 °C、 好ましくは 3 0 °C〜1 6 0 °Cの範囲であり、 該液晶性組成物のガラス転移 点 (T g ) 以上の温度、 さらに好ましくは T gより 1 0 °C以上高い温度で熱処理 するのが好ましい。 あまり低温では、 液晶の配向が充分に進行しないおそれがあ り、 また高温では基板に悪影響を与えるおそれがある。 また、 熱処理時間につい ては、 通常 3秒〜 3 0分、 好ましくは 1 0秒〜 2 0分の範囲である。 3秒より短 い熱処理時間では、 液晶の配向が充分に完成しないおそれがあり、 また 3 0分を 超える熱処理時間では、 生産性が悪くなるため、 どちらの場合も好ましくない。 なお、 基板として、 光学的に等方でない、 あるいは得られる基板が最終的に目 的とする楕円偏光板の使用波長領域において不透明である、 もしくは基板の膜厚 が厚すぎて実際の使用に支障を生じるなどの問題がある場合、 基板上に形成され た形態から、 目的とする使用波長領域で障害とならないような他の基板や位相差 機能を有する延伸フィルムに転写した形態も使用しうる。 転写方法としては公知 の方法を採用することができる。 例えば、 特開平 4一 5 7 0 1 7号公報ゃ特開平 5 - 3 3 3 3 1 3号公報に記載されているように液晶層を後述する粘着剤もしく は接着剤を介して、 配向に使用した基板とは異なる基板を積層した後に、 該積層 体から配向に使用した基板を剥離することで液晶層のみを転写する方法等を挙げ ることができる。 Subsequently, the liquid crystal layer formed on the substrate is formed into a liquid crystal alignment by a method such as heat treatment, and is fixed by cooling and, if necessary, curing by light irradiation and Z or heat treatment. In the first heat treatment, the liquid crystal composition is heated to the temperature range where the liquid crystal composition is used, whereby the nematic hybrid alignment is performed by the self-alignment ability inherent in the liquid crystal composition. The conditions for the heat treatment cannot be generally stated because the optimum conditions and limit values vary depending on the liquid crystal phase behavior temperature (transition temperature) of the liquid crystal composition to be used, but are usually 10 ° C to 2500 ° C, preferably Heat treatment at a temperature in the range of 30 ° C. to 160 ° C., a temperature above the glass transition point (T g) of the liquid crystalline composition, and more preferably at a temperature higher than T g by 10 ° C. It is preferable to do this. If the temperature is too low, the alignment of the liquid crystal may not proceed sufficiently, and if the temperature is high, the substrate may be adversely affected. The heat treatment time is usually in the range of 3 seconds to 30 minutes, preferably 10 seconds to 20 minutes. If the heat treatment time is shorter than 3 seconds, the alignment of the liquid crystal may not be completed sufficiently, and if the heat treatment time exceeds 30 minutes, the productivity will be deteriorated. In addition, the substrate is not optically isotropic, or the substrate obtained is opaque in the wavelength range of use of the elliptical polarizing plate that is ultimately intended, or the substrate is too thick, which hinders actual use. In the case where there is a problem such as generation of a film, a form transferred from the form formed on the substrate to another substrate that does not become an obstacle in the intended use wavelength region or a stretched film having a retardation function can be used. As a transfer method, a known method can be employed. For example, as described in Japanese Patent Laid-Open No. 4-7570 17 or Japanese Patent Laid-Open No. 5-3 3 3 1 13, the liquid crystal layer is aligned via an adhesive or an adhesive which will be described later. Examples include a method of transferring only the liquid crystal layer by laminating a substrate used for alignment after laminating a substrate different from the substrate used in the above.
また液晶フィルムを積層して得られる楕円偏光板が、 液晶表示装置に対してよ り好適な視野角改良効果を発現するための該フィルムの膜厚は、 対象とする液晶 セルの方式や種々の光学パラメーターに依存するので一概には言えないが、 通常 0 . 2 μ π!〜 1 0 μ m、 好ましくは 0 · 3 m〜 5 μ m、 特に好ましくは 0 . 5 μ π!〜 2 μ πιの範囲である。 膜厚が 0 . 2 m未満の時は、 十分な改良 (補償) 効果が得られない恐れがある。 また膜厚が 1 0 μ πιを越えるとディスプレーの表 示が不必要に色づく恐れがある。  In addition, the film thickness of the elliptical polarizing plate obtained by laminating the liquid crystal films to exhibit a viewing angle improvement effect more suitable for the liquid crystal display device depends on the type of the target liquid crystal cell and various Since it depends on the optical parameters, it cannot be generally stated, but usually 0.2 μπ! To 10 μm, preferably 0.3 to 5 μm, particularly preferably 0.5 μπ! It is in the range of ~ 2 μπι. If the film thickness is less than 0.2 m, sufficient improvement (compensation) effect may not be obtained. If the film thickness exceeds 10 μπι, the display may be unnecessarily colored.
また液晶フィルムの法線方向から見た場合の面内の見かけの位相差値としては、 ネマチックハイブリッド配向したフィルムでは、 ダイレクターに平行な方向の屈 折率 (以下、 n eという。 ) と垂直な方向の屈折率 (以下、 n oという。 ) 力 S 異なっており、 n eから n oを引いた値を見かけ上の複屈折率とした場合、 見か け上の位相差値は見かけ上の複屈折率と絶対膜厚との積で与えられるとする。 こ の見かけ上の位相差値は、 エリプソメ トリー等の偏光光学測定により容易に求め ることができる。 補償素子として用いられる液晶フィルムの見かけ上の位相差値 は、 波長 5 5 0 n mの単色光に対して、 通常 3 0 n m〜 1 5 0 n m、 好ましくは 3 0 η π!〜 1 3◦ n m、 特に好ましくは 3 0 η π!〜 1 0 0 n mの範囲である。 見 かけの位相差値が 3 0 n m未満の時は、 十分な視野角拡大効果が得られない恐れ がある。 また、 1 5 0 n mより大きい場合は、 斜めから見たときに液晶ディスプ レーに不必要な色付きが生じる恐れがある。 次に、 本発明の楕円偏光板の製造方法について説明する。 In addition, the in-plane apparent retardation value when viewed from the normal direction of the liquid crystal film is perpendicular to the refractive index in the direction parallel to the director (hereinafter referred to as ne ) in the nematic hybrid oriented film. Refractive index in the direction (hereinafter referred to as no) Force S is different, and when the value obtained by subtracting no from no is the apparent birefringence, the apparent retardation value is the apparent birefringence And the absolute film thickness. This apparent retardation value can be easily obtained by polarization optical measurement such as ellipsometry. The apparent retardation value of the liquid crystal film used as the compensation element is usually 30 nm to 1550 nm, preferably for monochromatic light with a wavelength of 5500 nm, preferably 3 0 η π! ˜13 ° nm, particularly preferably 30 ηπ! It is in the range of ~ 100 nm. When the apparent retardation value is less than 30 nm, there is a possibility that a sufficient viewing angle expansion effect cannot be obtained. On the other hand, if it is larger than 150 nm, unnecessary coloration may occur in the liquid crystal display when viewed from an oblique direction. Next, the manufacturing method of the elliptically polarizing plate of this invention is demonstrated.
本発明の楕円偏光板は、 その積層形態が、 偏光板/第 1の光学異方性層/第 2 の光学異方性層 (粘着剤層または接着剤層の記載を省略) の順になれば積層順序 は問わない。  The elliptically polarizing plate of the present invention has a laminated form in the order of polarizing plate / first optical anisotropic layer / second optical anisotropic layer (the description of the pressure-sensitive adhesive layer or adhesive layer is omitted). The order of stacking does not matter.
例えば、 (1 ) 偏光板、 第 1の光学異方性層および第 2の光学異方性層を上記 の構成となるように適宜な順序で積層する、 (2 ) 偏光板に順次、 第 1の光学異 方性層、 第 2の光学異方性層を積層する、 (3 ) 偏光板に、 第 1の光学異方性層 と第 2の光学異方性層を予め積層した積層体を積層する、 などを挙げることがで きる。  For example, (1) a polarizing plate, a first optically anisotropic layer, and a second optically anisotropic layer are laminated in an appropriate order so as to have the above-described configuration. (2) (3) A laminate in which the first optical anisotropic layer and the second optical anisotropic layer are laminated in advance on the polarizing plate. Laminate, etc.
積層に使用される接着剤層や粘着剤層 (以下、 接着剤と粘着剤を合わせて 「粘 '接着剤」 ということがある。 ) を形成する粘 ·接着剤としては、 光学異方 性層に対して十分な接着力を有し、 かつ、 光学異方性層の光学的特性を損なわな いものであれば、 特に制限はなく、 例えば、 アクリル樹脂系、 メタクリル樹脂系、 シリコーン系ポリマー、 ポリエステル、 ポリ ウレタン、 ポリアミ ド、 ポリエーテ ル、 エポキシ樹脂系、 エチレン一酢酸ビニル共重合体系、 フッ素系やゴム系など のポリマーをベースポリマーとするものやこれらの混合物系を適宜に選択して用 いることができる。 また、 熱硬化型および または光硬化型、 電子線硬化型等 の各種反応性のものを挙げることができる。 これらの粘 ·接着剤は、 光学異方性 層を保護する透明保護層の機能を兼ね備えたものも含まれる。 これらのなかでも、 特にァクリル系粘着剤の如く光学的透明性に優れ、 適度な濡れ性と凝集性と接着 性の粘着特性を示して、 耐候性や耐熱性などに優れるものが好ましく用いうる。 粘 ·接着剤層の形成は、 適宜な方式で行うことができる。 その例としては、 例 えばトルエンや酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベ ースポリマーまたはその組成物を溶解又は分散させた 1 0〜 4 0質量%程度の 粘 ·接着剤溶液を調製し、 それを流延方式や塗工方式等の適宜な展開方式で前記 光学異方性層上に直接付設する方式、 あるいは前記に準じセパレータ上に粘 ·接 着剤層を形成してそれを前記光学異方性層上へ移着する方式などが挙げられる。 また、 粘 ·接着剤層には、 例えば、 天然物や合成物の樹脂類、 特に、 粘着性付与 樹脂や、 ガラス繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充填 剤や顔料、 着色剤、 酸化防止剤などの添加剤を含有していてもよい。 また微粒子 を含有して光拡散性を示す粘 ·接着剤層などであってもよい。 Adhesive layers and adhesive layers used for lamination (hereinafter sometimes referred to as "adhesives" together with adhesives and adhesives) are used as optically anisotropic layers. There is no particular limitation as long as it has sufficient adhesive strength against the optical properties and does not impair the optical properties of the optically anisotropic layer. For example, acrylic resin, methacrylic resin, silicone polymer, polyester , Polyurethane, Polyamide, Polyether, Epoxy resin system, Ethylene vinyl acetate copolymer system, Fluorine system, Rubber system, etc. Can do. In addition, various reactive types such as a thermosetting type and / or a photocurable type and an electron beam curable type can be exemplified. These adhesives include those having the function of a transparent protective layer for protecting the optically anisotropic layer. Among these, those having excellent optical transparency, such as acryl-based pressure-sensitive adhesives, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used. The adhesive layer can be formed by an appropriate method. As an example, for example, about 10 to 40% by weight of a viscous / adhesive obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate. A solution is prepared, and the solution is applied by an appropriate development method such as a casting method or a coating method. Examples thereof include a method of directly attaching on the optically anisotropic layer, or a method of forming an adhesive layer on the separator according to the above and transferring it onto the optically anisotropic layer. In the adhesive / adhesive layer, for example, natural or synthetic resins, in particular, tackifier resins, fillers and pigments made of glass fiber, glass beads, metal powder, other inorganic powders, etc. It may contain additives such as colorants and antioxidants. Further, it may be an adhesive layer containing fine particles and exhibiting light diffusibility.
なお、 光学異方性層間を接着剤層あるいは粘着剤層を介して、 互いに貼り合せ る際には、 光学異方性層表面を表面処理して接着剤層あるいは粘着剤層との密着 性を向上することができる。 表面処理の手段は、 特に制限されないが、 前記液晶 層表面の透明性を維持できるコロナ放電処理、 スパッタ処理、 低圧 UV照射、 プ ラズマ処理などの表面処理法を好適に採用できる。 これら表面処理法のなかでも コロナ放電処理が良好である。  When the optically anisotropic layers are bonded to each other via an adhesive layer or a pressure-sensitive adhesive layer, the surface of the optically anisotropic layer is surface-treated to improve the adhesion to the adhesive layer or the pressure-sensitive adhesive layer. Can be improved. The surface treatment means is not particularly limited, and surface treatment methods such as corona discharge treatment, sputtering treatment, low-pressure UV irradiation, and plasma treatment that can maintain the transparency of the liquid crystal layer surface can be suitably employed. Among these surface treatment methods, corona discharge treatment is good.
本発明に用いられる液晶セルについて説明する。 本発明に用いられる TN型液 晶セルを駆動方式で分類すると、 単純マ トリクス方式、 能動素子を電極として用 いる TFT (Th i n F i l m T r a n s i s t o r) 電極、 M I M (Me t a 1 I n s u l a t o r Me t a l ) 電極および T F D (Th i n F i 1 m D i o d e) 電極を用いるアクティブマトリクス方式等のように細分化で きる。 本発明では、 いずれの駆動方式の TN型液晶セルに対しても顕著な効果を 発揮することができる。  The liquid crystal cell used in the present invention will be described. The TN-type liquid crystal cells used in the present invention are classified according to the drive system: simple matrix system, TFT (Thin Film Transistor) electrode using active elements as electrodes, MIM (Metal I Insulator Meter) It can be subdivided as in the active matrix method using electrodes and TFD (Thin Fi 1 m diode) electrodes. In the present invention, a remarkable effect can be exhibited for any driving type TN liquid crystal cell.
本発明に用いられる T N型液晶セルは、 当該液晶セル内の液晶の屈折率異方性 (厶 n) と当該液晶セルの液晶層の厚み (d) との積で示される面内位相差 (R e ) 力 通常 250 η π!〜 520 n m、 好ましくは 300 n m〜 500 n m、 特 に好ましくは 350 nm〜450 nmの範囲である。 520 nmより大きい場合、 後ほど説明する補償フィルムと組み合わせた際の視野角改善効果が乏しくなる恐 れがあり、 また応答速度が遅くなる可能性がある。 また 250 nmより小さい場 合、 当該補償フィルムと組み合わせた際、 視野角の改善効果はあるものの正面の 輝度、 コントラス トの低下を生じる恐れがある。  The TN type liquid crystal cell used in the present invention has an in-plane retardation represented by the product of the refractive index anisotropy (厶 n) of the liquid crystal in the liquid crystal cell and the thickness (d) of the liquid crystal layer of the liquid crystal cell. R e) Force Usually 250 η π! ˜520 nm, preferably 300 nm to 500 nm, particularly preferably 350 nm to 450 nm. If it is larger than 520 nm, the viewing angle improvement effect when combined with a compensation film described later may be poor, and the response speed may be slow. On the other hand, if it is smaller than 250 nm, when combined with the compensation film, the viewing angle may be improved, but the front brightness and contrast may be reduced.
また T N型液晶セルは、 ネマチック液晶の液晶分子の配向欠陥を低減するため にあらかじめ当該液晶分子にプレチルト角を与えることが好ましい。 プレチルト 角は通常 5° 以下である。 また、 一般に T N型液晶セルは、 当該液晶セル内のネマチック液晶の長軸が上 下基板間でおよそ 9 0 ° ねじれている。 液晶セルに電圧を印加しない状態では入 射した直線偏光はその旋光性により 9 0 ° ねじれて出射する。 液晶セルに電圧を 印加すると液晶分子の長軸は電界方向に配向し旋光性は消失する。 よってこの旋 光の効果を十分に得るために、 本発明に用いられる T N型液晶セルのッイスト角 は、 通常 7 0 ° 〜1 1 0 ° 、 好ましくは 8 5 ° 〜9 5。 であることが望ましい。 なお当該液晶セル中の液晶分子のねじれ方向は、 左および右方向のどちらでも良 レ、。 本発明の楕円偏光板を用いた T N型液晶表示装置の構成について説明する。 The TN liquid crystal cell preferably gives a pretilt angle to the liquid crystal molecules in advance in order to reduce alignment defects of the liquid crystal molecules of the nematic liquid crystal. The pretilt angle is usually less than 5 °. In general, in the TN liquid crystal cell, the major axis of the nematic liquid crystal in the liquid crystal cell is twisted by about 90 ° between the upper and lower substrates. When no voltage is applied to the liquid crystal cell, the incident linearly polarized light is emitted with a 90 ° twist due to its optical rotation. When a voltage is applied to the liquid crystal cell, the long axes of the liquid crystal molecules are aligned in the direction of the electric field and the optical rotation disappears. Therefore, in order to sufficiently obtain this optical rotation effect, the twist angle of the TN type liquid crystal cell used in the present invention is usually 70 ° to 110 °, preferably 85 ° to 95. It is desirable that The twist direction of the liquid crystal molecules in the liquid crystal cell can be either left or right. A configuration of a TN type liquid crystal display device using the elliptically polarizing plate of the present invention will be described.
本発明の T N型液晶表示装置は、 本発明の楕円偏光板を少なく とも 1枚有する 液晶表示装置であるが、 好ましくは T N型液晶セルの両側に各 1枚有する配置が 望ましい。 すなわち、 視認側から 『楕円偏光板 (偏光板ノ第 1の光学異方性層ノ 第 2の光学異方性層の順) Z T N型液晶セル 楕円偏光板 (第 2の光学異方性層 Z第 1の光学異方性層 Z偏光板の順) Zバックライ ト』 という配置で構成される。 液晶セル内の液晶層のプレチルト方向とネマチックハイブリッド配向構造を固 定化した液晶フィルムからなる第 2の光学異方性層のチルト方向のなす角度は、 1 5 0度〜 1 8 0度の範囲が好ましく、 より好ましくは 1 6 0度〜 1 8 0度であ り、 特に好ましくは 1 7◦度〜 1 8 0度である。 両者のなす角度が 1 5 0度より 小さい場合、 十分な視野角補償効果が得られない恐れがある。  The TN type liquid crystal display device of the present invention is a liquid crystal display device having at least one elliptically polarizing plate of the present invention, but an arrangement having one each on both sides of the TN type liquid crystal cell is desirable. That is, from the viewing side, “ellipsoidal polarizing plate (polarizing plate first optical anisotropic layer second second optical anisotropic layer order) ZTN liquid crystal cell elliptic polarizing plate (second optical anisotropic layer Z The first optically anisotropic layer is arranged in the order of Z polarizing plate) Z back light. The angle between the pretilt direction of the liquid crystal layer in the liquid crystal cell and the tilt direction of the second optically anisotropic layer made of the liquid crystal film in which the nematic hybrid alignment structure is fixed is in the range of 150 ° to 180 °. More preferably, it is 160 to 180 degrees, and particularly preferably 17 to 180 degrees. If the angle between the two is smaller than 1550 degrees, there is a possibility that a sufficient viewing angle compensation effect cannot be obtained.
また、 第 1の光学異方性層の遅相軸と第 2の光学異方性層のチルト方向のなす 角度は、 6 0度〜 9 0度の範囲が好ましく、 より好ましくは 7 0度〜 9 0度であ り、 特に好ましくは 8 0度〜 9 0度である。 両者のなす角度が 6 0度より小さい 場合、 十分な視野角補償効果が得られない恐れがある。  The angle formed between the slow axis of the first optical anisotropic layer and the tilt direction of the second optical anisotropic layer is preferably in the range of 60 ° to 90 °, more preferably 70 ° to 90 degrees, particularly preferably 80 degrees to 90 degrees. If the angle between the two is less than 60 degrees, there is a risk that a sufficient viewing angle compensation effect cannot be obtained.
また、 偏光板の吸収軸と第 1の光学異方性層の遅相軸のなす角度は、 6 0度〜 9 0度の範囲が好ましく、 より好ましくは 7 0度〜 9 0度であり、 特に好ましく は 8 0度〜 9 0度である。 両者のなす角度が 6 0度より小さい場合、 十分な視野 角補償効果が得られない恐れがある。  Further, the angle formed by the absorption axis of the polarizing plate and the slow axis of the first optically anisotropic layer is preferably in the range of 60 ° to 90 °, more preferably 70 ° to 90 °, Particularly preferred is 80 to 90 degrees. If the angle between the two is less than 60 degrees, there is a risk that a sufficient viewing angle compensation effect cannot be obtained.
本発明の液晶表示装置は、 前記した構成部材以外にも他の構成部材を付設する ことができる。 例えば、 主に透明プラスチックフィルムやシートを延伸して得ら れる各種の位相差フィルム、 液晶の配向を固定化したフィルムや光拡散層、 バッ クライ ト、 光制御フィルム、 導光板、 プリズムシート、 カラフィルタ一等を配置 することができる。 これらは、 従来、 公知のものから適宜選択して使用すること ができる。 The liquid crystal display device of the present invention can be provided with other constituent members in addition to the constituent members described above. For example, mainly obtained by stretching a transparent plastic film or sheet Various types of retardation films, films with fixed liquid crystal orientation, light diffusion layers, backlights, light control films, light guide plates, prism sheets, color filters, etc. can be arranged. These can be appropriately selected from conventionally known ones and used.
[実施例] [Example]
以下、 本発明を実施例および比較例によりさらに具体的に説明するが、 本発明 はこれらに限定されるものではない。 なお、 本実施例における位相差値 (R e) は特に断りの無い限り波長 550 nmにおける値とする。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The phase difference value (R e) in this example is a value at a wavelength of 550 nm unless otherwise specified.
なお、 各光学フィルムの屈折率、 位相差の測定は、 フィルム面内と厚さ方向の 主屈折率 n x、 n y、 n zを自動複屈折測定装置 (王子計測機器株式会社製、 自 動複屈折計 KOBRA2 1 ADH) を用いて測定した。 また、 液晶表示装置の視 野角 (等コントラス ト曲線) の測定は視野角測定装置 (ELD IM社製 EZ c o n t r a s t 1 60 R) を用いた。  In addition, the refractive index and retardation of each optical film are measured by using an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic birefringence meter). KOBRA2 1 ADH). In addition, the viewing angle (equal contrast curve) of the liquid crystal display device was measured using a viewing angle measuring device (EZ corn tr a 160 R made by ELD IM).
<実施例 1 > <Example 1>
(偏光素子)  (Polarizing element)
ポリビュルアルコールフィルムを温水中に浸漬して膨張させた後、 ヨウ素/ョ ゥ化カリゥム水溶液にて染色し、 次いでホウ酸水溶液中で一軸延伸処理して偏光 素子を得た。 これらの偏光素子は、 分光光度計にて単体透過率、 平均透過率、 直 交透過率を調べたところ透過率 43. 5%、 偏光度 99. 9%であった。  The polybulal alcohol film was immersed in warm water to swell, then dyed with an iodine / calorium oxalate aqueous solution, and then uniaxially stretched in an aqueous boric acid solution to obtain a polarizing element. These polarizing elements were examined for single transmittance, average transmittance, and orthogonal transmittance with a spectrophotometer. As a result, the transmittance was 43.5% and the polarization degree was 99.9%.
(第 1の光学異方性層)  (First optical anisotropic layer)
厚さ 1 00 μ mのノルボルネン系無延伸フィルム ( J SR社製のァートンフィ ルム) を 230°Cで縦横 2軸延伸した。 得られた延伸フィルムは、 厚さ 80 μιη、 位相差値 R e 1は略 220 nm、 NZ係数NZ 1は1. 2であった。 A 100 μm-thick norbornene-based unstretched film (Jurton film made by JSR) was stretched biaxially and vertically at 230 ° C. The obtained stretched film had a thickness of 80 μ ιη, retardation value R e 1 is approximately 220 nm, NZ coefficient NZ 1 1. was 2.
(第 2の光学異方性層)  (Second optically anisotropic layer)
特開平 6— 347 742号公報に従って、 膜厚方向の平均チルト角が 44度の ネマチックハイブリッド配向が固定化された膜厚 0. 6 5 /mの液晶フィルムか らなる第 2の光学異方性層を作製した。 位相差値は 70 nmであった。  According to JP-A-6-347742, a second optical anisotropy comprising a liquid crystal film having a film thickness of 0.65 / m with a fixed nematic hybrid orientation having an average tilt angle of 44 degrees in the film thickness direction. A layer was made. The phase difference value was 70 nm.
(楕円偏光板) トリァセチルセルロース(TAC) フィルム (40 /_ίπι、 富士フィルム社製) を室温で、 2質量%の水酸化力リゥム水溶液中に 5分間浸漬して験化処理を行い、 流水中で洗浄した後乾燥させた。 上記で得た偏光素子の一方の面に、 アクリル系 接着剤を用いて、 験化した TACフィルムを貼り合わせ、 透光性保護層を形成し た。 その偏光素子の他面に粘着剤層を介して、 第 1の光学異方性層を偏光素子の 吸収軸と第 1の光学異方性層の遅相軸が直交になるように接着し、 ついで第 2の 光学異方性層を偏光素子の偏光素子の吸収軸と第 2の光学異方性層の遅相軸が平 行になるように粘着剤を介して貼り合わせ、 楕円偏光板を得た。 (Ellipse polarizing plate) Triacetyl cellulose (TAC) film (40 / _ίπι, manufactured by Fuji Film Co., Ltd.) is immersed in a 2% by weight aqueous solution of hydroxylated hydrogen for 5 minutes at room temperature, subjected to test treatment, washed in running water, and dried. I let you. An experimental TAC film was bonded to one surface of the polarizing element obtained above using an acrylic adhesive to form a translucent protective layer. Adhering the first optically anisotropic layer to the other surface of the polarizing element via an adhesive layer so that the absorption axis of the polarizing element and the slow axis of the first optically anisotropic layer are orthogonal, Next, the second optically anisotropic layer was bonded via an adhesive so that the absorption axis of the polarizing element of the polarizing element and the slow axis of the second optically anisotropic layer were parallel, and an elliptically polarizing plate was attached. Obtained.
(液晶表示装置)  (Liquid crystal display device)
上記で得た楕円偏光板を配置した液晶表示装置の概念図を図 3で、 その軸構成 を図 4を用いて説明する。 基板 1に I TO等の透過率の高い材料で形成された透 明電極 3が設けられ、 基板 2に I TO等の透過率の高い材料で形成された対向電 極 4が設けられ、 透明電極 3と対向電極 4との間に正の誘電率異方性を示す液晶 材料からなる液晶層 5が挟持されている。 基板 2の対向電極 4が形成された側の 反対面に楕円偏光板 1 5 (第 2の光学異方性層 1 1、 第 1の光学異方性層 1 2、 偏光素子 7及び透光性保護フィルム 9からなる) が設けられており、 基板 1の透 明電極 3が形成された面の反対側に楕円偏光板 1 6 (第 2の光学異方性層 1 3、 第 1の光学異方性層 14、 偏光素子 8及び透光性保護フィルム 1 0からなる) が 設けられている。 透光性保護フィルム 1 0の背面側にはバックライ ト 1 7が設け られている。  A conceptual diagram of a liquid crystal display device in which the elliptically polarizing plate obtained above is arranged will be described with reference to FIG. 3, and its axis configuration will be described with reference to FIG. A transparent electrode 3 made of a material with high transmittance such as ITO is provided on the substrate 1, and a counter electrode 4 made of a material with high transmittance such as ITO is provided on the substrate 2, and a transparent electrode A liquid crystal layer 5 made of a liquid crystal material exhibiting positive dielectric anisotropy is sandwiched between 3 and the counter electrode 4. On the opposite surface of the substrate 2 where the counter electrode 4 is formed, an elliptically polarizing plate 1 5 (second optically anisotropic layer 1 1, first optically anisotropic layer 1 2, polarizing element 7 and translucency A protective film 9) and an elliptically polarizing plate 1 6 (second optically anisotropic layer 1 3, first optically different layer) on the opposite side of the surface of the substrate 1 on which the transparent electrode 3 is formed. An anisotropic layer 14, a polarizing element 8, and a translucent protective film 10). A backlight 17 is provided on the back side of the translucent protective film 10.
使用した液晶セル 6は、 液晶材料として Z L I—4792 (Me r c k社製) を用い、 液晶層厚は 4. とした。 液晶層の基板両界面のプレチルト角は 3 度であり、 液晶セルの R eは、 略 4 1 5 nmであった。 なお、 偏光素子の吸収軸、 第 1および第 2の光学異方性層の遅相軸および液晶セル両界面のプレチルト方向 は図 4に示した。  The liquid crystal cell 6 used was ZLI-4792 (manufactured by Merck) as the liquid crystal material, and the liquid crystal layer thickness was 4. The pretilt angle at the substrate interface of the liquid crystal layer was 3 degrees, and the Re of the liquid crystal cell was approximately 4 15 nm. The absorption axis of the polarizing element, the slow axis of the first and second optically anisotropic layers, and the pretilt direction at both interfaces of the liquid crystal cell are shown in FIG.
図 5は、 白表示 0V、 黒表示 5 Vの透過率の比 (白表示) / (黒表示) をコン トラスト比として、 全方位からのコントラスト比を示している。 実線はコントラ スト比 50を示す。 また、 同心円は同一の視野角を表し、 20度ごとの間隔で描 かれている。 したがって最外円の視野角は 80度を表す (以下、 同様) 。 図 5から良好な視野角特性を持っていることが分かった Figure 5 shows the contrast ratio from all directions, with the contrast ratio of the transmittance ratio of white display 0V and black display 5V (white display) / (black display). The solid line shows a contrast ratio of 50. Concentric circles represent the same viewing angle and are drawn at intervals of 20 degrees. Therefore, the viewing angle of the outermost circle represents 80 degrees (hereinafter the same). Figure 5 shows that it has good viewing angle characteristics.
<実施例 2 > <Example 2>
実施例 1において、 第 1の光学異方性層の位相差値 R e lを 240 n m、 NZ 係数 NZ 1を 1. 0とし、 第 2の光学異方性層の平均チルト角を 3 7度、 位相差 値を 80 nmにしたこと以外は、 実施例 1と同様の液晶表示装置を作製した。 図 6に、 白表示 0V、 黒表示 5 Vの透過率の比 (白表示) Z (黒表示) をコントラ ス ト比として、 全方位からのコントラス ト比を示した。  In Example 1, the retardation value R el of the first optical anisotropic layer is 240 nm, the NZ coefficient NZ 1 is 1.0, the average tilt angle of the second optical anisotropic layer is 37 degrees, A liquid crystal display device similar to that of Example 1 was produced, except that the retardation value was 80 nm. Figure 6 shows the contrast ratio from all directions, with the transmittance ratio of white display 0V and black display 5V (white display) Z (black display) as the contrast ratio.
図 6から良好な視野角特性を持つていることが分かった。  Figure 6 shows that it has good viewing angle characteristics.
<実施例 3 > <Example 3>
実施例 1において、 第 1の光学異方性層を厚さ 1 00 μ mの T ACフィルム (コニ力社製) を 1 60°Cで縦横 2軸延伸し、 厚さ 50 μπι、 位相差値 R e 1は 略 220 nm、 NZ係数NZ 1は1. 2としたこと以外は、 実施例 1と同様の液 晶表示装置を作製した。  In Example 1, a 100 μm thick TAC film (manufactured by Koni Riki Co., Ltd.) was stretched biaxially and longitudinally at 160 ° C., thickness 50 μπι, retardation value A liquid crystal display device similar to that of Example 1 was prepared, except that Re 1 was approximately 220 nm and the NZ coefficient NZ 1 was 1.2.
図 7に、 白表示 0V、 黒表示 5Vの透過率の比 (白表示) / (黒表示) をコン トラスト比として、 全方位からのコントラスト比を示した。  Fig. 7 shows the contrast ratio from all directions, with the contrast ratio of the transmittance of white display 0V and black display 5V (white display) / (black display).
図 7から良好な視野角特性を持っていることが分かった。  Figure 7 shows that it has good viewing angle characteristics.
<比較例 1 > <Comparative Example 1>
実施例 1において、 第 1の光学異方性層 1 2と第 2の光学異方性層 1 1の配置 順序を入れ替え、 さらに第 1の光学異方性層 14と第 2の光学異方性層 1 3の配 置順序を入れ替えた以外は、 実施例 1と同様の液晶表示装置を作製した。 液晶表 示装置の概略について図 8に示す。 なお、 偏光素子、 第 1および第 2の光学異方 性層および液晶セル両界面のプレチルト方向は実施例 1と同一である (図 4) 。 図 9は、 白表示 0V、 黒表示 5 Vの透過率の比 (白表示) / (黒表示) をコン トラスト比として、 全方位からのコントラスト比を示している。  In Example 1, the arrangement order of the first optical anisotropic layer 1 2 and the second optical anisotropic layer 1 1 is changed, and the first optical anisotropic layer 14 and the second optical anisotropy are further changed. A liquid crystal display device similar to that of Example 1 was produced except that the arrangement order of the layers 13 was changed. Figure 8 shows an outline of the liquid crystal display device. The pretilt directions of the polarizing element, the first and second optically anisotropic layers, and the liquid crystal cell interface are the same as in Example 1 (FIG. 4). Figure 9 shows the contrast ratio from all directions, with the contrast ratio of the transmittance ratio of white display 0V and black display 5V (white display) / (black display).
視野角特性について、 実施例 1と比較例 1を比較すると、 図 5と図 9から、 実 施例 1と比べて比較例 1では視野角特性が劣ることが分かる。 <比較例 2 > As for viewing angle characteristics, comparing Example 1 and Comparative Example 1, it can be seen from FIGS. 5 and 9 that Comparative Example 1 has poor viewing angle characteristics compared to Example 1. <Comparative Example 2>
実施例 1において、 第 1の光学異方性層 1 2および 1 4を除いた以外は、 実施 例 1と同様の液晶表示装置を作製した。 液晶表示装置の概略について図 1 0に示 す。  A liquid crystal display device similar to that of Example 1 was produced, except that in Example 1, the first optically anisotropic layers 12 and 14 were omitted. An outline of the liquid crystal display device is shown in FIG.
図 1 1は、 白表示 0 V、 黒表示 5 Vの透過率の比 (白表示) / (黒表示) をコ ントラスト比として、 全方位からのコントラスト比を示している。  Figure 11 shows the contrast ratio from all directions, with the contrast ratio of the transmittance of white display 0 V and black display 5 V (white display) / (black display).
視野角特性について、 実施例 1と比較例 2を比較すると、 図 5と図 1 1から、 第 1の光学異方性層を用いることにより、 大幅に視野角特性が改善されているこ とが分かる。 <比較例 3〉  As for the viewing angle characteristics, comparing Example 1 and Comparative Example 2, it can be seen from FIG. 5 and FIG. 11 that the viewing angle characteristics are greatly improved by using the first optically anisotropic layer. I understand. <Comparative Example 3>
積層構造は比較例 2と同じであるが、 軸構成が異なる液晶表示装置を作製した。 すなわち、 偏光素子 7及び 8の吸収軸、 液晶フィルム 1 1及び 1 3のチルト方向、 液晶セル 6の両界面のプレチルト方向は図 1 2に記載した条件で配置した。 図 1 3は、 白表示 O V、 黒表示 5 Vの透過率の比 (白表示) Z (黒表示) をコントラ スト比として、 全方位からのコントラスト比を示している。  A laminated structure was the same as that of Comparative Example 2, but liquid crystal display devices with different shaft configurations were produced. That is, the absorption axes of the polarizing elements 7 and 8, the tilt directions of the liquid crystal films 11 and 13 and the pretilt directions of both interfaces of the liquid crystal cell 6 were arranged under the conditions described in FIG. Figure 13 shows the contrast ratio from all directions, with the transmittance ratio of white display OV and black display 5 V (white display) Z (black display) as the contrast ratio.
視野角特性について、 実施例 1と比較例 3を比較すると、 図 5と図 1 3から、 第 1の光学異方性層を用いることにより、 大幅に視野角特性が改善されているこ とが分かる。  Regarding viewing angle characteristics, comparing Example 1 and Comparative Example 3, it can be seen from FIG. 5 and FIG. 13 that the viewing angle characteristics are greatly improved by using the first optically anisotropic layer. I understand.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明の楕円偏光板の概念図である。  FIG. 1 is a conceptual diagram of the elliptically polarizing plate of the present invention.
図 2は、 第 2の光学異方性層を構成する液晶フィルムの配向構造の模式図であ る。  FIG. 2 is a schematic diagram of the alignment structure of the liquid crystal film constituting the second optically anisotropic layer.
図 3は、 実施例 1の液晶表示装置を模式的に表した断面図である。  FIG. 3 is a cross-sectional view schematically showing the liquid crystal display device of Example 1.
図 4は、 実施例 1における偏光板の吸収軸、 高分子延伸フィルムの遅相軸、 液 晶フィルムのチルト方向および液晶セルのプレチルト方向の角度関係を示した平 面図である。  FIG. 4 is a plan view showing the angular relationship between the absorption axis of the polarizing plate, the slow axis of the polymer stretched film, the tilt direction of the liquid crystal film, and the pretilt direction of the liquid crystal cell in Example 1.
図 5は、 実施例 1における液晶表示装置を全方位から見た時のコントラスト比 を示す図である。 図 6は、 実施例 2における液晶表示装置を全方位から見た時のコントラスト比 を示す図である。 FIG. 5 is a graph showing the contrast ratio when the liquid crystal display device in Example 1 is viewed from all directions. FIG. 6 is a graph showing the contrast ratio when the liquid crystal display device in Example 2 is viewed from all directions.
図 7は、 実施例 3における液晶表示装置を全方位から見た時のコントラスト比 を示す図である。  FIG. 7 is a graph showing the contrast ratio when the liquid crystal display device in Example 3 is viewed from all directions.
図 8は、 比較例 1の液晶表示装置を模式的に表した断面図である。  FIG. 8 is a cross-sectional view schematically showing the liquid crystal display device of Comparative Example 1.
図 9は、 比較例 1における液晶表示装置を全方位から見た時のコントラスト比 を示す図である。  FIG. 9 is a diagram showing the contrast ratio when the liquid crystal display device in Comparative Example 1 is viewed from all directions.
図 1 0は、 比較例 2および比較例 3の液晶表示装置を模式的に表した断面図で ある。  FIG. 10 is a cross-sectional view schematically showing the liquid crystal display devices of Comparative Example 2 and Comparative Example 3.
図 1 1は、 比較例 2における液晶表示装置を全方位から見た時のコントラス ト 比を示す図である。  FIG. 11 is a diagram showing the contrast ratio when the liquid crystal display device in Comparative Example 2 is viewed from all directions.
図 1 2は、 比較例 3における偏光板の吸収軸、 液晶フィルムのチルト方向およ び液晶セルのプレチルト方向の角度関係を示した平面図である。  FIG. 12 is a plan view showing the angular relationship among the absorption axis of the polarizing plate, the tilt direction of the liquid crystal film, and the pretilt direction of the liquid crystal cell in Comparative Example 3.
図 1 3は、 比較例 3における液晶表示装置を全方位から見た時のコントラスト 比を示す図である。  FIG. 13 is a diagram showing a contrast ratio when the liquid crystal display device in Comparative Example 3 is viewed from all directions.
(符号の説明)  (Explanation of symbols)
I、 2 : 基板, 3 :透明電極、 4 : 対向電極、 5 :液晶層、 6 : 液晶セル、 7 :第 1の偏光素子、 8 :第 2の偏光素子、 9、 1 0 :透光性保護フィルム I, 2: substrate, 3: transparent electrode, 4: counter electrode, 5: liquid crystal layer, 6: liquid crystal cell, 7: first polarizing element, 8: second polarizing element, 9, 10: translucency Protective film
I I、 1 3 :第 2の光学異方性層、 1 2、 1 4 :第 1の光学異方性層 II, 1 3 : second optically anisotropic layer, 1 2, 14: first optically anisotropic layer
1 5、 1 6 :楕円偏光板、 1 7 : ノくックライ ト 1 5 and 1 6: Elliptical polarizer, 1 7: Knock light
[産業上の利用可能性] [Industrial applicability]
本発明により、 コントラストと階調反転の両方の視野角特性を大幅に改善でき る楕円偏光板が提供され、 それを液晶セルに配置することにより高コントラスト で視野角依存性の少ない液晶表示装置を提供できるため産業的価値が大きい。  The present invention provides an elliptically polarizing plate that can greatly improve the viewing angle characteristics of both contrast and gradation reversal. By disposing it in a liquid crystal cell, a liquid crystal display device with high contrast and less viewing angle dependency is provided. Industrial value is great because it can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1. 偏光板、 第 1の光学異方性層、 第 2の光学異方性層がこの順に積層さ れている楕円偏光板であって、 前記第 1の光学異方性層が、 以下の [1] 及び 1. An elliptically polarizing plate in which a polarizing plate, a first optical anisotropic layer, and a second optical anisotropic layer are laminated in this order, wherein the first optical anisotropic layer is: [1] and
[2] を満たし、 かつ、 第 1の光学異方性層の遅相軸と偏光板の吸収軸とが直交 になるように積層されており、 前記第 2の光学異方性層が、 波長 550 nmにお ける面内の位相差値が 30〜1 5 O nmであり、 光学的に正の一軸性を示す液晶 性高分子を液晶分子の平均チルト角が 5° 〜50° であるネマチックハイブリツ ド配向構造を固定化した液晶フィルムであり、 かつ、 第 2の光学異方性層の配向 方向と偏光板の吸収軸とが平行になるように積層されており、 第 2の光学異方性 層側が、 液晶セル側になるように、 ッイステツドネマチック (TN) 型液晶表示 装置において用いられることを特徴とする楕円偏光板。  Satisfying [2], and the slow axis of the first optical anisotropic layer and the absorption axis of the polarizing plate are laminated so that the second optical anisotropic layer has a wavelength A nematic liquid crystal polymer having an in-plane retardation value at 550 nm of 30 to 15 O nm and an optically positive uniaxial liquid crystal molecule with an average tilt angle of 5 ° to 50 °. The liquid crystal film has a hybrid alignment structure fixed, and is laminated so that the alignment direction of the second optical anisotropic layer and the absorption axis of the polarizing plate are parallel to each other. An elliptically polarizing plate characterized by being used in a twisted nematic (TN) type liquid crystal display device such that the isotropic layer side is the liquid crystal cell side.
[ 1 ] 0. 8≤NZ 1≤ 1. 6  [1] 0. 8≤NZ 1≤ 1. 6
[2] 1 20≤R e l≤ 250  [2] 1 20≤R e l≤ 250
(ここで、 NZ 1は、 NZ 1 = (n x l—n z l) ノ (n x l— n y l) である。 また、 R e lは、 R e l = (n x l— n y l) X d 1 [nm] で定義される第 1 の光学異方性層の面内の位相差値である。 d 1は第 1の光学異方性層の厚さ [n m] であり、 n x l , n y 1は波長 550 nmの光に対する第 1の光学異方性層 面内の主屈折率、 n z 1は波長 550 nmの光に対する厚さ方向の主屈折率であ り、 n x l >n y lである。 )  (Here, NZ 1 is NZ 1 = (nxl—nzl) (nxl—nyl). Also, R el is the first defined by R el = (nxl—nyl) X d 1 [nm]. Is the in-plane retardation value of the optically anisotropic layer of 1. d 1 is the thickness [nm] of the first optically anisotropic layer, and nxl and ny 1 are the first for light of wavelength 550 nm. The main refractive index in the plane of the optically anisotropic layer, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl.
2. 前記第 1の光学異方性層が、 環状ポリオレフイン樹脂を含有する熱可 塑性高分子からなることを特徴とする請求項 1に記載の楕円偏光板。  2. The elliptically polarizing plate according to claim 1, wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cyclic polyolefin resin.
3. 前記第 1の光学異方性層が、 セルロース系樹脂を含有する熱可塑性高 分子からなることを特徴とする請求項 1に記載の楕円偏光板。  3. The elliptically polarizing plate according to claim 1, wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cellulose resin.
4. 請求項 1に記載の楕円偏光板を少なく とも 1枚含むことを特徴とする TN型液晶表示装置。  4. A TN liquid crystal display device comprising at least one elliptically polarizing plate according to claim 1.
5. 視認側から、 第 1の偏光板、 第 1の光学異方性層、 第 2の光学異方性 層、 TN型液晶セル、 第 2の光学異方性層、 第 1の光学異方性層、 第 2の偏光板 およびバックライ トがこの順に配置された TN型液晶表示装置であって、 前記第 1の光学異方性層が、 以下の [1] 及び [2] を満たし、 視認側の第 1の光学異 方性層の遅相軸と第 1の偏光板の吸収軸とが直交に、 バックライ ト側の第 1の光 学異方性層の遅相軸と第 2の偏光板の吸収軸とが直交になるように積層されてお り、 前記第 2の光学異方性層が、 波長 550 nmにおける面内の位相差値が 30 〜 1 50 nmであり、 光学的に正の一軸性を示す液晶性高分子を液晶分子の平均 チルト角が 5° 〜50° であるネマチックハイブリッド配向構造を固定化した液 晶フィルムであり、 かつ、 視認側の第 2の光学異方性層の配向方向と第 1の偏光 板の吸収軸とが平行に、 バックライ ト側の第 2の光学異方性層の配向方向と第 2 の偏光板の吸収軸とが平行になるように積層されていることを特徴とする TN型 液晶表示装置。 5. From the viewer side, first polarizing plate, first optical anisotropic layer, second optical anisotropic layer, TN liquid crystal cell, second optical anisotropic layer, first optical anisotropic A TN liquid crystal display device in which a conductive layer, a second polarizing plate, and a backlight are arranged in this order, wherein the first optical anisotropic layer satisfies the following [1] and [2] and is visually Side of the first optical The slow axis of the isotropic layer and the absorption axis of the first polarizing plate are orthogonal to each other, and the slow axis of the first optically anisotropic layer on the backlight side and the absorption axis of the second polarizing plate are orthogonal to each other. The second optically anisotropic layer has an in-plane retardation value of 30 to 150 nm at a wavelength of 550 nm, and is optically positive uniaxial liquid crystal A liquid crystal film in which a nematic hybrid alignment structure in which the average tilt angle of liquid crystal molecules is 5 ° to 50 ° is fixed, and the alignment direction of the second optical anisotropic layer on the viewer side It is laminated so that the absorption axis of the polarizing plate 1 is parallel, and the orientation direction of the second optical anisotropic layer on the backlight side is parallel to the absorption axis of the second polarizing plate. TN type liquid crystal display device.
[1] 0. 8≤NZ 1≤ 1. 6  [1] 0. 8≤NZ 1≤ 1. 6
[2] 1 20≤R e l≤ 250  [2] 1 20≤R e l≤ 250
(ここで、 NZ 1は、 NZ 1 = (n X 1 - n z 1 ) / (n x l— n y l) である。 また、 R e lは、 R e l = (n x l— n y l) X d 1 [nm] で定義される第 1 の光学異方性層の面内の位相差値である。 d 1は第 1の光学異方性層の厚さ [n m] であり、 n x l , n y 1は波長 550 nmの光に対する第 1の光学異方性層 面内の主屈折率、 n z 1は波長 550 nmの光に対する厚さ方向の主屈折率であ り、 n x l〉 n y lである。 )  (Here, NZ 1 is NZ 1 = (n X 1-nz 1) / (nxl— nyl). Also, R el is defined by R el = (nxl— nyl) X d 1 [nm] Where d 1 is the thickness [nm] of the first optical anisotropic layer, and nxl and ny 1 are light having a wavelength of 550 nm. The main refractive index in the plane of the first optical anisotropic layer with respect to, nz 1 is the main refractive index in the thickness direction for light with a wavelength of 550 nm, and nxl> nyl.
6. 前記第 1の光学異方性層が、 環状ポリオレフイン樹脂を含有する熱可 塑性高分子からなることを特徴とする請求項 4または 5に記載の T N型液晶表示 装置。  6. The TN type liquid crystal display device according to claim 4, wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cyclic polyolefin resin.
7. 前記第 1の光学異方性層が、 セルロース系樹脂を含有する熱可塑性高 分子からなることを特徴とする請求項 4または 5に記載の T N型液晶表示装置。  7. The TN type liquid crystal display device according to claim 4, wherein the first optically anisotropic layer is made of a thermoplastic polymer containing a cellulose resin.
8. 電圧無印加状態において、 TN型液晶セル内の視認側のセル基板上の 液晶分子の配向方向は、 隣接する視認側の第 2の光学異方性層のネマチックハイ プリッド配向構造を固定化した液晶フィルムの配向方向と反平行の関係になるよ うに配置されており、 バックライ ト側のセル基板上の液晶分子の配向方向は、 バ ックライ ト側の第 2の光学異方性層のネマチックハイプリッド配向構造を固定化 した液晶フィルムの配向方向と反平行の関係になるように配置されていることを 特徴とする請求項 4〜 7のいずれかに記載の TN型液晶表示装置。  8. When no voltage is applied, the alignment direction of the liquid crystal molecules on the cell substrate on the viewing side in the TN liquid crystal cell is fixed to the nematic hybrid alignment structure of the second optically anisotropic layer on the adjacent viewing side. The alignment direction of the liquid crystal molecules on the cell substrate on the backlight side is the nematic of the second optical anisotropic layer on the backlight side. 8. The TN liquid crystal display device according to claim 4, wherein the TN liquid crystal display device is disposed so as to have an antiparallel relationship with the alignment direction of the liquid crystal film in which the hybrid alignment structure is fixed.
PCT/JP2008/065058 2007-08-31 2008-08-18 Elliptic polarization plate and liquid crystal display device WO2009028428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/674,799 US8179501B2 (en) 2007-08-31 2008-08-18 Liquid crystal display device having an elliptical polarizer with first and second anisotropic layers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007225063 2007-08-31
JP2007-225063 2007-08-31
JP2008-013905 2008-01-24
JP2008013905A JP2009075533A (en) 2007-08-31 2008-01-24 Elliptic polarization plate and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2009028428A1 true WO2009028428A1 (en) 2009-03-05

Family

ID=40387150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065058 WO2009028428A1 (en) 2007-08-31 2008-08-18 Elliptic polarization plate and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2009028428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166991A1 (en) * 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004096A (en) * 2003-06-13 2005-01-06 Sekisui Chem Co Ltd Phase difference compensating film, method for manufacturing the same composite polarizing plate, polarizing plate, and liquid crystal display device
JP2005062668A (en) * 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd Liquid crystal display
JP2005189633A (en) * 2003-12-26 2005-07-14 Nippon Oil Corp Transmission type liquid crystal display element
JP2005202101A (en) * 2004-01-15 2005-07-28 Nippon Oil Corp Transmissive liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004096A (en) * 2003-06-13 2005-01-06 Sekisui Chem Co Ltd Phase difference compensating film, method for manufacturing the same composite polarizing plate, polarizing plate, and liquid crystal display device
JP2005062668A (en) * 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd Liquid crystal display
JP2005189633A (en) * 2003-12-26 2005-07-14 Nippon Oil Corp Transmission type liquid crystal display element
JP2005202101A (en) * 2004-01-15 2005-07-28 Nippon Oil Corp Transmissive liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166991A1 (en) * 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device
JPWO2015166991A1 (en) * 2014-05-01 2017-04-20 富士フイルム株式会社 Organic EL display device
US10026929B2 (en) 2014-05-01 2018-07-17 Fujifilm Corporation Organic el display device

Similar Documents

Publication Publication Date Title
KR100757718B1 (en) Optical film and liquid crystal display
KR100717563B1 (en) Ips mode liquid crystal display device
TWI428643B (en) Elliptical polarizer and liquid crystal display device
JP3938923B2 (en) IPS mode liquid crystal display device
WO2009150779A1 (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
JP2001091745A (en) Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
WO2008059721A1 (en) Elliptic polarizing plate and vertically aligned liquid crystal display using the same
JP4136872B2 (en) Optical film and image display device
KR100784750B1 (en) Optical film and image display
JP3957257B2 (en) Liquid crystal display
JP3957256B2 (en) Liquid crystal display
JP2005202101A (en) Transmissive liquid crystal display element
JP2009053614A (en) Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP4612561B2 (en) Polarizer
JP2002107541A (en) Optical sheet, polarizing plate, and liquid crystal display
JP2002139623A (en) Optical sheet, polarization plate and liquid crystal display
WO2005116700A1 (en) Elliptical polarizing plate and image display
JP2002090530A (en) Composite optical retardation plate, optical compensation polarizing plate and liquid crystal display device
JP4911604B2 (en) Liquid crystal panel and liquid crystal display device
JP4761399B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
WO2009028428A1 (en) Elliptic polarization plate and liquid crystal display device
JP4693062B2 (en) IPS mode liquid crystal display device
WO2008062624A1 (en) Multilayer optical film, liquid crystal panel employing multilayer optical film and liquid crystal display
JP4761395B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP4401511B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12674799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107006405

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08792667

Country of ref document: EP

Kind code of ref document: A1